WO2023170251A1 - Composition de liant hydraulique de laitiers de hauts fourneaux - Google Patents

Composition de liant hydraulique de laitiers de hauts fourneaux Download PDF

Info

Publication number
WO2023170251A1
WO2023170251A1 PCT/EP2023/056109 EP2023056109W WO2023170251A1 WO 2023170251 A1 WO2023170251 A1 WO 2023170251A1 EP 2023056109 W EP2023056109 W EP 2023056109W WO 2023170251 A1 WO2023170251 A1 WO 2023170251A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic binder
hydraulic
salts
nitric acid
weight
Prior art date
Application number
PCT/EP2023/056109
Other languages
English (en)
Inventor
Pascal Boustingorry
Marie DAVID
Laurent Bonafous
Original Assignee
Chryso
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chryso filed Critical Chryso
Publication of WO2023170251A1 publication Critical patent/WO2023170251A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/085Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite

Definitions

  • the present invention relates to a hydraulic binder composition
  • a hydraulic binder composition comprising at least one alumino-siliceous compound and an alkaline or sulfate activator, and a reduced quantity of clinker and maintaining the workability of the hydraulic composition obtained, in particular by adding water to the hydraulic binder composition.
  • Usual cementitious compositions include a variable, sometimes significant, proportion of clinker.
  • a cementitious composition according to standard NF EN 197-1 of 2012 comprises 5 to 95% by weight of clinker.
  • compositions comprising at least one alumino-siliceous compound, preferably blast furnace slag.
  • An objective of the present invention is to provide a hydraulic binder composition comprising at least one alumino-siliceous compound and an alkaline or sulfate activator making it possible to obtain a hydraulic composition having improved fluidity maintenance.
  • Another objective of the present invention is to provide a hydraulic binder composition comprising at least one alumino-siliceous compound and an alkaline or sulfate activator having good thixotropic properties and a good compromise between thixotropic properties and mechanical resistance, particularly at 28 days.
  • Another objective of the present invention is to provide such a composition allowing fluidity to be maintained for 1 hour or 1 hour 30 minutes.
  • a hydraulic binder composition comprising: a hydraulic binder comprising at least one alumino-siliceous compound and an alkaline or sulfate activator and a maximum of 10% by weight of clinker, preferably 0 to 10% by weight of clinker; nitric acid or one of its salts, the nitric acid salt not being a zinc nitrate.
  • the inventors have advantageously shown that the addition of nitric acid or one of its salts, with the exception of zinc nitrate, according to the invention makes it possible to improve the maintenance of fluidity (also called maintenance of fluidity). workability) over time of a hydraulic composition prepared from the hydraulic binder composition (CLH), in particular by adding at least water, compared to a composition not comprising nitric acid or one of its salts according to the invention.
  • a hydraulic composition prepared from the hydraulic binder composition in particular by adding at least water, compared to a composition not comprising nitric acid or one of its salts according to the invention.
  • the improvement in maintaining workability measured for example by the evolution of the threshold stress of a hydraulic composition obtained from the CLH composition, in particular by adding water, during of time, is preferably long term, namely over a period greater than or equal to 45 minutes, in particular greater than 60 minutes, or even greater than 90 minutes when the composition is used at 20°C.
  • threshold stresses of the order of 1 to 10 Pa during the same time intervals that is to say over a period greater than or equal to 45 minutes, in particular greater than 60 minutes, or even greater than 90 minutes when the composition is used at 20°C.
  • the threshold stress can in particular be measured using a rheometer by carrying out several measurements of the applied stress to obtain each corresponding strain rate value.
  • the applied stress below which the strain rate becomes very low or zero can be considered as the threshold stress.
  • nitric acid or one of its salts made it possible to provide thixotropic properties to the hydraulic composition advantageously without significantly modifying the resistances.
  • the hydraulic binder composition (CLH) may be free of clinker.
  • the clinker can be a Portland cement, sulfo-aluminous or sulfo-belitic cement clinker.
  • alumino-siliceous compound means blast furnace slag, pozzolanic materials (as defined in the Cement standard NF EN 197-1 (2012) paragraph 5.2.3), fly ash (such as defined in the Cement standard NF EN 197-1 (2012) paragraph 5.2.4), calcined shale (as defined in the Cement standard NF EN 197-1 (2012) paragraph 5.2.5), or silica fumes (as defined in the Cement standard NF EN 197-1(2012) paragraph 5.2.7) or their mixtures.
  • Other minerals not currently recognized by the Cement standard NF EN 197-1 (2012), can also be used.
  • metakaolins such as type A metakaolins conforming to standard NF P 18-513 (August 2012) or calcined clays
  • siliceous additions such as siliceous additions of mineralogy Qz conforming to standard NF P 18-509 (September 2012)
  • aluminosilicates particularly of the inorganic geopolymer type, aluminosilicates containing iron oxides such as bauxite residues, norites or aplites from excavations.
  • the alumino-siliceous compound is chosen from blast furnace slag, pozzolanic materials (as defined in the Cement standard NF EN 197-1 (2012) paragraph 5.2.3), fly ash (as defined in the Cement standard NF EN 197-1 (2012) paragraph 5.2.4), calcined shales (as defined in the Cement standard NF EN 197-1 (2012) paragraph 5.2.5), metakaolins, such as metakaolins type A conforming to standard NF P 18-513 (March 2012) or calcined clays, alumino-silicates in particular of the inorganic geopolymer type, alumino-silicates containing iron oxides such as bauxite residues, norites or aplites from excavations.
  • the composition of the invention may comprise a mixture of aluminosiliceous compounds.
  • the hydraulic binder composition comprises from 75 to 99% by weight of alumino-siliceous compound, preferably from 80 to 95% by weight, for example from 80 to 90% by weight, relative to the total weight of hydraulic binder. .
  • the hydraulic binder consists of an aluminosilica compound and an alkaline or sulfate activator.
  • the hydraulic binder may also include mineral additions, preferably from 0 to 10% by weight relative to the weight of hydraulic binder.
  • the proportions of additions and their nature can also comply with standard prEN 197-5, which defines CEM ll/C-M cements comprising between 50 and 64% clinker and 36 to 50% blast furnace slag and cements CEM VI comprising 35 to 49% clinker, 31 to 59% blast furnace slag and 6 to 20% mineral additions as defined above.
  • the alumino-siliceous compound is a blast furnace slag and the hydraulic binder may also include mineral additions.
  • Blast furnace slag is defined in particular in part 3.7 and 3.6 of standard NF EN 15167-1. Blast furnace slags are predominantly vitreous materials and are by-products of cast iron manufacturing.
  • the blast furnace slag used in the hydraulic binder compositions is preferably finely ground to a maximum diameter of 100 to 150 pm, the diameter being measured by any method known to those skilled in the art, for example by laser particle size analysis.
  • Blast furnace slags generally require calcium or sulfo-calcium activation or using a strong base.
  • metakaolins such as type A metakaolins conforming to standard NF P 18-513 (August 2012) or calcined clays
  • siliceous additions such as siliceous additions of mineralogy Qz conforming to standard NF P 18-509 (September 2012)
  • aluminosilicates particularly of the inorganic geopolymer type.
  • the proportions of additions and their nature can also comply with standard prEN 197-5, which defines CEM ll/CM cements comprising between 50 and 64% clinker and 36 to 50% blast furnace slag and cements CEM VI comprising 35 to 49% clinker, 31 to 59% blast furnace slag and 6 to 20% mineral additions as defined above.
  • the hydraulic binder composition (CLH) of the invention comprises at least one alkaline or sulfate activator of alumino-siliceous compounds, in particular blast furnace slag.
  • These activators are known and in particular described in Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers. Revista Ingeniena de ConstrucciônRICVol 32 N e 22017.
  • the activator is a calcium or sulfate activator, preferably sulfo-calcium, or an alkaline salt, preferably carbonate, hydroxide, silicate, of sodium or potassium, or their mixtures or a calcium sulfate activator.
  • This activator is preferably used in proportions of 0.1 to 20% by dry weight relative to the weight of hydraulic binder, preferably from 1% to 20% by dry weight relative to the weight of hydraulic binder.
  • the hydraulic binder composition may also comprise calcium sulfate, in particular in a proportion of 5 to 20% by weight.
  • Such hydraulic binder compositions are also called super-sulphated cement (CSS) and are in particular as defined in standard NF EN 15743+A1.
  • the hydraulic binder comprises, preferably consists of a blast furnace slag, an activator and 0 to 10% by weight of clinker.
  • the hydraulic binder consists of a blast furnace slag and an activator as described above.
  • the nitric acid salts are alkali or alkaline earth metal salts.
  • the nitric acid salts are calcium or sodium salts, preferably calcium salts.
  • the quantity of nitric acid or one of its salts in the hydraulic binder composition is between 0.1 and 5% by dry weight, preferably between 1.0 and 2.5% by dry weight, relative to the total weight of hydraulic binder.
  • the quantity of nitric acid or one of its salts in the hydraulic binder composition (CLH) is between 0.1 and 1.5% by dry weight, relative to the total weight of hydraulic binder.
  • the hydraulic binder composition may also comprise a polymer (P) comprising units of formulas (I) and (II) following: in which :
  • R 1 and R 2 independently represent hydrogen or methyl
  • R 3 represents hydrogen or a group of formula -COO(M)i/ m
  • R 4 represents a group of formula -(CH 2 ) P -(OAIk)qR 5 in which:
  • each OAlk unit of the group -(OAIk) q - independently represents a linear or branched alkylene comprising from 2 to 4 carbon atoms
  • R 5 represents -OH or a linear or branched alkoxyl comprising 1 to 4 carbon atoms
  • - R 11 and R 12 independently represent hydrogen or methyl
  • - R 13 represents hydrogen or a group of formula -COO(M)i/ m ,
  • - b is a number from 0.75 to 0.95, such that (100 x b) represents the molar percentage of units of formula (II) within the polymer.
  • the CLH composition comprises from 0.1 to 3.0% by dry weight of polymer (P), preferably from 0.3 to 1.0% by dry weight of polymer (P), relative to the total weight. of hydraulic binder.
  • total weight of hydraulic binder means the weight of the alumino-siliceous compounds, the activator, the clinker if present, and the mineral additions if they are present.
  • - Alk represents -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CHMe-, - CHMe-CH 2 -,
  • - q represents an integer from 5 to 200, in particular from 10 to 100, preferably from 25 to 75,
  • R 5 represents -OH or -OMe, preferably R 5 represents -OH,
  • - R 12 represents H
  • - M represents H or a monovalent or bivalent cation
  • the monovalent cation being preferably chosen from an ammonium salt NH 4 + , a primary, secondary, tertiary or quaternary ammonium cation and a cation of an alkali metal, such as a sodium, lithium or potassium ion
  • the bivalent cation preferably being a cation of an alkaline earth metal, such as a magnesium or calcium ion
  • - a is a number from 0.05 to 0.20, preferably a represents a number between 0.10 and 0.20,
  • - b is a number from 0.80 to 0.95, preferably b represents a number between 0.80 and 0.90.
  • the units of formula (I) of the polymer (P) have the following formula (I'): in which :
  • R 2 independently represents hydrogen or methyl, preferably methyl
  • R' 4 represents a group of formula -CH2-(O-CH 2 -CH 2 )q-R5 in which:
  • - R 5 represents -OH or -OMe, preferably -OH
  • - a is a number from 0.05 to 0.25, such that (100 x a) represents the molar percentage of units of formula (I’) within the polymer (P).
  • the units of formula (II) of the polymer (P) have the following formula (II'): in which :
  • R 12 represents hydrogen or methyl, preferably hydrogen
  • the polymer (P) comprises units of formulas (I’) and (II’).
  • - q represents an integer from 5 to 200, in particular from 10 to 100, preferably from 25 to 75,
  • R 5 represents -OH or -OMe, preferably R 5 represents -OH,
  • - a is a number from 0.05 to 0.20, preferably a represents a number between 0.10 and 0.20,
  • - b is a number from 0.80 to 0.95, preferably b represents a number between 0.80 and 0.90,
  • - M represents H or a monovalent or bivalent cation
  • m then representing 1 or 2 the monovalent cation being preferably chosen from an ammonium salt NH4 + , a primary, secondary, tertiary or quaternary ammonium cation and a cation of a alkali metal, such as a sodium, lithium or potassium ion, and the bivalent cation preferably being a cation of an alkaline earth metal, such as a magnesium or calcium ion.
  • the polymer (P) may comprise one or more additional unit(s) in addition to those of formula (I) and (II).
  • the polymer (P) is free of the following unit of formula (III): in which M represents H or a cation, such as sodium.
  • M represents H or a cation, such as sodium.
  • the polymer (P) is free of sulfonic acid and sulfonate groups.
  • the polymer (P) consists of the units of formulas (I) and (II). It does not include any additional unit in addition to those of formula (I) and (II). The sum of a and b is then equal to 1.
  • the weight average molar mass of the polymer is generally 10,000 to 200,000 g/mol, in particular 10,000 to 100,000 g/mol.
  • the polymer (P) is obtained by free radical polymerization.
  • the polymer (P) is therefore a comb polymer whose pendant groups are linked to the main carbon chain by ether groups.
  • the hydraulic binder composition may also comprise polyalkoxylated polyphosphonate-based polymers, preferably in a proportion of between 0.1 and 3.0% by dry weight relative to the total weight of hydraulic binder possibly comprising mineral additions. , preferably from 0.3 to 1.0% by dry weight, in particular described in patent EP0663892 (for example CHRYSOOFluid Optima 100).
  • the polyalkoxylated phosphonate is preferably a polyalkoxylated phosphonate polymer of formula (V) or one of its salts, alone or in mixture: in which :
  • R5 is a hydrogen atom or a monovalent hydrocarbon group comprising from 1 to 18 carbon atoms and optionally one or more heteroatoms;
  • the Ri are similar or different from each other and represent an alkylene such as ethylene, propylene, butylene, amylene, octylene or cyclohexene, or an arylene such as styrene or methylstyrene, the Ri optionally contain one or several heteroatoms;
  • Q is a hydrocarbon group comprising 2 to 18 carbon atoms and optionally one or more heteroatoms
  • A is an alkylidene group having 1 to 5 carbon atoms; the Rj are similar or different from each other and can be chosen from:
  • m is a number greater than or equal to 0
  • y is an integer between 1 and 3
  • Q, N and Rj can together form one or more rings, this or these rings may also contain one or more other heteroatoms.
  • the polyalkoxylated phosphonate consists of a water-soluble or water-dispersible organic compound comprising at least one amino-di-(alkylene-phosphonic) group and at least one polyoxyalkylated chain or at least one of its salts.
  • the polyalkoxylated phosphonate is a compound of formula (V) in which:
  • R 5 is a hydrogen atom or a monovalent hydrocarbon group, saturated or not, comprising from 1 to 8 carbon atoms and optionally one or more heteroatoms;
  • the Ri represent ethylene or propylene or a mixture of ethylene or propylene, preferably 60 to 100% of the Ri are ethylene groups;
  • Q is a hydrocarbon group comprising 2 to 8 carbon atoms and, optionally, one or more heteroatoms;
  • A is the methylene group; each of the Rj represents the CH2-PO3H2 group; m is an integer between 10 and 250; q is an integer equal to 1 or 2; y is an integer equal to 1 or 2.
  • the polyalkoxylated phosphonate may be a polyalkoxylated phosphonate of formula (V) in which R5 is a methyl group, the Ri are ethylene and propylene groups, m being between 30 and 50, r+q is 1, Q is a ethylene group, A is a methylene group, y is 1 and Rj corresponds to the CH2-PO3H2 group.
  • V polyalkoxylated phosphonate of formula (V) in which R5 is a methyl group, the Ri are ethylene and propylene groups, m being between 30 and 50, r+q is 1, Q is a ethylene group, A is a methylene group, y is 1 and Rj corresponds to the CH2-PO3H2 group.
  • the hydraulic binder composition (CLH) according to the invention comprises from 0 to 3.0% by dry weight of polymer (P), preferably from 0 to 1% by dry weight of polymer (P), relative to the total weight of hydraulic binder.
  • the present application also relates to the use of nitric acid or one of its salts, with the exception of zinc nitrate, as defined above, for the preparation of a hydraulic binder composition as defined below. -above or for the preparation of a hydraulic composition as defined above by adding nitric acid or one of its salts to a hydraulic binder composition comprising a hydraulic binder as defined above or to a composition comprising a hydraulic binder as defined above, water and optionally at least one aggregate.
  • the use according to the invention makes it possible to improve the maintenance of fluidity of the hydraulic compositions compared to the same hydraulic composition not comprising nitric acid or one of its salts.
  • the present invention also relates to the use of the hydraulic binder composition (CLH) defined above for the preparation of a hydraulic composition (CH).
  • the invention also relates to a hydraulic composition (CH) comprising (or even consisting of) the hydraulic binder composition (CLH) defined above, water, optionally at least one aggregate.
  • CH hydraulic composition
  • CLH hydraulic binder composition
  • the present invention relates to a hydraulic composition (CH) comprising:
  • a hydraulic binder comprising at least one alumino-siliceous compound, preferably blast furnace slag, and an alkaline or sulfate activator and a maximum of 10% by weight of clinker, preferably between 0 and 10% by weight of clinker, and possibly mineral additions as described above; some water ;
  • nitric acid or one of its salts with the exception of zinc nitrate possibly at least one aggregate; nitric acid or one of its salts with the exception of zinc nitrate.
  • alumino-siliceous compound the activator and the mineral additions being as defined above.
  • the hydraulic composition may further comprise a polymer (P) as defined above.
  • the hydraulic binder, the nitric acid and its salts, the activator, the mineral additions, as well as the polymer (P) are as defined above.
  • the hydraulic composition may further comprise a polymer based on polyalkoxylated polyphosphonates, preferably in a proportion of between 0.1 and 3.0% by dry weight relative to the weight of hydraulic binder, preferably from 0.3 to 1, 0% by dry weight. This polymer is as described above.
  • the quantity of nitric acid or one of its salts in the hydraulic composition is between 0.1 and 5% by dry weight, preferably between 1.0 and 2.5% by dry weight, relative to the total weight. of hydraulic binder.
  • the quantity of nitric acid or one of its salts in the hydraulic composition is between 0.1 and 1.5% by dry weight, relative to the total weight of hydraulic binder.
  • the hydraulic composition comprises from 0 to 3.0% by dry weight of polymer (P), preferably from 0 to 1.0% by dry weight of polymer (P), relative to the total weight of hydraulic binder.
  • the hydraulic composition is preferably a composition of concrete, mortar or screed.
  • aggregates we mean a set of mineral grains with an average diameter of between 0 and 125 mm. Depending on their diameter, aggregates are classified into one of the following six families: fillers, sand, sand, gravel, gravel and ballast (XP P 18-545 standard). The most commonly used aggregates are:
  • - fillers which have a diameter less than 2 mm and for which at least 85% of the aggregates have a diameter less than 1.25 mm and at least 70% of the aggregates have a diameter less than 0.063 mm, including sand with a diameter between 0 and 4 mm (in standard 13-242, the diameter can be up to 6 mm),
  • Sands are therefore included in the definition of aggregate according to the invention.
  • the fillers can in particular be of limestone or dolomitic origin.
  • additives can be added to the hydraulic composition (CH) according to the invention, such as anti-air entrainment additives, anti-foaming agents, a setting accelerator or retarder, a rheology modifying agent, another fluidizer (plasticizer or superplasticizer).
  • the present application also relates to a process for preparing a hydraulic composition according to the invention in which nitric acid or one of its salts, with the exception of zinc nitrate, the possible polymer (P) and the possible polymer based on polyalkoxylated polyphosphonate, are added to the hydraulic binder.
  • the present application also relates to a process for preparing a hydraulic composition according to the invention in which nitric acid or one of its salts, with the exception of zinc nitrate, the possible polymer (P) and the possible polymer based on polyalkoxylated polyphosphonate, is added with the water, for example to the mixing water.
  • the hydraulic compositions are prepared in a conventional manner by mixing the aforementioned constituents.
  • the polymer (P) according to the invention, and where appropriate the polymer based on polyalkoxylated polyphosphonate, can be added to the components of the hydraulic composition dry (generally in powder) or in solution, preferably in aqueous solution.
  • the water in said aqueous solution can be the mixing water or the pre-wetting water (part of the total water which is used to moisten the aggregates before mixing making it possible to simulate the hygrometric state of the aggregates, often humid, in a concrete plant or on the construction site.
  • the present invention also relates to the use of nitric acid or one of its salts, with the exception of zinc nitrate, for the preparation of a hydraulic composition
  • a hydraulic binder comprising at least one aluminosiliceous compound, preferably blast furnace slag, and an alkaline or sulfate activator and a maximum of 10% by weight of clinker, preferably between 0 and 10.0% by weight of clinker, and possibly mineral additions as described above, water, possibly at least one aggregate.
  • the hydraulic binder, the nitric acid and its salts, the activator, the mineral additions are as defined above.
  • the present invention also relates to the use of nitric acid or one of its salts, with the exception of zinc nitrate, to improve the fluidity, in particular the maintenance of workability, of a hydraulic composition
  • a hydraulic composition comprising comprising at least an alumino-siliceous compound, preferably blast furnace slag, and an alkaline or sulfate activator and a maximum of 10% by weight of clinker, preferably between 0 and 10.0% by weight of clinker, and possibly mineral additions as described above, water, optionally at least one aggregate.
  • the hydraulic binder, the nitric acid and its salts, the activator, the mineral additions are as defined above.
  • the quantity of nitric acid or its salts added in the hydraulic composition is between 0.1 and 5% by dry weight, preferably between 0.5 and 1.5% by dry weight, relative to the total weight of binder. hydraulic.
  • the quantity of polymer (P) added where appropriate in the hydraulic composition is between 0.1 and 3.0% by dry weight of polymer (P), preferably from 0.3 to 1.0% by dry weight. dry weight of polymer (P), relative to the total weight of hydraulic binder.
  • the use according to the invention allows the improvement of the maintenance of fluidity (also called maintenance of workability) over time of the hydraulic composition compared to the same hydraulic composition not comprising nitric acid or its constituents. salts.
  • This improvement in maintaining fluidity is as described above and makes it possible to obtain mechanical resistances at 24 hours of the same order of magnitude as a control not using the solution.
  • a polymer based on polyalkoxylated polyphosphonate as described above can also be added in particular in the proportions mentioned above.
  • the present invention also relates to a method for improving the maintenance of fluidity (also called maintenance of workability) over time of a hydraulic composition
  • a hydraulic binder comprising comprising at least one alumino-siliceous compound, preferably high-grade slag. furnaces, and an alkaline or sulfate activator and a maximum of 10% by weight of clinker, preferably between 0 and 10% by weight of clinker, and possibly mineral additions as described above, water, optionally with less an aggregate, comprising the addition of nitric acid or one of its salts, with the exception of zinc nitrate as defined above.
  • the hydraulic binder is as defined above.
  • the process according to the invention comprises the addition of 0.1 to 5% by dry weight, preferably from 1.0% to 2.5% by dry weight, relative to the total weight of hydraulic binder, d nitric acid or one of its salts.
  • the process according to the invention comprises the addition of 0.1 to 1.5% by dry weight, relative to the total weight of hydraulic binder, nitric acid or one of its salts.
  • the process of the invention may also comprise the addition of a polymer (P) as defined above.
  • the process according to the invention where appropriate comprises the addition of 0.1% to 3.0% by dry weight of polymer (P), preferably from 0.3 to 1.0% by dry weight of polymer (P), relative to the weight of hydraulic binder.
  • the nitric acid and its salts, and the polymer (P) are as described above.
  • the activator and mineral additions are as described above.
  • the process of the invention may further comprise the addition of polyalkoxylated polyphosphonate polymers, preferably in a proportion of between 0.1 and 3.0% by weight relative to the weight of hydraulic binder, preferably 0 .3 to 1.0% by weight. These polymers are as described above.
  • Nitric acid or its salts can be added to the hydraulic binder, and optionally the polymer (P) and the possible polymer based on polyalkoxylated polyphosphonate is added to the water, called mixing water.
  • the polymer (P) according to the invention, and where appropriate the polymer based on polyalkoxylated polyphosphonate, can be added to the components of the hydraulic composition dry (generally in powder) or in solution, preferably in aqueous solution.
  • the water in said aqueous solution can be the mixing water or the pre-wetting water (part of the total water which is used to moisten the aggregates before mixing making it possible to simulate the hygrometric state of the aggregates, often humid, in a concrete plant or on the construction site.
  • Nitric acid or its salts as well as, where appropriate, the polymer (P) and the possible polymer based on polyalkoxylated polyphosphonate can be added to the hydraulic binder.
  • the mortar is kept in a Perrier type mixer rotating continuously at 43 rpm.
  • the slump measurements at the 700 cm 3 cone are carried out at 5 min and 25 min after the start of mixing: to do this, the mixer is stopped for the time to fill the cone, then it is restarted.
  • a quantity of mortar is placed in several sections of PVC pipe with a diameter of 44 mm and a height of 99 mm.
  • the mortar is leveled then a cover topped with a mass is added to prevent any evaporation and leakage of mortar through the bottom of the pipe.
  • composition of the binder is given in the following table:
  • the adjuvanted version has spreads greater than 5 and 25 min, a fluidity time before thixotropic consolidation longer than 15 min, while preserving most of the mechanical resistance, which decreases by 2 to 4 MPa depending on the temperature.
  • Example 2 over-sulphated cement mortars
  • the composition of the binder here is as follows:
  • Example 3 cement mortars of type CEM lll/C activated by an alkaline compound
  • the binder is composed as follows:
  • the fluidity is slightly improved by the invention with spreads slightly higher than the control and a time before thixotropic stiffening which is a little longer than 15 min.
  • the resistances are reduced by 5 to 7 MPa, but remain within an acceptable range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention concerne une composition de liant hydraulique comprenant : - un liant hydraulique comprenant au moins un composé alumino-siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence de 0 à 10% en poids de clinker; - de l'acide nitrique ou l'un de ses sels à l'exception du nitrate de zinc.

Description

Composition de liant hydraulique de laitiers de hauts fourneaux
La présente invention concerne une composition de liant hydraulique comprenant au moins un composé alumino-siliceux et un activateur alcalin ou sulfate, et une quantité réduite de clinker et le maintien de l’ouvrabilité de composition hydraulique obtenue, notamment par ajout d’eau à la composition de liant hydraulique.
Les compositions cimentaires usuelles comprennent une proportion variable, parfois importante de clinker. Par exemple, une composition cimentaire selon la norme NF EN 197-1 de 2012 comprend de 5 à 95% en poids de clinker.
Cependant, la fabrication de clinker nécessite l’utilisation de fours puissants, engendrant l’émission d’importantes quantités de dioxyde de carbone. L’extraction des matières premières est également source de rejet de dioxyde de carbone.
On recherche donc à abaisser la teneur en clinker des compositions cimentaires afin de réduire leur impact carbone, tout en maintenant leurs propriétés mécaniques et rhéologiques.
Pour cela, des nouvelles compositions de liant hydraulique sont développées dans lesquelles la quantité de clinker est réduite.
Des compositions cimentaires dans lesquelles le liant hydraulique est un composé alumino-siliceux, par exemple, un laitier de hauts fourneaux, ont été décrites, ces compositions sont généralement activées. Cependant, l’ouvrabilité de ces compositions chute très rapidement, ce qui signifie qu’elles passent d’un état fluide à presque solide en moins de 30 minutes. Du point de vue rhéologique, on observe typiquement des contraintes seuil de 1 à 10 Pa cinq minutes après le gâchage, qui augmentent jusqu’à 50 à 100 Pa entre 30 et 60 minutes après le gâchage.
Il y a donc un intérêt à fournir une solution permettant d’améliorer la fluidité des compositions comprenant au moins un composé alumino-siliceux, de préférence laitiers de hauts fourneaux.
Un objectif de la présente invention est de fournir une composition de liant hydraulique comprenant au moins un composé alumino-siliceux et un activateur alcalin ou sulfate permettant l’obtention de composition hydraulique présentant un maintien de fluidité amélioré. Un autre objectif de la présente invention est de fournir une composition de liant hydraulique comprenant au moins un composé alumino-siliceux et un activateur alcalin ou sulfate présentant de bonnes propriétés thixotropes et un bon compromis entre propriétés thixotropes et résistances mécaniques, notamment à 28 jours.
Un autre objectif de la présente invention est de fournir une telle composition permettant un maintien de fluidité pendant 1 h ou 1 h30.
D’autres objectifs encore apparaîtront à la lecture de la description de l’invention qui suit.
Tous ces objectifs sont remplis par la présente demande qui concerne une composition de liant hydraulique (CLH) comprenant : un liant hydraulique comprenant au moins un composé alumino-siliceux et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence de 0 à 10% en poids de clinker ; de l’acide nitrique ou l’un de ses sels, le sel d’acide nitrique n’étant pas un nitrate de zinc.
Les inventeurs ont montré de manière avantageuse que l’ajout d’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, selon l’invention permettait l’amélioration du maintien de fluidité (également appelé maintien d’ouvrabilité) dans le temps d’une composition hydraulique préparée à partir de la composition de liant hydraulique (CLH), notamment par ajout d’au moins de l’eau, par rapport à une composition ne comprenant pas d’acide nitrique ou l’un de ses sels selon l’invention.
Dans le cadre de la présente invention, l’amélioration du maintien d’ouvrabilité, mesuré par exemple par l’évolution de la contrainte seuil d’une composition hydraulique obtenue à partir de la composition CLH, notamment par ajout d’eau, au cours du temps, est de préférence à long terme, à savoir sur une durée supérieure ou égale à 45 minutes, notamment supérieure à 60 minutes, voire même supérieure à 90 minutes lorsque la composition est utilisée à 20°C. On souhaite donc des contraintes seuil de l’ordre de 1 à 10 Pa pendant les mêmes intervalles de temps, c’est-à-dire sur une durée supérieure ou égale à 45 minutes, notamment supérieure à 60 minutes, voire même supérieure à 90 minutes lorsque la composition est utilisée à 20°C.
La contrainte seuil peut notamment être mesurée à l’aide d’un rhéomètre en effectuant plusieurs mesures de la contrainte appliquée pour obtenir chaque valeur de vitesse de déformation correspondante. La contrainte appliquée en-dessous de laquelle la vitesse de déformation devient très faible ou nulle peut être considérée comme la contrainte seuil.
Ainsi, les inventeurs ont montré que l’utilisation d’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, permettait d’apporter des propriétés thixotropes à la composition hydraulique avantageusement sans modifier de façon importante les résistances mécaniques, notamment les résistances mécaniques à 28 jours.
La composition de liant hydraulique (CLH) peut être exempte de clinker.
Dans le cadre de la présente invention, le clinker peut être un clinker de ciment Portland, de ciment sulfo-alumineux ou sulfo-bélitique.
Dans le cadre de la présente invention on entend par composé alumino-siliceux les laitiers de haut fourneau des matériaux pouzzolaniques (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.3), les cendres volantes (telles que définies dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.4), les schistes calcinés (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.5), ou encore les fumées de silices (telles que définies dans la norme Ciment NF EN 197- 1(2012) paragraphe 5.2.7) ou leurs mélanges. D’autres minéraux, non actuellement reconnus par la norme Ciment NF EN 197-1 (2012), peuvent aussi être utilisés. Il s’agit notamment des métakaolins, tels que les métakaolins de type A conformes à la norme NF P 18-513 (août 2012) ou des argiles calcinées, des additions siliceuses, telles que les additions siliceuses de minéralogie Qz conformes à la norme NF P 18-509 (septembre 2012), des alumino-silicates notamment de type géopolymères inorganiques, des alumino-silicates contenant des oxydes de fer tels les résidus de bauxite, des norites ou des aplites provenant d’excavations.
De préférence, le composé alumino-siliceux est choisi parmi les laitiers de hauts- fourneaux, des matériaux pouzzolaniques (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.3), les cendres volantes (telles que définies dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.4), les schistes calcinés (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.5), des métakaolins, tels que les métakaolins de type A conformes à la norme NF P 18-513 (août 2012) ou des argiles calcinées, des alumino-silicates notamment de type géopolymères inorganiques, des alumino-silicates contenant des oxydes de fer tels les résidus de bauxite, des norites ou des aplites provenant d’excavations. La composition de l’invention peut comprendre un mélange de composés alumino- siliceux.
De préférence, la composition de liant hydraulique comprend de 75 à 99% en poids de composé alumino-siliceux, de préférence de 80 à 95% en poids, par exemple de 80 à 90% en poids, par rapport au poids total de liant hydraulique.
Dans un mode de réalisation, le liant hydraulique consiste en un composé alumino-silicieux et un activateur alcalin ou sulfate.
Le liant hydraulique peut également comprendre des additions minérales, de préférence de 0 à 10% en poids par rapport au poids de liant hydraulique.
L'expression « additions minérales » désigne les matériaux pouzzolaniques (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.3), les schistes calcinés (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.5), les calcaires (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.6) ou encore les fumées de silices (telles que définies dans la norme Ciment NF EN 197-1(2012) paragraphe 5.2.7) ou leurs mélanges. D’autres ajouts, non actuellement reconnus par la norme Ciment NF EN 197-1(2012), peuvent aussi être utilisés. Il s’agit notamment des additions siliceuses, telles que les additions siliceuses de minéralogie Qz conformes à la norme NF P 18-509 (septembre 2012). Les proportions d’ajouts et leur nature peuvent également être conformes à la norme prEN 197-5, qui définit les ciments CEM ll/C-M comprenant entre 50 et 64% de clinker et de 36 à 50% de laitier de haut fourneau et les ciments CEM VI comprenant de 35 à 49% de clinker, de 31 à 59% de laitier de haut fourneau et de 6 à 20% d’additions minérales telles que définies ci-dessus.
De préférence, le composé alumino-siliceux est un laitier de haut fourneau et le liant hydraulique peut également comprendre des additions minérales.
Le laitier de hauts fourneaux est défini notamment dans la partie 3.7 et 3.6 de la norme NF EN 15167-1. Les laitiers de haut-fourneaux sont des matériaux majoritairement vitreux et sont des sous-produits de fabrication de la fonte. Les laitiers de haut-fourneaux entrant dans les compositions de liant hydraulique sont broyés finement de préférence jusqu’à un diamètre maximal de 100 à 150pm, le diamètre étant mesuré par toute méthode connue de l’homme du métier, par exemple par granulométrie laser. Les laitiers de hauts fourneaux nécessitent généralement une activation calcique ou sulfo-calcique ou à l’aide d’une base forte. L'expression « additions minérales » désigne les matériaux pouzzolaniques (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.3), les cendres volantes (telles que définies dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.4), les schistes calcinés (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.5), les calcaires (tels que définis dans la norme Ciment NF EN 197- 1 (2012) paragraphe 5.2.6) ou encore les fumées de silices (telles que définies dans la norme Ciment NF EN 197-1(2012) paragraphe 5.2.7) ou leurs mélanges. D’autres ajouts, non actuellement reconnus par la norme Ciment NF EN 197-1 (2012), peuvent aussi être utilisés. Il s’agit notamment des métakaolins, tels que les métakaolins de type A conformes à la norme NF P 18-513 (août 2012) ou des argiles calcinées, des additions siliceuses, telles que les additions siliceuses de minéralogie Qz conformes à la norme NF P 18-509 (septembre 2012), des alumino-silicates notamment de type géopolymères inorganiques. Les proportions d’ajouts et leur nature peuvent également être conformes à la norme prEN 197-5, qui définit les ciments CEM ll/C-M comprenant entre 50 et 64% de clinker et de 36 à 50% de laitier de haut fourneau et les ciments CEM VI comprenant de 35 à 49% de clinker, de 31 à 59% de laitier de haut fourneau et de 6 à 20% d’additions minérales telles que définies ci-dessus.
La composition de liant hydraulique (CLH) de l’invention, comprend au moins un activateur alcalin ou sulfate des composés alumino-siliceux, notamment des laitiers de hauts-fourneaux. Ces activateurs sont connus et notamment décrits dans Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers. Revista Ingeniena de ConstrucciônRICVol 32 Ne22017. De préférence l’activateur est un activateur calcique ou sulfate, de préférence sulfo-calcique, ou un sel alcalin, de préférence carbonate, hydroxyde, silicate, de sodium ou de potassium, ou leurs mélanges ou un activateur sulfate de calcium. Cet activateur est utilisé de préférence dans des proportions de 0,1 à 20% en poids sec par rapport au poids de liant hydraulique, de préférence de 1% à 20% en poids sec par rapport au poids de liant hydraulique.
Ainsi, la composition de liant hydraulique peut également comprendre du sulfate de calcium, notamment dans une proportion de 5 à 20% en poids. De telles compositions de liant hydrauliques sont également appelées ciment sur-sulfaté (CSS) et sont notamment tels que définis dans la norme NF EN 15743+A1 .
De préférence, le liant hydraulique comprend, de préférence, consiste en un laitier de haut-fourneaux, un activateur et de 0 à 10% en poids de clinker. De préférence, le liant hydraulique consiste en un laitier de haut-fourneaux et un activateur tel que décrit ci-dessus.
De préférence, les sels d’acide nitrique sont des sels de métaux alcalins ou alcalino-terreux. De préférence les sels d’acide nitrique sont des sels de calcium ou de sodium, de préférence sels de calcium.
Il est connu d’ajouter du nitrate de calcium dans les compositions de ciment Portland pour accélérer la prise de la composition hydraulique. Les inventeurs ont découvert de façon surprenante que l’ajout d’acide nitrique ou sels dans des systèmes à base de laitiers de hauts fourneaux et faible en clinker (notamment moins de 10% en poids de clinker) permettait de les fluidifier.
La quantité d’acide nitrique ou l’un de ses sels dans la composition de liant hydraulique (CLH) est comprise entre 0,1 et 5% en poids sec, de préférence entre 1 ,0 et 2,5% en poids sec, par rapport au poids total de liant hydraulique.
De préférence, la quantité d’acide nitrique ou l’un de ses sels dans la composition de liant hydraulique (CLH) est comprise entre 0,1 et 1 ,5% en poids sec, par rapport au poids total de liant hydraulique.
La composition de liant hydraulique peut également comprendre un polymère (P) comprenant des unités de formules (I) et (II) suivantes :
Figure imgf000007_0001
dans lesquelles :
- R1 et R2 représentent indépendamment un hydrogène ou un méthyle,
- R3 représente un hydrogène ou un groupe de formule -COO(M)i/m
- R4 représente un groupe de formule -(CH2)P-(OAIk)q-R5 dans lequel :
- p représente 1 ou 2,
- q représente un nombre entier de 3 à 300,
- le Alk de chaque unité OAlk du groupe -(OAIk)q- représente indépendamment un alkylène linéaire ou ramifié comprenant de 2 à 4 atomes de carbone,
- R5 représente -OH ou un alkoxyle linéaire ou ramifié comprenant de 1 à 4 atomes de carbone,
- R11 et R12 représentent indépendamment un hydrogène ou un méthyle, - R13 représente un hydrogène ou un groupe de formule -COO(M)i/m,
- M représente H ou un cation de valence m,
- lorsque M représente H, m représente 1 et lorsque M représente un cation, m est la valence du cation M,
- a est un nombre de 0,05 à 0,25, tel que (100 x a) représente le pourcentage molaire d’unités de formule (I) au sein du polymère, et
- b est un nombre de 0,75 à 0,95, tel que (100 x b) représente le pourcentage molaire d’unités de formule (II) au sein du polymère.
De préférence, la composition CLH comprend de 0,1 à 3,0 % en poids sec de polymère (P), de préférence de 0,3 à 1 ,0% en poids sec de polymère (P), par rapport au poids total de liant hydraulique.
Dans le cadre de la présente invention on entend par « poids total de liant hydraulique », le poids des composés alumino-siliceux, de l’activateur, du clinker s’il est présent, et des additions minérales si elles sont présentes.
Les modes de réalisations suivants pour les formules (I) et (II) des unités du polymère (P) peuvent être considérés indépendamment ou combinés entre eux :
- R1 représente H,
- R3 représente H,
- R1 et R3 représentent H,
- R2 représente un méthyle,
- p représente 1 ,
- Alk représente -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, -CH2-CHMe-, - CHMe-CH2-,
- au moins 80 % des Alk du groupe -(OAIk)q- représentent -CH2-CH2-, voire tous les Alk du groupe -(OAIk)q- représentent -CH2-CH2-,
- q représente un nombre entier de 5 à 200, notamment de 10 à 100, de préférence de 25 à 75,
- R5 représente -OH ou -OMe, de préférence R5 représente -OH,
- la somme de a et de b vaut 1 ,
- R11 représente H,
- R13 représente H,
- R11 et R13 représentent H,
- R12 représente H, et/ou - M représente H ou un cation monovalent ou bivalent, m représentant alors 1 ou 2, le cation monovalent étant de préférence choisi parmi un sel d’ammonium NH4 +, un cation ammonium primaire, secondaire, tertiaire ou quaternaire et un cation d’un métal alcalin, tels qu’un ion sodium, lithium ou potassium, et le cation bivalent étant de préférence un cation d’un métal alcalinoterreux, tel qu’un ion magnésium ou calcium,
- a est un nombre de 0,05 à 0,20, de préférence a représente un nombre entre 0,10 et 0,20,
- b est un nombre de 0,80 à 0,95, de préférence b représente un nombre entre 0,80 et 0,90.
De préférence, les unités de formule (I) du polymère (P) ont la formule (I’) suivante :
Figure imgf000009_0001
dans laquelle :
- R2 représente indépendamment un hydrogène ou un méthyle, de préférence un méthyle,
- R’4 représente un groupe de formule -CH2-(O-CH2-CH2)q-R5 dans lequel :
- q représente un nombre entier de 3 à 500,
- R5 représente -OH ou -OMe, de préférence -OH,
- a est un nombre de 0,05 à 0,25, tel que (100 x a) représente le pourcentage molaire d’unités de formule (I’) au sein du polymère (P).
De préférence, les unités de formule (II) du polymère (P) ont la formule (II’) suivante :
Figure imgf000009_0002
dans laquelle :
- R12 représente un hydrogène ou un méthyle, de préférence un hydrogène,
- M représente H ou un cation de valence m,
- lorsque M représente H, m représente 1 et lorsque M représente un cation, m est la valence du cation M, - b est un nombre de 0,75 à 0,95, tel que (100 x b) représente le pourcentage molaire d’unités de formule (II’) au sein du polymère.
De préférence, le polymère (P) comprend des unités de formules (I’) et (II’).
Les modes de réalisations suivants pour les formules (I’) et (II’) du polymère (P) peuvent être considérés indépendamment ou combinés entre eux :
- q représente un nombre entier de 5 à 200, notamment de 10 à 100, de préférence de 25 à 75,
- R5 représente -OH ou -OMe, de préférence R5 représente -OH,
- a est un nombre de 0,05 à 0,20, de préférence a représente un nombre entre 0,10 et 0,20,
- b est un nombre de 0,80 à 0,95, de préférence b représente un nombre entre 0,80 et 0,90,
- la somme de a et de b vaut 1 (ce qui implique que le polymère est constitué des unités de formules (I) et (II)), et/ou
- M représente H ou un cation monovalent ou bivalent, m représentant alors 1 ou 2, le cation monovalent étant de préférence choisi parmi un sel d’ammonium NH4+, un cation ammonium primaire, secondaire, tertiaire ou quaternaire et un cation d’un métal alcalin, tes qu’un ion sodium, lithium ou potassium, et le cation bivalent étant de préférence un cation d’un métal alcalinoterreux, tel qu’un ion magnésium ou calcium.
Le polymère (P) peut comprendre une ou plusieurs unité(s) supplémentaire(s) en plus de celles de formule (I) et (II). De préférence, le polymère (P) est exempt d’unité de formule (III) suivante :
Figure imgf000010_0001
dans laquelle M représente H ou un cation, tel que le sodium. De manière particulièrement préférée, le polymère (P) est exempt de groupes acide sulfonique et sulfonate.
De préférence, le polymère (P) est constitué des unités de formules (I) et (II). Il ne comprend pas d’unité supplémentaire en plus de celles de formule (I) et (II). La somme de a et de b vaut alors 1 .
La masse molaire moyenne en poids du polymère est généralement de 10 000 à 200 000 g/mol, notamment de 10 000 à 100 000 g/mol.
Généralement, le polymère (P) est obtenu par polymérisation radicalaire libre. Le polymère (P) est donc un polymère peigne dont les groupes pendants sont liés à la chaine principale carbonée par des groupes éther.
La composition de liant hydraulique (CLH) peut également comprendre des polymères à base de polyphosphonate polyalkoxylés, de préférence dans une proportion comprise entre 0,1 et 3,0% en poids sec par rapport au poids total de liant hydraulique comprenant éventuellement des additions minérales, de préférence de 0,3 à 1 ,0% en poids sec, notamment décrits dans le brevet EP0663892 (par exemple CHRYSOOFluid Optima 100).
Dans le cadre de la présente invention le phosphonate polyalcoxylé est de préférence un polymère phosphonate polyalcoxylé de formule (V) ou un de ses sels, seul ou en mélange :
Figure imgf000011_0001
dans laquelle :
R5 est un atome d'hydrogène ou un groupe hydrocarboné monovalent comportant de 1 à 18 atomes de carbone et éventuellement un ou plusieurs hétéroatomes ; les Ri sont semblables ou différents entre eux et représentent un alkylène comme l'éthylène, le propylène, le butylène, l'amylène, l'octylène ou le cyclohexène, ou un arylène comme le styrène ou le méthylstyrène, les Ri renferment éventuellement un ou plusieurs hétéroatomes ;
Q est un groupe hydrocarboné comportant de 2 à 18 atomes de carbone et éventuellement un ou plusieurs hétéroatomes ;
A est un groupe alkylidène comportant de 1 à 5 atomes de carbone ; les Rj sont semblables ou différents entre eux et peuvent être choisis parmi:
- le groupe A-PO3H2, A ayant la signification précitée,
- le groupe alkyle comportant de 1 à 18 atomes de carbone et pouvant porter des groupements [R5-O(Ri-O)m], R5 et Ri ayant les significations précitées,
"m" est un nombre supérieur ou égal à 0,
"r" est le nombre des groupes [R5-O(Ri-O)m] portés par l'ensemble des Rj, "q" est le nombre des groupes [R5-O(RiO)m] portés par Q, la somme "r+q" est comprise entre 1 et 10,
"y" est un nombre entier compris entre 1 et 3, Q, N et les Rj peuvent former ensemble un ou plusieurs cycles, ce ou ces cycles pouvant en outre contenir un ou plusieurs autres hétéroatomes.
De façon particulièrement préférée le phosphonate polyalcoxylé est constitué d’un composé organique hydrosoluble ou hydrodispersible comportant au moins un groupement amino-di-(alkylène-phosphonique) et au moins une chaîne polyoxyalkylée ou au moins un de ses sels.
De préférence, le phosphonate polyalcoxylé est un composé de formule (V) dans laquelle :
R5 est un atome d’hydrogène ou un groupe hydrocarboné monovalent, saturé ou non, comportant de 1 à 8 atomes de carbone et éventuellement un ou plusieurs hétéroatomes ; les Ri représentent l’éthylène ou le propylène ou un mélange d’éthylène ou de propylène, de préférence 60 à 100% des Ri sont des groupes éthylène ;
Q est un groupe hydrocarboné comportant de 2 à 8 atomes de carbone et, éventuellement, un ou plusieurs hétéroatomes ;
A est le groupe méthylène ; chacun des Rj représente le groupe CH2-PO3H2 ; m est un nombre entier compris entre 10 et 250 ; q est un nombre entier égal à 1 ou 2 ; y est un nombre entier égal à 1 ou 2.
En particulier, le phosphonate polyalcoxylé peut être un phosphonate polyalcoxylé de formule (V) dans laquelle R5 est un groupe méthyle, les Ri sont des groupements éthylène et propylène, m étant compris entre 30 et 50, r+q vaut 1 , Q est un groupe éthylène, A est un groupe méthylène, y vaut 1 et Rj correspond au groupe CH2-PO3H2.
De préférence la composition de liant hydraulique (CLH) selon l’invention comprend de 0 à 3,0 % en poids sec de polymère (P), de préférence de 0 à 1% en poids sec de polymère (P), par rapport au poids total de liant hydraulique.
La présente demande concerne également l’utilisation d’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, tel que défini ci-dessus, pour la préparation d’une composition de liant hydraulique telle que définie ci-dessus ou pour la préparation d’une composition hydraulique telle que définie ci-dessus par ajout de l’acide nitrique ou l’un de ses sels à une composition de liant hydraulique comprenant un liant hydraulique tel que défini ci-dessus ou à une composition comprenant un liant hydraulique tel que défini ci-dessus, de l’eau et éventuellement au moins un granulat. L’utilisation selon l’invention permet d’améliorer le maintien de fluidité des compositions hydrauliques comparativement à la même composition hydraulique ne comprenant pas l’acide nitrique ou l’un de ses sels.
La présente invention concerne également l’utilisation de la composition de liant hydraulique (CLH) définie ci-dessus pour la préparation d’une composition hydraulique (CH).
L’invention concerne également une composition hydraulique (CH) comprenant (voire étant constituée de) la composition de liant hydraulique (CLH) définie ci-dessus, de l’eau, éventuellement au moins un granulat.
La présente invention concerne une composition hydraulique (CH) comprenant :
- un liant hydraulique comprenant au moins un composé alumino-siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence entre 0 et 10% en poids de clinker, et éventuellement des additions minérales tel que décrites ci- dessus; de l’eau ;
- éventuellement au moins un granulat ; de l’acide nitrique ou l’un de ses sels à l’exception du nitrate de zinc.
Le composé alumino-siliceux, l’activateur et les additions minérales étant tel que défini ci-dessus.
La composition hydraulique peut en outre comprendre un polymère (P) tel que défini ci-dessus.
Le liant hydraulique, l’acide nitrique et ses sels, l’activateur, les additions minérales, ainsi que le polymère (P) sont tels que définis ci-dessus.
La composition hydraulique peut en outre comprendre un polymère à base de polyphosphonate polyalkoxylés, de préférence dans une proportion comprise entre 0,1 et 3,0% en poids sec par rapport au poids de liant hydraulique, de préférence de 0,3 à 1 ,0% en poids sec. Ce polymère est tel que décrit ci-dessus.
La quantité d’acide nitrique ou l’un de ses sels dans la composition hydraulique est comprise entre 0,1 et 5% en poids sec, de préférence entre 1 ,0 et 2,5% en poids sec, par rapport au poids total de liant hydraulique. De préférence, la quantité d’acide nitrique ou l’un de ses sels dans la composition hydraulique est comprise entre 0,1 et 1 ,5% en poids sec, par rapport au poids total de liant hydraulique.
De préférence, la composition hydraulique comprend de 0 à 3,0 % en poids sec de polymère (P), de préférence de 0 à 1 ,0% en poids sec de polymère (P), par rapport au poids total de liant hydraulique.
La composition hydraulique est de préférence une composition de béton, mortier ou chape.
Par « granulats », on entend un ensemble de grains minéraux de diamètre moyen compris entre 0 et 125 mm. Selon leur diamètre, les granulats sont classés dans l’une des six familles suivantes : fillers, sablons, sables, graves, gravillons et ballast (norme XP P 18-545). Les granulats les plus utilisés sont les suivants :
- les fillers, qui ont un diamètre inférieur à 2 mm et pour lesquels au moins 85 % des granulats ont un diamètre inférieur à 1 ,25 mm et au moins 70 % des granulats ont un diamètre inférieur à 0,063 mm, les sables de diamètre compris entre 0 et 4 mm (dans la norme 13-242, le diamètre pouvant aller jusqu'à 6 mm),
- les graves de diamètre supérieur à 6,3 mm, les gravillons de diamètre compris entre 2 mm et 63 mm.
Les sables sont donc compris dans la définition de granulat selon l’invention.
Les fillers peuvent notamment être d’origine calcaire ou dolomitique.
D’autres additifs encore peuvent être ajoutés à la composition hydraulique (CH) selon l’invention, tels que des additifs anti-entraînement d’air, des agents antimousse, un accélérateur ou retardateur de prise, un agent modificateur de rhéologie, un autre fluidifiant (plastifiant ou superplastifiant).
La présente demande concerne également un procédé de préparation d’une composition hydraulique selon l’invention dans laquelle de l’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, l’éventuel polymère (P) et l’éventuel polymère à base de polyphosphonate polyalkoxylé, sont ajoutés au liant hydraulique.
La présente demande concerne également un procédé de préparation d’une composition hydraulique selon l’invention dans laquelle l’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, l’éventuel polymère (P) et l’éventuel polymère à base de polyphosphonate polyalkoxylé, est ajouté avec l’eau, par exemple à l’eau de gâchage.
Les compositions hydrauliques sont préparées de façon classique par mélange des constituants susmentionnés. Le polymère (P) selon l’invention, et le cas échéant le polymère à base de polyphosphonate polyalkoxylé, peut être ajouté aux composants de la composition hydraulique à sec (généralement en poudre) ou en solution, de préférence en solution aqueuse. L’eau de ladite solution aqueuse peut être l’eau de gâchage ou l’eau de prémouillage (partie de l’eau totale qui sert à humidifier les granulats avant le gâchage permettant de simuler l’état hygrométrique des granulats, souvent humides, dans une usine à béton ou sur le chantier.
La présente invention concerne également l’utilisation d’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, pour la préparation d’une composition hydraulique comprenant un liant hydraulique comprenant au moins un composé alumino- siliceux, de préférence laitiers de haut fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence entre 0 et 10,0% en poids de clinker, et éventuellement des additions minérales tel que décrit ci-dessus, de l’eau, éventuellement au moins un granulat.
Le liant hydraulique, l’acide nitrique et ses sels, l’activateur, les additions minérales, sont tels que définis ci-dessus.
La présente invention concerne également l’utilisation l’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, pour améliorer la fluidité, notamment le maintien d’ouvrabilité, d’une composition hydraulique comprenant comprenant au moins un composé alumino-siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence entre 0 et 10,0% en poids de clinker, et éventuellement des additions minérales tel que décrit ci- dessus, de l’eau, éventuellement au moins un granulat.
Le liant hydraulique, l’acide nitrique et ses sels, l’activateur, les additions minérales, sont tels que définis ci-dessus.
La quantité d’acide nitrique ou de ses sels ajoutée dans la composition hydraulique est comprise entre 0,1 et 5% en poids sec, de préférence entre 0,5 et 1 ,5% en poids sec, par rapport au poids total de liant hydraulique. De préférence, la quantité de polymère (P) ajouté le cas échéant dans la composition hydraulique est compris entre 0,1 et 3,0 % en poids sec de polymère (P), de préférence de 0,3 à 1 ,0% en poids sec de polymère (P), par rapport au poids total de liant hydraulique.
De façon avantageuse, l’utilisation selon l’invention permet l’amélioration du maintien de fluidité (également appelé maintien d’ouvrabilité) dans le temps de la composition hydraulique par rapport à la même composition hydraulique ne comprenant pas l’acide nitrique ou ses sels. Cette amélioration du maintien de fluidité est telle que décrite ci-dessus et permet d’obtenir des résistances mécaniques à 24h du même ordre de grandeur qu’un témoin n’utilisant pas la solution.
De façon avantageuse, un polymère à base de polyphosphonate polyalkoxylé tel que décrit ci-dessus, peut également être ajouté notamment dans les proportions mentionnées ci-dessus.
La présente invention concerne également un procédé d’amélioration du maintien de fluidité (également appelé maintien d’ouvrabilité) dans le temps d’une composition hydraulique comprenant un liant hydraulique comprenant comprenant au moins un composé alumino-siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence entre 0 et 10% en poids de clinker, et éventuellement des additions minérales tel que décrit ci- dessus, de l’eau, éventuellement au moins un granulat, comprenant l’ajout d’acide nitrique ou un de ses sels, à l’exception du nitrate de zinc tels que définis ci-dessus.
Cette amélioration du maintien de fluidité est telle que décrite ci-dessus.
Le liant hydraulique est tel que défini ci-dessus.
De préférence, le procédé selon l’invention comprend l’ajout de 0,1 à 5% en poids sec, de préférence de 1 ,0% à 2,5% en poids sec, par rapport au poids total de liant hydraulique, d’acide nitrique ou un de ses sels. De préférence, le procédé selon l’invention comprend l’ajout de 0,1 à 1 ,5% en poids sec, par rapport au poids total de liant hydraulique, d’acide nitrique ou un de ses sels. Le procédé de l’invention peut également comprendre l’ajout d’un polymère (P) tel que défini ci-dessus.
De préférence, le procédé selon l’invention le cas échéant comprend l’ajout de 0,1% à 3,0 % en poids sec de polymère (P), de préférence de 0,3 à 1 ,0% en poids sec de polymère (P), par rapport au poids de liant hydraulique.
L’acide nitrique et ses sels, et le polymère (P) sont tels que décrits ci-dessus. L’activateur et les additions minérales sont tels que décrits ci-dessus.
Le procédé de l’invention peut en outre comprendre l’ajout de polymères à base de polyphosphonate polyalkoxylés, de préférence dans une proportion comprise entre 0,1 et 3,0% en poids par rapport au poids de liant hydraulique, de préférence de 0,3 à 1 ,0% en poids. Ces polymères sont tels que décrits ci-dessus.
L’acide nitrique ou ses sels peuvent être ajoutés au liant hydraulique, et éventuellement le polymère (P) et l’éventuel polymère à base de polyphosphonate polyalkoxylés est ajouté dans l’eau, appelée eau de gâchage. Le polymère (P) selon l’invention, et le cas échéant le polymère à base de polyphosphonate polyalkoxylé, peut être ajouté aux composants de la composition hydraulique à sec (généralement en poudre) ou en solution, de préférence en solution aqueuse. L’eau de ladite solution aqueuse peut être l’eau de gâchage ou l’eau de prémouillage (partie de l’eau totale qui sert à humidifier les granulats avant le gâchage permettant de simuler l’état hygrométrique des granulats, souvent humides, dans une usine à béton ou sur le chantier.
L’acide nitrique ou ses sels ainsi que le cas échéant le polymère (P) et l’éventuel polymère à base de polyphosphonate polyalkoxylés peuvent être ajoutés au liant hydraulique.
La présente invention va maintenant être décrite à l’aide des exemples ci-dessous.
Essais de suivi de thixotropie et de fluidité sur mortier
La composition de tous les mortiers est la suivante, seule change la composition du liant en fonction du cas : [Tableau 1]
Figure imgf000017_0001
Figure imgf000018_0001
Le mortier est conservé dans un malaxeur de type Perrier tournant de manière permanente à 43 tours/min. Les mesures d’affaissement au cône de 700 cm3 sont effectuées à 5 min et 25 min après début du malaxage : pour ce faire, le malaxeur est arrêté le temps de remplir le cône, puis il est remis en route.
Après 25 min de malaxage et la mesure d’affaissement, une quantité de mortier est placée dans plusieurs sections de tuyau en PVC de diamètre 44 mm et de hauteur 99 mm. Le mortier est arasé puis un couvercle surmonté d’une masse est ajouté pour éviter toute évaporation et fuite de mortier par le bas du tuyau.
A intervalles de temps précis après la mise en place, un tuyau est soulevé et l’étalement du mortier en résultant est mesuré. Il arrive un moment où le mortier ne s’écoule plus et on obtient un cylindre reproduisant la forme du tuyau. Ce moment est noté et les résultats sont alors exprimés en durée avant l’obtention de cet état.
Exemple 1 - mortiers de laitier de haut fourneau activé
La composition du liant est donnée dans le tableau suivant :
[Tableau 2]
Figure imgf000018_0002
Les résultats obtenus sont les suivants :
[Tableau 3]
Figure imgf000018_0003
On remarque bien que la version adjuvantée présente des étalements supérieurs à 5 et 25 min, un temps de fluidité avant la consolidation thixotrope plus long de 15 min, tout en préservant l’essentiel des résistances mécaniques, qui diminuent de 2 à 4 MPa selon la température.
Exemple 2 - mortiers de ciment sur-sulfaté La composition du liant est ici la suivante :
[Tableau 4]
Figure imgf000019_0001
Les résultats obtenus sont les suivants :
[Tableau 5]
Figure imgf000019_0002
l’invention. Le temps avant rigidification thixotrope est aussi nettement augmenté de 35 à 65 min. Le tout est obtenu avec un effet très faible sur les résistances mécaniques aux deux températures. Exemple 3 - mortiers de ciment de type CEM lll/C activé par un composé alcalin
Le liant est composé de la manière suivante :
[Tableau 6]
Figure imgf000019_0003
Les performances obtenues sont les suivantes : [Tableau 7]
Figure imgf000019_0004
Figure imgf000020_0001
La fluidité est légèrement améliorée par l’invention avec des étalements légèrement supérieurs au témoin et un temps avant rigidification thixotrope un peu plus long de 15 min. Les résistances sont diminuées de 5 à 7 MPa, mais restent dans une gamme acceptable.

Claims

REVENDICATIONS
1. Composition de liant hydraulique comprenant :
- un liant hydraulique comprenant au moins un composé alumino-siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence de 0 à 10% en poids de clinker ;
- de l’acide nitrique ou l’un de ses sels, le sel d’acide nitrique n’étant pas un nitrate de zinc, la quantité d’acide nitrique ou un de ses sels étant comprise entre 0,1 et 1 ,5% en poids sec, par rapport au poids total de liant hydraulique.
2. Composition hydraulique (CH) comprenant :
- un liant hydraulique comprenant au moins un composé alumino-siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence entre 0 et 10% en poids de clinker, et éventuellement des additions minérales ;
- de l’eau ;
- éventuellement au moins un granulat ;
- de l’acide nitrique ou l’un de ses sels, le sel d’acide nitrique n’étant pas un nitrate de zinc, la quantité d’acide nitrique ou un de ses sels étant comprise entre 0,1 et 1 ,5% en poids sec, par rapport au poids total de liant hydraulique.
3. Utilisation d’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, pour améliorer la fluidité, notamment le maintien d’ouvrabilité, d’une composition hydraulique comprenant un liant hydraulique comprenant au moins un composé alumino- siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate et un maximum de 10% en poids de clinker, de préférence entre 0 et 10,0% en poids de clinker, et éventuellement des additions minérales, de l’eau, éventuellement au moins un granulat, la quantité d’acide nitrique ou un de ses sels étant comprise entre 0,1 et 1 ,5% en poids sec, par rapport au poids total de liant hydraulique.
4. Procédé d’amélioration du maintien de fluidité dans le temps d’une composition hydraulique comprenant un liant hydraulique comprenant au moins un composé alumino-siliceux, de préférence laitier de hauts-fourneaux, et un activateur alcalin ou sulfate, et un maximum de 10% en poids de clinker, de préférence entre 0 et 10% en poids de clinker, de l’eau, éventuellement au moins un granulat, comprenant l’ajout à ladite composition hydraulique d’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, la quantité d’acide nitrique ou un de ses sels étant comprise entre 0,1 et 1 ,5% en poids sec, par rapport au poids total de liant hydraulique.
5. Composition de liant hydraulique selon la revendication 1 , composition hydraulique selon la revendication 2, utilisation selon la revendication 3 ou procédé selon la revendication 4, dans lequel le sel d’acide nitrique est choisi parmi les sels de métaux alcalins ou alcalino-terreux, de préférence les sels d’acide nitrique sont des sels de calcium ou de sodium, de préférence sels de calcium.
6. Composition de liant hydraulique selon la revendication 1 et 5, composition hydraulique selon la revendication 2 et 5, utilisation selon la revendication 3 et 5, ou procédé selon la revendication 4 et 5, dans lequel l’activateur est choisi parmi un activateur calcique ou sulfo-calcique ou un sel alcalin, de préférence carbonate, hydroxyde, silicate de sodium, ou de potassium, sulfate de calcium.
7. Composition de liant hydraulique selon la revendication 1 , 5 et 6, composition hydraulique selon la revendication 2, 5 et 6, utilisation selon la revendication 3, 5 et 6, ou procédé selon la revendication 4, 5 et 6, dans lequel le composé alumino- siliceux est choisi parmi les laitiers de hauts-fourneaux, des matériaux pouzzolaniques (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.3), les cendres volantes (telles que définies dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.4), les schistes calcinés (tels que définis dans la norme Ciment NF EN 197-1 (2012) paragraphe 5.2.5), des métakaolins, tels que les métakaolins de type A conformes à la norme NF P 18-513 (août 2012) ou des argiles calcinées, des aluminosilicates notamment de type géopolymères inorganiques, des alumino-silicates contenant des oxydes de fer tels les résidus de bauxite, des norites ou des aplites provenant d’excavations.
8. Composition de liant hydraulique selon la revendication 1 , 5, 6 et 7, composition hydraulique selon la revendication 2, 5, 6 et 7, utilisation selon la revendication 3, 5, 6 et 7, ou procédé selon la revendication 4, 5, 6 et 7, dans lequel le composé alumino-siliceux est du laitier de hauts-fourneaux.
9. Composition de liant hydraulique selon la revendication 1 , 5, 6 à 8, composition hydraulique selon la revendication 2, 5, 6 à 8, ou procédé selon la revendication 4, 5, 6 à 8, dans lequel la composition de liant hydraulique ou la composition hydraulique comprend en outre :
- un polymère (P) comprenant des unités de formules (I) et (II) suivantes :
Figure imgf000023_0001
dans lesquelles :
R1 et R2 représentent indépendamment un hydrogène ou un méthyle,
R3 représente un hydrogène ou un groupe de formule -COO(M)i/m
R4 représente un groupe de formule -(CH2)P-(OAIk)q-R5 dans lequel : p représente 1 ou 2, q représente un nombre entier de 3 à 300, le Alk de chaque unité OAlk du groupe -(OAIk)q- représente indépendamment un alkylène linéaire ou ramifié comprenant de 2 à 4 atomes de carbone,
R5 représente -OH ou un alkoxyle linéaire ou ramifié comprenant de 1 à 4 atomes de carbone,
R11 et R12 représentent indépendamment un hydrogène ou un méthyle,
R13 représente un hydrogène ou un groupe de formule -COO(M)i/m,
M représente H ou un cation de valence m, lorsque M représente H, m représente 1 et lorsque M représente un cation, m est la valence du cation M, a est un nombre de 0,05 à 0,25, tel que (100 x a) représente le pourcentage molaire d’unités de formule (I) au sein du polymère, et b est un nombre de 0,75 à 0,95, tel que (100 x b) représente le pourcentage molaire d’unités de formule (II) au sein du polymère ; et/ou
- des polymères à base de polyphosphonate polyalkoxylés ; et/ou
- des additifs anti-entraînement d’air, des agents antimousse, un accélérateur ou retardateur de prise, un agent modificateur de rhéologie, un fluidifiant.
10. Procédé de préparation d’une composition hydraulique selon l’une des revendications 4 à 9, dans lequel l’acide nitrique ou l’un de ses sels, à l’exception du nitrate de zinc, est ajouté au liant hydraulique.
PCT/EP2023/056109 2022-03-10 2023-03-10 Composition de liant hydraulique de laitiers de hauts fourneaux WO2023170251A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2202087A FR3133393A1 (fr) 2022-03-10 2022-03-10 Composition de liant hydraulique de laitiers de hauts fourneaux
FRFR2202087 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023170251A1 true WO2023170251A1 (fr) 2023-09-14

Family

ID=81580661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/056109 WO2023170251A1 (fr) 2022-03-10 2023-03-10 Composition de liant hydraulique de laitiers de hauts fourneaux

Country Status (2)

Country Link
FR (1) FR3133393A1 (fr)
WO (1) WO2023170251A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0663892A1 (fr) 1992-10-12 1995-07-26 Chryso Sa Fluidifiants pour suspensions aqueuses de particules minerales et pates de liant hydraulique.
US5732363A (en) * 1994-10-27 1998-03-24 Jgc Corporation Solidifying material for radioactive wastes, process for solidifying radioactive wastes and solidified product
FR2883281A1 (fr) * 2005-03-21 2006-09-22 Douglas C Comrie Materiaux cimentaires comprenant un laitier d'acier inoxydable et un geopolymere
WO2010103253A1 (fr) * 2009-03-12 2010-09-16 Chryso Système d'adjuvants pour béton préfabriqué
WO2019116124A1 (fr) * 2017-12-15 2019-06-20 The Catholic University Of America Contrôle du temps de prise de compositions de géopolymères contenant des matériaux aluminosilicates réactifs à haute teneur en ca

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0663892A1 (fr) 1992-10-12 1995-07-26 Chryso Sa Fluidifiants pour suspensions aqueuses de particules minerales et pates de liant hydraulique.
US5732363A (en) * 1994-10-27 1998-03-24 Jgc Corporation Solidifying material for radioactive wastes, process for solidifying radioactive wastes and solidified product
FR2883281A1 (fr) * 2005-03-21 2006-09-22 Douglas C Comrie Materiaux cimentaires comprenant un laitier d'acier inoxydable et un geopolymere
WO2010103253A1 (fr) * 2009-03-12 2010-09-16 Chryso Système d'adjuvants pour béton préfabriqué
WO2019116124A1 (fr) * 2017-12-15 2019-06-20 The Catholic University Of America Contrôle du temps de prise de compositions de géopolymères contenant des matériaux aluminosilicates réactifs à haute teneur en ca

Also Published As

Publication number Publication date
FR3133393A1 (fr) 2023-09-15

Similar Documents

Publication Publication Date Title
EP2467349B1 (fr) Ciment geopolymerique et son utilisation
FR3030497B1 (fr) Liant a base de compose mineral solide riche en oxyde alcalino-terreux avec activateurs phosphates
EP1296908B1 (fr) Liant rapide pour beton autocompactant, utilisation et applications d'un tel liant
WO2014180926A1 (fr) Composition de liant hydraulique comprenant des scories et des cendres
EP3966179A1 (fr) Composition de liant pour materiau de construction
JP2022502328A (ja) 高炉スラグ微粉末の活性化
US10087108B1 (en) Cementitious compositions and methods of making and using the same
WO2023170251A1 (fr) Composition de liant hydraulique de laitiers de hauts fourneaux
JP6639917B2 (ja) コンクリート、およびコンクリートの製造方法
JP2019142732A (ja) 水硬性組成物及びコンクリート
WO2022157386A1 (fr) Composition de liant hydraulique de laitiers de hauts fourneaux
JP5587007B2 (ja) 耐硫酸性セメント組成物、耐硫酸性モルタル組成物及び耐硫酸性コンクリート組成物
JPH1160310A (ja) 遠心力成形用セメント組成物およびこれを用いた遠心力成形体
JP6456693B2 (ja) 水中不分離性コンクリート組成物およびその硬化体、ならびに水中不分離性コンクリート組成物の製造方法
WO2022248442A1 (fr) Amélioration du maintien d'ouvrabilité de compositions hydrauliques à faible teneur en clinker
JP2001163655A (ja) 水硬性組成物
WO2021122924A1 (fr) Composés fluidifiants pour compositions hydrauliques
JPH0535100B2 (fr)
JPH1160312A (ja) 遠心力成形用セメント組成物の製造方法および遠心力成形体
JP2022140319A (ja) ジオポリマー硬化体の製造方法、ジオポリマー硬化体、ジオポリマー組成物の製造方法、及びジオポリマー組成物
WO2014177695A1 (fr) Système d'adjuvant comprenant un phosphonate polyalcoxylé, un polycarboxylate polyalcoxylé et un retardateur de prise et son utilisation
JP2023111238A (ja) 膨張抑制用セメント混和材、セメント組成物及びその製造方法、アルカリシリカ反応抑制剤、アルカリシリカ反応抑制方法、並びにアルカリシリカ反応抑制用結合材
FR3117484A1 (fr) Adjuvant pour fluidifier une composition cimentaire à teneur réduite en ciment
JP2007326762A (ja) セメント硬化体の製造方法
JP2001181008A (ja) コンクリート組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23709723

Country of ref document: EP

Kind code of ref document: A1