WO2023169871A1 - Hybridantriebssystem für ein kraftfahrzeug sowie kraftfahrzeug, insbesondere kraftwagen - Google Patents

Hybridantriebssystem für ein kraftfahrzeug sowie kraftfahrzeug, insbesondere kraftwagen Download PDF

Info

Publication number
WO2023169871A1
WO2023169871A1 PCT/EP2023/054958 EP2023054958W WO2023169871A1 WO 2023169871 A1 WO2023169871 A1 WO 2023169871A1 EP 2023054958 W EP2023054958 W EP 2023054958W WO 2023169871 A1 WO2023169871 A1 WO 2023169871A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
drive system
hybrid drive
planetary gear
rotor
Prior art date
Application number
PCT/EP2023/054958
Other languages
English (en)
French (fr)
Inventor
Tobias Schilder
Klaus Riedl
Jörg Müller
Rico Resch
Martin STÖCKER
Original Assignee
Mercedes-Benz Group AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes-Benz Group AG filed Critical Mercedes-Benz Group AG
Publication of WO2023169871A1 publication Critical patent/WO2023169871A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2094Transmissions using gears with orbital motion using positive clutches, e.g. dog clutches

Definitions

  • the invention relates to a hybrid drive system for a motor vehicle, in particular a motor vehicle, according to the preamble of patent claim 1.
  • the invention further relates to a motor vehicle with such a hybrid drive system.
  • a splitter gear which has two planetary gear sets and a countershaft arranged parallel to the planetary gear sets.
  • a hybrid transmission with a planetary design is known from DE 10 2018 000 183 A1.
  • the DE 10 2017 006 082 A1 and the generic DE 10 2015 223 026 A1 each disclose a hybrid drive device with an internal combustion engine and with an electric machine that has a rotor, a transmission being provided which comprises two partial transmissions, namely a first partial transmission two planetary gear sets and a second partial gearbox with at least two spur gear stages.
  • the object of the present invention is to create a hybrid drive system for a motor vehicle, as well as a motor vehicle with such a hybrid drive system, so that a particularly compact and at the same time high-performance drive can be realized.
  • a first aspect of the invention relates to a hybrid drive system for a motor vehicle, in particular for a motor vehicle, which is also referred to as a hybrid drive device or hybrid drive device or is designed as a hybrid drive device or hybrid drive device.
  • a hybrid drive system for a motor vehicle in particular for a motor vehicle, which is also referred to as a hybrid drive device or hybrid drive device or is designed as a hybrid drive device or hybrid drive device.
  • the motor vehicle which is designed in particular as a motor vehicle, in particular as a passenger car, has the hybrid drive system in its completely manufactured state and can be driven by means of the hybrid drive system.
  • the hybrid drive system has an internal combustion engine, also referred to as an internal combustion engine or internal combustion engine, which has a drive shaft.
  • the internal combustion engine is designed as a reciprocating piston engine, so that in particular the drive shaft is designed as a crankshaft.
  • the internal combustion engine can provide first drive torques for driving the motor vehicle via the drive shaft.
  • the first drive torques are first torques for driving the motor vehicle.
  • the hybrid drive system also includes an electric machine that has a rotor.
  • the electrical machine has a stator, by means of which the rotor can be driven and thereby rotated about a machine axis of rotation relative to the stator.
  • the electric machine can provide second drive torque for driving the motor vehicle via the rotor.
  • the second drive torques are second torques for driving the motor vehicle.
  • the motor vehicle in its fully manufactured state, has at least or exactly two vehicle axles, which are arranged one after the other in the longitudinal direction of the vehicle and thus one behind the other, also simply referred to as axles.
  • the respective axle has at least or exactly two vehicle wheels, also referred to as wheels, which are arranged on opposite sides in the transverse direction of the motor vehicle, also referred to as the vehicle.
  • the respective wheel is a ground contact element, via which the motor vehicle can be supported or supported downwards on a ground in the vertical direction of the vehicle. If the motor vehicle is driven along the ground and driven by the hybrid drive system, while the motor vehicle is supported on the ground in the vertical direction of the vehicle downwards via the ground contact elements, the ground contact elements roll, in particular directly, on the ground.
  • the hybrid drive system is, in particular, assigned to one of the axles, so that, for example, the wheels of the axle to which the hybrid drive system is assigned can be driven by means of the hybrid drive system.
  • the internal combustion engine via its drive shaft and the electric machine Their rotor can drive the same wheels of the axle to which the hybrid drive system is assigned.
  • the motor vehicle can be driven by driving the wheels.
  • the wheels that can be driven by means of the hybrid drive system i.e. by means of the internal combustion engine and by means of the electric machine, are also referred to as drivable or driven wheels or driven or drivable vehicle wheels.
  • the hybrid drive system includes an axle gear, which is assigned in particular to the axle.
  • the wheels can be driven by the internal combustion engine and by the electric machine via the axle drive.
  • the axle gear is a differential gear, also simply referred to as a differential, which in particular has the function well known from the general state of the art that a respective third torque can be distributed to the wheels via the axle gear, so that the wheels via the axle gear by means of the respective third torque can be driven.
  • the respective third torque results from the respective first drive torque and/or from the respective second drive torque.
  • the axle gear allows the wheels to rotate at different speeds, for example when the motor vehicle is cornering, so that, for example, the wheel on the outside of the curve can rotate at a higher speed than the wheel on the inside of the curve, in particular while the wheels are driven via the axle gear by means of the third torque or from the internal combustion engine and/or or can be driven or driven by the electric machine.
  • the axle gear has an axle gear input wheel, via which the axle gear can be driven, in particular in such a way that the respective third torque can be introduced into the axle gear via the axle gear input wheel or can be transferred to the axle gear.
  • the axle gear input gear is a first gear of the hybrid drive system, that is, it is also referred to as the first gear of the hybrid drive system.
  • the axle gear input gear can be designed as a ring gear.
  • the axle gear can be designed as a bevel gear differential or, for example, as a planetary gear differential.
  • the hybrid drive system also has a transmission, also referred to as a main transmission and in particular provided in addition to the axle transmission, which is a first partial transmission and a second partial transmission.
  • a transmission also referred to as a main transmission and in particular provided in addition to the axle transmission, which is a first partial transmission and a second partial transmission.
  • the axle transmission can be driven via the transmission by the internal combustion engine and by the electric machine, so that, for example, the transmission can provide the respective third torque, or the transmission can, for example, provide its respective fourth torque, from which, for example, the respective third torque results. It is conceivable that the respective fourth torque results from the respective first drive torque and/or from the respective second drive torque.
  • the first partial transmission has a first planetary gear set, which is also simply referred to as the first planetary gear set.
  • the first planetary gear set has a first sun gear, a first planet carrier, which is also referred to as the first web, and a first ring gear.
  • the first sun gear, the first planet carrier and the first ring gear are also referred to as planetary gear set elements of the first planetary gear set, therefore the first sun gear, the first planet carrier and the first ring gear are planetary gear set elements of the first planetary gear set.
  • a first of the planetary gear set elements is also referred to as the first element
  • a second of the planetary gear set elements is also referred to as the second element
  • the third planetary gear set element of the first planetary gear set is also referred to as the third element.
  • the first partial transmission also has a second planetary gear set, which is provided in particular in addition to the first planetary gear set, which is also referred to as a second planetary gear set.
  • the second planetary gear set has a second sun gear, a second planet carrier, which is also referred to as a second web, and a second ring gear.
  • the second sun gear, the second planet carrier and the second ring gear are also referred to as gear elements of the second planetary gear set, and therefore they are gear elements of the second planetary gear set.
  • a first of the gear elements of the second planetary gear set is also referred to as the fourth element
  • a second of the gear elements of the second planetary gear set is also referred to as the fifth element
  • the third gear element of the second planetary gear set is also referred to as the sixth element.
  • the elements include, unless otherwise stated, the six elements of the planetary gear sets mentioned above, namely the first element second element, the third element, the fourth element, the fifth element and the sixth element.
  • the hybrid drive system has a housing, it being conceivable that the first planetary gear set and/or the second planetary gear set are each arranged at least partially, in particular at least predominantly and thus at least more than half or completely, in the housing .
  • the respective planetary gear set element is not connected to the housing in a rotationally fixed manner, the respective planetary gear set element can be rotated about a first planetary gear set rotation axis relative to the housing, in particular by driving the first planetary gear set.
  • the respective gear element can be rotated relative to the housing, in particular by driving the second planetary gear set about a second planetary gear set rotation axis.
  • the planetary gear sets are arranged coaxially to one another, so that the planetary gear set rotation axes coincide.
  • the second element is permanently connected to the sixth element in a rotationally fixed manner.
  • the second partial transmission has a first spur gear stage and an output shaft, which is provided in particular in addition to the drive shaft.
  • the spur gear stage includes, for example, in particular precisely, two gears designed in particular as spur gears, namely a second gear and a third gear. In particular, it is conceivable that the gears of the spur gear stage mesh with one another, in particular directly and/or permanently.
  • gears that are permanently meshing with one another are not between a meshing position in which the gears mesh with one another, and can be moved relative to one another in a loose position, in which the gears do not mesh with one another, but rather the gears that are permanently meshing with one another are permanently, that is, always, in engagement with one another.
  • the first spur gear stage has a first output gear, which is, for example, the aforementioned second gear of the spur gear stage.
  • the first output gear is arranged coaxially with the output shaft.
  • the output gear is, in particular permanently, connected to the output shaft in a rotational manner.
  • the output gear meshes with a first input gear, which is, for example, the aforementioned third gear of the first spur gear stage.
  • the first input gear is rotatably connected or connectable to the third element.
  • the rotor of the electric machine is coupled or can be coupled to one of the elements in a torque-transmitting manner in such a way that the respective second drive torque, which is provided or can be provided by the electric machine via the rotor, is transmitted to the one torque-transmittingly coupled to the rotor or connectable element can be introduced into the transmission, and therefore the respective second drive torque provided or able to be provided by the electric machine via the rotor can be transferred from the rotor to the one element that is coupled or can be coupled to the rotor in a torque-transmitting manner and thus via the one that is torque-transmitting with the Rotor coupled or coupleable element can be introduced into the transmission, in particular in order to thereby initiate the transmission.
  • the hybrid drive system also includes an output gear, which is, for example, a fourth gear of the hybrid drive system.
  • the fourth gear is provided in addition to the first gear, in addition to the second gear and in addition to the third gear.
  • the output gear is permanently connected to the output shaft in a rotationally fixed manner.
  • the output gear is preferably arranged coaxially with the output gear.
  • the output gear constantly meshes with the axle drive input gear.
  • the output gear is designed as a bevel gear.
  • the feature that two components such as the first input gear and the first element are connected to one another in a rotationally fixed manner is to be understood to mean that the components connected to one another in a rotationally fixed manner are arranged coaxially to one another and are in particular when the components are driven , rotate together or simultaneously about a component rotation axis common to the components, such as the first planetary gear set rotation axis, with the same angular velocity, in particular relative to the housing.
  • the feature is that two components, such as the rotor and one element are coupled or connected to each other in a torque-transmitting manner, it is to be understood that the components are coupled or connected to one another in such a way that torques can be transmitted between components, whereby when the components are rotationally connected to one another, the components are also connected to one another in a torque-transmitting manner.
  • the feature that two components are permanently connected to one another in a torque-transmitting manner means that a switching element is not provided, which can be switched between a coupling state that connects the components to one another in a torque-transmitting manner and a decoupling state in which no torques can be transmitted between the components , but the components are always or always and therefore permanently torque-transmitting, that is, connected to one another in such a way that torque can be transmitted between the components.
  • a switching element is not provided, which can be switched between a coupling state that connects the components to one another in a torque-transmitting manner and a decoupling state in which no torques can be transmitted between the components , but the components are always or always and therefore permanently torque-transmitting, that is, connected to one another in such a way that torque can be transmitted between the components.
  • one of the components can be driven by the other component or vice versa.
  • the feature that two components such as the output gear and the output shaft are permanently connected to one another in a rotational manner means that a switching element is not provided, which can be switched between a coupling state that connects the components to one another in a rotational manner and a decoupling state in which the components are decoupled from one another and can be rotated relative to one another, in particular about the component rotation axis, so that, for example, no torques can be transmitted between the components, but rather the components are always or always, therefore permanently, connected or coupled to one another in a rotational manner.
  • a rotationally fixed connection between two, in particular rotatably mounted, elements means that these two elements are arranged coaxially to one another and are connected to one another in such a way that they rotate at the same angular speed.
  • the feature that two components such as the rotor of the electric machine and the one element can be coupled or connected to one another in a torque-transmitting, in particular non-rotatable, manner means that the components are assigned a switching element, also referred to as a switching element, which switches between a coupling state , in which the components are connected to one another in a torque-transmitting manner, in particular in a rotationally fixed manner, by means of the switching element, and can be switched to a decoupling state in which the components are decoupled from one another, so that the components can rotate relative to one another in particular about the component rotation axis and so in particular no torques can be transmitted between the components.
  • a switching element also referred to as a switching element
  • the one aforementioned element that is coupled or can be coupled to the rotor of the electric machine in a torque-transmitting manner is also referred to below as the first connecting element, so that reference can be made clearly to the first connecting element in the following if this should be necessary.
  • the hybrid drive system has a first switching element, which is designed to connect the drive shaft of the internal combustion engine to one of the elements in a rotationally fixed manner.
  • the drive shaft can be connected in a rotationally fixed manner to one of the elements by means of the first switching element.
  • the one element that can be connected in a rotationally fixed manner to the drive shaft of the connecting element, which is designed, for example, as a crankshaft, by means of the first switching element is also referred to below as the second connecting element in order to be able to clearly refer to the second connecting element in the following, should this be necessary.
  • the second connecting element can be the first connecting element, or preferably the second connecting element is a different element than the first connecting element.
  • the first switching element can be switched between a first coupling state and a first decoupling state.
  • the drive shaft and the second connecting element are connected to one another in a rotationally fixed manner by means of the first switching element, so that the drive shaft and the second connecting element move together or simultaneously, that is to say with the same angular velocity, in particular about one of the planetary gear set rotation axes and/or relative to the housing , rotate or can rotate, especially when, for example, the drive shaft drives the second connecting element.
  • the first switching element allows relative rotations between the drive shaft and the second connecting element, in particular about one of the planetary gear set rotation axes.
  • the first switching element is movable, in particular translationally and/or relative to the housing, between at least one first coupling position causing the first coupling state and at least one first decoupling position causing the first decoupling state.
  • a third switching element is provided in a manner known per se, which is designed to be the first element to be connected to the fifth element in a rotationally fixed manner.
  • the third switching element can be switched between a third coupling state and a third decoupling state.
  • the first element and the fifth element are connected to one another in a rotationally fixed manner by means of the third switching element, so that the first element and the fifth element, in particular relative to the housing and / or about the first and second planetary gear set rotation axis, simultaneously or together means rotating or being able to rotate at the same angular speed, especially when the first partial gear is driven.
  • the third switching element allows relative rotations between the first element and the fifth element, in particular about the first or second planetary gear set rotation axis, so that the first element and the fifth element can rotate relative to one another, in particular about the first or second planetary gear set rotation axis.
  • the third switching element can be moved, in particular translationally and/or relative to the housing, between at least one third coupling position causing the third coupling state and at least one third decoupling position causing the third decoupling state.
  • the hybrid drive system comprises a second switching element, which is designed to connect the first element to the fourth element in a rotationally fixed manner.
  • the first element can be connected in a rotationally fixed manner to the fourth element by means of the second switching element.
  • the second switching element can therefore be switched between a second coupling state and a second decoupling state.
  • the first element and the fourth element are connected to one another in a rotationally fixed manner by means of the second switching element, so that the first element and the fourth element move together or simultaneously, that is to say with the same angular velocity, in particular around the first planetary gear set rotation axis or around the second planetary gear set rotation axis and/or can rotate or rotate relative to the housing, in particular when the first partial transmission is driven.
  • the second switching element allows relative rotations between the first element and the fourth element, in particular about the first and/or second planetary gear set rotation axis, so that in the second decoupling state, the first element and the fourth element can rotate relative to one another, in particular about the first or second planetary gear set rotation axis.
  • the second is Switching element, in particular translationally and/or relative to the housing, is movable between at least one second coupling position causing the second coupling state and at least one second decoupling position causing the second decoupling state.
  • the second partial transmission has a second spur gear stage, which has, for example, a fifth gear and a sixth gear.
  • the fifth gear and the sixth gear mesh with one another, in particular permanently.
  • the fifth gear and the sixth gear are designed as spur gears.
  • the second spur gear stage has a second output gear, which is preferably the fifth gear.
  • the second output gear is, in particular permanently, connected to the output shaft in a rotationally fixed manner.
  • the second output gear meshes with a second input gear, which is preferably the sixth gear.
  • the second input gear is connected or connectable in a rotationally fixed manner to the fifth element.
  • the second gear can be permanently connected to the fifth element in a rotationally fixed manner.
  • the hybrid drive system furthermore according to the invention has a fifth switching element, which is designed to connect the second input gear to the fourth element in a rotationally fixed manner.
  • the fifth switching element can be switched between a fifth coupling state and a fifth decoupling state.
  • the second input gear and the fourth element are connected to one another in a rotationally fixed manner by means of the fifth switching element, so that the second input gear and the fourth element, in particular relative to the housing and / or about the second planetary gear set rotation axis, together or simultaneously, that is, with can rotate or rotate at the same angular speed, especially when the first partial gear is driven.
  • the fifth switching element allows relative rotations between the second input gear and the fourth element, in particular about the second planetary gear set rotation axis.
  • the fifth switching element can be moved, in particular relative to the housing and/or translationally, between at least one fifth coupling position causing the fifth coupling state and at least one fifth decoupling position bringing about the fifth decoupling state.
  • ordinal words referred to as ordinals such as “first”, “first”, “second”, “second”, etc., are not necessarily used to indicate or imply a number or quantity, but rather to clearly refer to concepts to be able to reference to which the ordinal number words are assigned or to which the ordinal number words refer.
  • the first switching element is designed to connect the drive shaft to the first element in a rotationally fixed manner.
  • the second connecting element is the first element. This means that particularly good drivability can be achieved.
  • a second embodiment is characterized in that the rotor of the electric machine is permanently torque-transmittingly coupled to the fourth element in such a way that the respective second drive torque provided or able to be provided by the electric machine via the rotor is transmitted to a fourth element, that is to say via the fourth Element can be introduced into the transmission. This allows the particularly good drivability and thus the particularly good drive to be demonstrated.
  • the first element is the first sun gear
  • the second element is the first planet carrier
  • the third element is the first ring gear.
  • the fourth element is the second sun gear
  • the fifth element is the second planet carrier
  • the sixth element is the third ring gear.
  • the hybrid drive system as a whole has precisely, that is exclusively two planetary gear sets, namely the first planetary gear set and the second planetary gear set.
  • the first input gear is permanently connected to the first element in a rotationally fixed manner.
  • the hybrid drive system comprises a fourth switching element, which is designed to rotate the second input gear to connect to the fifth element.
  • a particularly advantageous multi-speed system can be achieved in a particularly space-saving manner, so that particularly good drivability and thus a particularly good drive can be achieved.
  • the fourth switching element can be switched between a fourth coupling state and a fourth decoupling state.
  • the second input gear and the fifth element are connected to one another in a rotationally fixed manner by means of the fourth switching element, so that the input gear and the fifth element, in particular relative to the housing and/or about the second planetary gear set rotation axis, simultaneously or together, that is to say with the can rotate or rotate at the same angular speed, especially when the first partial gear is driven.
  • the fourth switching element allows relative rotations between the second input gear and the fifth element, in particular about the second planetary gear set rotation axis.
  • the fourth switching element can be moved, in particular relative to the housing and/or translationally, between at least one fourth coupling position causing the fourth coupling state and at least one fourth decoupling position causing the fourth decoupling state.
  • the internal combustion engine, the output gear, the first spur gear stage, the first partial gear and the second spur gear stage follow one another in the following order , that is, arranged one after the other: the internal combustion engine - the output gear - the first spur gear stage - the first sub-gearbox - the second spur gear stage.
  • the output gear is arranged following the internal combustion engine
  • the first spur gear stage is arranged following the output gear
  • the first sub-gear is arranged following the first spur gear
  • the second spur gear is arranged following the first sub-gear.
  • the hybrid drive system has a sixth switching element, which is designed to connect the first element to the housing of the hybrid drive system in a rotationally fixed manner.
  • the sixth switching element can therefore be switched between a sixth coupling state and a sixth decoupling state, for example.
  • the first element and the housing are rotationally fixed to one another by means of the sixth switching element connected, so that in particular, for example, rotations of the first element around the first planetary gear set rotation axis and relative to the housing do not occur when the first sub-gear is driven, that is, when torques are introduced into the first sub-gear.
  • the sixth switching element allows rotations of the first element about the first planetary gear set rotation axis and relative to the housing.
  • the first element in particular cannot rotate about the first planetary gear set rotation axis relative to the housing even when the first partial transmission is driven.
  • the first element can rotate about the first planetary gear set rotation axis relative to the housing, in particular when the first partial transmission is driven.
  • the sixth switching element is movable, in particular relative to the housing and/or translationally, between at least one sixth coupling position causing the sixth coupling state and at least one sixth decoupling position causing the sixth decoupling state.
  • axial and coaxial refer in particular to the planetary gear set rotation axes.
  • a drive shaft rotation axis of the drive shaft runs parallel to the planetary gear set rotation axis of the respective planetary gear set or, particularly advantageously, the drive shaft rotation axis coincides with the planetary gear set rotation axis, so that the internal combustion engine, the output gear, is also viewed in the axial direction of the respective planetary gear set, that is to say along the respective planetary gear set rotation axis
  • Spur gear stage, the first partial gear and the second spur gear stage are arranged one after the other in the order mentioned.
  • the feature “axially overlapping” is to be understood as meaning that two components are arranged in an axially overlapping manner if they are arranged in areas of the same axial coordinates.
  • there is at least one radially arranged plane i.e. a plane running in the radial direction of the respective planetary gear set and thus perpendicular to the planetary gear set rotation axis, which penetrates both one and the other of the axially overlapping components.
  • a second aspect of the invention relates to a motor vehicle, also simply referred to as a vehicle, which can be used, for example, as a motor vehicle, in particular as a Passenger cars, can be trained.
  • the motor vehicle has a hybrid drive system according to the first aspect of the invention.
  • the motor vehicle can be driven by means of the hybrid drive system.
  • FIG. 1 shows a schematic representation of a first embodiment of a hybrid drive system for a motor vehicle
  • FIG. 2 shows a schematic representation of a second embodiment of the hybrid drive system
  • Fig. 3 is a schematic representation of a third embodiment of the hybrid drive system.
  • FIG. 1 shows a schematic representation of a first embodiment of a hybrid drive system 10 for a motor vehicle, also referred to as a vehicle.
  • the motor vehicle is preferably designed as a motor vehicle.
  • the motor vehicle has, for example, at least or exactly two vehicle axles arranged one behind the other in the longitudinal direction of the vehicle.
  • the respective vehicle axle is also simply referred to as an axle and has at least or exactly two vehicle wheels, the vehicle wheels being ground contact elements of the motor vehicle.
  • the hybrid drive system 10 is assigned, in particular precisely, to one of the axles, so that the vehicle wheels are connected to the vehicle axle by means of the hybrid drive system 10 can be driven, to which the hybrid drive system 10 is assigned.
  • the vehicle wheels of the vehicle axle that can be driven by means of the hybrid drive system 10 and to which the hybrid drive system 10 is assigned are shown particularly schematically in FIG. 1 and are designated 12 and 14.
  • the hybrid drive system 10 has an internal combustion engine 16, which is also referred to as an internal combustion engine, motor or internal combustion engine.
  • the internal combustion engine 16 has a cylinder housing 18, also referred to as an engine block, which has a plurality of cylinders 20. When the internal combustion engine is fired, 20 combustion processes take place in the cylinders.
  • the internal combustion engine 16 is designed as a reciprocating piston engine.
  • the internal combustion engine 16 has a drive shaft 21 designed, for example, as a crankshaft, which is rotatable about a drive shaft rotation axis relative to the cylinder housing 18.
  • the internal combustion engine 16 can provide first drive torque via the drive shaft 21 for driving the vehicle wheels 12 and 14 and thus for driving the motor vehicle.
  • the hybrid drive system 10 also includes an electric machine 22, which has a stator 24 and a rotor 26.
  • the rotor 26 can be driven by means of the stator 24 and can therefore be rotated about a machine axis of rotation relative to the stator 24.
  • the hybrid drive system 10 also includes a housing 28, shown particularly schematically in FIG.
  • the electric machine 22 can provide second drive torque via the rotor 26 for driving the vehicle wheels 12 and 14 and thus for driving the motor vehicle.
  • the hybrid drive system 10 also has an axle gear 30 designed as a differential gear and also simply referred to as a differential, via which the vehicle wheels 12 and 14 can be driven by the electric machine 22 and by the internal combustion engine 16.
  • the axle gear 30 is designed, for example, as a bevel gear differential.
  • the axle gear 30 has an axle gear housing 32, which in the present case is designed, for example, as a so-called differential cage.
  • the axle gear 30 includes an axle gear input wheel 34, which is connected, in particular permanently, in a rotationally fixed manner to the axle gear housing 32.
  • the axle gear housing 32 and the axle gear input gear 34 are rotatable about an axle gear rotation axis relative to the housing 28.
  • the axle gear 30 has compensating gears 38 designed as bevel gears, which can be rotated with the axle gear housing 32 about the axle gear rotation axis relative to the housing 28.
  • the compensating gears 38 can rotate about a compensating gear rotation axis which runs perpendicular to the axle gear rotation axis.
  • the compensating wheels 38 mesh, in particular permanently, with side wheels 40 of the axle gear 30.
  • the respective compensating wheel 38 is rotatable relative to the axle gear housing 32 about the respective compensating wheel rotation axis, which runs perpendicular to the axle gear rotation axis.
  • the respective side wheel 40 is rotatable about the axle gear rotation axis relative to the housing 28 and also relative to the axle gear housing 32.
  • the respective side wheel 40 is connected to a respective side shaft 42, in particular permanently, in a rotationally fixed manner, with the respective vehicle wheel 12, 14 being drivable by the respective side shaft 42.
  • the hybrid drive system 10 also includes a transmission 44, also referred to as a main transmission, which has a first sub-transmission 46 and a second sub-transmission 48.
  • the first partial transmission 46 has a first planetary gear set 50 and a second planetary gear set 52, which in the present case are arranged coaxially to one another.
  • the first planetary gear set 50 has a first element 54, advantageously designed as a first sun gear, a second element 56, advantageously designed as a first planet carrier, and a third element 58, advantageously designed as a first ring gear.
  • first planetary gear set 50 has first planet gears 60, which are rotatably mounted on the second element (first planet carrier) 56 and mesh with both the first element 54 and the third element 58 at the same time.
  • the second planetary gear set 52 has a fourth element 62, advantageously designed as a second sun gear, a fifth element 64, advantageously designed as a second planet carrier, and a sixth element 66, advantageously designed as a second ring gear.
  • the planetary gear set 52 has planet gears 68, which are rotatably mounted on the fifth element 64 (second planet carrier) and simultaneously mesh with both the fourth element (sun gear) 62 and the sixth element 66 (second ring gear).
  • the sixth element 66 is permanently connected to the second element 56 in a rotationally fixed manner.
  • the second partial transmission 48 has a first spur gear stage 70.
  • the second partial transmission 48 includes an output shaft 72, which is rotatable about an output shaft rotation axis relative to the housing 28.
  • the respective element is by one Planetary gear set rotation axis rotatable relative to the housing 28.
  • the planetary gear set rotation axis is a planetary gear set rotation axis common to the planetary gear sets 50 and 52, since the planetary gear sets 50 and 52 are arranged coaxially to one another.
  • the internal combustion engine 16 or the drive shaft 21 is arranged coaxially with the planetary gear sets 50 and 52, so that the drive shaft rotation axis coincides with the planetary gear set rotation axis.
  • the drive shaft 72 is arranged axially parallel to the planetary gear sets 50 and also to the drive shaft 21, so that the output shaft axis of rotation runs parallel to the planetary gear set rotation axis and parallel to the drive shaft rotation axis and is spaced from the planetary gear set rotation axis and from the drive shaft rotation axis.
  • the electric machine 22, that is, its rotor 26, is arranged axially parallel to the output shaft 72, axially parallel to the planetary gear sets 50 and 52 and axially parallel to the internal combustion engine 16, so that the machine axis of rotation runs parallel to the output shaft axis of rotation, parallel to the planetary gear set rotation axis and parallel to the drive shaft rotation axis and from the output shaft rotation axis, is spaced from the planetary gear set rotation axis and from the drive shaft rotation axis.
  • the axle gear axis of rotation also runs parallel to the machine axis of rotation, parallel to the output shaft axis of rotation, parallel to the planetary gear set axis of rotation and parallel to the drive shaft axis of rotation and is spaced from these.
  • the first spur gear stage 70 has a first output gear 74, which is arranged coaxially with the output shaft 72.
  • the output gear 74 is connected, in particular permanently, to the output shaft 72 in a rotationally fixed manner.
  • the output gear 74 is arranged on the output shaft 72.
  • the first spur gear stage 70 also includes an input gear 76, which meshes, in particular permanently, with the first output gear 74.
  • the first input gear 76 is connected, in particular permanently, to the third element (ring gear) 58.
  • the rotor 26 is coupled to the fourth element (second sun gear) 62, in particular permanently, in a torque-transmitting manner, in such a way that the respective second drive torque or a torque resulting therefrom which is provided or can be provided by the electric machine 22 via its rotor 26 the fourth element 62 can be introduced into the transmission 44.
  • the hybrid drive system 10 also includes an output gear 78, which is permanently connected to the output shaft 72 in a rotationally fixed manner and is therefore arranged coaxially with the output shaft 72 and also coaxially with the output gear 74.
  • the output gear 78 permanently meshes with the axle gear input gear 34 of the axle gear 30, the axle gear input gear 34 of which is a gear, for example a ring gear.
  • the hybrid drive system 10 has a first switching element 80, also designated KO, which is designed to rotationally connect the drive shaft 21 to the first element 54.
  • the first switching element 80 is a friction clutch, in particular a multi-plate clutch.
  • a second switching element 82 is also provided, which is designed to rotate the first element 54 with the fourth element (second sun gear) 62.
  • the hybrid drive system 10 includes a third switching element 84, which is designed to connect the first element 54 to the fifth element (second planet carrier) 64 in a rotationally fixed manner.
  • the hybrid drive system 10 has a total of exactly two planetary gear sets, namely the planetary gear sets 50 and 52.
  • the second partial transmission 48 has a second spur gear stage 86, which includes a second output gear 88, which is connected, in particular permanently, in a rotationally fixed manner to the output shaft 72.
  • the spur gear stage 86 also includes a second input gear 90, which meshes, in particular permanently, with the output gear 88.
  • the input gear 90 is connectable to the fifth element (second planet carrier) 64.
  • a fourth switching element 92 is provided, which is designed to connect the second input gear 90 to the fifth element (second planet carrier) 64 in a rotationally fixed manner.
  • a fifth switching element 94 is provided, which is designed to connect the second input gear 90 to the fourth element (second sun gear) 62 in a rotationally fixed manner.
  • a sixth switching element 96 is provided, which is designed to connect the first element 54 to the housing 28 in a rotationally fixed manner.
  • the rotor 26 is connected, in particular permanently, in a rotationally fixed manner to the fourth element 62 (second sun gear) and is thereby coupled in particular permanently in a torque-transmitting manner.
  • the second spur gear stage 86 and/or the planetary gear set 52 is arranged axially overlapping the rotor 26, in particular the electric machine 22, in the second embodiment it is provided that the rotor 26, in particular the electric machine 22, viewed in the axial direction of the respective planetary gear set 50, 52, completely connects to both the planetary gear set 52 and the second spur gear stage 86, in particular in such a way that, viewed in the axial direction of the respective planetary gear set 50, 52, the planetary gear set 52, the second spur gear stage 86 and the electrical machines 22 are arranged one after the other in the following order: the planetary gear set 52 - the second spur gear stage 86 - the electrical machine 22.
  • FIG 3 shows a third embodiment of the hybrid drive system 10.
  • the rotor 26 is permanently coupled to the first element (first sun gear) 54 in a torque-transmitting manner.
  • the rotor 26 is particularly advantageously coupled to the first element 54 in a permanently torque-transmitting manner via a third spur gear stage 98.
  • the third spur gear stage 98 particularly advantageously has a third input gear 99, which is connected in a rotationally fixed manner to the first element 54 and which is arranged between the first spur gear stage 70 and the first switching element 80 with respect to the axial direction.
  • a gear wheel connected to the rotor 26 in a rotationally fixed manner is permanently in engagement with the third input gear 99 or is coupled to the third input gear 99 via a further spur gear stage, not shown, or via a chain drive.
  • the rotor 26, in particular the electric machine 22, is arranged axially overlapping at least the first planetary gear set 50.
  • the rotor 26 is arranged both axially overlapping the first planetary gear set 50 and axially overlapping the second planetary gear set 52.
  • the switching element 96 is omitted.
  • the spur gear stages are 70 and 86 and the electrical machines are 22 advantageously arranged one after the other in the axial direction of the respective planetary gear set 50, 52 in the following order: first spur gear stage 70 - electric machine 22 - second spur gear stage 86.
  • spur gear stages 70 and 86 and the electric machine 22, viewed in the axial direction of the respective planetary gear set 50, 52, are arranged one after the other in the following order: first spur gear stage 70 - second spur gear stage 86 - electrical machines 22.
  • the electrical machines 22 and the second spur gear stage 86 are arranged to at least partially overlap one another axially.
  • this is also the case in the third embodiment, since in the second embodiment and in the third embodiment the electric machine 22, viewed in the axial direction of the respective planetary gear set 50, 52, is completely connected to the second spur gear stage 86, namely in the second embodiment in a direction pointing away from the first spur gear stage 70, in the third embodiment in a direction pointing towards the first spur gear stage 70.
  • the transmission 44 can be particularly advantageously represented as a multi-stage transmission, in particular based on coupled planetary gear sets in the form of the planetary gear sets 50 and 52 and in particular in an axially parallel design with low power loss.
  • up to five hybrid or combustion engine forward gears at least three electric gears and various continuously variable driving ranges can be represented.
  • a large spread can be achieved.
  • only exactly two planetary gear sets 50 and 52 are used, in particular in the form of single planetary gear sets, spur gear ratios in the form of spur gear stages 70 and 86 and, in particular, five or six switching elements.
  • At least two of the switching elements can be designed as positive switching elements, in particular as claw clutches, in particular with or without a synchronization unit, in order to be able to keep losses particularly low. Good gearing efficiencies and therefore particularly low-loss operation can be achieved.
  • a coaxial planetary gear set design can be created with two axially parallel outputs, which is particularly advantageous for a front-wheel drive in transverse installation.
  • the electrical machine 22 can be arranged coaxially or parallel to the axis.
  • a coaxial arrangement of the Electric machines 22 offer the possibility of placing switching elements inside them.
  • At least two of the switching elements can be realized as claw switching elements or positive switching elements, with further positive switching elements, in particular claw switching elements, being conceivable, in particular by using the electrical machine 22.
  • the switching element 96 can be omitted in order to reduce the number of parts, the costs, the weight and to be able to keep the installation space requirement particularly low.
  • a possible traction force compensation is possible via an axially parallel arrangement of the electrical machines 22 and in particular via a corresponding gear ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

Die Erfindung betrifft ein Hybridantriebssystem (10) für ein Kraftfahrzeug, mit einem Verbrennungsmotor (16), welcher eine Antriebswelle (21) aufweist, über welche von dem Verbrennungsmotor (16) erste Antriebsdrehmomente bereitstellbar sind, mit einer elektrischen Maschine (22), welche einen Rotor (26) aufweist, über welchen von der elektrischen Maschine (22) zweite Antriebsdrehmomente bereitstellbar sind, mit einem Achsgetriebe (30), welches ein Achsgetriebeeingangsrad (34) aufweist, über welches das Achsgetriebe (30) antreibbar ist, und mit einem Getriebe (44), welches ein erstes Teilgetriebe (46) und ein zweites Teilgetriebe (48) aufweist, wobei das erste Teilgetriebe (46) einen ersten Planetenradsatz (50) mit einem ersten Element (54), einem zweiten Element (56) und einem dritten Element (58) sowie einen zweiten Planetenradsatz (52) mit einem vierten Element (62), einem fünften Element (64) und einem permanent drehfest mit dem zweiten Element (56) verbundenen, sechsten Element (66) aufweist. Das zweite Teilgetriebe (48) umfasst eine erste Stirnradstufe (70) sowie eine Abtriebswelle (72).

Description

Hybridantriebssystem für ein Kraftfahrzeug sowie Kraftfahrzeug, insbesondere Kraftwagen
Die Erfindung betrifft ein Hybridantriebssystem für ein Kraftfahrzeug, insbesondere einen Kraftwagen, gemäß dem Oberbegriff von Patentanspruch 1. Des Weiteren betrifft die Erfindung ein Kraftfahrzeug mit einem solchen Hybridantriebssystem.
Aus der DE 10 2011 080 566 A1 ist ein Splittergetriebe bekannt, welches zwei Planetenradsätze und eine parallel zu den Planetenradsätzen angeordnete Vorgelegewelle aufweist.
Aus der DE 10 2018 000 183 A1 ist ein Hybridgetriebe in Planetenbauweise bekannt.
Die DE 10 2017 006 082 A1 sowie die gattungsgemäße DE 10 2015 223 026 A1 offenbaren jeweils eine Hybridantriebsvorrichtung mit einem Verbrennungsmotor und mit einer elektrischen Maschine, die einen Rotor aufweist, wobei ein Getriebe vorgesehen ist, welches zwei Teilgetriebe umfasst, nämlich ein erstes Teilgetriebe mit zwei Planetenradsätzen und ein zweites Teilgetriebe mit zumindest zwei Stirnradstufen.
Aufgabe der vorliegenden Erfindung ist es, ein Hybridantriebssystem für ein Kraftfahrzeug, sowie ein Kraftfahrzeug mit einem solchen Hybridantriebssystem zu schaffen, sodass ein besonders kompakter und zugleich performanter Antrieb realisiert werden kann.
Diese Aufgabe wird durch ein Hybridantriebssystem mit den Merkmalen des Patentanspruchs 1 , sowie durch ein Kraftfahrzeug mit den Merkmalen des Patentanspruchs 10 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben. Ein erster Aspekt der Erfindung betrifft ein auch als Hybridantriebsvorrichtung oder Hybridantriebseinrichtung bezeichnetes oder als Hybridantriebseinrichtung oder Hybridantriebsvorrichtung ausgebildetes Hybridantriebssystem für ein Kraftfahrzeug, insbesondere für einen Kraftwagen. Dies bedeutet, dass das insbesondere als Kraftwagen, ganz insbesondere als Personenkraftwagen ausgebildete Kraftfahrzeug in seinem vollständig hergestellten Zustand das Hybridantriebssystem aufweist und mittels des Hybridantriebssystems angetrieben werden kann. Das Hybridantriebssystem weist einen auch als Brennkraftmaschine oder Verbrennungskraftmaschine bezeichneten Verbrennungsmotor auf, welcher eine Antriebswelle aufweist. Beispielsweise ist der Verbrennungsmotor als ein Hubkolbenmotor ausgebildet, sodass ganz insbesondere die Antriebswelle als Kurbelwelle ausgebildet ist. Über die Antriebswelle kann der Verbrennungsmotor erste Antriebsdrehmomente zum Antreiben des Kraftfahrzeugs bereitstellen. Die ersten Antriebsdrehmomente sind erste Drehmomente zum Antreiben des Kraftfahrzeugs. Das Hybridantriebssystem umfasst außerdem eine elektrische Maschine, welche einen Rotor aufweist. Beispielsweise weist die elektrische Maschine einen Stator auf, mittels welchem der Rotor antreibbar und dadurch um eine Maschinendrehachse relativ zu dem Stator drehbar ist. Über den Rotor kann die elektrische Maschine zweite Antriebsdrehmomente zum Antreiben des Kraftfahrzeugs bereitstellen. Die zweiten Antriebsdrehmomente sind zweite Drehmomente zum Antreiben des Kraftfahrzeugs. Beispielsweise weist das Kraftfahrzeug in seinem vollständig hergestellten Zustand wenigstens oder genau zwei in Fahrzeuglängsrichtung aufeinanderfolgend und somit hintereinander angeordnete, einfach auch als Achsen bezeichnete Fahrzeugachsen auf. Die jeweilige Achse weist wenigstens oder genau zwei einfach auch als Räder bezeichnete Fahrzeugräder auf, die auf in Fahrzeugquerrichtung des auch als Fahrzeug bezeichneten Kraftfahrzeugs einander gegenüberliegenden Seiten angeordnet sind. Das jeweilige Rad ist ein Bodenkontaktelement, über welches das Kraftfahrzeug in Fahrzeughochrichtung nach unten hin an einem Boden abstützbar oder abgestützt ist. Wird das Kraftfahrzeug entlang des Bodens gefahren und dabei mittels des Hybridantriebssystems angetrieben, während das Kraftfahrzeug in Fahrzeughochrichtung nach unten hin über die Bodenkontaktelemente an dem Boden abgestützt ist, so rollen die Bodenkontaktelemente, insbesondere direkt, an dem Boden ab. Beispielsweise ist das Hybridantriebssystem, insbesondere genau, einer der Achsen zugeordnet, sodass mittels des Hybridantriebssystems beispielsweise die Räder der Achse antreibbar sind, der das Hybridantriebssystem zugeordnet ist. Somit ist es insbesondere denkbar, dass der Verbrennungsmotor über seine Antriebswelle und die elektrische Maschine über ihren Rotor dieselben Räder der Achse antreiben können, der das Hybridantriebssystem zugeordnet ist. Durch Antreiben der Räder kann das Kraftfahrzeug angetrieben werden. Die mittels des Hybridantriebssystems, mithin mittels des Verbrennungsmotors und mittels der elektrischen Maschine antreibbaren Räder werden auch als antreibbare oder angetriebene Räder oder angetriebene oder antreibbare Fahrzeugräder bezeichnet. Wenn im Folgenden die Rede von „den Rädern“ oder „den Fahrzeugrädern“ ist, so sind darunter, falls nichts anderes angegeben ist, die mittels des Hybridantriebssystems antreibbaren Räder der Achse zu verstehen, der das Hybridantriebssystems zugeordnet ist.
Das Hybridantriebssystem umfasst ein Achsgetriebe, welches insbesondere der Achse zugeordnet ist. Insbesondere können die Räder über das Achsgetriebe von dem Verbrennungsmotor und von der elektrischen Maschine angetrieben werden. Ganz insbesondere ist das Achsgetriebe ein einfach auch als Differential bezeichnetes Differentialgetriebe, welches insbesondere die hinlänglich aus dem allgemeinen Stand der Technik bekannte Funktion aufweist, dass ein jeweiliges, drittes Drehmoment über das Achsgetriebe auf die Räder verteilt werden kann, sodass die Räder über das Achsgetriebe mittels des jeweiligen, dritten Drehmoments angetrieben werden können. Beispielsweise resultiert das jeweilige, dritte Drehmoment aus dem jeweiligen, ersten Antriebsdrehmoment und/oder aus dem jeweiligen, zweiten Antriebsdrehmoment. Insbesondere lässt das Achsgetriebe beispielsweise während einer Kurvenfahrt des Kraftfahrzeugs unterschiedliche Drehzahlen der Räder zu, sodass sich beispielsweise das kurvenäußere Rad mit einer größeren Drehzahl drehen kann als das kurveninnere Rad, insbesondere während die Räder über das Achsgetriebe mittels des dritten Drehmoment beziehungsweise von dem Verbrennungsmotor und/oder von der elektrischen Maschine antreibbare sind oder angetrieben werden. Das Achsgetriebe weist ein Achsgetriebeeingangsrad auf, über welches das Achsgetriebe antreibbar ist, insbesondere derart, dass das jeweilige, dritte Drehmoment über das Achsgetriebeeingangsrad in das Achsgetriebe einleitbar beziehungsweise auf das Achsgetriebe übertragbar ist. Das Achsgetriebeeingangsrad ist ein erstes Zahnrad des Hybridantriebssystems, das heißt es wird auch als erstes Zahnrad des Hybridantriebssystems bezeichnet. Beispielsweise kann das Achsgetriebeeingangsrad als ein Tellerrad ausgebildet sein. Das Achsgetriebe kann als ein Kegelraddifferential oder auch beispielsweise als ein Planetengetriebedifferential ausgebildet sein.
Das Hybridantriebssystem weist außerdem ein auch als Hauptgetriebe bezeichnetes und insbesondere zusätzlich zu dem Achsgetriebe vorgesehenes Getriebe auf, welches ein erstes Teilgetriebe und ein zweites Teilgetriebe aufweist. Insbesondere ist es denkbar, dass das Achsgetriebe über das Getriebe von dem Verbrennungsmotor und von der elektrischen Maschine antreibbar ist, sodass beispielsweise das Getriebe das jeweilige, dritte Drehmoment bereitstellen kann, oder das Getriebe kann beispielsweise sein jeweiliges, viertes Drehmoment bereitstellen, aus welchem beispielsweise das jeweilige, dritte Drehmoment resultiert. Dabei ist es denkbar, dass das jeweilige, vierte Drehmoment aus dem jeweiligen, ersten Antriebsdrehmoment und/oder aus dem jeweiligen, zweiten Antriebsdrehmoment resultiert.
Das erste Teilgetriebe weist einen ersten Planetenradsatz auf, welcher auch einfach als erster Planetensatz bezeichnet wird. Der erste Planetenradsatz weist ein erstes Sonnenrad, einen ersten Planetenträger, welcher auch als erster Steg bezeichnet wird, und ein erstes Hohlrad auf. Das erste Sonnenrad, der erste Planetenträger und das erste Hohlrad werden auch als Planetenradsatzelemente des ersten Planetenradsatzes bezeichnet, mithin sind das erste Sonnenrad, der erste Planetenträger und das erste Hohlrad Planetenradsatzelemente des ersten Planetenradsatzes. Ein erstes der Planetenradsatzelemente wird auch als erstes Element bezeichnet, ein zweites der Planetenradsatzelemente wird auch als zweites Element bezeichnet und das dritte Planetenradsatzelement des ersten Planetenradsatzes wird auch als drittes Element bezeichnet.
Das erste Teilgetriebe weist außerdem einen insbesondere zusätzlich zum ersten Planetenradsatz vorgesehenen zweiten Planetenradsatz auf, welcher auch als zweiter Planetensatz bezeichnet wird. Insbesondere weist der zweite Planetenradsatz ein zweites Sonnenrad, einen zweiten Planetenträger, welcher auch als zweiter Steg bezeichnet wird und ein zweites Hohlrad auf. Das zweite Sonnenrad, der zweite Planetenträger und das zweite Hohlrad werden auch als Getriebeelemente des zweiten Planetenradsatzes bezeichnet, mithin sind sie Getriebeelemente des zweiten Planetenradsatzes.
Ein erstes der Getriebeelemente des zweiten Planetenradsatzes wird auch als viertes Element bezeichnet, ein zweites der Getriebeelemente des zweiten Planetenradsatzes wird auch als fünftes Element bezeichnet und das dritte Getriebeelement des zweiten Planetenradsatzes wird auch als sechstes Element bezeichnet. Wenn im Folgenden die Rede von „den Elementen“ ist, so sind darunter, falls nichts anderes angegeben ist, die zuvor genannten, sechs Elemente der Planetenradsätze, nämlich das erste Element, das zweite Element, das dritte Element, das vierte Element, das fünfte Element und das sechste Element zu verstehen.
Insbesondere ist es denkbar, dass das Hybridantriebssystem ein Gehäuse aufweist, wobei es denkbar ist, dass der erste Planetenradsatz und/oder der zweite Planetenradsatz jeweils zumindest teilweise, insbesondere zumindest überwiegend und somit zumindest zu mehr als zur Hälfte oder vollständig, in dem Gehäuse angeordnet ist. Beispielsweise dann, wenn das jeweilige Planetenradsatzelement nicht drehfest mit dem Gehäuse verbunden ist, kann, insbesondere durch Antreiben des ersten Planetenradsatzes, das jeweilige Planetenradsatzelement um eine erste Planetenradsatzdrehachse relativ zu dem Gehäuse gedreht werden. Ferner ist es denkbar, dass insbesondere dann, wenn das jeweilige Getriebeelement nicht drehfest mit dem Gehäuse verbunden ist, das jeweilige Getriebeelement insbesondere durch Antreiben des zweiten Planetenradsatzes um eine zweite Planetenradsatzdrehachse relativ zu dem Gehäuse drehbar ist. Insbesondere kann vorgesehen sein, dass die Planetenradsätze koaxial zueinander angeordnet sind, sodass die Planetenradsatzdrehachsen zusammenfallen.
Das zweite Element ist permanent drehfest mit dem sechsten Element verbunden.
Das zweite Teilgetriebe weist eine erste Stirnradstufe sowie eine insbesondere zusätzlich zur Antriebswelle vorgesehene Abtriebswelle auf. Die Stirnradstufe umfasst beispielsweise, insbesondere genau, zwei insbesondere als Stirnräder ausgebildete Zahnräder, nämlich ein zweites Zahnrad und ein drittes Zahnrad. Insbesondere ist es denkbar, dass die Zahnräder der Stirnradstufe, insbesondere direkt und/oder permanent miteinander kämmen. Unter dem Merkmal, dass zwei Zahnräder wie beispielsweise das zweite Zahnrad und das dritte Zahnrad permanent miteinander kämmen, mithin permanent in Eingriff miteinander stehen, ist zu verstehen, dass die permanent miteinander kämmenden Zahnräder nicht zwischen einer Kämmstellung, in welcher die Zahnräder miteinander kämmen, und einer Losstellung relativ zueinander bewegbar sind, in welcher die Zahnräder nicht miteinander kämmen, sondern die permanent miteinander kämmenden Zahnräder stehen permanent, das heißt immer, in Eingriff miteinander.
Die erste Stirnradstufe weist ein erstes Ausgangszahnrad auf, welches beispielsweise das zuvor genannte, zweite Zahnrad der Stirnradstufe ist. Das erste Ausgangszahnrad ist koaxial zu der Abtriebswelle angeordnet. Insbesondere kann beispielsweise das Ausgangszahnrad auf der Abtriebswelle angeordnet sein. Insbesondere ist es denkbar, dass das Ausgangszahnrad, insbesondere permanent, drehtest mit der Abtriebswelle verbunden ist. Das Ausgangszahnrad kämmt mit einem ersten Eingangszahnrad, welches beispielsweise das zuvor genannte, dritte Zahnrad der ersten Stirnradstufe ist. Das erste Eingangszahnrad ist drehtest mit dem dritten Element verbunden oder verbindbar.
Des Weiteren ist es vorgesehen, dass der Rotor der elektrischen Maschine derart mit einem der Elemente drehmomentübertragend gekoppelt oder koppelbar ist, dass das jeweilige, von der elektrischen Maschine über den Rotor bereitgestellte oder bereitstellbare, zweite Antriebsdrehmoment an dem einen, drehmomentübertragend mit dem Rotor gekoppelten oder koppelbaren Element in das Getriebe einleitbar ist, mithin das jeweilige, von der elektrischen Maschine über den Rotor bereitgestellte oder bereitstellbare, zweite Antriebsdrehmoment von dem Rotor auf das eine, drehmomentübertragend mit dem Rotor gekoppelte oder koppelbare Element übertragbar und somit über das eine, drehmomentübertragend mit dem Rotor gekoppelten oder koppelbaren Element in das Getriebe einleitbar ist, insbesondere um dadurch das Getriebe einzuleiten.
Das Hybridantriebssystem umfasst außerdem ein Abtriebszahnrad, welches beispielsweise ein viertes Zahnrad des Hybridantriebssystems ist. Insbesondere ist das vierte Zahnrad zusätzlich zu dem ersten Zahnrad, zusätzlich zu dem zweiten Zahnrad und zusätzlich zum dritten Zahnrad vorgesehen. Das Abtriebszahnrad ist permanent drehfest mit der Abtriebswelle verbunden. Insbesondere ist vorzugsweise das Abtriebszahnrad koaxial zu dem Ausgangszahnrad angeordnet. Das Abtriebszahnrad kämmt permanent mit dem Achsgetriebeeingangsrad. Insbesondere ist es denkbar, dass das Abtriebszahnrad als ein Kegelrad ausgebildet ist.
Im Rahmen der vorliegenden Offenbarung ist unter dem Merkmal, dass zwei Bauelemente wie beispielsweise das erste Eingangszahnrad und das erste Element drehfest miteinander verbunden sind, zu verstehen, dass die drehfest miteinander verbundenen Bauelemente koaxial zueinander angeordnet sind und sich insbesondere dann, wenn die Bauelemente angetrieben werden, gemeinsam beziehungsweise gleichzeitig um eine den Bauelementen gemeinsame Bauelementdrehachse wie beispielsweise die erste Planetenradsatzdrehachse mit der gleichen Winkelgeschwindigkeit, insbesondere relativ zu dem Gehäuse, drehen. Unter dem Merkmal, dass zwei Bauelemente, wie beispielsweise der Rotor und das eine Element drehmomentübertragend miteinander gekoppelt oder verbunden sind, ist zu verstehen, dass die Bauelemente derart miteinander gekoppelt oder verbunden sind, dass Drehmomente zwischen Bauelementen übertragen werden können, wobei dann, wenn die Bauelemente drehtest miteinander verbunden sind, die Bauelemente auch drehmomentübertragend miteinander verbunden sind.
Unter dem Merkmale, dass zwei Bauelemente permanent drehmomentübertragend miteinander verbunden sind, ist zu verstehen, dass nicht etwa ein Umschaltelement vorgesehen ist, welches zwischen einem die Bauelemente drehmomentübertragend miteinander verbindenden Koppelzustand und einem Entkoppelzustand umschaltbar ist, in welchem keine Drehmomente zwischen den Bauelementen übertragen werden können, sondern die Bauelemente sind stets beziehungsweise immer und somit permanent drehmomentübertragend, das heißt derart miteinander verbunden, dass ein Drehmoment zwischen den Bauelementen übertragen werden kann. Somit ist beispielsweise eines der Bauelemente vom jeweils anderen Bauelement antreibbar beziehungsweise umgekehrt. Insbesondere ist unter dem Merkmal, dass zwei Bauelemente wie beispielsweise das Abtriebszahnrad und die Abtriebswelle permanent drehtest miteinander verbunden sind, zu verstehen, dass nicht etwa ein Umschaltelement vorgesehen ist, welches zwischen einem die Bauelemente drehtest miteinander verbindenden Koppelzustand und einem Entkoppelzustand umschaltbar ist, in welchem die Bauelemente voneinander entkoppelt und relativ zueinander drehbar sind, insbesondere um die Bauelementdrehachse, sodass beispielsweise keine Drehmomente zwischen den Bauelementen übertragen werden können, sondern die Bauelemente sind stets beziehungsweise immer, mithin permanent, drehtest miteinander verbunden oder gekoppelt. Somit ist im Rahmen der vorliegenden Offenbarung mit einer drehfesten Verbindung zweier insbesondere drehbar gelagerter Elemente gemeint, dass diese beiden Elemente koaxial zueinander angeordnet sind und derart miteinander verbunden sind, dass sie sich mit der gleichen Winkelgeschwindigkeit drehen. Ferner ist unter dem Merkmal, dass zwei Bauelemente wie beispielsweise der Rotor der elektrischen Maschine und das eine Element drehmomentübertragend, insbesondere drehfest, miteinander koppelbar oder verbindbar sind, zu verstehen, dass den Bauelementen ein auch als Schaltelement bezeichnetes Umschaltelement zugeordnet ist, welches zwischen einem Koppelzustand, in welchem die Bauelemente mittels des Umschaltelements drehmomentübertragend, insbesondere drehfest, miteinander verbunden sind, und einem Entkoppelzustand umschaltbar ist, in welchem die Bauelemente voneinander entkoppelt sind, sodass sich die Bauelemente insbesondere um die Bauelementdrehachse relativ zueinander drehen können und sodass insbesondere keine Drehmomente zwischen den Bauelementen übertragen werden können.
Das eine, zuvor genannte, mit dem Rotor der elektrischen Maschine drehmomentübertragend gekoppelte oder koppelbare Element wird im Folgenden auch als erste Verbindungselement bezeichnet, sodass im Folgenden eindeutig auf das erste Verbindungselement Bezug genommen werden kann, wenn dies erforderlich sein sollte.
Das Hybridantriebssystem weist ein erstes Schaltelement auf, welches dazu ausgebildet ist, die Antriebswelle des Verbrennungsmotors drehfest mit einem der Elemente zu verbinden. Mit anderen Worten ist die Antriebswelle mittels des ersten Schaltelements drehfest mit einem der Elemente verbindbar. Das eine, mittels des ersten Schaltelements drehfest mit der beispielsweise als Kurbelwelle ausgebildeten Antriebswelle des Verbindungselements verbindbare Element wird im Folgenden auch als zweites Verbindungselement bezeichnet, um im Folgenden eindeutig auf das zweite Verbindungselement Bezug nehmen zu können, falls dies erforderlich sein sollte. Das zweite Verbindungselement kann das erste Verbindungselement sein, oder vorzugsweise ist das zweite Verbindungselement ein gegenüber dem ersten Verbindungselement anderes Element. Insbesondere kann das erste Schaltelement zwischen einem ersten Koppelzustand und einem ersten Entkoppelzustand umgeschaltet werden. In dem ersten Koppelzustand sind mittels des ersten Schaltelements die Antriebswelle und das zweite Verbindungselement drehfest miteinander verbunden, sodass sich die Antriebswelle und das zweite Verbindungselement gemeinsam beziehungsweise gleichzeitig, das heißt mit der gleichen Winkelgeschwindigkeit, insbesondere um eine der Planetenradsatzdrehachsen und/oder relativ zu dem Gehäuse, drehen oder drehen können, insbesondere dann, wenn beispielsweise die Antriebswelle das zweite Verbindungselement antreibt. In dem ersten Entkoppelzustand lässt das erste Schaltelement insbesondere um eine der Planetenradsatzdrehachsen erfolgende Relativdrehungen zwischen der Antriebswelle und dem zweiten Verbindungselement zu. Beispielsweise ist das erste Schaltelement, insbesondere translatorisch und/oder relativ zu dem Gehäuse, zwischen wenigstens einer den ersten Koppelzustand bewirkenden, ersten Koppelstellung und wenigstens einer den ersten Entkoppelzustand bewirkenden, ersten Entkoppelstellung bewegbar.
Um nun einen besonders vorteilhaften Antrieb und somit eine besonders vorteilhafte Fahrbarkeit des Kraftfahrzeugs realisieren zu können, ist auf an sich bekannte Weise ein drittes Schaltelement vorgesehen, welches dazu ausgebildet ist, das erste Element drehfest mit dem fünften Element zu verbinden. Dies bedeutet, dass das erste Element und das fünfte Element mittels des dritten Schaltelements drehfest miteinander verbindbar sind. Insbesondere ist es denkbar, dass das dritte Schaltelement zwischen einem dritten Koppelzustand und einem dritten Entkoppelzustand umschaltbar ist. In dem dritten Koppelzustand sind mittels des dritten Schaltelements das erste Element und das fünfte Element drehfest miteinander verbunden, sodass sich das erste Element und das fünfte Element, insbesondere relativ zu dem Gehäuse und/oder um die erste beziehungsweise zweite Planetenradsatzdrehachse, gleichzeitig beziehungsweise gemeinsam, das heißt mit der gleichen Winkelgeschwindigkeit, drehen oder drehen können, insbesondere dann, wenn das erste Teilgetriebe angetrieben wird. In dem dritten Entkoppelzustand lässt das dritte Schaltelement insbesondere um die erste beziehungsweise zweite Planetenradsatzdrehachse erfolgende Relativdrehungen zwischen dem ersten Element und dem fünften Element zu, sodass sich das erste Element und das fünfte Element insbesondere um die erste beziehungsweise zweite Planetenradsatzdrehachse relativ zueinander drehen können. Beispielsweise kann das dritte Schaltelement, insbesondere translatorisch und/oder relativ zu dem Gehäuse, zwischen wenigstens einer den dritten Koppelzustand bewirkenden, dritten Koppelstellung und wenigstens einer den dritten Entkoppelzustand bewirkenden, dritten Entkoppelstellung bewegt werden.
Das Hybridantriebssystem umfasst erfindugsgemäß ein zweites Schaltelement, welches dazu ausgebildet ist, das erste Element drehfest mit dem vierten Element zu verbinden. Mit anderen Worten ist das erste Element mittels des zweiten Schaltelements drehfest mit dem vierten Element verbindbar. Somit ist insbesondere das zweite Schaltelement zwischen einem zweiten Koppelzustand und einem zweiten Entkoppelzustand umschaltbar. In dem zweiten Koppelzustand sind mittels des zweiten Schaltelements das erste Element und das vierte Element drehfest miteinander verbunden, sodass sich das erste Element und das vierte Element gemeinsam beziehungsweise gleichzeitig, das heißt mit der gleichen Winkelgeschwindigkeit, insbesondere um die erste Planetenradsatzdrehachse beziehungsweise um die zweite Planetenradsatzdrehachse und/oder relativ zu dem Gehäuse, drehen oder drehen können, insbesondere dann, wenn das erste Teilgetriebe angetrieben wird. In dem zweiten Entkoppelzustand lässt das zweite Schaltelement insbesondere um die erste und/oder zweite Planetenradsatzdrehachse erfolgende Relativdrehungen zwischen dem ersten Element und dem vierten Element zu, sodass sich in dem zweiten Entkoppelzustand das erste Element und das vierte Element relativ zueinander drehen können, insbesondere um die erste beziehungsweise zweite Planetenradsatzdrehachse. Beispielsweise ist das zweite Schaltelement, insbesondere translatorisch und/oder relativ zu dem Gehäuse, zwischen wenigstens einer den zweiten Koppelzustand bewirkenden, zweiten Koppelstellung und wenigstens einer den zweiten Entkoppelzustand bewirkenden, zweiten Entkoppelstellung bewegbar.
Ferner erfindungsgemäß weist das zweite Teilgetriebe eine zweite Stirnradstufe auf, welche beispielsweise ein fünftes Zahnrad und ein sechstes Zahnrad aufweist. Beispielsweise kämmen das fünfte Zahnrad und das sechste Zahnrad, insbesondere permanent, miteinander. Ferner ist es denkbar, dass das fünfte Zahnrad und das sechste Zahnrad als Stirnräder ausgebildet sind. Die zweite Stirnradstufe weist ein zweites Ausgangszahnrad auf, welches vorzugsweise das fünfte Zahnrad ist. Das zweite Ausgangszahnrad ist, insbesondere permanent, drehfest mit der Abtriebswelle verbunden. Das zweite Ausgangszahnrad kämmt mit einem zweiten Eingangszahnrad, welches vorzugsweise das sechste Zahnrad ist. Das zweite Eingangszahnrad ist drehfest mit dem fünften Element verbunden oder verbindbar. Insbesondere kann das zweite Zahnrad permanent drehfest mit dem fünften Element verbunden sein.
Um eine besonders vorteilhafte Mehrgängigkeit und somit einen besonders vorteilhaften Antrieb realisieren zu können, weist das Hybridantriebssystem ferner erfindungsgemäß ein fünftes Schaltelement auf, welches dazu ausgebildet ist, das zweite Eingangszahnrad drehfest mit dem vierten Element zu verbinden. Somit ist beispielsweise das fünfte Schaltelement zwischen einem fünften Koppelzustand und einem fünften Entkoppelzustand umschaltbar. In dem fünften Koppelzustand sind mittels des fünften Schaltelements das zweite Eingangszahnrad und das vierte Element drehfest miteinander verbunden, sodass sich das zweite Eingangszahnrad und das vierte Element, insbesondere relativ zu dem Gehäuse und/oder um die zweite Planetenradsatzdrehachse, gemeinsam beziehungsweise gleichzeitig, das heißt mit der gleichen Winkelgeschwindigkeit drehen oder drehen können, insbesondere dann, wenn das erste Teilgetriebe angetrieben wird. In dem fünften Entkoppelzustand lässt das fünfte Schaltelement insbesondere um die zweite Planentenradsatzdrehachse erfolgende Relativdrehungen zwischen dem zweiten Eingangszahnrad und dem vierten Element zu. Beispielsweise kann das fünfte Schaltelement, insbesondere relativ zu dem Gehäuse und/oder translatorisch, zwischen wenigstens einer den fünften Koppelzustand bewirkenden, fünften Koppelstellung und wenigstens einer den fünften Entkoppelzustand bewirkenden, fünften Entkoppelstellung bewegt werden. Im Rahmen der vorliegenden Offenbarung werden auch als Ordinalia bezeichnete Ordnungszahlwörter wie zum Beispiel „erster“, „erstes“, „zweiter“, „zweites“ etc. nicht notwendigerweise verwendet, um eine Anzahl oder Menge anzugeben oder zu implizieren, sondern um eindeutig auf Begriffe referenzieren zu können, denen die Ordnungszahlwörter zugeordnet sind beziehungsweise auf die sich die Ordnungszahlwörter beziehen.
Bei einer besonders vorteilhaften Ausführungsform der Erfindung ist das erste Schaltelement dazu ausgebildet, die Antriebswelle drehfest mit dem ersten Element zu verbinden. Mit anderen Worten hat es sich als besonders vorteilhaft gezeigt, wenn das zweite Verbindungselement das erste Element ist. Dadurch kann eine besonders gute Fahrbarkeit dargestellt werden.
Eine zweite Ausführungsform zeichnet sich dadurch aus, dass der Rotor der elektrischen Maschine derart permanent drehmomentübertragend mit dem vierten Element gekoppelt ist, dass das jeweilige, von der elektrischen Maschine über den Rotor bereitgestellte oder bereitstellbare, zweite Antriebsdrehmoment einem vierten Element, das heißt über das vierte Element in das Getriebe einleitbar ist. Hierdurch kann die besonders gute Fahrbarkeit und somit der besonders gute Antrieb dargestellt werden.
Ganz vorzugsweise ist es vorgesehen, dass das erste Element das erste Sonnenrad, das zweite Element der erste Planetenträger und das dritte Element das erste Hohlrad ist. Alternativ oder zusätzlich ist es vorzugsweise vorgesehen, dass das vierte Element das zweite Sonnenrad, das fünfte Element der zweite Planetenträger und das sechste Element das dritte Hohlrad ist.
Um einen besonders vorteilhaften Antrieb auf besonders bauraum-, gewichts- und kostengünstige Weise darstellen zu können, ist es in weiterer Ausgestaltung der Erfindung vorgesehen, dass das Hybridantriebssystem insgesamt genau, das heißt ausschließlich zwei Planetenradsätze aufweist, nämlich den ersten Planetenradsatz und den zweiten Planetenradsatz.
Es ist denkbar, dass das erste Eingangszahnrad permanent drehfest mit dem ersten Element verbunden ist.
In weiterer Ausgestaltung der Erfindung umfasst das Hybridantriebssystem ein viertes Schaltelement, welches dazu ausgebildet ist, das zweite Eingangszahnrad drehfest mit dem fünften Element zu verbinden. Hierdurch kann auf besonders bauraumgünstige Weise eine besonders vorteilhafte Mehrgängigkeit dargestellt werden, sodass eine besonders gute Fahrbarkeit und somit ein besonders guter Antrieb realisiert werden können. Insbesondere ist somit beispielsweise das vierte Schaltelement zwischen einem vierten Koppelzustand und einem vierten Entkoppelzustand umschaltbar. In dem vierten Koppelzustand sind mittels des vierten Schaltelements das zweite Eingangszahnrad und das fünfte Element drehfest miteinander verbunden, sodass sich das Eingangszahnrad und das fünfte Element, insbesondere relativ zu dem Gehäuse und/oder um die zweite Planetenradsatzdrehachse, gleichzeitig beziehungsweise gemeinsam, das heißt mit der gleichen Winkelgeschwindigkeit drehen oder drehen können, insbesondere dann, wenn das erste Teilgetriebe angetrieben wird. In vierten Entkoppelzustand lässt das vierte Schaltelement insbesondere um die zweite Planetenradsatzdrehachse erfolgende Relativdrehungen zwischen dem zweiten Eingangszahnrad und dem fünften Element zu. Beispielsweise kann das vierte Schaltelement, insbesondere relativ zu dem Gehäuse und/oder translatorisch, zwischen wenigstens einer den vierten Koppelzustand bewirkenden, vierten Koppelstellung und wenigstens einer den vierten Entkoppelzustand bewirkenden, vierten Entkoppelstellung bewegt werden.
Um eine besonders vorteilhafte Fahrbarkeit auf besonders bauraumgünstige Weise realisieren zu können, ist es in weiterer Ausgestaltung der Erfindung vorgesehen, dass in axialer Richtung der Antriebswelle betrachtet der Verbrennungsmotor, das Abtriebszahnrad, die erste Stirnradstufe, das erste Teilgetriebe und die zweite Stirnradstufe in folgender Reihenfolge aufeinanderfolgend, das heißt nacheinander angeordnet sind: der Verbrennungsmotor - das Abtriebszahnrad - die erste Stirnradstufe - das erste Teilgetriebe - die zweite Stirnradstufe. Mit anderen Worten ist in axialer Richtung der Antriebswelle betrachtet das Abtriebszahnrad auf den Verbrennungsmotor folgend, die erste Stirnradstufe auf das Abtriebszahnrad folgend, das erste Teilgetriebe auf die erste Stirnradstufe folgend und die zweite Stirnradstufe auf das erste Teilgetriebe folgend angeordnet.
Schließlich hat sich zur Realisierung einer besonders vorteilhaften Fahrbarkeit als besonders vorteilhaft gezeigt, wenn das Hybridantriebssystem ein sechstes Schaltelement aufweist, welches dazu ausgebildet ist, das erste Element drehfest mit dem Gehäuse des Hybridantriebssystems zu verbinden. Das sechste Schaltelement ist somit beispielweise zwischen einem sechsten Koppelzustand und einem sechsten Entkoppelzustand umschaltbar. In dem sechsten Koppelzustand sind mittels des sechsten Schaltelements das erste Element und das Gehäuse drehfest miteinander verbunden, sodass insbesondere auch dann beispielsweise um die erste Planetenradsatzdrehachse und relativ zu dem Gehäuse erfolgende Drehungen des ersten Elements unterbleiben, wenn das erste Teilgetriebe angetrieben wird, das heißt wenn Drehmomente in das erste Teilgetriebe eingeleitet werden. In dem sechsten Entkoppelzustand lässt das sechste Schaltelement um die erste Planetenradsatzdrehachse erfolgende und relativ zu dem Gehäuse erfolgende Drehungen des ersten Elements zu. Mit anderen Worten, in dem sechsten Koppelzustand kann sich das erste Element insbesondere auch dann nicht um die erste Planetenradsatzdrehachse relativ zu dem Gehäuse drehen, wenn das erste Teilgetriebe angetrieben wird. In dem sechsten Entkoppelzustand jedoch kann sich das erste Element um die erste Planetenradsatzdrehachse relativ zu dem Gehäuse drehen, insbesondere dann, wenn das erste Teilgetriebe angetrieben wird. Beispielsweise ist das sechste Schaltelement, insbesondere relativ zu dem Gehäuse und/oder translatorisch, zwischen wenigstens einer den sechsten Koppelzustand bewirkenden, sechsten Koppelstellung und wenigstens einer den sechsten Entkoppelzustand bewirkenden, sechsten Entkoppelstellung bewegbar.
Im Rahmen der Offenbarung beziehen sich die Begriffe „axial“ und „koaxial“ insbesondere auf die Planetenradsatzdrehachsen. Dabei verläuft beispielsweise eine Antriebswellendrehachse der Antriebswelle parallel zur Planetenradsatzdrehachse des jeweiligen Planetenradsatzes oder, besonders vorteilhaft, die Antriebswellendrehachse fällt mit der Planetenradsatzdrehachse zusammen, sodass auch in axialer Richtung des jeweiligen Planetenradsatzes, das heißt entlang der jeweiligen Planetenradsatzdrehachse betrachtet der Verbrennungsmotor, das Abtriebszahnrad, die erste Stirnradstufe, das erste Teilgetriebe und die zweite Stirnradstufe in der genannten Reihenfolge nacheinander angeordnet sind.
Im Rahmen der vorliegenden Offenbarung ist unter dem Merkmal „axial überlappend“ zu verstehen, dass zwei Bauelemente axial überlappend angeordnet sind, wenn sie in Bereichen gleicher axialer Koordinaten angeordnet sind. Somit existiert bei axial überlappender Anordnung zumindest eine radial angeordnete, mithin eine in radialer Richtung des jeweiligen Planetenradsatzes und somit senkrecht zur Planetenradsatzdrehachse verlaufende Ebene, die sowohl das eine als auch das andere der axial überlappenden Bauelemente durchdringt.
Ein zweiter Aspekt der Erfindung betrifft ein einfach auch als Fahrzeug bezeichnetes Kraftfahrzeug, welches beispielsweise als Kraftwagen, insbesondere als Personenkraftwagen, ausgebildet sein kann. Das Kraftfahrzeug weist ein Hybridantriebssystem gemäß dem ersten Aspekt der Erfindung auf. Das Kraftfahrzeug ist mittels des Hybridantriebssystems antreibbar. Vorteile und vorteilhafte Ausgestaltungen des ersten Aspekts der Erfindung sind als Vorteile und vorteilhafte Ausgestaltungen des zweiten Aspekts der Erfindung anzusehen und umgekehrt.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnung zeigt in:
Fig. 1 eine schematische Darstellung einer ersten Ausführungsform eines Hybridantriebssystems für ein Kraftfahrzeug;
Fig. 2 eine schematische Darstellung einer zweiten Ausführungsform des Hybridantriebssystems; und
Fig. 3 eine schematische Darstellung einer dritten Ausführungsform des Hybridantriebssystems.
In den Figuren sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt in einer schematischen Darstellung eine erste Ausführungsform eines Hybridantriebssystems 10 für ein auch als Fahrzeug bezeichnetes Kraftfahrzeug. Das Kraftfahrzeug ist vorzugsweise als Kraftwagen ausgebildet. Das Kraftfahrzeug weist beispielsweise wenigstens oder genau zwei in Fahrzeuglängsrichtung hintereinander angeordnete Fahrzeugachsen auf. Die jeweilige Fahrzeugachse wird auch einfach als Achse bezeichnet und weist wenigstens oder genau zwei Fahrzeugräder auf, wobei die Fahrzeugräder Bodenkontaktelemente des Kraftfahrzeugs sind. Das Hybridantriebssystem 10 ist dabei, insbesondere genau, einer der Achsen zugeordnet, sodass mittels des Hybridantriebssystems 10 die Fahrzeugräder der Fahrzeugachse antreibbar sind, der das Hybridantriebssystem 10 zugeordnet ist. Die mittels des Hybridantriebssystems 10 antreibbaren Fahrzeugräder der Fahrzeugachse, der das Hybridantriebssystem 10 zugeordnet ist, sind in Fig. 1 besonders schematisch dargestellt und mit 12 und 14 bezeichnet. Das Hybridantriebssystem 10 weist einen Verbrennungsmotor 16 auf, welcher auch als Verbrennungskraftmaschine, Motor oder Brennkraftmaschine bezeichnet wird. Der Verbrennungsmotor 16 weist ein auch als Motorblock bezeichnetes Zylindergehäuse 18 auf, welches mehrere Zylinder 20 aufweist. In einem befeuerten Betrieb der Verbrennungskraftmaschine laufen in den Zylindern 20 Verbrennungsvorgänge ab. Beispielsweise ist der Verbrennungsmotor 16 als ein Hubkolbenmotor ausgebildet. Die Verbrennungsmotor 16 weist eine beispielsweise als Kurbelwelle ausgebildete Antriebswelle 21 auf, welche um eine Antriebswellendrehachse relativ zu dem Zylindergehäuse 18 drehbar ist. Der Verbrennungsmotor 16 kann über die Antriebswelle 21 erste Antriebsdrehmomente zum Antreiben der Fahrzeugräder 12 und 14 und somit zum Antreiben des Kraftfahrzeugs bereitstellen. Das Hybridantriebssystem 10 umfasst außerdem eine elektrische Maschine 22, welche einen Stator 24 und einen Rotor 26 aufweist. Der Rotor 26 ist mittels des Stators 24 antreibbar und dadurch um eine Maschinendrehachse relativ zu dem Stator 24 drehbar. Das Hybridantriebssystem 10 umfasst außerdem ein in Fig. 1 besonders schematisch dargestelltes Gehäuse 28, wobei die Antriebswelle 21 um die Antriebswellendrehachse und der Rotor 26 um die Maschinendrehachse relativ zu dem Gehäuse 28 drehbar sind. Die elektrische Maschine 22 kann über den Rotor 26 zweite Antriebsdrehmomente zum Antreiben der Fahrzeugräder 12 und 14 und somit zum Antreiben des Kraftfahrzeugs bereitstellen. Das Hybridantriebssystem 10 weist außerdem ein als Differentialgetriebe ausgebildetes und einfach auch als Differential bezeichnetes Achsgetriebe 30 auf, über welches die Fahrzeugräder 12 und 14 von der elektrischen Maschine 22 und von dem Verbrennungsmotor 16 antreibbar sind. Bei der ersten Ausführungsform ist das Achsgetriebe 30 beispielsweise als ein Kegelraddifferential ausgebildet. Das Achsgetriebe 30 weist ein Achsgetriebegehäuse 32 auf, welches vorliegend beispielsweise als ein so genannter Differentialkorb ausgebildet ist. Außerdem umfasst das Achsgetriebe 30 ein Achsgetriebeeingangsrad 34, welches, insbesondere permanent, drehfest mit dem Achsgetriebegehäuse 32 verbunden ist. Somit sind das Achsgetriebegehäuse 32 und das Achsgetriebeeingangsrad 34 um eine Achsgetriebedrehachse relativ zu dem Gehäuse 28 drehbar. Wie in Fig. 1 durch Pfeile 36 veranschaulicht ist, kann das Achsgetriebe 30 ein jeweiliges, aus dem jeweiligen ersten Antriebsdrehmoment und/oder aus dem jeweiligen, zweiten Antriebsdrehmoment resultierendes, drittes Antriebsdrehmoment, welches auch als drittes Drehmoment bezeichnet wird, auf die Fahrzeugräder 12 und 14 aufteilen beziehungsweise übertragen, wodurch die Fahrzeugräder 12 und 14 antreibbar sind. Das Achsgetriebe 30 weist vorliegend als Kegelräder ausgebildete Ausgleichsräder 38 auf, welche mit dem Achsgetriebegehäuse 32 um die Achsgetriebedrehachse relativ zu dem Gehäuse 28 mitdrehbar sind. Außerdem können sich die Ausgleichsräder 38 um eine Ausgleichsraddrehachse drehen, welche senkrecht zur Achsgetriebedrehachse verläuft. Die Ausgleichsräder 38 kämmen, insbesondere permanent, mit Seitenrädern 40 des Achsgetriebes 30. Das jeweilige Ausgleichsrad 38 ist um die jeweilige Ausgleichsraddrehachse, welche senkrecht zur Achsgetriebedrehachse verläuft, relativ zu dem Achsgetriebegehäuse 32 drehbar. Das jeweilige Seitenrad 40 ist um die Achsgetriebedrehachse relativ zu dem Gehäuse 28 und auch relativ zu dem Achsgetriebegehäuse 32 drehbar. Das jeweilige Seitenrad 40 ist mit einer jeweiligen Seitenwelle 42, insbesondere permanent, drehfest verbunden, wobei das jeweilige Fahrzeugrad 12, 14 von der jeweiligen Seitenwelle 42 antreibbar ist.
Das Hybridantriebssystem 10 umfasst außerdem ein auch als Hauptgetriebe bezeichnetes Getriebe 44, welches ein erstes Teilgetriebe 46 und ein zweites Teilgetriebe 48 aufweist. Das erste Teilgetriebe 46 weist einen ersten Planetenradsatz 50 und einen zweiten Planetenradsatz 52 auf, welche vorliegend koaxial zueinander angeordnet sind. Der erste Planetenradsatz 50 weist ein, vorteilhaft als ein erstes Sonnenrad ausgebildetes, erstes Element 54, ein, vorteilhaft als ein erster Planetenträger ausgebildetes, zweites Element 56 und ein, vorteilhaft als ein erstes Hohlrad ausgebildetes, drittes Element 58 auf. Außerdem weist der erste Planetenradsatz 50 erste Planetenräder 60 auf, welche drehbar an dem zweiten Element (erster Planetenträger) 56 gelagert sind und gleichzeitig sowohl mit dem ersten Element 54 als auch mit dem dritten Element 58 kämmen. Der zweite Planetenradsatz 52 weist ein, vorteilhaft als ein zweites Sonnenrad ausgebildetes, viertes Element 62, ein, vorteilhaft als ein zweiter Planetenträger ausgebildetes, fünftes Element 64 und ein, vorteilhaft als ein zweites Hohlrad ausgebildetes, sechstes Element 66 auf. Des Weiteren weist der Planetenradsatz 52 Planetenräder 68 auf, welche drehbar an dem fünften Element 64 (zweiter Planetenträger) gelagert sind und gleichzeitig sowohl mit dem vierten Element (Sonnenrad) 62 als auch mit dem sechsten Element 66 (zweites Hohlrad) kämmen. Das sechste Element 66 ist permanent drehfest mit dem zweiten Element 56 verbunden.
Das zweite Teilgetriebe 48 weist eine erste Stirnradstufe 70 auf. Außerdem umfasst das zweite Teilgetriebe 48 eine Abtriebswelle 72, welche um eine Abtriebswellendrehachse relativ zu dem Gehäuse 28 drehbar ist. Insbesondere dann, wenn das jeweilige Element nicht drehfest mit dem Gehäuse 28 verbunden ist, ist das jeweilige Element um eine Planetenradsatzdrehachse relativ zu dem Gehäuse 28 drehbar. Die Planetenradsatzdrehachse ist eine den Planetenradsätzen 50 und 52 gemeinsame Planetenradsatzdrehachse, da die Planetenradsätze 50 und 52 koaxial zueinander angeordnet sind. Bei der ersten Ausführungsform ist der Verbrennungsmotor 16 beziehungsweise die Antriebswelle 21 koaxial zu den Planetenradsätzen 50 und 52 angeordnet, sodass die Antriebswellendrehachse mit der Planetenradsatzdrehachse zusammenfällt. Die Antriebwelle 72 ist achsparallel zu den Planetenradsätzen 50 und auch zur Antriebswelle 21 angeordnet, sodass die Abtriebswellendrehachse parallel zur Planetenradsatzdrehachse und parallel zur Antriebswellendrehachse verläuft und von der Planetenradsatzdrehachse und von der Antriebswellendrehachse beabstandet ist. Die elektrische Maschine 22, das heißt ihr Rotor 26 ist achsparallel zur Abtriebswelle 72, achsparallel zu den Planetenradsätzen 50 und 52 und achsparallel zum Verbrennungsmotor 16 angeordnet, sodass die Maschinendrehachse parallel zur Abtriebswellendrehachse, parallel zur Planetenradsatzdrehachse und parallel zur Antriebswellendrehachse verläuft und von der Abtriebswellendrehachse, von der Planetenradsatzdrehachse und von der Antriebswellendrehachse beabstandet ist. Vorliegend verläuft auch die Achsgetriebedrehachse parallel zur Maschinendrehachse, parallel zur Abtriebswellendrehachse, parallel zur Planetenradsatzdrehachse und parallel zur Antriebswellendrehachse und ist von diesen beabstandet.
Die erste Stirnradstufe 70 weist ein erstes Ausgangszahnrad 74 auf, welches koaxial zu der Abtriebswelle 72 angeordnet ist. Bei der ersten Ausführungsform ist das Ausgangszahnrad 74, insbesondere permanent, drehfest mit der Abtriebswelle 72 verbunden. Ferner ist es denkbar, dass das Ausgangszahnrad 74 auf der Abtriebswelle 72 angeordnet ist. Die erste Stirnradstufe 70 umfasst außerdem ein Eingangszahnrad 76, welches, insbesondere permanent, mit dem ersten Ausgangszahnrad 74 kämmt. Bei der ersten Ausführungsform ist das erste Eingangszahnrad 76, insbesondere permanent, mit dem dritten Element (Hohlrad) 58 verbunden.
Bei der ersten Ausführungsform ist der Rotor 26 derart mit dem vierten Element (zweites Sonnenrad) 62, insbesondere permanent, drehmomentübertragend gekoppelt, dass das jeweilige, von der elektrischen Maschine 22 über ihren Rotor 26 bereitgestellte oder bereitstellbare, zweite Antriebsdrehmoment oder ein daraus resultierendes Drehmoment an dem vierten Element 62 in das Getriebe 44 eingeleitet werden kann. Das Hybridantriebssystem 10 umfasst außerdem ein Abtriebszahnrad 78, welches permanent drehfest mit der Abtriebswelle 72 verbunden und somit koaxial zu der Abtriebswelle 72 und auch koaxial zu dem Ausgangszahnrad 74 angeordnet ist. Das Abtriebszahnrad 78 kämmt permanent mit dem Achsgetriebeeingangsrad 34 des Achsgetriebes 30, dessen Achsgetriebeeingangsrad 34 ein Zahnrad, beispielsweise ein Tellerrad, ist. Das Hybridantriebssystem 10 weist ein auch mit KO bezeichnetes erstes Schaltelement 80 auf, welches dazu ausgebildet ist, die Antriebswelle 21 drehtest mit dem ersten Element 54 zu verbinden. Beispielsweise ist das erste Schaltelement 80 eine Reibkupplung, insbesondere eine Lamellenkupplung. Vorgesehen ist auch ein zweites Schaltelement 82, welches dazu ausgebildet ist, das erste Element 54 drehtest mit dem vierten Element (zweites Sonnenrad) 62 zu verbinden.
Des Weiteren umfasst das Hybridantriebssystem 10 ein drittes Schaltelement 84, welches dazu ausgebildet ist, das erste Element 54 drehfest mit dem fünften Element (zweiter Planetenträger) 64 zu verbinden. Bei der ersten Ausführungsform weist das Hybridantriebssystem 10 insgesamt genau zwei Planetenradsätze auf, nämlich die Planetenradsätze 50 und 52.
Das zweite Teilgetriebe 48 weist eine zweite Stirnradstufe 86 auf, welche ein zweites Ausgangszahnrad 88 umfasst, das, insbesondere permanent, drehfest mit der Abtriebswelle 72 verbunden ist. Die Stirnradstufe 86 umfasst außerdem ein zweites Eingangszahnrad 90, welches, insbesondere permanent, mit dem Ausgangszahnrad 88 kämmt. Bei der ersten Ausführungsform ist das Eingangszahnrad 90 mit dem fünften Element (zweiter Planetenträger) 64 verbindbar. Des Weiteren ist ein viertes Schaltelement 92 vorgesehen, welches dazu ausgebildet ist, das zweite Eingangszahnrad 90 drehfest mit dem fünften Element (zweiter Planetenträger) 64 zu verbinden. Des Weiteren ist ein fünftes Schaltelement 94 vorgesehen, welches dazu ausgebildet ist, das zweite Eingangszahnrad 90 drehfest mit dem vierten Element (zweites Sonnenrad) 62 zu verbinden. Des Weiteren ist ein sechstes Schaltelement 96 vorgesehen, welches dazu ausgebildet ist, das erste Element 54 drehfest mit dem Gehäuse 28 zu verbinden.
In axialer Richtung des jeweiligen Planetenradsatzes 50, 52 und somit entlang der Planetenradsatzdrehachse betrachtet und auch in axialer Richtung der Antriebswelle 21 betrachtet sind der Verbrennungsmotor 16, das Abtriebszahnrad 78, die erste Stirnradstufe 70, das erste Teilgetriebe 46 und die zweite Stirnradstufe 86 in der genannten Reihenfolge, das heißt in folgender Reihenfolge aufeinander folgend, das heißt nacheinander angeordnet: Der Verbrennungsmotor 16 - das Abtriebszahnrad 78 - die erste Stirnradstufe 70 - das erste Teilgetriebe 46 - die zweite Stirnradstufe 86. Fig. 2 zeigt in einer schematischen Darstellung eine zweite Ausführungsform des Hybridantriebssystems 10. Bei der zweiten Ausführungsform ist der Rotor 26, insbesondere permanent, drehfest mit dem vierten Element 62 (zweites Sonnenrad) verbunden und hierdurch insbesondere permanent drehmomentübertragend gekoppelt. Während beispielsweise bei der ersten Ausführungsform die zweite Stirnradstufe 86 und/oder der Planetenradsatz 52 axial überlappend zu dem Rotor 26, insbesondere zur elektrischen Maschine 22, angeordnet ist, ist es bei der zweiten Ausführungsform vorgesehen, dass sich der Rotor 26, insbesondere der elektrischen Maschine 22, in axialer Richtung des jeweiligen Planetenradsatzes 50, 52 betrachtet vollständig sowohl an dem Planetenradsatz 52 als auch an die zweite Stirnradstufe 86 anschließt, insbesondere derart, dass in axialer Richtung des jeweiligen Planetenradsatzes 50, 52 betrachtet der Planetenradsatz 52, die zweite Stirnradstufe 86 und die elektrische Maschinen 22 in folgender Reihenfolge nacheinander angeordnet sind: Der Planetenradsatz 52 - die zweite Stirnradstufe 86 - die elektrische Maschine 22.
Fig. 3 zeigt eine dritte Ausführungsform des Hybridantriebssystems 10. Bei der dritten Ausführungsform ist der Rotor 26 permanent drehmomentübertragend mit dem ersten Element (erstes Sonnenrad) 54 gekoppelt. Dabei ist der Rotor 26 besonders vorteilhaft über eine dritte Stirnradstufe 98 permanent drehmomentübertragend mit dem ersten Element 54 gekoppelt.
Die dritte Stirnradstufe 98 weist besonders vorteilhaft ein drittes Eingangszahnrad 99 auf, welches drehfest mit dem ersten Element 54 verbunden ist und welches hinsichtlich der axialen Richtung zwischen der ersten Stirnradstufe 70 und dem ersten Schaltelement 80 angeordnet ist. Vorteilhaft steht ein drehfest mit dem Rotor 26 verbundenes Zahnrad permanent mit dem dritten Eingangszahnrad 99 in Eingriff oder ist mit dem dritten Eingangszahnrad 99 über eine weitere nicht dargestellte Stirnradstufe oder über einen Kettentrieb gekoppelt.
Außerdem ist bei der dritten Ausführungsform der Rotor 26, insbesondere die elektrische Maschine 22, axial überlappend zumindest zu dem ersten Planetenradsatz 50 angeordnet. Ganz besonders vorteilhaft (obwohl in Fig. 3 so nicht dargestellt) ist der Rotor 26 sowohl axial überlappend zu dem ersten Planetenradsatz 50 als auch axial überlappend zu dem zweiten Planetenradsatz 52 angeordnet.
Bei der dritten Ausführungsform entfällt das Schaltelement 96. Bei der dritten Ausführungsform sind die Stirnradstufen 70 und 86 und die elektrische Maschinen 22 vorteilhaft in axialer Richtung des jeweiligen Planetenradsatzes 50, 52 betrachtet in folgender Reihenfolge nacheinander angeordnet: erste Stirnradstufe 70 - elektrische Maschine 22 - zweite Stirnradstufe 86.
Bei der zweiten Ausführungsform hingegen sind die Stirnradstufen 70 und 86 und die elektrische Maschine 22 in axialer Richtung des jeweiligen Planetenradsatzes 50, 52 betrachtet in folgender Reihenfolge aufeinanderfolgend angeordnet: erste Stirnradstufe 70 - zweite Stirnradstufe 86 - elektrische Maschinen 22.
Bei der ersten Ausführungsform sind die elektrische Maschinen 22 und die zweite Stirnradstufe 86 zumindest teilweise axial überlappen zueinander angeordnet. Dies ist wie bei der zweiten Ausführungsform auch bei der dritten Ausführungsform der Fall, da sich bei der zweiten Ausführungsform und bei der dritten Ausführungsform die elektrische Maschine 22 in axialer Richtung des jeweiligen Planetenradsatzes 50, 52 betrachtet vollständig an die zweite Stirnradstufe 86 anschließt, und zwar bei der zweiten Ausführungsform in eine von der ersten Stirnradstufe 70 wegweisende Richtung bei der dritten Ausführungsform in eine zu der ersten Stirnradstufe 70 hinweisende Richtung.
Insgesamt ist erkennbar, dass das Getriebe 44 besonders vorteilhaft als Mehrstufengetriebe insbesondere auf Basis von gekoppelten Planetenradsätzen in Form der Planetenradsätze 50 und 52 und dabei insbesondere in achsparallele Ausführung mit geringer Verlustleistung dargestellt werden kann. Insbesondere lassen sich bis zu fünf hybridische beziehungsweise verbrennungsmotorische Vorwärtsgänge, mindestens drei elektrische Gänge und diverse stufenlose Fahrbereiche darstellen. Es kann eine große Spreizung erreicht werden. Hierzu kommen lediglich die genau zwei Planetenradsätze 50 und 52 insbesondere in Form von Einfachplanetenradsätzen, Stirnradübersetzungen in Form der Stirnradstufen 70 und 86 und, insbesondere genau, fünf oder sechs Schaltelemente zum Einsatz. Mindestens zwei der Schaltelemente können als formschlüssige Schaltelemente, insbesondere als Klauenkupplungen, insbesondere mit oder ohne Synchronisiereinheit ausgeführt werden, um dadurch Verluste besonders gering halten zu können. Es lassen sich gute Verzahnungswirkungsgrade und somit ein besonders verlustarmer Betrieb darstellen. Geschaffen werden kann ein koaxiales Planetenradsatzdesign mit zwei achsparallelen Abtrieben, besonders vorteilhaft für einen Frontantrieb in Quereinbau darstellbar ist. Die elektrische Maschine 22 kann koaxial oder achsparallel angeordnet werden.
Insbesondere im Falle einer achsparallelen Anordnung der elektrischen Maschinen 22 kann diese vorteilhaft hinten angeordnet werden. Eine koaxiale Anordnung der elektrischen Maschinen 22 bietet die Möglichkeit, in ihrem Inneren Schaltelemente zu platzieren. Wenigstens zwei der Schaltelemente können als Klauenschaltelemente beziehungsweise formschlüssige Schaltelemente realisiert werden, wobei weitere, formschlüssige Schaltelemente, insbesondere Klauenschaltelemente, denkbar sind, insbesondere über Verwendung der elektrischen Maschine 22. Beispielsweise kann das Schaltelement 96 entfallen, um damit die Teileanzahl, die Kosten, das Gewicht und der Bauraumbedarf besonders gering halten zu können. Eine mögliche Zugkraftkompensation ist über eine achsparallele Anordnung der elektrischen Maschinen 22 und insbesondere über eine entsprechende Übersetzung möglich.
Bezugszeichenliste
10 Hybridantriebssystem
12 Fahrzeugrad
14 Fahrzeugrad
16 Verbrennungsmotor
18 Zylindergehäuse
20 Zylinder
21 Antriebswelle
22 Elektrische Maschine
24 Stator
26 Rotor
28 Gehäuse
30 Achsgetriebe
32 Achsgetriebegehäuse
34 Achsgetriebeeingangsrad
36 Pfeil
38 Ausgleichsrad
40 Seitenrad
42 Seitenwelle
44 Getriebe
46 erstes Teilgetriebe
48 zweites Teilgetriebe
50 erster Planetenradsatz
52 zweiter Planetenradsatz
54 erstes Element
56 zweites Element
58 Drittes Element
60 Planetenrad
62 viertes Element
64 fünftes Element
66 Sechstes Element
68 Planetenrad
70 erste Stirnradstufe
72 Abtriebswelle erstes Ausgangszahnrad erstes Eingangszahnrad
Abtriebszahnrad erstes Schaltelement zweites Schaltelement drittes Schaltelement zweite Stirnradstufe zweites Ausgangszahnrad zweites Eingangszahnrad viertes Schaltelement fünftes Schaltelement sechstes Schaltelement dritte Stirnradstufe drittes Eingangszahnrad

Claims

Mercedes-Benz Group AG Patentansprüche
1. Hybridantriebssystem (10) für ein Kraftfahrzeug, mit:
- einem Verbrennungsmotor (16), welcher eine Antriebswelle (21) aufweist, über welche von dem Verbrennungsmotor (16) erste Antriebsdrehmomente zum Antreiben des Kraftfahrzeugs bereitstellbar sind,
- einer elektrischen Maschine (22), welche einen Rotor (26) aufweist, über welchen von der elektrischen Maschine (22) zweite Antriebsdrehmomente zum Antreiben des Kraftfahrzeugs bereitstellbar sind,
- einem Achsgetriebe (30), welches ein Achsgetriebeeingangsrad (34) aufweist, über welches das Achsgetriebe (30) antreibbar ist,
- einem Getriebe (44), welches ein erstes Teilgetriebe (46) und ein zweites Teilgetriebe (48) aufweist, wobei: o das erste Teilgetriebe (46) einen ersten Planetenradsatz (50) mit einem ersten Element (54), einem zweiten Element (56) und einem dritten Element (58) sowie einen zweiten Planetenradsatz (52) mit einem vierten Element (62), einem fünften Element (64) und einem permanent drehfest mit dem zweiten Element (56) verbundenen, sechsten Element (66) aufweist, o das zweite Teilgetriebe (48) eine erste Stirnradstufe (70) sowie eine Abtriebswelle (72) aufweist, o die erste Stirnradstufe (70) ein erstes Ausgangszahnrad (74) aufweist, welches koaxial zu der Abtriebswelle (72) angeordnet ist und mit einem drehfest mit dem dritten Element (58) verbundenen oder verbindbaren ersten Eingangszahnrad (76) kämmt, und o der Rotor (26) der elektrischen Maschine (22) derart mit einem der Elemente (54, 56, 58, 62, 64, 66) drehmomentübertragend gekoppelt oder koppelbar ist, dass das jeweilige, von der elektrischen Maschine (22) über den Rotor (26) bereitgestellte, zweite Antriebsdrehmoment an dem einen, drehmomentübertragend mit dem Rotor (36) gekoppelten oder koppelbaren Element (54, 56, 58, 62, 64, 66) in das Getriebe (44) einleitbar ist,
- einem Abtriebszahnrad (78), welches permanent drehtest mit der Abtriebswelle (72) verbunden ist und permanent mit dem Achsgetriebeeingangsrad (34) des Achsgetriebes (30) kämmt,
- einem ersten Schaltelement (80), welches dazu ausgebildet ist, die Antriebswelle (21) des Verbrennungsmotors (16) drehtest mit einem der Elemente (54, 56, 58, 62, 64, 66) zu verbinden, und
- einem dritten Schaltelement (84), welches dazu ausgebildet, das erste Element (54) drehtest mit dem fünften Element (64) zu verbinden, dadurch gekennzeichnet, dass ein zweites Schaltelement (82) vorgesehen ist, welches dazu ausgebildet ist, das erste Element (54) drehfest mit dem vierten Element (62) zu verbinden, wobei das zweite Teilgetriebe (48) eine zweite Stirnradstufe (86) aufweist, welche ein zweites Ausgangszahnrad (88) aufweist, welches drehtest mit der Abtriebswelle (72) verbunden ist und mit einem drehtest mit dem fünften Element (64) verbundenen oder verbindbaren zweiten Eingangszahnrad (90) kämmt, und wobei ein fünftes Schaltelement (94) vorgesehen ist, welches dazu ausgebildet ist, das zweite Eingangszahnrad (90) drehtest mit dem vierten Element (62) zu verbinden. Hybridantriebssystem (10) nach Anspruch 1 , dadurch gekennzeichnet, dass das erste Schaltelement (80) dazu ausgebildet ist, die Antriebswelle (21) drehtest mit dem ersten Element (54) zu verbinden. Hybridantriebssystem (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Hybridantriebssystem (10) insgesamt genau zwei Planetenradsätze aufweist, nämlich den ersten Planetenradsatz (50) und den zweiten Planetenradsatz (52). Hybridantriebssystem (10) nach Anspruch einem der vorhergehenden Ansprüche, gekennzeichnet durch ein viertes Schaltelement (92), welches dazu ausgebildet ist, das zweite Eingangszahnrad (90) drehtest mit dem fünften Element (64) zu verbinden. Hybridantriebssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in axialer Richtung des jeweiligen Planetenradsatzes (50, 52) betrachtet der Verbrennungsmotor (16), das Abtriebszahnrad (78), die erste Stirnradstufe (70), das erste Teilgetriebe (46) und die zweite Stirnradstufe (86) in folgender Reihenfolge nacheinander angeordnet sind: der Verbrennungsmotor (16) - das Abtriebszahnrad (78) - die erste Stirnradstufe (70) - das erste Teilgetriebe (46) - die zweite Stirnradstufe (86). Hybridantriebssystem (10) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein sechstes Schaltelement (96), welches dazu ausgebildet ist, das erste Element (54) drehfest mit einem Gehäuse (28) des Hybridantriebssystems (10) zu verbinden. Hybridantriebssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (26) der elektrischen Maschine (22) derart permanent drehmomentübertragend mit dem vierten Element (62) gekoppelt ist, dass das jeweilige, von der elektrischen Maschine (22) über den Rotor (26) bereitgestellte, zweite Antriebsdrehmoment an dem vierten Element (62) in das Getriebe (44) einleitbar ist. Hybridantriebssystem (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Rotor (26) der elektrischen Maschine (22) derart permanent drehmomentübertragend mit dem ersten Element (54) gekoppelt ist, dass das jeweilige, von der elektrischen Maschine (22) über den Rotor (26) bereitgestellte, zweite Antriebsdrehmoment an dem ersten Element (54) in das Getriebe (44) einleitbar ist. Hybridantriebssystem (10) nach Anspruch 8, gekennzeichnet durch ein drittes Eingangszahnrad (99), welches drehtest mit dem ersten Element (54) verbunden ist und welches axial zwischen der ersten Stirnradstufe (70) und dem ersten Schaltelement (80) angeordnet ist, wobei das jeweilige, von der elektrischen Maschine (22) über den Rotor (26) bereitgestellte, zweite Antriebsdrehmoment an dem dritten Eingangszahnrad (99) in das Getriebe (44) einleitbar ist. Kraftfahrzeug, mit einem Hybridantriebssystem (10) nach einem der vorhergehenden Ansprüche.
PCT/EP2023/054958 2022-03-09 2023-02-28 Hybridantriebssystem für ein kraftfahrzeug sowie kraftfahrzeug, insbesondere kraftwagen WO2023169871A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022000830.0 2022-03-09
DE102022000830.0A DE102022000830B4 (de) 2022-03-09 2022-03-09 Hybridantriebssystem für ein Kraftfahrzeug sowie Kraftfahrzeug, insbesondere Kraftwagen

Publications (1)

Publication Number Publication Date
WO2023169871A1 true WO2023169871A1 (de) 2023-09-14

Family

ID=85505564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/054958 WO2023169871A1 (de) 2022-03-09 2023-02-28 Hybridantriebssystem für ein kraftfahrzeug sowie kraftfahrzeug, insbesondere kraftwagen

Country Status (2)

Country Link
DE (1) DE102022000830B4 (de)
WO (1) WO2023169871A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080566A1 (de) 2011-08-08 2013-02-14 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe
DE102015223026A1 (de) 2015-11-23 2017-05-24 Avl List Gmbh Drehmomentübertragungsvorrichtung und Verfahren zum Betrieb einer Drehmomentübertragungsvorrichtung
DE102017006082A1 (de) 2017-06-28 2019-01-03 Daimler Ag Hybridantriebsvorrichtung, insbesondere mit einer Radsatzstruktur für ein dezidiertes Hybridgetriebe
DE102017222537A1 (de) * 2017-12-12 2019-06-13 Volkswagen Aktiengesellschaft Antriebsanordnung für ein Hybridfahrzeug
DE102018000183A1 (de) 2018-01-12 2019-07-18 Daimler Ag Getriebeeinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080566A1 (de) 2011-08-08 2013-02-14 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe
DE102015223026A1 (de) 2015-11-23 2017-05-24 Avl List Gmbh Drehmomentübertragungsvorrichtung und Verfahren zum Betrieb einer Drehmomentübertragungsvorrichtung
DE102017006082A1 (de) 2017-06-28 2019-01-03 Daimler Ag Hybridantriebsvorrichtung, insbesondere mit einer Radsatzstruktur für ein dezidiertes Hybridgetriebe
DE102017222537A1 (de) * 2017-12-12 2019-06-13 Volkswagen Aktiengesellschaft Antriebsanordnung für ein Hybridfahrzeug
DE102018000183A1 (de) 2018-01-12 2019-07-18 Daimler Ag Getriebeeinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen

Also Published As

Publication number Publication date
DE102022000830B4 (de) 2024-05-29
DE102022000830A1 (de) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2019007724A1 (de) Getriebevorrichtung für einen elektrischen antrieb eines kraftfahrzeugs, sowie elektrischer antrieb für ein kraftfahrzeug
EP2064081A1 (de) Elektrische achsantriebsbaugruppe
DE102018000183B4 (de) Getriebeeinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102021204618A1 (de) Hybridgetriebevorrichtung und Kraftfahrzeug mit einer Hybridgetriebevorrichtung
WO2023148325A1 (de) Elektrische antriebseinheit für ein kraftfahrzeug, insbesondere für einen kraftwagen
WO2023148327A1 (de) Elektrische antriebseinheit für ein kraftfahrzeug, insbesondere für einen kraftwagen
DE102018000195B4 (de) Getriebeeinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102022000830B4 (de) Hybridantriebssystem für ein Kraftfahrzeug sowie Kraftfahrzeug, insbesondere Kraftwagen
DE102022000974B4 (de) Hybridantriebssystem für ein Kraftfahrzeug sowie Kraftfahrzeug, insbesondere Kraftwagen
DE102022001147B3 (de) Hybridantriebssystem für ein Kraftfahrzeug sowie Kraftfahrzeug, insbesondere Kraftwagen
WO2023198430A1 (de) Hybridantriebssystem für ein kraftfahrzeug sowie kraftfahrzeug, insbesondere kraftwagen
WO2023194125A1 (de) Hybridantriebssystem für ein kraftfahrzeug sowie kraftfahrzeug, insbesondere kraftwagen
WO2020001859A1 (de) Getriebeeinrichtung für ein kraftfahrzeug, insbesondere für einen kraftwagen
DE102021213311B4 (de) Hybridgetriebevorrichtung und Kraftfahrzeug mit einer Hybridgetriebevorrichtung
DE102021208567B3 (de) Getriebe und Antriebsstrang für ein Fahrzeug
DE102021006118B3 (de) Elektrisches Antriebssystem für ein Kraftfahrzeug mit zwei Elektromotoren und schaltbarer Torque- Vectoring-Funktion
DE102019207884B4 (de) Getriebeanordnung für ein Hybridfahrzeug sowie Hybridfahrzeug
WO2023135246A1 (de) Hybridantriebssystem für ein kraftfahrzeug, insbesondere für einen kraftwagen
WO2022100919A1 (de) Hybridantriebseinrichtung für ein kraftfahrzeug, insbesondere für einen kraftwagen
WO2024046747A1 (de) Hybridantriebssystem für ein kraftfahrzeug, insbesondere für einen kraftwagen, sowie kraftfahrzeug
WO2024046749A1 (de) Hybridantriebssystem für ein kraftfahrzeug, insbesondere für einen kraftwagen
WO2023126183A1 (de) Elektrische antriebsvorrichtung für ein kraftfahrzeug, insbesondere für einen kraftwagen
DE102021004615A1 (de) Antriebseinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102022210575A1 (de) Getriebe und Antriebsvorrichtung für ein Kraftfahrzeug
WO2023217514A1 (de) Elektrische antriebsvorrichtung für ein kraftfahrzeug mit zwei elektromotoren und torque-vectoring-funktion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23709332

Country of ref document: EP

Kind code of ref document: A1