WO2023170992A1 - Vertical-axis wind power generation device - Google Patents

Vertical-axis wind power generation device Download PDF

Info

Publication number
WO2023170992A1
WO2023170992A1 PCT/JP2022/028439 JP2022028439W WO2023170992A1 WO 2023170992 A1 WO2023170992 A1 WO 2023170992A1 JP 2022028439 W JP2022028439 W JP 2022028439W WO 2023170992 A1 WO2023170992 A1 WO 2023170992A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
power generation
generation device
wind power
vertical
Prior art date
Application number
PCT/JP2022/028439
Other languages
French (fr)
Japanese (ja)
Inventor
道夫 平井
Original Assignee
道夫 平井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 道夫 平井 filed Critical 道夫 平井
Priority to PCT/JP2023/005011 priority Critical patent/WO2023171258A1/en
Publication of WO2023170992A1 publication Critical patent/WO2023170992A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power generation device, and more particularly to a vertical wind power generation device.
  • Patent Document 1 a vertical axis type (vertical type) wind power generation device (Patent Document 1) is known, in which eight radial blades are provided on a rotating shaft extending in the vertical direction.
  • An object of the present invention is to provide a vertical wind power generation device with a low risk of blade breakage.
  • the vertical wind power generation device of the present invention includes a conical outer structure, a power transmission shaft rotatably installed inside the outer structure, and a wind receiving surface provided on the power transmission shaft. and a generator connected to a power transmission shaft.
  • the vertical wind power generation device of the present invention having the above configuration, excess wind can be released along the cone-shaped outer structure, so the blades are more stable during strong winds than in conventional vertical wind power generation devices. Damage risk can be reduced. Furthermore, since the wind blowing means is provided inside the outer structure, noise and the impact on the ecosystem can be reduced. Since the vertical wind power generation device of the present invention has a structure that can be downsized, it has a high degree of freedom in installation location.
  • FIG. 1 is a schematic diagram showing an example of a vertical wind power generation device of the present invention.
  • (a) is an explanatory view showing an example of the outer structure
  • (b) is an explanatory view showing another example of the outer structure.
  • (a) is a front view showing an example of the vertical wind power generator of the present invention
  • (b) is a partially enlarged view of (a)
  • (c) is an explanatory view of the wind intake means shown in (b).
  • (a) shows another example of the wind intake means
  • (b) is an explanatory diagram of the state in which the wind intake means of (a) is used.
  • (a) is a schematic diagram showing an example of an adhesion prevention means
  • (b) is a plan view of the adhesion prevention means of (a).
  • FIG. 3 is an explanatory diagram showing an example of a wind blowing means including a wind blowing body at the tip of an arm.
  • Explanatory drawing which shows an example of the wind blowing means provided with the wind blowing body on the upper surface of a rotary disk.
  • (a) is an upper side perspective view showing an example of a wind blowing means in which wind blowers are provided on both the upper and lower surfaces of a rotary disk, and
  • (b) is a lower side perspective view of the wind blowing means of (a).
  • (a) is an explanatory diagram showing an example of using a plurality of wind blowing means of the same size
  • (b) is an explanatory diagram showing an example of the case of using a plurality of wind blowing means of different sizes.
  • the generator 10 is a device (generator) that converts rotational motion into electricity.
  • the generator 10 can be new or existing.
  • a power transmission shaft 20 is connected to the generator 10.
  • the power transmission shaft 20 is a member that transmits rotational force generated by a wind blowing means 30 (described later) to the generator 10.
  • the power transmission shaft 20 of this embodiment has a vertical column shape perpendicular to the generator 10, and its lower end side is connected to the generator 10.
  • the upper end side of the power transmission shaft 20 is rotatably supported by a bearing 21.
  • the wind receiving means 30 is a member that rotates the power transmission shaft 20 by receiving wind.
  • a plurality of wind blowing means 30 are provided in a plurality of stages at intervals in the vertical direction of the power transmission shaft 20.
  • the wind blowing means 30 at each stage is composed of a plurality of blades 31, each of which can be handled as an independent unit.
  • the number of blades 31 constituting each wind blowing means 30 is an odd number. If an even number of blades are provided at equal intervals, when wind blows from a certain direction, the rotational force of the blades 31 that are on the same straight line in a plan view may cancel each other out, which may reduce the amount of air received.
  • the number of blades 31 is set to an odd number, two blades 31 are not lined up on the same axis, which has the advantage that the rotational forces are less likely to cancel each other out, making it easier for the power transmission shaft 20 to rotate.
  • the odd number of blades 31 may be provided at equal or uneven intervals as long as the rotational forces do not cancel each other out.
  • the number of blades 31 of each wind blowing means may be an even number as long as the structure is such that the rotational forces are unlikely to cancel each other out. For example, by setting the blades 31 at uneven intervals, even if there is an even number of blades, it is possible to make it difficult for the rotational forces to cancel each other out.
  • each wind blowing means 30 composed of a plurality of blades 31 is not point symmetrical, specifically, the center of the blade 31 in the power transmission shaft 20 in the height direction and horizontal direction. If the structure of each wind blowing means 30 is asymmetrical with respect to the point of symmetry, it is possible to make it difficult for the rotational forces of the blades 31 to cancel each other out.
  • the blade 31 of this embodiment has a horizontal rectangular shape with a vertical wind receiving surface (vertical wind receiving surface), and a bent portion 31b is provided on the tip side of a flat base portion 31a.
  • the refraction angle of the refraction portion 31b with respect to the base portion 31a is set to 45 degrees, but this angle may be other than 45 degrees.
  • the wind receiving surface does not need to be perpendicular, and in the case of an imaginary vertical surface, it can be provided at an angle with respect to the imaginary vertical surface.
  • the length in the lateral direction of the blades 31 constituting the wind blowing means 30 is set to be different for each stage. Specifically, the length of the blade 31 constituting the lower wind blowing means 30 is made longer in the lateral direction than the length of the blade 31 constituting the upper wind blowing means 30.
  • the upper blades 31 have a narrower wind-catching area, and the lower blades 31 have a wider wind-catching area. It is set as.
  • the length of the blade 31 When the length of the blade 31 is set in this way, when the power transmission shaft 20 and the wind blowing means 30 are viewed from the front, they form a tree shape in which the width is wider toward the bottom and gradually narrows toward the top. In other words, it has a vertical turbine-like shape.
  • the number of blades 31 constituting each wind blowing means 30 is not particularly limited. Further, the number of blades 31 of the wind blowing means 30 at each stage can be the same or different. When the number of blades is different, the number of blades 31 of all the wind blowing means 30 can be different, or the number of blades 31 of some of the wind blowing means 30 can be different.
  • a stopper that prevents the wind blowing means 30 from rotating in reverse a gear that forcibly converts reverse rotation into forward rotation, or the like may be provided as necessary.
  • FIG. 1 only shows the flow regulating fluid 32 above the uppermost wind blowing means 30 and the lower flow regulating flow 32 of the lowermost wind blowing means 30, but in this embodiment, each wind blowing means 30, flow regulators 32 are provided at various locations above the uppermost wind blowing means 30 and below the lowermost wind blowing means 30.
  • the flow regulator 32 adjusts the flow of the air so that it hits the vertical wind receiving surface of the blade 31 without passing upward or downward, and can be made of, for example, a disc-shaped or rectangular plate. In addition to a circular or rectangular plate, a plate of any shape such as an ellipse may be used for the flow regulator 32. Depending on the case, a partially curved plate material, a partially cut-out plate material, or the like may be used as the flow regulator 32. Moreover, the flow regulator 32 does not need to be a plate material. When a plate material is used as the flow regulator 32, as shown in FIG. 1, it can be provided in a direction intersecting the power transmission shaft 20 (for example, in a direction perpendicular to the power transmission shaft 20).
  • one rectifier 32 is provided between each of the wind blowing means 30, but two or more rectifiers 32 may be provided between each wind blowing means 30.
  • the flow regulator 32 can also be provided only between any of the wind blowing means 30, such as only above the uppermost wind blowing means 30 and below the lowermost wind blowing means 30.
  • the outer structure 40 is a member that covers the outside of the generator 10, the power transmission shaft 20, and the wind blowing means 30.
  • the outer structure 40 is a member for preventing animals such as birds and other flying objects from colliding with the wind blowing means 30, etc., and is a member for supporting the wind intake means 50, which will be described later.
  • the outer structure 40 of this embodiment is a substantially triangular pyramid-shaped structure that tapers toward the upper end.
  • the outer structure 40 may also have a pyramidal shape other than a triangular pyramid, such as a pyramidal shape or a conical shape.
  • the outer structure 40 may also be in the shape of a truncated pyramid, such as a triangular pyramid or a cone whose top side is cut by a plane parallel to the bottom surface.
  • pyramid shape is a concept that includes triangular pyramid shapes, other pyramid shapes, conical shapes, etc., as well as truncated pyramid shapes whose top sides are cut by a plane parallel to the bottom surface.
  • the outer structure 40 When the outer structure 40 has a conical shape such as a triangular pyramid shape or a conical shape, wind can escape along the slope of the outer structure 40 as shown by the dotted line in FIG. This makes it possible to avoid wind intrusion or wind blowing, and reduce the risk of collapse or damage to the blade 31, the power transmission shaft 20, the outer structure 40, etc. This effect is particularly great when the shape of the outer structure 40 is a triangular shape (triangular pyramid shape) that is resistant to external pressure.
  • the outer structure 40 is a mesh structure including a ventilation hole 41 through which wind passes and a plurality of truss structures so as to prevent it from collapsing or being damaged even when exposed to strong winds.
  • the outer structure 40 of this embodiment has a truncated triangular pyramid shape by combining three pillars and a mesh material.
  • the configuration of the outer structure 40 is merely an example, and other configurations may also be used.
  • it may be constructed by combining a plurality of elongated members in a diagonal lattice shape as shown in FIG. 2(a), or a planar member with holes as shown in FIG. 2(b). In either case, a vent 41 through which wind passes is provided.
  • the material of the outer structure 40 is not particularly limited, but when a wind intake means 50 described below is provided, it is preferably made of a material that has enough strength and hardness to support the wind intake means 50. Further, when providing an adhesion prevention means 60 to be described later, the outer structure 40 is preferably made of a material that vibrates when struck by the striking tool 62.
  • the outer structure 40 is provided with a wind intake means 50 for introducing wind into its interior.
  • the wind intake means 50 is a turbo machine having a wind concentration function and a rectification function.
  • the wind intake means 50 shown in FIGS. 3(a) to 3(c) are so-called wind lens-shaped structures, and a plurality of them are attached to the outer structure 40.
  • the wind intake means 50 of this embodiment has a circular ring shape, and the peripheral edge on one side is shaped like a trumpet. Due to its structure, this wind intake means 50 takes in wind from a small-diameter opening (hereinafter referred to as "small-diameter opening”) 51 and discharges it from a large-diameter opening (hereinafter referred to as "large-diameter opening”) 52. The wind is amplified.
  • a plurality of wind intake means 50 are attached to the outer structure 40.
  • the blades 31 of the outer structure 40 are provided at the same height as the inner wind blowing means 30 so that the wind can be sent intensively to the blades 31 constituting the wind blowing means 30 of each stage. ing.
  • a plurality of wind intake means 50 are provided along the circumferential direction of each stage.
  • the wind intake means 50 having this structure is installed such that the small diameter opening 51 faces outside and the large diameter opening 52 faces inside.
  • the wind intake means 50 shown here is just an example, and the wind intake means 50 may be of a shape other than a wind lens.
  • a tube member 53 having a rectifying network 54 inside it may be used.
  • the wind intake means 50 having this structure is attached so that the large diameter opening 55 faces outward and the small diameter opening 56 faces inward, as shown in FIG. 4(b).
  • the introduced wind can be rectified by the rectifying net 54 and direct wind can be applied to the blades 31.
  • the blades 31 do not rotate well in turbulence, but the blades 31 can be rotated smoothly by applying rectified direct wind.
  • each wind intake means 50 is installed in a direction parallel to the rotational direction of the wind blowing means 30. It is preferable to install
  • the wind intake means 50 is not an essential configuration, and can be omitted if unnecessary.
  • the wind intake means 50 can be omitted if it is installed in a location where sufficient wind power can be expected to generate electricity even without the wind intake means 50.
  • the vertical wind power generation device of the present invention may be provided with adhesion prevention means 60 for preventing the adhesion of ice and snow (hereinafter referred to as "icing etc.”).
  • the adhesion prevention means 60 shown in FIGS. 5(a) and 5(b) includes an attachment ring 61 fixed to the power transmission shaft 20, a striking tool 62 protruding outward from the attachment ring 61, and an outer structure.
  • a hit tool 63 provided at 40 is provided.
  • the mounting ring 61 shown in FIGS. 5(a) and 5(b) has a circular shape, and has a plurality of striking tools 62 protruding outward from its outer periphery.
  • the hitting tool 62 of this embodiment includes a rod-like portion 62a and a spherical hitting ball 62b provided at the tip of the rod-like portion 62a.
  • the striking tools 62 may be installed at equal or unequal intervals, and the number of hitting tools 62 may be determined depending on the size of the vertical wind power generator.
  • the hitting tool 62 is made of a material that contracts when the temperature rises and expands when the temperature drops, and when expanding, the hitting ball 62b comes into contact with the hit tool 63, and when contracting, the hitting ball 62b comes into contact with the hit tool 63. It is arranged so that it does not come into contact with the tool 63.
  • the hitting ball 62b can contact the hit tool 63 to prevent icing, etc., at temperatures where icing etc. are likely to occur;
  • the ball 62b does not come into contact with the hit tool 63, and it is possible to prevent the occurrence of noise due to the impact sound.
  • the hit tool 63 is a member that is hit by the hitting ball 62b.
  • the hit tool 63 can be made of various materials, such as a rubber material, that can transmit vibrations generated during hitting to the outer structure 40.
  • the hit tool 63 is attached to the inner surface of the outer structure 40.
  • a plurality of hit tools 63 are provided at intervals in the circumferential direction of the outer structure 40 .
  • the attachment ring 61 and the striking tool 62 are installed at a lower position than the wind blowing means 30 at the lowest stage, and the hit tool 63 is installed at a position lower than the wind intake means 50 at the lowest stage.
  • the attachment ring 61, the striking tool 62, and the hit tool 63 can also be provided at other locations.
  • the structure of the adhesion prevention means 60 is just an example, and the adhesion prevention means 60 can also have a structure other than this.
  • an electric jack (not shown) may be connected to the mounting ring 61, and the electric jack may be used to raise and lower the mounting ring 61 and the striking tool 62, so that they hit the struck tool 63 when rising and do not hit the struck tool 63 when descending. I can do it.
  • a power supply device for example, a power supply device with a thermostat (not shown) is connected to the electric jack, and the power is turned on when the temperature drops below a preset threshold (for example, 0 degrees Celsius). For example, the power can be turned off when the temperature rises above 0°C.
  • a preset threshold for example, 0 degrees Celsius
  • the power supply device can be operated with electricity generated by the vertical wind power generator.
  • adhesion prevention means 60 has the advantage that problems such as icing are less likely to occur even in cold regions, and power generation efficiency is easily maintained.
  • the adhesion prevention means 60 is not an essential configuration and can be omitted if unnecessary.
  • the vertical wind power generation device of the present invention can be installed not only on land but also on the ocean. Installation can be done in the same way as before, and when installing on soft ground, it is recommended to use knotted foundation piles for the pedestal of the pillar (in the previous example, the pedestal supporting three pillars). can.
  • the installation method can be selected from, for example, a landing method that is fixed to the seabed (ground) and a floating method that is floated on the ocean, depending on the distance to the ground at the installation location.
  • each wind blowing means 30 can be handled as an individual unit, in the event of a failure, only the broken wind blowing means 30 can be replaced, and healthy (non-faulty) wind blowing means 30 can continue to be used as is. It has the advantage of being excellent in maintainability and economy.
  • the electricity generated by the vertical wind power generation device of the present invention can not only be used as a normal power source, but also for other purposes. For example, it is possible to generate hydrogen by electrolyzing river or seawater.
  • the vertical wind power generation device of the present invention has a configuration that can be miniaturized and has a high degree of freedom in installation location, so it can be installed in an area with good infrastructure conditions and a hydrogen production facility nearby, allowing for the accumulation of green energy. You can adjust the environment. This will not only contribute to the promotion of industry, but also help revitalize the region. In the future, it is expected that a regional power grid will be established and used for facilities and regional power.
  • the vertical wind power generation device of the present invention does not have a huge propeller that rotates exposed, so it can be installed more freely than propeller-type wind power generation devices.
  • High degree For example, it can be expected to act as a windbreak against high-rise buildings, which is a problem in urban centers, and at the same time contribute to the power supply in the area where it is installed.
  • the blades 31 in multiple stages may be the same length, such as the blades 31 in the top and second stages are the same length, the blades 31 in the third and fourth stages are the same length, and the blades 31 in the other stages or The multiple stages of blades 31 can also have different lengths.
  • wind blowing means 30 can also have a structure other than this.
  • FIG. 9 it is possible to have a structure in which an approximately hemispherical (bowl-shaped) wind receiving body 31d is provided at the tip of an arm 31c.
  • a half-pipe-shaped member with a recess (arm recess) 31e is used as the arm 31c.
  • the opening periphery 31f of the arm recess 31d is tapered inward so that wind can easily enter the arm recess 31e.
  • the degree of narrowing can be designed as appropriate.
  • the arm 31c can be made of a perfectly round pipe, a solid shaft material, or the like, in addition to a half-pipe member.
  • the wind blower 31d shown in FIG. 9 is a substantially hemispherical (bowl-shaped) hollow member that has a recess (wind blower recess) 31g on the arm recess 31e side.
  • the opening periphery 31h of the wind receiving body 31d (wind receiving body opening periphery) is configured to narrow inward so that the wind can easily enter into the wind receiving body 31d.
  • the degree of narrowing can be designed as appropriate.
  • the structure of the wind receiving body 31d may be other than hemispherical.
  • FIG. 30 For convenience of explanation, only one stage of the wind blowing means 30 is shown in FIG. 30 can be provided in multiple stages.
  • the wind receiving means 30 includes one or more (in the illustrated example, a plurality of) wind receiving bodies 31j each having a wind receiving surface on the upper surface of a disc-shaped or rectangular rotary disk 31i as shown in FIG. You can also use something.
  • a plate material having an arbitrary shape such as an elliptical shape can also be used for the rotary disk 31i.
  • a partially curved plate material, a partially cut-out plate material, or the like may be used as the rotary disk 31i. Further, the rotary disk 31i does not have to be a plate material.
  • the wind blower 31j shown in FIG. 10 is a half-shaped member that is substantially hemispherical (bowl-shaped) and includes a concave portion (blow body concavity) 31k.
  • the shape of the wind blower 31j may be other than this, and may be approximately hemispherical (bowl-shaped) similar to the wind blower 31d in FIG. 9.
  • the opening periphery (periphery of the wind receiving body opening) 31m of the wind receiving body 31j narrows inward so that the wind can easily enter the wind receiving body 31j.
  • the degree of narrowing can be designed as appropriate.
  • a curved plate with a curved surface, a flat plate without a curve (see FIG. 11), etc. can also be used as the wind receiving body 31j.
  • each wind-blowing means 30 has an asymmetrical structure so that the rotational forces of the wind-blowing bodies 31j are unlikely to cancel each other out. preferable.
  • the wind receiving body 31j is movable so that its posture changes between an upright state (hereinafter referred to as “upright state”) and a laid down state (hereinafter referred to as “lowered state”) depending on the direction in which it receives the wind. It can also have the structure of Eq.
  • the wind receiving body 31j when the wind receiving body 31j receives wind on one surface (hereinafter referred to as "first surface") side, the wind receiving body 31j stands up, and on the other surface (hereinafter referred to as “second surface side”).
  • the wind receiving body 31j can be made to lie down when exposed to wind.
  • the wind receiving body 31j is provided on the upper surface of the rotating disk 31i as an example, the wind receiving object 31j may also be provided on the lower surface of the rotating disk 31i. Depending on the case, they may be provided on both the upper and lower surfaces of the rotary disk 31i, as shown in FIGS. 12(a) and 12(b). When provided on both the upper and lower surfaces, it can be provided at the same position on the upper and lower sides, or it can be provided at different positions on the upper and lower sides.
  • rotating disks 31i having the same diameter (area) as shown in FIG. 13(a) may be used, or rotating disks 31i having different diameters (areas) as shown in FIG. 13(b) may be used. You can also use The same applies to the case where the wind receiving bodies 31j are provided on both the upper and lower surfaces of the rotary disk 31i.
  • the area should be larger from the upper side to the lower side as shown in Figure 13(b), and the area should be wider from the lower side to the upper side. You can also make it so.
  • the wind blowing means 30 includes, for example, as shown in FIG. 14, a cylindrical power transmission shaft 20 is disposed outside the inner support 22 via a bearing 23, and a rotary disk 31i is fixed to the power transmission shaft 20. I can do it.
  • the rotational force by the rotary disk 31i is transmitted to the generator 10 via the power transmission shaft 20, and power generation is performed.
  • the method of fixing the wind blowing means 30 to the power transmission shaft 20 may be other than this.
  • the rotating disk 31i may be fixed to the power transmitting shaft 20 with the configuration shown in FIG. It is also possible to make the transmission shaft 20 rotate.
  • the rotary disk 31i of the wind blowing means 30 described in the third modification of the wind blowing means can perform the function of adjusting the flow of wind like the flow regulator 32.
  • the flow regulator 32 is a disk-shaped, square-shaped, elliptical, or other various shaped plate material, but the flow regulator 32 can also have a structure other than this.
  • the wind blowing means 30 described in Modification 3 of the wind blowing means specifically, one or more wind blowing bodies may be installed on both or either of the upper surface and the lower surface of the circular or rectangular rotary plate 31i. 31j can be used as the flow regulator 32.
  • the specific configuration of the flow regulator 32 in this case is the same as that of the wind blowing means 30 of Modification 3 of the wind blowing means, so the description thereof will be omitted here.
  • the mounting ring 61, the striking tool 62, and the hit tool 63 are provided in one stage as an example, but the mounting ring 61, the hitting tool 62, and the hit tool 63 are arranged in multiple stages at intervals in the vertical direction. It is also possible to provide one.
  • the case where the generator 10 is provided at the lower end of the power transmission shaft 20 is taken as an example, but the generator 10 can also be provided at a location other than this.
  • it can also be provided at the upper end of the power transmission shaft 20 as shown in FIG. 6(a).
  • the lower end side of the power transmission shaft 20 may be supported by a bearing.
  • the case where there is one generator 10 is taken as an example, but two or more generators 10 can also be provided. In this case, for example, one may be provided at the upper and lower ends of the power transmission shaft 20 as shown in FIG. 6(b), or one may be provided at intervals in the axial direction of the power transmission shaft 20 as shown in FIG. 6(c). It can be set up. When two or more generators 10 are provided, one can be provided for each wind blowing means 30.
  • the provided cylindrical power transmission shafts 20 can be disposed via bearings 23 so that each power transmission shaft 20 can be rotated individually.
  • the inner support 22 is fixed between the bearing 21 at the upper end (FIG. 6(c)) and the generator 10 at the lowermost stage so as not to rotate.
  • One power transmission shaft 20 is provided for each generator 10, and one power transmission shaft 20 is connected to each generator 10. When each power transmission shaft 20 rotates, power is generated by the generator 10 to which the power transmission shaft 20 is connected.
  • the generator 10, the power transmission shaft 20, and the wind blowing means 30 provided on the power transmission shaft 20 function as one power generation unit 24.
  • the generator 10, the power transmission shaft 20, and the wind blowing means 30 provided on the power transmission shaft 20 function as one power generation unit 24.
  • a solid pillar material may be used as the power transmission shaft 20, but as in the case where two or more generators 10 are provided, it is arranged on the outside of the inner pillar 22 via a bearing 23.
  • a cylindrical one can also be used.
  • the power transmission shaft 20 includes a speed increaser that amplifies the rotational force and transmits it to the generator 10, and a speed increaser that increases the rotational speed of the blades 31 and the power transmission shaft 20 during strong winds. It is also possible to provide a brake device or the like to suppress the damage.
  • the striking tool 62 is made of a material that contracts when the temperature rises and expands when the temperature falls, but the struck tool 63 can also be made of the same material. In some cases, both may be made of the same material.
  • the mounting ring 61 is raised and lowered using an electric jack, but the hit tool 63 can also be raised and lowered.
  • the hit tool 63 can also be raised and lowered.
  • the mounting ring 61 can be moved electrically. You can obtain the same effect as when lifting and lowering with a jack.
  • the configuration of the embodiment described above is an example, and the configuration of the vertical wind power generator of the present invention is not limited to the configuration described above.
  • the configuration of the vertical wind power generation device of the present invention can be appropriately modified such as additions, replacements, deletions, etc. within a range that can achieve the intended purpose.
  • the vertical wind power generation device of the present invention can be used not only as an onshore wind power generation device installed on land, but also as an offshore wind power generation device installed on the ocean.
  • Wind blowing means 31 Blade 31a Base part 31b Bent part 31c Arm 31d Wind blower 31e Recessed part (arm recessed part) 31f Opening periphery (arm opening periphery) 31g recess (wind receiving body recess) 31h Opening periphery (airbrush opening periphery) 31i Rotating disk 31j Wind receiving element 31k Recess (wind receiving element recess) 31m Opening periphery (wind receiving body opening periphery) 32 Flow regulation 40 Outer structure 41 Vent 50 Wind intake means 51 Small diameter port 52 Large diameter port 53 Pipe member 54 Rectification net 55 Large diameter port 56 Small diameter port 60 Adhesion prevention means 61 Mounting ring 62 Hitting tool 62a Rod-shaped portion 62b Hitting ball 63 Hit equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The present invention provides a vertical-axis wind power generation device having, compared to conventional vertical-axis wind power generation devices, a higher degree of freedom in terms of installation location, less noise and impact on ecosystems, and lower risk of blade damage during times of strong wind. A vertical-axis wind power generation device according to the present invention comprises: a conical outer structure 40; a power transmission shaft 20 that is rotatably installed inside the outer structure 40; a wind-receiving means 30 that is provided to the power transmission shaft 20 and has a wind-receiving surface; and a generator 10 that is coupled to the power transmission shaft 20.

Description

垂直型風力発電装置Vertical wind power generator
 本発明は風力発電装置に関し、より詳しくは、垂直型風力発電装置に関する。 The present invention relates to a wind power generation device, and more particularly to a vertical wind power generation device.
 昨今、地球温暖化に起因する気候変動の影響が世界各地でみうけられる。このような状況下、地球温暖化の一因である温室効果ガスの排出ゼロを実現すべく、再生可能エネルギーの導入促進が求められている。 Recently, the effects of climate change caused by global warming are being felt all over the world. Under these circumstances, there is a need to promote the introduction of renewable energy in order to achieve zero emissions of greenhouse gases, which are a cause of global warming.
 従来、風力発電装置として、鉛直方向に延びる回転軸に八枚の放射状のブレードが設けられた縦軸型(垂直型)の風力発電装置(特許文献1)が知られている。 Conventionally, as a wind power generation device, a vertical axis type (vertical type) wind power generation device (Patent Document 1) is known, in which eight radial blades are provided on a rotating shaft extending in the vertical direction.
特開2005-337245号公報Japanese Patent Application Publication No. 2005-337245
 ところで、風力発電装置については、設置場所の問題や騒音の問題、生態系への影響、強風時のブレードの破損等の問題が指摘されており、これらの問題を解決できる技術の提案が望まれている。 By the way, problems have been pointed out regarding wind power generators, such as installation location problems, noise problems, impact on the ecosystem, and blade damage during strong winds, and proposals for technologies that can solve these problems are desired. ing.
 本発明はかかる事情に鑑みてなされたものであり、その解決課題は、従来の垂直型風力発電装置に比べて、設置場所の自由度が高く、騒音や生態系への影響が少なく、強風時のブレードの破損リスクが低い垂直型風力発電装置を提供することにある。 The present invention was made in view of the above circumstances, and the problems to be solved are that compared to conventional vertical wind power generators, there is a higher degree of freedom in the installation location, less noise and impact on the ecosystem, and a system that can be used even during strong winds. An object of the present invention is to provide a vertical wind power generation device with a low risk of blade breakage.
 本発明の垂直型風力発電装置は、錐体状の外側構造体と、外側構造体の内側に回転可能に設置された動力伝達軸と、動力伝達軸に設けられた受風面を有する受風手段と、動力伝達軸に連結された発電機を備えたものである。 The vertical wind power generation device of the present invention includes a conical outer structure, a power transmission shaft rotatably installed inside the outer structure, and a wind receiving surface provided on the power transmission shaft. and a generator connected to a power transmission shaft.
 前記構成を備えた本発明の垂直型風力発電装置では、過剰な風を錐体状の外側構造体に沿って逃がすことができるため、従来の垂直型風力発電装置に比べて強風時のブレードの破損リスクを抑えることができる。また、受風手段が外側構造体の内側に設けられているため、騒音や生態系への影響が少なくすることができる。本発明の垂直型風力発電装置は小型化可能な構造であるため、設置場所の自由度も高い。 In the vertical wind power generation device of the present invention having the above configuration, excess wind can be released along the cone-shaped outer structure, so the blades are more stable during strong winds than in conventional vertical wind power generation devices. Damage risk can be reduced. Furthermore, since the wind blowing means is provided inside the outer structure, noise and the impact on the ecosystem can be reduced. Since the vertical wind power generation device of the present invention has a structure that can be downsized, it has a high degree of freedom in installation location.
本発明の垂直型風力発電装置の一例を示す概要図。1 is a schematic diagram showing an example of a vertical wind power generation device of the present invention. (a)は外側構造体の一例を示す説明図、(b)は外側構造体の他例を示す説明図。(a) is an explanatory view showing an example of the outer structure, and (b) is an explanatory view showing another example of the outer structure. (a)は本発明の垂直型風力発電装置の一例を示す正面図、(b)は(a)の部分拡大図、(c)は(b)に示す風取込み手段の説明図。(a) is a front view showing an example of the vertical wind power generator of the present invention, (b) is a partially enlarged view of (a), and (c) is an explanatory view of the wind intake means shown in (b). (a)は風取込み手段の他例を示すもの、(b)は(a)の風取込み手段の使用状態の説明図。(a) shows another example of the wind intake means, and (b) is an explanatory diagram of the state in which the wind intake means of (a) is used. (a)は付着防止手段の一例を示す概要図、(b)は(a)の付着防止手段の平面図。(a) is a schematic diagram showing an example of an adhesion prevention means, and (b) is a plan view of the adhesion prevention means of (a). (a)は発電機を動力伝達軸の上端側に設けた場合の説明図、(b)は発電機を動力伝達軸の上下方向に間隔をあけて二つ設けた場合の説明図、(c)は発電機を動力伝達軸の上下方向に間隔をあけて四つ設けた場合の説明図。(a) is an explanatory diagram when the generator is installed on the upper end side of the power transmission shaft, (b) is an explanatory diagram when two generators are installed with an interval in the vertical direction of the power transmission shaft, (c ) is an explanatory diagram when four generators are installed at intervals in the vertical direction of the power transmission shaft. 発電機を二以上設ける場合の動力伝達軸の一例を示す説明図。An explanatory diagram showing an example of a power transmission shaft when two or more generators are provided. すべての段のブレードの長さを同じ長さにした場合の一例を示す説明図。An explanatory diagram showing an example in which the lengths of blades in all stages are made the same length. アームの先端に受風体を備えた受風手段の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of a wind blowing means including a wind blowing body at the tip of an arm. 回転盤の上面に受風体を備えた受風手段の一例を示す説明図。Explanatory drawing which shows an example of the wind blowing means provided with the wind blowing body on the upper surface of a rotary disk. 可動式の受風体を備えた受風手段の一例を示す説明図。An explanatory diagram showing an example of a wind blowing means including a movable wind blower. (a)は回転盤の上下両面に受風体を設けた受風手段の一例を示す上方側斜視図、(b)は(a)の受風手段の下方側斜視図。(a) is an upper side perspective view showing an example of a wind blowing means in which wind blowers are provided on both the upper and lower surfaces of a rotary disk, and (b) is a lower side perspective view of the wind blowing means of (a). (a)は同じサイズの受風手段を複数用いる場合の一例を示す説明図、(b)は異なるサイズの受風手段を複数用いる場合の一例を示す説明図。(a) is an explanatory diagram showing an example of using a plurality of wind blowing means of the same size, and (b) is an explanatory diagram showing an example of the case of using a plurality of wind blowing means of different sizes. 動力伝達軸の他例を示す説明図。Explanatory diagram showing another example of the power transmission shaft.
 (実施形態)
 本発明の垂直型風力発電装置の実施形態の一例を、図面を参照して説明する。一例として図1に示す垂直型風力発電装置は、発電機10と、動力伝達軸20と、受風手段30と、外側構造体40と、風取込み手段50(図3(c)及び図4(a)等)を主要構成として備えている。
(Embodiment)
An example of an embodiment of a vertical wind power generation device of the present invention will be described with reference to the drawings. As an example, the vertical wind power generation device shown in FIG. a) etc.) as the main components.
 前記発電機10は、回転運動を電気に変換する装置(ジェネレータ)である。発電機10には、新規の又は既存のものを用いることができる。 The generator 10 is a device (generator) that converts rotational motion into electricity. The generator 10 can be new or existing.
 前記発電機10には動力伝達軸20が連結されている。動力伝達軸20は後述する受風手段30による回転力を発電機10に伝達する部材である。この実施形態の動力伝達軸20は発電機10に対して垂直な縦長の柱状であり、その下端側が発電機10に連結されている。動力伝達軸20の上端側は軸受21で回転可能に支持されている。 A power transmission shaft 20 is connected to the generator 10. The power transmission shaft 20 is a member that transmits rotational force generated by a wind blowing means 30 (described later) to the generator 10. The power transmission shaft 20 of this embodiment has a vertical column shape perpendicular to the generator 10, and its lower end side is connected to the generator 10. The upper end side of the power transmission shaft 20 is rotatably supported by a bearing 21.
 前記受風手段30は、風を受けて動力伝達軸20を回転させる部材である。この実施形態では、複数の受風手段30が動力伝達軸20の垂直方向に間隔をあけて複数段設けられている。各段の受風手段30は複数枚のブレード31で構成され、それぞれを独立したユニットとして取り扱うことができる。 The wind receiving means 30 is a member that rotates the power transmission shaft 20 by receiving wind. In this embodiment, a plurality of wind blowing means 30 are provided in a plurality of stages at intervals in the vertical direction of the power transmission shaft 20. The wind blowing means 30 at each stage is composed of a plurality of blades 31, each of which can be handled as an independent unit.
 この実施形態では、各受風手段30を構成するブレード31の枚数を奇数枚としてある。偶数枚を均等間隔で設けた場合、ある方向からの風を受けた際に、平面視同一直線上にあるブレード31同士で回転力を打ち消し合い、受風量が小さくなるおそれがある。 In this embodiment, the number of blades 31 constituting each wind blowing means 30 is an odd number. If an even number of blades are provided at equal intervals, when wind blows from a certain direction, the rotational force of the blades 31 that are on the same straight line in a plan view may cancel each other out, which may reduce the amount of air received.
 これに対し、ブレード31の枚数を奇数枚とすることで、同一軸線上に二枚のブレード31が並ばなくなるため、回転力の打ち消し合いが起こりにくく、動力伝達軸20が回転しやすくなるというメリットがある。奇数枚のブレード31は、回転力の打ち消し合いを起こさない限り、均等間隔で設けることも不均等間隔で設けることもできる。 On the other hand, by setting the number of blades 31 to an odd number, two blades 31 are not lined up on the same axis, which has the advantage that the rotational forces are less likely to cancel each other out, making it easier for the power transmission shaft 20 to rotate. There is. The odd number of blades 31 may be provided at equal or uneven intervals as long as the rotational forces do not cancel each other out.
 回転力の打ち消し合いが起こりにくい構造であれば、各受風手段のブレード31の枚数は偶数枚とすることもできる。たとえば、ブレード31の設置間隔を不均等間隔とすることで偶数枚であっても回転力の打ち消し合いを起こりにくくすることができる。 The number of blades 31 of each wind blowing means may be an even number as long as the structure is such that the rotational forces are unlikely to cancel each other out. For example, by setting the blades 31 at uneven intervals, even if there is an even number of blades, it is possible to make it difficult for the rotational forces to cancel each other out.
 その他、受風手段30を構成する複数枚のブレード31の形状を異なる形状とすることで、ブレード31の枚数が偶数枚であるか奇数枚であるかを問わず、回転力の打ち消し合いを起こりにくくすることができる。 In addition, by making the shapes of the plurality of blades 31 that constitute the wind blowing means 30 different, the rotational forces cancel each other out regardless of whether the number of blades 31 is an even number or an odd number. It can be made difficult.
 要するに、複数枚のブレード31で構成される各受風手段30の構造が、点対称とならないような構造、具体的には、動力伝達軸20のうちブレード31の高さ方向及び水平方向の中心点を対称点として、各受風手段30の構造が非点対称な構造であれば、ブレード31による回転力の打ち消し合いを起こりにくくすることができる。 In short, the structure of each wind blowing means 30 composed of a plurality of blades 31 is not point symmetrical, specifically, the center of the blade 31 in the power transmission shaft 20 in the height direction and horizontal direction. If the structure of each wind blowing means 30 is asymmetrical with respect to the point of symmetry, it is possible to make it difficult for the rotational forces of the blades 31 to cancel each other out.
 この実施形態のブレード31は垂直な受風面(垂直受風面)を備えた横長方形状であり、フラットなベース部31aの先端側に屈折部31bが設けられている。この実施形態では、屈折部31bのベース部31aに対する屈折角度を45度としてあるが、この角度は45度以外であっても良い。受風面は垂直でなくてもよく、垂直面を仮想した場合にその仮想の垂直面に対して角度を持って設けることもできる。 The blade 31 of this embodiment has a horizontal rectangular shape with a vertical wind receiving surface (vertical wind receiving surface), and a bent portion 31b is provided on the tip side of a flat base portion 31a. In this embodiment, the refraction angle of the refraction portion 31b with respect to the base portion 31a is set to 45 degrees, but this angle may be other than 45 degrees. The wind receiving surface does not need to be perpendicular, and in the case of an imaginary vertical surface, it can be provided at an angle with respect to the imaginary vertical surface.
 この実施形態では、受風手段30を構成するブレード31の横方向の長さを段ごとに異なる長さとしてある。具体的には、下段側の受風手段30を構成するブレード31の長さが、上段側の受風手段30を構成するブレード31の長さよりも横方向に長くなるようにしてある。 In this embodiment, the length in the lateral direction of the blades 31 constituting the wind blowing means 30 is set to be different for each stage. Specifically, the length of the blade 31 constituting the lower wind blowing means 30 is made longer in the lateral direction than the length of the blade 31 constituting the upper wind blowing means 30.
 別の言い方をすれば、ブレード31の上下方向(高さ方向)の寸法を一定とした場合、上段側のブレード31ほど受風面積が狭く、下段側のブレード31ほど受風面積が広くなるようにしてある。 In other words, if the dimensions of the blades 31 in the vertical direction (height direction) are constant, the upper blades 31 have a narrower wind-catching area, and the lower blades 31 have a wider wind-catching area. It is set as.
 ブレード31の長さをこのように設定した場合、動力伝達軸20及び受風手段30を正面から見た場合に、下側ほど幅が広く、上側に向けて次第に幅が狭くなるようなツリー状の形状、換言すれば、縦向きのタービンのような形状となる。 When the length of the blade 31 is set in this way, when the power transmission shaft 20 and the wind blowing means 30 are viewed from the front, they form a tree shape in which the width is wider toward the bottom and gradually narrows toward the top. In other words, it has a vertical turbine-like shape.
 なお、各受風手段30を構成するブレード31の枚数に特に限定はない。また、各段の受風手段30のブレード31は、同じ枚数とすることも異なる枚数とすることもできる。異なる枚数とする場合、すべての受風手段30のブレード31を異なる枚数とすることも、一部の受風手段30のブレード31を異なる枚数とすることもできる。 Note that the number of blades 31 constituting each wind blowing means 30 is not particularly limited. Further, the number of blades 31 of the wind blowing means 30 at each stage can be the same or different. When the number of blades is different, the number of blades 31 of all the wind blowing means 30 can be different, or the number of blades 31 of some of the wind blowing means 30 can be different.
 図示は省略しているが、必要に応じて、受風手段30の逆回転を防止するストッパーや、逆回転を強制的に正回転に変換するギヤなどを設けることもできる。 Although not shown in the drawings, a stopper that prevents the wind blowing means 30 from rotating in reverse, a gear that forcibly converts reverse rotation into forward rotation, or the like may be provided as necessary.
 各受風手段30の上下には整流体32が設けられている。便宜上、図1では最上段の受風手段30の上側の整流体32と、最下段の受風手段30の下側の整流体32のみを示しているが、この実施形態では、各受風手段30の間、最上段の受風手段30の上側及び最下段の受風手段30の下側の各所に整流体32を設けてある。 A flow regulator 32 is provided above and below each wind blowing means 30. For convenience, FIG. 1 only shows the flow regulating fluid 32 above the uppermost wind blowing means 30 and the lower flow regulating flow 32 of the lowermost wind blowing means 30, but in this embodiment, each wind blowing means 30, flow regulators 32 are provided at various locations above the uppermost wind blowing means 30 and below the lowermost wind blowing means 30.
 整流体32は、取り込んだ風が上下に抜けることなくブレード31の垂直受風面に当たるように風の流れを整えるものであり、たとえば、円板状や方形状の板材等を用いることができる。整流体32には、円形状や方形状の板材のほか、楕円形状等の任意形状の板材等を用いることもできる。場合によっては、一部が湾曲した板材や一部が切り欠かれた板材等を整流体32として用いることもできる。また、整流体32は板材でなくても良い。整流体32として板材を用いる場合、図1に示すように、動力伝達軸20に交差する向き(たとえば、動力伝達軸20に直交する向き)に設けることができる。 The flow regulator 32 adjusts the flow of the air so that it hits the vertical wind receiving surface of the blade 31 without passing upward or downward, and can be made of, for example, a disc-shaped or rectangular plate. In addition to a circular or rectangular plate, a plate of any shape such as an ellipse may be used for the flow regulator 32. Depending on the case, a partially curved plate material, a partially cut-out plate material, or the like may be used as the flow regulator 32. Moreover, the flow regulator 32 does not need to be a plate material. When a plate material is used as the flow regulator 32, as shown in FIG. 1, it can be provided in a direction intersecting the power transmission shaft 20 (for example, in a direction perpendicular to the power transmission shaft 20).
 この実施形態では、各受風手段30の間に一枚ずつ整流体32を設けているが、各受風手段30の間に二枚以上の整流体32を設けることもできる。このほか、整流体32は最上段の受風手段30の上側と最下段の受風手段30の下側にのみ設ける等、任意の受風手段30の間にのみ設けることもできる。 In this embodiment, one rectifier 32 is provided between each of the wind blowing means 30, but two or more rectifiers 32 may be provided between each wind blowing means 30. In addition, the flow regulator 32 can also be provided only between any of the wind blowing means 30, such as only above the uppermost wind blowing means 30 and below the lowermost wind blowing means 30.
 前記外側構造体40は発電機10や動力伝達軸20、受風手段30の外側を覆う部材である。外側構造体40は鳥等の動物やその他の飛来物が受風手段30等にぶつかるのを防止するための部材であり、後述する風取込み手段50を支えるための部材である。 The outer structure 40 is a member that covers the outside of the generator 10, the power transmission shaft 20, and the wind blowing means 30. The outer structure 40 is a member for preventing animals such as birds and other flying objects from colliding with the wind blowing means 30, etc., and is a member for supporting the wind intake means 50, which will be described later.
 この実施形態の外側構造体40は、上端側に向けて先細りの略三角錐状の構造体である。外側構造体40は、三角錐状以外の角錐状や円錐状等、三角錐以外の錐体状とすることもできる。外側構造体40は、三角錐状や円錐状の錐体の頂部側が底面と平行な平面で切断された截頭錐体状とすることもできる。 The outer structure 40 of this embodiment is a substantially triangular pyramid-shaped structure that tapers toward the upper end. The outer structure 40 may also have a pyramidal shape other than a triangular pyramid, such as a pyramidal shape or a conical shape. The outer structure 40 may also be in the shape of a truncated pyramid, such as a triangular pyramid or a cone whose top side is cut by a plane parallel to the bottom surface.
 本願において、「錐体状」とは、三角錐状やその他の角錐状、円錐状等のほか、これらの頂部側が底面と平行な平面で切断された截頭錐体状を含む概念である。 In this application, the term "pyramid shape" is a concept that includes triangular pyramid shapes, other pyramid shapes, conical shapes, etc., as well as truncated pyramid shapes whose top sides are cut by a plane parallel to the bottom surface.
 外側構造体40を三角錐状や円錐状などの錐体状とした場合、図3(a)に点線で示すように外側構造体40の傾斜面に沿って風を逃がすことができるため、過剰な風の侵入や受風を回避し、ブレード31や動力伝達軸20、外側構造体40等の倒壊や破損等のリスクを低減することができる。外側構造体40の形状を外圧に強い性質を有する三角形状(三角錐状)とした場合には、特にその効果が大きい。 When the outer structure 40 has a conical shape such as a triangular pyramid shape or a conical shape, wind can escape along the slope of the outer structure 40 as shown by the dotted line in FIG. This makes it possible to avoid wind intrusion or wind blowing, and reduce the risk of collapse or damage to the blade 31, the power transmission shaft 20, the outer structure 40, etc. This effect is particularly great when the shape of the outer structure 40 is a triangular shape (triangular pyramid shape) that is resistant to external pressure.
 この実施形態では、強い風を受けても倒壊や破損等しないように、外側構造体40を風が通過する通気口41と複数のトラス構造を備えたメッシュ構造体としてある。この実施形態の外側構造体40は、三本の支柱とメッシュ材を組み合わせて截頭の三角錐状の外側構造体40を構成している。 In this embodiment, the outer structure 40 is a mesh structure including a ventilation hole 41 through which wind passes and a plurality of truss structures so as to prevent it from collapsing or being damaged even when exposed to strong winds. The outer structure 40 of this embodiment has a truncated triangular pyramid shape by combining three pillars and a mesh material.
 前記外側構造体40の構成は一例であり、これ以外の構成とすることもできる。たとえば、図2(a)のように複数本の長尺部材を斜めの格子状に組み合わせたものや、図2(b)のような孔開きの面状部材などによって構成することもできる。いずれの場合も、風が通過する通気口41を備えている。 The configuration of the outer structure 40 is merely an example, and other configurations may also be used. For example, it may be constructed by combining a plurality of elongated members in a diagonal lattice shape as shown in FIG. 2(a), or a planar member with holes as shown in FIG. 2(b). In either case, a vent 41 through which wind passes is provided.
 外側構造体40の材質は特に限定されないが、後述する風取込み手段50を設ける場合には、風取込み手段50を支えられる程度の強度及び硬度を備える材質製とするのが好ましい。また、後述する付着防止手段60を設ける場合、外側構造体40は打撃具62での打撃によって振動する材質製とするのが好ましい。 The material of the outer structure 40 is not particularly limited, but when a wind intake means 50 described below is provided, it is preferably made of a material that has enough strength and hardness to support the wind intake means 50. Further, when providing an adhesion prevention means 60 to be described later, the outer structure 40 is preferably made of a material that vibrates when struck by the striking tool 62.
 この実施形態では、外側構造体40に、その内部に風を取り込むための風取込み手段50が設けられている。風取込み手段50は風力集中機能と整流機能を備えたターボ器である。一例として図3(a)~(c)に示す風取込み手段50は、いわゆる風レンズ形状の構造体であり、外側構造体40に複数個取り付けられている。 In this embodiment, the outer structure 40 is provided with a wind intake means 50 for introducing wind into its interior. The wind intake means 50 is a turbo machine having a wind concentration function and a rectification function. As an example, the wind intake means 50 shown in FIGS. 3(a) to 3(c) are so-called wind lens-shaped structures, and a plurality of them are attached to the outer structure 40.
 図3(c)に示すように、この実施形態の風取込み手段50は円形リング状であり、一面側の周縁がラッパ状に広がった形状をしている。この風取込み手段50は、その構造上、径の小さな口(以下「小径口」という)51から取り込んだ風を径の大きな口(以下「大径口」という)52から排出することで取り込んだ風が増幅される。 As shown in FIG. 3(c), the wind intake means 50 of this embodiment has a circular ring shape, and the peripheral edge on one side is shaped like a trumpet. Due to its structure, this wind intake means 50 takes in wind from a small-diameter opening (hereinafter referred to as "small-diameter opening") 51 and discharges it from a large-diameter opening (hereinafter referred to as "large-diameter opening") 52. The wind is amplified.
 図3(a)に示すように、外側構造体40には複数個の風取込み手段50が取り付けられている。この実施形態では、各段の受風手段30を構成するブレード31に集中的に風を送れるように、外側構造体40のうち、内側にある受風手段30の高さと同じ高さに設けられている。 As shown in FIG. 3(a), a plurality of wind intake means 50 are attached to the outer structure 40. In this embodiment, the blades 31 of the outer structure 40 are provided at the same height as the inner wind blowing means 30 so that the wind can be sent intensively to the blades 31 constituting the wind blowing means 30 of each stage. ing.
 風取込み手段50は、各段の周方向に沿って複数個ずつ設けてある。この構造の風取込み手段50は、小径口51が外側を向き、大径口52が内側を向くように取り付けられる。 A plurality of wind intake means 50 are provided along the circumferential direction of each stage. The wind intake means 50 having this structure is installed such that the small diameter opening 51 faces outside and the large diameter opening 52 faces inside.
 ここで示した風取込み手段50は一例であり、風取込み手段50には風レンズ形状のもの以外のものを用いることもできる。たとえば、図4(a)に示すように、管部材53の内部に整流網54を備えたもの等を用いることもできる。この構造の風取込み手段50は、図4(b)に示すように、大径口55が外側を向き、小径口56が内側を向くように取り付けられる。 The wind intake means 50 shown here is just an example, and the wind intake means 50 may be of a shape other than a wind lens. For example, as shown in FIG. 4(a), a tube member 53 having a rectifying network 54 inside it may be used. The wind intake means 50 having this structure is attached so that the large diameter opening 55 faces outward and the small diameter opening 56 faces inward, as shown in FIG. 4(b).
 このような風取込み手段50を設けることで、取り込まれた風を整流網54で整流してブレード31に直風を当てることができる。一般に、乱気流ではブレード31がうまく回らないが、整流した直風を当てることでブレード31をスムーズに回転させることができる。 By providing such a wind intake means 50, the introduced wind can be rectified by the rectifying net 54 and direct wind can be applied to the blades 31. Generally, the blades 31 do not rotate well in turbulence, but the blades 31 can be rotated smoothly by applying rectified direct wind.
 なお、風取込み手段50を設置する向きは特に限定されないが、乱気流が発生した際の影響を小さく抑える観点から、各風取込み手段50は、受風手段30の回転方向と水平な方向に向けて設置するのが好ましい。 Note that the direction in which the wind intake means 50 is installed is not particularly limited, but from the viewpoint of minimizing the influence when turbulence occurs, each wind intake means 50 is installed in a direction parallel to the rotational direction of the wind blowing means 30. It is preferable to install
 ただし、風取込み手段50は必須の構成ではなく、不要な場合には省略することもできる。たとえば、風取込み手段50がなくても発電するのに十分な風力が見込める場所に設置する場合などには省略することができる。 However, the wind intake means 50 is not an essential configuration, and can be omitted if unnecessary. For example, the wind intake means 50 can be omitted if it is installed in a location where sufficient wind power can be expected to generate electricity even without the wind intake means 50.
 図5(a)(b)に示すように、本発明の垂直型風力発電装置には、氷や雪の付着(以下「着氷等」という)を防止する付着防止手段60を設けることもできる。一例として図5(a)(b)に示す付着防止手段60は、動力伝達軸20に固定された取付けリング61と、取付けリング61から外向きに突設された打撃具62と、外側構造体40に設けられた被打撃具63を備えている。 As shown in FIGS. 5(a) and 5(b), the vertical wind power generation device of the present invention may be provided with adhesion prevention means 60 for preventing the adhesion of ice and snow (hereinafter referred to as "icing etc."). . As an example, the adhesion prevention means 60 shown in FIGS. 5(a) and 5(b) includes an attachment ring 61 fixed to the power transmission shaft 20, a striking tool 62 protruding outward from the attachment ring 61, and an outer structure. A hit tool 63 provided at 40 is provided.
 図5(a)(b)に示す取付けリング61は円形状であり、その外周縁から外向きに打撃具62が複数本突設されている。この実施形態の打撃具62は、棒状部62aと棒状部62aの先端に設けられた球状の打撃球62bを備えている。打撃具62の設置間隔は等間隔でも不等間隔でもよく、その設置本数も垂直型風力発電装置の大きさ等に応じて決定することができる。 The mounting ring 61 shown in FIGS. 5(a) and 5(b) has a circular shape, and has a plurality of striking tools 62 protruding outward from its outer periphery. The hitting tool 62 of this embodiment includes a rod-like portion 62a and a spherical hitting ball 62b provided at the tip of the rod-like portion 62a. The striking tools 62 may be installed at equal or unequal intervals, and the number of hitting tools 62 may be determined depending on the size of the vertical wind power generator.
 この実施形態では、温度が上昇すると収縮し、温度が下がると膨張する材質で打撃具62を構成するとともに、膨張時には打撃球62bが被打撃具63に接触し、収縮時には打撃球62bが被打撃具63に接触しないようにしてある。 In this embodiment, the hitting tool 62 is made of a material that contracts when the temperature rises and expands when the temperature drops, and when expanding, the hitting ball 62b comes into contact with the hit tool 63, and when contracting, the hitting ball 62b comes into contact with the hit tool 63. It is arranged so that it does not come into contact with the tool 63.
 このようにすることで、着氷等が生じやすい温度下では、打撃球62bが被打撃具63に接触して着氷等を防止することができ、着氷等が生じない温度下では、打撃球62bが被打撃具63に接触せず、打撃音による騒音の発生を防止することができる。 By doing so, the hitting ball 62b can contact the hit tool 63 to prevent icing, etc., at temperatures where icing etc. are likely to occur; The ball 62b does not come into contact with the hit tool 63, and it is possible to prevent the occurrence of noise due to the impact sound.
 被打撃具63は、打撃球62bによって打ち付けられる部材である。被打撃具63は、ゴム材(ラバー材)等、打撃時に生じる振動を外側構造体40に伝達できる各種の材質で構成することができる。被打撃具63は外側構造体40の内面に取り付けられている。被打撃具63は外側構造体40の周方向に間隔をあけて複数個設けられている。 The hit tool 63 is a member that is hit by the hitting ball 62b. The hit tool 63 can be made of various materials, such as a rubber material, that can transmit vibrations generated during hitting to the outer structure 40. The hit tool 63 is attached to the inner surface of the outer structure 40. A plurality of hit tools 63 are provided at intervals in the circumferential direction of the outer structure 40 .
 この実施形態では、取付けリング61及び打撃具62を、最下段の受風手段30よりも低い位置に設置し、被打撃具63を最下段の風取込み手段50よりも低い位置に設置している。取付けリング61、打撃具62及び被打撃具63は、これ以外の場所に設けることもできる。 In this embodiment, the attachment ring 61 and the striking tool 62 are installed at a lower position than the wind blowing means 30 at the lowest stage, and the hit tool 63 is installed at a position lower than the wind intake means 50 at the lowest stage. . The attachment ring 61, the striking tool 62, and the hit tool 63 can also be provided at other locations.
 前記付着防止手段60の構成は一例であり、付着防止手段60はこれ以外の構成とすることもできる。たとえば、取付けリング61に図示しない電動ジャッキを接続し、当該電動ジャッキによって取付けリング61及び打撃具62を昇降させ、上昇時には被打撃具63に当たり、降下時には被打撃具63に当たらないようにすることができる。 The structure of the adhesion prevention means 60 is just an example, and the adhesion prevention means 60 can also have a structure other than this. For example, an electric jack (not shown) may be connected to the mounting ring 61, and the electric jack may be used to raise and lower the mounting ring 61 and the striking tool 62, so that they hit the struck tool 63 when rising and do not hit the struck tool 63 when descending. I can do it.
 この場合、電動ジャッキに図示しない電源装置(たとえば、サーモスタット付きの電源装置)を接続しておき、気温が予め設定した閾値(たとえば0℃)未満まで下がったきに電源がオンとなり、気温が閾値(たとえば0℃)以上まで上がったときに電源がオフとなるようにすることができる。 In this case, a power supply device (for example, a power supply device with a thermostat) (not shown) is connected to the electric jack, and the power is turned on when the temperature drops below a preset threshold (for example, 0 degrees Celsius). For example, the power can be turned off when the temperature rises above 0°C.
 このようにした場合、気温が閾値未満まで下がると電源が入ってジャッキが上がり、打撃具62が被打撃具63に接触し、気温が閾値以上まで上がると電源がオフになってジャッキが下がり、打撃具62が被打撃具63に接触しないようにすることができる。なお、この方式を採用する場合、電源装置は垂直型風力発電装置で生成された電気で動作するようにすることができる。 In this case, when the temperature drops below the threshold, the power is turned on and the jack is raised, and the striking tool 62 comes into contact with the hit tool 63, and when the temperature rises above the threshold, the power is turned off and the jack is lowered. It is possible to prevent the hitting tool 62 from coming into contact with the hit tool 63. Note that when this method is adopted, the power supply device can be operated with electricity generated by the vertical wind power generator.
 このような付着防止手段60を設けることで、寒冷地でも着氷等による不具合が生じにくく、発電効率を維持しやすいというメリットがある。ただし、付着防止手段60は必須の構成ではなく、不要な場合には省略することができる。 Providing such an adhesion prevention means 60 has the advantage that problems such as icing are less likely to occur even in cold regions, and power generation efficiency is easily maintained. However, the adhesion prevention means 60 is not an essential configuration and can be omitted if unnecessary.
 本発明の垂直型風力発電装置は、陸上に設置するほか、洋上に設置することもできる。設置は従来と同様の方法で行うことができ、軟弱な地盤に設置するような場合には、支柱の台座(先の例では三本の支柱を支える台座)に節付き基礎杭を用いることができる。 The vertical wind power generation device of the present invention can be installed not only on land but also on the ocean. Installation can be done in the same way as before, and when installing on soft ground, it is recommended to use knotted foundation piles for the pedestal of the pillar (in the previous example, the pedestal supporting three pillars). can.
 洋上に設置する場合、その設置方式は、設置場所の地盤までの距離等に応じて、たとえば、海底(地盤)に固定する着床方式と洋上に浮かせる浮体方式から選択することができる。 When installing on the ocean, the installation method can be selected from, for example, a landing method that is fixed to the seabed (ground) and a floating method that is floated on the ocean, depending on the distance to the ground at the installation location.
 以上の構成を備えた垂直型風力発電装置では、複数の受風手段30が独立しているため、ある段の受風手段30が故障した場合でも他の受風手段30によって発電を継続することができ、発電停止のリスクを低減することができるメリットがある。 In the vertical wind power generation device having the above configuration, since the plurality of wind blowing means 30 are independent, even if one of the wind blowing means 30 at a certain stage fails, power generation can be continued using the other wind blowing means 30. This has the advantage of reducing the risk of power generation outage.
 また、各受風手段30は単独のユニットとして取り扱うことができるため、故障時には故障した受風手段30だけを交換し、健全な(故障していない)受風手段30はそのまま使い続けられるため、メンテナンス性及び経済性に優れるというメリットがある。 In addition, since each wind blowing means 30 can be handled as an individual unit, in the event of a failure, only the broken wind blowing means 30 can be replaced, and healthy (non-faulty) wind blowing means 30 can continue to be used as is. It has the advantage of being excellent in maintainability and economy.
 なお、本発明の垂直型風力発電装置で生成された電気は通常の電力源として活用できることはもちろん、それ以外の使途に用いることもできる。たとえば、河川や海水を電気分解して水素を発生させることなどが考えられる。 Note that the electricity generated by the vertical wind power generation device of the present invention can not only be used as a normal power source, but also for other purposes. For example, it is possible to generate hydrogen by electrolyzing river or seawater.
 本発明の垂直型風力発電装置は小型化可能な構成であり、設置場所の自由度が高いため、インフラ条件の良い地域に設置し、近隣に水素製造施設を併設することで、グリーンエネルギーの集積環境を整えることができる。これにより、産業の振興に寄与しうると共に、地域おこしの一助ともなりうる。将来的には、地域パワーグリッドを確立し、施設や地域電力として活用することも期待できる。 The vertical wind power generation device of the present invention has a configuration that can be miniaturized and has a high degree of freedom in installation location, so it can be installed in an area with good infrastructure conditions and a hydrogen production facility nearby, allowing for the accumulation of green energy. You can adjust the environment. This will not only contribute to the promotion of industry, but also help revitalize the region. In the future, it is expected that a regional power grid will be established and used for facilities and regional power.
 また、本発明の垂直型風力発電装置は、プロペラ型の風力発電装置とは異なり、巨大なプロペラがむき出しで回転するようなものではないため、プロペラ型の風力発電装置に比べて設置場所の自由度が高い。たとえば、都心部で問題となっている高層ビルのビル風に対して防風の役割を果たすと同時に、設置地区の電力供給に寄与するものとしての活用が期待できる。 In addition, unlike propeller-type wind power generation devices, the vertical wind power generation device of the present invention does not have a huge propeller that rotates exposed, so it can be installed more freely than propeller-type wind power generation devices. High degree. For example, it can be expected to act as a windbreak against high-rise buildings, which is a problem in urban centers, and at the same time contribute to the power supply in the area where it is installed.
 (その他の実施形態)
-受風手段の変形例1-
 前記実施形態では、受風手段30を構成するブレード31の横方向の長さが段ごとに異なる場合を一例としているが、図8に示すように、ブレード31はすべての段で同じ長さとすることもできる。
(Other embodiments)
-Variation example 1 of wind blowing means-
In the embodiment described above, the length of the blades 31 in the lateral direction that constitute the wind blowing means 30 is different for each stage, but as shown in FIG. 8, the length of the blades 31 is the same in all stages. You can also do that.
 場合によっては、最上段と二段目のブレード31を同じ長さ、三段目と四段目のブレード31を同じ長さというように、複数段のブレード31を同じ長さとし、他の一段又は複数段のブレード31をそれとは異なる長さとすることもできる。 In some cases, the blades 31 in multiple stages may be the same length, such as the blades 31 in the top and second stages are the same length, the blades 31 in the third and fourth stages are the same length, and the blades 31 in the other stages or The multiple stages of blades 31 can also have different lengths.
-受風手段の変形例2-
 前記実施形態では、受風手段30として複数枚のブレード31を用いる場合を一例としているが、受風手段30はこれ以外の構造とすることもできる。たとえば、図9に示すような、アーム31cの先端に略半球状(お椀状)の受風体31dを備えた構造とすることができる。
-Variation example 2 of wind blowing means-
In the embodiment described above, a case where a plurality of blades 31 are used as the wind blowing means 30 is exemplified, but the wind blowing means 30 can also have a structure other than this. For example, as shown in FIG. 9, it is possible to have a structure in which an approximately hemispherical (bowl-shaped) wind receiving body 31d is provided at the tip of an arm 31c.
 図9に示す例では、アーム31cとして、凹部(アーム凹部)31eを備えた半割パイプ状の部材を用いている。アーム凹部31eを備えたアーム31cを用いることで受風面積が大きくなり、風を受けやすくなるというメリットがある。 In the example shown in FIG. 9, a half-pipe-shaped member with a recess (arm recess) 31e is used as the arm 31c. By using the arm 31c provided with the arm recess 31e, there is an advantage that the wind receiving area becomes large and the wind is easily received.
 アーム31cとして半割パイプ状の部材を用いる場合、アーム凹部31dの開口周縁(アーム開口周縁)31fは、アーム凹部31e内に風が入り込みやすいように、内向きに窄まるようにしてある。窄ませる程度は適宜設計することができる。アーム31cは、半割パイプ状の部材のほか、真円パイプや無垢の軸材などで構成することもできる。 When a half-pipe-shaped member is used as the arm 31c, the opening periphery 31f of the arm recess 31d (arm opening periphery) is tapered inward so that wind can easily enter the arm recess 31e. The degree of narrowing can be designed as appropriate. The arm 31c can be made of a perfectly round pipe, a solid shaft material, or the like, in addition to a half-pipe member.
 図9に示す受風体31dは、アーム凹部31e側の面に凹部(受風体凹部)31gを備えた略半球状(お椀状)の中空部材である。受風体31dの開口周縁(受風体開口周縁)31hは、受風体31d内に風が入り込みやすいように、内向きに窄まるようにしてある。窄ませる程度は適宜設計することができる。受風体31dの構造は半球状以外であってもよい。 The wind blower 31d shown in FIG. 9 is a substantially hemispherical (bowl-shaped) hollow member that has a recess (wind blower recess) 31g on the arm recess 31e side. The opening periphery 31h of the wind receiving body 31d (wind receiving body opening periphery) is configured to narrow inward so that the wind can easily enter into the wind receiving body 31d. The degree of narrowing can be designed as appropriate. The structure of the wind receiving body 31d may be other than hemispherical.
 なお、説明の便宜上、図9では一段分の受風手段30のみを示しているが、受風手段30を、アーム31cの先端に受風体31dを備えたもので構成する場合も、受風手段30は複数段設けることができる。 For convenience of explanation, only one stage of the wind blowing means 30 is shown in FIG. 30 can be provided in multiple stages.
-受風手段の変形例3-
 受風手段30には、図10に示すような円板状や方形状の回転盤31iの上面に、受風面を有する一又は二以上(図示する例では複数)の受風体31jを備えたものを用いることもできる。回転盤31iには、円形状や方形状の板材のほか、楕円形状等の任意形状の板材を用いることもできる。場合によっては、一部が湾曲した板材や一部が切り欠かれた板材等を回転盤31iとして用いることもできる。また、回転盤31iは板材でなくても良い。
-Variation example 3 of wind blowing means-
The wind receiving means 30 includes one or more (in the illustrated example, a plurality of) wind receiving bodies 31j each having a wind receiving surface on the upper surface of a disc-shaped or rectangular rotary disk 31i as shown in FIG. You can also use something. In addition to a circular or rectangular plate material, a plate material having an arbitrary shape such as an elliptical shape can also be used for the rotary disk 31i. In some cases, a partially curved plate material, a partially cut-out plate material, or the like may be used as the rotary disk 31i. Further, the rotary disk 31i does not have to be a plate material.
 図10に示す受風体31jは、凹部(受風体凹部)31kを備えた略半球状(お椀状)の部材を半分にした形状の部材である。受風体31jの形状はこれ以外でもよく、図9の受風体31dと同様の略半球状(お椀状)等とすることもできる。 The wind blower 31j shown in FIG. 10 is a half-shaped member that is substantially hemispherical (bowl-shaped) and includes a concave portion (blow body concavity) 31k. The shape of the wind blower 31j may be other than this, and may be approximately hemispherical (bowl-shaped) similar to the wind blower 31d in FIG. 9.
 受風体31jの開口周縁(受風体開口周縁)31mは、受風体31j内に風が入り込みやすいように、内向きに窄まるようにするのが望ましい。窄ませる程度は適宜設計することができる。受風体31jには、湾曲面を有する曲面板や湾曲を有しない平坦な平板(図11参照)等を用いることもできる。 It is desirable that the opening periphery (periphery of the wind receiving body opening) 31m of the wind receiving body 31j narrows inward so that the wind can easily enter the wind receiving body 31j. The degree of narrowing can be designed as appropriate. A curved plate with a curved surface, a flat plate without a curve (see FIG. 11), etc. can also be used as the wind receiving body 31j.
 このような構造の受風体31jを有する受風手段30を用いる場合も、受風体31j同士で回転力の打ち消し合いが起こりにくいように、各受風手段30は非点対称な構造とするのが好ましい。 Even when using the wind-blowing means 30 having the wind-blowing bodies 31j having such a structure, it is preferable that each wind-blowing means 30 has an asymmetrical structure so that the rotational forces of the wind-blowing bodies 31j are unlikely to cancel each other out. preferable.
 図11に示すように、受風体31jは、風を受ける向きによって起立した状態(以下「起立状態」という)と倒伏した状態(以下「倒伏状態」という)の間で姿勢が変化するような可動式の構造とすることもできる。 As shown in FIG. 11, the wind receiving body 31j is movable so that its posture changes between an upright state (hereinafter referred to as "upright state") and a laid down state (hereinafter referred to as "lowered state") depending on the direction in which it receives the wind. It can also have the structure of Eq.
 具体的には、受風体31jの一方の面(以下「第一面」という)側で風を受けた場合に受風体31jが起立し、他方の面(以下「第二面側」という)で風を受けた場合に受風体31jが倒伏するようにすることができる。 Specifically, when the wind receiving body 31j receives wind on one surface (hereinafter referred to as "first surface") side, the wind receiving body 31j stands up, and on the other surface (hereinafter referred to as "second surface side"). The wind receiving body 31j can be made to lie down when exposed to wind.
 また、受風体31jは回転盤31iの上面に設ける場合を一例としているが、受風体31jは回転盤31iの下面に設けることもできる。場合によっては、図12(a)(b)のように、回転盤31iの上下両面に設けることもできる。上下両面に設ける場合、上下で同じ位置に設けることも、上下でずらして設けることもできる。 Furthermore, although the wind receiving body 31j is provided on the upper surface of the rotating disk 31i as an example, the wind receiving object 31j may also be provided on the lower surface of the rotating disk 31i. Depending on the case, they may be provided on both the upper and lower surfaces of the rotary disk 31i, as shown in FIGS. 12(a) and 12(b). When provided on both the upper and lower surfaces, it can be provided at the same position on the upper and lower sides, or it can be provided at different positions on the upper and lower sides.
 この受風手段30を複数段設ける場合、図13(a)のように回転盤31iの直径(面積)が同じものを用いることも、図13(b)のように直径(面積)が異なるものを用いることもできる。受風体31jを回転盤31iの上下両面に設ける場合も同様である。 When providing multiple stages of the wind blowing means 30, rotating disks 31i having the same diameter (area) as shown in FIG. 13(a) may be used, or rotating disks 31i having different diameters (areas) as shown in FIG. 13(b) may be used. You can also use The same applies to the case where the wind receiving bodies 31j are provided on both the upper and lower surfaces of the rotary disk 31i.
 面積の異なるものを用いる場合、図13(b)のように上段側から下段側に向かうに従って、面積の広いものとなるようにするほか、下段側から上段側に向かうに従って、面積の広いものとなるようにすることもできる。 When using items with different areas, the area should be larger from the upper side to the lower side as shown in Figure 13(b), and the area should be wider from the lower side to the upper side. You can also make it so.
 受風手段30として、回転盤31iに複数の受風体31jを備えたものを用いる場合、回転盤31iは動力伝達軸20に固定される。受風手段30は、たとえば、図14に示すように、内支柱22の外側に筒状の動力伝達軸20をベアリング23を介して配置し、その動力伝達軸20に回転盤31iを固定することができる。 When using a rotary disk 31i equipped with a plurality of wind blowing bodies 31j as the wind blowing means 30, the rotary disk 31i is fixed to the power transmission shaft 20. The wind blowing means 30 includes, for example, as shown in FIG. 14, a cylindrical power transmission shaft 20 is disposed outside the inner support 22 via a bearing 23, and a rotary disk 31i is fixed to the power transmission shaft 20. I can do it.
 この場合、回転盤31iによる回転力が動力伝達軸20を介して発電機10に伝達され、発電が行われる。受風手段30の動力伝達軸20への固定方法はこれ以外でもよく、たとえば、回転盤31iを図7に示すような構成で動力伝達軸20に固定し、回転盤31iが回転したときに動力伝達軸20が回転するようにすることもできる。 In this case, the rotational force by the rotary disk 31i is transmitted to the generator 10 via the power transmission shaft 20, and power generation is performed. The method of fixing the wind blowing means 30 to the power transmission shaft 20 may be other than this. For example, the rotating disk 31i may be fixed to the power transmitting shaft 20 with the configuration shown in FIG. It is also possible to make the transmission shaft 20 rotate.
 受風手段の変形例3で説明した受風手段30の回転盤31iは、その形状によっては、整流体32のような風の流れを整える機能を果たしうるものである。 Depending on its shape, the rotary disk 31i of the wind blowing means 30 described in the third modification of the wind blowing means can perform the function of adjusting the flow of wind like the flow regulator 32.
-整流体の変形例-
 前記実施形態では、整流体32として円板状や方形状、楕円形状、その他各種形状の板材等を用いる場合を一例としているが、整流体32はこれ以外の構造とすることもできる。たとえば、受風手段の変形例3で説明した受風手段30、具体的には、円形状や方形状の回転盤31iの上面と下面の双方又はいずれか一方に、一又は二以上の受風体31jを備えたものを、整流体32として用いることができる。この場合の整流体32の具体的な構成は、受風手段の変形例3の受風手段30と同様であるため、ここではその説明は省略する。
- Variation of fluid regulation -
In the embodiment described above, as an example, the flow regulator 32 is a disk-shaped, square-shaped, elliptical, or other various shaped plate material, but the flow regulator 32 can also have a structure other than this. For example, the wind blowing means 30 described in Modification 3 of the wind blowing means, specifically, one or more wind blowing bodies may be installed on both or either of the upper surface and the lower surface of the circular or rectangular rotary plate 31i. 31j can be used as the flow regulator 32. The specific configuration of the flow regulator 32 in this case is the same as that of the wind blowing means 30 of Modification 3 of the wind blowing means, so the description thereof will be omitted here.
-その他の構成の変形例-
 前記実施形態では、取付けリング61、打撃具62及び被打撃具63を一段設ける場合を一例としているが、取付けリング61、打撃具62及び被打撃具63は、上下方向に間隔をあけて複数段設けることもできる。
-Other configuration variations-
In the embodiment described above, the mounting ring 61, the striking tool 62, and the hit tool 63 are provided in one stage as an example, but the mounting ring 61, the hitting tool 62, and the hit tool 63 are arranged in multiple stages at intervals in the vertical direction. It is also possible to provide one.
 前記実施形態では、動力伝達軸20の下端に発電機10が設けられた場合を一例としているが、発電機10はこれ以外の場所に設けることもできる。たとえば、図6(a)に示すように動力伝達軸20の上端に設けることもできる。この場合、動力伝達軸20の下端側は軸受けで支持すればよい。 In the embodiment described above, the case where the generator 10 is provided at the lower end of the power transmission shaft 20 is taken as an example, but the generator 10 can also be provided at a location other than this. For example, it can also be provided at the upper end of the power transmission shaft 20 as shown in FIG. 6(a). In this case, the lower end side of the power transmission shaft 20 may be supported by a bearing.
 前記実施形態では、発電機10が一つの場合を一例としているが、発電機10は二以上設けることもできる。この場合、たとえば、図6(b)のように動力伝達軸20の上端側と下端側に一つずつ設けたり、図6(c)のように動力伝達軸20の軸方向に間隔をあけて設けたりすることができる。発電機10を二以上設ける場合、受風手段30毎に設けることもできる。 In the embodiment, the case where there is one generator 10 is taken as an example, but two or more generators 10 can also be provided. In this case, for example, one may be provided at the upper and lower ends of the power transmission shaft 20 as shown in FIG. 6(b), or one may be provided at intervals in the axial direction of the power transmission shaft 20 as shown in FIG. 6(c). It can be set up. When two or more generators 10 are provided, one can be provided for each wind blowing means 30.
 発電機10を二以上設ける場合、図7に示すように、芯材となる支柱(以下「内支柱」という)22を立設するとともに、その内支柱22の外側に、複数枚のブレード31を備えた筒状の動力伝達軸20をベアリング23を介して配置し、各動力伝達軸20が個別に回転するようにすることができる。 When two or more generators 10 are provided, as shown in FIG. The provided cylindrical power transmission shafts 20 can be disposed via bearings 23 so that each power transmission shaft 20 can be rotated individually.
 内支柱22は上端の軸受21(図6(c))と最下段の発電機10の間に、回転しないように固定してある。各動力伝達軸20は一つの発電機10につき一つずつ設けられ、各発電機10に一本ずつ動力伝達軸20が接続されている。各動力伝達軸20が回転すると、当該動力伝達軸20が接続された発電機10によって発電される。 The inner support 22 is fixed between the bearing 21 at the upper end (FIG. 6(c)) and the generator 10 at the lowermost stage so as not to rotate. One power transmission shaft 20 is provided for each generator 10, and one power transmission shaft 20 is connected to each generator 10. When each power transmission shaft 20 rotates, power is generated by the generator 10 to which the power transmission shaft 20 is connected.
 このようにした場合、発電機10及び動力伝達軸20並びに当該動力伝達軸20に設けられた受風手段30が一つの発電ユニット24として機能する。これにより、一つの発電ユニット24が故障した場合でも、他の発電ユニット24によって発電を継続することができ、発電停止のリスクを低減することができる。 In this case, the generator 10, the power transmission shaft 20, and the wind blowing means 30 provided on the power transmission shaft 20 function as one power generation unit 24. Thereby, even if one power generation unit 24 fails, power generation can be continued by the other power generation units 24, and the risk of power generation stoppage can be reduced.
 なお、発電機10が一つの場合、動力伝達軸20は中実の柱材を用いればよいが、発電機10を二以上設ける場合と同様、内支柱22の外側にベアリング23を介して配置する筒状のものを用いることもできる。 In addition, when there is one generator 10, a solid pillar material may be used as the power transmission shaft 20, but as in the case where two or more generators 10 are provided, it is arranged on the outside of the inner pillar 22 via a bearing 23. A cylindrical one can also be used.
 前記実施形態では説明を省略しているが、動力伝達軸20には、回転力を増幅して発電機10に伝える増速機や、強風の際にブレード31や動力伝達軸20の回転速度を抑えるブレーキ装置等を設けることもできる。 Although the description is omitted in the embodiment, the power transmission shaft 20 includes a speed increaser that amplifies the rotational force and transmits it to the generator 10, and a speed increaser that increases the rotational speed of the blades 31 and the power transmission shaft 20 during strong winds. It is also possible to provide a brake device or the like to suppress the damage.
 前記実施形態では、打撃具62を温度が上昇すると収縮し、温度が下がると膨張する材質で構成する場合を一例としているが、被打撃具63を同材料で構成することもできる。場合によっては、双方を同材料で構成することもできる。 In the embodiment described above, the striking tool 62 is made of a material that contracts when the temperature rises and expands when the temperature falls, but the struck tool 63 can also be made of the same material. In some cases, both may be made of the same material.
 前記実施形態では、取付けリング61を電動ジャッキで昇降させる場合を一例としているが、被打撃具63を昇降させるようにすることもできる。たとえば、被打撃具63を内向きに突設させたリング状のベース座を外側構造体40の内面に設置し、そのベース座を電動ジャッキで昇降させるようにすることで、取付けリング61を電動ジャッキで昇降させる場合と同様の作用効果を得られる。 In the embodiment described above, the mounting ring 61 is raised and lowered using an electric jack, but the hit tool 63 can also be raised and lowered. For example, by installing a ring-shaped base seat on which the hit tool 63 projects inward on the inner surface of the outer structure 40 and raising and lowering the base seat with an electric jack, the mounting ring 61 can be moved electrically. You can obtain the same effect as when lifting and lowering with a jack.
 前記実施形態の構成は一例であり、本発明の垂直型風力発電装置の構成は前記構成に限定されるものではない。本発明の垂直型風力発電装置の構成は、所期の目的を達成できる範囲で、適宜追加、入れ替え、削除等の変更を加えることができる。 The configuration of the embodiment described above is an example, and the configuration of the vertical wind power generator of the present invention is not limited to the configuration described above. The configuration of the vertical wind power generation device of the present invention can be appropriately modified such as additions, replacements, deletions, etc. within a range that can achieve the intended purpose.
 本発明の垂直型風力発電装置は、陸上に設置する陸上風力発電装置としてのみならず、洋上に設置する洋上風力発電装置としても利用することができる。 The vertical wind power generation device of the present invention can be used not only as an onshore wind power generation device installed on land, but also as an offshore wind power generation device installed on the ocean.
 10  発電機
 20  動力伝達軸
 21  軸受
 22  内支柱
 23  ベアリング
 24  発電ユニット
 30  受風手段
 31  ブレード
 31a ベース部
 31b 屈折部
 31c アーム
 31d 受風体
 31e 凹部(アーム凹部)
 31f 開口周縁(アーム開口周縁)
 31g 凹部(受風体凹部)
 31h 開口周縁(受風体開口周縁)
 31i 回転盤
 31j 受風体
 31k 凹部(受風体凹部)
 31m 開口周縁(受風体開口周縁)
 32  整流体
 40  外側構造体
 41  通気口
 50  風取込み手段
 51  小径口
 52  大径口
 53  管部材
 54  整流網
 55  大径口
 56  小径口
 60  付着防止手段
 61  取付けリング
 62  打撃具
 62a 棒状部
 62b 打撃球
 63  被打撃具
 
10 Generator 20 Power transmission shaft 21 Bearing 22 Inner support 23 Bearing 24 Power generation unit 30 Wind blowing means 31 Blade 31a Base part 31b Bent part 31c Arm 31d Wind blower 31e Recessed part (arm recessed part)
31f Opening periphery (arm opening periphery)
31g recess (wind receiving body recess)
31h Opening periphery (airbrush opening periphery)
31i Rotating disk 31j Wind receiving element 31k Recess (wind receiving element recess)
31m Opening periphery (wind receiving body opening periphery)
32 Flow regulation 40 Outer structure 41 Vent 50 Wind intake means 51 Small diameter port 52 Large diameter port 53 Pipe member 54 Rectification net 55 Large diameter port 56 Small diameter port 60 Adhesion prevention means 61 Mounting ring 62 Hitting tool 62a Rod-shaped portion 62b Hitting ball 63 Hit equipment

Claims (12)

  1.  垂直型風力発電装置において、
     錐体状の外側構造体と、
     前記外側構造体の内側に回転可能に設置された動力伝達軸と、
     前記動力伝達軸に設けられた受風面を有する受風手段と、
     前記動力伝達軸に連結された発電機を備えた、
     ことを特徴とする垂直型風力発電装置。
    In vertical wind power generation equipment,
    a cone-shaped outer structure;
    a power transmission shaft rotatably installed inside the outer structure;
    a wind blowing means having a wind blowing surface provided on the power transmission shaft;
    comprising a generator connected to the power transmission shaft;
    A vertical wind power generation device characterized by:
  2.  請求項1記載の垂直型風力発電装置において、
     受風手段が受風面を備えた複数枚のブレードを備えた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 1,
    The wind blowing means includes a plurality of blades each having a wind blowing surface.
    A vertical wind power generation device characterized by:
  3.  請求項2記載の垂直型風力発電装置において、
     複数枚のブレードが不均等間隔で動力伝達軸に設けられた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 2,
    Multiple blades are installed on the power transmission shaft at uneven intervals,
    A vertical wind power generation device characterized by:
  4.  請求項1記載の垂直型風力発電装置において、
     受風手段が受風面を備えた奇数枚のブレードを備えた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 1,
    The wind blowing means includes an odd number of blades each having a wind blowing surface.
    A vertical wind power generation device characterized by:
  5.  請求項1記載の垂直型風力発電装置において、
     受風手段が動力伝達軸に複数設けられた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 1,
    Multiple wind blowing means are provided on the power transmission shaft,
    A vertical wind power generation device characterized by:
  6.  請求項1記載の垂直型風力発電装置において、
     外側構造体内部に取り込んだ風の流れを整える整流体を備えた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 1,
    Equipped with a flow regulator that regulates the flow of air taken into the outer structure.
    A vertical wind power generation device characterized by:
  7.  請求項6記載の垂直型風力発電装置において、
     受風手段が動力伝達軸に複数設けられ、
     整流体が一又は二以上の受風手段の上方又は/及び下方に設けられた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 6,
    Multiple wind blowing means are provided on the power transmission shaft,
    A flow regulator is provided above and/or below one or more wind blowing means,
    A vertical wind power generation device characterized by:
  8.  請求項6記載の垂直型風力発電装置において、
     整流体は、回転可能な回転盤と当該回転盤に設けられた一又は二以上の受風体を備えた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 6,
    The flow regulator is equipped with a rotatable rotary disk and one or more wind receiving bodies provided on the rotary disk.
    A vertical wind power generation device characterized by:
  9.  請求項1記載の垂直型風力発電装置において、
     受風手段は、回転可能な回転盤と当該回転盤に設けられた一又は二以上の受風体を備えた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 1,
    The wind blowing means includes a rotatable rotary disk and one or more wind blowing bodies provided on the rotary disk.
    A vertical wind power generation device characterized by:
  10.  請求項1記載の垂直型風力発電装置において、
     受風手段は、アームと当該アームの先端に設けられた受風体を備えた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 1,
    The wind blowing means includes an arm and a wind blowing body provided at the tip of the arm.
    A vertical wind power generation device characterized by:
  11.  請求項10記載の垂直型風力発電装置において、
     アームはアーム凹部を備え、
     受風体は受風体凹部を備えた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to claim 10,
    The arm is equipped with an arm recess,
    The wind body is equipped with a wind body recess,
    A vertical wind power generation device characterized by:
  12.  請求項1から請求項11のいずれか1項に記載の垂直型風力発電装置において、
     外側構造体に、風を整流して当該外側構造体内部に取り込む風取込み手段が設けられた、
     ことを特徴とする垂直型風力発電装置。
    The vertical wind power generation device according to any one of claims 1 to 11,
    The outer structure is provided with a wind intake means for rectifying the wind and taking it into the outer structure.
    A vertical wind power generation device characterized by:
PCT/JP2022/028439 2022-03-08 2022-07-22 Vertical-axis wind power generation device WO2023170992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/005011 WO2023171258A1 (en) 2022-03-08 2023-02-14 Wind power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022035516 2022-03-08
JP2022-035516 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023170992A1 true WO2023170992A1 (en) 2023-09-14

Family

ID=87936395

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/028439 WO2023170992A1 (en) 2022-03-08 2022-07-22 Vertical-axis wind power generation device
PCT/JP2023/005011 WO2023171258A1 (en) 2022-03-08 2023-02-14 Wind power generation device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005011 WO2023171258A1 (en) 2022-03-08 2023-02-14 Wind power generation device

Country Status (1)

Country Link
WO (2) WO2023170992A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111284U (en) * 1980-01-29 1981-08-28
JP2011058429A (en) * 2009-09-10 2011-03-24 Yasuhiro Fujita Triangular pyramid shape photovoltaic power generation device, wind power generation device of open wind collection duct, and wind power assistance device
WO2011129056A1 (en) * 2010-04-12 2011-10-20 Kato Shoji Power generation apparatus
JP2015113775A (en) * 2013-12-12 2015-06-22 日本クリーンシステム株式会社 Vertical shaft wind turbine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228347B2 (en) * 2007-03-27 2013-07-03 シンフォニアテクノロジー株式会社 Wind power generator
CN101555869A (en) * 2008-12-12 2009-10-14 孙其源 Horizontal rotation wind driven generator
JP6399406B2 (en) * 2015-06-25 2018-10-03 秀實 栗田 Power generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111284U (en) * 1980-01-29 1981-08-28
JP2011058429A (en) * 2009-09-10 2011-03-24 Yasuhiro Fujita Triangular pyramid shape photovoltaic power generation device, wind power generation device of open wind collection duct, and wind power assistance device
WO2011129056A1 (en) * 2010-04-12 2011-10-20 Kato Shoji Power generation apparatus
JP2015113775A (en) * 2013-12-12 2015-06-22 日本クリーンシステム株式会社 Vertical shaft wind turbine

Also Published As

Publication number Publication date
WO2023171258A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US8057127B2 (en) Systems and methods for assembling an offshore support system for use with a wind turbine
US8253265B2 (en) Power-augmenting shroud for energy-producing turbines
WO2003072428A1 (en) Float type base structure for wind power generation on the ocean
US20150274277A1 (en) Lighter-than-air craft for energy-producing turbines
JP2004176626A (en) Offshore wind power generation facility
ES2575110T3 (en) Twin turbine system that follows the wind / water (windtracker) for wind and / or hydraulic energy
JP2007511709A (en) Wind turbine
US6755608B2 (en) Wind turbine enhancement apparatus, method and system
JP2021511250A (en) Floating wind turbine with tension leg device
KR20210113170A (en) Tuned Mass Dampers for Floating Structures
JP5807319B1 (en) Floating offshore wind power generation facility
WO2021070786A1 (en) Bottom-mounted offshore platform, offshore wind power generation device, and offshore wind condition observation device
US20070269311A1 (en) Wind turbine and support structure and method of controlling the rotational speed of such wind turbine
WO2023170992A1 (en) Vertical-axis wind power generation device
JP7429692B2 (en) Wind turbines including rotor assemblies and rotor assemblies
ES2606312T3 (en) Marine wind turbine
KR101422476B1 (en) Floating wind power plant
WO2024095505A1 (en) Wind power generation device
EP2879950A1 (en) Lighter-than-air craft for energy-producing turbines
KR101363889B1 (en) Vertical shaft wind power generation
JP3865136B2 (en) Wind turbine and wind power generator for wind power generation
JP2012082773A (en) Wind-power generator and tower structure provided therewith
JP7313212B2 (en) Floating structures for offshore facilities and their installation structures
KR102063565B1 (en) Device for production of electricity from wind energy driven in the air by balloon
WO2023228042A1 (en) Mooring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930969

Country of ref document: EP

Kind code of ref document: A1