WO2023170971A1 - Treatment instrument - Google Patents

Treatment instrument Download PDF

Info

Publication number
WO2023170971A1
WO2023170971A1 PCT/JP2022/011115 JP2022011115W WO2023170971A1 WO 2023170971 A1 WO2023170971 A1 WO 2023170971A1 JP 2022011115 W JP2022011115 W JP 2022011115W WO 2023170971 A1 WO2023170971 A1 WO 2023170971A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion
treatment
section
probe
treatment instrument
Prior art date
Application number
PCT/JP2022/011115
Other languages
French (fr)
Japanese (ja)
Inventor
保之 松村
尚也 杉本
健 藤崎
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2022/011115 priority Critical patent/WO2023170971A1/en
Publication of WO2023170971A1 publication Critical patent/WO2023170971A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans

Definitions

  • the present invention relates to a treatment tool for cutting a treatment target.
  • Patent Document 1 discloses an ultrasonic treatment tool for forming a hole in a bone. This ultrasonic treatment tool is configured so that the tip of the treatment tool vibrates ultrasonically. In arthroscopic surgery, the tip of a treatment instrument crushes (cuts) bone using ultrasonic vibrations, forming a hole in the bone. After this, the two bone holes are connected to form one bone hole.
  • bone shavings bone powder
  • irrigation fluid may be dispersed in the irrigation fluid, making the irrigation fluid cloudy and obstructing the field of view of the arthroscope for observing the treatment target.
  • the operator must stop and wait for the visual field to recover, which may place a burden on the patient and the operator, and may increase the time required for the surgery.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a treatment tool that can suppress the influence on surgery caused by turbidity in the irrigation fluid.
  • a treatment tool is a treatment tool that cuts living tissue in a liquid, and that comes into contact with the living tissue and cuts the living tissue by vibration.
  • a probe having a distal treatment section, the distal treatment section having a contact section that contacts the biological tissue, an extension section that extends toward the proximal end side of the contact section, and a probe that has a distal treatment section that contacts the living tissue;
  • a diffusion control section that is provided on the opposite side to the contact section side and controls the diffusion of powder generated by the treatment, and the diffusion control section includes a diffusion promotion surface that promotes the diffusion of the powder;
  • a diffusion suppressing surface that suppresses diffusion of the powder is formed.
  • FIG. 1 is a diagram showing a schematic configuration of a treatment system according to a first embodiment.
  • FIG. 2 is a diagram showing how a bone hole is formed using an ultrasonic probe.
  • FIG. 3A is a schematic diagram showing the schematic configuration of the treatment instrument.
  • FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A.
  • FIG. 3C is a perspective view showing the configuration of the tip of the ultrasound probe.
  • FIG. 4 is a block diagram showing an overview of the functional configuration of the treatment system according to the first embodiment.
  • FIG. 5 is a block diagram showing the functional configuration of the endoscope device.
  • FIG. 6A is a diagram schematically showing a state in which the endoscope has good visibility when forming a bone hole in the lateral condyle of the femur.
  • FIG. 6B is a diagram schematically showing a state in which the visibility of the endoscope is not good when forming a bone hole in the lateral condyle of the femur.
  • FIG. 7 is a block diagram showing the functional configuration of the treatment device.
  • FIG. 8 is a block diagram showing the functional configuration of the perfusion device.
  • FIG. 9 is a block diagram showing the functional configuration of the lighting device.
  • FIG. 10 is a flowchart illustrating an overview of a treatment performed by an operator using the treatment system according to the first embodiment.
  • FIG. 10 is a flowchart illustrating an overview of a treatment performed by an operator using the treatment system according to the first embodiment.
  • FIG. 11 is a diagram illustrating an outline of the cutting treatment when cutting the treatment instrument.
  • FIG. 12 is a perspective view showing the tip configuration of an ultrasound probe according to Modification 1 of Embodiment 1.
  • FIG. 13 is a perspective view showing the tip configuration of the ultrasound probe according to the second modification of the first embodiment.
  • FIG. 14 is a perspective view showing the tip configuration of an ultrasonic probe according to Modification 3 of Embodiment 1.
  • FIG. 15 is a schematic diagram showing a schematic configuration of a treatment instrument according to the second embodiment.
  • FIG. 16 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 3.
  • FIG. 17 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 4.
  • FIG. 1 is a diagram showing a schematic configuration of a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats living tissues such as bones by applying ultrasonic vibrations to the living tissues.
  • the treatment means, for example, removal or cutting of living tissue such as bone.
  • a treatment system for performing anterior cruciate ligament reconstruction is illustrated as the treatment system 1.
  • This treatment system 1 includes an endoscope device 2, a treatment device 3, a guiding device 4, a perfusion device 5, and an illumination device 6.
  • the endoscope device 2 includes an endoscope 201, an endoscope control device 202, and a display device 203.
  • the distal end portion of the insertion portion 211 is inserted into the joint cavity C1 of the knee joint J1 through a first portal P1 that communicates the inside of the joint cavity C1 with the outside of the skin.
  • the endoscope 201 then irradiates the inside of the joint cavity C1, captures the illumination light (subject image) reflected within the joint cavity C1, and captures the subject image.
  • the endoscope control device 202 performs various image processing on the captured image captured by the endoscope 201, and causes the display device 203 to display the captured image after the image processing.
  • the endoscope control device 202 is connected to the endoscope 201 and the display device 203 by wire or wirelessly.
  • the display device 203 receives data, image data, audio data, etc. transmitted from each device of the treatment system via the endoscope control device, and displays/announces the data.
  • the display device 203 is configured using a display panel made of liquid crystal or organic EL (Electro-Luminescence).
  • the treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and a foot switch 303.
  • the treatment tool 301 includes a treatment tool main body 311, an ultrasonic probe 312 (see FIG. 2), and a sheath 313.
  • the treatment instrument main body 311 is formed into a cylindrical shape. Inside the treatment instrument main body 311, an ultrasonic transducer 311a (constituted by a bolt-clamped Langevin-type transducer) that generates ultrasonic vibrations in accordance with the supplied driving power. Figure 1) is stored.
  • the treatment instrument control device 302 supplies the driving power to the ultrasonic transducer 311a in response to the operator's operation of the foot switch 303.
  • the supply of the driving power is not limited to the operation on the foot switch 303, and may be performed, for example, in response to the operation on an operation section (not shown) provided on the treatment instrument 301.
  • the foot switch 303 is an input interface used by the surgeon to operate the ultrasound probe 312 with his/her foot.
  • the guiding device 4, perfusion device 5, and lighting device 6 will be described later.
  • FIG. 2 is a diagram showing how the bone hole 101 is formed using the ultrasonic probe 312.
  • FIG. 3A is a schematic diagram showing a schematic configuration of the ultrasound probe 312.
  • FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A.
  • FIG. 3C is a perspective view showing the configuration of the tip of the ultrasound probe. Note that FIG. 3A corresponds to a view seen from the S2 surface side of FIG. 3C.
  • the ultrasonic probe 312 is made of, for example, a titanium alloy, and has a substantially cylindrical shape. A proximal end portion of the ultrasonic probe 312 is connected to an ultrasonic transducer 311a within the treatment instrument main body 311.
  • the ultrasonic probe 312 transmits ultrasonic vibrations generated by the ultrasonic transducer 311a from the base end to the distal end.
  • the ultrasonic vibration is longitudinal vibration along the longitudinal direction of the ultrasonic probe 312 (vertical direction in FIG. 2).
  • a distal treatment section 312a is provided at the distal end of the ultrasonic probe 312.
  • the distal treatment section 312a is provided with a contact section 321b that contacts the bone, an extension section 312c that extends in a columnar shape, and a side of the extension section 312c opposite to the contact section 312b, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312d that controls the diffusion of bone powder.
  • the contact portion 312b has a prismatic shape that tapers toward the tip side.
  • the abutting portion 312b has two pairs of surfaces, one of which has a stepped shape, and the other has a flat surface that is parallel and smooth to the surface of the extension portion 312c.
  • the paired surfaces are, for example, in the case of a rectangular parallelepiped, surfaces whose normals to the surfaces are parallel to each other.
  • the sum of the length L1 of the extension part 312c and the length L2 of the diffusion control part 312d is set according to the depth of the bone hole (Fig. (See 3A).
  • Fig. See 3A
  • the shape is not limited to this, such as a cylinder.
  • the diffusion control section 312d includes a diffusion promoting surface S1 having a surface inclined with respect to the surface of the extending section 312c, and a diffusion suppressing surface S2 having a surface continuous with the surface of the extending section 312c and parallel to the surface.
  • the outer surface is constituted by Two diffusion promoting surfaces S1 and two diffusion suppressing surfaces S2 are each formed and provided alternately in the circumferential direction.
  • the diffusion promoting surfaces S1 are provided on opposite sides of the longitudinal axis N, respectively.
  • the diffusion suppressing surfaces S2 are provided on opposite sides of the longitudinal axis N, respectively.
  • the diffusion promoting surface S1 and the diffusion suppressing surface S2 have different surface roughness from each other. Specifically, the diffusion promoting surface S1 is rougher than the diffusion suppressing surface S2, and, for example, the arithmetic mean roughness (Ra) is larger than the Ra of the diffusion suppressing surface S2.
  • the diffusion promoting surface S1 is subjected to a surface treatment such as sandblasting to increase the surface roughness. Further, the diffusion suppressing surface S2 has been subjected to a surface smoothing process such as a mirror finishing process or a smooth coating process. Note that when the ultrasonic probe 312 and the diffusion control section 312d are manufactured using a 3D printer, they are formed with strength that can withstand ultrasonic vibrations.
  • a length L1 from the tip of the contact portion 312b to the base end of the extension portion 312c is set with respect to the ultrasound probe 312 in the longitudinal axis N direction of the ultrasound probe 312. It is preferable that the length L2 from the tip of the abutment part 312b to the base end of the diffusion control part 312d is longer than the set depth L3.
  • the sheath 313 is formed into a cylindrical shape that is more elongated than the treatment instrument main body 311, and covers a part of the outer periphery of the ultrasound probe 312 from the treatment instrument main body 311 to an arbitrary length.
  • the tip of the ultrasonic probe 312 in the treatment instrument 301 described above is guided by the guiding device 4 inserted into the joint cavity C1 through the second portal P2 that communicates the inside of the joint cavity C1 with the outside of the skin. , is inserted into the joint cavity C1.
  • the portion of the bone that mechanically collided with the distal treatment section 312a is finely damaged by the hammering action. It is ground into fine particles (see Figure 2).
  • the distal treatment section 312a is pushed into the treatment target site 100 by the operator, the distal treatment section 312a enters the inside of the treatment target site 100 while crushing the bone. As a result, a bone hole 101 is formed in the treatment target site 100.
  • Posture detection unit 314 includes a sensor that detects rotation and movement of treatment instrument 301.
  • the posture detection unit 314 detects movement in three mutually orthogonal axial directions, including an axis parallel to the longitudinal axis of the ultrasound probe 312, and rotation around each axis.
  • the posture detection unit 314 includes, for example, a three-axis angular velocity sensor (gyro sensor), an acceleration sensor, and the like.
  • the treatment instrument control device 302 determines that the treatment instrument 301 is stationary if the detection result of the posture detection unit 314 does not change for a certain period of time.
  • the CPU 315 corresponds to a control unit that controls the operation of the posture detection unit 314 and transmits and receives information to and from the treatment instrument control device 302.
  • the guiding device 4 is inserted into the joint cavity C1 through the second portal P2, and guides the insertion of the tip portion of the ultrasound probe 312 of the treatment tool 301 into the joint cavity C1.
  • the guiding device 4 includes a guide body 401, a handle portion 402, and a drain portion 403 with a cock.
  • the guide body 401 has a cylindrical shape with a through hole through which the ultrasound probe 312 is inserted (see FIG. 1).
  • the guide body 401 guides the movement of the ultrasound probe 312 by restricting the movement of the ultrasound probe 312 inserted through the through hole in a certain direction.
  • the cross-sectional shapes of the outer circumferential surface and the inner circumferential surface of the guide main body 401 perpendicular to the central axis are approximately circular.
  • This guide body 401 becomes thinner toward the tip. That is, the distal end surface of the guide body 401 includes an opening formed by a slope diagonally intersecting the central axis.
  • the drain part 403 with a cock is provided on the outer peripheral surface of the guide body 401 and has a cylindrical shape that communicates with the inside of the guide body 401.
  • One end of the drain tube 505 of the perfusion device 5 is connected to the drain portion 403 with a cock, and serves as a flow path that communicates the guide main body 401 and the drain tube 505 of the perfusion device 5 .
  • This flow path is configured to be openable and closable by operating a cock (not shown) provided in the drain portion 403 with a cock.
  • the perfusion device 5 delivers a sterilized irrigation fluid such as physiological saline into the joint cavity C1, and also discharges the irrigation fluid outside the joint cavity C1.
  • the perfusion device 5 includes a liquid source 501, a liquid feeding tube 502, a liquid feeding pump 503, a drainage bottle 504, a drainage tube 505, and a drainage pump 506 (see FIG. 1).
  • Fluid source 501 contains irrigation fluid.
  • the liquid feeding tube 502 has one end connected to the liquid source 501 and the other end connected to the endoscope 201.
  • the liquid sending pump 503 sends the irrigation liquid from the liquid source 501 toward the endoscope 201 through the liquid sending tube 502 .
  • the irrigation fluid sent to the endoscope 201 is then sent into the joint cavity C1 from the liquid delivery hole formed at the distal end portion of the insertion section 211.
  • Drainage bottle 504 contains the irrigation fluid drained out of joint cavity C1.
  • the drain tube 505 has one end connected to the guiding device 4 and the other end connected to the drain bottle 504.
  • the drainage pump 506 follows the flow path of the drainage tube 505 from the guiding device 4 inserted into the joint cavity C1, and discharges the irrigation fluid in the joint cavity C1 to the drainage bottle 504.
  • this Embodiment 1 demonstrates using the drainage pump 506, it does not restrict to this and may use the suction device with which the facility was equipped.
  • the illumination device 6 has two light sources that each emit two illumination lights with different wavelength bands.
  • the two illumination lights are, for example, white light and special light.
  • Illumination light from the illumination device 6 is propagated to the endoscope 201 via the light guide, and is irradiated from the tip of the endoscope 201.
  • FIG. 4 is a block diagram showing an overview of the functional configuration of the entire treatment system.
  • the treatment system 1 further includes a network control device 7 that controls communication throughout the system, and a network server 8 that stores various data.
  • the network control device 7 is communicably connected to the endoscope device 2, treatment device 3, perfusion device 5, lighting device 6, and network server 8.
  • FIG. 4 illustrates a case where the devices are connected wirelessly, they may be connected by wire.
  • the detailed functional configurations of the endoscope device 2, treatment device 3, perfusion device 5, and illumination device 6 will be described below.
  • the endoscope device 2 includes an endoscope control device 202, a display device 203, an imaging section 204, and an operation input section 205 (see FIGS. 4 and 5).
  • the endoscope control device 202 includes an image processing unit 221, an image processing unit 222, a turbidity detection unit 223, an input unit 226, a CPU (Central Processing Unit) 227, a memory 228, a wireless communication unit 229, a distance sensor drive circuit 230, and a distance sensor drive circuit 230. It includes a data memory 231 and a communication interface 232.
  • image processing unit 221 an image processing unit 222
  • turbidity detection unit 223 an input unit 226, a CPU (Central Processing Unit) 227, a memory 228, a wireless communication unit 229, a distance sensor drive circuit 230, and a distance sensor drive circuit 230.
  • It includes a data memory 231 and a communication interface 232.
  • the imaging processing unit 221 is provided in an imaging device drive control circuit 221a that controls the driving of the imaging device 241 included in the imaging unit 204, and in a patient circuit 202b that is electrically insulated from the primary circuit 202a, and processes signals from the imaging device 224a. It has an image sensor signal control circuit 221b that performs control.
  • the image sensor drive control circuit 221a is provided in the primary circuit 202a. Further, the image sensor signal control circuit 221b is provided in the patient circuit 202b which is electrically insulated from the primary circuit 202a.
  • the image processing unit 222 includes a first image processing circuit 222a that performs image processing and a second image processing circuit 222b that performs image editing processing.
  • the turbidity detection unit 223 detects turbidity based on information regarding turbidity within the endoscope device 2 .
  • the information regarding turbidity is, for example, a value obtained from imaging data generated by the endoscope 201, a physical property value of the perfusate, an impedance or pH obtained from the treatment device 3, and the like.
  • FIGS. 6A and 6B are diagrams showing a state in which the field of view of the endoscope 201 is good and a state in which it is poor, respectively, when the operator forms a bone hole in the lateral femoral condyle 900.
  • FIG. 3 is a diagram schematically showing a field of view. Of these, FIG.
  • FIG. 6B schematically shows a state in which the field of vision is clouded due to bones crushed into fine particles by the driving of the ultrasonic probe 312. Note that in FIG. 6B, minute bones are represented by dots. The fine bones are white, and the perfusate becomes cloudy due to the white particles containing these bones.
  • the input unit 226 receives the signal input by the operation input unit 205.
  • the CPU 227 centrally controls the operation of the endoscope control device 202.
  • the CPU 227 corresponds to a control unit that executes a program stored in the memory 228 and controls the operation of each part of the endoscope control device 202.
  • the memory 228 stores various information necessary for the operation of the endoscope control device 202, image data captured by the imaging unit 204, and the like.
  • the wireless communication unit 229 is an interface for wireless communication with other devices.
  • the distance sensor drive circuit 230 drives a distance sensor that measures the distance to a predetermined object in the image captured by the imaging unit 204.
  • the distance data memory 231 stores distance data detected by the distance sensor.
  • the communication interface 232 is an interface for communicating with the imaging unit 204. Of the configuration described above, components other than the image sensor signal control circuit 221b are provided in the primary circuit 202a, and are interconnected by bus wiring.
  • the imaging unit 204 includes an imaging element 241, a CPU 242, and a memory 243.
  • the image sensor 241 is configured using a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the CPU 242 centrally controls the operation of the imaging unit 204.
  • the CPU 242 corresponds to a control unit that executes a program stored in the memory 243 and controls the operation of each part of the imaging unit 204.
  • the memory 243 stores various information, image data, etc. necessary for the operation of the imaging unit 204.
  • the operation input unit 205 is configured using an input interface such as a mouse, keyboard, touch panel, microphone, etc., and accepts operation input of the endoscope apparatus 2 by the operator.
  • the treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and an input/output section 304 (see FIGS. 4 and 7).
  • the treatment tool 301 includes an ultrasonic transducer 311a, a posture detection section 314, a CPU 315, and a memory 316 (see FIG. 7).
  • the posture detection unit 314 includes an acceleration sensor and/or an angular velocity sensor, and detects the posture of the treatment instrument 301.
  • the CPU 315 centrally controls the operation of the treatment instrument 301 including the ultrasonic transducer 311a.
  • the CPU 315 corresponds to a control unit that executes a program stored in the memory 316 to control the operation of each part of the treatment instrument 301.
  • the memory 316 stores various information necessary for the operation of the treatment tool 301.
  • the treatment instrument control device 302 includes a primary circuit 321, a patient circuit 322, a transformer 323, a first power source 324, a second power source 325, a CPU 326, a memory 327, a wireless communication section 328, and a communication interface 329.
  • the primary circuit 321 generates power to be supplied to the treatment instrument 301.
  • Patient circuit 322 is electrically insulated from primary circuit 321.
  • Transformer 323 electromagnetically connects primary circuit 321 and patient circuit 322.
  • the first power source 324 is a high voltage power source that supplies driving power for the treatment instrument 301.
  • the second power source 325 is a low voltage power source that supplies driving power for a control circuit within the treatment instrument control device 302.
  • the CPU 326 centrally controls the operation of the treatment instrument control device 302.
  • the CPU 326 corresponds to a control section that executes a program stored in the memory 327 to control the operation of each section of the treatment instrument control device 302.
  • the memory 327 stores various information necessary for the operation of the treatment instrument control device 302.
  • the wireless communication unit 328 is an interface for wireless communication with other devices.
  • the communication interface 329 is an interface for communicating with the treatment tool 301.
  • the input/output unit 304 is configured using input interfaces such as a mouse, keyboard, touch panel, microphone, etc., and output interfaces such as a monitor, speakers, etc., and receives operation input from the surgeon for the endoscope device 2 and notifies the surgeon. Various information is output (see Figure 4).
  • the perfusion device 5 includes a liquid feeding pump 503, a drainage pump 506, a liquid feeding control section 507, a liquid drainage control section 508, an input section 509, a CPU 510, a memory 511, a wireless communication section 512, a communication interface 513, a pump internal CPU 514, and An internal pump memory 515 is provided (see FIGS. 4 and 8).
  • the liquid feeding control unit 507 includes a first drive control unit 571, a first driving power generation unit 572, a first transformer 573, and a liquid feeding pump drive circuit 574 (see FIG. 8).
  • the first drive control section 571 controls the driving of the first drive power generation section 572 and the liquid pump drive circuit 574.
  • the first driving power generation unit 572 generates driving power for the liquid feeding pump 503.
  • the first transformer 573 electromagnetically connects the first drive power generation section 572 and the liquid pump drive circuit 574.
  • the first drive control section 571, the first drive power generation section 572, and the first transformer 573 are provided in the primary circuit 5a. Further, the liquid pump drive circuit 574 is provided in the patient circuit 5b which is electrically insulated from the primary circuit 5a.
  • the drain control section 508 includes a second drive control section 581, a second drive power generation section 582, a second transformer 583, and a drain pump drive circuit 584.
  • the second drive control section 581 controls the driving of the second drive power generation section 582 and the drainage pump drive circuit 584.
  • the second drive power generation unit 582 generates drive power for the drainage pump 506.
  • the second transformer 583 electromagnetically connects the second drive power generation section 582 and the drain pump drive circuit 584.
  • the second drive control section 581, the second drive power generation section 582, and the second transformer 583 are provided in the primary circuit 5a. Further, a drainage pump drive circuit 584 is provided in the patient circuit 5b.
  • the input unit 509 receives input of various signals such as operation input (not shown).
  • the CPU 510 and the pump CPU 514 work together to centrally control the operation of the perfusion device 5.
  • the CPU 510 corresponds to a control unit that executes a program stored in the memory 511 and controls the operation of each part of the perfusion device 5 via the BUS line.
  • the memory 511 stores various information necessary for the operation of the perfusion device 5.
  • the wireless communication unit 512 is an interface for wireless communication with other devices.
  • the communication interface 513 is an interface for communicating with the pump CPU 514.
  • the internal pump memory 515 stores various information necessary for the operation of the liquid feeding pump 503 and the liquid draining pump 506.
  • the input section 509, CPU 510, memory 511, wireless communication section 512, and communication interface 513 are provided in the primary circuit 5a.
  • An in-pump CPU 514 and an in-pump memory 515 are provided in the pump 5c.
  • the in-pump CPU 514 and the in-pump memory 515 may be provided around the liquid feeding pump 503 or around the drainage pump 506.
  • the lighting device 6 includes a first lighting control section 601, a second lighting control section 602, a first lighting 603, a second lighting 604, an input section 605, a CPU 606, a memory 607, a wireless communication section 608, a communication interface 609, and a lighting circuit. It includes a CPU 610 and a lighting circuit internal memory 61A (see FIGS. 4 and 9).
  • the first lighting control section 601 includes a first drive control section 611 , a first drive power generation section 612 , a first controller 613 , and a first drive circuit 614 .
  • the first drive control section 611 controls the driving of the first drive power generation section 612 , the first controller 613 , and the first drive circuit 614 .
  • the first drive power generation unit 612 generates drive power for the first lighting 603.
  • the first controller 613 controls the light output of the first illumination 603.
  • the first drive circuit 614 drives the first illumination 603 to output illumination light.
  • the first drive control section 611, the first drive power generation section 612, and the first controller 613 are provided in the primary circuit 6a. Further, the first drive circuit 614 is provided in the patient circuit 6b which is electrically insulated from the primary circuit 6a.
  • the second lighting control section 602 includes a second drive control section 621 , a second drive power generation section 622 , a second controller 623 , and a second drive circuit 624 .
  • the second drive control section 621 controls the driving of the second drive power generation section 622, the second controller 623, and the second drive circuit 624.
  • the second drive power generation unit 622 generates drive power for the second lighting 604.
  • the second controller 623 controls the light output of the second illumination 604.
  • the second drive circuit 624 drives the second illumination 604 to output illumination light.
  • the second drive control section 621, the second drive power generation section 622, and the second controller 623 are provided in the primary circuit 6a. Further, the second drive circuit 624 is provided in the patient circuit 6b.
  • the input unit 605 receives input of various signals such as operation input (not shown).
  • the CPU 606 and the lighting circuit CPU 610 work together to centrally control the operation of the lighting device 6.
  • the CPU 606 corresponds to a control unit that executes a program stored in the memory 607 to control the operation of each part of the lighting device 6.
  • the memory 607 stores various information necessary for the operation of the lighting device 6.
  • the wireless communication unit 608 is an interface for wireless communication with other devices.
  • the communication interface 609 is an interface for communicating with the lighting circuit 6c.
  • the lighting circuit memory 61A stores various information necessary for the operation of the first lighting 603 and the second lighting 604.
  • the input section 605, CPU 606, memory 607, wireless communication section 608, and communication interface 609 are provided in the primary circuit 6a.
  • the lighting circuit CPU 610 and the lighting circuit memory 61A are provided in the lighting circuit 6c.
  • FIG. 10 is a flowchart illustrating an overview of the treatment performed by the surgeon using the treatment system 1. Note that the number of surgeons who perform the treatment may be one doctor, or two or more including a doctor and an assistant.
  • the operator forms a first portal P1 and a second portal P2 that communicate the inside of the joint cavity C1 of the knee joint J1 and the outside of the skin, respectively (step S11).
  • the operator inserts the endoscope 201 into the joint cavity C1 from the first portal P1, inserts the guiding device 4 into the joint cavity C1 from the second portal P2, and guides the guiding device 4.
  • the treatment instrument 301 is inserted into the joint cavity C1 (step S12). Note that although the case where two portals are formed and the endoscope 201 and the treatment instrument 301 are inserted into the joint cavity C1 from each portal has been described here, the first portal P1 is formed and the endoscope 201 is inserted into the joint cavity C1. After inserting into the joint cavity C1, the second portal P2 may be formed and the guiding device 4 and the treatment instrument 301 may be inserted into the joint cavity C1.
  • step S13 the operator brings the ultrasound probe 312 into contact with the bone to be treated while visually checking the endoscopic image of the joint cavity C1 displayed on the display device 203.
  • the operator performs a cutting treatment using the treatment instrument 301 (step S14).
  • the operator turns on the output of the treatment tool 301 and causes the ultrasonic probe 312 to vibrate ultrasonically to perform the treatment. For example, bone is crushed to form a bone hole.
  • the display device 203 performs a display/notification process of displaying the inside of the joint cavity C1 and information regarding the state after the cutting procedure (step S15). For example, after the display/notification process, the endoscope control device 202 stops the display/notification after a predetermined period of time.
  • FIG. 11 is a diagram illustrating an outline of the cutting treatment when cutting the treatment tool.
  • FIG. 11 is a partial cross-sectional view for explaining the side shape that promotes the discharge of bone powder by the discharge promoting surface.
  • FIG. 11A is a diagram showing the tip treatment section 312a of the ultrasonic probe 312 having the tip configuration shown in FIG. 3C during a cutting treatment.
  • FIG. 11B is a diagram showing the tip treatment section 312a of the ultrasonic probe 312 having the tip configuration shown in FIG. 3C at the end of the cutting treatment.
  • the contact portion 312b of the ultrasonic probe 312 that is vibrating ultrasonically contacts the bone and crushes the bone.
  • the contact portion 312b is cut while gradually enlarging the size of the bone hole using the stepped portion (see (a) of FIG. 11).
  • bone powder is discharged to the outside of the bone hole 101 through a gap formed by the vibration of the ultrasonic probe 312 between the bone hole 101 and the distal treatment section 312a.
  • the diffusion control section 312d enters the bone hole 101 during treatment (see (b) in FIG. 11)
  • the gap between it and the bone hole 101 widens due to the diffusion promoting surface S1 (distance D1 ⁇ distance D2).
  • the size of the gap on the diffusion suppressing surface S2 side is maintained.
  • the diffusion control section 312d enters into the bone hole 101, the larger the gap, the larger the flow rate of the liquid, which promotes the discharge of bone powder from the diffusion promoting surface S1 (Fig. 11(b)).
  • the diffusion-promoting surface of the diffusion-promoting surface S1 further promotes the diffusion of bone powder.
  • the amount of bone powder discharged from the diffusion-suppressing surface S2 is maintained or reduced by the surface processed to promote the discharge of bone powder on the diffusion-promoting surface S1 and to suppress diffusion on the diffusion-suppressing surface S2.
  • the ease with which bubbles are generated depends on the angle that the outer surface of the ultrasonic probe 312 makes with respect to the longitudinal axis N. That is, the closer the angle of the outer surface of the ultrasonic probe 312 is perpendicular to the longitudinal axis N, the more quickly the liquid is filled during movement, which reduces the pressure and makes it easier to generate bubbles. On the other hand, the closer the angle of the outer surface of the ultrasonic probe 312 is parallel to the longitudinal axis N, the more the effect of moving the liquid near the surface is reduced, and the degree of diffusion is suppressed. Furthermore, the smoother the surface of the diffusion suppressing surface S2, the lower the resistance to water. In this way, the degree of diffusion effect of the diffusion suppressing surface S2 is suppressed compared to that of the diffusion promoting surface S1.
  • the diffusion control unit 312d suppresses the discharge and diffusion of bone powder toward the observation field of view when the diffusion suppression surface S2 faces the observation field of view (imaging surface) of the endoscope 201. This is preferable in that it suppresses the influence of clouding of the mirror image. That is, during treatment, the treatment is performed with the diffusion suppressing surface S2 facing the endoscope 201 (imaging unit) side.
  • the distal treatment section 312a of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder, and the diffusion control section 312d controls the discharge direction of bone powder. Control the amount of bone powder discharged accordingly.
  • the amount of bone powder discharged from the bone hole generated by the treatment is configured to vary depending on the direction, thereby controlling the amount of bone powder generated by the treatment. With this configuration, it is possible to control the direction in which the discharge of bone powder from the bone hole is promoted and the direction in which the discharge of bone powder is suppressed and cloudiness of the liquid is suppressed. As a result, it is possible to reduce the turbidity between the endoscope 201 and the ultrasound probe 312, and to reduce the influence of the turbidity on the observation field of view, that is, on the surgery.
  • the first embodiment by oriented the field of view of the endoscope 201 toward the diffusion suppressing surface S2 side, observation with suppressed clouding toward the direction of the observation field of the treatment area even during treatment with the treatment instrument 310 can be performed. Therefore, for example, by increasing the frequency of vibration of the ultrasonic probe 312 to increase the strength of cutting and ejecting bone powder in a direction other than the observation field of view, it is possible to continue the treatment. . If the cutting strength increases, the time required for the treatment will also be shortened, and the treatment can be performed more efficiently.
  • the diffusion control section 312d was explained using an example in which two diffusion promoting surfaces S1 and two diffusion suppressing surfaces S2 were formed. It is sufficient that the diffusion suppressing surface S2 is formed on the surface, and it is sufficient that the diffusion promoting surface S1 is formed in any direction other than the direction observed with the endoscope 201.
  • the diffusion suppressing surface S2 is a flat surface has been described, but in addition to that, it may be formed on a smooth surface where turbulence does not easily occur, such as a curved surface or a gentle slope to generate a smooth flow. Any shape that reduces diffusion with respect to the diffusion promoting surface S1 may be used.
  • FIG. 12 is a perspective view showing the tip configuration of an ultrasound probe according to Modification 1 of Embodiment 1.
  • the treatment system according to the first modification includes a distal treatment section 312e in place of the distal treatment section 312a of the treatment system 1 according to the first embodiment.
  • the configuration other than the distal treatment section 312e is the same as that in Embodiment 1, so the explanation will be omitted.
  • the distal treatment section 312e includes a contact section 312b that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the side opposite to the contact section 312b side of the extension section 312c, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312f that controls the diffusion of bone powder.
  • the diffusion control section 312f has a first surface that is a plane perpendicular to the surface of the extension section 312c, and a second surface that is a plane parallel to the surface of the extension section 312c. (See FIG. 3A)
  • the outer surface is constituted by the diffusion promoting surface S3 which is repeated in the direction and the diffusion suppressing surface S2 which is continuous with the surface of the extension portion 312c and is parallel to the surface. Note that the diffusion promoting surface S3 may be subjected to surface treatment such as sandblasting.
  • the positional relationship between the distal treatment section 312e and the bone hole 101 in the cutting treatment is the same as that of the distal treatment section 312a according to the first embodiment.
  • the larger the gap the larger the flow rate of the liquid, which promotes the discharge of bone powder from the diffusion promoting surface S3 side.
  • the stepped surface of the diffusion promoting surface S3 generates turbulent flow, further promoting the diffusion of bone powder.
  • the distal treatment section 312e of the ultrasonic probe 312 is provided with a diffusion control section 312f that controls the diffusion of bone powder, and the diffusion control section 312f controls the discharge direction of bone powder according to the direction. control the amount of bone powder excreted.
  • the present modification example 1 by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction in which clouding is suppressed, thereby suppressing the influence on the surgery caused by the turbidity in the irrigation fluid.
  • FIG. 13 is a perspective view showing the tip configuration of the ultrasound probe according to the second modification of the first embodiment.
  • the treatment system according to the second modification includes a distal treatment section 312g instead of the distal treatment section 312a of the treatment system 1 according to the first embodiment.
  • the configuration other than the distal treatment section 312g is the same as that in Embodiment 1, so the description will be omitted.
  • the distal treatment section 312g includes a contact section 321b that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the opposite side of the extension section 312c to the contact section 312b side, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312h that controls the diffusion of bone powder.
  • the diffusion control section 312h has a first surface forming a wall surface perpendicular to the surface of the extension section 312c, and a second surface forming a surface inclined with respect to the surface of the extension section 312c.
  • the outer surface is formed by diffusion promoting surfaces S4 that are repeated in a direction perpendicular to N (see FIG. 3A) and diffusion suppressing surfaces S2 that are continuous with the surface of the extension portion 312c and that are parallel to the surface. is configured.
  • the diffusion promoting surface S4 may be subjected to surface treatment such as sandblasting.
  • the positional relationship between the distal treatment section 312g and the bone hole 101 in the cutting treatment is the same as that of the distal treatment section 312a according to the first embodiment.
  • the diffusion control section 312h enters into the bone hole 101, the larger the gap, the larger the amount of fluid flowing through the bone hole, which promotes the discharge of bone powder from the diffusion promotion surface S4.
  • the step surface of the diffusion promoting surface S3 further promotes the diffusion of bone powder. That is, the diffusion will be stronger if the surface has a surface that is close to perpendicular to the axis, and the diffusion will be even stronger if that surface has a surface perpendicular to the axis.
  • the distal treatment section 312g of the ultrasonic probe 312 is provided with a diffusion control section 312h that controls the diffusion of bone powder, and the diffusion control section 312h controls the discharge direction of bone powder according to the direction. control the amount of bone powder excreted.
  • the present modification example 2 by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction that suppresses white turbidity, and to suppress the influence on the surgery caused by turbidity in the irrigation fluid.
  • FIG. 14 is a perspective view showing the tip configuration of an ultrasonic probe according to Modification 3 of Embodiment 1.
  • the treatment system according to the third modification includes a distal treatment section 312i instead of the distal treatment section 312a of the treatment system 1 according to the first embodiment.
  • the configuration other than the distal treatment section 312i is the same as that in Embodiment 1, so the explanation will be omitted.
  • at least the distal treatment section 312i has a cylindrical shape.
  • the contact portion 312b (not shown) also has a cylindrical stepped shape.
  • the distal treatment section 312i includes a contact section 321b that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the side opposite to the contact section 312b side of the extension section 312c, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312j that controls the diffusion of bone powder.
  • the diffusion control section 312j has a diffusion promoting surface S5 in which a step surface is intermittently formed on a tapered surface, and a diffusion suppressing surface S5 that is continuous with the surface of the extension section 312c and has a smooth surface and expands in diameter.
  • the outer surface is constituted by the surface S6.
  • the diffusion suppressing surface S6 is subjected to a mirror finishing treatment or a smooth coating treatment. Note that the diffusion promoting surface S5 may be subjected to surface treatment such as sandblasting.
  • the positional relationship between the distal treatment section 312i and the bone hole 101 in the cutting treatment is the same as that of the distal treatment section 312a according to the first embodiment.
  • the diffusion control section 312j enters into the bone hole 101, the larger the gap, the larger the amount of liquid flowing through the hole, and therefore the discharge of bone powder from the diffusion promoting surface S5 is promoted.
  • the step surface of the diffusion promoting surface S5 further promotes the diffusion of bone powder.
  • the amount of bone powder discharged from the diffusion suppressing surface S6 is maintained or reduced by promoting the discharge of bone powder from the side and by the processed surface of the diffusion suppressing surface S6.
  • the effect of promoting and suppressing diffusion can be clearly seen by dividing the area linearly at the boundary between the diffusion promoting surface S5 and the diffusion suppressing surface S6, without providing an intermediate area using a curved line or the like.
  • the effects appear separately.
  • the diffusion (bone powder discharge) effect can be obtained by forming the diffusion promoting surface S5 with a plurality of surfaces perpendicular to the longitudinal axis to form a step instead of providing a curved surface.
  • the effect of promoting and suppressing diffusion is obtained by configuring two surfaces, a diffusion promoting surface S5 and a diffusion suppressing surface S6. bone powder becomes difficult to spread.
  • the distal treatment section 312i of the ultrasonic probe 312 is provided with a diffusion control section 312j that controls the diffusion of bone powder, and the diffusion control section 312j controls the discharge direction of bone powder, and the discharging direction of the bone powder is controlled according to the direction. control the amount of bone powder excreted.
  • the present modification example 3 by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction in which clouding is suppressed, thereby suppressing the influence on surgery caused by turbidity in the irrigation fluid.
  • FIG. 15 is a schematic diagram showing a schematic configuration of a treatment instrument according to the second embodiment.
  • the treatment system according to the second embodiment includes a treatment instrument 301A in place of the treatment instrument 301 of the treatment system 1 according to the first embodiment.
  • the treatment instrument 301A has a distal treatment section 312m instead of the distal treatment section 312a of the treatment instrument 301 described above.
  • the configuration other than the distal treatment section 312m is the same as that in Embodiment 1, so the explanation will be omitted.
  • the distal treatment section 312m includes a contact section 321n that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the side opposite to the contact section 312n side of the extension section 312c, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312d that controls the diffusion of bone powder.
  • the contact portion 312n has a prismatic shape that extends with a uniform cross-sectional shape, and is connected to the extension portion 312c.
  • the contact portion 312n has a cross-sectional shape that is similar to the extending portion 312c, and is smoothly connected to the extending portion 312c. Note that the contact portion 312n does not have to have a cross-sectional shape similar to that of the extending portion 312c, and may have a cross-sectional area smaller than that of the extending portion 312c, for example.
  • the distal treatment section 312m of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder.
  • a diffusion control section 312d that controls the diffusion of bone powder.
  • FIG. 16 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 3.
  • the treatment system according to the third embodiment includes a treatment instrument 301B in place of the treatment instrument 301 of the treatment system 1 according to the first embodiment.
  • the treatment tool 301B further includes a probe cover 318 in addition to the treatment tool 301 described above.
  • the configuration other than the probe cover 318 is the same as that in Embodiment 1, so the explanation will be omitted.
  • the probe cover 318 has a cylindrical shape, into which a portion of the ultrasound probe 312 is inserted.
  • the probe cover 318 has its proximal end connected to the sheath 313, and its distal end located at the location where the diffusion control section 312d is located in the longitudinal axis N direction. That is, the probe cover 318 covers a portion of the diffusion control section 312d, and extends toward the proximal end of the distal treatment section 312a to cover a portion of the ultrasound probe 312.
  • the probe cover 318 is not in contact with the diffusion control section 312d, and a gap (space) is formed between the opening of the probe cover 318 and the diffusion control section 312d.
  • the maximum width W1 of the outer periphery of the probe cover 318 is equal to or less than the maximum width of the distal treatment section 312a (here, the maximum width W2 of the extension section 312c). Note that the probe cover 318 preferably has an opening large enough to be connected to the sheath 313 on the proximal end side.
  • the diffusion of bone powder generated when bones are crushed by the ultrasonic probe 312 is controlled by the diffusion control unit 312d, and the bone powder enters the inside of the probe cover 318 together with the irrigation fluid.
  • the bone powder enters into the probe cover 318 diffusion of the bone powder in the treatment space is suppressed, and as a result, clouding of the treatment area is reduced.
  • a slit or a through hole is formed on the proximal end side of the probe cover 318 or in the sheath 313, and the irrigation fluid containing bone powder that has entered the probe cover 318 passes through the slit or through hole, and flows through the probe cover 318 or the sheath 313. It is discharged to the outside of the sheath 313.
  • the distal treatment section 312m of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder.
  • a diffusion control section 312d that controls the diffusion of bone powder.
  • the diffusion of bone powder can be further reduced.
  • the shape of the tip side of the probe cover 318 is made to have a different shape (for example, a substantially elliptical cross section) depending on the orientation of the shape with a larger gap with the diffusion control part 312d and the orientation of the shape with a smaller gap.
  • a configuration may be adopted in which the direction of diffusion is further controlled.
  • FIG. 17 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 4.
  • the treatment system according to the fourth embodiment includes a treatment instrument 301C in place of the treatment instrument 301 of the treatment system 1 according to the first embodiment.
  • the treatment tool 301C further includes a stopper 319 in addition to the treatment tool 301 described above.
  • the configuration other than the stopper 319 is the same as that in Embodiment 1, so a description thereof will be omitted.
  • the stopper 319 has an annular shape and is in close contact with the extending portion 312c.
  • the stopper 319 is located on the proximal end side of the extending portion 312c in the longitudinal axis N direction.
  • the bone surface comes into contact with the stopper 319.
  • the depth of bone hole formation can be regulated, and the distal treatment section 312a can be stopped at a position where the diffusion control effect of the diffusion control section 312d can be sufficiently obtained.
  • the distal treatment section 312m of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder.
  • a diffusion control section 312d that controls the diffusion of bone powder.
  • the bone hole can be appropriately formed.
  • Embodiment 4 has been described using the configuration of the ultrasound probe 312 according to Embodiment 1 as an example, it can be applied to modifications and the configurations of Embodiments 2 and 3.
  • the stopper 319 may have a shape that has a large step difference with respect to the diffusion control section 312d and a direction that has a small step difference, depending on the direction, for example, so as to control the diffusion control. You may also do this.
  • Embodiments 1 to 4 a configuration was described in which the control units that control each device such as the endoscope 201 and the treatment instrument 301 are individually provided as control devices, but one control unit (control device) It is also possible to adopt a configuration in which each device is controlled collectively.
  • Embodiments 1 to 4 an example in which white turbidity is caused by white bone powder generated by crushing a bone has been described, but it can be applied to treatments in which white turbidity is caused by white particles other than bone powder.
  • the above-mentioned "apparatus”, “unit”, and “circuit” can be read as “means”, “circuit", "unit”, etc.
  • the control device can be read as a control unit or a control circuit.
  • the programs to be executed by each device according to Embodiments 1 to 4 may be installed as file data in an installable or executable format on a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disk). ), USB media, flash memory, and other computer-readable recording media.
  • the programs to be executed by each device according to Embodiments 1 to 4 may be stored on a computer connected to a network such as the Internet, and may be provided by being downloaded via the network. Furthermore, the programs to be executed by the information processing apparatuses according to Embodiments 1 to 4 may be provided or distributed via a network such as the Internet.
  • signals were transmitted and received by wireless communication, but for example, signals were transmitted from various devices via transmission cables instead of wireless communication. Good too.
  • the distal treatment section is a contact portion that contacts the living tissue; an extending portion extending toward the base end side of the contact portion; a diffusion control section that is provided on a side of the extension section opposite to the contact section side and controls the diffusion of powder generated by the treatment; has
  • the diffusion control section includes: a diffusion promoting surface that promotes diffusion of the powder; a diffusion suppressing surface that suppresses diffusion of the powder; is formed,
  • the treatment is performed under endoscopic observation, performing the treatment with the diffusion suppressing surface facing the endoscope; Treatment method.
  • the treatment system, control device, and method of operating the treatment system according to the present invention are useful for suppressing the influence on surgery caused by turbidity in the irrigation fluid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A treatment instrument according to the present invention is for cutting living tissue in a liquid, the treatment instrument comprising a probe having a distal treatment part that comes into contact with the living tissue and that cuts the living tissue by means of vibration. The distal treatment part has: a contact part that comes into contact with the living tissue; an extension part that extends on the proximal side of the contact part; and a diffusion control part that is provided on the side of the extension part on the opposite side from the contact part side and that controls diffusion of a powder produced by treatment. A diffusion-promoting surface for promoting diffusion of the powder and a diffusion suppression surface for suppressing diffusion of the powder are formed on the diffusion control part.

Description

処置具treatment equipment
 本発明は、処置対象を切削する処置具に関する。 The present invention relates to a treatment tool for cutting a treatment target.
 関節鏡視下手術は、処置対象の関節にポータルを形成し、ポータルから処置対象の関節の中に関節鏡や処置具を挿入し、関節腔の中を灌流液で満たした状況下で関節鏡を用いて関節腔の中を観察しながら処置を行う手術である。関節鏡視下手術は、関節鏡下手術システムを用いて行われる(例えば、特許文献1を参照)。また、特許文献1には、骨に孔を形成するための超音波処置具が開示されている。この超音波処置具は、処置具の先端が超音波振動するように構成されている。関節鏡視下手術では、超音波振動によって処置具の先端が骨を粉砕(切削)し、骨に孔(骨孔)が形成される。そして、この後、当該2つの骨孔を繋げて1つの骨孔にする。 In arthroscopic surgery, a portal is formed in the joint to be treated, the arthroscope and treatment instruments are inserted through the portal into the joint to be treated, and the arthroscopy is performed with the joint cavity filled with irrigation fluid. This is a surgery in which the inside of the joint cavity is observed using a Arthroscopic surgery is performed using an arthroscopic surgery system (see, for example, Patent Document 1). Moreover, Patent Document 1 discloses an ultrasonic treatment tool for forming a hole in a bone. This ultrasonic treatment tool is configured so that the tip of the treatment tool vibrates ultrasonically. In arthroscopic surgery, the tip of a treatment instrument crushes (cuts) bone using ultrasonic vibrations, forming a hole in the bone. After this, the two bone holes are connected to form one bone hole.
国際公開第2018/078830号International Publication No. 2018/078830
 ところで、処置具によって骨が切削されると、骨の削りカス(骨粉)が発生する。関節鏡視下手術時には、灌流液によって処置対象の骨粉が流される。しかしながら、骨粉は灌流液中に分散されて該灌流液が濁り、処置対象を観察する関節鏡の視野が阻害されてしまう場合がある。その場合、術者は手を止めて視野が回復するのを待たなければならず、患者および術者に負担がかかったり、手術に時間を要したりする場合がある。 By the way, when a bone is cut with a treatment tool, bone shavings (bone powder) are generated. During arthroscopic surgery, bone powder to be treated is flushed away with irrigation fluid. However, bone powder may be dispersed in the irrigation fluid, making the irrigation fluid cloudy and obstructing the field of view of the arthroscope for observing the treatment target. In this case, the operator must stop and wait for the visual field to recover, which may place a burden on the patient and the operator, and may increase the time required for the surgery.
 本発明は上記に鑑みてなされたものであって、灌流液中の濁りによって生じる手術への影響を抑制することができる処置具を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a treatment tool that can suppress the influence on surgery caused by turbidity in the irrigation fluid.
 上述した課題を解決し、目的を達成するために、本発明に係る処置具は、液中で生体組織を切削する処置具であって、前記生体組織に接触し、振動によって該生体組織を切削する先端処置部を有するプローブ、を備え、前記先端処置部は、前記生体組織に当接する当接部と、前記当接部の基端側に延びる延在部と、前記延在部の前記当接部側と反対側に設けられ、処置によって発生する粉体の拡散を制御する拡散制御部と、を有し、前記拡散制御部には、前記粉体の拡散を促進する拡散促進面と、前記粉体の拡散を抑制する拡散抑制面と、が形成される。 In order to solve the above-mentioned problems and achieve the objects, a treatment tool according to the present invention is a treatment tool that cuts living tissue in a liquid, and that comes into contact with the living tissue and cuts the living tissue by vibration. a probe having a distal treatment section, the distal treatment section having a contact section that contacts the biological tissue, an extension section that extends toward the proximal end side of the contact section, and a probe that has a distal treatment section that contacts the living tissue; a diffusion control section that is provided on the opposite side to the contact section side and controls the diffusion of powder generated by the treatment, and the diffusion control section includes a diffusion promotion surface that promotes the diffusion of the powder; A diffusion suppressing surface that suppresses diffusion of the powder is formed.
 本発明によれば、灌流液中の濁りによって生じる手術への影響を抑制することができる。 According to the present invention, it is possible to suppress the influence on surgery caused by turbidity in the irrigation fluid.
図1は、実施の形態1に係る処置システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a treatment system according to a first embodiment. 図2は、超音波プローブによって骨孔を形成する様子を示す図である。FIG. 2 is a diagram showing how a bone hole is formed using an ultrasonic probe. 図3Aは、処置具の概略構成を示す模式図である。FIG. 3A is a schematic diagram showing the schematic configuration of the treatment instrument. 図3Bは、図3Aの矢視A方向の模式図である。FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A. 図3Cは、超音波プローブの先端構成を示す斜視図である。FIG. 3C is a perspective view showing the configuration of the tip of the ultrasound probe. 図4は、実施の形態1に係る処置システムの機能構成の概要を示すブロック図である。FIG. 4 is a block diagram showing an overview of the functional configuration of the treatment system according to the first embodiment. 図5は、内視鏡装置の機能構成を示すブロック図である。FIG. 5 is a block diagram showing the functional configuration of the endoscope device. 図6Aは、大腿骨外顆に対して骨孔を形成する際の内視鏡の視界が良好な状態を模式的に示す図である。FIG. 6A is a diagram schematically showing a state in which the endoscope has good visibility when forming a bone hole in the lateral condyle of the femur. 図6Bは、大腿骨外顆に対して骨孔を形成する際の内視鏡の視界が良好でない状態を模式的に示す図である。FIG. 6B is a diagram schematically showing a state in which the visibility of the endoscope is not good when forming a bone hole in the lateral condyle of the femur. 図7は、処置装置の機能構成を示すブロック図である。FIG. 7 is a block diagram showing the functional configuration of the treatment device. 図8は、灌流装置の機能構成を示すブロック図である。FIG. 8 is a block diagram showing the functional configuration of the perfusion device. 図9は、照明装置の機能構成を示すブロック図である。FIG. 9 is a block diagram showing the functional configuration of the lighting device. 図10は、実施の形態1に係る処置システムを用いて術者が行う処置の概要を説明するフローチャートである。FIG. 10 is a flowchart illustrating an overview of a treatment performed by an operator using the treatment system according to the first embodiment. 図11は、処置具の切削時の切削処置の概要を説明する図である。FIG. 11 is a diagram illustrating an outline of the cutting treatment when cutting the treatment instrument. 図12は、実施の形態1の変形例1に係る超音波プローブの先端構成を示す斜視図である。FIG. 12 is a perspective view showing the tip configuration of an ultrasound probe according to Modification 1 of Embodiment 1. 図13は、実施の形態1の変形例2に係る超音波プローブの先端構成を示す斜視図である。FIG. 13 is a perspective view showing the tip configuration of the ultrasound probe according to the second modification of the first embodiment. 図14は、実施の形態1の変形例3に係る超音波プローブの先端構成を示す斜視図である。FIG. 14 is a perspective view showing the tip configuration of an ultrasonic probe according to Modification 3 of Embodiment 1. 図15は、実施の形態2に係る処置具の概略構成を示す模式図である。FIG. 15 is a schematic diagram showing a schematic configuration of a treatment instrument according to the second embodiment. 図16は、実施の形態3に係る処置具の概略構成を示す模式図である。FIG. 16 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 3. 図17は、実施の形態4に係る処置具の概略構成を示す模式図である。FIG. 17 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 4.
 以下に、図面を参照しつつ、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below. Furthermore, in the description of the drawings, the same parts are denoted by the same reference numerals.
(実施の形態1)
 〔処置システムの概略構成〕
 図1は、実施の形態1に係る処置システム1の概略構成を示す図である。
 処置システム1は、骨等の生体組織に対して超音波振動を付与することによって、当該生体組織を処置する。ここで、当該処置とは、例えば、骨等の生体組織の除去や切削を意味する。なお、図1では、当該処置システム1として、前十字靱帯再建術を行う処置システムを例示している。この処置システム1は、内視鏡装置2と、処置装置3と、ガイディングデバイス4と、灌流装置5と、照明装置6とを備える。
(Embodiment 1)
[Schematic configuration of treatment system]
FIG. 1 is a diagram showing a schematic configuration of a treatment system 1 according to the first embodiment.
The treatment system 1 treats living tissues such as bones by applying ultrasonic vibrations to the living tissues. Here, the treatment means, for example, removal or cutting of living tissue such as bone. In addition, in FIG. 1, a treatment system for performing anterior cruciate ligament reconstruction is illustrated as the treatment system 1. This treatment system 1 includes an endoscope device 2, a treatment device 3, a guiding device 4, a perfusion device 5, and an illumination device 6.
 内視鏡装置2は、内視鏡201と、内視鏡制御装置202と、表示装置203とを備える。
 内視鏡201は、膝関節J1の関節腔C1内と皮膚外とを連通する第1のポータルP1を通して、挿入部211の先端部分が当該関節腔C1内に挿通される。そして、内視鏡201は、関節腔C1内に照射し、当該関節腔C1内で反射された照明光(被写体像)を取り込み、当該被写体像を撮像する。
 内視鏡制御装置202は、内視鏡201によって撮像された撮像画像に対して種々の画像処理を実行するとともに、当該画像処理後の撮像画像を表示装置203に表示させる。内視鏡制御装置202は、内視鏡201と表示装置203とに有線または無線で接続されている。
 表示装置203は、処置システムの各装置から送信されたデータ、画像データ、及び音声データ等を内視鏡制御装置を介して受信し、表示/告知する。表示装置203は、液晶または有機EL(Electro-Luminescence)からなる表示パネルを用いて構成される。
The endoscope device 2 includes an endoscope 201, an endoscope control device 202, and a display device 203.
In the endoscope 201, the distal end portion of the insertion portion 211 is inserted into the joint cavity C1 of the knee joint J1 through a first portal P1 that communicates the inside of the joint cavity C1 with the outside of the skin. The endoscope 201 then irradiates the inside of the joint cavity C1, captures the illumination light (subject image) reflected within the joint cavity C1, and captures the subject image.
The endoscope control device 202 performs various image processing on the captured image captured by the endoscope 201, and causes the display device 203 to display the captured image after the image processing. The endoscope control device 202 is connected to the endoscope 201 and the display device 203 by wire or wirelessly.
The display device 203 receives data, image data, audio data, etc. transmitted from each device of the treatment system via the endoscope control device, and displays/announces the data. The display device 203 is configured using a display panel made of liquid crystal or organic EL (Electro-Luminescence).
 処置装置3は、処置具301と、処置具制御装置302と、フットスイッチ303とを備える。
 処置具301は、処置具本体311と、超音波プローブ312(図2参照)と、シース313とを有する。
 処置具本体311は、円筒状に形成されている。そして、処置具本体311の内部には、ボルト締めランジュバン型振動子(Bolt-clamped Langevin-type transducer)によって構成され、供給された駆動電力に応じて超音波振動を発生する超音波振動子311a(図1)が収納されている。
 処置具制御装置302は、術者によるフットスイッチ303への操作に応じて、超音波振動子311aに対して当該駆動電力を供給する。なお、当該駆動電力の供給については、フットスイッチ303への操作に限らず、例えば、処置具301に設けられた操作部(図示略)への操作に応じて行われても構わない。
 フットスイッチ303は、超音波プローブ312を駆動する際に術者が足で操作するための入力インターフェースである。
 ガイディングデバイス4、灌流装置5および照明装置6については、後述する。
The treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and a foot switch 303.
The treatment tool 301 includes a treatment tool main body 311, an ultrasonic probe 312 (see FIG. 2), and a sheath 313.
The treatment instrument main body 311 is formed into a cylindrical shape. Inside the treatment instrument main body 311, an ultrasonic transducer 311a (constituted by a bolt-clamped Langevin-type transducer) that generates ultrasonic vibrations in accordance with the supplied driving power. Figure 1) is stored.
The treatment instrument control device 302 supplies the driving power to the ultrasonic transducer 311a in response to the operator's operation of the foot switch 303. Note that the supply of the driving power is not limited to the operation on the foot switch 303, and may be performed, for example, in response to the operation on an operation section (not shown) provided on the treatment instrument 301.
The foot switch 303 is an input interface used by the surgeon to operate the ultrasound probe 312 with his/her foot.
The guiding device 4, perfusion device 5, and lighting device 6 will be described later.
 図2は、超音波プローブ312によって骨孔101を形成する様子を示した図である。図3Aは、超音波プローブ312の概略構成を示す模式図である。図3Bは、図3Aの矢視A方向の模式図である。図3Cは、超音波プローブの先端構成を示す斜視図である。なお、図3Aは、図3CのS2面側から見た図に相当する。
 超音波プローブ312は、例えばチタン合金等によって構成され、略円柱形状を有する。この超音波プローブ312の基端部は、処置具本体311内において、超音波振動子311aに対して接続されている。そして、超音波プローブ312は、超音波振動子311aが発生した超音波振動を基端から先端まで伝達する。本実施の形態1では、当該超音波振動は、超音波プローブ312の長手方向(図2の上下方向)に沿う縦振動である。また、超音波プローブ312の先端部には、図2に示すように、先端処置部312aが設けられている。
FIG. 2 is a diagram showing how the bone hole 101 is formed using the ultrasonic probe 312. FIG. 3A is a schematic diagram showing a schematic configuration of the ultrasound probe 312. FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A. FIG. 3C is a perspective view showing the configuration of the tip of the ultrasound probe. Note that FIG. 3A corresponds to a view seen from the S2 surface side of FIG. 3C.
The ultrasonic probe 312 is made of, for example, a titanium alloy, and has a substantially cylindrical shape. A proximal end portion of the ultrasonic probe 312 is connected to an ultrasonic transducer 311a within the treatment instrument main body 311. The ultrasonic probe 312 transmits ultrasonic vibrations generated by the ultrasonic transducer 311a from the base end to the distal end. In the first embodiment, the ultrasonic vibration is longitudinal vibration along the longitudinal direction of the ultrasonic probe 312 (vertical direction in FIG. 2). Furthermore, as shown in FIG. 2, a distal treatment section 312a is provided at the distal end of the ultrasonic probe 312.
 先端処置部312aは、骨に当接する当接部321bと、柱状をなして延びる延在部312cと、延在部312cの当接部312b側と反対側に設けられ、基端側に向かって先細な形状をなし、骨粉の拡散を制御する拡散制御部312dとを有する。 The distal treatment section 312a is provided with a contact section 321b that contacts the bone, an extension section 312c that extends in a columnar shape, and a side of the extension section 312c opposite to the contact section 312b, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312d that controls the diffusion of bone powder.
 当接部312bは、角柱状をなして先端側に向かって先細となる形状をなす。当接部312bは、対をなす二組の表面のうち、一方の組の表面が段付き形状をなし、他方の組の表面が延在部312cの表面と平行かつ滑らかに連なる平面状をなす。ここで、対をなす表面とは、例えば、直方体をなす場合、表面に対する法線が互いに平行となる表面同士である。 The contact portion 312b has a prismatic shape that tapers toward the tip side. The abutting portion 312b has two pairs of surfaces, one of which has a stepped shape, and the other has a flat surface that is parallel and smooth to the surface of the extension portion 312c. . Here, the paired surfaces are, for example, in the case of a rectangular parallelepiped, surfaces whose normals to the surfaces are parallel to each other.
 ここで、超音波プローブ312の長手軸N方向において、延在部312cの長さL1と、拡散制御部312dの長さL2との和は、骨孔の深さに応じて設定される(図3A参照)。
 延在部312cは、角柱状をなして延びる例について説明するが、円柱等、形状はこれに限らない。
Here, in the longitudinal axis N direction of the ultrasound probe 312, the sum of the length L1 of the extension part 312c and the length L2 of the diffusion control part 312d is set according to the depth of the bone hole (Fig. (See 3A).
Although an example in which the extending portion 312c extends in a prismatic shape will be described, the shape is not limited to this, such as a cylinder.
 拡散制御部312dは、延在部312cの表面に対して傾斜した表面をなす拡散促進面S1と、延在部312cの表面に連なり、かつ該表面に対して平行な表面をなす拡散抑制面S2とによって外表面が構成される。拡散促進面S1および拡散抑制面S2は、それぞれ二つ形成され、周方向に交互に設けられる。拡散促進面S1は、長手軸Nに対して互いに反対側にそれぞれ設けられる。また、拡散抑制面S2は、長手軸Nに対して互いに反対側にそれぞれ設けられる。 The diffusion control section 312d includes a diffusion promoting surface S1 having a surface inclined with respect to the surface of the extending section 312c, and a diffusion suppressing surface S2 having a surface continuous with the surface of the extending section 312c and parallel to the surface. The outer surface is constituted by Two diffusion promoting surfaces S1 and two diffusion suppressing surfaces S2 are each formed and provided alternately in the circumferential direction. The diffusion promoting surfaces S1 are provided on opposite sides of the longitudinal axis N, respectively. Furthermore, the diffusion suppressing surfaces S2 are provided on opposite sides of the longitudinal axis N, respectively.
 拡散促進面S1および拡散抑制面S2は、互いに表面粗さが異なる。具体的には、拡散促進面S1は、拡散抑制面S2よりも粗く、例えば算術平均粗さ(Ra)が、拡散抑制面S2のRaよりも大きい。拡散促進面S1は、サンドブラスト処理等の、表面粗さを粗くする表面加工が施されてなる。また、拡散抑制面S2は、鏡面加工処理や平滑コーティング処理等の、表面を平滑化する処理が施されてなる。
 なお、超音波プローブ312や拡散制御部312dを3Dプリンタで作製する場合は、超音波振動に耐えられる強度を持たせて形成される。
The diffusion promoting surface S1 and the diffusion suppressing surface S2 have different surface roughness from each other. Specifically, the diffusion promoting surface S1 is rougher than the diffusion suppressing surface S2, and, for example, the arithmetic mean roughness (Ra) is larger than the Ra of the diffusion suppressing surface S2. The diffusion promoting surface S1 is subjected to a surface treatment such as sandblasting to increase the surface roughness. Further, the diffusion suppressing surface S2 has been subjected to a surface smoothing process such as a mirror finishing process or a smooth coating process.
Note that when the ultrasonic probe 312 and the diffusion control section 312d are manufactured using a 3D printer, they are formed with strength that can withstand ultrasonic vibrations.
 また、拡散制御効果を得るため、超音波プローブ312の長手軸N方向において、当接部312bの先端から延在部312cの基端までの長さL1が、超音波プローブ312に対して設定される孔の設定深さL3よりも短く、かつ、当接部312bの先端から拡散制御部312dの基端までの長さL2が、設定深さL3よりも長いことが好ましい。 Furthermore, in order to obtain a diffusion control effect, a length L1 from the tip of the contact portion 312b to the base end of the extension portion 312c is set with respect to the ultrasound probe 312 in the longitudinal axis N direction of the ultrasound probe 312. It is preferable that the length L2 from the tip of the abutment part 312b to the base end of the diffusion control part 312d is longer than the set depth L3.
 シース313は、処置具本体311よりも細長い円筒状に形成され、当該処置具本体311から任意の長さまで超音波プローブ312の外周の一部を覆っている。 The sheath 313 is formed into a cylindrical shape that is more elongated than the treatment instrument main body 311, and covers a part of the outer periphery of the ultrasound probe 312 from the treatment instrument main body 311 to an arbitrary length.
 以上説明した処置具301における超音波プローブ312の先端部分は、関節腔C1内と皮膚外とを連通する第2のポータルP2を通して当該関節腔C1内に挿通されたガイディングデバイス4によって案内されつつ、当該関節腔C1内に挿入される。
 そして、骨の処置対象部位100に対して先端処置部312aを接触させた状態で超音波振動を発生させると、ハンマリング作用によって、当該先端処置部312aと機械的に衝突した骨の部分が微細な粒状に粉砕される(図2参照)。そして、術者によって先端処置部312aが処置対象部位100に対して押し込まれると、当該先端処置部312aは、骨を粉砕しながら当該処置対象部位100の内部に進入していく。これによって、処置対象部位100には、骨孔101が形成される。
The tip of the ultrasonic probe 312 in the treatment instrument 301 described above is guided by the guiding device 4 inserted into the joint cavity C1 through the second portal P2 that communicates the inside of the joint cavity C1 with the outside of the skin. , is inserted into the joint cavity C1.
When ultrasonic vibration is generated with the distal treatment section 312a in contact with the bone treatment target site 100, the portion of the bone that mechanically collided with the distal treatment section 312a is finely damaged by the hammering action. It is ground into fine particles (see Figure 2). When the distal treatment section 312a is pushed into the treatment target site 100 by the operator, the distal treatment section 312a enters the inside of the treatment target site 100 while crushing the bone. As a result, a bone hole 101 is formed in the treatment target site 100.
 処置具本体311の基端には、処置具本体311の基端には、姿勢検出部314と、CPU(Central Processing Unit)315と、メモリ316とが搭載された円環状の回路基板317が設けられている(図3Aおよび図3B参照)。姿勢検出部314は、処置具301の回転や移動を検出するセンサを含む。姿勢検出部314は、超音波プローブ312の長手軸と平行な軸を含む、互い直交する三つの軸方向への移動と、各軸のまわりの回転とを検出する。姿勢検出部314は、例えば三軸角速度センサ(ジャイロセンサ)および加速度センサ等を含む。処置具制御装置302は、姿勢検出部314の検出結果が一定時間変化しなければ、処置具301は静止していると判定する。CPU315は、姿勢検出部314の動作を制御したり、処置具制御装置302との間の情報を送受信したりする制御部に相当する。 At the base end of the treatment instrument main body 311, an annular circuit board 317 on which a posture detection section 314, a CPU (Central Processing Unit) 315, and a memory 316 are mounted is provided. (See Figures 3A and 3B). Posture detection unit 314 includes a sensor that detects rotation and movement of treatment instrument 301. The posture detection unit 314 detects movement in three mutually orthogonal axial directions, including an axis parallel to the longitudinal axis of the ultrasound probe 312, and rotation around each axis. The posture detection unit 314 includes, for example, a three-axis angular velocity sensor (gyro sensor), an acceleration sensor, and the like. The treatment instrument control device 302 determines that the treatment instrument 301 is stationary if the detection result of the posture detection unit 314 does not change for a certain period of time. The CPU 315 corresponds to a control unit that controls the operation of the posture detection unit 314 and transmits and receives information to and from the treatment instrument control device 302.
 図1において、ガイディングデバイス4は、第2のポータルP2を通して関節腔C1内に挿通され、処置具301における超音波プローブ312の先端部分の当該関節腔C1内への挿入を案内する。
 ガイディングデバイス4は、ガイド本体401と、ハンドル部402と、コック付き排液部403とを備える。
In FIG. 1, the guiding device 4 is inserted into the joint cavity C1 through the second portal P2, and guides the insertion of the tip portion of the ultrasound probe 312 of the treatment tool 301 into the joint cavity C1.
The guiding device 4 includes a guide body 401, a handle portion 402, and a drain portion 403 with a cock.
 ガイド本体401は、内部に超音波プローブ312が挿通される貫通孔を有する筒形状を有する(図1参照)。そして、ガイド本体401は、当該貫通孔に挿通された超音波プローブ312の進行を一定方向に規制して、当該超音波プローブ312の移動を案内する。本実施の形態では、ガイド本体401の外周面及び内周面における中心軸に直交する断面形状は、それぞれ略円形である。
 このガイド本体401は、先端に向かうにしたがって細くなっている。すなわち、ガイド本体401の先端面は、中心軸に対して斜めに交差する斜面で形成された開口を備える。
The guide body 401 has a cylindrical shape with a through hole through which the ultrasound probe 312 is inserted (see FIG. 1). The guide body 401 guides the movement of the ultrasound probe 312 by restricting the movement of the ultrasound probe 312 inserted through the through hole in a certain direction. In this embodiment, the cross-sectional shapes of the outer circumferential surface and the inner circumferential surface of the guide main body 401 perpendicular to the central axis are approximately circular.
This guide body 401 becomes thinner toward the tip. That is, the distal end surface of the guide body 401 includes an opening formed by a slope diagonally intersecting the central axis.
 コック付き排液部403は、ガイド本体401の外周面に設けられ、当該ガイド本体401内に連通する筒形状を有する。そして、コック付き排液部403には、灌流装置5の排液チューブ505の一端が接続され、ガイド本体401と灌流装置5の排液チューブ505とを連通する流路となる。この流路は、コック付き排液部403に設けられたコック(図示略)の操作によって開閉可能に構成されている。 The drain part 403 with a cock is provided on the outer peripheral surface of the guide body 401 and has a cylindrical shape that communicates with the inside of the guide body 401. One end of the drain tube 505 of the perfusion device 5 is connected to the drain portion 403 with a cock, and serves as a flow path that communicates the guide main body 401 and the drain tube 505 of the perfusion device 5 . This flow path is configured to be openable and closable by operating a cock (not shown) provided in the drain portion 403 with a cock.
 灌流装置5は、滅菌した生理食塩水等の灌流液を関節腔C1内に送出するとともに、潅流液を関節腔C1外に排出する。この灌流装置5は、液体源501と、送液チューブ502と、送液ポンプ503と、排液ボトル504と、排液チューブ505と、排液ポンプ506とを備える(図1参照)。 The perfusion device 5 delivers a sterilized irrigation fluid such as physiological saline into the joint cavity C1, and also discharges the irrigation fluid outside the joint cavity C1. The perfusion device 5 includes a liquid source 501, a liquid feeding tube 502, a liquid feeding pump 503, a drainage bottle 504, a drainage tube 505, and a drainage pump 506 (see FIG. 1).
 液体源501は、灌流液を収容する。
 送液チューブ502は、一端が液体源501に対して接続され、他端が内視鏡201に対して接続されている。
 送液ポンプ503は、送液チューブ502を通して、液体源501から内視鏡201に向けて灌流液を送出する。そして、内視鏡201に送出された灌流液は、挿入部211の先端部分に形成された送液孔から関節腔C1内に送出される。
Fluid source 501 contains irrigation fluid.
The liquid feeding tube 502 has one end connected to the liquid source 501 and the other end connected to the endoscope 201.
The liquid sending pump 503 sends the irrigation liquid from the liquid source 501 toward the endoscope 201 through the liquid sending tube 502 . The irrigation fluid sent to the endoscope 201 is then sent into the joint cavity C1 from the liquid delivery hole formed at the distal end portion of the insertion section 211.
 排液ボトル504は、関節腔C1外に排出された灌流液を収容する。
 排液チューブ505は、一端がガイディングデバイス4に対して接続され、他端が排液ボトル504に対して接続されている。
 排液ポンプ506は、関節腔C1内に挿通されたガイディングデバイス4から排液チューブ505の流路を辿って、当該関節腔C1内の灌流液を排液ボトル504に排出する。なお、本実施の形態1では、排液ポンプ506を用いて説明するが、これに限らず、施設に備えられた吸引装置を用いても構わない。
Drainage bottle 504 contains the irrigation fluid drained out of joint cavity C1.
The drain tube 505 has one end connected to the guiding device 4 and the other end connected to the drain bottle 504.
The drainage pump 506 follows the flow path of the drainage tube 505 from the guiding device 4 inserted into the joint cavity C1, and discharges the irrigation fluid in the joint cavity C1 to the drainage bottle 504. In addition, although this Embodiment 1 demonstrates using the drainage pump 506, it does not restrict to this and may use the suction device with which the facility was equipped.
 照明装置6は、互いに波長帯域が異なる2つの照明光をそれぞれ発する2つの光源を有する。2つの照明光は、例えば白色光と特殊光である。照明装置6からの照明光は、ライトガイドを介して内視鏡201に伝播され、内視鏡201の先端から照射される。 The illumination device 6 has two light sources that each emit two illumination lights with different wavelength bands. The two illumination lights are, for example, white light and special light. Illumination light from the illumination device 6 is propagated to the endoscope 201 via the light guide, and is irradiated from the tip of the endoscope 201.
 〔処置システム全体の機能構成〕
 図4は、処置システム全体の機能構成の概要を示すブロック図である。処置システム1は、システム全体の通信を制御するネットワーク制御装置7と、各種データを記憶するネットワークサーバ8とをさらに備える。
 ネットワーク制御装置7は、内視鏡装置2、処置装置3、灌流装置5、照明装置6およびネットワークサーバ8と通信可能に接続される。図4では、装置間が無線接続されている場合を例示しているが、有線接続されていてもよい。以下、内視鏡装置2、処置装置3、灌流装置5および照明装置6の詳細な機能構成を説明する。
[Functional configuration of the entire treatment system]
FIG. 4 is a block diagram showing an overview of the functional configuration of the entire treatment system. The treatment system 1 further includes a network control device 7 that controls communication throughout the system, and a network server 8 that stores various data.
The network control device 7 is communicably connected to the endoscope device 2, treatment device 3, perfusion device 5, lighting device 6, and network server 8. Although FIG. 4 illustrates a case where the devices are connected wirelessly, they may be connected by wire. The detailed functional configurations of the endoscope device 2, treatment device 3, perfusion device 5, and illumination device 6 will be described below.
 〔内視鏡装置の機能構成〕
 内視鏡装置2は、内視鏡制御装置202と、表示装置203と、撮像部204と、操作入力部205とを備える(図4および図5参照)。
[Functional configuration of endoscope device]
The endoscope device 2 includes an endoscope control device 202, a display device 203, an imaging section 204, and an operation input section 205 (see FIGS. 4 and 5).
 内視鏡制御装置202は、撮像処理部221、画像処理部222、濁り検出部223、入力部226、CPU(Central Processing Unit)227、メモリ228、無線通信部229、距離センサ駆動回路230、距離データ用メモリ231、および通信インターフェース232を備える。 The endoscope control device 202 includes an image processing unit 221, an image processing unit 222, a turbidity detection unit 223, an input unit 226, a CPU (Central Processing Unit) 227, a memory 228, a wireless communication unit 229, a distance sensor drive circuit 230, and a distance sensor drive circuit 230. It includes a data memory 231 and a communication interface 232.
 撮像処理部221は、撮像部204が有する撮像素子241の駆動制御を行う撮像素子駆動制御回路221aと、1次回路202aと電気的に絶縁された患者回路202bに設けられて撮像素子224aの信号制御を行う撮像素子信号制御回路221bとを有する。撮像素子駆動制御回路221aは1次回路202aに設けられる。また、撮像素子信号制御回路221bは、1次回路202aと電気的に絶縁された患者回路202bに設けられる。
 画像処理部222は、画像化処理を行う第1画像処理回路222aと、画像編集処理を行う第2画像処理回路222bとを有する。
 濁り検出部223は、内視鏡装置2内の濁りに関する情報に基づいて濁りを検出する。ここで、濁りに関する情報とは、例えば内視鏡201が生成する撮像データから得られる値、灌流液の物性値、処置装置3から取得したインピーダンスまたはpH等である。ここで、図6Aおよび図6Bは、内視鏡201の視界が良好な状態と不良な状態とをそれぞれ示す図であり、術者が大腿骨外顆900に対して骨孔を形成する際の視界を模式的に示す図である。このうち、図6Bは、超音波プローブ312の駆動により微細な粒状に粉砕された骨が原因で視界が濁った状態を模式的に示している。なお、図6Bでは、微細な骨をドットによって表現している。微細な骨は白色であり、この骨を含む白色の粒子の粒子によって灌流液が白濁する。
The imaging processing unit 221 is provided in an imaging device drive control circuit 221a that controls the driving of the imaging device 241 included in the imaging unit 204, and in a patient circuit 202b that is electrically insulated from the primary circuit 202a, and processes signals from the imaging device 224a. It has an image sensor signal control circuit 221b that performs control. The image sensor drive control circuit 221a is provided in the primary circuit 202a. Further, the image sensor signal control circuit 221b is provided in the patient circuit 202b which is electrically insulated from the primary circuit 202a.
The image processing unit 222 includes a first image processing circuit 222a that performs image processing and a second image processing circuit 222b that performs image editing processing.
The turbidity detection unit 223 detects turbidity based on information regarding turbidity within the endoscope device 2 . Here, the information regarding turbidity is, for example, a value obtained from imaging data generated by the endoscope 201, a physical property value of the perfusate, an impedance or pH obtained from the treatment device 3, and the like. Here, FIGS. 6A and 6B are diagrams showing a state in which the field of view of the endoscope 201 is good and a state in which it is poor, respectively, when the operator forms a bone hole in the lateral femoral condyle 900. FIG. 3 is a diagram schematically showing a field of view. Of these, FIG. 6B schematically shows a state in which the field of vision is clouded due to bones crushed into fine particles by the driving of the ultrasonic probe 312. Note that in FIG. 6B, minute bones are represented by dots. The fine bones are white, and the perfusate becomes cloudy due to the white particles containing these bones.
 図5において、入力部226は、操作入力部205によって入力された信号の入力を受け付ける。
 CPU227は、内視鏡制御装置202の動作を統括して制御する。CPU227は、メモリ228に記憶されているプログラムを実行して内視鏡制御装置202の各部の動作を制御する制御部に相当する。
 メモリ228は、内視鏡制御装置202の動作に必要な各種情報や、撮像部204が撮像した画像データなどを記憶する。
 無線通信部229は、他の装置との間の無線通信を行うためのインターフェースである。
 距離センサ駆動回路230は、撮像部204が撮像した画像内の所定対象物までの距離を計測する距離センサを駆動する。
 距離データ用メモリ231は、距離センサが検出した距離データを記憶する。
 通信インターフェース232は、撮像部204との通信を行うためのインターフェースである。
 上述した構成のうち、撮像素子信号制御回路221b以外は1次回路202aに設けられており、バス配線によって相互に接続されている。
In FIG. 5, the input unit 226 receives the signal input by the operation input unit 205.
The CPU 227 centrally controls the operation of the endoscope control device 202. The CPU 227 corresponds to a control unit that executes a program stored in the memory 228 and controls the operation of each part of the endoscope control device 202.
The memory 228 stores various information necessary for the operation of the endoscope control device 202, image data captured by the imaging unit 204, and the like.
The wireless communication unit 229 is an interface for wireless communication with other devices.
The distance sensor drive circuit 230 drives a distance sensor that measures the distance to a predetermined object in the image captured by the imaging unit 204.
The distance data memory 231 stores distance data detected by the distance sensor.
The communication interface 232 is an interface for communicating with the imaging unit 204.
Of the configuration described above, components other than the image sensor signal control circuit 221b are provided in the primary circuit 202a, and are interconnected by bus wiring.
 撮像部204は、撮像素子241と、CPU242と、メモリ243とを有する。
 撮像素子241は、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)を用いて構成される。
 CPU242は、撮像部204の動作を統括して制御する。CPU242は、メモリ243に記憶されているプログラムを実行して撮像部204の各部の動作を制御する制御部に相当する。
 メモリ243は、撮像部204の動作に必要な各種情報や画像データなどを記憶する。
The imaging unit 204 includes an imaging element 241, a CPU 242, and a memory 243.
The image sensor 241 is configured using a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
The CPU 242 centrally controls the operation of the imaging unit 204. The CPU 242 corresponds to a control unit that executes a program stored in the memory 243 and controls the operation of each part of the imaging unit 204.
The memory 243 stores various information, image data, etc. necessary for the operation of the imaging unit 204.
 図4において、操作入力部205は、マウス、キーボード、タッチパネル、マイクロフォンなどの入力インターフェースを用いて構成され、術者による内視鏡装置2の操作入力を受け付ける。 In FIG. 4, the operation input unit 205 is configured using an input interface such as a mouse, keyboard, touch panel, microphone, etc., and accepts operation input of the endoscope apparatus 2 by the operator.
 〔処置装置の機能構成〕
 処置装置3は、処置具301と、処置具制御装置302と、入出力部304とを備える(図4および図7参照)。
[Functional configuration of treatment device]
The treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and an input/output section 304 (see FIGS. 4 and 7).
 処置具301は、超音波振動子311aと、姿勢検出部314と、CPU315と、メモリ316とを有する(図7参照)。
 姿勢検出部314は、加速度センサおよび/または角速度センサを有し、処置具301の姿勢を検出する。
 CPU315は、超音波振動子311aを含む処置具301の動作を統括して制御する。CPU315は、メモリ316に記憶されているプログラムを実行して処置具301の各部の動作を制御する制御部に相当する。
 メモリ316は、処置具301の動作に必要な各種情報を記憶する。
The treatment tool 301 includes an ultrasonic transducer 311a, a posture detection section 314, a CPU 315, and a memory 316 (see FIG. 7).
The posture detection unit 314 includes an acceleration sensor and/or an angular velocity sensor, and detects the posture of the treatment instrument 301.
The CPU 315 centrally controls the operation of the treatment instrument 301 including the ultrasonic transducer 311a. The CPU 315 corresponds to a control unit that executes a program stored in the memory 316 to control the operation of each part of the treatment instrument 301.
The memory 316 stores various information necessary for the operation of the treatment tool 301.
 処置具制御装置302は、1次回路321、患者回路322,トランス323、第1電源324、第2電源325、CPU326、メモリ327、無線通信部328および通信インターフェース329を備える。 The treatment instrument control device 302 includes a primary circuit 321, a patient circuit 322, a transformer 323, a first power source 324, a second power source 325, a CPU 326, a memory 327, a wireless communication section 328, and a communication interface 329.
 1次回路321は、処置具301への供給電力を生成する。
 患者回路322は、1次回路321と電気的に絶縁されている。
 トランス323は、1次回路321と患者回路322とを電磁的に接続する。
 第1電源324は、処置具301の駆動電力を供給する高電圧電源である。
 第2電源325は、処置具制御装置302内の制御回路の駆動電力を供給する低電圧電源である。
 CPU326は、処置具制御装置302の動作を統括して制御する。CPU326は、メモリ327に記憶されているプログラムを実行して処置具制御装置302の各部の動作を制御する制御部に相当する。
 メモリ327は、処置具制御装置302の動作に必要な各種情報を記憶する。
 無線通信部328は、他の装置との間の無線通信を行うためのインターフェースである。
 通信インターフェース329は、処置具301との通信を行うためのインターフェースである。
The primary circuit 321 generates power to be supplied to the treatment instrument 301.
Patient circuit 322 is electrically insulated from primary circuit 321.
Transformer 323 electromagnetically connects primary circuit 321 and patient circuit 322.
The first power source 324 is a high voltage power source that supplies driving power for the treatment instrument 301.
The second power source 325 is a low voltage power source that supplies driving power for a control circuit within the treatment instrument control device 302.
The CPU 326 centrally controls the operation of the treatment instrument control device 302. The CPU 326 corresponds to a control section that executes a program stored in the memory 327 to control the operation of each section of the treatment instrument control device 302.
The memory 327 stores various information necessary for the operation of the treatment instrument control device 302.
The wireless communication unit 328 is an interface for wireless communication with other devices.
The communication interface 329 is an interface for communicating with the treatment tool 301.
 入出力部304は、マウス、キーボード、タッチパネル、マイクロフォンなどの入力インターフェース、およびモニタ、スピーカ等の出力インターフェースを用いて構成され、術者による内視鏡装置2の操作入力、および術者に告知する各種情報を出力する(図4参照)。 The input/output unit 304 is configured using input interfaces such as a mouse, keyboard, touch panel, microphone, etc., and output interfaces such as a monitor, speakers, etc., and receives operation input from the surgeon for the endoscope device 2 and notifies the surgeon. Various information is output (see Figure 4).
 〔灌流装置の機能構成〕
 灌流装置5は、送液ポンプ503、排液ポンプ506、送液制御部507、排液制御部508、入力部509、CPU510、メモリ511、無線通信部512、通信インターフェース513、ポンプ内CPU514、およびポンプ内メモリ515を備える(図4および図8参照)。
[Functional configuration of perfusion device]
The perfusion device 5 includes a liquid feeding pump 503, a drainage pump 506, a liquid feeding control section 507, a liquid drainage control section 508, an input section 509, a CPU 510, a memory 511, a wireless communication section 512, a communication interface 513, a pump internal CPU 514, and An internal pump memory 515 is provided (see FIGS. 4 and 8).
 送液制御部507は、第1駆動制御部571と、第1駆動電力生成部572と、第1トランス573と、送液ポンプ駆動回路574とを有する(図8参照)。
 第1駆動制御部571は、第1駆動電力生成部572および送液ポンプ駆動回路574の駆動を制御する。
 第1駆動電力生成部572は、送液ポンプ503の駆動電力を生成する。
 第1トランス573は、第1駆動電力生成部572と送液ポンプ駆動回路574とを電磁的に接続する。
 第1駆動制御部571、第1駆動電力生成部572、および第1トランス573は1次回路5aに設けられる。また、送液ポンプ駆動回路574は、1次回路5aと電気的に絶縁された患者回路5bに設けられる。
The liquid feeding control unit 507 includes a first drive control unit 571, a first driving power generation unit 572, a first transformer 573, and a liquid feeding pump drive circuit 574 (see FIG. 8).
The first drive control section 571 controls the driving of the first drive power generation section 572 and the liquid pump drive circuit 574.
The first driving power generation unit 572 generates driving power for the liquid feeding pump 503.
The first transformer 573 electromagnetically connects the first drive power generation section 572 and the liquid pump drive circuit 574.
The first drive control section 571, the first drive power generation section 572, and the first transformer 573 are provided in the primary circuit 5a. Further, the liquid pump drive circuit 574 is provided in the patient circuit 5b which is electrically insulated from the primary circuit 5a.
 排液制御部508は、第2駆動制御部581と、第2駆動電力生成部582と、第2トランス583と、排液ポンプ駆動回路584とを有する。
 第2駆動制御部581は、第2駆動電力生成部582および排液ポンプ駆動回路584の駆動を制御する。
 第2駆動電力生成部582は、排液ポンプ506の駆動電力を生成する。
 第2トランス583は、第2駆動電力生成部582と排液ポンプ駆動回路584とを電磁的に接続する。
 第2駆動制御部581、第2駆動電力生成部582、および第2トランス583は1次回路5aに設けられる。また、排液ポンプ駆動回路584は患者回路5bに設けられる。
The drain control section 508 includes a second drive control section 581, a second drive power generation section 582, a second transformer 583, and a drain pump drive circuit 584.
The second drive control section 581 controls the driving of the second drive power generation section 582 and the drainage pump drive circuit 584.
The second drive power generation unit 582 generates drive power for the drainage pump 506.
The second transformer 583 electromagnetically connects the second drive power generation section 582 and the drain pump drive circuit 584.
The second drive control section 581, the second drive power generation section 582, and the second transformer 583 are provided in the primary circuit 5a. Further, a drainage pump drive circuit 584 is provided in the patient circuit 5b.
 入力部509は、不図示の操作入力等の各種信号の入力を受け付ける。
 CPU510およびポンプ内CPU514は、連携して灌流装置5の動作を統括して制御する。CPU510は、メモリ511に記憶されているプログラムを実行してBUSラインを経て灌流装置5の各部の動作を制御する制御部に相当する。
 メモリ511は、灌流装置5の動作に必要な各種情報を記憶する。
 無線通信部512は、他の装置との間の無線通信を行うためのインターフェースである。
 通信インターフェース513は、ポンプ内CPU514との通信を行うためのインターフェースである。
 ポンプ内メモリ515は、送液ポンプ503および排液ポンプ506の動作に必要な各種情報を記憶する。
 入力部509,CPU510、メモリ511、無線通信部512、および通信インターフェース513は、1次回路5aに設けられる。
 ポンプ内CPU514およびポンプ内メモリ515は、ポンプ5c内に設けられる。ポンプ内CPU514およびポンプ内メモリ515は、送液ポンプ503の周辺に設けてもよいし、排液ポンプ506の周辺に設けてもよい。
The input unit 509 receives input of various signals such as operation input (not shown).
The CPU 510 and the pump CPU 514 work together to centrally control the operation of the perfusion device 5. The CPU 510 corresponds to a control unit that executes a program stored in the memory 511 and controls the operation of each part of the perfusion device 5 via the BUS line.
The memory 511 stores various information necessary for the operation of the perfusion device 5.
The wireless communication unit 512 is an interface for wireless communication with other devices.
The communication interface 513 is an interface for communicating with the pump CPU 514.
The internal pump memory 515 stores various information necessary for the operation of the liquid feeding pump 503 and the liquid draining pump 506.
The input section 509, CPU 510, memory 511, wireless communication section 512, and communication interface 513 are provided in the primary circuit 5a.
An in-pump CPU 514 and an in-pump memory 515 are provided in the pump 5c. The in-pump CPU 514 and the in-pump memory 515 may be provided around the liquid feeding pump 503 or around the drainage pump 506.
 〔照明装置の機能構成〕
 照明装置6は、第1照明制御部601、第2照明制御部602、第1照明603、第2照明604、入力部605、CPU606、メモリ607、無線通信部608、通信インターフェース609、照明回路内CPU610、および照明回路内メモリ61Aを備える(図4および図9参照)。
[Functional configuration of lighting device]
The lighting device 6 includes a first lighting control section 601, a second lighting control section 602, a first lighting 603, a second lighting 604, an input section 605, a CPU 606, a memory 607, a wireless communication section 608, a communication interface 609, and a lighting circuit. It includes a CPU 610 and a lighting circuit internal memory 61A (see FIGS. 4 and 9).
 第1照明制御部601は、第1駆動制御部611と、第1駆動電力生成部612と、第1コントローラ613と、第1駆動回路614とを有する。
 第1駆動制御部611は、第1駆動電力生成部612、第1コントローラ613および第1駆動回路614の駆動を制御する。
 第1駆動電力生成部612は、第1照明603の駆動電力を生成する。
 第1コントローラ613は、第1照明603の光出力を制御する。
 第1駆動回路614は、第1照明603を駆動し、照明光を出力させる。
 第1駆動制御部611、第1駆動電力生成部612、および第1コントローラ613は1次回路6aに設けられる。また、第1駆動回路614は、1次回路6aと電気的に絶縁された患者回路6bに設けられる。
The first lighting control section 601 includes a first drive control section 611 , a first drive power generation section 612 , a first controller 613 , and a first drive circuit 614 .
The first drive control section 611 controls the driving of the first drive power generation section 612 , the first controller 613 , and the first drive circuit 614 .
The first drive power generation unit 612 generates drive power for the first lighting 603.
The first controller 613 controls the light output of the first illumination 603.
The first drive circuit 614 drives the first illumination 603 to output illumination light.
The first drive control section 611, the first drive power generation section 612, and the first controller 613 are provided in the primary circuit 6a. Further, the first drive circuit 614 is provided in the patient circuit 6b which is electrically insulated from the primary circuit 6a.
 第2照明制御部602は、第2駆動制御部621と、第2駆動電力生成部622と、第2コントローラ623と、第2駆動回路624とを有する。
 第2駆動制御部621は、第2駆動電力生成部622、第2コントローラ623および第2駆動回路624の駆動を制御する。
 第2駆動電力生成部622は、第2照明604の駆動電力を生成する。
 第2コントローラ623は、第2照明604の光出力を制御する。
 第2駆動回路624は、第2照明604を駆動し、照明光を出力させる。
 第2駆動制御部621、第2駆動電力生成部622、および第2コントローラ623は1次回路6aに設けられる。また、第2駆動回路624は患者回路6bに設けられる。
The second lighting control section 602 includes a second drive control section 621 , a second drive power generation section 622 , a second controller 623 , and a second drive circuit 624 .
The second drive control section 621 controls the driving of the second drive power generation section 622, the second controller 623, and the second drive circuit 624.
The second drive power generation unit 622 generates drive power for the second lighting 604.
The second controller 623 controls the light output of the second illumination 604.
The second drive circuit 624 drives the second illumination 604 to output illumination light.
The second drive control section 621, the second drive power generation section 622, and the second controller 623 are provided in the primary circuit 6a. Further, the second drive circuit 624 is provided in the patient circuit 6b.
 入力部605は、不図示の操作入力等の各種信号の入力を受け付ける。
 CPU606および照明回路内CPU610は、連携して照明装置6の動作を統括して制御する。CPU606は、メモリ607に記憶されているプログラムを実行して照明装置6の各部の動作を制御する制御部に相当する。
 メモリ607は、照明装置6の動作に必要な各種情報を記憶する。
 無線通信部608は、他の装置との間の無線通信を行うためのインターフェースである。
 通信インターフェース609は、照明回路6cとの通信を行うためのインターフェースである。
 照明回路内メモリ61Aは、第1照明603および第2照明604の動作に必要な各種情報を記憶する。
 入力部605、CPU606、メモリ607、無線通信部608、および通信インターフェース609は、1次回路6aに設けられる。
 照明回路内CPU610および照明回路内メモリ61Aは、照明回路6cに設けられる。
The input unit 605 receives input of various signals such as operation input (not shown).
The CPU 606 and the lighting circuit CPU 610 work together to centrally control the operation of the lighting device 6. The CPU 606 corresponds to a control unit that executes a program stored in the memory 607 to control the operation of each part of the lighting device 6.
The memory 607 stores various information necessary for the operation of the lighting device 6.
The wireless communication unit 608 is an interface for wireless communication with other devices.
The communication interface 609 is an interface for communicating with the lighting circuit 6c.
The lighting circuit memory 61A stores various information necessary for the operation of the first lighting 603 and the second lighting 604.
The input section 605, CPU 606, memory 607, wireless communication section 608, and communication interface 609 are provided in the primary circuit 6a.
The lighting circuit CPU 610 and the lighting circuit memory 61A are provided in the lighting circuit 6c.
 〔処置の概要〕
 図10は、処置システム1を用いて術者が行う処置の概要を説明するフローチャートである。なお、処置を行う術者は、医師一人でもよいし、医師や助手を含む二人以上でもよい。
[Summary of treatment]
FIG. 10 is a flowchart illustrating an overview of the treatment performed by the surgeon using the treatment system 1. Note that the number of surgeons who perform the treatment may be one doctor, or two or more including a doctor and an assistant.
 まず術者は、膝関節J1の関節腔C1内と皮膚外とをそれぞれ連通する第1のポータルP1および第2のポータルP2を形成する(ステップS11)。 First, the operator forms a first portal P1 and a second portal P2 that communicate the inside of the joint cavity C1 of the knee joint J1 and the outside of the skin, respectively (step S11).
 続いて術者は、内視鏡201を第1のポータルP1から関節腔C1内に挿入し、ガイディングデバイス4を第2のポータルP2から関節腔C1内に挿入し、ガイディングデバイス4の案内によって処置具301を関節腔C1内に挿入する(ステップS12)。なお、ここでは2つのポータルを形成してから内視鏡201および処置具301を各ポータルから関節腔C1内に挿入する場合を説明したが、第1のポータルP1を形成して内視鏡201を関節腔C1内に挿入した後、第2のポータルP2を形成してガイディングデバイス4および処置具301を関節腔C1内に挿入してもよい。 Next, the operator inserts the endoscope 201 into the joint cavity C1 from the first portal P1, inserts the guiding device 4 into the joint cavity C1 from the second portal P2, and guides the guiding device 4. The treatment instrument 301 is inserted into the joint cavity C1 (step S12). Note that although the case where two portals are formed and the endoscope 201 and the treatment instrument 301 are inserted into the joint cavity C1 from each portal has been described here, the first portal P1 is formed and the endoscope 201 is inserted into the joint cavity C1. After inserting into the joint cavity C1, the second portal P2 may be formed and the guiding device 4 and the treatment instrument 301 may be inserted into the joint cavity C1.
 この後、術者は、表示装置203が表示する関節腔C1内の内視鏡画像を目視により確認しながら、超音波プローブ312を処置対象の骨に接触させる(ステップS13)。 Thereafter, the operator brings the ultrasound probe 312 into contact with the bone to be treated while visually checking the endoscopic image of the joint cavity C1 displayed on the display device 203 (step S13).
 続いて、術者は処置具301を用いて切削処置を行う(ステップS14)。この際、術者は、処置具301の出力をオンにして超音波プローブ312を超音波振動させて、処置する。例えば、骨を砕いて骨孔を形成する。 Subsequently, the operator performs a cutting treatment using the treatment instrument 301 (step S14). At this time, the operator turns on the output of the treatment tool 301 and causes the ultrasonic probe 312 to vibrate ultrasonically to perform the treatment. For example, bone is crushed to form a bone hole.
 その後、表示装置203は、関節腔C1内の表示および切削処置後の状態に関する情報の表示・告知処理を行う(ステップS15)。内視鏡制御装置202は、例えば、表示・告知処理後、所定時間後に表示・告知を停止する。 After that, the display device 203 performs a display/notification process of displaying the inside of the joint cavity C1 and information regarding the state after the cutting procedure (step S15). For example, after the display/notification process, the endoscope control device 202 stops the display/notification after a predetermined period of time.
 ここで、切削処置における先端処置部312aと骨孔101との位置関係について、図11を参照して説明する。図11は、処置具の切削時の切削処置の概要を説明する図である。図11は、排出促進面による骨紛の排出を促進する側面形状について説明するための部分断面図である。図11の(a)は、図3Cに示す先端構成を備えた超音波プローブ312の、切削処置中の先端処置部312aを示す図である。図11の(b)は、図3Cに示す先端構成を備えた超音波プローブ312の、切削処置終了時の先端処置部312aを示す図である。切削処置時、超音波振動している超音波プローブ312の当接部312bが骨に当接して骨を粉砕する。当接部312bは、その段部によって段階的に骨孔の大きさを大きくしながら切削する(図11の(a)参照)。この際、超音波プローブ312の振動によって形成される骨孔101と先端処置部312aとの間の隙間を経て骨粉が骨孔101の外部に排出される。また、処置中に骨孔101内に拡散制御部312dが進入すると(図11の(b)参照)、拡散促進面S1によって骨孔101との間の隙間が広がる(距離D1<距離D2)。一方で、拡散抑制面S2側の隙間は大きさが維持される。骨孔101内に拡散制御部312dが進入している状態では、隙間が大きい方が液の流通量が大きくなるため、拡散促進面S1側からの骨粉の排出が促進されることになる(図11の(b)参照)。さらに、拡散促進面S1の拡散を促進する加工が施された表面によって、骨粉の拡散がさらに促進される。拡散促進面S1側における骨粉の排出促進、および、拡散抑制面S2の拡散を抑制する加工が施された表面によって、拡散抑制面S2側からの骨粉排出量は維持されるか、低減する。術者は、この骨粉発生量が相対的に低減する方向から内視鏡201で処置部を観察することによって、処置具301と骨の処置対象部位100との位置、処置状況を把握することができる。 Here, the positional relationship between the distal treatment section 312a and the bone hole 101 in the cutting treatment will be explained with reference to FIG. 11. FIG. 11 is a diagram illustrating an outline of the cutting treatment when cutting the treatment tool. FIG. 11 is a partial cross-sectional view for explaining the side shape that promotes the discharge of bone powder by the discharge promoting surface. FIG. 11A is a diagram showing the tip treatment section 312a of the ultrasonic probe 312 having the tip configuration shown in FIG. 3C during a cutting treatment. FIG. 11B is a diagram showing the tip treatment section 312a of the ultrasonic probe 312 having the tip configuration shown in FIG. 3C at the end of the cutting treatment. During the cutting treatment, the contact portion 312b of the ultrasonic probe 312 that is vibrating ultrasonically contacts the bone and crushes the bone. The contact portion 312b is cut while gradually enlarging the size of the bone hole using the stepped portion (see (a) of FIG. 11). At this time, bone powder is discharged to the outside of the bone hole 101 through a gap formed by the vibration of the ultrasonic probe 312 between the bone hole 101 and the distal treatment section 312a. Furthermore, when the diffusion control section 312d enters the bone hole 101 during treatment (see (b) in FIG. 11), the gap between it and the bone hole 101 widens due to the diffusion promoting surface S1 (distance D1<distance D2). On the other hand, the size of the gap on the diffusion suppressing surface S2 side is maintained. When the diffusion control section 312d enters into the bone hole 101, the larger the gap, the larger the flow rate of the liquid, which promotes the discharge of bone powder from the diffusion promoting surface S1 (Fig. 11(b)). Furthermore, the diffusion-promoting surface of the diffusion-promoting surface S1 further promotes the diffusion of bone powder. The amount of bone powder discharged from the diffusion-suppressing surface S2 is maintained or reduced by the surface processed to promote the discharge of bone powder on the diffusion-promoting surface S1 and to suppress diffusion on the diffusion-suppressing surface S2. By observing the treatment area with the endoscope 201 from a direction in which the amount of bone powder generated is relatively reduced, the operator can grasp the position of the treatment instrument 301 and the bone treatment target site 100 and the treatment status. can.
 ところで、超音波振動によって、ある時点の液中空間にあった超音波プローブ312が高速で移動すると、次の時点で超音波プローブ312が存在しなくなったことにより、その空間周囲の圧力が低下し、微小な気泡が発生する。この気泡の大部分は、超音波振動で超音波プローブ312が再び元の空間に戻ってきたときに消滅するが、一部の泡が、気泡として存続する。その気泡の体積は元の液体に比べ大きいため、周りの液体を押しのけようとし、液体を動かす駆動力となる。このように、超音波振動によって超音波プローブ312の周囲に発生する気泡は、骨粉を拡散させる駆動源の一つとなっている。また、超音波振動の振幅、および周波数を一定としたとき、気泡の発生しやすさは、超音波プローブ312の外表面が、長手軸Nに対してなす角度に依存する。すなわち、超音波プローブ312の外表面の角度が、長手軸Nに対して垂直に近いほど、移動時に液体を素早く充填するために圧力が低下して気泡が発生しやすくなる。一方で、超音波プローブ312の外表面の角度が、長手軸Nに対して平行に近いほど、面近傍の液体を動かす効果が低減し、拡散の程度が抑えられる。また、拡散抑制面S2は、表面が滑らかなほど水に対する抵抗が小さくなる。このように、拡散抑制面S2は、拡散促進面S1に比べて拡散効果の程度が抑えられる。 By the way, when the ultrasonic probe 312 that was in the liquid space at a certain point in time moves at high speed due to ultrasonic vibration, the pressure around that space decreases because the ultrasonic probe 312 no longer exists at the next point in time. , minute bubbles are generated. Most of these bubbles disappear when the ultrasonic probe 312 returns to its original space due to ultrasonic vibration, but some bubbles remain as bubbles. Since the volume of the bubble is larger than that of the original liquid, it tries to displace the surrounding liquid and becomes the driving force that moves the liquid. In this way, the bubbles generated around the ultrasonic probe 312 by ultrasonic vibrations serve as one of the driving sources for dispersing bone powder. Further, when the amplitude and frequency of the ultrasonic vibration are constant, the ease with which bubbles are generated depends on the angle that the outer surface of the ultrasonic probe 312 makes with respect to the longitudinal axis N. That is, the closer the angle of the outer surface of the ultrasonic probe 312 is perpendicular to the longitudinal axis N, the more quickly the liquid is filled during movement, which reduces the pressure and makes it easier to generate bubbles. On the other hand, the closer the angle of the outer surface of the ultrasonic probe 312 is parallel to the longitudinal axis N, the more the effect of moving the liquid near the surface is reduced, and the degree of diffusion is suppressed. Furthermore, the smoother the surface of the diffusion suppressing surface S2, the lower the resistance to water. In this way, the degree of diffusion effect of the diffusion suppressing surface S2 is suppressed compared to that of the diffusion promoting surface S1.
 なお、拡散制御部312dは、拡散抑制面S2が、内視鏡201の観察視野(撮像面)に面していれば、観察視野側への骨粉の排出および拡散が抑制されるため、内視鏡画像の白濁の影響を抑制する点で好ましい。すなわち、処置時、拡散抑制面S2を内視鏡201(撮像部)側に向けて処置が行われる。 Note that the diffusion control unit 312d suppresses the discharge and diffusion of bone powder toward the observation field of view when the diffusion suppression surface S2 faces the observation field of view (imaging surface) of the endoscope 201. This is preferable in that it suppresses the influence of clouding of the mirror image. That is, during treatment, the treatment is performed with the diffusion suppressing surface S2 facing the endoscope 201 (imaging unit) side.
 以上説明した実施の形態1では、超音波プローブ312の先端処置部312aに、骨粉の拡散を制御する拡散制御部312dを設け、当該拡散制御部312dによって骨粉の排出方向を制御して、方向に応じて骨粉の排出量を制御する。本実施の形態1によれば、処置によって発生する骨孔からの骨粉の排出する量を、向きによって差を生じる構成とすることによって、処置によって発生する骨粉の排出量を制御する。この構成によって、骨孔からの骨粉の排出を促進する向きと、骨粉の排出を抑制して液の白濁を抑制する向きと、を制御することができる。その結果、内視鏡201と超音波プローブ312との間の濁りを少なくし、白濁による観察視野への影響、すなわち手術への影響を低減することができる。 In the first embodiment described above, the distal treatment section 312a of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder, and the diffusion control section 312d controls the discharge direction of bone powder. Control the amount of bone powder discharged accordingly. According to the first embodiment, the amount of bone powder discharged from the bone hole generated by the treatment is configured to vary depending on the direction, thereby controlling the amount of bone powder generated by the treatment. With this configuration, it is possible to control the direction in which the discharge of bone powder from the bone hole is promoted and the direction in which the discharge of bone powder is suppressed and cloudiness of the liquid is suppressed. As a result, it is possible to reduce the turbidity between the endoscope 201 and the ultrasound probe 312, and to reduce the influence of the turbidity on the observation field of view, that is, on the surgery.
 また、実施の形態1によれば、拡散抑制面S2側を内視鏡201の視野の向きとすることで、処置具310の処置中でも処置部の観察視野の向きへの白濁を抑制した観察を行えるため、例えば、超音波プローブ312を振動させる周波数を大きくして、切削の強度を大きくして観察視野以外の向きへ骨粉を排出することで、処置を継続して実施することが可能となる。切削の強度が大きくなれば、処置に要する時間も短縮され、一層効率的に処置を実施することができる。 Further, according to the first embodiment, by oriented the field of view of the endoscope 201 toward the diffusion suppressing surface S2 side, observation with suppressed clouding toward the direction of the observation field of the treatment area even during treatment with the treatment instrument 310 can be performed. Therefore, for example, by increasing the frequency of vibration of the ultrasonic probe 312 to increase the strength of cutting and ejecting bone powder in a direction other than the observation field of view, it is possible to continue the treatment. . If the cutting strength increases, the time required for the treatment will also be shortened, and the treatment can be performed more efficiently.
 また、実施の形態1では、拡散制御部312dを、拡散促進面S1および拡散抑制面S2のそれぞれを二つ形成した例で説明したが、拡散制御部312dは、内視鏡201で観察する向きに拡散抑制面S2が形成されていればよく、内視鏡201で観察する向き以外の向きの何れかに拡散促進面S1が形成されていてればよい。また、実施の形態1では、拡散抑制面S2を平面とした例で説明したが、それ以外にも、乱流が生じにくい滑らかな面、例えば曲面や緩斜面に形成して滑らかな流れを生成するような、拡散促進面S1に対して拡散を低減する形状であればよい。 Furthermore, in the first embodiment, the diffusion control section 312d was explained using an example in which two diffusion promoting surfaces S1 and two diffusion suppressing surfaces S2 were formed. It is sufficient that the diffusion suppressing surface S2 is formed on the surface, and it is sufficient that the diffusion promoting surface S1 is formed in any direction other than the direction observed with the endoscope 201. In addition, in the first embodiment, an example in which the diffusion suppressing surface S2 is a flat surface has been described, but in addition to that, it may be formed on a smooth surface where turbulence does not easily occur, such as a curved surface or a gentle slope to generate a smooth flow. Any shape that reduces diffusion with respect to the diffusion promoting surface S1 may be used.
(実施の形態1の変形例1)
 次に、実施の形態1の変形例1について、図12を参照して説明する。図12は、実施の形態1の変形例1に係る超音波プローブの先端構成を示す斜視図である。変形例1に係る処置システムは、実施の形態1にかかる処置システム1の先端処置部312aに代えて先端処置部312eを備える。先端処置部312e以外の構成は、実施の形態1と同様であるため、説明を省略する。
(Modification 1 of Embodiment 1)
Next, a first modification of the first embodiment will be described with reference to FIG. 12. FIG. 12 is a perspective view showing the tip configuration of an ultrasound probe according to Modification 1 of Embodiment 1. The treatment system according to the first modification includes a distal treatment section 312e in place of the distal treatment section 312a of the treatment system 1 according to the first embodiment. The configuration other than the distal treatment section 312e is the same as that in Embodiment 1, so the explanation will be omitted.
 先端処置部312eは、骨に当接する当接部312bと、柱状をなして延びる延在部312cと、延在部312cの当接部312b側と反対側に設けられ、基端側に向かって先細な形状をなし、骨粉の拡散を制御する拡散制御部312fとを有する。 The distal treatment section 312e includes a contact section 312b that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the side opposite to the contact section 312b side of the extension section 312c, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312f that controls the diffusion of bone powder.
 拡散制御部312fは、延在部312cの表面に対して垂直な平面をなす第1の面と、延在部312cの表面に対して平行な平面をなす第2の表面と、を長手軸N(図3A参照)方向に繰り返してなる拡散促進面S3と、延在部312cの表面に連なり、かつ該表面に対して平行な表面をなす拡散抑制面S2とによって外表面が構成される。なお、拡散促進面S3は、サンドブラスト処理等の表面加工を施してもよい。 The diffusion control section 312f has a first surface that is a plane perpendicular to the surface of the extension section 312c, and a second surface that is a plane parallel to the surface of the extension section 312c. (See FIG. 3A) The outer surface is constituted by the diffusion promoting surface S3 which is repeated in the direction and the diffusion suppressing surface S2 which is continuous with the surface of the extension portion 312c and is parallel to the surface. Note that the diffusion promoting surface S3 may be subjected to surface treatment such as sandblasting.
 ここで、切削処置における先端処置部312eと骨孔101との位置関係は、実施の形態1に係る先端処置部312aと同様である。骨孔101内に拡散制御部312fが進入している状態では、隙間が大きい方が液の流通量が大きくなるため、拡散促進面S3側からの骨粉の排出が促進されることになる。さらに、拡散促進面S3の段差面によって乱流が生じ、骨粉の拡散がさらに促進される。 Here, the positional relationship between the distal treatment section 312e and the bone hole 101 in the cutting treatment is the same as that of the distal treatment section 312a according to the first embodiment. In a state where the diffusion control section 312f has entered the bone hole 101, the larger the gap, the larger the flow rate of the liquid, which promotes the discharge of bone powder from the diffusion promoting surface S3 side. Further, the stepped surface of the diffusion promoting surface S3 generates turbulent flow, further promoting the diffusion of bone powder.
 以上説明した変形例1では、超音波プローブ312の先端処置部312eに、骨粉の拡散を制御する拡散制御部312fを設け、当該拡散制御部312fによって骨粉の排出方向を制御して、方向に応じて骨粉の排出量を制御する。本変形例1によれば、処置によって発生する骨粉の排出量を制御することによって、白濁を抑制する向きを発生させて、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the first modification described above, the distal treatment section 312e of the ultrasonic probe 312 is provided with a diffusion control section 312f that controls the diffusion of bone powder, and the diffusion control section 312f controls the discharge direction of bone powder according to the direction. control the amount of bone powder excreted. According to the present modification example 1, by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction in which clouding is suppressed, thereby suppressing the influence on the surgery caused by the turbidity in the irrigation fluid.
(実施の形態1の変形例2)
 次に、実施の形態1の変形例2について、図13を参照して説明する。図13は、実施の形態1の変形例2に係る超音波プローブの先端構成を示す斜視図である。変形例2に係る処置システムは、実施の形態1にかかる処置システム1の先端処置部312aに代えて先端処置部312gを備える。先端処置部312g以外の構成は、実施の形態1と同様であるため、説明を省略する。
(Modification 2 of Embodiment 1)
Next, a second modification of the first embodiment will be described with reference to FIG. 13. FIG. 13 is a perspective view showing the tip configuration of the ultrasound probe according to the second modification of the first embodiment. The treatment system according to the second modification includes a distal treatment section 312g instead of the distal treatment section 312a of the treatment system 1 according to the first embodiment. The configuration other than the distal treatment section 312g is the same as that in Embodiment 1, so the description will be omitted.
 先端処置部312gは、骨に当接する当接部321bと、柱状をなして延びる延在部312cと、延在部312cの当接部312b側と反対側に設けられ、基端側に向かって先細な形状をなし、骨粉の拡散を制御する拡散制御部312hとを有する。 The distal treatment section 312g includes a contact section 321b that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the opposite side of the extension section 312c to the contact section 312b side, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312h that controls the diffusion of bone powder.
 拡散制御部312hは、延在部312cの表面に対して垂直な壁面を形成する第1の面と、延在部312cの表面に対して傾斜した表面をなす第2の表面と、を長手軸N(図3A参照)に対して垂直な方向に繰り返してなる拡散促進面S4と、延在部312cの表面に連なり、かつ該表面に対して平行な表面をなす拡散抑制面S2とによって外表面が構成される。なお、拡散促進面S4は、サンドブラスト処理等の表面加工を施してもよい。 The diffusion control section 312h has a first surface forming a wall surface perpendicular to the surface of the extension section 312c, and a second surface forming a surface inclined with respect to the surface of the extension section 312c. The outer surface is formed by diffusion promoting surfaces S4 that are repeated in a direction perpendicular to N (see FIG. 3A) and diffusion suppressing surfaces S2 that are continuous with the surface of the extension portion 312c and that are parallel to the surface. is configured. Note that the diffusion promoting surface S4 may be subjected to surface treatment such as sandblasting.
 ここで、切削処置における先端処置部312gと骨孔101との位置関係は、実施の形態1に係る先端処置部312aと同様である。骨孔101内に拡散制御部312hが進入している状態では、隙間が大きい方が液の流通量が大きくなるため、拡散促進面S4側からの骨粉の排出が促進されることになる。さらに、拡散促進面S3の段差面によって、骨粉の拡散がさらに促進される。即ち、軸と直角に近い面を持つ方が拡散が強くなり、さらにそちらの面が軸との垂直面を持てばさらに拡散が強くなる。 Here, the positional relationship between the distal treatment section 312g and the bone hole 101 in the cutting treatment is the same as that of the distal treatment section 312a according to the first embodiment. When the diffusion control section 312h enters into the bone hole 101, the larger the gap, the larger the amount of fluid flowing through the bone hole, which promotes the discharge of bone powder from the diffusion promotion surface S4. Furthermore, the step surface of the diffusion promoting surface S3 further promotes the diffusion of bone powder. That is, the diffusion will be stronger if the surface has a surface that is close to perpendicular to the axis, and the diffusion will be even stronger if that surface has a surface perpendicular to the axis.
 以上説明した変形例2では、超音波プローブ312の先端処置部312gに、骨粉の拡散を制御する拡散制御部312hを設け、当該拡散制御部312hによって骨粉の排出方向を制御して、方向に応じて骨粉の排出量を制御する。本変形例2によれば、処置によって発生する骨粉の排出量を制御することによって、白濁を抑制する向きを発生させて、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the second modification described above, the distal treatment section 312g of the ultrasonic probe 312 is provided with a diffusion control section 312h that controls the diffusion of bone powder, and the diffusion control section 312h controls the discharge direction of bone powder according to the direction. control the amount of bone powder excreted. According to the present modification example 2, by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction that suppresses white turbidity, and to suppress the influence on the surgery caused by turbidity in the irrigation fluid.
(実施の形態1の変形例3)
 次に、実施の形態1の変形例3について、図14を参照して説明する。図14は、実施の形態1の変形例3に係る超音波プローブの先端構成を示す斜視図である。変形例3に係る処置システムは、実施の形態1にかかる処置システム1の先端処置部312aに代えて先端処置部312iを備える。先端処置部312i以外の構成は、実施の形態1と同様であるため、説明を省略する。なお、本変形例3では、少なくとも先端処置部312iが円柱状をなす。また、不図示の当接部312bも円柱状の段差形状をなす。
(Variation 3 of Embodiment 1)
Next, a third modification of the first embodiment will be described with reference to FIG. 14. FIG. 14 is a perspective view showing the tip configuration of an ultrasonic probe according to Modification 3 of Embodiment 1. The treatment system according to the third modification includes a distal treatment section 312i instead of the distal treatment section 312a of the treatment system 1 according to the first embodiment. The configuration other than the distal treatment section 312i is the same as that in Embodiment 1, so the explanation will be omitted. In addition, in this modification 3, at least the distal treatment section 312i has a cylindrical shape. Further, the contact portion 312b (not shown) also has a cylindrical stepped shape.
 先端処置部312iは、骨に当接する当接部321bと、柱状をなして延びる延在部312cと、延在部312cの当接部312b側と反対側に設けられ、基端側に向かって先細な形状をなし、骨粉の拡散を制御する拡散制御部312jとを有する。 The distal treatment section 312i includes a contact section 321b that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the side opposite to the contact section 312b side of the extension section 312c, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312j that controls the diffusion of bone powder.
 拡散制御部312jは、テーパ状をなす表面上に、間欠的に段差面が形成されてなる拡散促進面S5と、延在部312cの表面に連なり、滑らかな表面をなして拡径する拡散抑制面S6とによって外表面が構成される。拡散抑制面S6は、鏡面加工処理、または、平滑コーティング処理が施されてなる。なお、拡散促進面S5は、サンドブラスト処理等の表面加工を施してもよい。 The diffusion control section 312j has a diffusion promoting surface S5 in which a step surface is intermittently formed on a tapered surface, and a diffusion suppressing surface S5 that is continuous with the surface of the extension section 312c and has a smooth surface and expands in diameter. The outer surface is constituted by the surface S6. The diffusion suppressing surface S6 is subjected to a mirror finishing treatment or a smooth coating treatment. Note that the diffusion promoting surface S5 may be subjected to surface treatment such as sandblasting.
 ここで、切削処置における先端処置部312iと骨孔101との位置関係は、実施の形態1に係る先端処置部312aと同様である。骨孔101内に拡散制御部312jが進入している状態では、隙間が大きい方が液の流通量が大きくなるため、拡散促進面S5側からの骨粉の排出が促進されることになる。さらに、拡散促進面S5の段差面によって、骨粉の拡散がさらに促進される。また、側における骨粉の排出促進、および、拡散抑制面S6の加工表面によって、拡散抑制面S6側からの骨粉排出量は維持されるか、低減する。この際、拡散の促進および抑制の効果は、拡散促進面S5と拡散抑制面S6との境界において、曲線等を用いた中間域を設けずに、直線的に領域を分けた方が、明確に効果が分かれてあらわれる。また、拡散促進面S5は、曲面を設けずに、長手軸に対して垂直な面が多くして段差を形成する方が、拡散(骨粉排出)効果が得られる。拡散促進面S5に曲面を残す場合は、長手軸に対して垂直に近い角度の面を多く持つほど、拡散効果を得る点で好ましい。拡散の促進および抑制の効果は、拡散促進面S5と拡散抑制面S6との2つの面を構成することで得られるもので、拡散抑制面S6の形成によって、拡散促進面S5に比べて相対的に骨粉が拡散されにくくなる。 Here, the positional relationship between the distal treatment section 312i and the bone hole 101 in the cutting treatment is the same as that of the distal treatment section 312a according to the first embodiment. When the diffusion control section 312j enters into the bone hole 101, the larger the gap, the larger the amount of liquid flowing through the hole, and therefore the discharge of bone powder from the diffusion promoting surface S5 is promoted. Furthermore, the step surface of the diffusion promoting surface S5 further promotes the diffusion of bone powder. In addition, the amount of bone powder discharged from the diffusion suppressing surface S6 is maintained or reduced by promoting the discharge of bone powder from the side and by the processed surface of the diffusion suppressing surface S6. At this time, the effect of promoting and suppressing diffusion can be clearly seen by dividing the area linearly at the boundary between the diffusion promoting surface S5 and the diffusion suppressing surface S6, without providing an intermediate area using a curved line or the like. The effects appear separately. Moreover, the diffusion (bone powder discharge) effect can be obtained by forming the diffusion promoting surface S5 with a plurality of surfaces perpendicular to the longitudinal axis to form a step instead of providing a curved surface. When leaving a curved surface on the diffusion-promoting surface S5, it is preferable to have more surfaces having an angle close to perpendicular to the longitudinal axis in terms of obtaining a diffusion effect. The effect of promoting and suppressing diffusion is obtained by configuring two surfaces, a diffusion promoting surface S5 and a diffusion suppressing surface S6. bone powder becomes difficult to spread.
 以上説明した変形例3では、超音波プローブ312の先端処置部312iに、骨粉の拡散を制御する拡散制御部312jを設け、当該拡散制御部312jによって骨粉の排出方向を制御して、方向に応じて骨粉の排出量を制御する。本変形例3によれば、処置によって発生する骨粉の排出量を制御することによって、白濁を抑制する向きを発生させて、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the third modification described above, the distal treatment section 312i of the ultrasonic probe 312 is provided with a diffusion control section 312j that controls the diffusion of bone powder, and the diffusion control section 312j controls the discharge direction of bone powder, and the discharging direction of the bone powder is controlled according to the direction. control the amount of bone powder excreted. According to the present modification example 3, by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction in which clouding is suppressed, thereby suppressing the influence on surgery caused by turbidity in the irrigation fluid.
(実施の形態2)
 次に、実施の形態2について、図15を参照して説明する。図15は、実施の形態2に係る処置具の概略構成を示す模式図である。実施の形態2に係る処置システムは、実施の形態1にかかる処置システム1の処置具301に代えて処置具301Aを備える。処置具301Aは、上述した処置具301の先端処置部312aに代えて先端処置部312mを有する。先端処置部312m以外の構成は、実施の形態1と同様であるため、説明を省略する。
(Embodiment 2)
Next, Embodiment 2 will be described with reference to FIG. 15. FIG. 15 is a schematic diagram showing a schematic configuration of a treatment instrument according to the second embodiment. The treatment system according to the second embodiment includes a treatment instrument 301A in place of the treatment instrument 301 of the treatment system 1 according to the first embodiment. The treatment instrument 301A has a distal treatment section 312m instead of the distal treatment section 312a of the treatment instrument 301 described above. The configuration other than the distal treatment section 312m is the same as that in Embodiment 1, so the explanation will be omitted.
 先端処置部312mは、骨に当接する当接部321nと、柱状をなして延びる延在部312cと、延在部312cの当接部312n側と反対側に設けられ、基端側に向かって先細な形状をなし、骨粉の拡散を制御する拡散制御部312dとを有する。 The distal treatment section 312m includes a contact section 321n that contacts the bone, an extension section 312c that extends in a columnar shape, and is provided on the side opposite to the contact section 312n side of the extension section 312c, and extends toward the proximal end. It has a tapered shape and includes a diffusion control section 312d that controls the diffusion of bone powder.
 当接部312nは、一様な断面形状をなして延びる角柱状をなし、延在部312cに連なる。当接部312nは、超音波プローブ312の長手軸と直交する平面を切断面とする断面の形状が、延在部312cと同様の断面形状をなし、該延在部312cに滑らかに連なる。なお、当接部312nは、断面形状が、延在部312cと同様であるものに限らず、例えば、断面の面積が延在部312cの断面の面積よりも小さいものであってもよい。 The contact portion 312n has a prismatic shape that extends with a uniform cross-sectional shape, and is connected to the extension portion 312c. The contact portion 312n has a cross-sectional shape that is similar to the extending portion 312c, and is smoothly connected to the extending portion 312c. Note that the contact portion 312n does not have to have a cross-sectional shape similar to that of the extending portion 312c, and may have a cross-sectional area smaller than that of the extending portion 312c, for example.
 以上説明した実施の形態2においても、実施の形態1と同様に、超音波プローブ312の先端処置部312mに、骨粉の拡散を制御する拡散制御部312dを設け、当該拡散制御部312dによって骨粉の排出方向を制御して、方向に応じて骨粉の排出量を制御する。本実施の形態2によれば、処置によって発生する骨粉の排出量を制御することによって、白濁を抑制する向きを発生させて、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the second embodiment described above, similarly to the first embodiment, the distal treatment section 312m of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder. By controlling the discharge direction, the amount of bone powder discharged is controlled according to the direction. According to the second embodiment, by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction that suppresses white turbidity, and to suppress the influence on surgery caused by turbidity in the irrigation fluid. .
(実施の形態3)
 次に、実施の形態3について、図16を参照して説明する。図16は、実施の形態3に係る処置具の概略構成を示す模式図である。実施の形態3に係る処置システムは、実施の形態1にかかる処置システム1の処置具301に代えて処置具301Bを備える。処置具301Bは、上述した処置具301に対し、プローブカバー318をさらに備える。プローブカバー318以外の構成は、実施の形態1と同様であるため、説明を省略する。
(Embodiment 3)
Next, Embodiment 3 will be described with reference to FIG. 16. FIG. 16 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 3. The treatment system according to the third embodiment includes a treatment instrument 301B in place of the treatment instrument 301 of the treatment system 1 according to the first embodiment. The treatment tool 301B further includes a probe cover 318 in addition to the treatment tool 301 described above. The configuration other than the probe cover 318 is the same as that in Embodiment 1, so the explanation will be omitted.
 プローブカバー318は、筒状をなして内部に超音波プローブ312の一部が挿通される。プローブカバー318は、基端側がシース313に接続し、先端側が、長手軸N方向において、拡散制御部312dの配設位置に位置する。すなわち、プローブカバー318は、拡散制御部312dの一部を覆うとともに、先端処置部312aの基端側に延びて超音波プローブ312の一部を覆う。プローブカバー318は、拡散制御部312dとは非接触であり、当該プローブカバー318の開口と拡散制御部312dとの間には隙間(空間)が形成される。
 プローブカバー318の外周の最大幅W1は、先端処置部312aの最大幅(ここでは延在部312cの最大幅W2)と同等以下である。なお、プローブカバー318は、基端側においてシース313と接続できる開口の大きさを有していることが好ましい。
The probe cover 318 has a cylindrical shape, into which a portion of the ultrasound probe 312 is inserted. The probe cover 318 has its proximal end connected to the sheath 313, and its distal end located at the location where the diffusion control section 312d is located in the longitudinal axis N direction. That is, the probe cover 318 covers a portion of the diffusion control section 312d, and extends toward the proximal end of the distal treatment section 312a to cover a portion of the ultrasound probe 312. The probe cover 318 is not in contact with the diffusion control section 312d, and a gap (space) is formed between the opening of the probe cover 318 and the diffusion control section 312d.
The maximum width W1 of the outer periphery of the probe cover 318 is equal to or less than the maximum width of the distal treatment section 312a (here, the maximum width W2 of the extension section 312c). Note that the probe cover 318 preferably has an opening large enough to be connected to the sheath 313 on the proximal end side.
 超音波プローブ312によって骨が粉砕された際に発生した骨粉は、実施の形態1と同様に、拡散制御部312dによって拡散が制御され、さらに、灌流液とともに、プローブカバー318の内部に進入する。骨粉がプローブカバー318内に進入することによって、処置空間における骨粉の拡散が抑制され、その結果、処置領域の白濁化が低減される。なお、プローブカバー318の基端側、またはシース313には、スリットまたは貫通孔が形成され、プローブカバー318内に進入した骨粉を含む灌流液が、該スリットまたは貫通孔を経て、プローブカバー318またはシース313の外部に排出される。 Similar to the first embodiment, the diffusion of bone powder generated when bones are crushed by the ultrasonic probe 312 is controlled by the diffusion control unit 312d, and the bone powder enters the inside of the probe cover 318 together with the irrigation fluid. As the bone powder enters into the probe cover 318, diffusion of the bone powder in the treatment space is suppressed, and as a result, clouding of the treatment area is reduced. Note that a slit or a through hole is formed on the proximal end side of the probe cover 318 or in the sheath 313, and the irrigation fluid containing bone powder that has entered the probe cover 318 passes through the slit or through hole, and flows through the probe cover 318 or the sheath 313. It is discharged to the outside of the sheath 313.
 以上説明した実施の形態3においても、実施の形態1と同様に、超音波プローブ312の先端処置部312mに、骨粉の拡散を制御する拡散制御部312dを設け、当該拡散制御部312dによって骨粉の排出方向を制御して、方向に応じて骨粉の排出量を制御する。本実施の形態3によれば、処置によって発生する骨粉の排出量を制御することによって、白濁を抑制する向きを発生させて、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the third embodiment described above, similarly to the first embodiment, the distal treatment section 312m of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder. By controlling the discharge direction, the amount of bone powder discharged is controlled according to the direction. According to the third embodiment, by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction that suppresses white turbidity, and to suppress the influence on surgery caused by turbidity in the irrigation fluid. .
 また、本実施の形態3によれば、プローブカバー318を設けて、骨粉を含む灌流液をプローブカバー318内に収容することによって、骨粉の拡散を一層低減することができる。 Furthermore, according to the third embodiment, by providing the probe cover 318 and accommodating the irrigation fluid containing bone powder within the probe cover 318, the diffusion of bone powder can be further reduced.
 なお、実施の形態3では、実施の形態1に係る超音波プローブ312の構成を例にして説明したが、変形例や実施の形態2、3の構成に適用することができる。 Although the third embodiment has been described using the configuration of the ultrasonic probe 312 according to the first embodiment as an example, the present invention can be applied to modifications and the configurations of the second and third embodiments.
 また、プローブカバー318の先端側の形状を、拡散制御部312dとの隙間を大きくした形状の向きと、隙間を小さくした形状の向きとで異なる形状(例えば断面が略楕円形状)とし、骨粉の拡散する向きを更に制御する構成としてもよい。 In addition, the shape of the tip side of the probe cover 318 is made to have a different shape (for example, a substantially elliptical cross section) depending on the orientation of the shape with a larger gap with the diffusion control part 312d and the orientation of the shape with a smaller gap. A configuration may be adopted in which the direction of diffusion is further controlled.
(実施の形態4)
 次に、実施の形態4について、図17を参照して説明する。図17は、実施の形態4に係る処置具の概略構成を示す模式図である。実施の形態4に係る処置システムは、実施の形態1にかかる処置システム1の処置具301に代えて処置具301Cを備える。処置具301Cは、上述した処置具301に対し、ストッパ319をさらに備える。ストッパ319以外の構成は、実施の形態1と同様であるため、説明を省略する。
(Embodiment 4)
Next, Embodiment 4 will be described with reference to FIG. 17. FIG. 17 is a schematic diagram showing a schematic configuration of a treatment instrument according to Embodiment 4. The treatment system according to the fourth embodiment includes a treatment instrument 301C in place of the treatment instrument 301 of the treatment system 1 according to the first embodiment. The treatment tool 301C further includes a stopper 319 in addition to the treatment tool 301 described above. The configuration other than the stopper 319 is the same as that in Embodiment 1, so a description thereof will be omitted.
 ストッパ319は、環状をなして延在部312cに密着する。ストッパ319は、延在部312cの長手軸N方向の基端側に位置する。 The stopper 319 has an annular shape and is in close contact with the extending portion 312c. The stopper 319 is located on the proximal end side of the extending portion 312c in the longitudinal axis N direction.
 処置時、骨の粉砕を進めていくと、骨表面(骨孔開口)がストッパ319に当接する。ストッパ319の位置を調整することによって、骨孔の形成深さを規制することができるとともに、拡散制御部312dの拡散制御効果を十分に得られる位置で先端処置部312aを停止させることができる。 During the treatment, as the bone is crushed, the bone surface (bone hole opening) comes into contact with the stopper 319. By adjusting the position of the stopper 319, the depth of bone hole formation can be regulated, and the distal treatment section 312a can be stopped at a position where the diffusion control effect of the diffusion control section 312d can be sufficiently obtained.
 以上説明した実施の形態4においても、実施の形態1と同様に、超音波プローブ312の先端処置部312mに、骨粉の拡散を制御する拡散制御部312dを設け、当該拡散制御部312dによって骨粉の排出方向を制御して、方向に応じて骨粉の排出量を制御する。本実施の形態4によれば、処置によって発生する骨粉の排出量を制御することによって、白濁を抑制する向きを発生させて、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the fourth embodiment described above, similarly to the first embodiment, the distal treatment section 312m of the ultrasonic probe 312 is provided with a diffusion control section 312d that controls the diffusion of bone powder. By controlling the discharge direction, the amount of bone powder discharged is controlled according to the direction. According to the fourth embodiment, by controlling the discharge amount of bone powder generated by the treatment, it is possible to generate a direction that suppresses white turbidity, and to suppress the influence on surgery caused by turbidity in the irrigation fluid. .
 また、本実施の形態4によれば、ストッパ319を設けることによって、仮に白濁によって処置領域の視認性が低下した場合であっても、骨孔を適切に形成することができる。 Furthermore, according to the fourth embodiment, by providing the stopper 319, even if the visibility of the treatment area is reduced due to cloudiness, the bone hole can be appropriately formed.
 なお、実施の形態4では、実施の形態1に係る超音波プローブ312の構成を例にして説明したが、変形例や実施の形態2、3の構成に適用することができる。 Although Embodiment 4 has been described using the configuration of the ultrasound probe 312 according to Embodiment 1 as an example, it can be applied to modifications and the configurations of Embodiments 2 and 3.
 また、ストッパ319は、図示の形状以外にも、例えば向きによって、拡散制御部312dとの段差が大きい形状とされた向きと、段差が小さい形状とされた向きとを有する形状にして、拡散制御を行うようにしてもよい。 In addition to the illustrated shape, the stopper 319 may have a shape that has a large step difference with respect to the diffusion control section 312d and a direction that has a small step difference, depending on the direction, for example, so as to control the diffusion control. You may also do this.
(その他の実施の形態)
 上述した実施の形態1~4に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した実施の形態1に記載した全構成要素からいくつかの構成要素を削除してもよい。
(Other embodiments)
Various inventions can be formed by appropriately combining the plurality of components disclosed in the first to fourth embodiments described above. For example, some components may be deleted from all the components described in the first embodiment described above.
 また、実施の形態1~4では、内視鏡201や処置具301等の各機器を制御する制御部を、制御装置として個別に有する構成について説明したが、一つの制御部(制御装置)が各機器を一括して制御する構成としてもよい。 Furthermore, in Embodiments 1 to 4, a configuration was described in which the control units that control each device such as the endoscope 201 and the treatment instrument 301 are individually provided as control devices, but one control unit (control device) It is also possible to adopt a configuration in which each device is controlled collectively.
 また、実施の形態1~4では、骨を砕いて発生する白色の骨粉によって白濁が生じる例について説明したが、骨粉の他、白色の粒子によって白濁が生じる処置等に適用することができる。 In addition, in Embodiments 1 to 4, an example in which white turbidity is caused by white bone powder generated by crushing a bone has been described, but it can be applied to treatments in which white turbidity is caused by white particles other than bone powder.
 また、実施の形態1~4において、上述してきた「装置」、「部」、「回路」は、「手段」や、「回路」、「部」などに読み替えることができる。例えば、制御装置は、制御部や制御回路に読み替えることができる。 Furthermore, in Embodiments 1 to 4, the above-mentioned "apparatus", "unit", and "circuit" can be read as "means", "circuit", "unit", etc. For example, the control device can be read as a control unit or a control circuit.
 また、実施の形態1~4に係る各装置に実行させるプログラムは、インストール可能な形式または実行可能な形式のファイルデータでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)、USB媒体、フラッシュメモリ等のコンピュータで読み取り可能な記録媒体に記録されて提供される。 Furthermore, the programs to be executed by each device according to Embodiments 1 to 4 may be installed as file data in an installable or executable format on a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disk). ), USB media, flash memory, and other computer-readable recording media.
 また、実施の形態1~4に係る各装置に実行させるプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。さらに、実施の形態1~4に係る情報処理装置に実行させるプログラムをインターネット等のネットワーク経由で提供または配布するようにしてもよい。 Furthermore, the programs to be executed by each device according to Embodiments 1 to 4 may be stored on a computer connected to a network such as the Internet, and may be provided by being downloaded via the network. Furthermore, the programs to be executed by the information processing apparatuses according to Embodiments 1 to 4 may be provided or distributed via a network such as the Internet.
 また、実施の形態1~4では、無線通信によって信号を送受信していたが、例えば無線である必要はなく、伝送ケーブルを経由して各種機器から信号を送信していたが、有線であってもよい。 Further, in Embodiments 1 to 4, signals were transmitted and received by wireless communication, but for example, signals were transmitted from various devices via transmission cables instead of wireless communication. Good too.
 なお、本明細書におけるフローチャートの説明において、本発明を実施するために必要な処理の順序は、フローチャートに示した表現によって一意的に定められるわけではない。即ち、本明細書で記載したフローチャートにおける処理の順序は、矛盾のない範囲で変更することができる。 Note that in the description of the flowcharts in this specification, the order of processing necessary to implement the present invention is not uniquely determined by the expressions shown in the flowcharts. That is, the order of processing in the flowcharts described in this specification can be changed within a consistent range.
 以上、本願の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 Some of the embodiments of the present application have been described above in detail based on the drawings, but these are merely examples, and various embodiments including the embodiments described in the disclosure section of the present invention can be used based on the knowledge of those skilled in the art. It is possible to implement the present invention in other forms with modifications and improvements.
(付記項1)
 液中で生体組織を切削する処置具であって、前記生体組織に接触し、振動によって該生体組織を切削する先端処置部を有するプローブを備える処置具を用いて処置を行う処置方法であって、
 前記先端処置部は、
 前記生体組織に当接する当接部と、
 前記当接部の基端側に延びる延在部と、
 前記延在部の前記当接部側と反対側に設けられ、処置によって発生する粉体の拡散を制御する拡散制御部と、
 を有し、
 前記拡散制御部には、
 前記粉体の拡散を促進する拡散促進面と、
 前記粉体の拡散を抑制する拡散抑制面と、
 が形成され、
 前記処置は、内視鏡観察下で行われ、
 前記拡散抑制面を前記内視鏡に向けて処置を行う、
 処置方法。
(Additional note 1)
A treatment method in which a treatment is performed using a treatment tool that cuts living tissue in a liquid, and includes a probe that comes into contact with the living tissue and has a tip treatment section that cuts the living tissue by vibration. ,
The distal treatment section is
a contact portion that contacts the living tissue;
an extending portion extending toward the base end side of the contact portion;
a diffusion control section that is provided on a side of the extension section opposite to the contact section side and controls the diffusion of powder generated by the treatment;
has
The diffusion control section includes:
a diffusion promoting surface that promotes diffusion of the powder;
a diffusion suppressing surface that suppresses diffusion of the powder;
is formed,
The treatment is performed under endoscopic observation,
performing the treatment with the diffusion suppressing surface facing the endoscope;
Treatment method.
 以上のように、本発明にかかる処置システム、制御装置および処置システムの作動方法は、灌流液中の濁りによって生じる手術への影響を抑制するのに有用である。 As described above, the treatment system, control device, and method of operating the treatment system according to the present invention are useful for suppressing the influence on surgery caused by turbidity in the irrigation fluid.
 1 処置システム
 2 内視鏡装置
 3 処置装置
 4 ガイディングデバイス
 5 灌流装置
 5a、6a、202a、321 1次回路
 5b、6b、202b、322 患者回路
 5c ポンプ
 6 照明装置
 6c 照明回路
 7 ネットワーク制御装置
 8 ネットワークサーバ
 61A 照明回路内メモリ
 100 処置対象部位
 101 骨孔
 201 内視鏡
 202 内視鏡制御装置
 203 表示装置
 204 撮像部
 205 操作入力部
 211 挿入部
 221 撮像処理部
 221a 撮像素子駆動制御回路
 221b 撮像素子信号制御回路
 222 画像処理部
 222a 第1画像処理回路
 222b 第2画像処理回路
 223 濁り検出部
 224a 撮像素子
 226、509、605 入力部
 227、242、315、326、510、606 CPU
 228、243、316、327、511、607 メモリ
 229、328、512、608 無線通信部
 230 距離センサ駆動回路
 231 距離データ用メモリ
 232、329、513、609 通信インターフェース
 241 撮像素子
 301、301A~301C 処置具
 302 処置具制御装置
 303 フットスイッチ
 304 入出力部
 311 処置具本体
 311a 超音波振動子
 312 超音波プローブ
 312a、312e、312g、312i、312m 先端処置部
 312b、312n 当接部
 312c 延在部
 312d、312f、312h、312j 拡散制御部
 313 シース
 314 姿勢検出部
 317 回路基板
 318 プローブカバー
 319 ストッパ
 323 トランス
 324 第1電源
 325 第2電源
 401 ガイド本体
 402 ハンドル部
 403 コック付き排液部
 501 液体源
 502 送液チューブ
 503 送液ポンプ
 504 排液ボトル
 505 排液チューブ
 506 排液ポンプ
 507 送液制御部
 508 排液制御部
 514 ポンプ内CPU
 515 ポンプ内メモリ
 571 第1駆動制御部
 572 第1駆動電力生成部
 573 第1トランス
 574 送液ポンプ駆動回路
 581 第2駆動制御部
 582 第2駆動電力生成部
 583 第2トランス
 584 排液ポンプ駆動回路
 610 照明回路内CPU
 900 大腿骨外顆
 C1 関節腔
 J1 膝関節
 P1 第1のポータル
 P2 第2のポータル
 S1、S3~S5 拡散促進面
 S2、S6 拡散抑制面
1 Treatment system 2 Endoscope device 3 Treatment device 4 Guiding device 5 Perfusion device 5a, 6a, 202a, 321 Primary circuit 5b, 6b, 202b, 322 Patient circuit 5c Pump 6 Lighting device 6c Lighting circuit 7 Network control device 8 Network server 61A Memory in illumination circuit 100 Treatment target site 101 Bone hole 201 Endoscope 202 Endoscope control device 203 Display device 204 Imaging section 205 Operation input section 211 Insertion section 221 Imaging processing section 221a Imaging element drive control circuit 221b Imaging element Signal control circuit 222 Image processing section 222a First image processing circuit 222b Second image processing circuit 223 Turbidity detection section 224a Image sensor 226, 509, 605 Input section 227, 242, 315, 326, 510, 606 CPU
228, 243, 316, 327, 511, 607 Memory 229, 328, 512, 608 Wireless communication unit 230 Distance sensor drive circuit 231 Memory for distance data 232, 329, 513, 609 Communication interface 241 Image sensor 301, 301A to 301C Treatment Instrument 302 Treatment instrument control device 303 Foot switch 304 Input/output section 311 Treatment instrument body 311a Ultrasonic transducer 312 Ultrasonic probe 312a, 312e, 312g, 312i, 312m Tip treatment section 312b, 312n Contact section 312c Extension section 312d, 312f, 312h, 312j Diffusion control section 313 Sheath 314 Posture detection section 317 Circuit board 318 Probe cover 319 Stopper 323 Transformer 324 First power source 325 Second power source 401 Guide body 402 Handle section 403 Drainage section with cock 501 Liquid source 502 Liquid feeding Tube 503 Liquid feed pump 504 Drain bottle 505 Drain tube 506 Drain pump 507 Liquid feed control section 508 Drain control section 514 CPU in pump
515 Internal pump memory 571 First drive control unit 572 First drive power generation unit 573 First transformer 574 Liquid pump drive circuit 581 Second drive control unit 582 Second drive power generation unit 583 Second transformer 584 Drainage pump drive circuit 610 CPU in lighting circuit
900 Lateral condyle of femur C1 Joint cavity J1 Knee joint P1 First portal P2 Second portal S1, S3 to S5 Diffusion promoting surface S2, S6 Diffusion inhibiting surface

Claims (9)

  1.  液中で生体組織を切削する処置具であって、
     前記生体組織に接触し、振動によって該生体組織を切削する先端処置部を有するプローブ、
     を備え、
     前記先端処置部は、
     前記生体組織に当接する当接部と、
     前記当接部の基端側に延びる延在部と、
     前記延在部の前記当接部側と反対側に設けられ、処置によって発生する粉体の拡散を制御する拡散制御部と、
     を有し、
     前記拡散制御部には、
     前記粉体の拡散を促進する拡散促進面と、
     前記粉体の拡散を抑制する拡散抑制面と、
     が形成される処置具。
    A treatment tool for cutting biological tissue in liquid,
    a probe having a tip treatment section that contacts the living tissue and cuts the living tissue by vibration;
    Equipped with
    The distal treatment section is
    a contact portion that contacts the living tissue;
    an extending portion extending toward the base end side of the contact portion;
    a diffusion control section that is provided on a side of the extension section opposite to the contact section side and controls the diffusion of powder generated by the treatment;
    has
    The diffusion control section includes:
    a diffusion promoting surface that promotes diffusion of the powder;
    a diffusion suppressing surface that suppresses diffusion of the powder;
    A treatment tool that is formed.
  2.  前記拡散制御部の一部を覆うとともに、前記先端処置部の基端側に延びて前記プローブの一部を覆うプローブカバー、
     をさらに備える請求項1に記載の処置具。
    a probe cover that covers a portion of the diffusion control section and extends toward the proximal end of the distal treatment section to cover a portion of the probe;
    The treatment instrument according to claim 1, further comprising:
  3.  前記延在部の基端側に設けられ、該延在部に密着する環状のストッパ、
     をさらに備える請求項1に記載の処置具。
    an annular stopper provided on the proximal end side of the extension portion and in close contact with the extension portion;
    The treatment instrument according to claim 1, further comprising:
  4.  当該処置具は、生体組織に孔を形成するものであって、
     前記プローブの長手軸方向において、前記当接部の先端から前記延在部の基端までの長さが、前記プローブに対して設定される前記孔の設定深さよりも短く、かつ、前記当接部の先端から前記拡散制御部の基端までの長さが、前記設定深さよりも長い、
     請求項1に記載の処置具。
    The treatment tool forms a hole in living tissue,
    In the longitudinal axis direction of the probe, the length from the tip of the abutment part to the base end of the extension part is shorter than the set depth of the hole set for the probe, and the abutment The length from the distal end of the part to the proximal end of the diffusion control part is longer than the set depth,
    The treatment instrument according to claim 1.
  5.  前記拡散促進面は、表面粗さを粗くする表面加工が施されてなる、
     請求項1に記載の処置具。
    The diffusion promoting surface is subjected to a surface treatment to increase the surface roughness.
    The treatment instrument according to claim 1.
  6.  前記拡散促進面は、前記プローブの長手軸に対して傾斜した面、または、前記長手軸に対する角度が互いに異なる角度をなす面を繰り返してなる、
     請求項1に記載の処置具。
    The diffusion promoting surface is formed by repeating a surface that is inclined with respect to the longitudinal axis of the probe, or a surface that makes different angles with respect to the longitudinal axis.
    The treatment instrument according to claim 1.
  7.  前記拡散促進面は、前記プローブの長手軸に対して互いに反対側にそれぞれ設けられる、
     請求項1に記載の処置具。
    The diffusion promoting surfaces are respectively provided on opposite sides with respect to the longitudinal axis of the probe,
    The treatment instrument according to claim 1.
  8.  前記拡散抑制面は、表面を平滑化する処理が施されてなる、
     請求項1に記載の処置具。
    The diffusion suppressing surface is subjected to a surface smoothing process,
    The treatment instrument according to claim 1.
  9.  前記拡散抑制面は、前記プローブの長手軸に対して互いに反対側にそれぞれ設けられる、
     請求項1に記載の処置具。
    The diffusion suppression surfaces are respectively provided on opposite sides with respect to the longitudinal axis of the probe,
    The treatment instrument according to claim 1.
PCT/JP2022/011115 2022-03-11 2022-03-11 Treatment instrument WO2023170971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011115 WO2023170971A1 (en) 2022-03-11 2022-03-11 Treatment instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011115 WO2023170971A1 (en) 2022-03-11 2022-03-11 Treatment instrument

Publications (1)

Publication Number Publication Date
WO2023170971A1 true WO2023170971A1 (en) 2023-09-14

Family

ID=87936411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011115 WO2023170971A1 (en) 2022-03-11 2022-03-11 Treatment instrument

Country Status (1)

Country Link
WO (1) WO2023170971A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078830A1 (en) * 2016-10-28 2018-05-03 オリンパス株式会社 Ultrasonic probe
WO2018182000A1 (en) * 2017-03-31 2018-10-04 オリンパス株式会社 Ultrasonic treatment tool and ultrasonic treatment assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078830A1 (en) * 2016-10-28 2018-05-03 オリンパス株式会社 Ultrasonic probe
WO2018182000A1 (en) * 2017-03-31 2018-10-04 オリンパス株式会社 Ultrasonic treatment tool and ultrasonic treatment assembly

Similar Documents

Publication Publication Date Title
CN107205763B (en) Ultrasonic treatment tool and ultrasonic treatment unit
JP6132993B2 (en) Treatment tool, treatment system
US11246620B2 (en) Ultrasonic surgical instrument
US9662134B2 (en) Ultrasonic probe, ultrasonic treatment instrument and treatment system
US20210330342A1 (en) Ultrasonic probe
US20190247069A1 (en) Ultrasonic probe
JP2023153805A (en) Endoscope apparatus, surgery system, and endoscope apparatus operation method
US20200138470A1 (en) Ultrasonic vibration transmittable probe and ultrasonic treatment assembly
WO2023170971A1 (en) Treatment instrument
US20200138471A1 (en) Ultrasonic vibration transmittable probe and ultrasonic treatment assembly
US20170172611A1 (en) Arthroscopic surgery method for osteochondritis dissecans of talus
JP7238119B2 (en) Ultrasonic treatment device, ultrasonic therapy system, and endoscopic surgery system
WO2023170982A1 (en) Treatment system and operating method for treatment system
US11446051B2 (en) Ultrasonic vibration transmittable probe and ultrasonic treatment assembly
JP6694516B2 (en) Ultrasonic probe and ultrasonic treatment tool
WO2022191047A1 (en) Treatment system, control device, and method for operating treatment system
WO2018078833A1 (en) Ultrasonic probe
WO2022091357A1 (en) Guiding device, treatment system, and treatment method
WO2022191215A1 (en) Treatment system and operating method for treatment system
WO2018078970A1 (en) Ultrasonic probe
WO2022091365A1 (en) Guiding device, treatment system, and method for forming bone hole
WO2018078825A1 (en) Ultrasonic probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930951

Country of ref document: EP

Kind code of ref document: A1