WO2023173764A1 - 一种机械臂与灵巧手的融合***及运动控制方法 - Google Patents

一种机械臂与灵巧手的融合***及运动控制方法 Download PDF

Info

Publication number
WO2023173764A1
WO2023173764A1 PCT/CN2022/129938 CN2022129938W WO2023173764A1 WO 2023173764 A1 WO2023173764 A1 WO 2023173764A1 CN 2022129938 W CN2022129938 W CN 2022129938W WO 2023173764 A1 WO2023173764 A1 WO 2023173764A1
Authority
WO
WIPO (PCT)
Prior art keywords
dexterous hand
wrist
joint
fusion system
dexterous
Prior art date
Application number
PCT/CN2022/129938
Other languages
English (en)
French (fr)
Inventor
吕博瀚
曾思
赵守军
陈志鸿
仲悦
刘山
张俊宁
郭雅静
刘书选
杨帆
王昊
Original Assignee
北京精密机电控制设备研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京精密机电控制设备研究所 filed Critical 北京精密机电控制设备研究所
Publication of WO2023173764A1 publication Critical patent/WO2023173764A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop

Definitions

  • the invention belongs to the field of robot motion control, and relates to a fusion system and motion control method of a four-degree-of-freedom mechanical arm and a dexterous hand.
  • the popular arm-hand combination method at home and abroad is a six- or seven-degree-of-freedom robotic arm plus an end claw or a six- or twelve-degree-of-freedom dexterous hand.
  • the robotic arm and the dexterous hand are controlled independently. , and does not realize joint control, nor arm-hand fusion control.
  • the existing combination of robotic arms and claws often does not include the wrist link or uses the joints of the robotic arm to replace the function of the wrist, which is neither beautiful nor practical; there is no orthogonal dual-degree-of-freedom wrist control method in traditional technology; There is no good control method for a four-degree-of-freedom plus two-degree-of-freedom series-parallel fusion system of a four-degree-of-freedom robotic arm and a dexterous wrist; a four-degree-of-freedom robotic arm and a dexterous wrist can be approximately regarded as a six-degree-of-freedom robotic arm.
  • the three axes at the end of this arm type are not orthogonal and there is no analytical solution.
  • the technical problem solved by the present invention is to overcome the shortcomings of the existing technology and propose a fusion system and motion control method for a robotic arm and a dexterous hand.
  • a fusion system of a robotic arm and a dexterous hand including a four-degree-of-freedom robotic arm, a dexterous wrist, and a dexterous hand.
  • the dexterous wrist is installed at the end of the four-degree-of-freedom robotic arm, and the dexterous hand palm is installed on the dexterous wrist. ;
  • the dexterous wrist and the four-degree-of-freedom robotic arm are connected through electronic circuits.
  • the dexterous wrist is a two-degree-of-freedom parallel mechanism, including two motors, two push rods and two servo position controllers;
  • the two servo position controllers are the active servo position controller and the driven servo position controller.
  • the two motors include the first motor and the second motor.
  • the two push rods include the first push rod and the second push rod.
  • the active servo The position controller is used to drive the movement of the first motor, and the movement of the first motor drives the movement of the first push rod.
  • the driven servo position controller is used to drive the movement of the second motor, and the movement of the second motor drives the movement of the second push rod; The end and the end of the second push rod are connected to the palm of the dexterous hand at the same time.
  • the two motors adopt a synchronous differential control method, and the two motors drive the movement of the two push rods to realize the pitching movement and yaw rotation of the dexterous hand.
  • the dexterous hand When the two push rods move in the same direction, the dexterous hand performs pitching motion, and the pitch angle range is -70 degrees to 70 degrees; when the two push rods move in opposite directions, the dexterous hand performs yaw rotation, and the yaw angle range is -45 Degree—45 degrees.
  • a motion control method for a fusion system of a robotic arm and a dexterous hand including:
  • the four-degree-of-freedom manipulator and dexterous hand fusion system is regarded as a six-axis series manipulator. Taking the center of the four-degree-of-freedom manipulator base as the origin, the D-H method is used to establish the manipulator coordinate system, and the joints and connections of the manipulator are given. D-H parameters of the rod;
  • the forward kinematics method of the fusion system of the four-degree-of-freedom robotic arm and the dexterous hand and wrist is used , obtain the position and posture matrix of the end of the dexterous hand wrist Realize forward motion control of the fusion system;
  • R represents the rotation matrix at the end of the dexterous hand's wrist, and
  • P represents the position matrix at the end of the dexterous hand's wrist;
  • the joint angles ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , and ⁇ 6 of the fusion system are obtained, and control is obtained based on the joint angles
  • the command is sent to the servo position controller to drive the end of the dexterous wrist to reach a predetermined position and posture.
  • the position and posture of the end of the wrist of the dexterous hand when controlling the forward motion of the fusion system, the position and posture of the end of the wrist of the dexterous hand
  • si is the sine of the i-th joint angle
  • ci is the cosine of the i-th joint angle
  • i 1, 2, 3, 4, 5, 6.
  • the joint angle ⁇ 6 is numerically solved using an iterative method.
  • ⁇ 6(k+1) is the k+1 iteration result of ⁇ 6
  • ⁇ 6(k) is the k-th iteration result of ⁇ 6
  • ⁇ 6(k-1) is the k-1th iteration result of ⁇ 6
  • f( ⁇ 6(k+1) ) is the inverse kinematics formula at ⁇ 6(k+1)
  • f( ⁇ 6(k) ) is the inverse kinematics formula at ⁇ 6(k)
  • f ( ⁇ 6(k-1) ) is the inverse kinematics formula at ⁇ 6(k-1) .
  • the present invention designs an orthogonal dual-degree-of-freedom dexterous hand wrist that only occupies the space of a single joint and effectively ensures reliability through redundant dual-motor synchronous differential control.
  • the present invention uses a six-degree-of-freedom series-parallel mechanism that combines a four-degree-of-freedom robotic arm with a dexterous hand’s dual-degree-of-freedom wrist to perform integrated control of the robotic arm and the dexterous hand.
  • the four-degree-of-freedom robotic arm and the dexterous wrist both The six-degree-of-freedom arm shape composed of joints does not meet the requirement that the three axes at the end intersect at one point.
  • There is no analytical solution of inverse kinematics only a numerical solution. Therefore, a numerical solution method of inverse kinematics based on this arm shape is designed, which is suitable for all series connections. Numerical solution of robotic arm.
  • the present invention decouples the two coupling joints of the dexterous wrist and treats them as two independent mechanical arm joints, joint 5 and joint 6.
  • the complex parallel mechanism of the dexterous wrist can be realized through the control method of the present invention. It can be integrated with the robotic arm and controlled according to the control method of the six-degree-of-freedom serial robotic arm.
  • the six-degree-of-freedom series-parallel mechanism in the present invention which combines the four-degree-of-freedom robotic arm with the dexterous hand's dual-degree-of-freedom wrist, has multi-degree of freedom redundancy, which allows the robotic arm to achieve five-finger operation without having to move in a large range. The movement of a deft hand.
  • Figure 1 is a schematic diagram of partial control of the dexterous hand and wrist
  • Figure 2 shows a wrist integrated with orthogonal two degrees of freedom in a single joint space
  • Figure 3 shows the configuration of a four-degree-of-freedom robotic arm combined with a dexterous hand’s two-degree-of-freedom wrist.
  • the present invention designs a mechanical arm and dexterous hand fusion system that is both beautiful and practical, saving research and development costs and shortening the research and development cycle; at the same time, it proposes an inverse kinematics numerical solution method to achieve a Motion control of robotic arm and dexterous hand fusion system.
  • FIG. 3 A fusion system of a robotic arm and a dexterous hand is shown in Figure 3, which includes a four-degree-of-freedom robotic arm, a dexterous hand wrist (a wrist with orthogonal two-degree-of-freedom integration in single-joint space) and a dexterous hand.
  • the two-degree-of-freedom wrist of the dexterous hand is installed at the end of the four-degree-of-freedom robotic arm, and the two are connected through electronic circuits for communication and power supply.
  • the dexterity hand palm is mounted on the dexterity hand wrist.
  • a motion control method for a fusion system of a four-degree-of-freedom robotic arm and a dexterous hand and wrist including a control method for a single-joint space orthogonal two-degree-of-freedom integrated wrist, a forward kinematics method for a fusion system of a robotic arm and a dexterous hand, a robotic arm and a dexterous hand An inverse kinematics approach to fused systems of the hand.
  • the single-joint space orthogonal dual-degree-of-freedom integrated wrist of the present invention adopts synchronous differential control of dual motors m1 and m2.
  • Use dual motors to push the dual pushrods L1 and L2 to realize the pitching and yaw movements of the dexterous hand.
  • the wrist can be regarded as joint J1, joint J1
  • the pitch angle range is -70 degrees - 70 degrees; when the double push rods L1 and L2 move in reverse, the dexterous hand performs yaw rotation.
  • joint J2 the wrist can be regarded as joint J2, and the yaw angle range of joint J2 is - 45 degrees—45 degrees.
  • One of the dual motors, m1 is driven by the servo position controller A (active), and the other motor m2 is driven by the servo position controller B (slave).
  • the dual-degree-of-freedom wrist control method of the dexterous hand is shown in Figure 1.
  • the fusion system calculates the control instructions through the control law, and sends the control instructions to the servo position controller A (active) and the servo position controller B ( slave), the servo controller then combines the servo control instructions with the load transmission ratios KA and KB to obtain the drive instructions for the corresponding motor.
  • the result is fed back to the fusion system through integrator operation, thereby realizing large closed-loop control.
  • a motion control method for a four-degree-of-freedom robotic arm and a dexterous hand two-degree-of-freedom wrist fusion system The steps are as follows:
  • the fusion system of the four-degree-of-freedom robotic arm and the dexterous hand and wrist is Forward kinematics method to obtain the position and posture of the end of the wrist of the dexterous hand This achieves forward motion control of the system.
  • R represents the rotation matrix at the end of the dexterous hand's wrist
  • P represents the position matrix at the end of the dexterous hand's wrist.
  • the transformation matrices between the coordinate systems of the four-degree-of-freedom robotic arm and dexterous hand-wrist fusion system are:
  • si is the sine of the i-th joint angle
  • ci is the cosine of the i-th joint angle
  • i 1, 2, 3, 4, 5, 6.
  • si sin ⁇ i
  • ci cos ⁇ i
  • ⁇ i is the i-th joint angle.
  • the first joint angle range is -90° ⁇ 1 ⁇ 90°.
  • the second joint angle range is 0° ⁇ 2 ⁇ 90°.
  • the third joint angle range is -120° ⁇ 3 ⁇ 0°.
  • the angle range of the fourth joint is 0° ⁇ 4 ⁇ 180°.
  • the fifth joint angle range is -70° ⁇ 5 ⁇ 70°.
  • the sixth joint angle range is -45° ⁇ 6 ⁇ 45°.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 can be obtained by solving the inverse kinematics of the robot.
  • the analytical solution cannot be obtained for ⁇ 6 , so only a numerical solution can be obtained.
  • ⁇ 6(k+1) is the k+1 iteration result of ⁇ 6
  • ⁇ 6(k) is the k-th iteration result of ⁇ 6
  • ⁇ 6(k-1) is the k-1th iteration result of ⁇ 6
  • f( ⁇ 6(k+1) ) is the inverse kinematics formula at ⁇ 6(k+1)
  • f( ⁇ 6(k) ) is the inverse kinematics formula at ⁇ 6(k)
  • f ( ⁇ 6(k-1) ) is the inverse kinematics formula at ⁇ 6(k-1) .
  • the invention uses a six-degree-of-freedom series-parallel mechanism that combines a four-degree-of-freedom mechanical arm with a dexterous hand's two-degree-of-freedom wrist to perform fusion control of the mechanical arm and the dexterous hand.
  • the six-degree-of-freedom arm shape does not meet the requirement that the three axes at the end intersect at one point.
  • There is no analytical solution of inverse kinematics only a numerical solution. Therefore, a numerical solution method of inverse kinematics based on this arm shape is designed, which is suitable for all serial manipulator values.
  • Solve Solve Solve.
  • the six-degree-of-freedom series-parallel mechanism in the present invention which combines the four-degree-of-freedom mechanical arm with the two-degree-of-freedom wrist of the dexterous hand, has multi-degree of freedom redundancy, so that the mechanical arm can realize the five-finger dexterous hand without having to move in a large range. Turn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

提供了一种机械臂与灵巧手的融合***及其控制方法。其中,融合***包括一条四自由度机械臂、安装在四自由度机械臂的末端的一个灵巧手手腕、和安装在灵巧手手腕上的一个灵巧手,灵巧手手腕为单关节空间正交双自由度手腕。运动控制方法中,将四自由度机械臂与灵巧手的融合***看作一个六轴串联机械臂,根据关节角度可以通过正运动学方法求得灵巧手手腕末端的位置姿态;根据灵巧手手腕末端的位置姿态通过逆运动学数值求解方法求得关节角度,进而获得控制指令并将其发送给伺服位置控制器,以驱动灵巧手手腕末端达到预定的位置姿态。采用机械臂与灵巧手手腕相结合的六自由度串并联机构,具有多自由度冗余,这样机械臂不用大范围运动即可实现五指灵巧手的转动。

Description

一种机械臂与灵巧手的融合***及运动控制方法
本申请要求于2022年3月14日提交中国专利局、申请号为202210248880.9、发明名称为“一种机械臂与灵巧手的融合***及运动控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于机器人运动控制领域,涉及一种四自由度机械臂与灵巧手的融合***及运动控制方法。
背景技术
作为机器人与环境相互作用的执行部件,大抓握力多自由度全驱动仿人灵巧手对机器人智能化水平的提高具有非常重要的作用。单纯有了仿人灵巧手,仍然不能独立的完成精细操作任务,而需要机械臂作为灵巧手的载体,因此机械臂与灵巧手的融合***及运动控制方法是实现机器人智能化和灵巧操作的关键技术。
国内大抓握力多自由度全驱动仿人灵巧手的研制水平尚处于起步阶段,现有的产品多为单自由度的手爪或六自由度、十二自由度的欠驱动的灵巧手,并不能完全模仿人手进行精细操作。
目前国内外流行的臂手结合的方式是六、七自由度机械臂加末端手爪或者六自由度、十二自由度灵巧手,在这种结合方式下,机械臂与灵巧手都是单独控制,并没有实现联合控制,也没有臂手融合控制。
目前现有的机械臂与手爪的结合中往往没有手腕这个环节或者采用机械臂的关节来代替手腕的功能,既不美观也不实用;传统技术中没有正交双自由度手腕的控制方法;对于四自由度机械臂与灵巧手手腕这种四自由度加双自由度串并联融合***并没有很好的控制方法;四自由度机械臂与灵巧手手腕可以近似看作六自由度机械臂,然而这种臂型末端三轴不正交,不存在解析解。
如何提供一种四自由度机械臂与灵巧手手腕的融合***及运动控制方法是本领域亟待解决的技术问题。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提出一种机械臂与灵巧手的融合***及运动控制方法。
本发明解决技术的方案是:
一种机械臂与灵巧手的融合***,包括一条四自由度机械臂、一个灵巧手手腕和一个灵巧手,灵巧手手腕安装在四自由度机械臂的末端,灵巧手手掌安装在灵巧手手腕上;灵巧手手腕和四自由度机械臂通过电子线路连接。
优选的,灵巧手手腕是一个两自由度并联机构,包括两台电机、两根推杆和两台伺服位置控制器;
两台伺服位置控制器分别为主动伺服位置控制器和从动伺服位置控制器,两台电机包括第一电机和第二电机,两根推杆包括第一推杆和第二推杆,主动伺服位置控制器用于驱动第一电机运动,第一电机运动带动第一推杆运动,从动伺服位置控制器用于驱动第二电机运动,第二电机运动带动第二推杆运动;第一推杆的末端和第二推杆的末端同时与灵巧手手掌连接。
优选的,两台电机采用同步差动控制方式,两台电机驱动两根推杆运动,实现灵巧手的俯仰运动和偏航转动。
当两根推杆同向运动时灵巧手进行俯仰运动,俯仰角度范围为-70度—70度;当两根推杆反向运动运动时灵巧手进行偏航转动,偏航角度范围为-45度—45度。
一种机械臂与灵巧手的融合***的运动控制方法,包括:
将四自由度机械臂与灵巧手融合***看作一个六轴串联机械臂,以四自由度机械臂基座中心为原点,使用D-H方法建立机械臂坐标系,并给出机械臂各关节及连杆的D-H参数;
根据四自由度机械臂的关节角度θ 1、θ 2、θ 3、θ 4和灵巧手手腕的关节角度θ 5、 θ 6,通过四自由度机械臂与灵巧手手腕融合***的正运动学方法,求得灵巧手手腕末端的位置姿态矩阵
Figure PCTCN2022129938-appb-000001
实现对融合***正向运动控制;R表示灵巧手手腕末端的旋转矩阵,P表示灵巧手手腕末端的位置矩阵;
若已知灵巧手手腕末端位置姿态
Figure PCTCN2022129938-appb-000002
通过四自由度机械臂与灵巧手手腕融合***的逆运动学数值求解方法,求得融合***的关节角度θ 1、θ 2、θ 3、θ 4、θ 5、θ 6,根据关节角度获得控制指令,发送给伺服位置控制器,以驱动灵巧手手腕末端达到预定的位置姿态。
优选的,对融合***正向运动控制时,灵巧手手腕末端的位置姿态
Figure PCTCN2022129938-appb-000003
Figure PCTCN2022129938-appb-000004
为融合***中,机械臂基坐标系到机械臂第一关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000005
为融合***中,机械臂第一关节到机械臂第二关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000006
为融合***中,机械臂第二关节到机械臂第三关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000007
为融合***中,机械臂第三关节到机械臂第四关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000008
为融合***中,机械臂第四关节到灵巧手手腕第一关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000009
为融合***中,灵巧手手腕第一关节到灵巧手手腕第二关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000010
为融合***中,机械臂基坐标系到灵巧手手腕末端的坐标转换矩阵。
Figure PCTCN2022129938-appb-000011
Figure PCTCN2022129938-appb-000012
其中,dj为第j个关节与第j-1个关节的连杆距离,j=2,3,4,5;a p为第p个关节的连杆长度,p=2;
si为第i个关节角度正弦,ci为第i个关节角度余弦,i=1,2,3,4,5,6。
si=sinθ i,ci=cosθ i
优选的,关节角度θ 6采用迭代方式求数值解。
θ 6的第k+1次迭代公式如下:
Figure PCTCN2022129938-appb-000013
θ 6(k+1)为θ 6的第k+1次迭代结果,θ 6(k)为θ 6的第k次迭代结果,θ 6(k-1)为θ 6的第k-1次迭代结果,f(θ 6(k+1))为θ 6(k+1)处的逆运动学公式,f(θ 6(k))为θ 6(k)处的逆运动学公式,f(θ 6(k-1))为θ 6(k-1)处的逆运动学公式。
本发明与现有技术相比的有益效果是:
(1)本发明设计了一种正交双自由度灵巧手的手腕,仅占用单关节的空间,通过冗余双电机同步差动控制,有效保证了可靠性。
(2)本发明采用了四自由度机械臂与灵巧手双自由度手腕相结合的六自由度串并联机构,来进行机械臂与灵巧手的融合控制,四自由度机械臂与灵巧手腕部两关节组成的六自由度臂型不满足末端三轴交于一点,没有逆运动学解析解,只有数值解,因此设计了一种基于这种臂型的逆运动学数值求解方法,适用于所有串联机械臂数值解求解。
(3)本发明将灵巧手腕部两个耦合关节进行解耦,将其视为两个独立的机械臂关节,关节5,关节6,这样通过本发明的控制方法就将灵巧手手腕复杂并联机构能够与机械臂融合起来按照六自由度串联机械臂的控制方法进行控制。
(4)本发明中四自由度机械臂与灵巧手双自由度手腕相结合的六自由度串并联机构,具有多自由度冗余,这样就可以让机械臂不用大范围运动,即可以实现五指灵巧手的转动。
附图说明
图1为灵巧手手腕部分控制示意图;
图2为单关节空间正交双自由度集成的手腕;
图3为四自由度机械臂与灵巧手双自由度手腕相结合的构型。
具体实施方式
下面结合附图对本发明作进一步阐述。
本发明在不修改灵巧手的前提下,设计一种既美观又实用的机械臂与灵巧手融合***,节约研发成本,缩短研发周期;同时提出一种逆运动学数值解求解方法,实现一种机械臂与灵巧手融合***的运动控制。
一种机械臂与灵巧手的融合***如图3所示,包括一条四自由度机械臂、一个灵巧手手腕(单关节空间正交双自由度集成的手腕)和一个灵巧手。灵巧手双自由度的手腕安装在四自由度机械臂的末端,两者通过电子线路连接,进行通信和供电。灵巧手手掌安装在灵巧手手腕上。一种四自由度机械臂与灵巧手手腕融合***的运动控制方法,包括单关节空间正交双自由度集成手腕的控制方法、机械臂与灵巧手的融合***正运动学方法、机械臂与灵巧手的融合***逆运动学方法。
本发明单关节空间正交双自由度集成的手腕,如图2所示,采用双电机m1、m2同步差动控制。使用双电机推动双推杆L1、L2实现灵巧手的俯仰运动和偏航转动,当双推杆L1、L2同向运动时灵巧手进行俯仰运动,此时可以将手腕看作关节J1,关节J1的俯仰角度范围为-70度—70度;当双推杆L1、L2反向运动运动时灵巧手进行偏航转动,此时可以将手腕看作关节J2,关节J2的偏航角度范围为-45度—45度。双电机中其中一个电机m1由伺服位置控制器A(主动)驱动,另一个电机m2由伺服位置控制器B(从动)驱动。
灵巧手双自由度手腕控制方法如图1所示,输入灵巧手的目标位置,融合***通过控制律计算控制指令,将控制指令发送给伺服位置控制器A(主动)和伺服位置控制器B(从动),伺服控制器再将伺服控制指令结合负载传动比KA、KB,得到对应电机的驱动指令。关节实际位置通过位置传感器之后通过积分器运算将结果反馈给融合***,从而实现大闭环控制。
一种四自由度机械臂与灵巧手双自由度手腕融合***的运动控制方法,步骤如下:
(1)将四自由度机械臂与灵巧手手腕融合***看作一个六轴串联机械臂。以机械臂基座中心为原点,使用D-H方法建立坐标系,并列出各连杆和关节的D-H参数,其中关节的D-H参数包括四自由度机械臂的关节角度θ 1、θ 2、θ 3、θ 4,灵巧手手腕的关节角度θ 5、θ 6
(2)根据已知的四自由度机械臂的关节角度θ 1、θ 2、θ 3、θ 4和手腕的关节角度θ 5、θ 6,通过四自由度机械臂与灵巧手手腕融合***的正运动学方法,求得灵巧手手腕末端的位置姿态
Figure PCTCN2022129938-appb-000014
从而实现对***正向运动控制。R表示灵巧手手腕末端的旋转矩阵,P表示灵巧手手腕末端的位置矩阵。
四自由度机械臂与灵巧手手腕融合***各坐标系之间的变换矩阵分别为:
Figure PCTCN2022129938-appb-000015
Figure PCTCN2022129938-appb-000016
Figure PCTCN2022129938-appb-000017
Figure PCTCN2022129938-appb-000018
为融合***中,机械臂基坐标系到机械臂第一关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000019
为融合***中,机械臂第一关节到机械臂第二关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000020
为融合***中,机械臂第二关节到机械臂第三关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000021
为融合***中,机械臂第三关节到机械臂第四关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000022
为融合***中,机械臂第四关节到灵巧手手腕第一关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000023
为融合***中,灵巧手手腕第一关节到灵巧手手腕第二关节的坐标转换矩阵;
Figure PCTCN2022129938-appb-000024
为融合***中,机械臂基坐标系到灵巧手手腕末端的坐标转换矩阵。
dj为第j个关节与第j-1个关节的连杆距离,j=2,3,4,5;a p为第p个关节的连杆长度,p=2;
si为第i个关节角度正弦,ci为第i个关节角度余弦,i=1,2,3,4,5,6。si=sinθ i,ci=cosθ i,θ i为第i个关节角度。
第1个关节角度范围为-90°<θ 1<90°。第2个关节角度范围为0°<θ 2<90°。第3个关节角度范围为-120°<θ 3<0°。第4个关节角度范围为0°<θ 4<180°。第5个关节角度范围为-70°<θ 5<70°。第6个关节角度范围为-45°<θ 6<45°。
(3)根据已知的***末端位置姿态
Figure PCTCN2022129938-appb-000025
由于***末端三轴不正交,不存在解析解,通过四自由度机械臂与灵巧手手腕融合***的逆运动学数值解方法,求得***的关节角度θ 1、θ 2、θ 3、θ 4、θ 5、θ 6,从而实现对***反向运动控制。
通过机器人逆运动学求解可得θ 1、θ 2、θ 3、θ 4、θ 5,而θ 6无法求得解析解,因此只能求数值解。
从本质上讲,数值解是猜测和迭代,直到错误足够小,或者直到认为放弃。本方法中采用常见的牛顿--拉夫逊算法,因为它在概念上简单并且如果初始猜测与解“足够接近”时具有二次收敛速率。Newton迭代法需要计算f(x)在x k处的一阶导数,对复杂的函数,特别是多元隐函数,求导数或偏导数是相对繁琐和复杂的,采用近似计算的割线法,公式如下:
Figure PCTCN2022129938-appb-000026
但是,不能保证算法会收敛或足够快地满足应用要求,并且只返回一个解决方案。为了针对各种可能的姿势产生解决方案,必须使用不同的初始条件。
因此,本发明中,第k+1次关节角度θ 6的求解公式如下:
Figure PCTCN2022129938-appb-000027
θ 6(k+1)为θ 6的第k+1次迭代结果,θ 6(k)为θ 6的第k次迭代结果,θ 6(k-1)为θ 6的第k-1次迭代结果,f(θ 6(k+1))为θ 6(k+1)处的逆运动学公式,f(θ 6(k))为θ 6(k)处的逆运动学公式,f(θ 6(k-1))为θ 6(k-1)处的逆运动学公式。
本发明采用了四自由度机械臂与灵巧手双自由度手腕相结合的六自由度串并联机构,来进行机械臂与灵巧手的融合控制,四自由度机械臂与灵巧手腕部两关节组成的六自由度臂型不满足末端三轴交于一点,没有逆运动学解析解,只有数值解,因此设计了一种基于这种臂型的逆运动学数值解方法,适用于所有串行机械手数值解求解。
本发明中四自由度机械臂与灵巧手双自由度手腕相结合的六自由度串并联机构,具有多自由度冗余,这样就可以让机械臂不用大范围运动,即可以实现五指灵巧手的转动。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (10)

  1. 一种机械臂与灵巧手的融合***,其特征在于:包括一条四自由度机械臂、一个灵巧手手腕和一个灵巧手,灵巧手手腕安装在四自由度机械臂的末端,灵巧手安装在灵巧手手腕上;灵巧手手腕和四自由度机械臂通过电子线路连接。
  2. 根据权利要求1所述的一种机械臂与灵巧手的融合***,其特征在于:灵巧手手腕是一个两自由度并联机构,包括两台电机、两根推杆和两台伺服位置控制器;
    两台伺服位置控制器分别为主动伺服位置控制器和从动伺服位置控制器,两台电机包括第一电机和第二电机,两根推杆包括第一推杆和第二推杆,主动伺服位置控制器用于驱动第一电机运动,第一电机运动带动第一推杆运动,从动伺服位置控制器用于驱动第二电机运动,第二电机运动带动第二推杆运动;第一推杆的末端和第二推杆的末端同时与灵巧手手掌连接。
  3. 根据权利要求2所述的一种机械臂与灵巧手的融合***,其特征在于:两台电机采用同步差动控制方式,两台电机驱动两根推杆运动,实现灵巧手的俯仰运动和偏航转动。
  4. 根据权利要求3所述的一种机械臂与灵巧手的融合***,其特征在于:当两根推杆同向运动时灵巧手进行俯仰运动,俯仰角度范围为-70度—70度;当两根推杆反向运动运动时灵巧手进行偏航转动,偏航角度范围为-45度—45度。
  5. 一种机械臂与灵巧手的融合***的运动控制方法,其特征在于包括:
    将四自由度机械臂与灵巧手融合***看作一个六轴串联机械臂,以四自由度机械臂基座中心为原点,使用D-H方法建立机械臂坐标系,并给出机械臂各关节及连杆的D-H参数;
    根据四自由度机械臂的关节角度θ 1、θ 2、θ 3、θ 4和灵巧手手腕的关节角度θ 5、θ 6,通过四自由度机械臂与灵巧手手腕融合***的正运动学方法,求得灵巧手 手腕末端的位置姿态矩阵
    Figure PCTCN2022129938-appb-100001
    实现对融合***正向运动控制;R表示灵巧手手腕末端的旋转矩阵,P表示灵巧手手腕末端的位置矩阵;
    若已知灵巧手手腕末端位置姿态
    Figure PCTCN2022129938-appb-100002
    通过四自由度机械臂与灵巧手手腕融合***的逆运动学数值求解方法,求得融合***的关节角度θ 1、θ 2、θ 3、θ 4、θ 5、θ 6,根据关节角度获得控制指令,发送给伺服位置控制器,以驱动灵巧手手腕末端达到预定的位置姿态。
  6. 根据权利要求5所述的一种机械臂与灵巧手的融合***的运动控制方法,其特征在于:对融合***正向运动控制时,灵巧手手腕末端的位置姿态
    Figure PCTCN2022129938-appb-100003
    Figure PCTCN2022129938-appb-100004
    为融合***中,机械臂基坐标系到机械臂第一关节的坐标转换矩阵;
    Figure PCTCN2022129938-appb-100005
    为融合***中,机械臂第一关节到机械臂第二关节的坐标转换矩阵;
    Figure PCTCN2022129938-appb-100006
    为融合***中,机械臂第二关节到机械臂第三关节的坐标转换矩阵;
    Figure PCTCN2022129938-appb-100007
    为融合***中,机械臂第三关节到机械臂第四关节的坐标转换矩阵;
    Figure PCTCN2022129938-appb-100008
    为融合***中,机械臂第四关节到灵巧手手腕第一关节的坐标转换矩阵;
    Figure PCTCN2022129938-appb-100009
    为融合***中,灵巧手手腕第一关节到灵巧手手腕第二关节的坐标转换矩阵;
    Figure PCTCN2022129938-appb-100010
    为融合***中,机械臂基坐标系到灵巧手手腕末端的坐标转换矩阵。
  7. 根据权利要求6所述的一种机械臂与灵巧手的融合***的运动控制方法,其特征在于:
    Figure PCTCN2022129938-appb-100011
    Figure PCTCN2022129938-appb-100012
    其中,dj为第j个关节与第j-1个关节的连杆距离,j=2,3,4,5;a p为第p个关节的连杆长度,p=2;
    si为第i个关节角度正弦,ci为第i个关节角度余弦,i=1,2,3,4,5,6。
  8. 根据权利要求7所述的一种机械臂与灵巧手的融合***的运动控制方法,其特征在于:si=sinθ i,ci=cosθ i
  9. 根据权利要求5所述的一种机械臂与灵巧手的融合***的运动控制方法,其特征在于:关节角度θ 6采用迭代方式求数值解。
  10. 根据权利要求9所述的一种机械臂与灵巧手的融合***的运动控制方法,其特征在于:θ 6的第k+1次迭代公式如下:
    Figure PCTCN2022129938-appb-100013
    θ 6(k+1)为θ 6的第k+1次迭代结果,θ 6(k)为θ 6的第k次迭代结果,θ 6(k-1)为θ 6的第k-1次迭代结果,f(θ 6(k+1))为θ 6(k+1)处的逆运动学公式,f(θ 6(k))为θ 6(k)处的逆运动学公式,f(θ 6(k-1))为θ 6(k-1)处的逆运动学公式。
PCT/CN2022/129938 2022-03-14 2022-11-04 一种机械臂与灵巧手的融合***及运动控制方法 WO2023173764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210248880.9 2022-03-14
CN202210248880.9A CN114714327A (zh) 2022-03-14 2022-03-14 一种机械臂与灵巧手的融合***及运动控制方法

Publications (1)

Publication Number Publication Date
WO2023173764A1 true WO2023173764A1 (zh) 2023-09-21

Family

ID=82236913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129938 WO2023173764A1 (zh) 2022-03-14 2022-11-04 一种机械臂与灵巧手的融合***及运动控制方法

Country Status (2)

Country Link
CN (1) CN114714327A (zh)
WO (1) WO2023173764A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118046407A (zh) * 2024-04-16 2024-05-17 清能精控机器人技术(佛山)有限公司 一种机械臂及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114714327A (zh) * 2022-03-14 2022-07-08 北京精密机电控制设备研究所 一种机械臂与灵巧手的融合***及运动控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174184A (ja) * 2014-03-14 2015-10-05 三菱重工業株式会社 制御装置
CN107685330A (zh) * 2017-10-18 2018-02-13 佛山华数机器人有限公司 一种六自由度手腕偏置串联机器人的运动学逆解求解方法
CN108673509A (zh) * 2018-06-15 2018-10-19 东北大学 一种六自由度手腕偏置型串联机械臂的运动控制方法
CN108724163A (zh) * 2018-05-27 2018-11-02 北京工业大学 一种气动肌肉驱动的七自由度仿人机械臂
CN109397271A (zh) * 2018-11-23 2019-03-01 华中科技大学 一种7自由度拟人机械臂及其控制方法和***
CN109822557A (zh) * 2019-03-01 2019-05-31 达闼科技(北京)有限公司 一种机械手及机器人
CN113127989A (zh) * 2021-04-22 2021-07-16 中国科学院沈阳自动化研究所 一种六自由度机械臂逆运动学解析求解控制方法
CN214686581U (zh) * 2021-04-22 2021-11-12 湖南科技大学 仿人形机械臂
CN114714327A (zh) * 2022-03-14 2022-07-08 北京精密机电控制设备研究所 一种机械臂与灵巧手的融合***及运动控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205363B1 (ko) * 2010-08-18 2012-11-28 삼성중공업 주식회사 6자유도 제어기를 이용한 4자유도 로봇 제어방법 및 제어장치
CN110549334A (zh) * 2019-08-15 2019-12-10 大连大华中天科技有限公司 一种四自由度机械手臂的控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174184A (ja) * 2014-03-14 2015-10-05 三菱重工業株式会社 制御装置
CN107685330A (zh) * 2017-10-18 2018-02-13 佛山华数机器人有限公司 一种六自由度手腕偏置串联机器人的运动学逆解求解方法
CN108724163A (zh) * 2018-05-27 2018-11-02 北京工业大学 一种气动肌肉驱动的七自由度仿人机械臂
CN108673509A (zh) * 2018-06-15 2018-10-19 东北大学 一种六自由度手腕偏置型串联机械臂的运动控制方法
CN109397271A (zh) * 2018-11-23 2019-03-01 华中科技大学 一种7自由度拟人机械臂及其控制方法和***
CN109822557A (zh) * 2019-03-01 2019-05-31 达闼科技(北京)有限公司 一种机械手及机器人
CN113127989A (zh) * 2021-04-22 2021-07-16 中国科学院沈阳自动化研究所 一种六自由度机械臂逆运动学解析求解控制方法
CN214686581U (zh) * 2021-04-22 2021-11-12 湖南科技大学 仿人形机械臂
CN114714327A (zh) * 2022-03-14 2022-07-08 北京精密机电控制设备研究所 一种机械臂与灵巧手的融合***及运动控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118046407A (zh) * 2024-04-16 2024-05-17 清能精控机器人技术(佛山)有限公司 一种机械臂及其控制方法
CN118046407B (zh) * 2024-04-16 2024-06-11 清能精控机器人技术(佛山)有限公司 一种机械臂及其控制方法

Also Published As

Publication number Publication date
CN114714327A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023173764A1 (zh) 一种机械臂与灵巧手的融合***及运动控制方法
CN104965517B (zh) 一种机器人笛卡尔空间轨迹的规划方法
CN109397244B (zh) 一种一体化双7自由度机械臂全向移动机器人***与控制方法
JP5114019B2 (ja) エフェクタの軌道を制御するための方法
CN111975768B (zh) 一种基于固参神经网络的机械臂运动规划方法
CN108241339A (zh) 仿人机械臂的运动求解和构型控制方法
CA2958893A1 (en) Design of fault-tolerant dexterous hand with multi-fingers
CN110561441B (zh) 一种冗余度机械臂位姿控制的单94lvi迭代算法
Hafez et al. Reactionless visual servoing of a dual-arm space robot
Reis et al. Modeling and control of a multifingered robot hand for object grasping and manipulation tasks
Jiang et al. A robust visual servoing controller for anthropomorphic manipulators with Field-of-View constraints and swivel-angle motion: Overcoming system uncertainty and improving control performance
Zefran et al. Optimal trajectories and force distribution for cooperating arms
Sharma et al. Generalized unified closed form inverse kinematics for mobile manipulators with reusable redundancy parameters
Chen et al. Modeling and adaptive controlling of quadrotor uav with flexible gripper
CN108638057B (zh) 一种类人机器人双臂运动规划方法
Carignan et al. A partitioned redundancy management scheme for an eight‐joint revolute manipulator
CN108068108B (zh) 平面内摆动伸缩型机器人运动控制方法
Qizhi et al. On the kinematics analysis and motion planning of the manipulator of a mobile robot
WO2022222239A1 (zh) 一种基于摇杆手柄的空间机械臂遥操作控制方法
Chung et al. A novel frame climbing robot: Frambot
Guan et al. Structural Design and Kinematics Simulation of Adaptive Underactuated Bionic Manipulator
Liu et al. A model-free synchronous control of humanoid robot finger
CN115056230B (zh) 一种基于伪逆的三轮全向移动机械臂重复运动规划方法
Chang et al. Reinforcement learning based shared control: A novel teleoperation strategy for robotic
Wang et al. Metamorphic dexterous hand based on joint coupling drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931777

Country of ref document: EP

Kind code of ref document: A1