WO2023171048A1 - Gas turbine system - Google Patents

Gas turbine system Download PDF

Info

Publication number
WO2023171048A1
WO2023171048A1 PCT/JP2022/043401 JP2022043401W WO2023171048A1 WO 2023171048 A1 WO2023171048 A1 WO 2023171048A1 JP 2022043401 W JP2022043401 W JP 2022043401W WO 2023171048 A1 WO2023171048 A1 WO 2023171048A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
flow path
heat exchanger
gas turbine
passes
Prior art date
Application number
PCT/JP2022/043401
Other languages
French (fr)
Japanese (ja)
Inventor
壮一郎 加藤
慎太朗 伊藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2023171048A1 publication Critical patent/WO2023171048A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/24Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being liquid at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner

Definitions

  • a gas turbine system is used that obtains power by burning fuel in a combustor.
  • Some gas turbine systems use ammonia as fuel, for example, as disclosed in Patent Document 1. By using ammonia as a fuel, carbon dioxide emissions are suppressed.
  • An object of the present disclosure is to provide a gas turbine system that can improve the efficiency of the gas turbine system.
  • a gas turbine system of the present disclosure includes an ammonia tank in which ammonia is stored in a liquid state, a combustor connected to the ammonia tank and supplied with ammonia in a liquid state, and a combustor. an exhaust flow path connected to the exhaust flow path, a boiler provided in the exhaust flow path, and a heat exchanger disposed downstream of the boiler in the exhaust flow path and through which the ammonia flow path connecting the ammonia tank and the combustor passes. , is provided.
  • a heat medium flow path may be interposed between the exhaust flow path and the ammonia flow path.
  • the heat exchanger includes a first heat exchanger and a second heat exchanger disposed downstream of the first heat exchanger in the exhaust flow path, and the ammonia flow path includes a heat exchanger through which ammonia passes.
  • a switching mechanism may be provided to switch the path of ammonia between a plurality of different states of the vessel.
  • the switching mechanism may switch the ammonia path based on the state of ammonia in the ammonia flow path.
  • the efficiency of the gas turbine system can be improved.
  • FIG. 1 is a schematic diagram showing the configuration of a gas turbine system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing the configuration of a gas turbine system according to a first modification.
  • FIG. 3 is a schematic diagram showing the configuration of a gas turbine system according to a second modification.
  • FIG. 4 is a schematic diagram showing the configuration of a gas turbine system according to a third modification.
  • FIG. 1 is a schematic diagram showing the configuration of a gas turbine system 1 according to the present embodiment.
  • the gas turbine system 1 includes a compressor 11a, a turbine 11b, a combustor 12, an ammonia tank 13, a boiler 14, an exhaust tower 15, a heat exchanger 16, and a pump 17. , a flow rate control valve 18.
  • the compressor 11a and the turbine 11b rotate as a unit.
  • the compressor 11a and the turbine 11b are connected to each other by a shaft.
  • the compressor 11a is provided in an intake flow path 101 connected to the combustor 12. Air supplied to the combustor 12 flows through the intake flow path 101 . An intake port (not shown) through which air is taken in from the outside is provided at the upstream end of the intake flow path 101. Air taken in from the intake port passes through the compressor 11a and is sent to the combustor 12. The compressor 11a compresses air and discharges it downstream.
  • the turbine 11b is provided in an exhaust flow path 102 connected to the combustor 12. Exhaust gas discharged from the combustor 12 flows through the exhaust flow path 102 . Exhaust gas discharged from the combustor 12 passes through the turbine 11b and is sent to the downstream side of the turbine 11b in the exhaust flow path 102. The turbine 11b generates rotational power by being rotated by exhaust gas.
  • a generator (not shown) is connected to the compressor 11a.
  • the rotational power transmitted from the turbine 11b to the compressor 11a is used for power generation by a generator.
  • the combustor 12 is supplied with air compressed by the compressor 11a from the intake flow path 101, and ammonia in a liquid state is supplied as fuel from the ammonia tank 13. In the combustor 12, combustion is performed using ammonia as fuel. Exhaust gas generated in the combustor 12 is discharged into the exhaust flow path 102.
  • Ammonia is stored in a liquid state in the ammonia tank 13.
  • ammonia is maintained in a liquid state at, for example, atmospheric pressure and -33°C.
  • the vapor pressure within the ammonia tank 13 is suppressed, and problems with the strength and structure of the tank are suppressed.
  • the ammonia tank 13 is connected to the combustor 12 via an ammonia flow path 103. Ammonia flows through the ammonia flow path 103. Ammonia is supplied from the ammonia tank 13 to the combustor 12 via the ammonia flow path 103. Details of the ammonia channel 103 will be described later.
  • a boiler 14 is provided in the exhaust flow path 102 on the downstream side of the turbine 11b.
  • the boiler 14 is provided with a flow path 104 through which water flows.
  • the water flowing through the flow path 104 is heated by the exhaust gas flowing through the exhaust flow path 102 and vaporizes into gas (that is, water vapor).
  • a flow path 104 of the boiler 14 is connected to a steam turbine (not shown). Steam generated in the boiler 14 is sent to a steam turbine. The steam then turns a steam turbine and generates rotational power. The rotary power generated by the steam turbine is used for power generation.
  • the exhaust flow path 102 is connected to the exhaust tower 15 on the downstream side of the boiler 14. Exhaust gas discharged from the combustor 12 passes through the turbine 11b and the boiler 14, is sent to the exhaust tower 15, and is exhausted from the exhaust tower 15.
  • a heat exchanger 16 is arranged in the exhaust flow path 102 on the downstream side of the boiler 14.
  • Ammonia flow path 103 passes through heat exchanger 16 .
  • a pump 17 is provided between the heat exchanger 16 and the ammonia tank 13 in the ammonia flow path 103 .
  • the pump 17 pressurizes ammonia supplied from the ammonia tank 13 and sends it downstream. Ammonia sent out by pump 17 is sent to heat exchanger 16.
  • heat exchanger 16 heat exchange is performed between the exhaust gas flowing through the exhaust flow path 102 and the ammonia flowing through the ammonia flow path 103.
  • the temperature of the exhaust gas flowing through the exhaust flow path 102 is higher than the temperature of ammonia flowing through the ammonia flow path 103. Therefore, in the heat exchanger 16, the ammonia flowing through the ammonia flow path 103 is heated by the exhaust gas flowing through the exhaust flow path 102. Specifically, in the heat exchanger 16, ammonia is heated to an extent that it does not vaporize. Therefore, ammonia is supplied to the combustor 12 in a liquid state.
  • a flow control valve 18 is provided between the heat exchanger 16 and the combustor 12 in the ammonia flow path 103.
  • the flow control valve 18 adjusts the flow rate of liquid ammonia sent to the combustor 12 through the ammonia flow path 103. Specifically, the amount of ammonia supplied to the combustor 12 is adjusted by adjusting the opening degree of the flow control valve 18.
  • the heat exchanger 16 through which the ammonia flow path 103 connecting the ammonia tank 13 and the combustor 12 passes is arranged downstream of the boiler 14 in the exhaust flow path 102. Ru.
  • the ammonia supplied to the combustor 12 can be heated using the heat of the exhaust gas that has passed through the boiler 14. Therefore, part of the energy required to combust ammonia can be covered by the heat of the exhaust gas. Therefore, the efficiency of the gas turbine system 1 can be improved.
  • ammonia is heated in the heat exchanger 16 to an extent that it does not vaporize. That is, in the heat exchanger 16, the heat of the exhaust gas is used as sensible heat of ammonia. Therefore, ammonia stored in a liquid state in the ammonia tank 13 is supplied to the combustor 12 in a liquid state without being vaporized in the ammonia flow path 103. If ammonia were to be vaporized in the ammonia flow path 103, additional equipment and complicated controls would be required to suppress pressure fluctuations in the vaporized ammonia and prevent recondensation. Furthermore, it becomes necessary to increase the size of the piping through which gaseous ammonia flows. On the other hand, in the gas turbine system 1, since ammonia does not vaporize in the ammonia flow path 103, these problems do not occur.
  • a pump that pressurizes ammonia is installed between the heat exchanger 16 and the ammonia tank 13 in the ammonia flow path 103. 17 is preferably provided.
  • the ammonia stored in the ammonia tank 13 is pressurized by the pump 17 and then sent to the heat exchanger 16. Therefore, the boiling point of ammonia passing through the heat exchanger 16 increases. Therefore, the amount of heat that can be recovered from the exhaust gas (that is, the amount of heat that can be recovered as sensible heat) increases within the range where the ammonia passing through the heat exchanger 16 is not vaporized. Therefore, the proportion of the energy required to combust ammonia that is covered by the heat of the exhaust gas can be increased, so that the efficiency of the gas turbine system 1 can be effectively improved.
  • FIG. 2 is a schematic diagram showing the configuration of a gas turbine system 1A according to a first modification.
  • the gas turbine system 1A according to the first modification compared to the gas turbine system 1 described above, in the heat exchanger 16, there is a gap between the exhaust flow path 102 and the ammonia flow path 103. The difference is that a heat medium flow path 105 is provided.
  • the source of the heat medium flowing through the heat medium flow path 105 is not particularly limited.
  • the heat medium flow path 105 and the flow path 104 of the boiler 14 may be in communication with each other, and the heat medium flowing through the heat medium flow path 105 may be water circulating through the flow path 104 .
  • the heat medium flow path 105 and the flow path 104 of the boiler 14 are not in communication with each other, and the heat medium flowing through the heat medium flow path 105 is a heat medium such as water supplied from a source other than the flow path 104. It may be.
  • the exhaust flow path 102 and the ammonia flow path 103 face each other with the heat medium flow path 105 in between. Therefore, in the heat exchanger 16, heat exchange between the exhaust gas flowing through the exhaust flow path 102 and the ammonia flowing through the ammonia flow path 103 is performed indirectly via the heat medium flowing through the heat medium flow path 105. It will be held on. Specifically, heat exchange is directly performed between the exhaust gas flowing through the exhaust flow path 102 and the heat medium flowing through the heat medium flow path 105. Then, heat exchange is directly performed between the heat medium flowing through the heat medium flow path 105 and the ammonia flowing through the ammonia flow path 103.
  • the heat medium flow path 105 is interposed between the exhaust flow path 102 and the ammonia flow path 103 in the heat exchanger 16. Therefore, by adjusting the flow rate of the heat medium flowing through the heat medium flow path 105, the amount of heat exchanged between the exhaust gas flowing through the exhaust flow path 102 and the ammonia flowing through the ammonia flow path 103 can be adjusted. can. Thereby, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
  • FIG. 3 is a schematic diagram showing the configuration of a gas turbine system 1B according to a second modification. As shown in FIG. 3, the gas turbine system 1B according to the second modification differs from the gas turbine system 1 described above in that the number of heat exchangers 16 is two.
  • a first heat exchanger 16a and a second heat exchanger 16b are provided in the gas turbine system 1B.
  • the first heat exchanger 16a and the second heat exchanger 16b are arranged in this order from the upstream side in the exhaust flow path 102. That is, the second heat exchanger 16b is arranged downstream of the first heat exchanger 16a in the exhaust flow path 102.
  • the ammonia flow path 103 passes through both the heat exchangers 16, the first heat exchanger 16a and the second heat exchanger 16b.
  • the ammonia flow path 103 is provided with a switching mechanism 20-1 that switches the ammonia path between a plurality of different states of the heat exchanger 16 through which the ammonia passes.
  • the switching mechanism 20-1 includes a branched portion of the ammonia flow path 103 (specifically, flow paths 103a and 103b described later), a switching valve 21 that switches the ammonia path in the ammonia flow path 103, and a temperature sensor 22. and a control device 23.
  • the ammonia flow path 103 passes through the second heat exchanger 16b on the downstream side of the pump 17, and then branches into a flow path 103a and a flow path 103b.
  • the flow path 103a and the flow path 103b merge with each other on the upstream side of the flow control valve 18.
  • the flow path 103a passes through the first heat exchanger 16a.
  • the flow path 103b does not pass through the first heat exchanger 16a.
  • the switching valve 21 is a three-way valve.
  • the switching valve 21 is provided at a connecting portion between the upstream end of the flow path 103a and the upstream end of the flow path 103b.
  • the switching valve 21 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the flow path 103a and a state in which ammonia passes through the flow path 103b.
  • the ammonia sent from the ammonia tank 13 passes through the second heat exchanger 16b, then passes through the first heat exchanger 16a, and is sent to the combustor 12.
  • the switching mechanism 20-1 changes the path of ammonia in the ammonia flow path 103 into a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b. Switching is made between a state in which only the exchanger 16b is passed.
  • the switching valve 21 is a three-way valve.
  • the switching valve 21 does not have to be a three-way valve.
  • switching valves 21, which are on-off valves may be provided in the flow path 103a and the flow path 103b, respectively.
  • ammonia is allowed to pass through the channel 103a.
  • the number and connection positions of branching portions of the ammonia flow path 103 are not particularly limited. That is, in the switching mechanism 20-1, there is no particular limitation on how the ammonia flow path 103 branches.
  • the temperature sensor 22 detects the temperature of ammonia that has passed through the second heat exchanger 16b, and outputs the detection result to the control device 23.
  • the temperature sensor 22 is provided, for example, in the ammonia flow path 103 between the second heat exchanger 16b and the switching valve 21.
  • the control device 23 includes a central processing unit (CPU), a ROM in which programs and the like are stored, and a RAM as a work area. In the gas turbine system 1B, the control device 23 controls the operation of the switching valve 21. Thereby, the control device 23 changes the path of ammonia into a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes only through the second heat exchanger 16b. You can switch between.
  • CPU central processing unit
  • ROM read-only memory
  • the control device 23 switches the ammonia path based on the state of ammonia in the ammonia flow path 103. In the example of FIG. 3, the control device 23 switches the ammonia route based on the temperature of the ammonia that has passed through the second heat exchanger 16b, for example.
  • the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103a, and transfers the ammonia to the first heat exchanger. It passes through both the heat exchanger 16a and the second heat exchanger 16b.
  • the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103b, and transfers the ammonia to the second heat exchanger 16b. 16b only.
  • the reference temperature is an index for determining whether or not ammonia is vaporized when ammonia is passed through the first heat exchanger 16a. If the temperature of the ammonia that has passed through the second heat exchanger 16b is below the reference temperature, it can be determined that ammonia will not be vaporized even if it is passed through the first heat exchanger 16a. On the other hand, if the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature, it can be determined that ammonia will be vaporized if it is passed through the first heat exchanger 16a.
  • the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
  • the switching mechanism 20-1 switches the ammonia route based on the temperature of the ammonia that has passed through the second heat exchanger 16b.
  • the switching mechanism 20-1 may switch the ammonia path based on a parameter other than the above temperature as a parameter indicating the state of ammonia in the ammonia flow path 103.
  • the flow rate of ammonia in the ammonia flow path 103 may be used as a parameter indicating the state of ammonia in the ammonia flow path 103.
  • the pressure of ammonia in the ammonia flow path 103 may be used as a parameter indicating the state of ammonia in the ammonia flow path 103.
  • the heat exchanger 16 includes the first heat exchanger 16a and the second heat exchanger disposed downstream of the first heat exchanger 16a in the exhaust flow path 102. 16b.
  • the ammonia flow path 103 is provided with a switching mechanism 20-1 that switches the ammonia path between a plurality of different states of the heat exchanger 16 through which the ammonia passes.
  • the number or type of heat exchangers 16 through which ammonia passes can be changed.
  • the number of heat exchangers 16 through which ammonia passes can be varied. Therefore, the degree of increase in temperature of ammonia due to heat exchange with exhaust gas can be adjusted. Therefore, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
  • the switching mechanism 20-1 switches the ammonia path based on the state of ammonia in the ammonia flow path 103, as described above.
  • the degree of increase in the temperature of ammonia due to heat exchange with the exhaust gas can be appropriately adjusted based on the state of ammonia in the ammonia flow path 103. Therefore, it is possible to appropriately increase the amount of heat that ammonia passing through the heat exchanger 16 recovers from the exhaust gas as much as possible while suppressing vaporization of ammonia.
  • FIG. 4 is a schematic diagram showing the configuration of a gas turbine system 1C according to a third modification.
  • the heat exchangers 16 include a first heat exchanger 16a and a second heat exchanger 16b, similarly to the gas turbine system 1B described above. and is provided.
  • a switching mechanism 20-2 different from the switching mechanism 20-1 is provided, compared to the gas turbine system 1B described above.
  • the switching mechanism 20-2 switches the path of ammonia between a plurality of states in which the heat exchanger 16 through which the ammonia passes is different from each other.
  • the number of branch points of the ammonia flow path 103 is increased compared to the switching mechanism 20-1 described above.
  • the switching mechanism 20-2 has a switching valve 24 and a flow rate sensor 25 added to the switching mechanism 20-1 described above.
  • the ammonia flow path 103 is branched into a flow path 103c and a flow path 103d on the downstream side of the pump 17.
  • the flow path 103c and the flow path 103d merge with each other on the upstream side of the switching valve 21.
  • the flow path 103c passes through the second heat exchanger 16b.
  • the flow path 103d does not pass through the second heat exchanger 16b.
  • the ammonia flow path 103 branches into a flow path 103a and a flow path 103b at the installation position of the switching valve 21.
  • the flow path 103a passes through the first heat exchanger 16a.
  • the flow path 103b does not pass through the first heat exchanger 16a.
  • the switching valve 24, like the switching valve 21, is a three-way valve.
  • the switching valve 24 is provided at a connecting portion between the upstream end of the flow path 103c and the upstream end of the flow path 103d.
  • the switching valve 24 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the flow path 103c and a state in which ammonia passes through the flow path 103d.
  • the ammonia sent from the ammonia tank 13 is sent to the switching valve 21 after passing through the second heat exchanger 16b.
  • ammonia sent from the ammonia tank 13 is sent to the switching valve 21 without passing through the second heat exchanger 16b.
  • the switching valve 21 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the flow path 103a and a state in which ammonia passes through the flow path 103b.
  • ammonia passes through the flow path 103a
  • the ammonia that has passed through the switching valve 21 passes through the first heat exchanger 16a and is sent to the combustor 12.
  • the ammonia that has passed through the switching valve 21 is sent to the combustor 12 without passing through the first heat exchanger 16a.
  • the switching mechanism 20-2 changes the ammonia path in the ammonia flow path 103 between a state in which ammonia passes through the first heat exchanger 16a and a state in which ammonia does not pass through the first heat exchanger 16a. Switch between. Further, the switching mechanism 20-2 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the second heat exchanger 16b and a state in which ammonia does not pass through the second heat exchanger 16b. .
  • the switching mechanism 20-2 has two states: a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, a state in which ammonia passes only through the first heat exchanger 16a, and a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b.
  • the path of ammonia can be switched between a state in which the ammonia passes only through the two heat exchangers 16b and a state in which ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b.
  • the switching valve 24 is a three-way valve.
  • the switching valve 24 does not have to be a three-way valve like the switching valve 21 described above.
  • a switching valve 24, which is an on-off valve may be provided in each of the flow path 103c and the flow path 103d.
  • ammonia is allowed to pass through the channel 103c.
  • by closing the switching valve 24 of the channel 103c and opening the switching valve 24 of the channel 103d ammonia is allowed to pass through the channel 103d.
  • the number and connection positions of branching portions of the ammonia flow path 103 are not particularly limited. That is, in the switching mechanism 20-2, there is no particular limitation on how the ammonia flow path 103 branches.
  • the flow rate sensor 25 detects the flow rate of ammonia in the ammonia flow path 103 and outputs the detection result to the control device 23.
  • the flow rate sensor 25 is provided, for example, between the pump 17 and the switching valve 24 in the ammonia flow path 103.
  • the control device 23 controls the operation of the switching valves 21 and 24, respectively. Thereby, the control device 23 changes the path of ammonia into a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes only through the first heat exchanger 16a. It is possible to switch between a state in which ammonia passes only through the second heat exchanger 16b and a state in which ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b.
  • the control device 23 switches the ammonia path based on the state of ammonia in the ammonia flow path 103, as in the example of FIG. In the example of FIG. 4, the control device 23 basically maintains the state in which ammonia is passed through the second heat exchanger 16b, and based on the temperature of the ammonia that has passed through the second heat exchanger 16b. , the ammonia path is switched between a state in which ammonia passes through the first heat exchanger 16a and a state in which ammonia does not pass through the first heat exchanger 16a.
  • the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103a, and transfers the ammonia to the first heat exchanger. It passes through both the heat exchanger 16a and the second heat exchanger 16b.
  • the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103b, and transfers the ammonia to the second heat exchanger 16b. 16b only.
  • the control device 23 controls the control device 23 so that the ammonia flows through the flow path 103d and The switching valve 24 and the switching valve 21 are respectively controlled so as to pass through the flow path 103b.
  • ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b.
  • the reference flow rate determines whether or not ammonia is vaporized when the ammonia that has passed through the second heat exchanger 16b is passed only through the second heat exchanger 16b when the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature. This is an indicator for When the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature and the flow rate of ammonia in the ammonia flow path 103 exceeds the reference flow rate, when ammonia is passed only through the second heat exchanger 16b. Even if there is, it can be determined that the ammonia has vaporized.
  • the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
  • the switching mechanism 20-2 switches the ammonia route based on two parameters: the temperature of the ammonia that has passed through the second heat exchanger 16b, and the flow rate of ammonia in the ammonia flow path 103. .
  • the switching mechanism 20-2 may switch the ammonia path based on a parameter other than the above two parameters as a parameter indicating the state of ammonia in the ammonia flow path 103.
  • a parameter indicating the state of ammonia in the ammonia flow path 103 For example, only one of the above two parameters may be used as a parameter indicating the state of ammonia in the ammonia flow path 103.
  • the pressure of ammonia in the ammonia flow path 103 may be used alone or in combination with other parameters as a parameter indicating the state of ammonia in the ammonia flow path 103.
  • the switching mechanism 20-2 has two states: a state where ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, a state where ammonia passes only through the second heat exchanger 16b, and a state where ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b;
  • a state where ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b a state where ammonia passes only through the second heat exchanger 16b
  • a state where ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b An example has been described in which the ammonia path is switched between a state in which the ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b.
  • the switching mechanism 20-2 may set the ammonia path to a state where the ammonia passes only through the first heat exchanger 16a.
  • the degree of increase in ammonia temperature may differ between the first heat exchanger 16a and the second heat exchanger 16b.
  • the switching mechanism 20-2 selects a state in which ammonia passes only through the first heat exchanger 16a and a state in which ammonia passes only through the second heat exchanger 16b, for example, based on the flow rate of ammonia in the ammonia flow path 103. Switch the ammonia route between states. Thereby, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
  • the heat exchanger 16 includes the first heat exchanger 16a and the exhaust flow path 102 downstream of the first heat exchanger 16a. and a second heat exchanger 16b disposed on the side.
  • the ammonia flow path 103 is provided with a switching mechanism 20-2 that switches the ammonia path between a plurality of different states of the heat exchanger 16 through which the ammonia passes. Therefore, the same effects as the gas turbine system 1B described above are achieved.
  • the switching mechanism 20-1 and the switching mechanism 20-2 have been described as examples of the switching mechanism that switches the ammonia route.
  • the switching mechanism is not limited to these examples.
  • the flow path 103b and the switching valve 21 may be omitted from the example of FIG.
  • the ammonia path can be switched between a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b and a state in which ammonia passes only through the first heat exchanger 16a. can.
  • the rotational power transmitted from the turbine 11b to the compressor 11a is used as energy to drive the generator in the gas turbine systems 1, 1A, 1B, and 1C.
  • the rotational power transmitted from the turbine 11b to the compressor 11a may be used for other purposes, such as driving a moving body such as a ship. .
  • This disclosure contributes to improving the efficiency of gas turbine systems, and thus contributes to, for example, Goal 7 of the Sustainable Development Goals (SDGs): “Ensure access to affordable, reliable, sustainable and modern energy.” can do.
  • SDGs Sustainable Development Goals
  • Gas turbine system 1A Gas turbine system 1B: Gas turbine system 1C: Gas turbine system 12: Combustor 13: Ammonia tank 14: Boiler 16: Heat exchanger 16a: First heat exchanger 16b: Second heat exchanger 20-1: Switching mechanism 20-2: Switching mechanism 102: Exhaust flow path 103: Ammonia flow path 105: Heat medium flow path

Abstract

A gas turbine system (1) comprises: an ammonia tank (13) in which ammonia is stored in a liquid state; a combustor (12) which is connected to the ammonia tank (13) and to which ammonia is supplied in a liquid state; an exhaust channel (102) which is connected to the combustor (12); a boiler (14) installed in the exhaust channel (102); and a heat exchanger (16) which is disposed on the downstream side of the boiler (14) in the exhaust channel (102) and through which an ammonia channel (103) connecting the ammonia tank (13) and the combustor (12) passes.

Description

ガスタービンシステムgas turbine system
 本開示は、ガスタービンシステムに関する。本出願は2022年3月7日に提出された日本特許出願第2022-034697号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to gas turbine systems. This application claims the benefit of priority based on Japanese Patent Application No. 2022-034697 filed on March 7, 2022, the contents of which are incorporated into this application.
 燃焼器で燃料を燃焼させることによって動力を得るガスタービンシステムが利用されている。ガスタービンシステムとして、例えば、特許文献1に開示されているように、アンモニアを燃料として用いるものがある。アンモニアを燃料として用いることによって、二酸化炭素の排出が抑制される。 A gas turbine system is used that obtains power by burning fuel in a combustor. Some gas turbine systems use ammonia as fuel, for example, as disclosed in Patent Document 1. By using ammonia as a fuel, carbon dioxide emissions are suppressed.
特開2016-191507号公報Japanese Patent Application Publication No. 2016-191507
 大規模なガスタービンシステムでは大量の燃料が消費される。このため、アンモニアを燃料として用いる場合、アンモニアを大量に貯蔵しておく必要がある。アンモニアは-33℃程度の低温液とすると蒸気圧がほぼ大気圧となる。ゆえに、アンモニアをタンクに貯蔵した場合にタンクにかかる内圧が低減され、タンク強度および構造上の問題が発生しにくくなる。一方で、低温のアンモニア液をガスタービンの燃料として直接燃焼器に供給した場合、アンモニア液の温度を上げて気化させるための熱量が、アンモニアの燃焼熱から賄われることになり、ガスタービンシステムの効率が下がるという課題がある。 Large-scale gas turbine systems consume large amounts of fuel. For this reason, when ammonia is used as a fuel, it is necessary to store a large amount of ammonia. When ammonia is a low temperature liquid of about -33°C, its vapor pressure is approximately atmospheric pressure. Therefore, when ammonia is stored in a tank, the internal pressure applied to the tank is reduced, and problems with tank strength and structure are less likely to occur. On the other hand, if low-temperature ammonia liquid is supplied directly to the combustor as gas turbine fuel, the amount of heat required to raise the temperature of the ammonia liquid and vaporize it will be covered by the combustion heat of ammonia, which will reduce the gas turbine system's efficiency. The problem is that efficiency decreases.
 本開示の目的は、ガスタービンシステムの効率を向上させることが可能なガスタービンシステムを提供することである。 An object of the present disclosure is to provide a gas turbine system that can improve the efficiency of the gas turbine system.
 上記課題を解決するために、本開示のガスタービンシステムは、アンモニアが液体の状態で貯蔵されるアンモニアタンクと、アンモニアタンクと接続され、アンモニアが液体の状態で供給される燃焼器と、燃焼器と接続される排気流路と、排気流路に設けられるボイラと、排気流路のうちボイラより下流側に配置され、アンモニアタンクと燃焼器とを接続するアンモニア流路が通過する熱交換器と、を備える。 In order to solve the above problems, a gas turbine system of the present disclosure includes an ammonia tank in which ammonia is stored in a liquid state, a combustor connected to the ammonia tank and supplied with ammonia in a liquid state, and a combustor. an exhaust flow path connected to the exhaust flow path, a boiler provided in the exhaust flow path, and a heat exchanger disposed downstream of the boiler in the exhaust flow path and through which the ammonia flow path connecting the ammonia tank and the combustor passes. , is provided.
 熱交換器において、排気流路とアンモニア流路との間に熱媒体流路が介在してもよい。 In the heat exchanger, a heat medium flow path may be interposed between the exhaust flow path and the ammonia flow path.
 熱交換器は、第1熱交換器と、排気流路のうち第1熱交換器より下流側に配置される第2熱交換器とを含み、アンモニア流路には、アンモニアが通過する熱交換器が互いに異なる複数の状態の間でアンモニアの経路を切り替える切替機構が設けられてもよい。 The heat exchanger includes a first heat exchanger and a second heat exchanger disposed downstream of the first heat exchanger in the exhaust flow path, and the ammonia flow path includes a heat exchanger through which ammonia passes. A switching mechanism may be provided to switch the path of ammonia between a plurality of different states of the vessel.
 切替機構は、アンモニア流路におけるアンモニアの状態に基づいて、アンモニアの経路を切り替えてもよい。 The switching mechanism may switch the ammonia path based on the state of ammonia in the ammonia flow path.
 本開示によれば、ガスタービンシステムの効率を向上させることができる。 According to the present disclosure, the efficiency of the gas turbine system can be improved.
図1は、本開示の実施形態に係るガスタービンシステムの構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a gas turbine system according to an embodiment of the present disclosure. 図2は、第1の変形例に係るガスタービンシステムの構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a gas turbine system according to a first modification. 図3は、第2の変形例に係るガスタービンシステムの構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of a gas turbine system according to a second modification. 図4は、第3の変形例に係るガスタービンシステムの構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of a gas turbine system according to a third modification.
 以下に添付図面を参照しながら、本開示の実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 Embodiments of the present disclosure will be described below with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for easy understanding, and do not limit the present disclosure unless otherwise specified. In this specification and drawings, elements having substantially the same functions and configurations are designated by the same reference numerals to omit redundant explanation, and elements not directly related to the present disclosure are omitted from illustration. do.
 図1は、本実施形態に係るガスタービンシステム1の構成を示す模式図である。図1に示すように、ガスタービンシステム1は、圧縮機11aと、タービン11bと、燃焼器12と、アンモニアタンク13と、ボイラ14と、排気塔15と、熱交換器16と、ポンプ17と、流量制御弁18とを備える。 FIG. 1 is a schematic diagram showing the configuration of a gas turbine system 1 according to the present embodiment. As shown in FIG. 1, the gas turbine system 1 includes a compressor 11a, a turbine 11b, a combustor 12, an ammonia tank 13, a boiler 14, an exhaust tower 15, a heat exchanger 16, and a pump 17. , a flow rate control valve 18.
 圧縮機11aおよびタービン11bは、一体として回転する。圧縮機11aとタービン11bとは、シャフトによって互いに連結されている。 The compressor 11a and the turbine 11b rotate as a unit. The compressor 11a and the turbine 11b are connected to each other by a shaft.
 圧縮機11aは、燃焼器12と接続される吸気流路101に設けられている。吸気流路101には、燃焼器12に供給される空気が流通する。吸気流路101の上流側の端部には、空気が外部から取り込まれる不図示の吸気口が設けられる。吸気口から取り込まれた空気は、圧縮機11aを通過して、燃焼器12に送られる。圧縮機11aは、空気を圧縮して下流側に吐出する。 The compressor 11a is provided in an intake flow path 101 connected to the combustor 12. Air supplied to the combustor 12 flows through the intake flow path 101 . An intake port (not shown) through which air is taken in from the outside is provided at the upstream end of the intake flow path 101. Air taken in from the intake port passes through the compressor 11a and is sent to the combustor 12. The compressor 11a compresses air and discharges it downstream.
 タービン11bは、燃焼器12と接続される排気流路102に設けられている。排気流路102には、燃焼器12から排出された排気ガスが流通する。燃焼器12から排出された排気ガスは、タービン11bを通過して、排気流路102のうちタービン11bより下流側に送られる。タービン11bは、排気ガスによって回されることによって、回転動力を生成する。 The turbine 11b is provided in an exhaust flow path 102 connected to the combustor 12. Exhaust gas discharged from the combustor 12 flows through the exhaust flow path 102 . Exhaust gas discharged from the combustor 12 passes through the turbine 11b and is sent to the downstream side of the turbine 11b in the exhaust flow path 102. The turbine 11b generates rotational power by being rotated by exhaust gas.
 圧縮機11aには、図示しない発電機が接続されている。タービン11bから圧縮機11aに伝達された回転動力は、発電機による発電に利用される。 A generator (not shown) is connected to the compressor 11a. The rotational power transmitted from the turbine 11b to the compressor 11a is used for power generation by a generator.
 燃焼器12には、圧縮機11aにより圧縮された空気が吸気流路101から供給されるとともに、アンモニアが液体の状態でアンモニアタンク13から燃料として供給される。燃焼器12では、アンモニアを燃料として用いて燃焼が行われる。燃焼器12で生じた排気ガスは、排気流路102に排出される。 The combustor 12 is supplied with air compressed by the compressor 11a from the intake flow path 101, and ammonia in a liquid state is supplied as fuel from the ammonia tank 13. In the combustor 12, combustion is performed using ammonia as fuel. Exhaust gas generated in the combustor 12 is discharged into the exhaust flow path 102.
 アンモニアタンク13には、アンモニアが液体の状態で貯蔵される。アンモニアタンク13では、例えば、大気圧、かつ、-33℃で、アンモニアが液体の状態に維持されている。このように、アンモニアを低温の液体にした状態でアンモニアタンク13に貯蔵することによって、アンモニアタンク13内の蒸気圧が抑制され、タンクの強度および構造上の問題発生が抑制される。 Ammonia is stored in a liquid state in the ammonia tank 13. In the ammonia tank 13, ammonia is maintained in a liquid state at, for example, atmospheric pressure and -33°C. In this manner, by storing ammonia in a low-temperature liquid state in the ammonia tank 13, the vapor pressure within the ammonia tank 13 is suppressed, and problems with the strength and structure of the tank are suppressed.
 アンモニアタンク13は、アンモニア流路103を介して燃焼器12と接続される。アンモニア流路103には、アンモニアが流通する。アンモニアタンク13からアンモニア流路103を介して燃焼器12にアンモニアが供給される。アンモニア流路103の詳細については後述する。 The ammonia tank 13 is connected to the combustor 12 via an ammonia flow path 103. Ammonia flows through the ammonia flow path 103. Ammonia is supplied from the ammonia tank 13 to the combustor 12 via the ammonia flow path 103. Details of the ammonia channel 103 will be described later.
 排気流路102のうちタービン11bより下流側には、ボイラ14が設けられる。ボイラ14には、水が流通する流路104が設けられている。流路104を流通する水は、排気流路102を流通する排気ガスによって加熱され、気化して気体(つまり、水蒸気)になる。ボイラ14の流路104は、図示しない蒸気タービンと接続されている。ボイラ14で発生した水蒸気は、蒸気タービンに送られる。そして、水蒸気によって蒸気タービンが回され、回転動力が生成される。蒸気タービンにより生成された回転動力は、発電に利用される。 A boiler 14 is provided in the exhaust flow path 102 on the downstream side of the turbine 11b. The boiler 14 is provided with a flow path 104 through which water flows. The water flowing through the flow path 104 is heated by the exhaust gas flowing through the exhaust flow path 102 and vaporizes into gas (that is, water vapor). A flow path 104 of the boiler 14 is connected to a steam turbine (not shown). Steam generated in the boiler 14 is sent to a steam turbine. The steam then turns a steam turbine and generates rotational power. The rotary power generated by the steam turbine is used for power generation.
 排気流路102は、ボイラ14より下流側において、排気塔15と接続される。燃焼器12から排出された排気ガスは、タービン11bおよびボイラ14を通過して、排気塔15に送られ、排気塔15から排出される。 The exhaust flow path 102 is connected to the exhaust tower 15 on the downstream side of the boiler 14. Exhaust gas discharged from the combustor 12 passes through the turbine 11b and the boiler 14, is sent to the exhaust tower 15, and is exhausted from the exhaust tower 15.
 排気流路102のうちボイラ14より下流側には、熱交換器16が配置される。アンモニア流路103は、熱交換器16を通過する。アンモニア流路103のうち熱交換器16とアンモニアタンク13との間には、ポンプ17が設けられる。ポンプ17は、アンモニアタンク13から供給されるアンモニアを加圧して下流側に送出する。ポンプ17により送出されたアンモニアは、熱交換器16に送られる。 A heat exchanger 16 is arranged in the exhaust flow path 102 on the downstream side of the boiler 14. Ammonia flow path 103 passes through heat exchanger 16 . A pump 17 is provided between the heat exchanger 16 and the ammonia tank 13 in the ammonia flow path 103 . The pump 17 pressurizes ammonia supplied from the ammonia tank 13 and sends it downstream. Ammonia sent out by pump 17 is sent to heat exchanger 16.
 熱交換器16では、排気流路102を流通する排気ガスと、アンモニア流路103を流通するアンモニアとの間で熱交換が行われる。排気流路102を流通する排気ガスの温度は、アンモニア流路103を流通するアンモニアの温度よりも高い。ゆえに、熱交換器16では、排気流路102を流通する排気ガスによって、アンモニア流路103を流通するアンモニアが加熱される。具体的には、熱交換器16において、アンモニアは、気化しない程度に加熱される。ゆえに、アンモニアは、液体の状態で燃焼器12に供給される。 In the heat exchanger 16, heat exchange is performed between the exhaust gas flowing through the exhaust flow path 102 and the ammonia flowing through the ammonia flow path 103. The temperature of the exhaust gas flowing through the exhaust flow path 102 is higher than the temperature of ammonia flowing through the ammonia flow path 103. Therefore, in the heat exchanger 16, the ammonia flowing through the ammonia flow path 103 is heated by the exhaust gas flowing through the exhaust flow path 102. Specifically, in the heat exchanger 16, ammonia is heated to an extent that it does not vaporize. Therefore, ammonia is supplied to the combustor 12 in a liquid state.
 アンモニア流路103のうち熱交換器16と燃焼器12との間には、流量制御弁18が設けられる。流量制御弁18は、アンモニア流路103を通り燃焼器12に送られる液体のアンモニアの流量を調整する。具体的には、流量制御弁18の開度が調整されることによって、燃焼器12へのアンモニアの供給量が調整される。 A flow control valve 18 is provided between the heat exchanger 16 and the combustor 12 in the ammonia flow path 103. The flow control valve 18 adjusts the flow rate of liquid ammonia sent to the combustor 12 through the ammonia flow path 103. Specifically, the amount of ammonia supplied to the combustor 12 is adjusted by adjusting the opening degree of the flow control valve 18.
 以上説明したように、ガスタービンシステム1では、アンモニアタンク13と燃焼器12とを接続するアンモニア流路103が通過する熱交換器16が、排気流路102のうちボイラ14より下流側に配置される。それにより、熱交換器16において、燃焼器12に供給されるアンモニアを、ボイラ14を通過した排気ガスの熱を利用して加熱できる。ゆえに、アンモニアを燃焼させるために必要なエネルギーの一部を排気ガスの熱で賄うことができる。よって、ガスタービンシステム1の効率を向上させることができる。 As explained above, in the gas turbine system 1, the heat exchanger 16 through which the ammonia flow path 103 connecting the ammonia tank 13 and the combustor 12 passes is arranged downstream of the boiler 14 in the exhaust flow path 102. Ru. Thereby, in the heat exchanger 16, the ammonia supplied to the combustor 12 can be heated using the heat of the exhaust gas that has passed through the boiler 14. Therefore, part of the energy required to combust ammonia can be covered by the heat of the exhaust gas. Therefore, the efficiency of the gas turbine system 1 can be improved.
 さらに、ガスタービンシステム1では、熱交換器16において、アンモニアが気化しない程度に加熱される。つまり、熱交換器16において、排気ガスの熱はアンモニアの顕熱として利用される。ゆえに、アンモニアタンク13に液体の状態で貯蔵されているアンモニアが、アンモニア流路103において気化することなく、液体の状態で燃焼器12に供給される。仮に、アンモニア流路103においてアンモニアを気化させた場合、気化したアンモニアの圧力変動の抑制、および、再凝縮の防止のために追加の設備および複雑な制御が必要となる。また、気体のアンモニアを流通させる配管を大型化する必要も生じる。一方、ガスタービンシステム1では、アンモニア流路103においてアンモニアが気化しないので、これらの問題も発生しない。 Furthermore, in the gas turbine system 1, ammonia is heated in the heat exchanger 16 to an extent that it does not vaporize. That is, in the heat exchanger 16, the heat of the exhaust gas is used as sensible heat of ammonia. Therefore, ammonia stored in a liquid state in the ammonia tank 13 is supplied to the combustor 12 in a liquid state without being vaporized in the ammonia flow path 103. If ammonia were to be vaporized in the ammonia flow path 103, additional equipment and complicated controls would be required to suppress pressure fluctuations in the vaporized ammonia and prevent recondensation. Furthermore, it becomes necessary to increase the size of the piping through which gaseous ammonia flows. On the other hand, in the gas turbine system 1, since ammonia does not vaporize in the ammonia flow path 103, these problems do not occur.
 詳細には、ガスタービンシステム1の効率を効果的に向上させる観点では、上記の例のように、アンモニア流路103のうち熱交換器16とアンモニアタンク13との間に、アンモニアを加圧するポンプ17が設けられることが好ましい。それにより、アンモニアタンク13に貯蔵されているアンモニアが、ポンプ17によって加圧された後に、熱交換器16に送られる。ゆえに、熱交換器16を通過するアンモニアの沸点が上昇する。よって、熱交換器16を通過するアンモニアが気化しない範囲内で排気ガスから回収できる熱量(つまり、顕熱として回収できる熱量)が増大する。したがって、アンモニアを燃焼させるために必要なエネルギーのうち排気ガスの熱により賄われる割合を大きくすることができるので、ガスタービンシステム1の効率を効果的に向上させることができる。 Specifically, from the viewpoint of effectively improving the efficiency of the gas turbine system 1, as in the above example, a pump that pressurizes ammonia is installed between the heat exchanger 16 and the ammonia tank 13 in the ammonia flow path 103. 17 is preferably provided. Thereby, the ammonia stored in the ammonia tank 13 is pressurized by the pump 17 and then sent to the heat exchanger 16. Therefore, the boiling point of ammonia passing through the heat exchanger 16 increases. Therefore, the amount of heat that can be recovered from the exhaust gas (that is, the amount of heat that can be recovered as sensible heat) increases within the range where the ammonia passing through the heat exchanger 16 is not vaporized. Therefore, the proportion of the energy required to combust ammonia that is covered by the heat of the exhaust gas can be increased, so that the efficiency of the gas turbine system 1 can be effectively improved.
 以下、図2~図4を参照して、各変形例に係るガスタービンシステムについて説明する。 Hereinafter, gas turbine systems according to each modification will be described with reference to FIGS. 2 to 4.
 図2は、第1の変形例に係るガスタービンシステム1Aの構成を示す模式図である。図2に示すように、第1の変形例に係るガスタービンシステム1Aでは、上述したガスタービンシステム1と比較して、熱交換器16において、排気流路102とアンモニア流路103との間に熱媒体流路105が介在する点が異なる。 FIG. 2 is a schematic diagram showing the configuration of a gas turbine system 1A according to a first modification. As shown in FIG. 2, in the gas turbine system 1A according to the first modification, compared to the gas turbine system 1 described above, in the heat exchanger 16, there is a gap between the exhaust flow path 102 and the ammonia flow path 103. The difference is that a heat medium flow path 105 is provided.
 熱媒体流路105には、水等の熱媒体が流通する。熱媒体流路105を流通する熱媒体の供給源は、特に限定されない。例えば、熱媒体流路105とボイラ14の流路104とが連通しており、熱媒体流路105を流通する熱媒体が、流路104を循環している水であってもよい。また、熱媒体流路105とボイラ14の流路104とが連通しておらず、熱媒体流路105を流通する熱媒体が、流路104以外の供給源から供給される水等の熱媒体であってもよい。 A heat medium such as water flows through the heat medium flow path 105. The source of the heat medium flowing through the heat medium flow path 105 is not particularly limited. For example, the heat medium flow path 105 and the flow path 104 of the boiler 14 may be in communication with each other, and the heat medium flowing through the heat medium flow path 105 may be water circulating through the flow path 104 . In addition, the heat medium flow path 105 and the flow path 104 of the boiler 14 are not in communication with each other, and the heat medium flowing through the heat medium flow path 105 is a heat medium such as water supplied from a source other than the flow path 104. It may be.
 ガスタービンシステム1Aでは、熱交換器16において、排気流路102とアンモニア流路103とが、熱媒体流路105を挟んで互いに対向している。ゆえに、熱交換器16では、排気流路102を流通する排気ガスと、アンモニア流路103を流通するアンモニアとの間で熱交換が、熱媒体流路105を流通する熱媒体を介して間接的に行われる。具体的には、排気流路102を流通する排気ガスと、熱媒体流路105を流通する熱媒体との間で熱交換が直接的に行われる。そして、熱媒体流路105を流通する熱媒体と、アンモニア流路103を流通するアンモニアとの間で熱交換が直接的に行われる。 In the gas turbine system 1A, in the heat exchanger 16, the exhaust flow path 102 and the ammonia flow path 103 face each other with the heat medium flow path 105 in between. Therefore, in the heat exchanger 16, heat exchange between the exhaust gas flowing through the exhaust flow path 102 and the ammonia flowing through the ammonia flow path 103 is performed indirectly via the heat medium flowing through the heat medium flow path 105. It will be held on. Specifically, heat exchange is directly performed between the exhaust gas flowing through the exhaust flow path 102 and the heat medium flowing through the heat medium flow path 105. Then, heat exchange is directly performed between the heat medium flowing through the heat medium flow path 105 and the ammonia flowing through the ammonia flow path 103.
 以上説明したように、ガスタービンシステム1Aでは、熱交換器16において、排気流路102とアンモニア流路103との間に熱媒体流路105が介在する。ゆえに、熱媒体流路105を流通する熱媒体の流量を調整することによって、排気流路102を流通する排気ガスと、アンモニア流路103を流通するアンモニアとの間で熱交換される熱量を調整できる。それにより、熱交換器16を通過するアンモニアが排気ガスから回収する熱量を、アンモニアの気化を抑制しつつ、できるだけ大きくすることができる。 As explained above, in the gas turbine system 1A, the heat medium flow path 105 is interposed between the exhaust flow path 102 and the ammonia flow path 103 in the heat exchanger 16. Therefore, by adjusting the flow rate of the heat medium flowing through the heat medium flow path 105, the amount of heat exchanged between the exhaust gas flowing through the exhaust flow path 102 and the ammonia flowing through the ammonia flow path 103 can be adjusted. can. Thereby, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
 図3は、第2の変形例に係るガスタービンシステム1Bの構成を示す模式図である。図3に示すように、第2の変形例に係るガスタービンシステム1Bでは、上述したガスタービンシステム1と比較して、熱交換器16の数が2つである点が異なる。 FIG. 3 is a schematic diagram showing the configuration of a gas turbine system 1B according to a second modification. As shown in FIG. 3, the gas turbine system 1B according to the second modification differs from the gas turbine system 1 described above in that the number of heat exchangers 16 is two.
 ガスタービンシステム1Bでは、熱交換器16として、第1熱交換器16aと、第2熱交換器16bとが設けられる。第1熱交換器16aおよび第2熱交換器16bは、排気流路102において、上流側からこの順に配置される。つまり、第2熱交換器16bは、排気流路102のうち第1熱交換器16aより下流側に配置される。アンモニア流路103は、第1熱交換器16aおよび第2熱交換器16bの両方の熱交換器16を通過する。 In the gas turbine system 1B, as the heat exchanger 16, a first heat exchanger 16a and a second heat exchanger 16b are provided. The first heat exchanger 16a and the second heat exchanger 16b are arranged in this order from the upstream side in the exhaust flow path 102. That is, the second heat exchanger 16b is arranged downstream of the first heat exchanger 16a in the exhaust flow path 102. The ammonia flow path 103 passes through both the heat exchangers 16, the first heat exchanger 16a and the second heat exchanger 16b.
 アンモニア流路103には、アンモニアが通過する熱交換器16が互いに異なる複数の状態の間でアンモニアの経路を切り替える切替機構20-1が設けられる。切替機構20-1は、アンモニア流路103のうち分岐した部分(具体的には、後述する流路103a、103b)と、アンモニア流路103におけるアンモニアの経路を切り替える切替バルブ21と、温度センサ22と、制御装置23とを含む。 The ammonia flow path 103 is provided with a switching mechanism 20-1 that switches the ammonia path between a plurality of different states of the heat exchanger 16 through which the ammonia passes. The switching mechanism 20-1 includes a branched portion of the ammonia flow path 103 (specifically, flow paths 103a and 103b described later), a switching valve 21 that switches the ammonia path in the ammonia flow path 103, and a temperature sensor 22. and a control device 23.
 図3の例では、アンモニア流路103は、ポンプ17より下流側において、第2熱交換器16bを通過した後に、流路103aと流路103bとに分岐している。流路103aおよび流路103bは、流量制御弁18より上流側において互いに合流している。流路103aは、第1熱交換器16aを通過する。一方、流路103bは、第1熱交換器16aを通過しない。 In the example of FIG. 3, the ammonia flow path 103 passes through the second heat exchanger 16b on the downstream side of the pump 17, and then branches into a flow path 103a and a flow path 103b. The flow path 103a and the flow path 103b merge with each other on the upstream side of the flow control valve 18. The flow path 103a passes through the first heat exchanger 16a. On the other hand, the flow path 103b does not pass through the first heat exchanger 16a.
 切替バルブ21は、三方弁である。切替バルブ21は、流路103aの上流端と流路103bの上流端との間の接続部分に設けられる。切替バルブ21は、アンモニア流路103におけるアンモニアの経路を、アンモニアが流路103aを通過する状態と、アンモニアが流路103bを通過する状態との間で切り替える。アンモニアが流路103aを通過する状態では、アンモニアタンク13から送られたアンモニアは、第2熱交換器16bを通過した後に、第1熱交換器16aを通過し、燃焼器12に送られる。一方、アンモニアが流路103bを通過する状態では、アンモニアタンク13から送られたアンモニアは、第2熱交換器16bを通過した後に、第1熱交換器16aを通過せずに、燃焼器12に送られる。 The switching valve 21 is a three-way valve. The switching valve 21 is provided at a connecting portion between the upstream end of the flow path 103a and the upstream end of the flow path 103b. The switching valve 21 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the flow path 103a and a state in which ammonia passes through the flow path 103b. In the state where ammonia passes through the flow path 103a, the ammonia sent from the ammonia tank 13 passes through the second heat exchanger 16b, then passes through the first heat exchanger 16a, and is sent to the combustor 12. On the other hand, in a state where ammonia passes through the flow path 103b, the ammonia sent from the ammonia tank 13 passes through the second heat exchanger 16b and then enters the combustor 12 without passing through the first heat exchanger 16a. Sent.
 上記のように、切替機構20-1は、アンモニア流路103におけるアンモニアの経路を、アンモニアが第1熱交換器16aおよび第2熱交換器16bの両方を通過する状態と、アンモニアが第2熱交換器16bのみを通過する状態との間で切り替える。 As described above, the switching mechanism 20-1 changes the path of ammonia in the ammonia flow path 103 into a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b. Switching is made between a state in which only the exchanger 16b is passed.
 上記では、切替バルブ21が三方弁である例を説明した。ただし、切替バルブ21は、三方弁でなくてもよい。例えば、開閉弁である切替バルブ21が流路103aおよび流路103bにそれぞれ設けられてもよい。この場合、流路103aの切替バルブ21を開状態にし、流路103bの切替バルブ21を閉状態にすることで、アンモニアが流路103aを通過する状態となる。一方、流路103aの切替バルブ21を閉状態にし、流路103bの切替バルブ21を開状態にすることで、アンモニアが流路103bを通過する状態となる。また、切替機構20-1において、アンモニア流路103のうち分岐する部分の数および接続位置は、特に限定されない。つまり、切替機構20-1において、アンモニア流路103がどのように分岐するかは、特に限定されない。 In the above example, the switching valve 21 is a three-way valve. However, the switching valve 21 does not have to be a three-way valve. For example, switching valves 21, which are on-off valves, may be provided in the flow path 103a and the flow path 103b, respectively. In this case, by opening the switching valve 21 of the channel 103a and closing the switching valve 21 of the channel 103b, ammonia is allowed to pass through the channel 103a. On the other hand, by closing the switching valve 21 of the channel 103a and opening the switching valve 21 of the channel 103b, ammonia is allowed to pass through the channel 103b. Further, in the switching mechanism 20-1, the number and connection positions of branching portions of the ammonia flow path 103 are not particularly limited. That is, in the switching mechanism 20-1, there is no particular limitation on how the ammonia flow path 103 branches.
 温度センサ22は、第2熱交換器16bを通過したアンモニアの温度を検出し、検出結果を制御装置23に出力する。温度センサ22は、例えば、アンモニア流路103のうち、第2熱交換器16bと切替バルブ21との間に設けられる。 The temperature sensor 22 detects the temperature of ammonia that has passed through the second heat exchanger 16b, and outputs the detection result to the control device 23. The temperature sensor 22 is provided, for example, in the ammonia flow path 103 between the second heat exchanger 16b and the switching valve 21.
 制御装置23は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む。ガスタービンシステム1Bでは、制御装置23は、切替バルブ21の動作を制御する。それにより、制御装置23は、アンモニアの経路を、アンモニアが第1熱交換器16aおよび第2熱交換器16bの両方を通過する状態と、アンモニアが第2熱交換器16bのみを通過する状態との間で切り替えることができる。 The control device 23 includes a central processing unit (CPU), a ROM in which programs and the like are stored, and a RAM as a work area. In the gas turbine system 1B, the control device 23 controls the operation of the switching valve 21. Thereby, the control device 23 changes the path of ammonia into a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes only through the second heat exchanger 16b. You can switch between.
 制御装置23は、アンモニア流路103におけるアンモニアの状態に基づいて、アンモニアの経路を切り替える。図3の例では、制御装置23は、例えば、第2熱交換器16bを通過したアンモニアの温度に基づいて、アンモニアの経路を切り替える。 The control device 23 switches the ammonia path based on the state of ammonia in the ammonia flow path 103. In the example of FIG. 3, the control device 23 switches the ammonia route based on the temperature of the ammonia that has passed through the second heat exchanger 16b, for example.
 例えば、第2熱交換器16bを通過したアンモニアの温度が基準温度以下である場合、制御装置23は、アンモニアが流路103aを通過するように切替バルブ21を制御し、アンモニアを第1熱交換器16aおよび第2熱交換器16bの両方に通過させる。一方、第2熱交換器16bを通過したアンモニアの温度が基準温度より高い場合、制御装置23は、アンモニアが流路103bを通過するように切替バルブ21を制御し、アンモニアを第2熱交換器16bのみに通過させる。 For example, when the temperature of the ammonia that has passed through the second heat exchanger 16b is below the reference temperature, the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103a, and transfers the ammonia to the first heat exchanger. It passes through both the heat exchanger 16a and the second heat exchanger 16b. On the other hand, when the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature, the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103b, and transfers the ammonia to the second heat exchanger 16b. 16b only.
 基準温度は、アンモニアを第1熱交換器16aに通過させた場合に、アンモニアが気化するか否かを判断するための指標である。第2熱交換器16bを通過したアンモニアの温度が基準温度以下である場合、アンモニアを第1熱交換器16aに通過させてもアンモニアが気化しないと判断できる。一方、第2熱交換器16bを通過したアンモニアの温度が基準温度より高い場合、アンモニアを第1熱交換器16aに通過させるとアンモニアが気化すると判断できる。 The reference temperature is an index for determining whether or not ammonia is vaporized when ammonia is passed through the first heat exchanger 16a. If the temperature of the ammonia that has passed through the second heat exchanger 16b is below the reference temperature, it can be determined that ammonia will not be vaporized even if it is passed through the first heat exchanger 16a. On the other hand, if the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature, it can be determined that ammonia will be vaporized if it is passed through the first heat exchanger 16a.
 アンモニアの経路を上記のように切り替えることによって、熱交換器16を通過するアンモニアが排気ガスから回収する熱量を、アンモニアの気化を抑制しつつ、できるだけ大きくすることができる。 By switching the path of ammonia as described above, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
 上記では、切替機構20-1が、第2熱交換器16bを通過したアンモニアの温度に基づいて、アンモニアの経路を切り替える例を説明した。ただし、切替機構20-1は、アンモニア流路103におけるアンモニアの状態を示すパラメータとして、上記の温度以外のパラメータに基づいて、アンモニアの経路を切り替えてもよい。例えば、アンモニア流路103におけるアンモニアの流量が、アンモニア流路103におけるアンモニアの状態を示すパラメータとして用いられてもよい。例えば、アンモニア流路103におけるアンモニアの圧力が、アンモニア流路103におけるアンモニアの状態を示すパラメータとして用いられてもよい。 In the above example, the switching mechanism 20-1 switches the ammonia route based on the temperature of the ammonia that has passed through the second heat exchanger 16b. However, the switching mechanism 20-1 may switch the ammonia path based on a parameter other than the above temperature as a parameter indicating the state of ammonia in the ammonia flow path 103. For example, the flow rate of ammonia in the ammonia flow path 103 may be used as a parameter indicating the state of ammonia in the ammonia flow path 103. For example, the pressure of ammonia in the ammonia flow path 103 may be used as a parameter indicating the state of ammonia in the ammonia flow path 103.
 以上説明したように、ガスタービンシステム1Bでは、熱交換器16は、第1熱交換器16aと、排気流路102のうち第1熱交換器16aより下流側に配置される第2熱交換器16bとを含む。そして、アンモニア流路103には、アンモニアが通過する熱交換器16が互いに異なる複数の状態の間でアンモニアの経路を切り替える切替機構20-1が設けられる。それにより、アンモニア流路103において、アンモニアが通過する熱交換器16の数または種類を変化させることができる。図3の例では、アンモニアが通過する熱交換器16の数を変化させることができる。ゆえに、排気ガスとの熱交換によるアンモニアの温度の上昇度合いを調整できる。よって、熱交換器16を通過するアンモニアが排気ガスから回収する熱量を、アンモニアの気化を抑制しつつ、できるだけ大きくすることができる。 As explained above, in the gas turbine system 1B, the heat exchanger 16 includes the first heat exchanger 16a and the second heat exchanger disposed downstream of the first heat exchanger 16a in the exhaust flow path 102. 16b. The ammonia flow path 103 is provided with a switching mechanism 20-1 that switches the ammonia path between a plurality of different states of the heat exchanger 16 through which the ammonia passes. Thereby, in the ammonia flow path 103, the number or type of heat exchangers 16 through which ammonia passes can be changed. In the example of FIG. 3, the number of heat exchangers 16 through which ammonia passes can be varied. Therefore, the degree of increase in temperature of ammonia due to heat exchange with exhaust gas can be adjusted. Therefore, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
 特に、切替機構20-1は、上述したように、アンモニア流路103におけるアンモニアの状態に基づいて、アンモニアの経路を切り替えることが好ましい。それにより、排気ガスとの熱交換によるアンモニアの温度の上昇度合いを、アンモニア流路103におけるアンモニアの状態に基づいて適切に調整できる。よって、熱交換器16を通過するアンモニアが排気ガスから回収する熱量を、アンモニアの気化を抑制しつつ、できるだけ大きくすることが適切に実現される。 In particular, it is preferable that the switching mechanism 20-1 switches the ammonia path based on the state of ammonia in the ammonia flow path 103, as described above. Thereby, the degree of increase in the temperature of ammonia due to heat exchange with the exhaust gas can be appropriately adjusted based on the state of ammonia in the ammonia flow path 103. Therefore, it is possible to appropriately increase the amount of heat that ammonia passing through the heat exchanger 16 recovers from the exhaust gas as much as possible while suppressing vaporization of ammonia.
 図4は、第3の変形例に係るガスタービンシステム1Cの構成を示す模式図である。図4に示すように、第3の変形例に係るガスタービンシステム1Cでは、上述したガスタービンシステム1Bと同様に、熱交換器16として、第1熱交換器16aと、第2熱交換器16bとが設けられる。ただし、第3の変形例に係るガスタービンシステム1Cでは、上述したガスタービンシステム1Bと比較して、切替機構20-1と異なる切替機構20-2が設けられている。 FIG. 4 is a schematic diagram showing the configuration of a gas turbine system 1C according to a third modification. As shown in FIG. 4, in the gas turbine system 1C according to the third modification, the heat exchangers 16 include a first heat exchanger 16a and a second heat exchanger 16b, similarly to the gas turbine system 1B described above. and is provided. However, in the gas turbine system 1C according to the third modification, a switching mechanism 20-2 different from the switching mechanism 20-1 is provided, compared to the gas turbine system 1B described above.
 切替機構20-2は、上述した切替機構20-1と同様に、アンモニアが通過する熱交換器16が互いに異なる複数の状態の間でアンモニアの経路を切り替える。切替機構20-2では、上述した切替機構20-1と比較して、アンモニア流路103の分岐箇所が増えている。また、切替機構20-2は、上述した切替機構20-1に対して、切替バルブ24と、流量センサ25とが追加されている。 Similar to the switching mechanism 20-1 described above, the switching mechanism 20-2 switches the path of ammonia between a plurality of states in which the heat exchanger 16 through which the ammonia passes is different from each other. In the switching mechanism 20-2, the number of branch points of the ammonia flow path 103 is increased compared to the switching mechanism 20-1 described above. Further, the switching mechanism 20-2 has a switching valve 24 and a flow rate sensor 25 added to the switching mechanism 20-1 described above.
 図4の例では、アンモニア流路103は、ポンプ17より下流側において、流路103cと流路103dとに分岐している。流路103cおよび流路103dは、切替バルブ21より上流側において互いに合流している。流路103cは、第2熱交換器16bを通過する。一方、流路103dは、第2熱交換器16bを通過しない。アンモニア流路103は、図3の例と同様に、切替バルブ21の設置位置において、流路103aと流路103bとに分岐している。流路103aは、第1熱交換器16aを通過する。一方、流路103bは、第1熱交換器16aを通過しない。 In the example of FIG. 4, the ammonia flow path 103 is branched into a flow path 103c and a flow path 103d on the downstream side of the pump 17. The flow path 103c and the flow path 103d merge with each other on the upstream side of the switching valve 21. The flow path 103c passes through the second heat exchanger 16b. On the other hand, the flow path 103d does not pass through the second heat exchanger 16b. Similar to the example of FIG. 3, the ammonia flow path 103 branches into a flow path 103a and a flow path 103b at the installation position of the switching valve 21. The flow path 103a passes through the first heat exchanger 16a. On the other hand, the flow path 103b does not pass through the first heat exchanger 16a.
 切替バルブ24は、切替バルブ21と同様に、三方弁である。切替バルブ24は、流路103cの上流端と流路103dの上流端との接続部分に設けられる。切替バルブ24は、アンモニア流路103におけるアンモニアの経路を、アンモニアが流路103cを通過する状態と、アンモニアが流路103dを通過する状態との間で切り替える。アンモニアが流路103cを通過する状態では、アンモニアタンク13から送られたアンモニアは、第2熱交換器16bを通過した後に、切替バルブ21に送られる。一方、アンモニアが流路103dを通過する状態では、アンモニアタンク13から送られたアンモニアは、第2熱交換器16bを通過せずに、切替バルブ21に送られる。 The switching valve 24, like the switching valve 21, is a three-way valve. The switching valve 24 is provided at a connecting portion between the upstream end of the flow path 103c and the upstream end of the flow path 103d. The switching valve 24 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the flow path 103c and a state in which ammonia passes through the flow path 103d. In a state where ammonia passes through the flow path 103c, the ammonia sent from the ammonia tank 13 is sent to the switching valve 21 after passing through the second heat exchanger 16b. On the other hand, in a state where ammonia passes through the flow path 103d, ammonia sent from the ammonia tank 13 is sent to the switching valve 21 without passing through the second heat exchanger 16b.
 切替バルブ21は、図3の例と同様に、アンモニア流路103におけるアンモニアの経路を、アンモニアが流路103aを通過する状態と、アンモニアが流路103bを通過する状態との間で切り替える。アンモニアが流路103aを通過する状態では、切替バルブ21を通過したアンモニアは、第1熱交換器16aを通過し、燃焼器12に送られる。一方、アンモニアが流路103bを通過する状態では、切替バルブ21を通過したアンモニアは、第1熱交換器16aを通過せずに、燃焼器12に送られる。 Similar to the example of FIG. 3, the switching valve 21 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the flow path 103a and a state in which ammonia passes through the flow path 103b. When ammonia passes through the flow path 103a, the ammonia that has passed through the switching valve 21 passes through the first heat exchanger 16a and is sent to the combustor 12. On the other hand, in a state where ammonia passes through the flow path 103b, the ammonia that has passed through the switching valve 21 is sent to the combustor 12 without passing through the first heat exchanger 16a.
 上記のように、切替機構20-2は、アンモニア流路103におけるアンモニアの経路を、アンモニアが第1熱交換器16aを通過する状態と、アンモニアが第1熱交換器16aを通過しない状態との間で切り替える。また、切替機構20-2は、アンモニア流路103におけるアンモニアの経路を、アンモニアが第2熱交換器16bを通過する状態と、アンモニアが第2熱交換器16bを通過しない状態との間で切り替える。ゆえに、切替機構20-2は、アンモニアが第1熱交換器16aおよび第2熱交換器16bの両方を通過する状態と、アンモニアが第1熱交換器16aのみを通過する状態と、アンモニアが第2熱交換器16bのみを通過する状態と、アンモニアが第1熱交換器16aおよび第2熱交換器16bのいずれも通過しない状態との間でアンモニアの経路を切り替えることができる。 As described above, the switching mechanism 20-2 changes the ammonia path in the ammonia flow path 103 between a state in which ammonia passes through the first heat exchanger 16a and a state in which ammonia does not pass through the first heat exchanger 16a. Switch between. Further, the switching mechanism 20-2 switches the path of ammonia in the ammonia flow path 103 between a state in which ammonia passes through the second heat exchanger 16b and a state in which ammonia does not pass through the second heat exchanger 16b. . Therefore, the switching mechanism 20-2 has two states: a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, a state in which ammonia passes only through the first heat exchanger 16a, and a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b. The path of ammonia can be switched between a state in which the ammonia passes only through the two heat exchangers 16b and a state in which ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b.
 上記では、切替バルブ24が三方弁である例を説明した。ただし、切替バルブ24は、上述した切替バルブ21と同様に、三方弁でなくてもよい。例えば、開閉弁である切替バルブ24が流路103cおよび流路103dにそれぞれ設けられてもよい。この場合、流路103cの切替バルブ24を開状態にし、流路103dの切替バルブ24を閉状態にすることで、アンモニアが流路103cを通過する状態となる。一方、流路103cの切替バルブ24を閉状態にし、流路103dの切替バルブ24を開状態にすることで、アンモニアが流路103dを通過する状態となる。また、切替機構20-2において、アンモニア流路103のうち分岐する部分の数および接続位置は、特に限定されない。つまり、切替機構20-2において、アンモニア流路103がどのように分岐するかは、特に限定されない。 In the above example, the switching valve 24 is a three-way valve. However, the switching valve 24 does not have to be a three-way valve like the switching valve 21 described above. For example, a switching valve 24, which is an on-off valve, may be provided in each of the flow path 103c and the flow path 103d. In this case, by opening the switching valve 24 of the channel 103c and closing the switching valve 24 of the channel 103d, ammonia is allowed to pass through the channel 103c. On the other hand, by closing the switching valve 24 of the channel 103c and opening the switching valve 24 of the channel 103d, ammonia is allowed to pass through the channel 103d. Furthermore, in the switching mechanism 20-2, the number and connection positions of branching portions of the ammonia flow path 103 are not particularly limited. That is, in the switching mechanism 20-2, there is no particular limitation on how the ammonia flow path 103 branches.
 流量センサ25は、アンモニア流路103におけるアンモニアの流量を検出し、検出結果を制御装置23に出力する。流量センサ25は、例えば、アンモニア流路103のうち、ポンプ17と切替バルブ24との間に設けられる。 The flow rate sensor 25 detects the flow rate of ammonia in the ammonia flow path 103 and outputs the detection result to the control device 23. The flow rate sensor 25 is provided, for example, between the pump 17 and the switching valve 24 in the ammonia flow path 103.
 ガスタービンシステム1Cでは、制御装置23は、切替バルブ21、24の動作をそれぞれ制御する。それにより、制御装置23は、アンモニアの経路を、アンモニアが第1熱交換器16aおよび第2熱交換器16bの両方を通過する状態と、アンモニアが第1熱交換器16aのみを通過する状態と、アンモニアが第2熱交換器16bのみを通過する状態と、アンモニアが第1熱交換器16aおよび第2熱交換器16bのいずれも通過しない状態との間で切り替えることができる。 In the gas turbine system 1C, the control device 23 controls the operation of the switching valves 21 and 24, respectively. Thereby, the control device 23 changes the path of ammonia into a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, and a state in which ammonia passes only through the first heat exchanger 16a. It is possible to switch between a state in which ammonia passes only through the second heat exchanger 16b and a state in which ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b.
 制御装置23は、図3の例と同様に、アンモニア流路103におけるアンモニアの状態に基づいて、アンモニアの経路を切り替える。図4の例では、制御装置23は、例えば、基本的には、アンモニアを第2熱交換器16bに通過させた状態に維持し、第2熱交換器16bを通過したアンモニアの温度に基づいて、アンモニアが第1熱交換器16aを通過する状態と、アンモニアが第1熱交換器16aを通過しない状態との間でアンモニアの経路を切り替える。 The control device 23 switches the ammonia path based on the state of ammonia in the ammonia flow path 103, as in the example of FIG. In the example of FIG. 4, the control device 23 basically maintains the state in which ammonia is passed through the second heat exchanger 16b, and based on the temperature of the ammonia that has passed through the second heat exchanger 16b. , the ammonia path is switched between a state in which ammonia passes through the first heat exchanger 16a and a state in which ammonia does not pass through the first heat exchanger 16a.
 例えば、第2熱交換器16bを通過したアンモニアの温度が基準温度以下である場合、制御装置23は、アンモニアが流路103aを通過するように切替バルブ21を制御し、アンモニアを第1熱交換器16aおよび第2熱交換器16bの両方に通過させる。一方、第2熱交換器16bを通過したアンモニアの温度が基準温度より高い場合、制御装置23は、アンモニアが流路103bを通過するように切替バルブ21を制御し、アンモニアを第2熱交換器16bのみに通過させる。 For example, when the temperature of the ammonia that has passed through the second heat exchanger 16b is below the reference temperature, the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103a, and transfers the ammonia to the first heat exchanger. It passes through both the heat exchanger 16a and the second heat exchanger 16b. On the other hand, when the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature, the control device 23 controls the switching valve 21 so that the ammonia passes through the flow path 103b, and transfers the ammonia to the second heat exchanger 16b. 16b only.
 制御装置23は、例えば、第2熱交換器16bを通過したアンモニアの温度が基準温度より高く、かつ、アンモニア流路103におけるアンモニアの流量が基準流量を超える場合には、アンモニアが流路103dおよび流路103bを通過するように切替バルブ24および切替バルブ21をそれぞれ制御する。それにより、アンモニアが第1熱交換器16aおよび第2熱交換器16bのいずれにも通過しない状態となる。 For example, when the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature and the flow rate of ammonia in the ammonia flow path 103 exceeds the reference flow rate, the control device 23 controls the control device 23 so that the ammonia flows through the flow path 103d and The switching valve 24 and the switching valve 21 are respectively controlled so as to pass through the flow path 103b. As a result, ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b.
 基準流量は、第2熱交換器16bを通過したアンモニアの温度が基準温度より高い場合において、アンモニアを第2熱交換器16bのみに通過させた場合に、アンモニアが気化するか否かを判断するための指標である。第2熱交換器16bを通過したアンモニアの温度が基準温度より高く、かつ、アンモニア流路103におけるアンモニアの流量が基準流量を超える場合、アンモニアを第2熱交換器16bのみに通過させた場合であっても、アンモニアが気化すると判断できる。 The reference flow rate determines whether or not ammonia is vaporized when the ammonia that has passed through the second heat exchanger 16b is passed only through the second heat exchanger 16b when the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature. This is an indicator for When the temperature of the ammonia that has passed through the second heat exchanger 16b is higher than the reference temperature and the flow rate of ammonia in the ammonia flow path 103 exceeds the reference flow rate, when ammonia is passed only through the second heat exchanger 16b. Even if there is, it can be determined that the ammonia has vaporized.
 アンモニアの経路を上記のように切り替えることによって、熱交換器16を通過するアンモニアが排気ガスから回収する熱量を、アンモニアの気化を抑制しつつ、できるだけ大きくすることができる。 By switching the path of ammonia as described above, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
 上記では、切替機構20-2が、第2熱交換器16bを通過したアンモニアの温度、および、アンモニア流路103におけるアンモニアの流量の2つのパラメータに基づいて、アンモニアの経路を切り替える例を説明した。ただし、切替機構20-2は、アンモニア流路103におけるアンモニアの状態を示すパラメータとして、上記の2つのパラメータ以外のパラメータに基づいて、アンモニアの経路を切り替えてもよい。例えば、上記の2つのパラメータのうちの一方のみが、アンモニア流路103におけるアンモニアの状態を示すパラメータとして用いられてもよい。例えば、アンモニア流路103におけるアンモニアの圧力が、単独で、または、他のパラメータと併用されて、アンモニア流路103におけるアンモニアの状態を示すパラメータとして用いられてもよい。 In the above example, the switching mechanism 20-2 switches the ammonia route based on two parameters: the temperature of the ammonia that has passed through the second heat exchanger 16b, and the flow rate of ammonia in the ammonia flow path 103. . However, the switching mechanism 20-2 may switch the ammonia path based on a parameter other than the above two parameters as a parameter indicating the state of ammonia in the ammonia flow path 103. For example, only one of the above two parameters may be used as a parameter indicating the state of ammonia in the ammonia flow path 103. For example, the pressure of ammonia in the ammonia flow path 103 may be used alone or in combination with other parameters as a parameter indicating the state of ammonia in the ammonia flow path 103.
 上記では、切替機構20-2が、アンモニアが第1熱交換器16aおよび第2熱交換器16bの両方を通過する状態と、アンモニアが第2熱交換器16bのみを通過する状態と、アンモニアが第1熱交換器16aおよび第2熱交換器16bのいずれも通過しない状態との間でアンモニアの経路を切り替える例を説明した。ただし、切替機構20-2は、アンモニアの経路を、アンモニアが第1熱交換器16aのみを通過する状態にしてもよい。例えば、第1熱交換器16aと第2熱交換器16bとの間で、アンモニアの温度の上昇度合いが異なる場合がある。この場合、切替機構20-2は、例えば、アンモニア流路103におけるアンモニアの流量に基づいて、アンモニアが第1熱交換器16aのみを通過する状態と、アンモニアが第2熱交換器16bのみを通過する状態との間でアンモニアの経路を切り替える。それにより、熱交換器16を通過するアンモニアが排気ガスから回収する熱量を、アンモニアの気化を抑制しつつ、できるだけ大きくすることができる。 In the above, the switching mechanism 20-2 has two states: a state where ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b, a state where ammonia passes only through the second heat exchanger 16b, and a state where ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b; An example has been described in which the ammonia path is switched between a state in which the ammonia does not pass through either the first heat exchanger 16a or the second heat exchanger 16b. However, the switching mechanism 20-2 may set the ammonia path to a state where the ammonia passes only through the first heat exchanger 16a. For example, the degree of increase in ammonia temperature may differ between the first heat exchanger 16a and the second heat exchanger 16b. In this case, the switching mechanism 20-2 selects a state in which ammonia passes only through the first heat exchanger 16a and a state in which ammonia passes only through the second heat exchanger 16b, for example, based on the flow rate of ammonia in the ammonia flow path 103. Switch the ammonia route between states. Thereby, the amount of heat recovered from the exhaust gas by ammonia passing through the heat exchanger 16 can be increased as much as possible while suppressing vaporization of ammonia.
 以上説明したように、ガスタービンシステム1Cでは、上述したガスタービンシステム1Bと同様に、熱交換器16は、第1熱交換器16aと、排気流路102のうち第1熱交換器16aより下流側に配置される第2熱交換器16bとを含む。そして、アンモニア流路103には、アンモニアが通過する熱交換器16が互いに異なる複数の状態の間でアンモニアの経路を切り替える切替機構20-2が設けられる。ゆえに、上述したガスタービンシステム1Bと同様の効果が奏される。 As explained above, in the gas turbine system 1C, similarly to the gas turbine system 1B described above, the heat exchanger 16 includes the first heat exchanger 16a and the exhaust flow path 102 downstream of the first heat exchanger 16a. and a second heat exchanger 16b disposed on the side. The ammonia flow path 103 is provided with a switching mechanism 20-2 that switches the ammonia path between a plurality of different states of the heat exchanger 16 through which the ammonia passes. Therefore, the same effects as the gas turbine system 1B described above are achieved.
 上記では、図3および図4を参照して、排気流路102に2つの熱交換器16が設けられる例について説明した。ただし、排気流路102に3つ以上の熱交換器16が設けられてもよい。排気流路102に複数の熱交換器16が設けられる場合に、上述したガスタービンシステム1Aのように、各熱交換器16において、排気流路102とアンモニア流路103との間に熱媒体流路105が介在してもよい。 In the above, an example in which two heat exchangers 16 are provided in the exhaust flow path 102 has been described with reference to FIGS. 3 and 4. However, three or more heat exchangers 16 may be provided in the exhaust flow path 102. When a plurality of heat exchangers 16 are provided in the exhaust flow path 102, as in the gas turbine system 1A described above, in each heat exchanger 16, a heat medium flow is created between the exhaust flow path 102 and the ammonia flow path 103. A channel 105 may be present.
 上記では、アンモニアの経路を切り替える切替機構の例として、切替機構20-1および切替機構20-2について説明した。ただし、切替機構は、これらの例に限定されない。例えば、図4の例に対して、流路103bおよび切替バルブ21が省略されてもよい。この場合、アンモニアが第1熱交換器16aおよび第2熱交換器16bの両方を通過する状態と、アンモニアが第1熱交換器16aのみを通過する状態との間でアンモニアの経路を切り替えることができる。 In the above, the switching mechanism 20-1 and the switching mechanism 20-2 have been described as examples of the switching mechanism that switches the ammonia route. However, the switching mechanism is not limited to these examples. For example, the flow path 103b and the switching valve 21 may be omitted from the example of FIG. In this case, the ammonia path can be switched between a state in which ammonia passes through both the first heat exchanger 16a and the second heat exchanger 16b and a state in which ammonia passes only through the first heat exchanger 16a. can.
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments of the present disclosure have been described above with reference to the accompanying drawings, it goes without saying that the present disclosure is not limited to such embodiments. It is clear that those skilled in the art can come up with various changes and modifications within the scope of the claims, and it is understood that these naturally fall within the technical scope of the present disclosure. be done.
 上記では、ガスタービンシステム1、1A、1B、1Cにおいて、タービン11bから圧縮機11aに伝達された回転動力が発電機を駆動させるエネルギーとして利用される例を説明した。ただし、ガスタービンシステム1、1A、1B、1Cにおいて、タービン11bから圧縮機11aに伝達された回転動力が、例えば、船舶等の移動体を駆動させる目的等の他の用途に利用されてもよい。 In the above, an example has been described in which the rotational power transmitted from the turbine 11b to the compressor 11a is used as energy to drive the generator in the gas turbine systems 1, 1A, 1B, and 1C. However, in the gas turbine systems 1, 1A, 1B, and 1C, the rotational power transmitted from the turbine 11b to the compressor 11a may be used for other purposes, such as driving a moving body such as a ship. .
 本開示は、ガスタービンシステムの効率の向上に資するので、例えば、持続可能な開発目標(SDGs)の目標7「手ごろで信頼でき、持続可能かつ近代的なエネルギーへのアクセスを確保する」に貢献することができる。 This disclosure contributes to improving the efficiency of gas turbine systems, and thus contributes to, for example, Goal 7 of the Sustainable Development Goals (SDGs): “Ensure access to affordable, reliable, sustainable and modern energy.” can do.
1:ガスタービンシステム 1A:ガスタービンシステム 1B:ガスタービンシステム 1C:ガスタービンシステム 12:燃焼器 13:アンモニアタンク 14:ボイラ 16:熱交換器 16a:第1熱交換器 16b:第2熱交換器 20-1:切替機構 20-2:切替機構 102:排気流路 103:アンモニア流路 105:熱媒体流路 1: Gas turbine system 1A: Gas turbine system 1B: Gas turbine system 1C: Gas turbine system 12: Combustor 13: Ammonia tank 14: Boiler 16: Heat exchanger 16a: First heat exchanger 16b: Second heat exchanger 20-1: Switching mechanism 20-2: Switching mechanism 102: Exhaust flow path 103: Ammonia flow path 105: Heat medium flow path

Claims (4)

  1.  アンモニアが液体の状態で貯蔵されるアンモニアタンクと、
     前記アンモニアタンクと接続され、前記アンモニアが液体の状態で供給される燃焼器と、
     前記燃焼器と接続される排気流路と、
     前記排気流路に設けられるボイラと、
     前記排気流路のうち前記ボイラより下流側に配置され、前記アンモニアタンクと前記燃焼器とを接続するアンモニア流路が通過する熱交換器と、
     を備える、
     ガスタービンシステム。
    an ammonia tank in which ammonia is stored in a liquid state;
    a combustor connected to the ammonia tank and supplied with the ammonia in a liquid state;
    an exhaust flow path connected to the combustor;
    a boiler provided in the exhaust flow path;
    a heat exchanger that is disposed downstream of the boiler in the exhaust flow path and through which an ammonia flow path connecting the ammonia tank and the combustor passes;
    Equipped with
    gas turbine system.
  2.  前記熱交換器において、前記排気流路と前記アンモニア流路との間に熱媒体流路が介在する、
     請求項1に記載のガスタービンシステム。
    In the heat exchanger, a heat medium flow path is interposed between the exhaust flow path and the ammonia flow path.
    A gas turbine system according to claim 1.
  3.  前記熱交換器は、第1熱交換器と、前記排気流路のうち前記第1熱交換器より下流側に配置される第2熱交換器とを含み、
     前記アンモニア流路には、前記アンモニアが通過する前記熱交換器が互いに異なる複数の状態の間で前記アンモニアの経路を切り替える切替機構が設けられる、
     請求項1または2に記載のガスタービンシステム。
    The heat exchanger includes a first heat exchanger and a second heat exchanger disposed downstream of the first heat exchanger in the exhaust flow path,
    The ammonia flow path is provided with a switching mechanism that switches the path of the ammonia between a plurality of mutually different states of the heat exchanger through which the ammonia passes.
    The gas turbine system according to claim 1 or 2.
  4.  前記切替機構は、前記アンモニア流路における前記アンモニアの状態に基づいて、前記アンモニアの経路を切り替える、
     請求項3に記載のガスタービンシステム。
    The switching mechanism switches the ammonia path based on the state of the ammonia in the ammonia flow path.
    The gas turbine system according to claim 3.
PCT/JP2022/043401 2022-03-07 2022-11-24 Gas turbine system WO2023171048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-034697 2022-03-07
JP2022034697 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023171048A1 true WO2023171048A1 (en) 2023-09-14

Family

ID=87936602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043401 WO2023171048A1 (en) 2022-03-07 2022-11-24 Gas turbine system

Country Status (1)

Country Link
WO (1) WO2023171048A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210493A (en) * 1998-01-26 1999-08-03 Toshiba Corp Gas turbine plant
JP2010053689A (en) * 2008-08-26 2010-03-11 Hitachi Ltd Fuel supply method of gas turbine combustor
WO2010082360A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system
CN107100736A (en) * 2017-06-09 2017-08-29 厦门大学 Combustion turbine combined system
JP2020051419A (en) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 Gas turbine device, gas turbine facility and gasification facility, and operation method of gas turbine device
WO2020111114A1 (en) * 2018-11-30 2020-06-04 国立研究開発法人科学技術振興機構 Power generation apparatus and combustion apparatus
JP2020165603A (en) * 2019-03-29 2020-10-08 株式会社Ihi原動機 Combustion device
JP2021099096A (en) * 2019-12-20 2021-07-01 ゼネラル・エレクトリック・カンパニイ Systems and methods for igniting and operating gas turbine engine with alternative fuels
JP2022124156A (en) * 2021-02-15 2022-08-25 三菱重工業株式会社 Gas turbine plant, and fuel supply method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210493A (en) * 1998-01-26 1999-08-03 Toshiba Corp Gas turbine plant
JP2010053689A (en) * 2008-08-26 2010-03-11 Hitachi Ltd Fuel supply method of gas turbine combustor
WO2010082360A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP2012255420A (en) * 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd Gas turbine system
CN107100736A (en) * 2017-06-09 2017-08-29 厦门大学 Combustion turbine combined system
JP2020051419A (en) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 Gas turbine device, gas turbine facility and gasification facility, and operation method of gas turbine device
WO2020111114A1 (en) * 2018-11-30 2020-06-04 国立研究開発法人科学技術振興機構 Power generation apparatus and combustion apparatus
JP2020165603A (en) * 2019-03-29 2020-10-08 株式会社Ihi原動機 Combustion device
JP2021099096A (en) * 2019-12-20 2021-07-01 ゼネラル・エレクトリック・カンパニイ Systems and methods for igniting and operating gas turbine engine with alternative fuels
JP2022124156A (en) * 2021-02-15 2022-08-25 三菱重工業株式会社 Gas turbine plant, and fuel supply method therefor

Similar Documents

Publication Publication Date Title
US20200032676A1 (en) Gas turbine plant and operating method therefor
JP7162380B2 (en) Space-intensive LNG fuel supply system for small ships
CA2416663C (en) Gas turbine combined plant and method of operating the same
KR20110087970A (en) Floating type lng regasification unit
JP2009062985A (en) Method for operating combined-cycle power plant and combined-cycle power plant for executing the method
CN104737347A (en) Power generation system and operation method for power generation system
WO2023171048A1 (en) Gas turbine system
WO2022173040A1 (en) Gas turbine plant, and method for supplying fuel to same
WO2016051758A1 (en) Gas turbine
KR20200082000A (en) Electric propulsion system and ship having the same
WO2023176050A1 (en) Gas turbine system
JP6266319B2 (en) Waste heat recovery unit and power system
JP2014122578A (en) Power system
KR20140038763A (en) Ship having fuel cell system for carrying liquefied natural gas
JP5693281B2 (en) Reheat boiler
KR102239300B1 (en) Floating marine structure with electric power generator
JP6152155B2 (en) LNG satellite equipment
KR102576053B1 (en) System for organic rankine cycle of ship and ship having the same
KR101291107B1 (en) Compression System for Reducing Excessive Boil Off Gas
KR20200112058A (en) Power generating system using LNG gas
KR101259951B1 (en) Waste heat supply system and ship with the system
KR102487766B1 (en) Eco-friendly lng fuelled vessel
JP7146070B2 (en) mobile
WO2022172955A1 (en) Fuel supply method, fuel supply equipment, fuel combustion equipment provided with said fuel supply equipment, and gas turbine plant
CN212535797U (en) Smoke exhaust system capable of being used for generating steam in ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931020

Country of ref document: EP

Kind code of ref document: A1