WO2023173811A1 - 一种催化重整催化剂的制备方法及催化重整催化剂 - Google Patents

一种催化重整催化剂的制备方法及催化重整催化剂 Download PDF

Info

Publication number
WO2023173811A1
WO2023173811A1 PCT/CN2022/135852 CN2022135852W WO2023173811A1 WO 2023173811 A1 WO2023173811 A1 WO 2023173811A1 CN 2022135852 W CN2022135852 W CN 2022135852W WO 2023173811 A1 WO2023173811 A1 WO 2023173811A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic reforming
preparation
reforming catalyst
silicon
aluminum
Prior art date
Application number
PCT/CN2022/135852
Other languages
English (en)
French (fr)
Inventor
张鹏
张晓敏
韩晓琳
许磊
吕雉
鲁玉莹
李知春
崔佳
王宗宝
肖海成
Original Assignee
中国石油天然气股份有限公司
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司, 中国科学院大连化学物理研究所 filed Critical 中国石油天然气股份有限公司
Publication of WO2023173811A1 publication Critical patent/WO2023173811A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • This application belongs to the field of industrial catalysis and relates to a preparation method of a catalytic reforming catalyst and a catalytic reforming catalyst.
  • Catalytic reforming is a crude oil secondary processing process that mainly uses gasoline as raw material to produce high-octane gasoline and light aromatics.
  • Catalytic reformed gasoline has a high aromatic content, very little olefins and sulfur content, and an octane number above 90. It is a high-quality gasoline blending component.
  • environmental protection laws and regulations become increasingly stringent and the global demand for aromatics increases, catalytic reforming plays an increasingly important role in the petrochemical industry.
  • Catalytic reforming catalyst is the key to catalytic reforming technology.
  • the catalytic reforming catalyst is a dual-functional catalyst, with the metal active component providing the hydrogenation function and the carrier providing the acidic function.
  • the active metal components are platinum group metals and the carrier is alumina.
  • This type of catalyst has good isomerization and aromatization properties for naphthenes, but has poor selectivity for the aromatization of paraffins.
  • the chlorine on the catalyst will continue to be lost during the use of traditional catalytic reforming catalysts.
  • chlorine needs to be continuously injected during the production process. Chlorine injection will increase the complexity of process operations, and free chlorine ions will also accelerate equipment corrosion and contaminate catalytic reforming products.
  • catalytic reforming catalysts using molecular sieves as carriers have the advantages of less chlorine loss during use, higher reaction activity and higher selectivity for paraffin aromatization.
  • the metal active components of catalytic reforming catalysts using molecular sieves as carriers are prone to sintering and agglomeration during high-temperature roasting, resulting in low catalyst stability.
  • aromatic hydrocarbon selectivity, aromatic hydrocarbon yield, and carbon deposition resistance are still poor. not ideal.
  • the present application provides a method for preparing a catalytic reforming catalyst.
  • the ZSM-5 molecular sieve catalyst loaded with platinum group metals prepared by the preparation method has the advantages of high thermal stability, small molecular sieve particle size, and excellent diffusion performance. It exhibits excellent aromatic hydrocarbon selectivity, aromatic hydrocarbon yield and anti-carbon deposition performance in the catalytic reforming reaction.
  • This application also provides a catalytic reforming catalyst, which is prepared by the above preparation method.
  • the catalyst has excellent aromatic hydrocarbon selectivity, aromatic hydrocarbon yield and carbon deposition resistance.
  • the first aspect of this application provides a method for preparing a catalytic reforming catalyst, which includes the following steps:
  • the first silicon source includes a silane compound containing an aminopropyl group
  • the first silicon source is a mixture of a first silane compound and a second silane compound
  • the first silane compound is selected from the group consisting of aminopropyltriethoxysilane and aminopropyltrimethoxysilane.
  • the second silane compound is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, and sodium silicate;
  • the second silicon source is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, and sodium silicate.
  • step 1) the mass ratio of the first silicon source to the second silicon source is (0.2-2):1.
  • step 1) the pH value of the system including the first silicon source and the aluminum source is 9-12.
  • step 1) the mixing is performed at 30 to 80°C.
  • step 2) the temperature of the steam-assisted crystallization treatment is 130-200°C and the time is 12-100 hours.
  • step 1) the system further includes a first structure directing agent, and the first structure directing agent is selected from cationic surfactants.
  • the cationic surfactant is selected from dodecyltrimethylammonium chloride, cetyltrimethylammonium bromide or octadecyltrimethylammonium bromide. of at least one.
  • step 2 the steam-assisted crystallization treatment is performed under the steam of an aqueous solution containing a second structure directing agent;
  • the second structure directing agent is selected from at least one of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrapropylammonium bromide and tetrapropylammonium chloride.
  • the second aspect of this application provides a catalytic reforming catalyst, which is prepared by using the preparation method provided by the first aspect of this application.
  • the molar ratio of silicon to aluminum of the molecular sieve is (20-50): 1;
  • the average particle size of the molecular sieve is 50-500nm
  • the active component loading of the catalytic reforming catalyst is 0.05wt% to 5wt%.
  • the preparation method of the catalytic reforming catalyst of the present application by at least partially wrapping the platinum group metal precursor in the molecular sieve precursor, can make the metal active components of the catalyst less likely to sinter and agglomerate during the high-temperature roasting process, thereby making the catalyst have good thermal stability properties, and steam-assisted crystallization treatment can make the molecular sieve carrier have a smaller particle size to improve the diffusion performance of the catalyst.
  • the aromatic selectivity, aromatic yield, and carbon deposition resistance of the catalyst in the catalytic reforming reaction can be improved.
  • the catalytic reforming catalyst of the present application is prepared by the above preparation method, it has excellent aromatic hydrocarbon selectivity, aromatic hydrocarbon yield and carbon deposition resistance in the catalytic reforming reaction.
  • Figure 1 is the XRD comparison chart of Cat.1 ⁇ Cat.4;
  • Figure 2 is the SEM image of Cat.1;
  • Figure 3 is the SEM image of Cat.2
  • Figure 4 is the SEM image of Cat.3;
  • Figure 5 is the SEM image of Cat.4.
  • the first aspect of this application provides a method for preparing a catalytic reforming catalyst, which includes the following steps:
  • the first silicon source includes a silane compound containing an aminopropyl group
  • the catalytic reforming catalyst prepared by the above preparation method is a hydrogen-type ZSM-5 molecular sieve catalyst loaded with platinum group metals.
  • the first silicon source, aluminum source and second silicon source are all raw materials for preparing ZSM-5 molecular sieve.
  • the platinum group metal precursor refers to the form before the interaction between platinum group metal and ZSM-5 molecular sieve, usually platinum.
  • a chlorate of a group metal may be, for example, a platinate.
  • the platinum group metal precursor is added to the system containing the first silicon source and the aluminum source, since the first silicon source includes a silane compound containing aminopropyl, there is a good interaction between the aminopropyl group and the platinum group metal precursor. Adsorption can make the platinum group metal precursor adhere to the surface of the molecular sieve precursor formed by the first silicon source and aluminum source. Then a second silicon source is added to the system, and the second silicon source continues to adhere to the platinum group metal precursor. On the surface of the molecular sieve precursor, the platinum group metal precursor is tightly wrapped in the molecular sieve precursor, so that the metal active components of the catalyst are not easily sintered and agglomerated during high-temperature roasting, and have good thermal stability.
  • the mixed system is further filtered, dried and roasted to obtain a silicon-aluminum precursor wrapped with platinum group metal.
  • step 2 steam-assisted crystallization of the catalyst precursor can complete the transformation of the ZSM-5 molecular sieve precursor from amorphous to MFI crystal form. Steam-assisted crystallization is more conducive to the formation of molecular sieve grains with smaller sizes. , thus giving the catalyst excellent diffusion properties.
  • the crystallized system is washed, dried, and roasted to obtain the catalytic reforming catalyst.
  • the preparation method of the catalytic reforming catalyst provided by this application by wrapping the platinum group metal precursor in the ZSM-5 molecular sieve precursor, can make the platinum group metal active components less likely to sinter and agglomerate during the roasting process, making the catalyst have excellent Thermal stability, and nanometer-sized molecular sieve grains can be obtained through steam-assisted crystallization treatment, giving the catalyst excellent diffusion properties.
  • the aromatic selectivity, aromatic yield and carbon deposition resistance of the catalyst in the catalytic reforming reaction are improved.
  • aluminum source used in the preparation process in this application There is no special limitation on the aluminum source used in the preparation process in this application. All aluminum sources commonly used in this field can be used, including but not limited to at least one of aluminum isopropoxide, aluminum nitrate, aluminum chloride and pseudo-boehmite. A sort of.
  • the first silicon source in this application is a mixture of a first silane compound and a second silane compound, wherein the first silane compound is selected from at least one of aminopropyltriethoxysilane and aminopropyltrimethoxysilane.
  • the second silane compound is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, and sodium silicate;
  • the second silicon source in this application is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, and sodium silicate.
  • the selection of the first silicon source and the second silicon source can both enable the molecular sieve crystals to have good nucleation and growth rates, so that the carrier has good morphological characteristics, which is conducive to the stable catalytic activity of the catalyst.
  • step 1) the mass ratio of the first silicon source and the second silicon source is (0.2 ⁇ 2):1.
  • step 1) can be performed at 30 to 80°C.
  • the system of step 1) also includes a first structure directing agent, and the first structure directing agent is a cationic surfactant.
  • the cationic surfactant is selected from long-chain alkane quaternary ammonium salt type cationic surfactants, specifically selected from dodecyltrimethylammonium chloride, cetyltrimethylammonium bromide or octadecyltrimonium bromide. At least one of trimethylammonium bromide. While cationic surfactants act as structure directing agents, they also limit the charge density of the molecular sieve skeleton, which is beneficial to the catalyst to achieve a high silicon-to-aluminum ratio.
  • the system containing the first silicon source and the aluminum source also includes an alkaline medium.
  • the alkaline medium is selected from concentrated ammonia water or sodium hydroxide solution.
  • the pH value of the system is controlled by the alkaline medium. 9 to 12, providing suitable alkaline conditions for the synthesis of catalysts.
  • step 1) includes adding the first silicon source and aluminum source to the alkaline system containing the first structure directing agent, stirring at 30 to 80°C for 0.1 to 0.5 hours, and then adding The platinum group metal precursor is continued to be stirred for 0.1 to 0.5 hours, and then the second silicon source is added and stirred for 0.5 to 3.0 hours. After filtering, drying, and roasting in sequence, a platinum group metal-coated silicon-aluminum precursor with a mesoporous structure is obtained. .
  • the mesoporous structure can provide a suitable pore structure for the catalytic reforming reaction, which is beneficial to the aromatization reaction of alkane.
  • the temperature and time of the steam-assisted crystallization treatment will also have a significant impact on the performance of the molecular sieve. If the crystallization time is too short and the crystallization temperature is too low, the gel layer in the molecular sieve precursor cannot be completely converted into molecular sieve crystals. The existence of the layer will cause cracks on the surface of the molecular sieve and affect the stability of the catalyst; too long crystallization time and too high crystallization temperature will affect the catalytic activity of the metal active component. After research, it was found that when the temperature of the steam-assisted crystallization treatment in step 2) is 130 to 200°C and the time is 12 to 100 hours, the catalyst has excellent stability and catalytic activity.
  • steam-assisted crystallization is a process in which the liquid medium and the solid raw material to be crystallized are placed separately, and under appropriate temperature conditions, the liquid is vaporized into steam and then interacts with the solid raw material to be crystallized for crystallization.
  • the solid raw material to be crystallized in this application is the platinum group metal-coated silicon-aluminum precursor obtained in step 1), and the liquid medium is an aqueous solution containing a second structure directing agent.
  • the second structure directing agent is selected from at least one of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrapropylammonium bromide and tetrapropylammonium chloride.
  • the mass concentration of the second structure directing agent in the aqueous solution containing the second structure directing agent can be controlled to be 5% to 40%.
  • step 2) includes placing the catalyst precursor in the upper part of the stainless steel high-pressure reactor lined with a bracket, adding the aqueous solution containing the second structure directing agent to the lower part of the stainless steel high-pressure reactor, and Crystallize at a temperature of 130 to 200°C for 12 to 100 hours, and then cool the reaction kettle to room temperature.
  • the solid product obtained is washed with water, dried, and roasted to prepare the catalytic reforming catalyst of the present application.
  • the second aspect of this application provides a catalytic reforming catalyst, which is obtained by the preparation method provided in the first aspect of this application.
  • the metal active components in the catalyst are not easy to agglomerate and sinter when roasted at high temperatures, and have good stability, and the catalyst contains
  • the molecular sieve carrier has the characteristics of small particle size and excellent diffusion performance, and then shows excellent aromatic selectivity, aromatic yield and carbon deposition resistance in the catalytic reforming reaction.
  • the carrier of the catalytic reforming catalyst of the present application is nanoscale hydrogen-type ZSM-5 molecular sieve
  • the silicon-aluminum molar ratio is (20 ⁇ 50):1
  • the average particle size of the molecular sieve is 50 ⁇ 500nm
  • the load of the active component of the catalyst is The amount is 0.05wt% ⁇ 5wt%.
  • the silicon-aluminum molar ratio, molecular sieve particle size, and active component loading of the catalytic reforming catalyst are within the above ranges, the catalyst has better aromatic hydrocarbon selectivity, aromatic hydrocarbon yield, and carbon deposition resistance.
  • the control of the above parameters can be achieved by controlling the content of each component, mixing temperature, crystallization temperature, crystallization time and other factors during the preparation process of the catalytic reforming catalyst.
  • This application also provides a catalytic reforming reaction of naphtha, which uses the catalytic reforming catalyst obtained by the preparation method provided in the first aspect of the application or the catalytic reforming catalyst provided by the second aspect of the application to perform the reaction on naphtha. Catalytic reforming reaction.
  • the molar ratio of silicon to aluminum of Cat.1 is 20:1
  • the average particle size of the molecular sieve is 130nm
  • the loading of metal Pt is 0.1wt%.
  • the molar ratio of silicon to aluminum of Cat.2 is 30:1
  • the average particle size of the molecular sieve is 300nm
  • the loading of metal Pt is 0.1wt%.
  • the molar ratio of silicon to aluminum of Cat.3 is 40:1
  • the average particle size of the molecular sieve is 200nm
  • the loading of metal Pt is 0.5%.
  • the molar ratio of silicon to aluminum of Cat.4 is 50:1
  • the average particle size of the molecular sieve is 95nm
  • the loading of metal Pt is 1.0%.
  • the preparation method of the catalytic reforming catalyst of this comparative example includes the following steps:
  • the molar ratio of silicon to aluminum of Cat.5 is 50:1
  • the average particle size of the molecular sieve is 100nm
  • the loading of metal Pt is 1.0%.
  • the preparation method of the catalytic reforming catalyst of this comparative example includes the following steps:
  • the obtained solid product was centrifuged, washed, and then dried at 110°C overnight, and finally calcined at 550°C for 6 hours to remove the template agent to obtain a sodium-type ZSM-5 molecular sieve precursor.
  • the sodium-type molecular sieve precursor was dissolved in 1 mol/L NH 4 NO 3 solution, conduct ion exchange three times at 80°C for 2 hours each time, and then dry and roast to obtain a hydrogen-type ZSM-5 molecular sieve precursor.
  • step 2 Add 10% of the mass of the ZSM-5 molecular sieve precursor obtained in step 1 to a chloroplatinic acid solution with a concentration of 0.2mg/mL, continue stirring at 50°C for 0.1h, and then add 5g of orthosilicic acid to the mixed system After the ethyl ester was continuously stirred for 1.0 h, the mixed system was filtered, washed with water, dried at 80°C for 10h, and calcined at 550°C for 4h before the template agent was removed to prepare catalytic reforming catalyst Cat.6.
  • the molar ratio of silicon to aluminum of Cat.6 is 50:1
  • the average particle size of the molecular sieve is 1.5 ⁇ m
  • the loading of metal Pt is 1.0%.
  • Figure 1 is the XRD comparison chart of Cat.1 ⁇ Cat.4. As can be seen from Figure 1, the XRD patterns of Cat.1 ⁇ Cat.4 are consistent with the characteristic patterns of the standard MFI topology. The diffraction peak intensity is high and the crystallization is good. There is no obvious diffraction peak of platinum metal oxide in the pattern. , indicating that the active metal platinum is evenly dispersed in the molecular sieve carrier.
  • FIG. 1 is the SEM image of Cat.1
  • Figure 3 is the SEM image of Cat.2
  • Figure 4 is the SEM image of Cat.3
  • Figure 5 is the SEM image of Cat.4.
  • the grain sizes of Cat.1 to Cat.4 are small and they are all nanoscale molecular sieves.
  • the evaluation method is: perform tableting, granulation and screening of the catalyst, weigh 1.0g of the catalyst with a particle size of 20 to 40 mesh, and fill it in The catalytic reforming reaction of naphtha is carried out in a fixed bed reactor.
  • the catalytic reforming reaction conditions are: reduction activation of the catalyst in a hydrogen atmosphere, where the hydrogen flow rate is 50 mL/min, the reduction temperature is 400°C, the reduction time is 2.0 h, and the pressure is normal pressure.
  • the activated catalyst was subjected to a catalytic reforming reaction under the conditions of a reaction temperature of 490°C, a reaction pressure of 0.7MPa, a naphtha mass space velocity of 2.0h -1 , and a hydrogen-to-oil molecular ratio of 3:1. Calculate respectively.
  • the calculation method of aromatic hydrocarbon selectivity is: the mass of aromatic hydrocarbons in the product/the total mass of the product; the calculation method of the aromatic hydrocarbon yield is the mass of aromatic hydrocarbons in the product/the mass of naphtha; the calculation method of the carbon deposition amount is: the carbon deposition amount is The calculation is based on fresh catalyst (fresh catalyst refers to the mass of the catalyst before catalytic reaction).
  • fresh catalyst refers to the mass of the catalyst before catalytic reaction.
  • the amount of carbon deposit W 48h - W fresh , where W 48h and W fresh are the mass of the catalyst reaction for 48 hours and the mass of fresh catalyst respectively. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本申请提供一种催化重整催化剂的制备方法及催化重整催化剂。本申请的催化重整催化剂的制备方法包括以下步骤:1)向包含有第一硅源和铝源的体系中加入铂族金属前驱体混合,随后再加入第二硅源,得到包裹铂族金属的硅铝前驱体;所述第一硅源包括含有氨丙基的硅烷化合物;2)对包裹铂族金属的硅铝前驱体进行蒸汽辅助晶化处理,得到催化重整催化剂。本申请的制备方法制得的催化重整催化剂具有优异的稳定性和较小的分子筛晶粒尺寸,用于催化重整反应时具有优异的芳烃选择性、芳烃收率及抗积碳性。

Description

一种催化重整催化剂的制备方法及催化重整催化剂
本申请要求于2022年03月18日提交中国专利局、申请号为202210269924.6、申请名称为“一种催化重整催化剂的制备方法及催化重整催化剂”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于工业催化领域,涉及一种催化重整催化剂的制备方法及催化重整催化剂。
背景技术
催化重整是一种主要以汽油为原料生产高辛烷值汽油及轻芳烃的原油二次加工过程。催化重整汽油的芳烃含量较高,且烯烃和硫含量很少,辛烷值在90以上,是优质的汽油调和组分。随着环保法规、条例的日趋严格以及全球对芳烃需求量的增加,催化重整在石油化工中发挥越来越重要的作用。
催化重整催化剂是催化重整技术的关键。催化重整催化剂是一种双功能催化剂,由金属活性组分提供加氢功能,载体提供酸性功能。传统的催化重整催化剂,金属活性组分为铂族金属,载体为氧化铝。这类催化剂对环烷烃具有良好的异构化和芳构化性能,然而对链烷烃的芳构化选择性较差。此外,传统的催化重整催化剂在使用过程中催化剂上的氯会不断流失,为保持水氯平衡,生产过程中需要不断注氯。注氯会增加工艺操作的复杂性,同时游离氯离子还会加速设备腐蚀,污染催化重整产品。
相比于传统的催化重整催化剂,以分子筛为载体的催化重整催化剂具有在使用过程中氯流失量少,反应活性和链烷烃芳构化选择性较高的优点。然而以分子筛为载体的催化重整催化剂在高温焙烧过程中金属活性组分易烧结团聚,导致催化剂的稳定性低,在催化重整反应中的芳烃选择性、芳烃收率、抗积碳性仍不理想。
发明内容
本申请提供一种催化重整催化剂的制备方法,通过该制备方法制得的负载有铂族金属的ZSM-5分子筛催化剂,具有热稳定性高、分子筛粒径小、扩散性能优异的优点,在催化重整反应中发挥出优异的芳烃选择性、芳烃收率和抗积碳性能。
本申请还提供一种催化重整催化剂,采用上述制备方法制得,该催化剂具有优异的芳烃选择性、芳烃收率和抗积碳性能。
本申请第一方面提供一种催化重整催化剂的制备方法,包括以下步骤:
1)向包含有第一硅源和铝源的体系中加入铂族金属前驱体混合,随后再加入第二硅源,得到包裹铂族金属的硅铝前驱体;
所述第一硅源包括含有氨丙基的硅烷化合物;
2)对所述包裹铂族金属的硅铝前驱体进行蒸汽辅助晶化处理,得到所述催化重整催化剂。
如上所述的制备方法,其中,所述第一硅源为第一硅烷化合物与第二硅烷化合物的混合物,所述第一硅烷化合物选自氨丙基三乙氧基硅烷和氨丙基三甲氧基硅烷中的至少一种,所述第二硅烷化合物选自正硅酸甲酯、正硅酸乙酯、硅溶胶、硅酸钠中的至少一种;
如上所述的制备方法,其中,所述第二硅源选自正硅酸甲酯、正硅酸乙酯、硅溶胶、硅酸钠中的至少一种。
如上所述的制备方法,其中,步骤1)中,所述第一硅源与所述第二硅源的质量比为(0.2~2):1。
如上所述的制备方法,其中,步骤1)中,包含有第一硅源和铝源的体系的pH值为9~12。
如上所述的制备方法,其中,步骤1)中,所述混合在30~80℃下进行。
如上所述的制备方法,其中,步骤2)中,所述蒸汽辅助晶化处理的温度为130~200℃,时间为12~100h。
如上所述的制备方法,其中,步骤1)中,所述体系中还包括第一结构导向剂,所述第一结构导向剂选自阳离子表面活性剂。
如上所述的制备方法,其中,所述阳离子表面活性剂选自十二烷基三甲基氯化铵、十六烷基三甲基溴化铵或十八烷基三甲基溴化铵中的至少一种。
如上所述的制备方法,其中,步骤2)中,所述蒸汽辅助晶化处理在含 有第二结构导向剂的水溶液蒸汽下进行;
所述第二结构导向剂选自四乙基氢氧化铵、四丙基氢氧化铵、四丙基溴化铵和四丙基氯化铵中的至少一种。
如上所述的制备方法,其中,所述含有第二结构导向剂的水溶液中第二结构导向剂的质量浓度为5%~40%。
本申请第二方面提供一种催化重整催化剂,采用本申请第一方面提供的制备方法制备得到。
如上所述的催化重整催化剂,其中,所述催化重整催化剂的载体为纳米级氢型ZSM-5分子筛;
所述分子筛的硅铝摩尔比为(20~50):1;
所述分子筛的平均粒径为50~500nm;
所述催化重整催化剂的活性组分负载量为0.05wt%~5wt%。
本申请的催化重整催化剂的制备方法,通过将铂族金属前驱体至少部分包裹于分子筛前驱体内,可使催化剂在高温焙烧过程中金属活性组分不易烧结团聚,进而使催化剂具有良好的热稳定性,且通过蒸汽辅助晶化处理可使分子筛载体具有更小的粒径,以提高催化剂的扩散性能。通过以上两方面因素可实现催化剂在催化重整反应中芳烃选择性、芳烃收率、抗积碳性能的提升。
本申请的催化重整催化剂,由于通过上述制备方法制备得到,因此在催化重整反应中具有优异的芳烃选择性、芳烃收率和抗积碳性能。
附图说明
图1为Cat.1~Cat.4的XRD对比图;
图2为Cat.1的SEM图;
图3为Cat.2的SEM图;
图4为Cat.3的SEM图;
图5为Cat.4的SEM图。
具体实施方式
下文将结合具体实施例对本申请做更进一步的详细说明。应当理解,下 列实施例仅为示例性地说明和解释本申请,而不应被解释为对本申请保护范围的限制。凡基于本申请上述内容所实现的技术均涵盖在本申请旨在保护的范围内。
本申请第一方面提供一种催化重整催化剂的制备方法,包括以下步骤:
1)向包含有第一硅源和铝源的体系中加入铂族金属前驱体混合,随后再加入第二硅源,得到包裹铂族金属的硅铝前驱体;
所述第一硅源包括含有氨丙基的硅烷化合物;
2)对包裹铂族金属的硅铝前驱体进行蒸汽辅助晶化处理,得到催化重整催化剂。
通过上述制备方法制得的催化重整催化剂为负载有铂族金属的氢型ZSM-5分子筛催化剂。
步骤1)中,第一硅源、铝源以及第二硅源均为制备ZSM-5分子筛的原料,铂族金属前驱体是指铂族金属与ZSM-5分子筛作用前的形态,通常为铂族金属的氯酸盐,例如可以是铂酸盐。
向包含有第一硅源和铝源的体系中加入铂族金属前驱体后,由于第一硅源中包括含有氨丙基的硅烷化合物,氨丙基与铂族金属前驱体之间有良好的吸附作用,可使铂族金属前驱体附着于由第一硅源和铝源所形成的分子筛前驱体的表面,接着向体系中加入第二硅源,第二硅源继续附着在铂族金属前驱体的表面,进而使得铂族金属前驱体紧密地包裹于分子筛前驱体内,从而使催化剂在高温焙烧中金属活性组分不易烧结团聚,具有良好的热稳定性。
在加入第二硅源混合后,对混合后的体系进行进一步的过滤、干燥和焙烧,即可得到包裹铂族金属的硅铝前驱体。
与传统的水热晶化法相比,蒸汽辅助晶化是将液态介质与固态待晶化的原料分开放置,在适宜温度条件下,利用精确配比的液体气化为蒸汽后与固态待晶化的原料相互作用,经过一定时间的晶化,最终形成相应的分子筛产品。步骤2)中,对催化剂前驱体进行蒸汽辅助晶化处理,可使ZSM-5分子筛前驱体完成由无定形向MFI晶型转化,蒸汽辅助晶化更有利于形成具有较小尺寸的分子筛晶粒,从而使催化剂具有优异的扩散性能。
在经过蒸汽辅助晶化处理后,对晶化后的体系进行洗涤、干燥、焙烧即 可得到催化重整催化剂。
本申请所提供的催化重整催化剂的制备方法,通过将铂族金属前驱体包裹于ZSM-5分子筛前驱体内,可使铂族金属活性组分在焙烧过程中不易烧结团聚,使催化剂具有优异的热稳定性,且通过蒸汽辅助晶化处理可获得纳米级尺寸的分子筛晶粒,使催化剂具有优异的扩散性能。通过以上两方面因素的综合作用,实现了催化剂在催化重整反应中芳烃选择性、芳烃收率及抗积碳性能的提升。
本申请对制备过程中所使用的铝源不作特殊限定,均可以使用本领域常用的铝源,包括但不局限于异丙醇铝、硝酸铝、氯化铝以及拟薄水铝石中的至少一种。
进一步的,本申请的第一硅源为第一硅烷化合物与第二硅烷化合物的混合物,其中,第一硅烷化合物选自氨丙基三乙氧基硅烷和氨丙基三甲氧基硅烷中的至少一种,第二硅烷化合物选自正硅酸甲酯、正硅酸乙酯、硅溶胶、硅酸钠中的至少一种;
进一步的,本申请的第二硅源选自正硅酸甲酯、正硅酸乙酯、硅溶胶、硅酸钠中的至少一种。
第一硅源和第二硅源的选择均能使分子筛晶体具有良好的成核和生长速率,从而使载体具有良好的形貌特征,有利于催化剂发挥稳定的催化活性。
进一步的,步骤1)中,第一硅源与第二硅源的质量比为(0.2~2):1。
进一步的,步骤1)的混合可在30~80℃下进行。
步骤1)的体系中还包括第一结构导向剂,第一结构导向剂为阳离子表面活性剂。进一步的,阳离子表面活性剂选自长链烷烃季铵盐型阳离子表面活性剂,具体选自十二烷基三甲基氯化铵、十六烷基三甲基溴化铵或十八烷基三甲基溴化铵中的至少一种。阳离子表面活性剂在充当结构导向剂的同时,还对分子筛骨架的电荷密度起到了限制作用,进而有利于催化剂实现高的硅铝比。
在一种具体的实施方式中,包含有第一硅源和铝源的体系中还包括碱性介质,碱性介质选自浓氨水或者氢氧化钠溶液,通过碱性介质控制体系的pH值为9~12,为催化剂的合成提供合适的碱性条件。
在一种具体的实施方式中,步骤1)包括,在包含有第一结构导向剂的 碱性体系中,加入第一硅源和铝源,在30~80℃下搅拌0.1~0.5h后加入铂族金属前驱体继续搅拌0.1~0.5h,然后加入第二硅源后继续搅拌0.5~3.0h,依次经过滤、干燥、焙烧后得到具有介孔结构的包裹有铂族金属的硅铝前驱体。
其中,介孔结构可为催化重整反应提供合适的孔道结构,有利于烷烃芳构化反应的进行。
蒸汽辅助晶化处理的温度和时间也会对分子筛的性能有显著影响,晶化时间过短以及晶化温度过低,会导致分子筛前驱体中的凝胶层不能完全转化为分子筛晶体,凝胶层的存在会使分子筛表面出现裂痕,影响催化剂的稳定性;晶化时间过长以及晶化温度过高,则会影响金属活性组分的催化活性。经过研究后发现,当步骤2)中的蒸汽辅助晶化处理的温度为130~200℃,时间为12~100h时,催化剂具有优异的稳定性和催化活性。
如前所述,蒸汽辅助晶化是将液态介质与固态待晶化原料分开放置,在适宜温度条件下,使液体气化为蒸汽后与固态待晶化原料相互作用进行晶化的过程。本申请中的固态待晶化原料为步骤1)得到的包裹铂族金属的硅铝前驱体,液态介质为含有第二结构导向剂的水溶液。其中,第二结构导向剂选自四乙基氢氧化铵、四丙基氢氧化铵、四丙基溴化铵和四丙基氯化铵中的至少一种。
为使含有第二结构导向剂的水溶液兼具良好的结构导向性和蒸汽化性能,可控制含有第二结构导向剂的水溶液中第二结构导向剂的质量浓度为5%~40%。
在一种具体的实施方式中,步骤2)包括,将催化剂前驱体置于内衬支架的不锈钢高压反应釜的上部,将含有第二结构导向剂的水溶液加入到不锈钢高压反应釜的下部,在温度为130~200℃下晶化12~100h,然后将反应釜冷却至室温,所得固体产物经水洗、干燥、焙烧后制得本申请的催化重整催化剂。
本申请第二方面提供一种催化重整催化剂,采用本申请第一方面提供的制备方法得到,该催化剂中的金属活性组分在高温焙烧时不易团聚烧结,具有良好的稳定性,且催化剂中的分子筛载体具有粒径小、扩散性能优异的特点,进而在催化重整反应中表现出优异的芳烃选择性、芳烃收率和抗积碳性。
进一步的,本申请的催化重整催化剂的载体为纳米级氢型ZSM-5分子筛,硅铝摩尔比为(20~50):1,分子筛平均粒径为50~500nm,催化剂活性组分的负载量为0.05wt%~5wt%。当催化重整催化剂的硅铝摩尔比、分子筛粒径、活性组分的负载量在上述范围内时,催化剂具有更为优异的芳烃选择性、芳烃收率和抗积碳性。具体可通过对催化重整催化剂制备过程中各组分含量、混合温度、晶化温度、晶化时间等因素的控制实现以上参数的控制。
本申请还提供一种石脑油的催化重整反应,该反应采用本申请第一方面提供的制备方法得到的催化重整催化剂或本申请第二方面提供的催化重整催化剂对石脑油进行催化重整反应。
进一步的,当上述催化重整反应在温度为490℃、压力为0.7MPa、石脑油的质量空速为2.0h -1、氢油分子比为3:1的条件下进行时,能够获得更为优异的芳烃选择性、芳烃收率和抗积碳性。
下面结合具体的实施例对本申请提供的催化重整催化剂的制备方法进行进一步详细的说明。
需要说明的是,在下述实施例中,如无特殊说明,使用的原料均可通过商购或常规方法制备得到,未注明具体条件的实验方法均为本领域所熟知的常规方法和常规条件。
实施例1
本实施例的催化重整催化剂的制备方法包括以下步骤:
1、将0.20g十六烷基三甲基溴化铵加入60mL去离子水和乙醇的混合溶液(去离子水和乙醇的体积比为1:1)中,在50℃下搅拌溶解,再向混合溶液中加入氨水调节pH值为9,继续加入1.0g正硅酸乙酯和0.2g氨丙基三乙氧基硅烷,再按照硅铝比为20:1计算出加入异丙醇铝的量为0.6g,将异丙醇铝加入混合体系中继续搅拌0.1h,得到ZSM-5分子筛前驱体溶液。
2、按照ZSM-5分子筛前驱体质量的0.1%加入浓度为0.2mg/mL的氯铂酸溶液,在50℃下继续搅拌0.1h,然后向混合体系中加入0.5g正硅酸乙酯继续搅拌0.5h后将混合体系经过滤、水洗、在80℃下干燥10h、在550℃下焙 烧6h,得到具有介孔结构的包裹铂族金属的硅铝前驱体。
3、将质量浓度为5%的四丙基氢氧化铵水溶液置于内衬支架的不锈钢高压反应釜的下部,在支架上放置步骤2制得的包裹铂族金属的硅铝前驱体,在温度为130℃下晶化100h后将反应釜冷却至室温,将所得固体产物经水洗后置于100℃的干燥箱中烘干,再置于马弗炉中在空气气氛下于500℃下焙烧4h,制得催化重整催化剂Cat.1。
其中,Cat.1的硅铝摩尔比为20:1,分子筛平均粒径为130nm,金属Pt的负载量为0.1wt%。
实施例2
本实施例的催化重整催化剂的制备方法包括以下步骤:
1、将0.20g十六烷基三甲基溴化铵加入60mL去离子水和乙醇的混合溶液(去离子水和乙醇的体积比为1:1)中,在50℃下搅拌溶解,再向混合溶液中加入氨水调节pH值为10,继续加入1.0g正硅酸乙酯和0.1g氨丙基三乙氧基硅烷,再按照硅铝比为30:1计算出加入异丙醇铝的量为0.4g,将异丙醇铝加入混合体系中继续搅拌0.1h,得到ZSM-5前驱体溶液。
2、按照ZSM-5分子筛前驱体质量的1%加入浓度为0.2mg/mL的氯铂酸溶液,在50℃下继续搅拌0.1h,然后向混合体系中加入1g正硅酸乙酯继续搅拌1.0h后将混合体系经过滤、水洗、在80℃下干燥10h、在550℃下焙烧6h,得到具有介孔结构的包裹铂族金属的硅铝前驱体。
3、将质量浓度为20%的四丙基氢氧化铵水溶液置于内衬支架的不锈钢高压反应釜的下部,在支架上放置步骤2制得的包裹铂族金属的硅铝前驱体,在温度为150℃下晶化72h后将反应釜冷却至室温,将所得固体产物经水洗后置于100℃的干燥箱中烘干,再置于马弗炉中在空气气氛下于500℃下焙烧4h,制得催化重整催化剂Cat.2。
其中,Cat.2的硅铝摩尔比为30:1,分子筛平均粒径为300nm,金属Pt的负载量为0.1wt%。
实施例3
本实施例的催化重整催化剂的制备方法包括以下步骤:
1、将0.40g十八烷基三甲基溴化铵加入60mL去离子水和乙醇的混合溶液(去离子水和乙醇的体积比为1:1)中,在50℃下搅拌溶解,再向混合溶液中加入氨水调节pH值为11,继续加入1.0g正硅酸乙酯和0.05g氨丙基三乙氧基硅烷,再按照硅铝比为40:1计算出加入异丙醇铝的量为0.3g,将异丙醇铝加入混合体系中继续搅拌0.1h,得到ZSM-5分子筛。
2、按照ZSM-5分子筛前驱体质量的5%加入浓度为0.2mg/mL的氯铂酸溶液,在50℃下继续搅拌0.1h,然后向混合体系中加入5g正硅酸乙酯继续搅拌1.0h后将混合体系经过滤、水洗、在80℃下干燥10h、在550℃下焙烧4h,得到具有介孔结构的包裹铂族金属的硅铝前驱体。
3、将质量浓度为40%的四丙基氢氧化铵水溶液置于内衬支架的不锈钢高压反应釜的下部,在支架上放置步骤2制得的包裹铂族金属的硅铝前驱体,在温度为200℃下晶化12h后将反应釜冷却至室温,将所得固体产物经水洗后置于100℃的干燥箱中烘干,再置于马弗炉中在空气气氛下于500℃下焙烧4h,制得催化重整催化剂Cat.3。
其中,Cat.3的硅铝摩尔比为40:1,分子筛平均粒径为200nm,金属Pt的负载量为0.5%。
实施例4
本实施例的催化重整催化剂的制备方法包括以下步骤:
1、将0.40g十八烷基三甲基溴化铵加入60mL去离子水和乙醇的混合溶液(去离子水和乙醇的体积比为1:1)中,在50℃下搅拌溶解,再向混合溶液中加入氨水调节pH值为12,继续加入1.0g正硅酸乙酯和0.05g氨丙基三乙氧基硅烷,再按照硅铝比为50:1计算出加入异丙醇铝的量为0.24g,将异丙醇铝加入混合体系中继续搅拌0.1h,得到ZSM-5分子筛前驱体溶液。
2、按照ZSM-5分子筛前驱体质量的10%加入浓度为0.2mg/mL的氯铂酸溶液,在50℃下继续搅拌0.1h,然后向混合体系中加入5g正硅酸乙酯继续搅拌1.0h后将混合体系经过滤、水洗、在80℃下干燥10h、在550℃下焙烧4h后除去模板剂,得到具有介孔结构的包裹铂族金属的硅铝前驱体。
3、将质量浓度为40%的四丙基氢氧化铵水溶液置于内衬支架的不锈钢高压反应釜的下部,在支架上放置步骤2制得的催化剂前驱体,在温度为200℃ 下晶化12h后将反应釜冷却至室温,将所得固体产物经水洗后置于100℃的干燥箱中烘干,再置于马弗炉中在空气气氛下于500℃下焙烧4h,制得催化重整催化剂Cat.4。
其中,Cat.4的硅铝摩尔比为50:1,分子筛平均粒径为95nm,金属Pt的负载量为1.0%。
对比例1
本对比例的催化重整催化剂的制备方法包括以下步骤:
1、将0.40g十八烷基三甲基溴化铵加入60mL去离子水和乙醇的混合溶液(去离子水和乙醇的体积比为1:1)中,在50℃下搅拌溶解,再向混合溶液中加入氨水调节pH值为12,继续加入1.0g正硅酸乙酯,再按照硅铝比为50:1计算出加入异丙醇铝的量为0.25g,将异丙醇铝加入混合体系中继续搅拌0.1h,得到ZSM-5分子筛前驱体溶液。
2、按照ZSM-5分子筛前驱体质量的10%加入浓度为0.2mg/mL的氯铂酸溶液,在50℃下继续搅拌0.1h,然后向混合体系中加入5g正硅酸乙酯继续搅拌1.0h后将混合体系经过滤、水洗、在80℃下干燥10h、在550℃下焙烧4h后除去模板剂,得到具有介孔结构的包裹有铂族金属的硅铝前驱体。
3、将质量浓度为40%的四丙基氢氧化铵水溶液置于内衬支架的不锈钢高压反应釜的下部,在支架上放置步骤2制得的包裹有铂族金属的硅铝前驱体,在温度为200℃下晶化12h后将反应釜冷却至室温,将所得固体产物经水洗后置于100℃的干燥箱中烘干,再置于马弗炉中在空气气氛下于500℃下焙烧4h,制得催化重整催化剂Cat.5。
其中,Cat.5的硅铝摩尔比为50:1,分子筛平均粒径为100nm,金属Pt的负载量为1.0%。
对比例2
本对比例的催化重整催化剂的制备方法包括以下步骤:
1、采用传统水热法合成ZSM-5分子筛。首先,在室温下,向去离子水中加入12g四丙基氢氧化铵并搅拌溶解;之后,向其中加入8g正硅酸乙酯、15g水和4g氢氧化钠,继续室温搅拌24h;然后向其中加入1.0g异丙醇铝并 继续搅拌4h;最后,将凝胶转移至不锈钢合成釜中,在170℃下晶化72h。将所得固体产物离心、洗涤,然后在110℃下干燥过夜,最后在550℃焙烧6h去除模板剂,得到钠型ZSM-5分子筛前驱体,将钠型分子筛前驱体在1mol/L的NH 4NO 3溶液中,在80℃下离子交换三次,每次用时2h,然后干燥焙烧得到氢型的ZSM-5分子筛前驱体。
2、按照步骤1所得到的ZSM-5分子筛前驱体质量的10%加入浓度为0.2mg/mL的氯铂酸溶液,在50℃下继续搅拌0.1h,然后向混合体系中加入5g正硅酸乙酯继续搅拌1.0h后将混合体系经过滤、水洗、在80℃下干燥10h、在550℃下焙烧4h后除去模板剂,制得催化重整催化剂Cat.6。
其中,Cat.6的硅铝摩尔比为50:1,分子筛平均粒径为1.5μm,金属Pt的负载量为1.0%。
试验例
1、对实施例1~4制备得到的催化重整催化剂进行XRD和SEM表征。
图1为Cat.1~Cat.4的XRD对比图。从图1中可看出,Cat.1~Cat.4的XRD图谱与标准MFI拓扑结构的特征图谱一致,衍射峰强度较高,结晶良好,图谱中未见明显的铂金属氧化物的衍射峰,表明活性金属铂在分子筛载体内分散均匀。
图2为Cat.1的SEM图,图3为Cat.2的SEM图,图4为Cat.3的SEM图,图5为Cat.4的SEM图。从图2~图5可看出,Cat.1~Cat.4的晶粒尺寸较小,均为纳米级的分子筛。
2、对以上实施例和对比例制得的催化重整催化剂进行催化剂性能的评价,评价方法为:将催化剂进行压片造粒筛分,称取粒度为20~40目的催化剂1.0g,装填于固定床反应器中进行石脑油的催化重整反应。
催化重整反应条件为:在氢气气氛下对催化剂进行还原活化,其中,氢气流速为50mL/min,还原温度为400℃,还原时间为2.0h,压力为常压。将活化后的催化剂在反应温度为490℃、反应压力为0.7MPa、石脑油的质量空速为2.0h -1、氢油分子比为3:1的条件下进行催化重整反应,分别计算初始及反应48小时的的芳烃选择性、芳烃收率,以及积碳量。
其中,芳烃选择性的计算方法为:产物中芳烃质量/产物总质量;芳烃收 率的计算方法为产物中芳烃的质量/石脑油的质量;积碳量的计算方法为:积炭量以新鲜催化剂(新鲜催化剂是指未进行催化反应前催化剂的质量)为基准进行计算,积碳量=W 48h-W 新鲜,其中,W 48h和W 新鲜分别为催化剂反应48h的质量和新鲜催化剂的质量。
计算结果如表1所示。
表1
Figure PCTCN2022135852-appb-000001
通过实施例1~4与对比例1和2的对比可看出,通过本申请的制备方法制备得到的催化重整催化剂在应用于石脑油的催化重整反应中具有优异的芳烃选择性和芳烃收率以及较少的积碳量。
从表1的数据中可看出,对比例1的催化剂的芳烃收率在反应0.5h时仅有10.5%,在反应48h仅有8.6%,原因可能在于,第一硅源中未加入含氨丙基的硅烷化合物,未实现铂族金属前驱体在分子筛前驱体内的包裹,在催化剂合成过程中活性金属大量流失,导致催化效果很差;对比例2采用传统的水热合成法制备得到的催化剂的分子筛平均粒径大,导致催化剂的扩散性能差,因此对比例2的催化剂的芳烃选择性和芳烃收率相比于实施例1-4也较差,积碳量也较高。
以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种催化重整催化剂的制备方法,其中,包括以下步骤:
    1)向包含有第一硅源和铝源的体系中加入铂族金属前驱体混合,随后再加入第二硅源,得到包裹铂族金属的硅铝前驱体;
    所述第一硅源包括含有氨丙基的硅烷化合物;
    2)对所述包裹铂族金属的硅铝前驱体进行蒸汽辅助晶化处理,得到所述催化重整催化剂。
  2. 根据权利要求1所述的制备方法,其中,所述第一硅源为第一硅烷化合物与第二硅烷化合物的混合物,所述第一硅烷化合物选自氨丙基三乙氧基硅烷和氨丙基三甲氧基硅烷中的至少一种,所述第二硅烷化合物选自正硅酸甲酯、正硅酸乙酯、硅溶胶、硅酸钠中的至少一种。
  3. 根据权利要求1或2所述的制备方法,其中,所述第二硅源选自正硅酸甲酯、正硅酸乙酯、硅溶胶、硅酸钠中的至少一种。
  4. 根据权利要求1-3任一项所述的制备方法,其中,步骤1)中,所述第一硅源与所述第二硅源的质量比为(0.2~2):1。
  5. 根据权利要求1-4任一项所述的制备方法,其中,步骤1)中,所述混合在30~80℃下进行。
  6. 根据权利要求1-5任一项所述的制备方法,其中,步骤1)中,包含有第一硅源和铝源的体系的pH值为9~12。
  7. 根据权利要求1-6任一项所述的制备方法,其中,步骤2)中,所述蒸汽辅助晶化处理的温度为130~200℃,时间为12~100h。
  8. 根据权利要求1-7任一项所述的制备方法,其中,步骤1)中,所述体系中还包括第一结构导向剂,所述第一结构导向剂选自阳离子表面活性剂。
  9. 根据权利要求8所述的制备方法,其中,所述阳离子表面活性剂选自十二烷基三甲基氯化铵、十六烷基三甲基溴化铵或十八烷基三甲基溴化铵中的至少一种。
  10. 根据权利要求1-9任一项所述的制备方法,其中,步骤2)中,所述蒸汽辅助晶化处理在含有第二结构导向剂的水溶液蒸汽下进行;
    所述第二结构导向剂选自四乙基氢氧化铵、四丙基氢氧化铵、四丙基溴化铵和四丙基氯化铵中的至少一种。
  11. 根据权利要求10所述的制备方法,其中,所述含有第二结构导向剂的水溶液中第二结构导向剂的质量浓度为5%~40%。
  12. 一种催化重整催化剂,其中,所述催化重整催化剂根据权利要求1-11任一项所述的制备方法制备得到。
  13. 根据权利要求12所述的催化重整催化剂,其中,所述催化重整催化剂的载体为纳米级氢型ZSM-5分子筛;
    所述分子筛的硅铝摩尔比为(20~50):1;
    所述分子筛的平均粒径为50~500nm;
    所述催化重整催化剂的活性组分负载量为0.05wt%~5wt%。
PCT/CN2022/135852 2022-03-18 2022-12-01 一种催化重整催化剂的制备方法及催化重整催化剂 WO2023173811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210269924.6 2022-03-18
CN202210269924.6A CN116786156A (zh) 2022-03-18 2022-03-18 一种催化重整催化剂的制备方法及催化重整催化剂

Publications (1)

Publication Number Publication Date
WO2023173811A1 true WO2023173811A1 (zh) 2023-09-21

Family

ID=88022132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135852 WO2023173811A1 (zh) 2022-03-18 2022-12-01 一种催化重整催化剂的制备方法及催化重整催化剂

Country Status (2)

Country Link
CN (1) CN116786156A (zh)
WO (1) WO2023173811A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107144A (zh) * 2009-12-24 2011-06-29 中国石油化工股份有限公司 C8芳烃异构化催化剂的制备方法
CN108607600A (zh) * 2016-12-10 2018-10-02 中国科学院大连化学物理研究所 一种分子筛负载高分散贵金属的催化剂及其制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107144A (zh) * 2009-12-24 2011-06-29 中国石油化工股份有限公司 C8芳烃异构化催化剂的制备方法
CN108607600A (zh) * 2016-12-10 2018-10-02 中国科学院大连化学物理研究所 一种分子筛负载高分散贵金属的催化剂及其制备和应用

Also Published As

Publication number Publication date
CN116786156A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN110479353B (zh) 一种催化剂及其制备方法和应用
CN108435235B (zh) 一种介孔Zn-ZSM-5分子筛及低成本制备方法
ZA200401880B (en) A process for making rare earth metal oxide coated microporous materials
WO2014190681A1 (zh) 纳米金属/金属氧化物负载型分子筛催化剂的制备方法
CN110124729B (zh) 一种用于浆态床费托合成的包覆型催化剂及其制备方法
CN113649064B (zh) 一种沸石分子筛负载金属催化剂及其合成方法与应用
CN108404972B (zh) 一种芳构化催化剂及其制备方法和再生方法及芳构化方法
CN115624986B (zh) 一种含磷和金属的核壳型分子筛及其合成方法
CN112830499B (zh) 一种单分散ssz-32分子筛、其制备方法和应用
CN104591214A (zh) 一种小晶粒y型分子筛及其制备方法
WO2018205839A1 (zh) 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
CN104148059A (zh) 一种高分散稳定的重整催化剂及其制备方法
JP2648452B2 (ja) 珪酸金属塩触媒の製造方法
WO2018161950A1 (zh) 加氢异构脱蜡催化剂及其制备方法
CN116408089A (zh) 一种加氢催化剂及其制备方法和应用
WO2023173811A1 (zh) 一种催化重整催化剂的制备方法及催化重整催化剂
CN112138705B (zh) 高温及球磨改性sba-15分子筛材料及其制法、丙烷脱氢催化剂及其制法和应用
JPS6172619A (ja) 複合した結晶質珪酸アルミニウムの製造方法
JP4478572B2 (ja) ドープされた反応物を用いるドープされたペンタシル型ゼオライトの製造方法
CN104591210A (zh) 一种小晶粒NaY型分子筛的改性方法
CN112047358A (zh) 含锌或/和镍的多级结构zsm-5分子筛及其制备方法和应用
CN111822038B (zh) 一种加氢裂化催化剂的制备方法
CN111822039B (zh) 一种含稀土加氢裂化催化剂的制备方法
CN102441415B (zh) 烷烃临氢异构化催化剂及其制备方法和应用
CN110038619B (zh) 一种加氢裂化催化剂的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931822

Country of ref document: EP

Kind code of ref document: A1