WO2023173848A1 - 透镜组件、光学成像***、摄像头模组及电子设备 - Google Patents

透镜组件、光学成像***、摄像头模组及电子设备 Download PDF

Info

Publication number
WO2023173848A1
WO2023173848A1 PCT/CN2022/138786 CN2022138786W WO2023173848A1 WO 2023173848 A1 WO2023173848 A1 WO 2023173848A1 CN 2022138786 W CN2022138786 W CN 2022138786W WO 2023173848 A1 WO2023173848 A1 WO 2023173848A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving component
layer
flexible layer
electric field
lens assembly
Prior art date
Application number
PCT/CN2022/138786
Other languages
English (en)
French (fr)
Inventor
董富伟
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023173848A1 publication Critical patent/WO2023173848A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • This application relates to the field of electronics, specifically to a lens assembly, an optical imaging system, a camera module and an electronic device.
  • the first embodiment of the present application provides a lens assembly, which includes:
  • a load-bearing layer has a first surface, and the first surface is a curved surface;
  • a zoom layer, the zoom layer is disposed on the first surface of the bearing layer
  • the flexible layer is disposed on the side of the zoom layer away from the bearing layer;
  • An actuator the actuator is carried on the flexible layer, and the actuator is used to drive the flexible layer to deform, thereby driving the zoom layer to elastically deform, so as to achieve a change in the focal length of the lens assembly.
  • the second embodiment of the present application provides an optical imaging system, which includes: the lens assembly described in the embodiment of the present application, the optical imaging system has an object side, and the flexible layer of the lens assembly is larger than the lens assembly. The zoom layer is closer to the object side of the optical imaging system.
  • the third embodiment of the present application provides a camera module, which includes:
  • Photosensitive element the photosensitive element is located on the image side of the optical imaging system.
  • the fourth embodiment of the present application provides an electronic device, which includes:
  • the camera module described in the embodiment of this application is used to capture images
  • a display module for displaying images captured by the camera module
  • the circuit board module is electrically connected to the camera module and the display module respectively, and is used to control the camera module for shooting and to control the display module for display.
  • Figure 1 is a schematic structural diagram of a lens assembly according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structural view of a lens assembly along the direction A-A in FIG. 1 according to an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structural view of a lens assembly according to another embodiment of the present application along the direction A-A in FIG. 1 .
  • Figure 4 is a schematic structural diagram of the first driving component or the second driving component according to an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional structural view of the first driving component or the second driving component along the B-B direction in FIG. 4 according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structural view of a lens assembly according to another embodiment of the present application along the direction A-A in FIG. 1 .
  • FIG. 7 is a schematic cross-sectional structural view of a lens assembly according to another embodiment of the present application along the direction A-A in FIG. 1 .
  • FIG. 8 is a schematic cross-sectional structural view along the direction A-A in FIG. 1 when the lens assembly according to an embodiment of the present application is in the first state.
  • FIG. 9 is a schematic cross-sectional structural view along the direction A-A in FIG. 1 when the lens assembly according to an embodiment of the present application is in the second state.
  • FIG. 10 is a schematic cross-sectional structural view along the direction A-A in FIG. 1 when the lens assembly according to an embodiment of the present application is in the third state.
  • FIG. 11 is a schematic cross-sectional structural view along the direction A-A in FIG. 1 when the lens assembly according to an embodiment of the present application is in the fourth state.
  • FIG. 12 is a schematic cross-sectional structural view of a lens assembly according to another embodiment of the present application along the direction A-A in FIG. 1 .
  • FIG. 13 is a schematic cross-sectional structural view of a lens assembly according to another embodiment of the present application along the direction A-A in FIG. 1 .
  • FIG. 14 is a schematic cross-sectional structural view of a lens assembly according to another embodiment of the present application along the direction A-A in FIG. 1 .
  • Figure 15 is a schematic structural diagram of an optical imaging system according to an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of an optical imaging system according to another embodiment of the present application.
  • Figure 17 is a schematic structural diagram of an optical imaging system according to another embodiment of the present application.
  • Figure 18 is a schematic structural diagram of an optical imaging system according to another embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Figure 21 is a schematic diagram of a partially exploded structure of an electronic device according to an embodiment of the present application.
  • Figure 22 is a circuit block diagram of an electronic device according to an embodiment of the present application.
  • Figure 23 is a circuit block diagram of an electronic device according to yet another embodiment of the present application.
  • 100-lens assembly 101-accommodating space, 10-carrying layer, 11-first surface, 30-zoom layer, 50-flexible layer, 51-second surface, 70-actuator, 71-first driving component, 711-first electrode, 713-actuation layer, 715-second electrode, 73-second driving component, 90-support, 200-optical imaging system, 210-non-zoom lens, 230-diaphragm, 250-infrared Cut-off filter, 270-protective film, 300-camera module, 310-photosensitive element, 331-accommodating cavity, 400-electronic equipment, 410-display module, 420-middle frame, 430-circuit board module, 431-processor, 433-memory, 450-casing, 451-transparent part.
  • this application provides a lens assembly, which includes:
  • a load-bearing layer has a first surface, and the first surface is a curved surface;
  • a zoom layer, the zoom layer is disposed on the first surface of the bearing layer
  • the flexible layer is disposed on the side of the zoom layer away from the bearing layer;
  • An actuator the actuator is carried on the flexible layer, and the actuator is used to drive the flexible layer to deform, thereby driving the zoom layer to elastically deform, so as to achieve a change in the focal length of the lens assembly.
  • the lens assembly has an optical axis
  • the first surface is a convex surface or a concave surface at the optical axis
  • the first surface is a spherical surface, an aspherical surface or a free-form surface.
  • the first surface is a convex surface at the optical axis, and the curvature radius R1 of the first surface is in a range of 20mm ⁇ R1 ⁇ 300mm; or, the first surface is a concave surface at the optical axis, The curvature radius R1 of the first surface ranges from 1 mm ⁇ R1 ⁇ 300 mm.
  • the range of the focal length f of the lens assembly is -200mm ⁇ f ⁇ -5mm, or 2mm ⁇ f ⁇ 100mm.
  • the range of the clear aperture D of the lens assembly is 1.5mm ⁇ D ⁇ 7mm.
  • the actuator includes a first driving component and a second driving component.
  • the first driving component is disposed on a side of the flexible layer away from the zoom layer.
  • the second driving component is disposed on the flexible layer. The side of the layer facing the zoom layer, when at least one of the first driving component and the second driving component is loaded with a voltage, the flexible layer is driven to deform, thereby driving the zoom layer to elastically deform, To achieve the focal length change of the lens assembly.
  • the lens assembly has an optical axis
  • the flexible layer has a second surface away from the zoom layer
  • the flexible layer drives the The flexible layer deforms, thereby driving the zoom layer to elastically deform, so that the second surface is spherical or aspherical, and the second surface is convex or concave at the optical axis.
  • the first surface is a convex surface at the optical axis.
  • the second driving component applies a voltage to generate a second electric field
  • the second driving component The surface is spherical and protrudes in a direction away from the zoom layer; wherein the direction of the first electric field is from the side of the first driving component away from the flexible layer toward the first driving component close to the flexible layer
  • the direction of the second electric field is from the side of the second driving component away from the flexible layer to the side of the second driving component close to the flexible layer.
  • the first surface is a convex surface at the optical axis.
  • the second driving component applies a voltage to generate a fourth electric field
  • the surface is aspherical, and the second surface protrudes toward the direction away from the zoom layer at the optical axis; wherein the direction of the third electric field points from the side of the first driving component close to the flexible layer.
  • the direction of the fourth electric field is from the side of the second driving component facing away from the flexible layer to the side of the second driving component close to the flexible layer.
  • the first surface is a convex surface at the optical axis, and when neither the first driving component nor the second driving component is loaded with voltage, the lens component has a first focal length; when the first driving component When the driving component applies a voltage to generate a first electric field, and when the second driving component applies a voltage to generate a second electric field, the lens component has a second focal length; when the first driving component applies a voltage to a third electric field, the second driving component When a voltage is applied to the component to generate a fourth electric field, the lens component has a third focal length, and the first focal length, the second focal length and the third focal length are different from each other.
  • the first surface is a concave surface at the optical axis.
  • the second driving component applies a voltage to generate a second electric field
  • the second driving component The surface is spherical, and the second surface is recessed toward the direction of the zoom layer at the optical axis; wherein the direction of the first electric field is directed from the side of the first driving component close to the flexible layer to the first The side of the driving component facing away from the flexible layer; the direction of the second electric field is from the side of the second driving component close to the flexible layer to the side of the second driving component facing away from the flexible layer.
  • the first surface is a concave surface at the optical axis.
  • the second driving component applies a voltage to generate a third electric field and the second driving component applies a voltage to generate a fourth electric field
  • the second driving component The surface is an aspherical surface, and the second surface is recessed toward the direction of the zoom layer at the optical axis; wherein the direction of the third electric field is directed from the side of the first driving component away from the flexible layer toward the third One driving component is close to the side of the flexible layer; the direction of the fourth electric field is from the side of the second driving component close to the flexible layer to the side of the second driving component away from the flexible layer.
  • the first surface is a concave surface at the optical axis, and when neither the first driving component nor the second driving component is loaded with voltage, the lens component has a first focal length; when the first driving component When the driving component applies a voltage to generate a first electric field, and when the second driving component applies a voltage to generate a second electric field, the lens component has a second focal length; when the first driving component applies a voltage to generate a third electric field, the second driving component generates a third electric field.
  • the lens component When the driving component is loaded with a fourth electric field, the lens component has a third focal length, and the first focal length, the second focal length and the third focal length are different from each other.
  • the second surface curvature radius R2 is in a range of 50mm ⁇ R2 ⁇ 100mm.
  • the first driving component is at least one of a piezoelectric driving component, an electrostrictive driving component, and a magnetostrictive driving component
  • the second driving component is a piezoelectric driving component, an electrostrictive driving component, or a magnetostrictive driving component. at least one of them.
  • first driving component and the second driving component are both annular structures, the first driving component and the second driving component are coaxially arranged, and the first driving component and the second driving component Orthographic projections of the driving assembly on the flexible layer at least partially overlap, and orthographic projections of the actuator on the flexible layer are arranged around the outer periphery of the orthographic projection of the zoom layer on the flexible layer.
  • the lens assembly further includes a support member, which is located on a side of the flexible layer facing the zoom layer and is arranged around the outer periphery of the zoom layer.
  • the support member is in contact with the flexible layer and At least one of the load-bearing layers is connected to support the flexible layer.
  • the load-bearing layer and the support member are both light-transmissive, and the load-bearing layer and the support member are an integrated structure.
  • this application provides an optical imaging system, which includes: the lens assembly described in the first aspect of this application, the optical imaging system has an object side, and the flexible layer of the lens assembly is larger than the The zoom layer is closer to the object side of the optical imaging system.
  • this application provides a camera module, which includes:
  • Photosensitive element the photosensitive element is located on the image side of the optical imaging system.
  • this application provides an electronic device, which includes:
  • the camera module described in the third aspect of this application is used to capture images
  • a display module for displaying images captured by the camera module
  • the circuit board module is electrically connected to the camera module and the display module respectively, and is used to control the camera module for shooting and to control the display module for display.
  • the embodiment of the present application provides a lens assembly 100, which can be applied to an optical imaging system 200 (as shown in Figures 15 and 16), such as cameras, camera phones, driving recorders, vehicle cameras, tablet computers, notebook computers, desktop computers, etc.
  • an optical imaging system 200 such as cameras, camera phones, driving recorders, vehicle cameras, tablet computers, notebook computers, desktop computers, etc.
  • electronic devices 400 shown in Figure 20 with camera functions such as computers, smart bracelets, smart watches, e-readers, smart glasses, security equipment, monitoring equipment, video doorbells, etc.
  • an embodiment of the present application provides a lens assembly 100 , which includes a bearing layer 10 , a zoom layer 30 , a flexible layer 50 and an actuator 70 .
  • the bearing layer 10 has a first surface 11, and the first surface 11 is a curved surface; the zoom layer 30 is disposed on the first surface 11 of the bearing layer 10; the flexible layer 50 is disposed on the The side of the zoom layer 30 away from the bearing layer 10; the actuator 70 is carried on the flexible layer 50, and the actuator 70 is used to drive the flexible layer 50 to deform, thereby driving the zoom
  • the layer 30 undergoes elastic deformation to achieve a focal length change of the lens assembly 100 .
  • the first surface 11 is a curved surface. It can be understood that the first surface 11 is non-planar.
  • the zoom layer 30 is disposed on the first surface 11 of the carrier layer 10.
  • the zoom layer 30 can be directly disposed on the first surface 11 and bonded to the first surface 11; it can also be The zoom layer 30 is disposed above the first surface 11.
  • Other light-transmitting parts such as optical glue (OCA glue), etc., can be disposed between the zoom layer 30 and the first surface 11.
  • OCA glue optical glue
  • the zoom layer 30 is adhered to the first surface 11 through the optical glue. on surface 11.
  • the flexible layer 50 is disposed on the side of the zoom layer 30 away from the load-bearing layer 10; the flexible layer 50 can be disposed close to the surface of the zoom layer 30 away from the load-bearing layer 10, directly connected to the zoom layer. 30 is bonded to the surface away from the carrier layer 10.
  • the flexible layer 50 and the zoom layer 30 may be spaced apart from the surface away from the carrier layer 10, and other light-transmitting parts, such as optical glue (OCA glue), etc., are also provided in the middle.
  • OCA glue optical glue
  • the flexible layer 50 is closer to the object side of the optical imaging system 200 than the zoom layer 30 .
  • the zoom layer 30 is closer to the optical imaging system 200 than the flexible layer 50 .
  • light (dashed arrows in Figures 2 and 3 ) is incident from the flexible layer 50 side of the lens assembly 100 , and passes through the flexible layer 50 , the zoom layer 30 and the load-bearing layer 10 in sequence, and is far away from the flexible layer when the load-bearing layer 10 50 emitted from one side, the light will be refracted when passing between each two adjacent layer structures.
  • the lens assembly 100 can converge the light to form a convex lens, or the lens assembly 100 can be controlled to have a divergent effect on the light to form a concave lens.
  • the actuator 70 is started, and the actuator 70 applies a compressive force or a tensile force to at least part of the flexible layer 50, so that under the action of the actuator 70 The bending occurs, thereby squeezing the zoom layer 30 , causing the zoom layer 30 to undergo elastic deformation, thereby changing the path of light propagation, and causing the focal length of the lens assembly 100 to change.
  • the flexible layer 50 can be deformed to varying degrees and in different forms, so that the zoom layer 30 can be deformed in the flexible layer. Under the action of 50, deformation occurs in different degrees and in different forms, thereby controlling the focal length of the lens assembly 100.
  • the lens assembly 100 of the embodiment of the present application carries the layer 10, the zoom layer 30, the flexible layer 50 and the actuator 70.
  • the carrier layer 10 has a first surface 11, and the first surface 11 is a curved surface, which enables the lens assembly 100 to have a certain concentrating effect or diverging effect on light when the actuator 70 is not activated, thereby having a certain Optical power, when the actuator 70 is turned on, the flexible layer 50 and the zoom layer 30 deform, and the surface of the flexible layer 50 away from the zoom layer 30 forms a curved surface, the first surface 11 is a curved surface, which can make the flexible layer 50 move away from the zoom layer
  • the surface of the layer 30 forms a larger curvature (ie, a smaller radius of curvature), so that by controlling the position, direction, size, etc.
  • the light-transmitting component can have a larger light intensity.
  • Focal power range thus having a large focal length variation range.
  • the structure and materials are the same, compared with the case where the first surface 11 is a plane, when the first surface 11 is a curved surface, it can bring about greater curvature, so that a larger focal length variation range can be obtained.
  • Lens assembly 100 with larger clear aperture when the structure and materials are the same, compared with the case where the first surface 11 is a plane, when the first surface 11 is a curved surface, it can bring about greater curvature, so that a larger focal length variation range can be obtained.
  • Lens assembly 100 with larger clear aperture when the structure and materials are the same, compared with the case where the first surface 11 is a plane, when the first surface 11 is a curved surface, it can bring about greater curvature, so that a larger focal length variation range can be obtained.
  • Lens assembly 100 with larger clear aperture when the structure and materials are the same, compared with the case where the first surface 11 is
  • optical power in this application describes the ability of an optical system to deflect light.
  • Optical power includes positive optical power and negative optical power.
  • clear aperture in this application refers to the diameter of the circular hole produced in the center of the lens by the variable aperture (blade group) when adjusting the aperture in a camera.
  • the lens assembly 100 has an optical axis, and the optical axis of the lens assembly 100 is shown by the dotted line O-O in FIG. 2 .
  • the optical axis of the lens assembly 100 of the present application is parallel to the stacking direction of the carrier layer 10 , the zoom layer 30 and the flexible layer 50 .
  • the term "optical axis" in this application refers to the center line of the light beam (optical column), or the axis of symmetry of the optical system.
  • the focal length f of the lens assembly 100 is in the range of -200mm ⁇ f ⁇ -5mm, or 2mm ⁇ f ⁇ 100mm.
  • the focal length f of the lens assembly 100 may be, but is not limited to, -200mm, -180mm, -150mm, -120mm, -100mm, -80mm, -50mm, -20mm, -10mm, -5mm, 2mm, 5mm , 10mm, 20mm, 30mm, 40mm, 50mm, 60mm, 70mm, 80mm, 60mm, 100mm, etc.
  • the focal length f of the lens assembly 100 of the present application can be changed between -200mm ⁇ f ⁇ -5mm, or 2mm ⁇ f ⁇ 100mm, which has a larger focal length variation range.
  • the lens assembly 100 of the present application When applied to a camera, it can have a larger focusing range. It can be suitable for shooting objects with different depths of field to better meet the needs of users.
  • the lens assembly 100 of the present application when applied to the optical imaging system 200, it can also be used for macro photography to obtain greater image magnification.
  • the shooting distance is less than 10cm, or the shooting distance is less than 5cm.
  • the clear aperture D of the lens assembly 100 is in a range of 1.5 mm ⁇ D ⁇ 7 mm. Further, the range of the clear aperture D of the lens assembly 100 is 3 mm ⁇ D ⁇ 7 mm. Furthermore, the range of the clear aperture D of the lens assembly 100 is 5 mm ⁇ D ⁇ 7 mm. Specifically, the clear aperture D of the lens assembly 100 may be, but is not limited to, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm, 5mm, 5.5mm, 6mm, 6.7mm, 7mm, etc.
  • the structural composition of the lens assembly 100 of the present application makes it possible to obtain a lens assembly 100 with a smaller clear aperture and a lens assembly 100 with a larger clear aperture (for example, greater than 4 mm or greater than 6 mm, etc.). In addition, when preparing a camera with a larger clear aperture, the focal length of the lens assembly 100 will not be reduced.
  • the carrier layer 10 is light-transmissive.
  • the material of the bearing layer 10 may be, but is not limited to, at least one of polycarbonate (PC), polymethylmethacrylate (PMMA), and glass. It can be understood that the bearing layer 10 has a certain rigidity to provide sufficient support. The rigidity of the bearing layer 10 at least prevents the shape of the first surface 11 from changing when the zoom layer 30 is extruded and elastically deformed.
  • the bearing layer 10 can be formed by molding, injection molding, etc., to obtain the first surface 11 of a predetermined shape.
  • the carrier layer 10 can also form the first surface 11 with a preset shape by using physical vapor deposition (PVD) or chemical vapor deposition (CVD) or other process methods on a planar structure.
  • the first surface 11 may be a spherical surface, an aspherical surface or a free-form surface.
  • the first surface 11 may be a convex surface or a concave surface. It can be understood that when the first surface 11 is a convex surface, the first surface 11 protrudes toward the direction closer to the zoom layer 30 ; when the first surface 11 is a concave surface, the first surface 11 is recessed toward a direction away from the zoom layer 30 .
  • more types of lens components 100 can be obtained, such as convex lenses with a condensing function and concave lenses with a diverging function.
  • aspheric surface in this application refers to a rotationally symmetric aspheric surface.
  • freeform surface in this application refers to an aspheric surface that is not rotationally symmetrical.
  • the first surface 11 is a convex surface or a concave surface at the optical axis, and the first surface 11 is a spherical surface, an aspherical surface or a free-form surface.
  • the aspheric surface may satisfy but is not limited to satisfying the following relationship:
  • z is the distance height from the aspherical surface to the aspherical surface's vertex (the vertex refers to the intersection of the aspherical surface and the optical axis) when the aspherical surface is at a height r along the optical axis
  • r is the distance from a point on the aspherical surface to the aspherical surface's vertex.
  • c is the curvature of the aspheric surface
  • k is the cone coefficient
  • A is the fourth-order correction coefficient of the aspheric surface
  • B is the sixth-order correction coefficient of the aspheric surface
  • C is the eighth-order correction coefficient of the aspheric surface
  • D is the The 10th-order correction coefficient of the spherical surface
  • E is the 12th-order correction coefficient of the aspheric surface
  • F is the 14th-order correction coefficient of the aspheric surface
  • G is the 16th-order correction coefficient of the aspheric surface
  • H is the 18th-order correction coefficient of the aspheric surface.
  • Coefficient, J is the 20th order correction coefficient of the aspheric surface.
  • the free-form surface may satisfy, but is not limited to, the following relationship:
  • z is the height of the distance from a point of height r along the optical axis on the free surface to the vertex of the free surface (the intersection of the point on the free surface and the optical axis), and r is the distance from the point on the free surface to the vertex of the aspheric surface.
  • distance c is the curvature of the free surface
  • k is the cone coefficient
  • ZP j is the j-th Zernike polynomial
  • C j is the coefficient of ZP j
  • j is an integer from 1 to 21.
  • the 1st to 21st expressions of polynomial ZP j are shown in Table 1 below.
  • the first surface 11 is convex at the optical axis and concave near the circumference (as shown in Figure 2); in other embodiments, the first surface 11 is both convex at the optical axis and near the circumference. is convex. In some embodiments, the first surface 11 is concave at the optical axis and convex near the circumference (as shown in FIG. 3 ). In some embodiments, the first surface 11 is concave at the optical axis and near the circumference.
  • the curvature radius R1 of the first surface 11 ranges from 20 mm ⁇ R1 ⁇ 300 mm. Further, the curvature radius R1 of the first surface 11 ranges from 50 mm ⁇ R1 ⁇ 150 mm. Specifically, the radius of curvature R1 of the first surface 11 may be, but is not limited to, 20mm, 30mm, 40mm, 50mm, 60mm, 70mm, 80mm, 100mm, 120mm, 140mm, 150mm, 160mm, 180mm, 200mm, 220mm, 240mm, 260mm , 280mm, 300mm, etc.
  • the radius of curvature of the first surface 11 is too large, the light-gathering effect provided is small, the height along the optical axis is low, and the supporting effect provided becomes weak; if the radius of curvature of the first surface 11 is too small, edge distortion will be excessively compensated during imaging. It becomes difficult, and the convexity along the optical axis direction is too high, the slope change is too steep, and the manufacturing difficulty increases.
  • the curvature radius R1 of the first surface 11 ranges from 1 mm ⁇ R1 ⁇ 300 mm. Further, the curvature radius R1 of the first surface 11 ranges from 1 mm ⁇ R1 ⁇ 50 mm. Furthermore, the curvature radius R1 of the first surface 11 ranges from 10 mm ⁇ R1 ⁇ 30 mm.
  • the radius of curvature R1 of the first surface 11 may be, but is not limited to, 1 mm, 3 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 60 mm, 70 mm, 80 mm, 100 mm, 120 mm , 140mm, 150mm, 160mm, 180mm, 200mm, 220mm, 240mm, 260mm, 280mm, 300mm, etc.
  • the radius of curvature of the first surface 11 is too large, and the diopter (ie, optical power) provided by the first surface 11 is too small; the radius of curvature of the first surface 11 is too small, making it difficult to compensate for excessive edge distortion during imaging, and along the The optical axis direction is too convex and the slope change is too steep, which increases manufacturing difficulties.
  • the zoom layer 30 is light-transmissive.
  • the material of the zoom layer 30 may include, but is not limited to, at least one of polydimethylsiloxane, polyurethane, fluorosilicone, silicone oil polymerized elastomer, and the like.
  • the material of the zoom layer 30 may include but is not limited to at least one of polydimethylsiloxane, polyurethane, fluorosilicone, etc.
  • the material of the zoom layer 30 may also include organic acid or inorganic acid fat. family to improve the stability of the zoom layer 30 and adjust the refractive index of the zoom layer 30 .
  • the material of the zoom layer 30 may also include at least one of titanium dioxide, zirconium oxide, tin oxide, zinc oxide, etc. The titanium dioxide, zirconium oxide, tin oxide, and zinc oxide are used to change or adjust the refractive index of the zoom layer 30 .
  • the zoom layer 30 can be prepared through the following steps: using silicone oil such as methyl silicone oil, phenyl silicone oil, hydroxyl silicone oil, and adding a certain proportion of coupling agent (such as silane coupling agent). (at least one of a coupling agent, a titanate coupling agent, and a borate coupling agent), and after high-temperature curing or light curing, an elastomer is obtained.
  • the hardness or elasticity of the elastomer can be adjusted by the degree of cross-linking, and the degree of cross-linking can be adjusted by the amount of coupling agent added.
  • the flexible layer 50 is light-transmissive.
  • the material of the flexible layer 50 may include, but is not limited to, at least one of glass and resin.
  • the glass may be, but is not limited to, at least one of quartz glass, glass containing elements such as boron, phosphorus, silicon, or glass containing elements such as Na, K, etc.
  • the glass may be at least one of silicate glass, aluminosilicate glass, phosphate glass, aluminophosphate glass, and borate glass.
  • the glass may be, but is not limited to, ultra-thin glass (UTG), such as ultra-thin glass from companies such as SCHOTT and Corning.
  • the resin may be, but is not limited to, at least one of polymethyl methacrylate (PMMA), polycarbonate (PC), and allyl diglycol dicarbonate.
  • the flexible layer 50 includes a stacked base layer (not shown) and a silicon dioxide layer (not shown).
  • the base layer is a silicon or glass substrate.
  • the silicon dioxide layer is chemically Vapor phase deposition (CVD) is deposited on the surface of the base layer.
  • the thickness of the flexible layer 50 may be 20 ⁇ m to 100 ⁇ m. In other words, the thickness of the flexible layer 50 along the optical axis direction. Specifically, the thickness of the flexible layer 50 may be, but is not limited to, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, etc.
  • the flexible layer 50 can also be a glass layer with a thickness greater than 100 ⁇ m (such as 150 ⁇ m, 200 ⁇ m, etc.), on which the electrode layer and piezoelectric material are prepared, and then ground to a thickness of 20 ⁇ m to 100 ⁇ m.
  • the thickness of the flexible layer 50 may be 20 ⁇ m to 100 ⁇ m, which means that the thickness of the flexible layer 50 may be any value between 20 ⁇ m and 100 ⁇ m, including the endpoint 20 ⁇ m and the endpoint 100 ⁇ m.
  • the shape of the flexible layer 50 may be circular; in other words, the shape of the flexible layer 50 is along a cross-section perpendicular to the optical axis.
  • the flexible layer 50 may have a diameter of 50 mm to 300 mm.
  • the diameter of the flexible layer 50 may be, but is not limited to, 50mm, 60mm, 70mm, 80mm, 100mm, 120mm, 140mm, 160mm, 180mm, 200mm, 220mm, 240mm, 260mm, 280mm, 300mm, etc.
  • the flexible layer 50 has a second surface 51 away from the zoom layer 30 .
  • the curvature radius R2 of the second surface 51 ranges from 50 mm ⁇ R2 ⁇ 100 mm.
  • the curvature radius R2 of the second surface 51 may be, but is not limited to, 50mm, 55mm, 60mm, 65mm, 70mm, 75mm, 80mm, 85mm, 90mm, 95mm, or 100mm.
  • the radius of curvature of the second surface 51 is greater than 200 mm, the light condensing effect or divergence effect of the formed lens assembly 100 is too small.
  • the radius of curvature of the second surface 51 is less than 50 mm, the second surface 51 is too curved and is not suitable for optical imaging.
  • the system is 200, the spherical aberration is too large, which will increase edge distortion.
  • the second surface is spherical or aspherical, and the second surface is convex or concave at the optical axis.
  • the carrier layer 10, the zoom layer 30 and the flexible layer 50 are connected in sequence.
  • the carrier layer 10 is connected to the zoom layer 30
  • the zoom layer 30 is connected to the flexible layer 50 .
  • This allows the zoom layer 30 to better deform together with the flexible layer 50 when the flexible layer 50 bends and deforms, and the bearing layer 10, the zoom layer 30 and the flexible layer 50 are always in sequential contact during the zooming process. That is to say, the zoom layer 30 is in contact with the first surface 11 side of the carrier layer 10 , and the flexible layer 50 is in contact with the side of the zoom layer 30 away from the carrier layer 10 .
  • the refractive index n1 of the carrier layer 10 is between 95% and 105% of the refractive index n2 of the zoom layer 30 .
  • the refractive index n1 of the carrier layer 10 and the refractive index n2 of the zoom layer 30 differ within a range of ⁇ 5%.
  • the refractive index n1 of the carrier layer 10 may be, but is not limited to, 95% n2, 96% n2, 97% n2, 98% n2, 99% n2, n2, 101% n2, 102% n2, 103% n2, 104%n2, 105%n2, etc. The closer the refractive index of the zoom layer 30 is to the refractive index of the carrier layer 10, the easier it is to form the lens assembly 100 with a single optical surface.
  • the refractive index n2 of the zoom layer 30 may be 1.1 to 2.0. Specifically, it can be but is not limited to 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, etc.
  • the refractive index n3 of the flexible layer 50 is between 95% and 105% of the refractive index n2 of the zoom layer 30 .
  • the refractive index n3 of the flexible layer 50 and the refractive index n2 of the zoom layer 30 differ within a range of ⁇ 5%.
  • the refractive index n3 of the flexible layer 50 may be, but is not limited to, 95% n2, 96% n2, 97% n2, 98% n2, 99% n2, n2, 101% n2, 102% n2, 103% n2, 104%n2, 105%n2, etc. The closer the refractive index of the flexible layer 50 is to the refractive index of the carrier layer 10, the easier it is to form the lens assembly 100 with a single optical surface.
  • the actuator 70 may be, but is not limited to, at least one of a piezoelectric actuator 70 , an electrostrictive actuator 70 , and a magnetostrictive actuator 70 .
  • the actuator 70 is an annular structure, such as an annular structure.
  • the orthographic projection of the actuator 70 on the flexible layer 50 is disposed around the outer periphery of the orthographic projection of the zoom layer 30 on the flexible layer 50 . This can better prevent the actuator 70 from affecting the propagation path of light in the lens assembly 100 .
  • the actuator 70 includes a first driving component 71 .
  • the first driving component 71 is disposed on a side of the flexible layer 50 away from the zoom layer 30 (i.e., the second surface 51 side), when the first driving component 71 is loaded with voltage, the flexible layer 50 is driven to deform, thereby driving the zoom layer 30 to elastically deform to achieve the focal length of the lens assembly 100 Variety.
  • the first driving component 71 is at least one of a piezoelectric driving component, an electrostrictive driving component, and a magnetostrictive driving component.
  • the first driving component 71 is a ring-shaped structure, for example, the first driving component 71 is a circular ring-shaped structure. It can be understood that the orthographic projection of the first driving component 71 on the flexible layer 50 is a ring-shaped structure.
  • the first driving component 71 includes a first electrode 711 , an actuation layer 713 and a second electrode 715 that are stacked in sequence.
  • the first electrode 711 of the first driving component 71 is further away from the flexible layer 50 than the second electrode 715 of the first driving component 71 .
  • the first electrode 711 and the second electrode 715 are used to apply voltage, so that the actuating layer 713 undergoes deformation such as expansion and contraction, thereby driving the flexible layer 50 to undergo bending deformation.
  • the first electrode 711 may be a positive electrode or a negative electrode; the second electrode 715 may be a positive electrode or a negative electrode. In some embodiments, the first electrode 711 is a positive electrode and the second electrode 715 is a negative electrode. In other embodiments, the first electrode 711 is a negative electrode, and the second electrode 715 is a positive electrode.
  • the material of the first electrode 711 may be, but is not limited to, at least one of platinum, silver, gold, copper, indium tin oxide (ITO), and the like.
  • the material of the second electrode 715 may be, but is not limited to, at least one of platinum, silver, gold, copper, indium tin oxide (ITO), and the like.
  • the material of the first electrode 711 and the material of the second electrode 715 may be the same or different, and are not specifically limited in this application.
  • the material of the actuation layer 713 may be, but is not limited to, at least one of piezoelectric material, electrostrictive material, and magnetostrictive material.
  • PZT lead zirconate titanate
  • PVDF piezoelectric film polyvinyliden
  • the electrostrictive material may be, but is not limited to, magnesium lead niobate, etc.
  • the magnetostrictive material may be, but is not limited to, a ferrite magnetostrictive material, such as at least one of nickel-cobalt ferrite material, nickel-cobalt-copper ferrite material, and the like.
  • the thickness of the actuation layer 713 may be 1 ⁇ m to 100 ⁇ m.
  • the thickness of the actuation layer 713 may be, but is not limited to, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, etc.
  • the material of the actuation layer 713 is lead zirconate titanate
  • the actuation layer 713 can be directly formed on the flexible layer 50 using a sol-gel method or a magnetron sputtering method.
  • the first driving component 71 may be formed first, and then bonded to the flexible layer 50 through adhesives such as hot melt glue, light-curing glue, and optical glue.
  • the actuator 70 includes a first driving component 71 and a second driving component 73.
  • the first driving component 71 is disposed away from the flexible layer 50.
  • the second driving component 73 is disposed on the side of the flexible layer 50 facing the zoom layer 30 .
  • the flexible layer 50 is driven to deform, thereby driving the zoom layer 30 to elastically deform, so as to change the focal length of the lens assembly 100 .
  • first driving component 71 and a second driving component are respectively provided with a first driving component 71 and a second driving component on opposite sides of the flexible layer 50 .
  • the flexible layer 50 of the lens assembly 100 can have a greater degree of curvature (ie, a smaller radius of curvature), thereby having greater optical power and a greater range of focal length changes.
  • the first driving component 71 please refer to the description of the corresponding parts in the above embodiment, which will not be described again here.
  • first driving component 71 and the second driving component 73 are coaxially arranged, and the orthographic projection of the first driving component 71 and the second driving component 73 on the flexible layer 50 is at least Partially overlapped.
  • the second driving component 73 is at least one of a piezoelectric driving component, an electrostrictive driving component, and a magnetostrictive driving component.
  • the second driving component 73 has an annular structure, for example, the second driving component 73 has a circular annular structure. It can be understood that the orthographic projection of the second driving component 73 on the flexible layer 50 is a ring-shaped structure.
  • the second driving component 73 includes a first electrode 711, an actuation layer 713 and a second electrode 715 that are stacked in sequence.
  • the first electrode 711 of the second driving component 73 is closer to the flexible layer 50 than the second electrode 715 of the second driving component 73 .
  • the first electrode 711 and the second electrode 715 are used to apply voltage, so that the actuating layer 713 undergoes deformation such as expansion and contraction, thereby driving the flexible layer 50 to undergo bending deformation.
  • the first electrode 711, the actuation layer 713, and the second electrode 715 please refer to the descriptions in the corresponding parts above, and will not be described again here.
  • both the first driving component 71 and the second driving component 73 are piezoelectric driving components. In other embodiments, both the first driving component 71 and the second driving component 73 are electrostrictive driving components. In some embodiments, the first driving component 71 is a piezoelectric driving component, and the second driving component 73 is an electrostrictive driving component. In some embodiments, the first driving component 71 is an electrostrictive driving component, and the second driving component 73 is a piezoelectric driving component. In some embodiments, both the first driving component 71 and the second driving component 73 are magnetostrictive driving components.
  • the first driving component 71 is a piezoelectric driving component, and the second driving component 73 is a magnetostrictive driving component. In some embodiments, the first driving component 71 is an electrostrictive driving component, and the second driving component 73 is a magnetostrictive driving component.
  • the carrier layer 10 , the zoom layer 30 , the flexible layer 50 and the actuator 70 are coaxially arranged, and all take the optical axis of the lens assembly 100 as the axis of symmetry.
  • the first surface 11 is a convex surface at the optical axis.
  • the second driving component 73 When a voltage is applied to generate the second electric field E2, the second surface 51 is spherical and protrudes in a direction away from the zoom layer 30, wherein the direction of the first electric field is away from the first driving component 71
  • One side of the flexible layer 50 points to the side of the first driving component 71 close to the flexible layer 50 (as shown by arrow E1 in FIG. 8 ); the direction of the second electric field deviates from the second driving component 73 away from the flexible layer 50 .
  • One side of the layer 50 points to the side of the second driving component 73 close to the flexible layer 50 (as shown by arrow E2 in FIG. 8 ).
  • the state of the lens assembly 100 is called the first state.
  • the first driving component 71 when the first driving component 71 applies a voltage to generate a first electric field, and when the second driving component 73 applies a voltage to generate a second electric field, the first driving component 71 exerts a force on the flexible layer 50 under the action of the first electric field.
  • the second surface 51 is stretched, and the second driving component 73 compresses the surface of the flexible layer 50 away from the second surface 51 under the action of the second electric field, so that the second surface 51 of the flexible layer 50 is stretched.
  • the tensile force generated by the first driving component 71 and the compressive force generated by the second driving component 73 can be adjusted, thereby adjusting the bending degree of the flexible layer 50 ( or the radius of curvature of the second surface 51), and then adjust the deflection direction of the light after passing through the flexible layer 50, the zoom layer 30 and the bearing layer 10 in sequence, and then adjust the focal length, optical power and other parameters of the lens assembly 100.
  • the voltage applied to the first driving component 71 to generate the first electric field E1 can be achieved in one of the following ways: for example, the first electrode 711 of the first driving component 71 is loaded with a positive voltage of 50V.
  • the second electrode 715 is loaded with a voltage of 0V (ie, grounded) to generate a first electric field from the side of the first driving component 71 away from the flexible layer 50 to the side of the first driving component 71 close to the flexible layer 50 E1.
  • the first electrode 711 of the first driving component 71 is loaded with a positive voltage of 80V, and the second electrode 715 of the first driving component 71 is loaded with a positive voltage of 30V, so as to generate a direction from the side of the first driving component 71 away from the flexible layer 50 .
  • the first driving component 71 is close to the first electric field E1 on one side of the flexible layer 50 .
  • the first electrode 711 of the first driving component 71 is loaded with a voltage of 0V (i.e., grounded), and the second electrode 715 of the first driving component 71 is loaded with a negative voltage of -50V to generate a voltage from the first driving component 71 away from the flexible layer 50
  • One side of the first driving component 71 is directed to the first electric field E1 on the side close to the flexible layer 50 and so on.
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the first driving component 71 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the voltage applied to the second driving component 73 to generate the second electric field E2 can be achieved in one of the following ways: for example, the first electrode 711 of the second driving component 73 is loaded with a voltage of 0V (ie, grounded), and the second driving component 73 is loaded with a voltage of 0V (i.e., grounded).
  • the second electrode 715 of the component 73 is loaded with a voltage of 50V to generate a second electric field E2 directed from the side of the second driving component 73 away from the flexible layer 50 to the side of the second driving component 73 close to the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a positive voltage of 30V
  • the second electrode 715 of the second driving component 73 is loaded with a positive voltage of 80V, so as to generate a direction from the side of the second driving component 73 away from the flexible layer 50 .
  • the second driving component 73 is close to the second electric field E2 on one side of the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a negative voltage of -50V
  • the second electrode 715 of the second driving component 73 is loaded with a voltage of 0V (i.e., grounded), so as to generate a voltage from the second driving component 73 away from the flexible layer 50
  • One side points to the second electric field E2 on the side of the second driving component 73 close to the flexible layer 50 and so on.
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the second driving component 73 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the first surface 11 is a convex surface at the optical axis.
  • the second driving component 73 When a voltage is applied to generate the fourth electric field E4, the second surface 51 is aspherical, and the second surface 51 protrudes toward the direction away from the zoom layer 30 at the optical axis, wherein the third electric field The direction is from the side of the first driving component 71 close to the flexible layer 50 to the side of the first driving component 71 away from the flexible layer 50 (as shown by arrow E3 in Figure 9 ); the fourth electric field The direction is from the side of the second driving component 73 away from the flexible layer 50 to the side of the second driving component 73 close to the flexible layer 50 (as shown by arrow E4 in FIG. 9 ).
  • the state of the lens assembly 100 is called the second state.
  • the first driving component 71 when the first driving component 71 applies a voltage to generate a third electric field, and when the second driving component 73 applies a voltage to generate a fourth electric field, the first driving component 71 exerts a force on the flexible layer 50 under the action of the first electric field.
  • the second surface 51 is compressed, and the second driving component 73 compresses the surface of the flexible layer 50 away from the second surface 51 under the action of the second electric field, so that the second surface 51 of the flexible layer 50 is subjected to a compressive force.
  • the surface of the flexible layer 50 away from the second surface 51 is also subjected to a compressive force (as shown by arrow b in Figure 9 ).
  • the flexible layer 50 is compressed between the compressive force of the first driving component 71 and the third
  • the second surface 51 is aspherical and protrudes in a direction away from the zoom layer 30 due to the combined action of the compressive forces of the two driving components 73 .
  • the flexible layer 50 bends and deforms, it will squeeze the zoom layer 30 and undergo elastic deformation, so that the flexible layer 50 , the zoom layer 30 and the bearing layer 10 cooperate with each other to form an aspherical convex lens with a light-gathering effect.
  • the direction of the first electric field E1 and the direction of the second electric field E2 are the same, and the directions of the first electric field E1 and the second electric field E2 are both along the optical axis from the zoom layer 30 toward the flexible layer 50 .
  • the compressive force generated by the first driving component 71 and the compressive force generated by the second driving component 73 can be adjusted, thereby adjusting the bending degree of the flexible layer 50 (or The radius of curvature of the second surface 51), thereby adjusting the deflection direction of the light after passing through the flexible layer 50, the zoom layer 30 and the bearing layer 10 in sequence, and thereby adjusting the focal length, optical power and other parameters of the lens assembly 100.
  • the voltage applied to the first driving component 71 to generate the third electric field E3 can be achieved in one of the following ways: for example, the first electrode 711 of the first driving component 71 is loaded with a voltage of 0V (i.e., grounded). The second electrode 715 of the component 71 is loaded with a positive voltage of 50V to generate a third electric field from the side of the first driving component 71 close to the flexible layer 50 to the side of the first driving component 71 away from the flexible layer 50 E3.
  • the first electrode 711 of the first driving component 71 is loaded with a positive voltage of 30V
  • the second electrode 715 of the first driving component 71 is loaded with a positive voltage of 80V to generate a voltage directed from the side of the first driving component 71 close to the flexible layer 50
  • the first driving component 71 is away from the third electric field E3 on one side of the flexible layer 50 .
  • the first electrode 711 of the first driving component 71 is loaded with a negative voltage of -50V
  • the second electrode 715 of the first driving component 71 is loaded with a voltage of 0V (that is, grounded) to generate a voltage from the first driving component 71 close to the flexible layer 50
  • One side of the first driving component 71 points to the third electric field E3 and so on on the side of the first driving component 71 away from the flexible layer 50 .
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the first driving component 71 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the voltage applied to the second driving component 73 to generate the fourth electric field E4 can be achieved in one of the following ways: for example, the first electrode 711 of the second driving component 73 is loaded with a voltage of 0V (ie, grounded), and the second driving component 73 is loaded with a voltage of 0V (i.e., grounded).
  • the second electrode 715 of the component 73 is loaded with a voltage of 50V to generate a fourth electric field E4 directed from the side of the second driving component 73 away from the flexible layer 50 to the side of the second driving component 73 close to the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a positive voltage of 30V
  • the second electrode 715 of the second driving component 73 is loaded with a positive voltage of 80V, so as to generate a direction from the side of the second driving component 73 away from the flexible layer 50 .
  • the second driving component 73 is close to the fourth electric field E4 on one side of the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a negative voltage of -50V
  • the second electrode 715 of the second driving component 73 is loaded with a voltage of 0V (i.e., grounded), so as to generate a voltage from the second driving component 73 away from the flexible layer 50
  • One side points to the fourth electric field E4 and so on on the side of the second driving component 73 close to the flexible layer 50
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the second driving component 73 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the first surface 11 is a convex surface at the optical axis.
  • the lens component 100 has The first focal length; when the first driving component 71 applies a voltage to generate a first electric field, and the second driving component 73 applies a voltage to generate a second electric field, the lens assembly 100 has a second focal length; when the first driving component When the component 71 applies a voltage to generate a third electric field, and the second driving component 73 applies a voltage to generate a fourth electric field, the lens component 100 has a third focal length, and the first focal length, the second focal length and the third Focal lengths differ from each other.
  • the lens component 100 can be made to have different focal lengths, so that zooming can be performed within a larger focal length range to meet the requirements. Application requirements for more shooting scenes.
  • the first surface 11 is a concave surface at the optical axis
  • the flexible layer 50 has a second surface 51 away from the zoom layer 30.
  • the first driving When the component 71 applies a voltage to generate a first electric field, and the second driving component 73 applies a voltage to generate a second electric field, the second surface 51 is a spherical surface, and the second surface 51 is oriented close to the optical axis at the optical axis.
  • the direction of the zoom layer 30 is concave, wherein the direction of the first electric field is from the side of the first driving component 71 close to the flexible layer 50 to the side of the first driving component 71 away from the flexible layer 50 (such as (As shown by arrow E1 in Figure 10 ); the direction of the second electric field is from the side of the second driving component 73 close to the flexible layer 50 to the side of the second driving component 73 away from the flexible layer 50 (as shown in Figure 10 ); 10 indicated by arrow E2).
  • the state of the lens assembly 100 is called the third state.
  • the first driving component 71 when the first driving component 71 applies a voltage to generate a first electric field, and when the second driving component 73 applies a voltage to generate a second electric field, the first driving component 71 exerts a force on the flexible layer 50 under the action of the first electric field.
  • the second surface 51 is compressed, and the second driving component 73 stretches the surface of the flexible layer 50 away from the second surface 51 under the action of the second electric field, so that the second surface 51 of the flexible layer 50 is compressed.
  • the surface of the flexible layer 50 away from the second surface 51 is subjected to a tensile force (as shown by arrow b in Figure 10), and finally the flexible layer 50 is compressed between the compressive force of the first driving component 71 and The second driving component 73 undergoes bending deformation under the combined action of the tensile force.
  • the second surface 51 is spherical and is concave toward the direction close to the zoom layer 30 . After the flexible layer 50 bends and deforms, it will squeeze the zoom layer 30 and undergo elastic deformation, so that the flexible layer 50 , the zoom layer 30 and the bearing layer 10 cooperate with each other to form a concave lens with divergence.
  • the direction of the first electric field E1 is opposite to the direction of the second electric field E2.
  • the direction of the first electric field E1 is from the zoom layer 30 to the flexible layer 50 along the optical axis.
  • the direction of the second electric field E2 is from the flexible layer 50 along the optical axis. Towards zoom layer 30.
  • the compressive force generated by the first driving component 71 and the tensile force generated by the second driving component 73 can be adjusted, thereby adjusting the bending degree of the flexible layer 50 ( or the radius of curvature of the second surface 51), and then adjust the deflection direction of the light after passing through the flexible layer 50, the zoom layer 30 and the bearing layer 10 in sequence, and then adjust the focal length, optical power and other parameters of the lens assembly 100.
  • the voltage applied to the first driving component 71 to generate the first electric field E1 can be achieved in one of the following ways: for example, the first electrode 711 of the first driving component 71 is loaded with a voltage of 0V (that is, grounded), and the first driving component 71 is loaded with a voltage of 0V (ie, grounded).
  • the second electrode 715 of the component 71 is loaded with a positive voltage of 50V to generate a first electric field from the side of the first driving component 71 close to the flexible layer 50 to the side of the first driving component 71 away from the flexible layer 50 E1.
  • the first electrode 711 of the first driving component 71 is loaded with a positive voltage of 30V
  • the second electrode 715 of the first driving component 71 is loaded with a positive voltage of 80V to generate a voltage directed from the side of the first driving component 71 close to the flexible layer 50
  • the first driving component 71 is away from the first electric field E1 on the side of the flexible layer 50 .
  • the first electrode 711 of the first driving component 71 is loaded with a negative voltage of -50V
  • the second electrode 715 of the first driving component 71 is loaded with a voltage of 0V (that is, grounded) to generate a voltage from the first driving component 71 close to the flexible layer 50
  • One side of the first electric field E1 points to the side of the first driving component 71 away from the flexible layer 50 and so on.
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the first driving component 71 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the voltage applied to the second driving component 73 to generate the second electric field E2 can be achieved in one of the following ways: for example, the first electrode 711 of the second driving component 73 is loaded with a voltage of 50V, and the first electrode 711 of the second driving component 73 is loaded with a voltage of 50V.
  • the two electrodes 715 are loaded with a voltage of 0V (i.e., grounded) to generate a second electric field E2 from the side of the second driving component 73 close to the flexible layer 50 to the side of the second driving component 73 away from the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a positive voltage of 80V
  • the second electrode 715 of the second driving component 73 is loaded with a positive voltage of 50V, so as to generate a direct voltage from the side of the second driving component 73 close to the flexible layer 50
  • the second driving component 73 is away from the second electric field E2 on one side of the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a voltage of 0V (ie, grounded), and the second electrode 715 of the second driving component 73 is loaded with a negative voltage of -50V, so as to generate a voltage from the second driving component 73 close to the flexible layer 50
  • One side of the second driving component 73 points to the second electric field E2 and so on on the side of the second driving component 73 away from the flexible layer 50 .
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the second driving component 73 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the first surface 11 is a concave surface at the optical axis
  • the flexible layer 50 has a second surface 51 away from the zoom layer 30.
  • the first driving When the component 71 applies a voltage to generate a third electric field, and the second driving component 73 applies a voltage to generate a fourth electric field, the second surface 51 is an aspherical surface, and the second surface 51 is oriented close to the optical axis.
  • the direction of the zoom layer 30 is concave, wherein the direction of the third electric field is from the side of the first driving component away from the flexible layer to the side of the first driving component close to the flexible layer (arrow in Figure 11 E3); the direction of the fourth electric field is from the side of the second driving component close to the flexible layer to the side of the second driving component away from the flexible layer (shown by arrow E4 in Figure 11).
  • the state of the lens assembly 100 is called the fourth state.
  • the first driving component 71 when the first driving component 71 applies a voltage to generate a third electric field, and when the second driving component 73 applies a voltage to generate a fourth electric field, the first driving component 71 exerts a force on the flexible layer 50 under the action of the first electric field.
  • the second surface 51 is stretched, and the second driving component 73 stretches the surface of the flexible layer 50 away from the second surface 51 under the action of the second electric field, so that the second surface 51 of the flexible layer 50 is subjected to Tensile force (as shown by arrow a in Figure 11), the surface of the flexible layer 50 away from the second surface 51 is also subject to a tensile force (as shown by arrow b in Figure 11), and finally the flexible layer 50 is in the first driving component 71
  • the bending deformation occurs under the combined action of the tensile force and the tensile force of the second driving component 73 .
  • the second surface 51 is aspherical and is recessed toward the direction close to the zoom layer 30 .
  • the flexible layer 50 After the flexible layer 50 bends and deforms, it will squeeze the zoom layer 30 and undergo elastic deformation, so that the flexible layer 50, the zoom layer 30 and the bearing layer 10 cooperate with each other to form an aspherical concave lens with divergence.
  • the direction of the first electric field E1 is the same as the direction of the second electric field E2.
  • the directions of the first electric field E1 and the second electric field E2 are both along the optical axis from the flexible layer 50 toward the zoom layer 30 .
  • the tensile force generated by the first driving component 71 and the tensile force generated by the second driving component 73 can be adjusted, thereby adjusting the bending degree of the flexible layer 50 (or the radius of curvature of the second surface 51), thereby adjusting the deflection direction of the light after passing through the flexible layer 50, the zoom layer 30 and the bearing layer 10 in sequence, and thereby adjusting the focal length, optical power and other parameters of the lens assembly 100.
  • the voltage applied to the first driving component 71 to generate the third electric field E3 can be achieved in one of the following ways: for example, the first electrode 711 of the first driving component 71 is loaded with a positive voltage of 50V.
  • the second electrode 715 is loaded with a voltage of 0V (ie, grounded) to generate a third electric field directed from the side of the first driving component 71 away from the flexible layer 50 to the side of the first driving component 71 close to the flexible layer 50 E3.
  • the first electrode 711 of the first driving component 71 is loaded with a positive voltage of 80V, and the second electrode 715 of the first driving component 71 is loaded with a positive voltage of 30V, so as to generate a direction from the side of the first driving component 71 away from the flexible layer 50 .
  • the first driving component 71 is close to the third electric field E3 on one side of the flexible layer 50 .
  • the first electrode 711 of the first driving component 71 is loaded with a voltage of 0V (i.e., grounded), and the second electrode 715 of the first driving component 71 is loaded with a negative voltage of -50V to generate a voltage from the first driving component 71 away from the flexible layer 50
  • One side of the first driving component 71 is directed toward the third electric field E3 and so on on the side of the first driving component 71 close to the flexible layer 50 .
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the first driving component 71 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the voltage applied to the second driving component 73 to generate the fourth electric field E4 can be achieved in one of the following ways: for example, the first electrode 711 of the second driving component 73 is loaded with a voltage of 50V, and the first electrode 711 of the second driving component 73 is loaded with a voltage of 50V.
  • the two electrodes 715 are loaded with a voltage of 0V (i.e., grounded) to generate a fourth electric field E4 from the side of the second driving component 73 close to the flexible layer 50 to the side of the second driving component 73 away from the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a positive voltage of 80V
  • the second electrode 715 of the second driving component 73 is loaded with a positive voltage of 50V, so as to generate a direct voltage from the side of the second driving component 73 close to the flexible layer 50
  • the second driving component 73 is away from the fourth electric field E4 on one side of the flexible layer 50 .
  • the first electrode 711 of the second driving component 73 is loaded with a voltage of 0V (ie, grounded), and the second electrode 715 of the second driving component 73 is loaded with a negative voltage of -50V, so as to generate a voltage from the second driving component 73 close to the flexible layer 50
  • One side of the second driving component 73 points to the fourth electric field E4 on the side facing away from the flexible layer 50 and so on.
  • the positive, negative, and numerical value of the voltage applied to the first electrode 711 of the second driving component 73 and the second electrode 715 of the first driving component 71 can be designed according to the surface shape and radius of curvature of the second surface 51 , which are not specified in this application. limited.
  • the first surface 11 is a concave surface at the optical axis.
  • the lens component 100 has a first focal length; when the first driving component 71 applies a voltage to generate a first electric field and the second driving component 73 applies a voltage to generate a second electric field, the lens assembly 100 has a second focal length; when the third driving component 73 applies a voltage to generate a second electric field.
  • the lens component 100 When a driving component 71 applies a voltage to generate a third electric field, and when the second driving component 73 applies a voltage to generate a fourth electric field, the lens component 100 has a third focal length, and the first focal length, the second focal length and The third focal lengths are different from each other. Therefore, by controlling the positive, negative, and magnitude of the voltages loaded on the first driving component 71 and the second driving component 73, the lens component 100 can be made to have different focal lengths, so that zooming can be performed within a larger focal length range to meet the requirements. Application requirements for more shooting scenes.
  • the lens assembly 100 further includes a support member 90 , which is located on the side of the flexible layer 50 away from the zoom layer 30 and surrounds the flexible layer 50 .
  • the outer periphery of the zoom layer 30 is provided, and the support member 90 is connected to at least one of the flexible layer 50 and the bearing layer 10 for supporting the flexible layer 50 .
  • the support member 90 can support the flexible layer 50 and the zoom layer 30 more stably, so that when the flexible layer 50 and the zoom layer 30 are deformed, the zoom process can be smoother.
  • the support member 90 can prevent the flexible layer 50 from squeezing the zoom layer 30 under the action of gravity, thereby causing the zoom layer 30 to deform, thereby making the overall structure of the lens assembly 100 more stable.
  • the support member 90 is connected to at least one of the flexible layer 50 and the load-bearing layer 10.
  • the support member 90 is connected to the flexible layer 50 (as shown in Figure 12 or Figure 13);
  • the support member 90 is connected to the load-bearing layer 10 , and the support member 90 abuts the flexible layer 50 (that is, the support member 90 is in contact with the flexible layer 50 , but is not connected, that is, not connected); or, the support member 90 is connected to the flexible layer 50 and the load-bearing layer 10 respectively (as shown in Figure 14).
  • the support member 90 when the support member 90 is connected to the flexible layer 50 , the support member 90 can be connected through an adhesive such as hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. Connected to flexible layer 50.
  • an adhesive such as hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. Connected to flexible layer 50.
  • the support member 90 and the load-bearing layer 10 can be connected through hot melt glue, light-curing glue (UV glue), or optical glue (OCA glue). Wait for adhesive connection.
  • UV glue light-curing glue
  • OCA glue optical glue
  • the support member 90 and the load-bearing layer 10 may also have an integrated structure.
  • the support member 90 and the load-bearing layer 10 are integrally injection molded. In this case, the load-bearing layer 10 and the support member 90 are both transparent. Light.
  • the material of the support member 90 may be, but is not limited to, silicon (such as monocrystalline silicon, polycrystalline silicon), silicon dioxide, glass, resin, metal, etc.
  • the glass may be, but is not limited to, at least one of quartz glass, glass containing elements such as boron, phosphorus, and silicon, or glass containing elements such as Na and K.
  • the glass may be at least one of silicate glass, aluminosilicate glass, phosphate glass, aluminophosphate glass, and borate glass.
  • the resin can be, but is not limited to, at least one of polymethyl methacrylate (PMMA), polycarbonate (PC), liquid crystal polymer (LIQUID CRYSTAL POLYMER, LCP), etc.
  • the metal may be, but is not limited to, stainless steel.
  • the lens assembly 100 includes a bearing layer 10 , a support member 90 , a zoom layer 30 , a flexible layer 50 and an actuator 70 .
  • the load-bearing layer 10 is connected to the support member 90 , and the load-bearing layer 10 and the support member 90 enclose a receiving space.
  • the zoom layer 30 is disposed on the first surface 11 of the load-bearing layer 10 and is located in the receiving space.
  • the flexible layer 50 is disposed on the side of the zoom layer 30 away from the bearing layer 10 and contacts the support member 90 .
  • the actuator 70 includes a first driving component 71 and a second driving component 73.
  • the first driving component 71 is disposed on the second surface 51 of the flexible layer 50, and the second driving component 73 is disposed away from the flexible layer 50.
  • the surface of the second surface 51 is located in the receiving space.
  • the bearing layer 10, the support member 90, the zoom layer 30, the flexible layer 50, the first driving component 71, and the second driving component 73 are all coaxially arranged with the optical axis as the axis of symmetry.
  • an embodiment of the present application also provides an optical imaging system 200 for imaging, which includes: the lens assembly 100 of the embodiment of the present application.
  • the optical imaging system 200 has an object side and an image side.
  • the flexible layer 50 of the lens assembly 100 is closer to the object side of the optical imaging system 200 than the zoom layer 30 .
  • the optical imaging system 200 of the present application further includes a non-zoom lens 210, which is coaxially disposed with the lens assembly 100 along the optical axis.
  • the non-zoom lens 210 may be disposed on the object side of the lens assembly 100 or may be disposed on the image side of the lens assembly 100 .
  • the non-zoom lens 210 may be a glass lens or a plastic lens.
  • the number of non-zoom lenses 210 may be, but is not limited to, 1 piece, 2 pieces, 3 pieces, 4 pieces, 5 pieces, 6 pieces, 7 pieces, etc.
  • the optical imaging system 200 of the present application further includes an aperture 230 , which may be disposed between the object side of the first lens and the image side of the last lens of the optical imaging system 200 .
  • the position of the aperture 230 can be adjusted according to actual needs, and is not specifically limited in this application.
  • the optical imaging system 200 of the present application also includes an infrared cut-off filter 250.
  • the infrared cut-off filter 250 is provided on the image side of the last lens and is used to filter out light in other wavelength bands except visible light to improve the optical quality. Imaging quality of imaging system 200.
  • the infrared cut filter 250 can be made of glass.
  • the optical imaging system 200 also has an imaging surface 260.
  • the optical imaging system 200 of the present application also includes a protective sheet 270.
  • the protective sheet 270 is located between the infrared cut filter 250 and the imaging surface 260. , used to protect the photosensitive element located on the imaging surface 260 to achieve dust-proof effect.
  • the protective sheet 270 may be a glass protective sheet 270 or a plastic protective sheet 270.
  • the lens assembly 100, the non-zoom lens 210, the diaphragm 230, the infrared cut filter 250 and the protective film 270 are all coaxially arranged with the optical axis as the axis.
  • an embodiment of the present application also provides a camera module 300, which includes the optical imaging system 200 of the embodiment of the present application; and a photosensitive element 310, the photosensitive element 310 is located on the image side of the optical imaging system 200 .
  • the photosensitive element 310 is located at the imaging surface 260 of the optical imaging system 200 .
  • the photosensitive element 310 is also called an image sensor.
  • the photosensitive element 310 can be, but is not limited to, at least one of a photosensitive coupling device (Charge Coupled Device, CCD) and a complementary metal-oxide semiconductor device (Complementary Metal-Oxide Semiconductor Sensor, CMOS sensor). .
  • CCD Charge Coupled Device
  • CMOS sensor Complementary Metal-Oxide Semiconductor Sensor
  • the camera module 300 further includes a lens barrel 330.
  • the lens barrel 330 has an accommodating cavity 331.
  • the accommodating cavity 331 is used to accommodate the optical imaging system 200.
  • the photosensitive element 310 is disposed on on the lens barrel 330 .
  • an embodiment of the present application also provides an electronic device 400, which includes: the camera module 300 of the embodiment of the present application, used to capture images; a display module 410, used to display the camera module images taken by the group 300; and a circuit board module 430, the circuit board module 430 is electrically connected to the camera module 300 and the display module 410 respectively, and is used to control the camera module 300 to shoot, And used to control the display module 410 to display.
  • the electronic device 400 of this application can be, but is not limited to, a camera, a camera phone, a driving recorder, a vehicle camera, a tablet computer, a notebook computer, a desktop computer, a smart bracelet, a smart watch, an e-reader, smart glasses, security equipment, Monitoring equipment, video doorbells and other electronic devices with camera functions 400.
  • the display module 410 may be, but is not limited to, a liquid crystal display module, a light emitting diode display module (LED display module), a micro light emitting diode display module (Micro LED display module), or a sub-millimeter luminescent display module.
  • LED display module light emitting diode display module
  • Micro LED display module micro light emitting diode display module
  • sub-millimeter luminescent display module a sub-millimeter luminescent display module.
  • diode display modules Mini LED display modules, mini light-emitting diode display modules
  • OLED display modules organic light-emitting diode display modules
  • the circuit board module 430 may include a processor 431 and a memory 433.
  • the processor 431 is electrically connected to the display module 410 and the memory 433 respectively.
  • the processor 431 is used to control the display module 410 to perform display.
  • the memory 433 is used to store the program code required for the operation of the processor 431, the program code required for controlling the display module 410, and the display module. 410 display content, etc.
  • the processor 431 includes one or more general-purpose processors 431, where the general-purpose processor 431 can be any type of device capable of processing electronic instructions, including a central processing unit (Central Processing Unit, CPU), a microprocessor , microcontrollers, main processors, controllers, ASICs, etc.
  • the processor 431 is used to execute various types of digital storage instructions, such as software or firmware programs stored in the memory 433, which can enable the computing device to provide a wide variety of services.
  • the memory 433 may include volatile memory (Volatile Memory), such as random access memory (Random Access Memory, RAM); the memory 433 may also include non-volatile memory (Non-Volatile Memory, NVM), such as Read-Only Memory (ROM), Flash Memory (FM), Hard Disk Drive (HDD) or Solid-State Drive (SSD). Memory 433 may also include a combination of the above types of memory.
  • volatile memory such as random access memory (Random Access Memory, RAM
  • NVM non-volatile Memory
  • ROM Read-Only Memory
  • FM Flash Memory
  • HDD Hard Disk Drive
  • SSD Solid-State Drive
  • the electronic device 400 in the embodiment of the present application also includes a middle frame 420 and a casing 450.
  • the casing 450 is spaced apart from the display module 410.
  • the middle frame 420 is disposed on the display module. between the group 410 and the casing 450, and the side of the middle frame 420 is exposed from the casing 450 and the display module 410.
  • the middle frame 420 and the housing 450 form an accommodation space, and the accommodation space is used to accommodate the circuit board module 430 and the camera module 300 .
  • the housing 450 has a light-transmitting part 451, and the camera module 300 can take pictures through the light-transmitting part 451 on the housing 450. That is, the camera module 300 in this embodiment is a rear camera module.
  • the light-transmitting portion 451 can be provided on the display module 410 , that is, the camera module 300 is a front-facing camera module 300 .
  • the light-transmitting part 451 is used as an opening for illustration. In other embodiments, the light-transmitting part 451 may not be an opening, but may be made of light-transmitting material, such as plastic, glass, etc. .
  • the electronic device 400 described in this embodiment is only a form of the electronic device 400 to which the lens assembly 100 is applied, and should not be understood as limiting the electronic device 400 provided in this application, nor should it be understood that These are limitations of the lens assembly 100 provided in various embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

一种透镜组件(100)、光学成像***(200)、摄像头模组(300)及电子设备。透镜组件(100)包括承载层(10),承载层(10)具有第一表面(11),第一表面(11)为曲面;变焦层(30),变焦层(30)设置于承载层(10)的第一表面(11)上;柔性层(50),柔性层(50)设置于变焦层(30)远离承载层(10)的一侧;以及致动器(713),致动器(713)承载于柔性层(50)上,致动器(50)用于驱动柔性层(50)发生形变,从而带动变焦层(30)发生弹性形变,以实现透镜组件(100)的焦距变化。这一透镜组件(100)具有更大焦距变化范围且具有更大通光孔径。

Description

透镜组件、光学成像***、摄像头模组及电子设备 技术领域
本申请涉及电子领域,具体涉及一种透镜组件、光学成像***、摄像头模组及电子设备。
背景技术
随着技术的发展及生活水平的提高,人们对于摄像头的要求越来越高,希望摄像头既能够满足远景的拍摄要求,也能够满足近景的拍摄,尤其是应用于便携式电子设备例如手机的摄像头,在满足小型化的同时,要求其具有较大的焦距变化范围,可以更好的适用于不同的场景。然而,现有的可变焦镜头的焦距变化范围仍然较小,不能很好的满足用户的需求。
发明内容
本申请第一方面实施例提供了一种透镜组件,其包括:
承载层,所述承载层具有第一表面,所述第一表面为曲面;
变焦层,所述变焦层设置于所述承载层的所述第一表面上;
柔性层,所述柔性层设置于所述变焦层远离所述承载层的一侧;以及
致动器,所述致动器承载于所述柔性层上,所述致动器用于驱动所述柔性层发生形变,从而带动所述变焦层发生弹性形变,以实现所述透镜组件的焦距变化。
本申请第二方面实施例提供了一种光学成像***,其包括:本申请实施例所述的透镜组件,所述光学成像***具有物侧,所述透镜组件的所述柔性层相较于所述变焦层更靠近所述光学成像***的物侧。
本申请第三方面实施例提供了一种摄像头模组,其包括:
本申请实施例所述的光学成像***;及
感光元件,所述感光元件位于所述光学成像***的像侧。
本申请第四方面实施例提供了一种电子设备,其包括:
本申请实施例所述的摄像头模组,用于拍摄图像;
显示模组,用于显示所述摄像头模组拍摄的图像;以及
电路板模组,所述电路板模组分别与所述摄像头模组及所述显示模组电连接,用于控制所述摄像头模组进行拍摄,并用于控制所述显示模组进行显示。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例的透镜组件的结构示意图。
图2是本申请一实施例的透镜组件沿图1中A-A方向的剖视结构示意图。
图3是本申请又一实施例的透镜组件沿图1中A-A方向的剖视结构示意图。
图4是本申请一实施例的第一驱动组件或第二驱动组件的结构示意图。
图5是本申请一实施例的第一驱动组件或第二驱动组件沿图4中B-B方向的剖视结构示意图。
图6是本申请又一实施例的透镜组件沿图1中A-A方向的剖视结构示意图。
图7是本申请又一实施例的透镜组件沿图1中A-A方向的剖视结构示意图。
图8是本申请一实施例的透镜组件处于第一状态时,沿图1中A-A方向的剖视结构示意图。
图9是本申请一实施例的透镜组件处于第二状态时,沿图1中A-A方向的剖视结构示意图。
图10是本申请一实施例的透镜组件处于第三状态时,沿图1中A-A方向的剖视结构示意图。
图11是本申请一实施例的透镜组件处于第四状态时,沿图1中A-A方向的剖视结构示意图。
图12是本申请又一实施例的透镜组件沿图1中A-A方向的剖视结构示意图。
图13是本申请又一实施例的透镜组件沿图1中A-A方向的剖视结构示意图。
图14是本申请又一实施例的透镜组件沿图1中A-A方向的剖视结构示意图。
图15是本申请一实施例的光学成像***的结构示意图。
图16是本申请又一实施例的光学成像***的结构示意图。
图17是本申请又一实施例的光学成像***的结构示意图。
图18是本申请又一实施例的光学成像***的结构示意图。
图19是本申请一实施例的摄像头模组的结构示意图。
图20是本申请一实施例的电子设备的结构示意图。
图21是本申请一实施例的电子设备的部分***结构示意图。
图22是本申请一实施例的电子设备的电路框图。
图23是本申请又一实施例的电子设备的电路框图。
附图标记说明:
100-透镜组件,101-收容空间,10-承载层,11-第一表面,30-变焦层,50-柔性层,51-第二表面,70-致动器,71-第一驱动组件,711-第一电极,713-致动层,715-第二电极,73-第二驱动组件,90-支撑件,200-光学成像***,210-非变焦透镜,230-光阑,250-红外截止滤光片,270-保护片,300-摄像头模组,310-感光元件,331-容置腔,400-电子设备,410-显示模组,420-中框,430-电路板模组,431-处理器,433-存储器,450-壳体,451-透光部。
具体实施方式
第一方面,本申请提供一种透镜组件,其包括:
承载层,所述承载层具有第一表面,所述第一表面为曲面;
变焦层,所述变焦层设置于所述承载层的所述第一表面上;
柔性层,所述柔性层设置于所述变焦层远离所述承载层的一侧;以及
致动器,所述致动器承载于所述柔性层上,所述致动器用于驱动所述柔性层发生形变,从而带动所述变焦层发生弹性形变,以实现所述透镜组件的焦距变化。
其中,所述透镜组件具有光轴,所述第一表面于所述光轴处为凸面或凹面,所述第一表面为球面、非球面或自由曲面。
其中,所述第一表面于所述光轴处为凸面,所述第一表面的曲率半径R1的范围为20mm≤R1≤300mm;或者,所述第一表面于所述光轴处为凹面,所述第一表面的曲率半径R1的范围为1mm≤R1≤300mm。
其中,所述透镜组件的焦距f的范围为-200mm≤f<-5mm,或者2mm<f≤100mm。
其中,所述透镜组件的通光孔径D的范围为1.5mm≤D≤7mm。
其中,所述致动器包括第一驱动组件及第二驱动组件,所述第一驱动组件设置于所述柔性层远离所述变焦层的一侧,所述第二驱动组件设置于所述柔性层面向所述变焦层的一侧,当所述第一驱动组件与所述第二驱动组件中的至少一个加载电压时,驱动所述柔性层发生形变,从而带动所述变焦层发生弹性形变,以实现所述透镜组件的焦距变化。
其中,所述透镜组件具有光轴,所述柔性层具有远离所述变焦层的第二表面,当所述第一驱动组件与所述第二驱动组件中的至少一个加载电压时,驱动所述柔性层发生形变,从而带动所述变焦层发生弹性形变,以使所述第二表面为球面或非球面,所述第二表面于光轴处为凸面或凹面。
其中,所述第一表面于所述光轴处为凸面,当所述第一驱动组件加载电压以产生第一电场,所述第二驱动组件加载电压以产生第二电场时,所述第二表面为球面,且朝向背离所述变焦层的方向凸出;其中,所述第一电场的方向自所述第一驱动组件背离柔性层的一侧指向所述第一驱动组件靠近所述柔性层的一侧;所述第二电场的方向自所述第二驱动组件背离柔性层的一侧指向所述第二驱动组件靠近所述柔性层的一侧。
其中,所述第一表面于所述光轴处为凸面,当所述第一驱动组件加载电压以产生第三电场,所述第二驱动组件加载电压以产生第四电场时,所述第二表面为非球面,且所述第二表面于光轴处朝向背离所述变焦层的方向凸出;其中,所述第三电场的方向自所述第一驱动组件靠近柔性层的一侧指向所述第一驱动组件背离所述柔性层的一侧;所述第四电场的方向自所述第二驱动组件背离柔性层的一侧指向所述第二驱动组件靠近所述柔性层的一侧。
其中,所述第一表面于所述光轴处为凸面,当所述第一驱动组件及所述第二驱动组件均未加载电压时,所述透镜组件具有第一焦距;当所述第一驱动组件加载电压产生第一电场,所述第二驱动组件加载电压产生第二电场时,所述透镜组件具有第二焦距;当所述第一驱动组件加载电压第三电场,所述第二驱动组件加载电压产生第四电场时,所述透镜组件具有第三焦距,所述第一焦距、所述第二焦距与所述第三焦距互不相同。
其中,所述第一表面于所述光轴处为凹面,当所述第一驱动组件加载电压以产生第一电场,所述第二驱动组件加载电压以产生第二电场时,所述第二表面为球面,且所述第二表面于光轴处朝向所述变焦层的方向凹陷;其中,所述第一电场的方向自所述第一驱动组件靠近柔性层的一侧指向所述第一驱动组件背离所述柔性层的一侧;所述第二电场的方向自所述第二驱动组件靠近柔性层的一侧指向所述第二驱动组件背离所述柔性层的一侧。
其中,所述第一表面于所述光轴处为凹面,当所述第一驱动组件加载电压以产生第三电场,所述第二驱动组件加载电压以产生第四电场时,所述第二表面为非球面,且所述第二表面于光轴处朝向所述变焦层的方向凹陷;其中,所述第三电场的方向自所述第一驱动组件背离柔性层的一侧指向所述第一驱动组件靠 近所述柔性层的一侧;所述第四电场的方向自所述第二驱动组件靠近柔性层的一侧指向所述第二驱动组件背离所述柔性层的一侧。
其中,所述第一表面于所述光轴处为凹面,当所述第一驱动组件及所述第二驱动组件均未加载电压时,所述透镜组件具有第一焦距;当所述第一驱动组件加载电压产生第一电场,所述第二驱动组件加载电压产生第二电场时,所述透镜组件具有第二焦距;当所述第一驱动组件加载电压产生第三电场,所述第二驱动组件加载电压第四电场时,所述透镜组件具有第三焦距,所述第一焦距、所述第二焦距与所述第三焦距互不相同。
其中,所述致动器加载电压时,所述第二表面曲率半径R2的范围50mm≤R2≤100mm。
其中,第一驱动组件为压电驱动组件、电致伸缩驱动组件、磁致伸缩驱动组件中的至少一种;第二驱动组件为压电驱动组件、电致伸缩驱动组件、磁致伸缩驱动组件中的至少一种。
其中,所述第一驱动组件及所述第二驱动组件均为环状结构,所述第一驱动组件与所述第二驱动组件同轴设置,且所述第一驱动组件与所述第二驱动组件在所述柔性层上的正投影至少部分交叠,所述致动器在所述柔性层上的正投影环绕所述变焦层在所述柔性层上的正投影外周缘设置。
其中,所述透镜组件还包括支撑件,所述支撑件位于所述柔性层面向所述变焦层的一侧,且环绕所述变焦层的外周缘设置,所述支撑件与所述柔性层及所述承载层中的至少一个连接,用于支撑所述柔性层。
其中,所述承载层与所述支撑件均是透光的,所述承载层与所述支撑件为一体结构。
第二方面,本申请提供一种光学成像***,其包括:本申请第一方面所述的透镜组件,所述光学成像***具有物侧,所述透镜组件的所述柔性层相较于所述变焦层更靠近所述光学成像***的物侧。
第三方面,本申请提供一种摄像头模组,其包括:
本申请第二方面所述的光学成像***;及
感光元件,所述感光元件位于所述光学成像***的像侧。
第四方面,本申请提供一种电子设备,其包括:
本申请第三方面所述的摄像头模组,用于拍摄图像;
显示模组,用于显示所述摄像头模组拍摄的图像;以及
电路板模组,所述电路板模组分别与所述摄像头模组及所述显示模组电连接,用于控制所述摄像头模组进行拍摄,并用于控制所述显示模组进行显示。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下面将结合附图,对本申请实施例中的技术方案进行描述。
需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。
本申请实施例提供一种透镜组件100,其可以应用于光学成像***200(如图15及图16所示),例如照相机、摄像机手机、行车记录仪、车载摄像头、平板电脑、笔记本电脑、台式电脑、智能手环、智能手表、电子阅读器、智能眼镜、安防设备、监控设备、可视门铃等具有拍照功能的电子设备400(如图20所示)的光学成像***200中。
请参见图1至图3,本申请实施例提供一种透镜组件100,其包括承载层10、变焦层30、柔性层50以及致动器70。所述承载层10具有第一表面11,所述第一表面11为曲面;所述变焦层30设置于所述承载层10的所述第一表面11上;所述柔性层50设置于所述变焦层30远离所述承载层10的一侧;所述致动器70承载于所述柔性层50上,所述致动器70用于驱动所述柔性层50发生形变,从而带动所述变焦层30发生弹性形变,以实现所述透镜组件100的焦距变化。
所述第一表面11为曲面,可以理解,所述第一表面11为非平面。
所述变焦层30设置于所述承载层10的所述第一表面11上,可以为所述变焦层30直接设置在第一表面11且与所述第一表面11粘结;还可以为所述变焦层30设置在第一表面11的上方,变焦层30与第一表面11之间可以设置其它透光件,例如光学胶(OCA胶)等,变焦层30通过光学胶粘附于第一表面11上。
所述柔性层50设置于所述变焦层30远离所述承载层10的一侧;可以为所述柔性层50贴紧所述变焦层30远离所述承载层10的表面设置,直接与变焦层30远离所述承载层10的表面粘结,还可以为柔性层50与变焦层30远离所述承载层10的表面间隔设置,中间还设置其它透光件,例如光学胶(OCA胶)等,柔性层50通过光学胶粘附于变焦层30的表面上。
当所述透镜组件100应用于光学成像***200时,柔性层50相较于变焦层30更靠近光学成像***200的物侧,换言之,变焦层30相较于柔性层50更靠近光学成像***200的像侧,光线(如图2及图3中虚线箭头)自透镜组件100的柔性层50侧入射,依次经过穿透柔性层50、变焦层30及承载层10,在承载层10远离柔性层50的一侧射出,光线在经过每个相邻的两个层结构之间时会发生折射,通过控制第一表面11的面型及柔性层50远离变焦层30的表面的面型,可以控制透镜组件100对光线产生会聚作用,形成凸透镜,也可以控制透镜组件100对光线产生发散作用,形成凹透镜。当需要改变所述透镜组件100的焦距时,启动致动器70,所述致动器70对至少部分所述柔性层50施加压缩力或拉伸力,以使得在致动器70的作用下发生弯曲,从而挤压所述变焦层30,使所述变焦层30发生弹性形变,从而改变光线传播的路径,使所述透镜组件100的焦距发生变化。通过控制致动器70施加的压缩力或拉伸力的大小、以及压缩力或拉伸力作用的位置,可以使得柔性层50发生不同程度、不同形态的变形,从而使得变焦层30在柔性层50的作用下,发生不同程度、不同形态的变形,从而实现对透镜组件100的焦距进行控制。
本申请实施例的透镜组件100承载层10、变焦层30、柔性层50以及致动器70。所述承载层10具有第一表面11,所述第一表面11为曲面,这使得透镜组件100在致动器70未启动时就对光具有一定的聚光效果或发散作用,从而具有一定的光焦度,当致动器70开启,柔性层50及变焦层30发生形变,柔性层50远离变焦层30的表面形成弯曲面型时,第一表面11为曲面,可以使得柔性层50远离变焦层30的表面形成更大的曲率(即更小的曲率半径),从而通过控制致动器70对柔性层50施加的力的位置、方向、大小等,可以使透光组件具有较大的光焦度范围,从而具有较大的焦距变化范围。此外,在结构及材料相同的情况下,相较于第一表面11为平面的情况,第一表面11为曲面时,可以带来更大的弯曲度,从而可以得到具有更大焦距变化范围且具有更大通光孔径的透镜组件100。
本申请术语“光焦度(focal power)”表征光学***偏折光线的能力。光焦度包括正光焦度及负光焦度。本申请术语“通光孔径(Clear Aperture)”指在照相机中,调整光圈时由可变光圈(叶片组)在镜头中央产生的圆孔直径。
所述透镜组件100具有光轴,该透镜组件100的光轴如图2中虚线O-O所示。本申请的透镜组件100的光轴与承载层10、变焦层30及柔性层50的层叠方向平行。本申请术语“光轴”指光束(光柱)的中心线,或光学***的对称轴。
可选地,所述透镜组件100的焦距f的范围为-200mm≤f<-5mm,或者2mm<f≤100mm。具体地,所述透镜组件100的焦距f可以为但不限于为-200mm、-180mm、-150mm、-120mm、-100mm、-80mm、-50mm、-20mm、-10mm、-5mm、2mm、5mm、10mm、20mm、30mm、40mm、50mm、60mm、70mm、80mm、60mm、100mm等。本申请的透镜组件100的焦距f可以在-200mm≤f<-5mm,或者2mm<f≤100mm进行变化,具有较大的焦距变化范围,应用于摄像头时,可以具有更大的调焦范围,可以适用于拍摄不同景深的物体,更好的满足用户的需求。此外,本申请的透镜组件100应用于光学成像***200时还可以应用于微距拍摄,获得更大的图像放大倍率。例如小于10cm的拍摄距离,或者小于5cm的拍摄距离。
可选地,所述透镜组件100的通光孔径D的范围为1.5mm≤D≤7mm。进一步地,所述透镜组件100的通光孔径D的范围为3mm≤D≤7mm。又进一步地,所述透镜组件100的通光孔径D的范围为5mm≤D≤7mm。具体地,所述透镜组件100的通光孔径D可以为但不限于为1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm、5.5mm、6mm、6.7mm、7mm等。本申请的透镜组件100结构组成,使得既可以得到通光孔径较小的透镜组件100,还可以得到具有较大通光孔径(例如大于4mm或大于6mm等)的透镜组件100。此外,当制备较大通光孔径的摄像头时,不会降低透镜组件100的焦距。
可选地,承载层10是透光的。承载层10的材质可以为但不限于为聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、玻璃中的至少一种。可以理解地,承载层10具有一定的刚性,以起到足够的支撑作用,承载层10的刚性至少在变焦层30被挤压发生弹性形变时,第一表面11的形态不会发生变化。
可选地,承载层10可以通过模压、注塑等方式进行成型,以得到预设形状的第一表面11。此外,承载层10还可以通过在平面结构上,采用物理气相沉积(PVD)或化学气相沉积(CVD)等工艺方法形成具有预设形状的第一表面11。
请参见图2及图3,可选地,所述第一表面11可以为球面、非球面或自由曲面。可选地,第一表面11可以为凸面,也可以为凹面。可以理解地,第一表面11为凸面时,第一表面11朝向靠近变焦层30的方向凸出;第一表面11为凹面时,第一表面11朝向背离变焦层30的方向凹陷。通过第一表面11面型的变化,结合致动器70的控制,可以得到更多类型的透镜组件100,例如具有聚光作用的凸透镜,以及具有发散作用的凹透镜。
本申请术语“非球面”指旋转对称的非球形表面的面。本申请术语“自由曲面”指非旋转对称的非球面。
可选地,所述第一表面11于所述光轴处为凸面或凹面,所述第一表面11为球面、非球面或自由曲面。
可选地,当第一表面11为非球面时,非球面可以满足但不限于满足以下关系式:
Figure PCTCN2022138786-appb-000001
其中,z为非球面沿光轴方向在高度为r的位置时,距非球面顶点(顶点指非球面与光轴的交点)的距离矢高,r为非球面上的点到非球面的顶点的距离,c为非球面的曲率,k为圆锥系数,A为非球面的第4阶修正系数,B为非球面的第6阶修正系数,C为非球面的第8阶修正系数,D为非球面的第10阶修正系数,E为非球面的第12阶修正系数,F为非球面的第14阶修正系数,G为非球面的第16阶修正系数,H为非球面的第18阶修正系数,J为非球面的第20阶修正系数。
可选地,当第一表面11为自由曲面时,自由曲面可以满足但不限于满足以下关系式:
Figure PCTCN2022138786-appb-000002
其中,z为自由曲面上沿光轴方向在高度为r的点到自由曲面顶点(自由曲面上的点与光轴的交点)的距离矢高,r为自由曲面上的点到非球面的顶点的距离,c为自由曲面的曲率,k为圆锥系数,ZP j为第j个Zernike多项式,C j为ZP j的系数,j为1至21的整数。其中,多项式ZP j的第1~21个表达式如下表1所示。
Figure PCTCN2022138786-appb-000003
在一些实施例中,第一表面11于光轴处为凸面,靠近圆周处为凹面(如图2所示);在另一些实施例中,第一表面11于光轴处及靠近圆周处均为凸面。在又一些实施例中,第一表面11于光轴处为凹面,靠近圆周处为凸面(如图3所示)。在又一些实施例中,第一表面11于光轴处及靠近圆周处均为凹面。
可选地,当所述第一表面11于光轴处为凸面时,所述第一表面11的曲率半径R1的范围为20mm≤R1≤300mm。进一步地,所述第一表面11的曲率半径R1的范围为50mm≤R1≤150mm。具体地,第一表面11的曲率半径R1可以为但不限于为20mm、30mm、40mm、50mm、60mm、70mm、80mm、100mm、120mm、140mm、150mm、160mm、180mm、200mm、220mm、240mm、260mm、280mm、300mm等。第一表面11的曲率半径太大,则提供的聚光效果较小,沿光轴的高度低,提供的支撑作用变弱;第一表面11的曲率半径太小,成像时边缘畸变过大补偿变得困难,且沿光轴方向凸的过高,斜率变化太过陡峭,制造困难增加。
可选地,当所述第一表面11于光轴处为凹面时,所述第一表面11的曲率半径R1的范围为1mm≤R1≤300mm。进一步地,所述第一表面11的曲率半径R1的范围为1mm≤R1≤50mm。又进一步地,所述第一表面11的曲率半径R1的范围为10mm≤R1≤30mm。具体地,第一表面11的曲率半径R1可以为但不限于为1mm、3mm、5mm、10mm、15mm、20mm、25mm、30mm、35mm、40mm、45mm、50mm、60mm、70mm、80mm、100mm、120mm、140mm、150mm、160mm、180mm、200mm、220mm、240mm、260mm、280mm、300mm等。第一表面11的曲率半径太大,第一表面11可提供的屈光度(即光焦度)太小;第一表面11的曲率半径太小,成像时边缘畸变过大补偿变得困难,且沿光轴方向凸的过高,斜率变化太过陡峭,制造困难增加。
可选地,所述变焦层30是透光的。可选地,变焦层30的材质可以包括但不限于包括聚二甲基硅氧烷、聚氨酯、氟硅氧烷、硅油发生聚合后的弹性体等中的至少一种。
当变焦层30的材质可以包括但不限于包括聚二甲基硅氧烷、聚氨酯、氟硅氧烷等中的至少一种时,该变焦层30的材质还可以包括有机酸或无机酸的脂肪族,以改善变焦层30的稳定性并调节变焦层30的折射率。此外,该变焦层30的材质还可以包括二氧化钛,氧化锆,氧化锡,氧化锌等中的至少一种,二 氧化钛,氧化锆,氧化锡,氧化锌用于改变或调节变焦层30的折射率。
当变焦层30的材质包括硅油发生聚合后的弹性体时,变焦层30可以通过以下步骤制备:采用硅油例如甲基硅油,苯基硅油,羟基硅油,添加一定比例的偶联剂(例如硅烷偶联剂、钛酸酯偶联剂、硼酸酯偶联剂中的至少一种),经高温固化或光固化后,得到弹性体。弹性体的软硬或弹性可以通过交联度来进行调节,交联度可以通过偶联剂的添加量进行调节。
可选地,柔性层50是透光的,在一些实施例中,柔性层50的材质可以包括但不限于包括玻璃、树脂中的至少一种。
可选地,玻璃可以为但不限于为石英玻璃、含硼、磷、硅等元素的玻璃,或含Na,K等元素的玻璃中的至少一种。可选地,玻璃可以为硅酸盐玻璃、铝硅酸盐玻璃、磷酸盐玻璃、铝磷酸盐玻璃、硼酸盐玻璃中的至少一种。可选地,玻璃可以为但不限于为超薄玻璃(ultra thin glass,UTG),例如肖特和康宁等公司的超薄玻璃。
可选地,树脂可以为但不限于为聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、烯丙基二甘醇二碳酸酯中的至少一种。在一些实施例中,柔性层50包括层叠设置的基底层(图未示)及二氧化硅层(图未示),所述底基层为硅或玻璃基材,所述二氧化硅层通过化学气相沉积(CVD)沉积于基底层的表面。
可选地,柔性层50的厚度可以为20μm至100μm。换言之,柔性层50沿着光轴方向的厚度。具体地,柔性层50的厚度可以为但不限于为20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm等。此外,柔性层50还可以采用厚度大于100μm(例如150μm、200μm等)玻璃层,在上面制备好电极层及压电材料后,再磨薄至20μm至100μm。本申请实施例中,当涉及到数值范围a至b时,如未特别指明,均表示包括端点数值a,且包括端点数值b。例如,柔性层50的厚度可以为20μm至100μm,表示柔性层50的厚度可以为20μm至100μm之间的任意数值,包括端点20μm及端点100μm。
在一些实施例中,柔性层50的形状可以为圆形;换言之,柔性层50沿着垂直于光轴的横截面的形状。柔性层50的直径可以为50mm至300mm。具体地,柔性层50的直径可以为但不限于为50mm、60mm、70mm、80mm、100mm、120mm、140mm、160mm、180mm、200mm、220mm、240mm、260mm、280mm、300mm等。
可选地,所述柔性层50具有远离所述变焦层30的第二表面51,所述致动器70加载电压时,所述第二表面51曲率半径R2的范围50mm≤R2≤100mm。具体地,所述第二表面51曲率半径R2可以为但不限于为50mm、55mm、60mm、65mm、70mm、75mm、80mm、85mm、90mm、95mm、100mm。当第二表面51的曲率半径大于200mm时,形成的透镜组件100的聚光效果或者发散效果太小,当第二表面51的曲率半径小于50mm时,第二表面51过于弯曲,应用于光学成像***200时,球差过大,会使得边缘畸变增大。
可选地,当所述致动器70加载电压时,所述第二表面为球面或非球面,所述第二表面于光轴处为凸面或凹面。
在一些实施例中,承载层10、变焦层30及柔性层50依次连接。换言之,承载层10与变焦层30连接,变焦层30与柔性层50连接。这样可以使得在柔性层50发生弯曲形变时,变焦层30可以更好的随柔性层50一起发生形变,且在变焦的过程中承载层10、变焦层30及柔性层50始终依次抵接。也就是说变焦层30抵接承载层10的第一表面11侧、柔性层50抵接变焦层30远离承载层10的一侧。
可选地,承载层10的折射率n1为变焦层30的折射率n2的95%至105%之间。换言之,承载层10的折射率n1与变焦层30的折射率n2相差在±5%的范围内。具体地,承载层10的折射率n1可以为但不限于为95%n2、96%n2、97%n2、98%n2、99%n2、n2、101%n2、102%n2、103%n2、104%n2、105%n2等。变焦层30的折射率与承载层10折射率越接近,越便于形成具有单个光学表面的透镜组件100。
可选地,变焦层30的折射率n2可以为1.1至2.0。具体地,可以为但不限于为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0等。
可选地,柔性层50的折射率n3为变焦层30的折射率n2的95%至105%之间。换言之,柔性层50的折射率n3与变焦层30的折射率n2相差在±5%的范围内。具体地,柔性层50的折射率n3可以为但不限于为95%n2、96%n2、97%n2、98%n2、99%n2、n2、101%n2、102%n2、103%n2、104%n2、105%n2等。柔性层50的折射率与承载层10折射率越接近,越便于形成具有单个光学表面的透镜组件100。
在一些实施例中,致动器70可以为但不限于为压电致动器70、电致伸缩致动器70、磁致伸缩致动器70中的至少一种。可选地,所述致动器70为环状结构,例如圆环状结构。在一些实施例中,所述致动器70在所述柔性层50上的正投影环绕所述变焦层30在所述柔性层50上的正投影外周缘设置。这样可以更好的避免致动器70影响光线在透镜组件100内的传播光路。
请参见图2及图3,在一些实施例中,所述致动器70包括第一驱动组件71,所述第一驱动组件71设置于所述柔性层50远离所述变焦层30的一侧(即第二表面51侧),当所述第一驱动组件71加载电压时,驱动所述柔性层50发生形变,从而带动所述变焦层30发生弹性形变,以实现所述透镜组件100的焦距变化。
可选地,第一驱动组件71为压电驱动组件、电致伸缩驱动组件、磁致伸缩驱动组件中的至少一种。可选地,所述第一驱动组件71为环状结构,例如所述第一驱动组件71为圆环状结构。可以理解地,所述第一驱动组件71在所述柔性层50上的正投影为环状结构。
请参见图4及图5,在一些实施例中,第一驱动组件71包括依次层叠设置的第一电极711、致动层713及第二电极715。第一驱动组件71的第一电极711相较于第一驱动组件71的第二电极715更远离柔性层50。第一电极711及第二电极715用于加载电压,以使得致动层713发生伸缩等形变,从而驱动所述柔性层50发生弯曲形变。
可选地,所述第一电极711可以为正极或负极;第二电极715可以为正极或负极。在一些实施例中,第一电极711为正极,第二电极715为负极。在另一些实施例中,第一电极711为负极,第二电极715为正极。
可选地,第一电极711的材质可以为但不限于为铂、银、金、铜、氧化铟锡(ITO)等中的至少一种。第二电极715的材质可以为但不限于为铂、银、金、铜、氧化铟锡(ITO)等中的至少一种。第一电极711的材质与第二电极715的材质可以相同也可以不同,本申请不作具体限定。
可选地,致动层713的材质可以为但不限于为压电材料、电致伸缩材料以及磁致伸缩材料中的至少一种。可选地,压电材料可以为但不限于为锆钛酸铅(PZT)、聚偏氟乙烯压电薄膜(PVDF压电膜)、介电弹性体、弛豫铁电单晶[Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3,PMN-PT]、钐掺杂的PMN-PT单晶、xPb(In 1/2Nb 1/2)O3-yPb(Mg 1/2Nb 2/3)O 3-(1-x-y)PbTiO 3(其中x=0.24至0.26,y=0.43至0.45,PIMNT单晶)等。电致伸缩材料可以为但不限于为镁铌酸铅等。磁致伸缩材料可以为但不限于为铁氧体磁致伸缩材料,例如镍-钴铁氧体材料、镍钴铜铁氧体材料等中的至少一种。
可选地,致动层713的厚度可以为1μm至100μm。具体地,致动层713的厚度可以为但不限于为1μm、2μm、3μm、4μm、5μm、8μm、10μm、15μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm等。当致动层713的材质为锆钛酸铅时,致动层713可以采用溶胶-凝胶方法或者磁控溅射方法等直接形成于柔性层50上。在其他实施例中,可以先形成第一驱动组件71,在通过热熔胶、光固化胶、光学胶等粘合剂粘结于柔性层50上。
请参见图6及图7,在另一些实施例中,所述致动器70包括第一驱动组件71及第二驱动组件73,所述第一驱动组件71设置于所述柔性层50远离所述变焦层30的一侧,所述第二驱动组件73设置于所述柔性层50面向所述变焦层30的一侧,当所述第一驱动组件71与所述第二驱动组件73中的至少一个加载电压时,驱动所述柔性层50发生形变,从而带动所述变焦层30发生弹性形变,以实现所述透镜组件100的焦距变化。相较于图2及图3只有第一驱动组件71的实施例,本申请图6及图7的实施例在柔性层50的相背两侧分别设置有第一驱动组件71及第二驱动组件73,这样当致动器70启动时,可以使得透镜组件100的柔性层50具有更大的弯曲程度(即更小的曲率半径),从而具有更大的光焦度及更大的焦距变化范围。关于第一驱动组件71与上述实施例相同部分的详细描述,请参见上述实施例对应部分的描述,在此不再赘述。
可选地,所述第一驱动组件71与所述第二驱动组件73同轴设置,且所述第一驱动组件71与所述第二驱动组件73在所述柔性层50上的正投影至少部分交叠。
可选地,第二驱动组件73为压电驱动组件、电致伸缩驱动组件、磁致伸缩驱动组件中的至少一种。可选地,所述第二驱动组件73为环状结构,例如所述第二驱动组件73为圆环状结构。可以理解地,所述第二驱动组件73在所述柔性层50上的正投影为环状结构。
请再次参见图5,在一些实施例中,第二驱动组件73包括依次层叠设置的第一电极711、致动层713及第二电极715。第二驱动组件73的第一电极711相较于第二驱动组件73的第二电极715更靠近柔性层50。第一电极711及第二电极715用于加载电压,以使得致动层713发生伸缩等形变,从而驱动所述柔性层50发生弯曲形变。关于第一电极711、致动层713及第二电极715的详细描述请参见上述对应部分的描述,在此不再赘述。
可选地,第一驱动组件71与第二驱动组件73的结构及材料可以相同,也可以不同。在一些实施例中,第一驱动组件71及第二驱动组件73均为压电驱动组件。在另一些实施例中,第一驱动组件71及第二驱动组件73均为电致伸缩驱动组件。在又一些实施例中,第一驱动组件71为压电驱动组件,第二驱动组件73为电致伸缩驱动组件。在又一些实施例中,第一驱动组件71为电致伸缩驱动组件,第二驱动组件73为压电驱动组件。在又一些实施例中,第一驱动组件71及第二驱动组件73均为磁致伸缩驱动组件。在又一些实施例中,第一驱动组件71为压电驱动组件,第二驱动组件73为磁致伸缩驱动组件。在又一些实施例中,第一驱动组件71为电致伸缩驱动组件,第二驱动组件73为磁致伸缩驱动组件。
在一些实施例中,承载层10、变焦层30、柔性层50及致动器70同轴设置,且均以透镜组件100的光轴为对称轴。
以下通过多种控制方式对透镜组件100如何实现变焦做进一步的说明。
请参见图8,在一些实施例中,所述第一表面11于所述光轴处为凸面,当所述第一驱动组件71加载 电压以产生第一电场E1,所述第二驱动组件73加载电压以产生第二电场E2时,所述第二表面51为球面,且朝向背离所述变焦层30的方向凸出,其中,所述第一电场的方向自所述第一驱动组件71背离柔性层50的一侧指向所述第一驱动组件71靠近所述柔性层50的一侧(如图8箭头E1所示);所述第二电场的方向自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧(如图8箭头E2所示)。此时,透镜组件100的状态称为第一状态。
具体地,当第一驱动组件71加载电压产生第一电场,第二驱动组件73加载电压产生第二电场时,所述第一驱动组件71在第一电场的作用下对所述柔性层50的第二表面51进行拉伸,所述第二驱动组件73在第二电场的作用下对所述柔性层50远离第二表面51的表面进行压缩,从而使得柔性层50的第二表面51受到拉伸力(如图8箭头a所示),柔性层50远离第二表面51的表面受到压缩力(如图8箭头b所示),最后使得柔性层50在第一驱动组件71的拉伸力和第二驱动组件73的压缩力共同作用下发生弯曲形变,第二表面51为球面且朝向背离所述变焦层30的方向凸出。柔性层50发生弯曲形变后,会挤压变焦层30发生弹性形变,从而使得柔性层50、变焦层30及承载层10相互配合组成具有聚光效果凸透镜。由此,通过控制第一电场及第二电场的强度大小,可以调节第一驱动组件71产生的拉伸力及第二驱动组件73产生的压缩力的大小,从而调整柔性层50的弯曲程度(或第二表面51的曲率半径),进而调节光线依次穿过柔性层50、变焦层30及承载层10后的偏转方向,进而调节透镜组件100的焦距、光焦度等参数。
在图8的实施例中,第一驱动组件71加载电压产生第一电场E1可以通过以下方式之一实现:例如第一驱动组件71的第一电极711加载50V正电压,第一驱动组件71的第二电极715加载0V电压(即接地),以产生自所述第一驱动组件71背离柔性层50的一侧指向所述第一驱动组件71靠近所述柔性层50的一侧的第一电场E1。又例如第一驱动组件71的第一电极711加载80V正电压,第一驱动组件71的第二电极715加载30V正电压,以产生自所述第一驱动组件71背离柔性层50的一侧指向所述第一驱动组件71靠近所述柔性层50的一侧的第一电场E1。又例如第一驱动组件71的第一电极711加载0V电压(即接地),第一驱动组件71的第二电极715加载-50V负电压,以产生自所述第一驱动组件71背离柔性层50的一侧指向所述第一驱动组件71靠近所述柔性层50的一侧的第一电场E1等。第一驱动组件71的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及曲率半径等进行设计,本申请不作具体限定。
在图8的实施例中,第二驱动组件73加载电压产生第二电场E2可以通过以下方式之一实现:例如第二驱动组件73的第一电极711加载0V电压(即接地),第二驱动组件73的第二电极715加载50V电压,以产生自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧的第二电场E2。又例如第二驱动组件73的第一电极711加载30V正电压,第二驱动组件73的第二电极715加载80V正电压,以产生自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧的第二电场E2。又例如第二驱动组件73的第一电极711加载-50V负电压,第二驱动组件73的第二电极715加载0V电压(即接地),以产生自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧的第二电场E2等。第二驱动组件73的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及曲率半径等进行设计,本申请不作具体限定。
请参见图9,在一些实施例中,所述第一表面11于所述光轴处为凸面,当所述第一驱动组件71加载电压以产生第三电场E3,所述第二驱动组件73加载电压以产生第四电场E4时,所述第二表面51为非球面,且所述第二表面51于光轴处朝向背离所述变焦层30的方向凸出,其中,所述第三电场的方向自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧(如图9箭头E3所示);所述第四电场的方向自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧(如图9箭头E4所示)。此时,透镜组件100的状态称为第二状态。
具体地,当第一驱动组件71加载电压产生第三电场,第二驱动组件73加载电压产生第四电场时,所述第一驱动组件71在第一电场的作用下对所述柔性层50的第二表面51进行压缩,所述第二驱动组件73在第二电场的作用下对所述柔性层50远离第二表面51的表面进行压缩,从而使得柔性层50的第二表面51受到压缩力(如图9箭头a所示),柔性层50远离第二表面51的表面也受到压缩力(如图9箭头b所示),最后使得柔性层50在第一驱动组件71的压缩力和第二驱动组件73的压缩力共同作用下发生弯曲形变,第二表面51为非球面且朝向背离所述变焦层30的方向凸出。柔性层50发生弯曲形变后,会挤压变焦层30发生弹性形变,从而使得柔性层50、变焦层30及承载层10相互配合组成具有聚光效果非球面凸透镜。其中,第一电场E1的方向与第二电场E2的方向相同,第一电场E1及第二电场E2的方向均沿着光轴自变焦层30朝向柔性层50。由此,通过控制第一电场及第二电场的强度大小,可以调节第一驱动组件71产生的压缩力及第二驱动组件73产生的压缩力的大小,从而调整柔性层50的弯曲程度(或第二表面51的曲率半径),进而调节光线依次穿过柔性层50、变焦层30及承载层10后的偏转方向,进而调节透镜组件100的焦距、光焦度等参数。
在图9的实施例中,第一驱动组件71加载电压产生第三电场E3可以通过以下方式之一实现:例如 第一驱动组件71的第一电极711加载0V电压(即接地),第一驱动组件71的第二电极715加载50V正电压,以产生自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧的第三电场E3。又例如第一驱动组件71的第一电极711加载30V正电压,第一驱动组件71的第二电极715加载80V正电压,以产生自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧的第三电场E3。又例如第一驱动组件71的第一电极711加载-50V负电压,第一驱动组件71的第二电极715加载0V电压(即接地),以产生自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧的第三电场E3等。第一驱动组件71的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及曲率半径等进行设计,本申请不作具体限定。
在图9的实施例中,第二驱动组件73加载电压产生第四电场E4可以通过以下方式之一实现:例如第二驱动组件73的第一电极711加载0V电压(即接地),第二驱动组件73的第二电极715加载50V电压,以产生自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧的第四电场E4。又例如第二驱动组件73的第一电极711加载30V正电压,第二驱动组件73的第二电极715加载80V正电压,以产生自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧的第四电场E4。又例如第二驱动组件73的第一电极711加载-50V负电压,第二驱动组件73的第二电极715加载0V电压(即接地),以产生自所述第二驱动组件73背离柔性层50的一侧指向所述第二驱动组件73靠近所述柔性层50的一侧的第四电场E4等。第二驱动组件73的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及曲率半径等进行设计,本申请不作具体限定。
在一具体实施例中,所述第一表面11于所述光轴处为凸面,当所述第一驱动组件71及所述第二驱动组件73均未加载电压时,所述透镜组件100具有第一焦距;当所述第一驱动组件71加载电压产生第一电场,所述第二驱动组件73加载电压产生第二电场时,所述透镜组件100具有第二焦距;当所述第一驱动组件71加载电压产生第三电场,所述第二驱动组件73加载电压产生第四电场时,所述透镜组件100具有第三焦距,所述第一焦距、所述第二焦距与所述第三焦距互不相同。由此,通过控制第一驱动组件71、第二驱动组件73上加载的电压的正负及大小,就可以使得透镜组件100具有不同的焦距,从而可以在更大的焦距范围内进行变焦,满足更多拍摄场景的应用需求。
请参见图10,在一些实施例中,所述第一表面11于所述光轴处为凹面,所述柔性层50具有远离所述变焦层30的第二表面51,当所述第一驱动组件71加载电压以产生第一电场,所述第二驱动组件73加载电压以产生第二电场时,所述第二表面51为球面,且所述第二表面51于光轴处朝向靠近所述变焦层30的方向凹陷,其中,所述第一电场的方向自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧(如图10箭头E1所示);所述第二电场的方向自所述第二驱动组件73靠近柔性层50的一侧指向所述第二驱动组件73背离所述柔性层50的一侧(如图10箭头E2所示)。此时,透镜组件100的状态称为第三状态。
具体地,当第一驱动组件71加载电压产生第一电场,第二驱动组件73加载电压产生第二电场时,所述第一驱动组件71在第一电场的作用下对所述柔性层50的第二表面51进行压缩,所述第二驱动组件73在第二电场的作用下对所述柔性层50远离第二表面51的表面进行拉伸,从而使得柔性层50的第二表面51受到压缩力(如图10箭头a所示),柔性层50远离第二表面51的表面受到拉伸力(如图10箭头b所示),最后使得柔性层50在第一驱动组件71的压缩力和第二驱动组件73的拉伸力共同作用下发生弯曲形变,第二表面51为球面且朝向靠近所述变焦层30的方向凹陷。柔性层50发生弯曲形变后,会挤压变焦层30发生弹性形变,从而使得柔性层50、变焦层30及承载层10相互配合组成具有发散作用的凹透镜。其中,第一电场E1的方向与第二电场E2的方向相反,第一电场E1的方向沿着光轴自变焦层30朝向柔性层50,第二电场E2的方向沿着光轴自柔性层50朝向变焦层30。由此,通过控制第一电场及第二电场的强度大小,可以调节第一驱动组件71产生的压缩力及第二驱动组件73产生的拉伸力的大小,从而调整柔性层50的弯曲程度(或第二表面51的曲率半径),进而调节光线依次穿过柔性层50、变焦层30及承载层10后的偏转方向,进而调节透镜组件100的焦距、光焦度等参数。
在图10的实施例中,第一驱动组件71加载电压产生第一电场E1可以通过以下方式之一实现:例如第一驱动组件71的第一电极711加载0V电压(即接地),第一驱动组件71的第二电极715加载50V正电压,以产生自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧的第一电场E1。又例如第一驱动组件71的第一电极711加载30V正电压,第一驱动组件71的第二电极715加载80V正电压,以产生自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧的第一电场E1。又例如第一驱动组件71的第一电极711加载-50V负电压,第一驱动组件71的第二电极715加载0V电压(即接地),以产生自所述第一驱动组件71靠近柔性层50的一侧指向所述第一驱动组件71背离所述柔性层50的一侧的第一电场E1等。第一驱动组件71的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及 曲率半径等进行设计,本申请不作具体限定。
在图10的实施例中,第二驱动组件73加载电压产生第二电场E2可以通过以下方式之一实现:例如第二驱动组件73的第一电极711加载50V电压,第二驱动组件73的第二电极715加载0V电压(即接地),以产生自所述第二驱动组件73靠近柔性层50的一侧指向所述第二驱动组件73背离所述柔性层50的一侧的第二电场E2。又例如第二驱动组件73的第一电极711加载80V正电压,第二驱动组件73的第二电极715加载50V正电压,以产生自所述第二驱动组件73靠近柔性层50的一侧指向所述第二驱动组件73背离所述柔性层50的一侧的第二电场E2。又例如第二驱动组件73的第一电极711加载0V电压(即接地),第二驱动组件73的第二电极715加载-50V负电压,以产生自所述第二驱动组件73靠近柔性层50的一侧指向所述第二驱动组件73背离所述柔性层50的一侧的第二电场E2等。第二驱动组件73的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及曲率半径等进行设计,本申请不作具体限定。
请参见图11,在一些实施例中,所述第一表面11于所述光轴处为凹面,所述柔性层50具有远离所述变焦层30的第二表面51,当所述第一驱动组件71加载电压以产生第三电场,所述第二驱动组件73加载电压以产生第四电场时,所述第二表面51为非球面,且所述第二表面51于光轴处朝向靠近所述变焦层30的方向凹陷,其中,所述第三电场的方向自所述第一驱动组件背离柔性层的一侧指向所述第一驱动组件靠近所述柔性层的一侧(如图11箭头E3所示);所述第四电场的方向自所述第二驱动组件靠近柔性层的一侧指向所述第二驱动组件背离所述柔性层的一侧(如图11箭头E4所示)。此时,透镜组件100的状态称为第四状态。
具体地,当第一驱动组件71加载电压产生第三电场,第二驱动组件73加载电压产生第四电场时,所述第一驱动组件71在第一电场的作用下对所述柔性层50的第二表面51进行拉伸,所述第二驱动组件73在第二电场的作用下对所述柔性层50远离第二表面51的表面进行拉伸,从而使得柔性层50的第二表面51受到拉伸力(如图11箭头a所示),柔性层50远离第二表面51的表面也受到拉伸力(如图11箭头b所示),最后使得柔性层50在第一驱动组件71的拉伸力和第二驱动组件73的拉伸力共同作用下发生弯曲形变,第二表面51为非球面且朝向靠近所述变焦层30的方向凹陷。柔性层50发生弯曲形变后,会挤压变焦层30发生弹性形变,从而使得柔性层50、变焦层30及承载层10相互配合组成具有发散作用的非球面凹透镜。其中,第一电场E1的方向与第二电场E2的方向相同,第一电场E1及第二电场E2的方向均沿着光轴自柔性层50朝向变焦层30。由此,通过控制第一电场及第二电场的强度大小,可以调节第一驱动组件71产生的拉伸力及第二驱动组件73产生的拉伸力的大小,从而调整柔性层50的弯曲程度(或第二表面51的曲率半径),进而调节光线依次穿过柔性层50、变焦层30及承载层10后的偏转方向,进而调节透镜组件100的焦距、光焦度等参数。
在图11的实施例中,第一驱动组件71加载电压产生第三电场E3可以通过以下方式之一实现:例如第一驱动组件71的第一电极711加载50V正电压,第一驱动组件71的第二电极715加载0V电压(即接地),以产生自所述第一驱动组件71背离柔性层50的一侧指向所述第一驱动组件71靠近所述柔性层50的一侧的第三电场E3。又例如第一驱动组件71的第一电极711加载80V正电压,第一驱动组件71的第二电极715加载30V正电压,以产生自所述第一驱动组件71背离柔性层50的一侧指向所述第一驱动组件71靠近所述柔性层50的一侧的第三电场E3。又例如第一驱动组件71的第一电极711加载0V电压(即接地),第一驱动组件71的第二电极715加载-50V负电压,以产生自所述第一驱动组件71背离柔性层50的一侧指向所述第一驱动组件71靠近所述柔性层50的一侧的第三电场E3等。第一驱动组件71的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及曲率半径等进行设计,本申请不作具体限定。
在图11的实施例中,第二驱动组件73加载电压产生第四电场E4可以通过以下方式之一实现:例如第二驱动组件73的第一电极711加载50V电压,第二驱动组件73的第二电极715加载0V电压(即接地),以产生自所述第二驱动组件73靠近柔性层50的一侧指向所述第二驱动组件73背离所述柔性层50的一侧的第四电场E4。又例如第二驱动组件73的第一电极711加载80V正电压,第二驱动组件73的第二电极715加载50V正电压,以产生自所述第二驱动组件73靠近柔性层50的一侧指向所述第二驱动组件73背离所述柔性层50的一侧的第四电场E4。又例如第二驱动组件73的第一电极711加载0V电压(即接地),第二驱动组件73的第二电极715加载-50V负电压,以产生自所述第二驱动组件73靠近柔性层50的一侧指向所述第二驱动组件73背离所述柔性层50的一侧的第四电场E4等。第二驱动组件73的第一电极711及第一驱动组件71的第二电极715加载的电压的正负以及数值可以根据第二表面51要实现面型及曲率半径等进行设计,本申请不作具体限定。
在一具体实施例中,所述第一表面11于所述光轴处为凹面,当所述第一驱动组件71及所述第二驱动组件73均未加载电压时,所述透镜组件100具有第一焦距;当所述第一驱动组件71加载电压以产生第一电场,所述第二驱动组件73加载电压以产生第二电场时,所述透镜组件100具有第二焦距;当所述第一驱动组件71加载电压以产生第三电场,所述第二驱动组件73加载电压以产生第四电场时,所述透镜组件 100具有第三焦距,所述第一焦距、所述第二焦距与所述第三焦距互不相同。由此,通过控制第一驱动组件71、第二驱动组件73上加载的电压的正负及大小,就可以使得透镜组件100具有不同的焦距,从而可以在更大的焦距范围内进行变焦,满足更多拍摄场景的应用需求。
请参见图12及图13,在一些实施例中,所述透镜组件100还包括支撑件90,所述支撑件90位于所述柔性层50远离面向所述变焦层30的一侧,且环绕所述变焦层30的外周缘设置,所述支撑件90与所述柔性层50及所述承载层10中的至少一个连接,用于支撑所述柔性层50。支撑件90可以对柔性层50及变焦层30进行更稳定的支撑,以使得在柔性层50及变焦层30发生形变,进行变焦时,变焦过程可以更为流畅,此外,当未加载电压时,支撑件90可以避免柔性层50在重力的作用下挤压变焦层30,从而时变焦层30发生形变,由此,使得透镜组件100的整体结构可以更稳定。
所述支撑件90与所述柔性层50及所述承载层10中的至少一个连接,可选地,所述支撑件90与所述柔性层50连接(如图12或图13所示);或者,所述支撑件90与所述承载层10连接,且所述支撑件90抵接所述柔性层50(即所述支撑件90与所述柔性层50相接触,但不属于连接,即不相连);或者,所述支撑件90分别与所述柔性层50及所述承载层10连接(如图14所示)。
在一些实施例中,当所述支撑件90与所述柔性层50连接时,所述支撑件90可以通过热熔胶、光固化胶(UV胶)、光学胶(OCA胶)等粘合剂与柔性层50连接。
在一些实施例中,当所述支撑件90与承载层10连接时,所述支撑件90与所述承载层10可以通过热熔胶、光固化胶(UV胶)、光学胶(OCA胶)等粘合剂连接。请参见图14,在另一些实施例中,支撑件90与承载层10还可以为一体结构,支撑件90与承载层10通过一体注塑成型,此时,承载层10与支撑件90均是透光的。
可选地,支撑件90的材质可以为但不限于为硅(例如单晶硅、多晶硅)、二氧化硅、玻璃、树脂、金属等。玻璃可以为但不限于为石英玻璃、含硼、磷、硅等元素的玻璃,或含Na,K等元素的玻璃中的至少一种。可选地,玻璃可以为硅酸盐玻璃、铝硅酸盐玻璃、磷酸盐玻璃、铝磷酸盐玻璃、硼酸盐玻璃中的至少一种。树脂可以为但不限于为聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、液晶聚合物(LIQUID CRYSTAL POLYMER,LCP)等中的至少一种。金属可以为但不限于为不锈钢。
如图14所示,在一具体实施例中,透镜组件100包括承载层10、支撑件90、变焦层30、柔性层50及致动器70。承载层10与支撑件90连接,且承载层10与支撑件90围合成收容空间,所述变焦层30设置于所述承载层10的第一表面11上,且位于所述收容空间内。柔性层50设置于所述变焦层30远离所述承载层10的一侧,且抵接所述支撑件90。致动器70包括第一驱动组件71及第二驱动组件73,第一驱动组件71设置于所述柔性层50的第二表面51上,第二驱动组件73设置于所述柔性层50远离所述第二表面51的表面且位于所述收容空间内。所述承载层10、支撑件90、变焦层30、柔性层50、第一驱动组件71、第二驱动组件73均以光轴为对称轴,同轴设置。
请参见图15及图16,本申请实施例还提供一种光学成像***200,用于成像,其包括:本申请实施例的透镜组件100。所述光学成像***200具有物侧及像侧,所述透镜组件100的所述柔性层50相较于所述变焦层30更靠近所述光学成像***200的物侧。
在一些实施例中,本申请的光学成像***200还包括非变焦透镜210,所述非变焦透镜210与所述透镜组件100沿着光轴同轴设置。该非变焦透镜210可以设置在透镜组件100的物侧,也可以设置在透镜组件100的像侧。非变焦透镜210可以为玻璃透镜,还可以为塑料透镜。可选地,非变焦透镜210的数量可以为但不限于为1片、2片、3片、4片、5片、6片、7片等。
请参见图17,可选地,本申请的光学成像***200还包括光阑230,光阑230可以设置在光学成像***200的第一个透镜的物侧面至最末尾透镜的像侧面之间。光阑230的位置可以根据实际需要进行调整,本申请不作具体限定。
可选地,本申请的光学成像***200还包括红外截止滤光片250,红外截止滤光片250设置于最末尾透镜像侧,用于过滤掉除可见光以外的其它波段的光,以提高光学成像***200的成像品质。可选地,红外截止滤光片250可以为玻璃材质。
请参见图18,可选地,所述光学成像***200还具有成像面260,本申请的光学成像***200还包括保护片270,保护片270位于红外截止滤光片250与成像面260之间,用于保护位于成像面260上的感光元件,以达到防尘效果。可选地,保护片270可以为玻璃保护片270,也可以为塑料保护片270。
可以理解的,透镜组件100、非变焦透镜210、光阑230、红外截止滤光片250及保护片270均以光轴为轴,同轴设置。
请参见图19,本申请实施例还提供一种摄像头模组300,其包括本申请实施例的光学成像***200;及感光元件310,所述感光元件310位于所述光学成像***200的像侧。可选地,所述感光元件310位于所述光学成像***200的成像面260处。
感光元件310又称图像传感器,感光元件310可以为但不限于为感光耦合元件(Charge Coupled Device,CCD)、互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor,CMOS sensor)中的 至少一种。
可选地,所述摄像头模组300还包括镜筒330,所述镜筒330具有容置腔331,所述容置腔331用于***述光学成像***200,所述感光元件310设置于所述镜筒330上。
请参见图20至图22,本申请实施例还提供一种电子设备400,其包括:本申请实施例的摄像头模组300,用于拍摄图像;显示模组410,用于显示所述摄像头模组300拍摄的图像;以及电路板模组430,所述电路板模组430分别与所述摄像头模组300及所述显示模组410电连接,用于控制所述摄像头模组300进行拍摄,并用于控制所述显示模组410进行显示。
本申请的电子设备400可以为但不限于为照相机、摄像机手机、行车记录仪、车载摄像头、平板电脑、笔记本电脑、台式电脑、智能手环、智能手表、电子阅读器、智能眼镜、安防设备、监控设备、可视门铃等具有拍照功能的电子设备400。
关于摄像头模组300的详细描述,请参见上述实施例对应部分的描述,在此不再赘述。
可选地,所述显示模组410可以为但不限于为液晶显示模组、发光二极管显示模组(LED显示模组)、微发光二极管显示模组(Micro LED显示模组)、次毫米发光二极管显示模组(Mini LED显示模组,迷你发光二极管显示模组)、有机发光二极管显示模组(OLED显示模组)等中的一种或多种。
请一并参见图23,可选地,电路板模组430可以包括处理器431及存储器433。所述处理器431分别与所述显示模组410及存储器433电连接。所述处理器431用于控制所述显示模组410进行显示,所述存储器433用于存储所述处理器431运行所需的程序代码,控制显示模组410所需的程序代码、显示模组410的显示内容等。
可选地,处理器431包括一个或者多个通用处理器431,其中,通用处理器431可以是能够处理电子指令的任何类型的设备,包括中央处理器(Central Processing Unit,CPU)、微处理器、微控制器、主处理器、控制器以及ASIC等等。处理器431用于执行各种类型的数字存储指令,例如存储在存储器433中的软件或者固件程序,它能使计算设备提供较宽的多种服务。
可选地,存储器433可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器433也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory,FM)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)。存储器433还可以包括上述种类的存储器的组合。
请再次参见图21,本申请实施例的电子设备400还包括中框420及壳体450,所述壳体450与所述显示模组410间隔设置,所述中框420设置于所述显示模组410与壳体450之间,且所述中框420的侧面显露于所述壳体450与所述显示模组410。所述中框420与所述壳体450围合成容置空间,所述容置空间用于容置所述电路板模组430与所述摄像头模组300。所述壳体450上具有透光部451,所述摄像头模组300可通过所述壳体450上的透光部451拍摄,即,本实施方式中的摄像头模组300为后置摄像头模组300。可以理解地,在其他实施方式中,所述透光部451可设置在所述显示模组410上,即,所述摄像头模组300为前置摄像头模组300。在本实施方式的示意图中,以所述透光部451为开口进行示意,在其他实施方式中,所述透光部451可不为开口,而是为透光的材质,比如,塑料、玻璃等。
可以理解地,本实施方式中所述的电子设备400仅仅为所述透镜组件100所应用的电子设备400的一种形态,不应当理解为对本申请提供的电子设备400的限定,也不应当理解为对本申请各个实施方式提供的透镜组件100的限定。
在本申请中提及“实施例”“实施方式”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。此外,还应该理解的是,本申请各实施例所描述的特征、结构或特性,在相互之间不存在矛盾的情况下,可以任意组合,形成又一未脱离本申请技术方案的精神和范围的实施例。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (21)

  1. 一种透镜组件,其特征在于,包括:
    承载层,所述承载层具有第一表面,所述第一表面为曲面;
    变焦层,所述变焦层设置于所述承载层的所述第一表面上;
    柔性层,所述柔性层设置于所述变焦层远离所述承载层的一侧;以及
    致动器,所述致动器承载于所述柔性层上,所述致动器用于驱动所述柔性层发生形变,从而带动所述变焦层发生弹性形变,以实现所述透镜组件的焦距变化。
  2. 根据权利要求1所述的透镜组件,其特征在于,所述透镜组件具有光轴,所述第一表面于所述光轴处为凸面或凹面,所述第一表面为球面、非球面或自由曲面。
  3. 根据权利要求2所述的透镜组件,其特征在于,所述第一表面于所述光轴处为凸面,所述第一表面的曲率半径R1的范围为20mm≤R1≤300mm;或者,所述第一表面于所述光轴处为凹面,所述第一表面的曲率半径R1的范围为1mm≤R1≤300mm。
  4. 根据权利要求1所述的透镜组件,其特征在于,所述透镜组件的焦距f的范围为-200mm≤f<-5mm,或者2mm<f≤100mm。
  5. 根据权利要求1所述的透镜组件,其特征在于,所述透镜组件的通光孔径D的范围为1.5mm≤D≤7mm。
  6. 根据权利要求1所述的透镜组件,其特征在于,所述致动器包括第一驱动组件及第二驱动组件,所述第一驱动组件设置于所述柔性层远离所述变焦层的一侧,所述第二驱动组件设置于所述柔性层面向所述变焦层的一侧,当所述第一驱动组件与所述第二驱动组件中的至少一个加载电压时,驱动所述柔性层发生形变,从而带动所述变焦层发生弹性形变,以实现所述透镜组件的焦距变化。
  7. 根据权利要求6所述的透镜组件,其特征在于,所述透镜组件具有光轴,所述柔性层具有远离所述变焦层的第二表面,当所述第一驱动组件与所述第二驱动组件中的至少一个加载电压时,驱动所述柔性层发生形变,从而带动所述变焦层发生弹性形变,以使所述第二表面为球面或非球面,所述第二表面于光轴处为凸面或凹面。
  8. 根据权利要求7所述的透镜组件,其特征在于,所述第一表面于所述光轴处为凸面,当所述第一驱动组件加载电压以产生第一电场,所述第二驱动组件加载电压以产生第二电场时,所述第二表面为球面,且朝向背离所述变焦层的方向凸出;其中,所述第一电场的方向自所述第一驱动组件背离柔性层的一侧指向所述第一驱动组件靠近所述柔性层的一侧;所述第二电场的方向自所述第二驱动组件背离柔性层的一侧指向所述第二驱动组件靠近所述柔性层的一侧。
  9. 根据权利要求7所述的透镜组件,其特征在于,所述第一表面于所述光轴处为凸面,当所述第一驱动组件加载电压以产生第三电场,所述第二驱动组件加载电压以产生第四电场时,所述第二表面为非球面,且所述第二表面于光轴处朝向背离所述变焦层的方向凸出;其中,所述第三电场的方向自所述第一驱动组件靠近柔性层的一侧指向所述第一驱动组件背离所述柔性层的一侧;所述第四电场的方向自所述第二驱动组件背离柔性层的一侧指向所述第二驱动组件靠近所述柔性层的一侧。
  10. 根据权利要求7所述的透镜组件,其特征在于,所述第一表面于所述光轴处为凸面,当所述第一驱动组件及所述第二驱动组件均未加载电压时,所述透镜组件具有第一焦距;当所述第一驱动组件加载电压产生第一电场,所述第二驱动组件加载电压产生第二电场时,所述透镜组件具有第二焦距;当所述第一驱动组件加载电压第三电场,所述第二驱动组件加载电压产生第四电场时,所述透镜组件具有第三焦距,所述第一焦距、所述第二焦距与所述第三焦距互不相同。
  11. 根据权利要求7所述的透镜组件,其特征在于,所述第一表面于所述光轴处为凹面,当所述第一驱动组件加载电压以产生第一电场,所述第二驱动组件加载电压以产生第二电场时,所述第二表面为球面,且所述第二表面于光轴处朝向所述变焦层的方向凹陷;其中,所述第一电场的方向自所述第一驱动组件靠近柔性层的一侧指向所述第一驱动组件背离所述柔性层的一侧;所述第二电场的方向自所述第二驱动组件靠近柔性层的一侧指向所述第二驱动组件背离所述柔性层的一侧。
  12. 根据权利要求7所述的透镜组件,其特征在于,所述第一表面于所述光轴处为凹面,当所述第一驱动组件加载电压以产生第三电场,所述第二驱动组件加载电压以产生第四电场时,所述第二表面为非球面,且所述第二表面于光轴处朝向所述变焦层的方向凹陷;其中,所述第三电场的方向自所述第一驱动组件背离柔性层的一侧指向所述第一驱动组件靠近所述柔性层的一侧;所述第四电场的方向自所述第二驱动组件靠近柔性层的一侧指向所述第二驱动组件背离所述柔性层的一侧。
  13. 根据权利要求7所述的透镜组件,其特征在于,所述第一表面于所述光轴处为凹面,当所述第一驱动组件及所述第二驱动组件均未加载电压时,所述透镜组件具有第一焦距;当所述第一驱动组件加载电压产生第一电场,所述第二驱动组件加载电压产生第二电场时,所述透镜组件具有第二焦距;当所述第一驱动组件加载电压产生第三电场,所述第二驱动组件加载电压第四电场时,所述透镜组件具有第三焦距, 所述第一焦距、所述第二焦距与所述第三焦距互不相同。
  14. 根据权利要求7-13任一项所述的透镜组件,其特征在于,所述致动器加载电压时,所述第二表面曲率半径R2的范围50mm≤R2≤100mm。
  15. 根据权利要求6所述的透镜组件,其特征在于,第一驱动组件为压电驱动组件、电致伸缩驱动组件、磁致伸缩驱动组件中的至少一种;第二驱动组件为压电驱动组件、电致伸缩驱动组件、磁致伸缩驱动组件中的至少一种。
  16. 根据权利要求15所述的透镜组件,其特征在于,所述第一驱动组件及所述第二驱动组件均为环状结构,所述第一驱动组件与所述第二驱动组件同轴设置,且所述第一驱动组件与所述第二驱动组件在所述柔性层上的正投影至少部分交叠,所述致动器在所述柔性层上的正投影环绕所述变焦层在所述柔性层上的正投影外周缘设置。
  17. 根据权利要求1所述的透镜组件,其特征在于,所述透镜组件还包括支撑件,所述支撑件位于所述柔性层面向所述变焦层的一侧,且环绕所述变焦层的外周缘设置,所述支撑件与所述柔性层及所述承载层中的至少一个连接,用于支撑所述柔性层。
  18. 根据权利要求17所述的透镜组件,其特征在于,所述承载层与所述支撑件均是透光的,所述承载层与所述支撑件为一体结构。
  19. 一种光学成像***,其特征在于,包括:权利要求1-18任一项所述的透镜组件,所述光学成像***具有物侧,所述透镜组件的所述柔性层相较于所述变焦层更靠近所述光学成像***的物侧。
  20. 一种摄像头模组,其特征在于,包括:
    权利要求19所述的光学成像***;及
    感光元件,所述感光元件位于所述光学成像***的像侧。
  21. 一种电子设备,其特征在于,包括:
    权利要求20所述的摄像头模组,用于拍摄图像;
    显示模组,用于显示所述摄像头模组拍摄的图像;以及
    电路板模组,所述电路板模组分别与所述摄像头模组及所述显示模组电连接,用于控制所述摄像头模组进行拍摄,并用于控制所述显示模组进行显示。
PCT/CN2022/138786 2022-03-17 2022-12-13 透镜组件、光学成像***、摄像头模组及电子设备 WO2023173848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210266039.2 2022-03-17
CN202210266039.2A CN114779427B (zh) 2022-03-17 2022-03-17 透镜组件、光学成像***、摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023173848A1 true WO2023173848A1 (zh) 2023-09-21

Family

ID=82424335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138786 WO2023173848A1 (zh) 2022-03-17 2022-12-13 透镜组件、光学成像***、摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN114779427B (zh)
WO (1) WO2023173848A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779427B (zh) * 2022-03-17 2024-02-06 Oppo广东移动通信有限公司 透镜组件、光学成像***、摄像头模组及电子设备
CN115297240A (zh) * 2022-08-02 2022-11-04 西安紫光展锐科技有限公司 摄像头组件和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098972A (ja) * 2004-09-30 2006-04-13 Casio Comput Co Ltd ズームレンズユニット及びカメラ
CN101238395A (zh) * 2005-06-21 2008-08-06 全球仿生光学有限责任公司 透镜
CN102037384A (zh) * 2008-04-23 2011-04-27 萨曼·达尔马蒂拉克 光学成像透镜***
CN109884740A (zh) * 2019-03-12 2019-06-14 上海集成电路研发中心有限公司 一种柔性可变焦镜头、成像装置
CN111443498A (zh) * 2020-04-15 2020-07-24 Oppo广东移动通信有限公司 镜头模组以及电子设备
CN213957662U (zh) * 2020-11-30 2021-08-13 江西晶超光学有限公司 调焦装置、光学成像***、取像模组和电子装置
WO2022037591A1 (zh) * 2020-08-19 2022-02-24 华为技术有限公司 镜头模组、摄像模组和终端
CN114779427A (zh) * 2022-03-17 2022-07-22 Oppo广东移动通信有限公司 透镜组件、光学成像***、摄像头模组及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955041A (zh) * 2020-01-10 2020-04-03 太原理工大学 一种基于sebs薄膜的全固态可变焦压电驱动式微透镜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098972A (ja) * 2004-09-30 2006-04-13 Casio Comput Co Ltd ズームレンズユニット及びカメラ
CN101238395A (zh) * 2005-06-21 2008-08-06 全球仿生光学有限责任公司 透镜
CN102037384A (zh) * 2008-04-23 2011-04-27 萨曼·达尔马蒂拉克 光学成像透镜***
CN102037390A (zh) * 2008-04-23 2011-04-27 萨曼·达尔马蒂拉克 可变光学***和部件
CN109884740A (zh) * 2019-03-12 2019-06-14 上海集成电路研发中心有限公司 一种柔性可变焦镜头、成像装置
CN111443498A (zh) * 2020-04-15 2020-07-24 Oppo广东移动通信有限公司 镜头模组以及电子设备
WO2022037591A1 (zh) * 2020-08-19 2022-02-24 华为技术有限公司 镜头模组、摄像模组和终端
CN213957662U (zh) * 2020-11-30 2021-08-13 江西晶超光学有限公司 调焦装置、光学成像***、取像模组和电子装置
CN114779427A (zh) * 2022-03-17 2022-07-22 Oppo广东移动通信有限公司 透镜组件、光学成像***、摄像头模组及电子设备

Also Published As

Publication number Publication date
CN114779427B (zh) 2024-02-06
CN114779427A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023173848A1 (zh) 透镜组件、光学成像***、摄像头模组及电子设备
JP4823137B2 (ja) 光学レンズおよびその製造方法
US7382545B2 (en) Liquid zoom lens
US6791741B2 (en) Optical apparatus
US7405884B2 (en) Optical apparatus
KR101863379B1 (ko) 광학 유닛 및 촬상 장치
JP2003315650A (ja) 光学装置
JP2002243918A (ja) 可変焦点レンズ、光学特性可変光学素子及び光学装置
JP2003098435A (ja) ズーム光学系
JP2002228813A (ja) 変位検出機能を備えた可変形状鏡
US6924944B2 (en) Optical system, and optical apparatus
JP2003107355A (ja) 撮像光学系
JP2002228903A (ja) 光学ユニット
CN112505809A (zh) 调焦装置、光学成像***、取像模组和电子装置
WO2010011789A2 (en) Compact auto-focus image taking lens system with a micromirror array lens and a lens-surfaced prism
JP2011013578A (ja) ズームレンズ、カメラモジュール及び電子機器
JP2002228816A (ja) 可変形状鏡の駆動装置
JP2003075618A (ja) 可変ミラー及びそれを用いた光学装置
CN114296209A (zh) 成像组件及电子设备
JP2003107310A (ja) ズームレンズ鏡胴
JP2007108791A (ja) 光学装置
JP2002303783A (ja) 撮像装置の焦点調節ユニット
JP2002190971A (ja) 光学装置
JP4931019B2 (ja) 可変焦点レンズ
TW202026739A (zh) 相機模組以及具有該相機模組之電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931857

Country of ref document: EP

Kind code of ref document: A1