WO2023169191A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023169191A1
WO2023169191A1 PCT/CN2023/077148 CN2023077148W WO2023169191A1 WO 2023169191 A1 WO2023169191 A1 WO 2023169191A1 CN 2023077148 W CN2023077148 W CN 2023077148W WO 2023169191 A1 WO2023169191 A1 WO 2023169191A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
mode
indication information
time
immediate mode
Prior art date
Application number
PCT/CN2023/077148
Other languages
English (en)
French (fr)
Inventor
狐梦实
韩霄
杜瑞
娜仁格日勒
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210439969.3A external-priority patent/CN116781208A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023169191A1 publication Critical patent/WO2023169191A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the embodiments of the present application relate to the field of wireless communication technology, and more specifically, to a communication method and a communication device.
  • Wi-Fi wireless fidelity
  • CSI channel state information
  • WLAN wireless local area network
  • WLAN sensing technology supports trigger-based feedback processes and non-trigger-based feedback processes.
  • the trigger-based feedback process two feedback modes, immediate mode and delayed mode, are supported.
  • the feedback efficiency based on these two feedback modes is not high.
  • This application provides a communication method that can improve the efficiency of sensory feedback.
  • a communication method which method includes:
  • the first device sends first information to the second device, and the first information indicates the filling requirement of the first device for the trigger frame, and the filling requirement is for perception;
  • the first device receives a trigger frame from the second device, where the trigger frame has the padding bits for perception, and the padding bits are determined according to the padding requirement.
  • a communication method which method includes:
  • the second device receives the first information from the first device, and the first information indicates the first device's filling requirements for the trigger frame, and the filling requirements are for sensing;
  • the second device sends a trigger frame to the first device, where the trigger frame has padding bits for the sensing, and the padding bits are determined according to the padding requirement.
  • the first device sends the first information to the second device in advance to indicate to the second device its filling requirement for the trigger frame, and the filling requirement is for perception.
  • the second device fills according to the first information indication Requirement, the trigger frame sent to the first device has padding bits for sensing. Since the padding bits for sensing are determined based on the padding requirement indicated by the first information, the padding requirement of the first device for the trigger frame is met. Therefore, after receiving the trigger frame, the first device has time to feed back to the second device the sensing content triggered by the trigger frame in the current measurement entity, thereby improving feedback efficiency.
  • the first information indicates a mapping relationship between requirement information and elements, wherein the requirement information is used to determine the filling bits and the feedback mode, and the elements include space One or more of the number of flows, the size of the resource unit RU, the number of bits, and the range of the bit number, and the feedback mode includes an immediate mode or a delayed mode.
  • the first device can not only determine the dynamic range of elements by itself, but also determine the filling requirements and feedback modes corresponding to different element ranges, which improves the flexibility of sensory feedback.
  • the first information indicates a mapping relationship between R pieces of demand information and R elements, and the R pieces of demand information and the R elements are in one-to-one correspondence, and R is a positive integer.
  • the first information also indicates:
  • the first information indicates the element, and the element has a mapping relationship with the requirement information, wherein the requirement information is used for the stuffing bits and feedback mode
  • the elements include one or more of the number of spatial streams, the size of the resource unit RU, the number of bits, and the range of the number of bits, and the feedback mode includes an immediate mode or a delayed mode.
  • the first device by presetting the mapping relationship between elements and demand information, the first device only needs the indication elements, which can save indication overhead.
  • the first information indicates the requirement information
  • the requirement information has a mapping relationship with elements, wherein the requirement information is used for the filling bits and the feedback mode. It is determined that the elements include one or more of the number of spatial streams, the size of the resource unit RU, the number of bits, and the range of the number of bits, and the feedback mode includes an immediate mode or a delayed mode.
  • the first device by presetting the mapping relationship between elements and demand information, the first device only needs to indicate the demand information, which can save indication overhead.
  • the requirement information is used to determine the filling bits and the feedback mode, including:
  • the requirement information is used to determine the minimum requirement of the stuffing bits and the feedback mode, and the minimum requirement is 0.
  • the requirement information indicates a delay mode, and in the delay mode, the minimum requirement of the first device for sensing padding bits is zero.
  • the requirement information indicates an immediate mode, and in this immediate mode the minimum requirement of the first device for perceived padding bits is zero.
  • mapping relationship between the demand information and elements also includes:
  • the first device's filling requirement for the trigger frame indicated by the requirement information is fixed; or,
  • the first device's filling requirement for the trigger frame indicated by the requirement information is fixedly set.
  • the filling demand indicated by the demand information is fixedly set, and the determination of the filling demand is no longer affected by other factors at this time. For example, once the measurement result of the perceptual measurement is greater than 8 spatial streams, the delay mode is adopted.
  • the element is the number of bits
  • the mapping relationship includes:
  • duration q indicates the filling requirement
  • p, q and r are all positive integers.
  • the requirement information only needs to indicate the values of some parameters involved in the mapping relationship (for example, p and/or q, or one or more of p, q, and r) to achieve dynamic indication comparison.
  • Complex mapping relationships can save instruction overhead.
  • mapping relationship between the number of bits p and the duration q satisfies the following relationship:
  • mapping relationship between the number of bits p, the duration q, and the preset number of bits threshold r satisfies the following relationship:
  • p, q and r are all positive integers, and the unit of q is microseconds.
  • the first information indicates one or more of the following:
  • a first index value indicating the filling requirement of the first device for the trigger frame and the immediate mode
  • the second index value indicating no filling requirement and the immediate mode
  • a third index value indicates that there is no filling requirement and the delay mode.
  • the trigger frame is used to trigger the first device to feedback a first type of sensing content
  • the first type of sensing content belongs to at least two types of feedback supported by the first device.
  • One of the sensing contents, the at least two types of sensing contents include channel state information CSI or truncated channel impulse response TCIR.
  • a communication method which method includes:
  • the first device receives a trigger frame from the second device, wherein the trigger frame does not have padding bits for perception under one or more of the following conditions;
  • threshold-based channel change collection phase between the NDPA phase of the sensing measurement and receiving the trigger frame and feeding back the sensing content
  • the first device uses the immediate mode to send the sensing content to the second device based on the trigger frame.
  • the fourth aspect provides a communication method, which includes:
  • the first device receives a trigger frame from the second device, and the trigger frame is used to trigger the first device to feedback the sensing content;
  • the first device sends the sensing content and second information to the second device according to the trigger frame.
  • the second information indicates the feedback mode of the sensing content.
  • the feedback mode is one of the following:
  • the fifth aspect provides a communication method, which method includes:
  • the first device sends first indication information to the second device, and the first indication information indicates the first length of time between the first device receiving the first PPDU and sending the second PPDU in immediate mode, and the second PPDU contains the measurement results for perception, The measurement results for perception are obtained based on the first PPDU;
  • the first device sends a second PPDU.
  • the first device sends the second PPDU, including:
  • the first device uses the immediate mode to send the second PPDU; or,
  • the first device uses the delay mode to send the second PPDU.
  • the method also includes:
  • the first device receives second indication information from the second device, and the second indication information instructs the first device to send the second PPDU in immediate mode or delayed mode, and the second indication information is determined based on the first indication information;
  • the first device sends the second PPDU, including:
  • the first device sends the second PPDU according to the second indication information.
  • the method also includes:
  • the first device sends third indication information to the second device.
  • the third indication information indicates that the time period between the first device receiving the first PPDU and sending the second PPDU must meet the first time length, or the third indication information indicates that the first time period must be satisfied.
  • a device requires the immediate mode to be used to send the second PPDU;
  • the first device sends the second PPDU, including:
  • the first device sends the second PPDU in immediate mode.
  • the time when the first device receives the first indication information is before the starting time of the NDP.
  • the first PPDU is an NDP
  • the time when the first device receives the second indication information is before the starting time of the NDP.
  • a sixth aspect provides a communication method, which method includes:
  • the second device receives the first indication information from the first device.
  • the first indication information indicates the first time period between the first device receiving the first PPDU and sending the second PPDU in immediate mode.
  • the second PPDU contains measurements for perception. As a result, the measurement result for perception is obtained based on the first PPDU;
  • the second device receives the second PPDU from the first device.
  • the second device receives the second PPDU from the first device, including:
  • the second device receives the second PPDU from the first device, and the second PPDU is sent in immediate mode; or,
  • the second device receives the second PPDU from the first device, and the second PPDU is sent in the delay mode.
  • the method also includes:
  • the second device sends second instruction information to the first device according to the first instruction information, and the second instruction information instructs the first device to send the second PPDU in immediate mode or delayed mode;
  • the second device receives the second PPDU from the first device, including:
  • the second device receives the second PPDU from the first device, where,
  • the second indication information instructs the first device to send the second PPDU in immediate mode
  • the second PPDU is sent in immediate mode
  • the second PPDU is sent in the delay mode.
  • the method also includes:
  • the second device receives the third indication information from the first device, and the third indication information indicates that the time period between the first device receiving the first PPDU and the first device sending the second PPDU must meet the first time length, or the third indication The information indicates that the first device requires the immediate mode to be used to send the second PPDU;
  • the second device receives the second PPDU from the first device, including:
  • the second device receives the second PPDU from the first device, and the second PPDU is sent in the immediate mode.
  • the time when the second device receives the first indication information is before the starting time of the NDP.
  • the first PPDU is an NDP
  • the time when the second device sends the second indication information is before the starting time of the NDP.
  • the first PPDU is an NDP.
  • the first duration is a duration between the end time of the NDP and the start time of the second PPDU sent by the first device in the immediate mode.
  • a seventh aspect provides a communication device having a method for implementing any one of the first, third, fourth and fifth aspects, or any possible implementation of these aspects. function.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • An eighth aspect provides a communication device having the function of implementing the method in the second aspect or the sixth aspect, or any possible implementation of these aspects.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the first aspect, the third aspect, the fourth aspect and the fifth aspect. any aspect, or a method in any possible implementation of these aspects.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the second aspect or the sixth aspect, or any possibility of these aspects. method in the implementation.
  • a communication device including a processor and a communication interface.
  • the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor.
  • the processor processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so that as shown in The method in any one of the first aspect, the third aspect, the fourth aspect and the fifth aspect, or any possible implementation of these aspects is executed.
  • a communication device including a processor and a communication interface.
  • the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor.
  • the processor processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so that as in the second aspect or the sixth aspect, or any of these aspects is possible.
  • the methods in the implementation are executed.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the computer instructions are run on a computer, as in any one of the first to sixth aspects, or methods in any possible implementation of these aspects are executed.
  • a fourteenth aspect provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code is run on a computer, any one of the first to sixth aspects, or these Methods in any possible implementation of any of the aspects are executed.
  • a fifteenth aspect provides a wireless communication system, including the communication device as described in the seventh aspect, and/or the communication device as described in the eighth aspect.
  • Figure 1 is an example of a system architecture suitable for embodiments of the present application.
  • Figure 2 is an example of a process for sensing measurement entities.
  • Figure 3 is another example of a process for sensing measurement entities.
  • Figure 4 is a schematic flow chart of the communication method provided by this application.
  • Figure 5 is a schematic block diagram of a communication device provided by this application.
  • Figure 6 is a schematic structural diagram of a communication device provided by this application.
  • Figure 7 is a schematic flow chart of another communication method provided by this application.
  • Figure 8 is an example of the duration between the first device receiving the first PPDU and sending the second PPDU.
  • Figure 9 is another example of the duration between the first device receiving the first PPDU and sending the second PPDU.
  • WLAN wireless local area network
  • IEEE 802.11 related standards such as 802.11a/b/g standard, 802.11n standard, 802.11ac standard, 802.11ax standard, 802.11bf standard or other future standards.
  • Figure 1 is an example of a system architecture suitable for embodiments of the present application.
  • the communication method provided by this application is suitable for data communication between an access point (AP) and one or more stations (station, STA) (for example, data communication between AP1 and STA1, STA2 ), also applies to data communication between APs (for example, data communication between AP1 and AP2), and data communication between STA and STA (for example, data communication between STA2 and STA3).
  • the embodiments of this application can also be applied to wireless local area network systems such as Internet of Things (IoT) networks or Vehicle to X (V2X).
  • IoT Internet of Things
  • V2X Vehicle to X
  • the embodiments of the present application can also be applied to other possible communication systems, such as long term evolution (long term evolution, LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (time division) system duplex (TDD), universal mobile telecommunication system (UMTS), global interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) communication system, and future Sixth generation (6G) communication system, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • 5G fifth generation
  • 6G Sixth generation
  • the access point can be an access point for a terminal (for example, a mobile phone) to enter a wired (or wireless) network. It is mainly deployed inside homes, buildings, and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also Can be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the access point can be a terminal with a Wi-Fi chip (such as a mobile phone) or a network device (such as a router).
  • the access point can be a device that supports the 802.11be standard.
  • the access point can also be a device that supports multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • the access point in this application can be a highly efficient (HE) AP or an extremely high throughput (EHT) AP, or it can be an access point suitable for a certain future generation of Wi-Fi standards.
  • HE highly efficient
  • EHT extremely high throughput
  • the site can be a wireless communication chip, wireless sensor or wireless communication terminal, etc., and can also be called a user.
  • the site can be a mobile phone that supports Wi-Fi communication function, a tablet computer that supports Wi-Fi communication function, a set-top box that supports Wi-Fi communication function, a smart TV that supports Wi-Fi communication function, or a smart TV that supports Wi-Fi communication function.
  • the site can support the 802.11be standard.
  • the site can also support multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • Sensing initiator the site that initiates a sensing process
  • sensing initiator a STA that initiates a WLAN sensing procedure.
  • Sensing responder A station that participates in a sensing process initiated by the sensing initiator
  • sensing responder a STA that participates in a WLAN sensing procedure initiated by a sensing initiator.
  • Sensing sending end The station that sends the physical layer protocol data unit (PPDU) used for sensing measurement during the sensing process;
  • PPDU physical layer protocol data unit
  • sensing transmitter a STA that transmits PPDUs used for sensing measurements in a sensing procedure.
  • Sensing receiver a station that receives the PPDU sent by the sensing sender and performs sensing measurements during the sensing process;
  • sensing receiver a STA that receives PPDUs sent by a sensing transmitter and performs sensing measurements in a sensing procedure.
  • triggering frame in this application can be two expressions: triggering frame and trigger frame involved in the 802.11 standard. Of these, the latter is a form of the former.
  • the former can be interpreted as a triggering frame or a frame carrying a TRS control field (triggering frame: a trigger frame or a frame carrying a TRS Control subfield).
  • TRS means triggered response scheduling (triggered response scheduling).
  • the trigger frames mentioned in this article include the above two forms of trigger frames without limitation.
  • the trigger frame includes a common info field and a user info list field.
  • the trigger frame may also include one or more of the following: frame control (frame control) field, duration (duration) field, receive address (receive address, RA) field, transmit address (transmit address, TA) field, padding (padding) ) field or frame check sequence (FCS, frame check sequence) field, etc.
  • frame control frame control
  • duration duration
  • receive address receive address
  • RA receive address
  • transmit address transmit address
  • TA transmit address
  • FCS frame check sequence
  • FCS frame check sequence
  • 802.11ax when an AP sends a PPDU containing a trigger frame encoded by binary convolutional code (BCC), it means that the AP will request a response from a non-AP STA. At this time, the AP needs to ensure that the number of bits following the last bit of SCH in the physical layer service data unit (PHY service data unit, PSDU) reaches at least L PAD,MAC .
  • L PAD, MAC N DBPS m PAD ,
  • N DBPS represents a non-high-throughput (HT), HT, very high throughput (VHT) or high efficient physical layer protocol data unit (HE PPDU)
  • HT non-high-throughput
  • VHT very high throughput
  • HE PPDU high efficient physical layer protocol data unit
  • N DBPS here can be replaced by N DBPS,u , which represents the value corresponding to user u.
  • m PAD For a PPDU other than HT, HT, or VHT, m PAD has the following expression:
  • m PAD For a HE PPDU, m PAD has the following expression:
  • m PAD the specific value of m PAD is informed based on the corresponding Trigger frame MAC Padding subfield in the MAC capability information indication field.
  • This field has 2 bits and can tell whether the filling bit requirement is 0 microseconds, 8 microseconds or 16 microseconds, that is, MinTrigProctime.
  • the reason for the formula to determine the value of m PAD here is that compared with the original PPDU, the duration corresponding to one symbol of HE PPDU is longer.
  • the symbol duration of the original PPDU can be 4 microseconds, while for HE PPDU, The duration corresponding to one symbol can be 16 microseconds. Therefore, when there are different duration requirements, the formula of m PAD All formulas can meet the corresponding requirements.
  • the sensing process can support trigger-based sensing processes and non-trigger-based sensing processes.
  • trigger frames can be used to trigger feedback from the peer device.
  • sensing devices can perform a process of sending and receiving sensing measurement entities based on trigger frames. Two examples of processes in measurement entities are given below.
  • the sensing initiator sends NDPA and null data packet (NDP) to the sensing responder.
  • the sensing responder can be the sensing receiver, and the sensing initiator can be the sensing sender.
  • two sensing receivers are taken as an example, such as sensing receiver 1 and sensing receiver 2.
  • the sensing initiator sends a trigger frame to the sensing responder to trigger feedback of sensing content.
  • the sensing responder can feed back a measurement report during the reporting phase.
  • the feedback measurement report can include channel state information (CSI).
  • CSI channel state information
  • only the time interval between adjacent two in NDPA, NDP, trigger frame and measurement report is short interframe space (SIFS) as an example.
  • Figure 3 is another example of a process for sensing measurement entities.
  • the sensing initiator sends NDPA and NDP to the sensing responder.
  • the sensing initiator sends a trigger frame A, and the trigger frame A triggers the sensing receiver to feedback the CSI change degree.
  • the sensing initiator will send a threshold to the sensing receiver, which is used to filter out the sensing receivers that need to feed back sensing content in the future.
  • the sensing receiver 1 and the sensing receiver 2 feed back the CSI change degree.
  • the sensing receiver 1 and the sensing receiver 2 compare the degree of CSI change perceived by each with the threshold from the sensing initiator.
  • the sensing receiving end does not need to prepare a frame for feedback of sensing content after the CSI change degree feedback. If the CSI change degree is greater than or equal to the threshold, the sensing receiving end needs to prepare a frame for feedback of sensing content after the CSI change degree feedback. For example, the degree of CSI change perceived by the sensing receiver 2 is less than the threshold, and the degree of CSI change perceived by the sensing receiver 1 is greater than the threshold. The sensing receiver 1 and the sensing receiver 2 each feed back the degree of CSI change.
  • the sensing receiver 2 since the CSI change degree perceived by the sensing receiver 2 is less than the threshold, the sensing receiver 2 does not prepare subsequent frames for feedback of sensing content, and the sensing receiver 1 prepares subsequent frames for feedback of sensing content.
  • the sensing initiating end receives the CSI change degree fed back from the sensing receiving end 1 and the sensing receiving end 2, and compares it with the set threshold. Through comparison, it is found that the CSI change degree from the sensing receiver 1 is greater than the threshold, and the CSI change degree from the sensing receiver 2 is less than the threshold. Therefore, the sensing initiator triggers the sensing receiver 1 to sense the content through trigger frame B. feedback.
  • the sensing initiating end filters the sensing receiving ends that need to feed back sensing content based on the set threshold. Based on the trigger frame B, the sensing receiving end 1 feeds back the sensing content to the sensing initiating end. For example, the sensing receiver 1 feeds back the CSI information measured by NDP.
  • the feedback process based on the trigger-based sensing process involves two feedback modes, namely immediate feedback mode and delayed feedback mode, which can also be referred to as immediate mode and delayed mode.
  • the device that receives the trigger frame informs the peer device that it can give immediate feedback or needs delayed feedback based on its own capabilities.
  • immediate mode feedback is the current or latest measured PPDU result
  • delayed mode feedback is the previous measured PPDU result.
  • the measured PPDU may be NDP (null data PPDU).
  • immediate mode and delayed mode can also be understood as being in the same
  • the measurement entity or the next y (y is an integer greater than or equal to 1) measurement entities feed back the sensing content triggered by the triggered frame feedback in the current measurement entity, for example, feedback sensing measurement results.
  • this application provides a communication solution, aiming to improve Efficiency of perceptual feedback.
  • the first device mentioned in the embodiments of this application is an example of a sensing receiver
  • the second device is an example of a sensing sender.
  • the first device is a device that receives a trigger frame for triggering perceptual feedback
  • the second device is a device that sends a trigger frame for triggering perceptual feedback.
  • the first device may be a STA
  • the second device may be an AP, such as AP1 and STA1.
  • the first device and the second device are both STAs in Figure 1, such as STA2 and STA3.
  • the first device and the second device are both APs, such as AP1 and AP2.
  • Figure 4 is a schematic flow chart of the communication method provided by this application.
  • the first device sends first information to the second device.
  • the first information indicates the first device's filling requirements for the trigger frame, and the filling requirements are for sensing.
  • the trigger frame is used to trigger the first device to send sensing content.
  • the sensing content may include one or more of the following: CSI, truncated channel impulse response (TCIR), or filter map.
  • the filter map includes one or more of distance, azimuth, altitude or Doppler information.
  • the filter map can be two-dimensional, three-dimensional, or four-dimensional.
  • the trigger frame may have one or more padding bits for multiple purposes.
  • the padding bits refer to padding bits for perception.
  • the stuffing bits for perception can also be understood as the stuffing bits added to the trigger frame in order to enable the perception receiving end to use immediate mode for perception feedback.
  • the padding bits for perception may be included in the trigger frame, for example, included in the padding field included in the trigger frame.
  • the padding bits for perception can be included in the Post-EOF A-MPDU (aggregate medium access control (MAC) protocol data unit) padding field.
  • MAC medium access control
  • EOF represents the end of frame (end of frame).
  • the padding bits for perception may be located after the trigger frame, for example, in the A-MPDU, it is implemented by aggregating other MPDUs afterwards, where the other MPDUs aggregated after the A-MPDU are considered are padding bits for perception.
  • the trigger frame has padding bits for perception. It can also be considered that the trigger frame is associated with padding bits for perception. In other words, the location of the padding bits for perception is not necessarily located in the trigger frame, but is the sensing transmitter. Added for trigger frames for perception.
  • the technical solution provided by this application adds padding bits for sensing to the trigger frame, so that the sensing receiving end can use the immediate mode.
  • Perceptual feedback In other words, the technical solution provided by this application is an immediate mode that meets certain filling requirements.
  • the sensing receiving end sends first information to the sensing transmitting end, and the first information indicates the sensing receiving end's sensing-specific filling requirements for the trigger frame.
  • the padding requirement for perception can be embodied in the length of time, the number of bits, the number of bytes, etc.
  • the unit of time length can be in microseconds, time slots or other forms.
  • the query can also be other parameters related to the length of time, such as the value of mPAD introduced below.
  • the time length can be obtained by performing some conversions and/or calculations on them.
  • the specific form of filling requirements is not limited in this application, and those skilled in the art can also adopt other methods.
  • the first device receives a trigger frame from the second device, where the trigger frame has the padding bits for perception, and the padding bits are determined according to the padding requirement.
  • method 400 may include step 430.
  • the first device uses the immediate mode to send the sensing content to the second device.
  • the sensing transmitting end learns in advance the sensing receiving end's filling requirements for the trigger frame, and thereby determines the filling bits of the trigger frame based on the filling requirements. , after adding padding bits, it can be ensured that the sensing receiving end can use immediate mode for sensing feedback, which improves feedback efficiency.
  • the first information indicates the first device's filling requirements for the trigger frame, and there may be multiple solutions.
  • the first information indicates one or more of the following:
  • the third index value indicates no filling requirement and delay mode.
  • immediate mode and delayed mode are two feedback modes when the first device feeds back sensing content based on trigger frames.
  • the immediate mode means that the first device can feed back the sensing content that is triggered to be fed back in the current measurement entity;
  • the delayed mode means that the first device can feed back the sensing content that is triggered to be fed back in the current measurement entity in the next y measurement entities.
  • the no padding requirement indicated by the second index value or the third index value may mean that the first device's minimum requirement for perceived padding bits is 0.
  • the second device sends The trigger frame may not have padding bits for sensing.
  • the first device has no filling requirements for the trigger frame, which means that the first device has no filling requirements for the trigger frame for perception, and has no filling requirements for other than the padding requirements for perception. It is determined that it can be the same as the provisions in the relevant standards involved in the WLAN system, for example, the same as the 802.11ax or 802.11be standard.
  • the trigger frame based on the indication of the first information from the first device, when the second device sends a trigger frame for sensing, the trigger frame only needs to meet the filling requirements for sensing indicated by the first information. , without considering other padding requirements as specified in 802.11ax.
  • the padding part of the trigger frame is that the second device also considers the trigger frame for sensing.
  • Filling requirements and other filling requirements as specified in 802.11ax are the sum of the perceived filling requirements and other filling requirements.
  • the first device has The padding requirement can be considered as an additional padding requirement for perception that needs to be met on the basis of meeting the padding requirement specified in 802.11ax.
  • the first device in the delay mode, has no additional padding requirements for sensing for the trigger frame (for example, the minimum requirement for padding bits for sensing is zero), but the trigger frame needs to satisfy As specified in 802.11ax, all trigger frames themselves need to meet the padding requirements, which can be indicated by existing relevant fields.
  • the first index value is 1, that is, the filling requirement indicated by the first index value is 16 ⁇ s.
  • the first index value is 2, that is, the filling requirement indicated by the first index value is 32 ⁇ s.
  • the first device has no filling requirements for the trigger frame. That is, the third index value indicates no filling requirement and delay mode.
  • the 8 values respectively indicate the filling requirement and feedback mode as shown in Table 1.
  • immediate mode means immediate mode without filling requirements
  • delayed mode means delayed mode without filling requirements
  • Other immediate modes are immediate modes with filling requirements. For example, “immediate mode and 16 ⁇ s” means that the filling requirement is 16 ⁇ s and it is immediate mode; “immediate mode and 32 ⁇ s” means that the filling requirement is 32 ⁇ s and it is immediate mode.
  • the first information only indicates a first index value.
  • the first information also indicates the second index value and the third index value.
  • the ID values in Table 1 and Table 2 are only examples and can also be other values, as long as different filling requirements can be distinguished, or the immediate mode delay mode without filling requirements can be used.
  • one or more of the first index value, the second index value, and the third index value can also be replaced by other representations other than numbers, such as letters or character strings.
  • the second index value can also be replaced by the string “immediate feedback” or “no need for additional padding” or “immediate mode”, etc.
  • the third index value can be replaced by "delayed feedback” or “delayed mode", etc., without making any changes. limited.
  • Table 1 uses different ID values to indicate different filling requirements.
  • the filling requirement indicated by the first index value can be characterized by a time length (for example, the time length in microseconds in Table 1), or can be characterized by other parameters.
  • the filling requirement can also be characterized by a number of bits. , number of bytes, etc., and can also be characterized by other parameters related to time length. It is characterized by a quantity, such as the value of mPAD introduced above.
  • the first information indicates whether the specific form of the first device's filling requirement for the trigger frame is unique. Those skilled in the art can also adopt other methods without limitation.
  • the filling requirements indicated by each of the first index value, the second index value or the third index value may be as shown in Table 2 :
  • SP_DELAY represents the sensing padding delay subfield value (sensing padding delay subfield value), which can be indicated in the capability interaction phase. That is, in this embodiment, the first information may specifically be SP_DELAY. It should be understood that the value of ID in Table 2 is the value of SP_DELAY.
  • the first information indicates one or more of the first index value, the second index value and the third index value” can also be replaced by "the first information indicates SP_DELAY".
  • N DBPS in formula (1) corresponds to 16 microseconds as an example. N DBPS can also take other values without limitation.
  • SP_DELAY can be used to calculate mPAD according to other calculation methods, such as linear relationship, exponential relationship, logarithmic relationship, etc.
  • m PAD and L PAD, MAC can also satisfy linear relationships, exponential relationships, logarithmic relationships or other calculation methods.
  • Formulas (1) and (2) are only examples.
  • L PAD and MAC are calculated based on different values of SP_DELAY, and different values of L PAD and MAC correspond to different filling requirements.
  • formula (1) and formula (2) are also applicable to the following embodiments and will not be repeated.
  • the m PAD involved in Table 3 to Table 5 below, combined with formula (1), can be converted into the demand for padding bits for perception.
  • Table 2 is only an example given to facilitate understanding of the filling requirements and feedback modes indicated by each index value.
  • the first device sends the first information to the second device, which may be at any suitable stage of the trigger-based sensing process.
  • the first information may be information for capability interaction, which may be interacted through frames such as association request (association request), probe request (probe request), or sensing measurement setup (sensing measurement setup).
  • the first information may be carried through different types of frames, such as control frames, management frames, data frames, etc., without limitation. More specifically, the first information can be carried in the highly efficient (HE) capability element and the extremely high throughput (EHT) capability element in the PPDU. For example, these elements include the perception capability element, The first information may be carried in the perceptual capability element.
  • HE highly efficient
  • EHT extremely high throughput
  • the first information indicates the filling requirement of the trigger frame by the first device.
  • the first device may also indicate a mode of sending the sensing content to the second device.
  • the first information and the information indicating the feedback mode of the sensing content may be indicated independently of each other, or may be indicated jointly, without limitation.
  • the filling requirement of the trigger frame by the first device can be applied not only to the immediate mode, but also to the delayed mode, without limitation.
  • the technical solution provided by this application can enable the first device to use the immediate mode to feed back the sensing content to the second device.
  • the immediate mode satisfies the first device's sensing-specific filling requirements for the trigger frame.
  • An immediate mode When the filling requirement of the first device for the trigger frame is applicable to the delay mode, the first device sends first information to the second device, and the first information indicates the first device's perceived filling requirement and delay for the trigger frame. model.
  • the first information may indicate the mapping relationship between the requirement information and one or more elements, such as the following solution 2.
  • the demand information is used to determine the padding bits and feedback mode for perception.
  • the feedback mode may include immediate mode or delayed mode, and the elements include one or more of the following: the number of spatial streams, the number of resource units Size, number of bits, range of number of bits, etc.
  • the number of bits may be the number of bits fed back by the first device, for example, the number of bits of CSI information fed back by the first device; or, the number of bits may be the same as the number of bits.
  • the number of bits involved in the calculation related to perceptual feedback for example, the number of bits involved in the first device's calculation when feeding back the CSI change degree, etc., is not limited.
  • elements refer to components that require attention when considering padding bits for perception.
  • the elements listed here are only examples, and other elements can also be used without limitation.
  • the first information indicates a mapping relationship between requirement information and elements, where the requirement information is used for the determination of the padding bits and feedback mode for perception.
  • the first information indicates the mapping relationship between the R pieces of demand information and the R elements. There is a one-to-one correspondence between the R pieces of demand information and the R elements, and R is a positive integer.
  • Table 3 is used as an example for explanation below.
  • the first information indicates 8 demand information and 8 elements
  • immediate mode and m PAD B
  • ..., immediate mode and m PAD H
  • the eight elements are respectively [a0, b0], [a1, b1], ..., [a7, b7].
  • the elements are ranges of bit numbers. Each bit number range uniquely corresponds to one requirement information, and each requirement information can be used to determine the first device's filling requirement for the trigger frame.
  • the first information may also indicate the value of R.
  • R is 8.
  • the R elements may be the same elements.
  • the R elements are R bit number ranges, and each bit number range corresponds to one piece of demand information among the R pieces of demand information.
  • the R bit number range includes a first bit number range [a1, b1]
  • [a1, b1] is [5000, 10000]
  • the first device is for triggering
  • the filling requirement of the frame is 16 ⁇ s.
  • the first device can use the immediate mode to feedback the sensing content.
  • [a2, b2] is [10001, 100000]
  • the filling requirement for the trigger frame is 32 ⁇ s.
  • the first device can use the immediate mode to feedback the sensing content.
  • the immediate mode and the delayed mode are compatible, and the mapping relationship indicated by the first information may be as shown in Table 4 or Table 5.
  • Table 4 and Table 5 are only examples of the mapping relationship between elements and demand information, and do not limit the specific mapping relationship.
  • the mapping relationship between the bit number range and the requirement information can satisfy one, several, or all rows in Table 4 or Table 5.
  • the limit values of the bit number range can be indicated using a number of bits (for example, x bits).
  • a number of bits for example, x bits.
  • the bit number range can be indicated in the form of using the base 2 and the index represented by x bits as the power of the exponent.
  • the limit value of each bit number range is the power of the base 2 and the index.
  • the maximum range of the number of bits that can be indicated can reach 2 15 .
  • the bounds other than + ⁇ are raised to the power of the base 2 index represented by x bits, and one of the multiple indices represented by the x bits is The index can directly indicate positive infinity or 0.
  • 4 bits can be used to represent indexes 0 to 15.
  • the last index 15 can be selected to directly indicate positive infinity, and the first index 0 can be selected to indicate 0.
  • the bit number range can reach 2 a+w .
  • the bit number less than 2 w defaults to the requirement information corresponding to the bit number range in the first row.
  • the number of bits indicating these limit values can be reduced, thereby achieving the purpose of using a smaller number of bits to indicate a larger range of bit numbers.
  • the first information indicates the element, and the element has a mapping relationship with the demand information.
  • the requirement information is used to determine the stuffing bits and feedback mode.
  • the elements include one or more of the number of spatial streams, the size of the RU, the number of bits, and the range of the number of bits.
  • the feedback mode includes immediate mode. or delay mode.
  • the first information only indicates elements, but there is a mapping relationship between elements and demand information.
  • the mapping relationship may be preset.
  • the first device indicates the elements to the second device, and the second device can determine the feedback mode and the filling requirement of the trigger frame by the first device according to the preset mapping relationship, where the feedback mode includes immediate mode or delayed mode. time mode.
  • the first information indicates a 4-bit number range, which are 0 ⁇ a, a ⁇ b, b ⁇ c, c ⁇ + ⁇ .
  • the first information indicates the demand information, and the demand information has a mapping relationship with the element.
  • the first information only indicates demand information, but there is a mapping relationship between the demand information and elements, and the preset relationship may also be preset.
  • the first device indicates the requirement information to the second device, and the second device can determine the feedback mode and the filling requirement of the trigger frame by the first device according to the preset mapping relationship.
  • Feedback modes include immediate mode or delayed mode.
  • the mapping relationships between four elements and four pieces of demand information are preset, and the elements are in a bit number range, which are 0 ⁇ a, a ⁇ b, b ⁇ c, and c ⁇ + ⁇ respectively.
  • the remaining two demand information indicate the immediate mode or delayed mode without filling requirements.
  • the first information may indicate the mapping relationship, or the mapping relationship is agreed upon between the first device and the second device, or the mapping relationship is preconfigured.
  • the first information indicates elements or demand information, and may also implement feedback mode and first device pair triggering.
  • An indication of the padding requirements of the frame In each embodiment of the present application, unless otherwise specified, the trigger frame in the delay mode does not have padding bits for perception, or in other words, there is no padding requirement in the delay mode.
  • the element is a bit number range as an example.
  • the element can also be the number of bits, the size of the RU, the number of spatial streams, etc.
  • the specific implementations are similar and will not be described again.
  • the R elements in Solution 2 can also be different elements.
  • the demand information indicates the delay mode. It can be seen that at this time, the R pieces of demand information not only have a mapping relationship with the bit number range, but also have a mapping relationship with the size of the RU or the number of spatial streams. At this time, R pieces of demand information have a mapping relationship with multiple elements.
  • mapping relationship between the elements and the filling requirements indicated by the requirement information may be linear.
  • the first information indicates that additional time is required when the number of bits fed back by the first device is p. Long q microseconds.
  • p and q may be a fixed setting and the other is indicated by the first information, or both p and q may be indicated by the first information.
  • the first device informs the second device through the first information that it takes q microseconds for the first device to feedback p bits, the second device can know how much at least the amount of sensing data needs to be added if the first device's filling requirements for the trigger frame are to be met.
  • Fill bits The amount of padding bits that need to be increased at least for perception may be characterized by a duration.
  • mapping relationship is a linear mapping relationship
  • required additional time can be determined according to the following formula (3): (actual number of bits to be processed/p) ⁇ q (3)
  • the corresponding value can also be simplified according to regulations, for example, rounded up, rounded down, or in accordance with Formula (3) can be simplified after the calculation is completed, or it can be taken as a multiple of a certain value according to regulations, etc., without limitation.
  • mapping relationship between the elements and the filling requirements determined according to the requirement information may be non-linear.
  • mapping relationship between the number of bits and the filling requirement can be calculated according to formula (4): ((actual number of bits to be processed-r)/p) ⁇ q (4)
  • r is a threshold with a preset number of bits.
  • mapping relationship can be:
  • the filling demand or feedback mode indicated by the demand information is fixed; and/or,
  • the filling requirement or feedback mode indicated by the demand information is fixedly set.
  • the filling requirement or feedback mode indicated by the requirement information is fixedly set.
  • the set threshold in these examples may be fixedly set in the standard, or may be transmitted through signaling between the first device and the second device, without limitation.
  • the mapping relationship can be: once the number of bits that the first device needs to process is greater than a certain set threshold, or the number of spatial streams is greater than a certain set threshold, or the RU is greater than a certain set threshold, size, you can directly use the delay mode, or use a specified filling requirement.
  • the trigger frame is used to trigger the first device to feedback the sensing content.
  • the trigger frame is used to trigger the first device to feedback the first type of sensing content.
  • the first type belongs to one of at least two types of sensory content supported by the first device for feedback, and the at least two types
  • the type of sensing content includes CSI or truncated channel impulse response (truncated channel impulse response, TCIR) type.
  • different perceived content means different types of perceived content.
  • the sensing content is CSI and the sensing content is TCIR, which are two different types of sensing content.
  • the trigger frame sent by the second device may be used to trigger the first device to feedback a certain type of sensing content.
  • the first information indicates the first device's filling requirements for the trigger frame that triggers feedback of a certain type of sensing content.
  • trigger frame A triggers the first device to feedback CSI
  • the first information indicates the first device's filling requirements for trigger frame A.
  • Trigger frame B triggers the first device to feedback TCIR
  • the first information indicates the first device's filling requirements for trigger frame B.
  • the first information indicates the specific implementation of the filling requirement of the trigger frame by the first device, which can be implemented in any of the above-mentioned scheme 1 and scheme 2, without limitation.
  • the first device uses Solution 1 to indicate the first device's filling requirements for trigger frames.
  • Solution 1 For CSI type sensing content, the first device uses Solution 1 to indicate the first device's filling requirements for trigger frames.
  • Solution 2 For TCIR type sensing content, one of the implementation methods in Solution 2 is used to indicate the first device's trigger frame filling requirements. Frame padding requirements.
  • the same solution can be used to indicate the first device's filling requirements for respective trigger frames.
  • the above embodiments of Solution 1 and Solution 2 provide a method of adding the padding bits for perception to the trigger frame, so that the first device can use the immediate mode to feed back perception content to the second device. It can be understood that since the first device has indicated to the second device in advance the first device's filling requirements for the trigger frame, the second device can increase the padding bits for perception when sending the trigger frame, thereby satisfying the first device's requirements for the trigger frame.
  • the filling requirement of the trigger frame allows the first device to have enough time to receive the trigger frame and feedback the sensing content.
  • the efficiency of sensing content fed back by the sensing receiving end can be improved.
  • the mode of sensing content fed back by the sensing receiver is also more flexible.
  • the demand information is used to determine the perceived filling demand and feedback mode. Specifically, in the above embodiment, it may involve: the demand information indicates the immediate mode and the filling demand, or the demand information indicates Immediate mode and no fill requirement, or the demand information indicates delayed mode and no fill requirement.
  • the demand information may indicate immediate mode or delayed mode.
  • the following table a or table b is used as an example.
  • m PAD is a value other than 0 it implicitly indicates an immediate mode with filling requirements, and the value of m PAD is used to determine the specific filling requirements.
  • the demand information indicates "delay mode" it indicates a delay mode with no filling requirement. For example, as shown in Table c or Table d below.
  • the demand information when the demand information indicates a filling demand, it may indicate either an immediate mode or a delayed mode.
  • the time length indicated by the demand information is not zero, such as 16 microseconds, 32 microseconds, 64 microseconds or 128 microseconds, etc., which can represent the filling demand in the immediate mode or the filling demand in the delayed mode.
  • the first device uses the immediate mode to send the message to the second device.
  • the device sends sense content.
  • these situations may include one or more of the following:
  • threshold-based channel change collection phase between the NDPA phase of the sensing measurement and receiving the trigger frame and sending the sensing content
  • the first device is used to trigger the first device. Trigger frames for feedback-aware content may have no padding requirements.
  • the first device may have no filling requirement for the trigger frame by default, and the first device does not need to indicate to the second device.
  • the first device's filling requirement for the trigger frame may also be indicated by the first device to the second device.
  • the first device sends z-bit indication information to the second device, and the z-bit indication information indicates whether there is a minimum filling requirement in the above situation.
  • the z-bit indication information may include 2 bits and may indicate 4 situations, including the above three situations.
  • the z-bit indication information may include 1 bit to indicate that the first device does not have the minimum filling requirement when any of the above conditions is met.
  • the second device receives the first information from the first device, and knows in advance the first device's filling requirements for the trigger frame based on the first information, so that when sending the trigger frame, the second device is The trigger frame adds padding bits for sensing to meet the padding requirements of the first device for the trigger frame. Therefore, the first device can have time to feed back the sensing content triggered by the triggered frame feedback in the current measurement entity.
  • the first device indicates the feedback mode of the sensed content to the second device, such as solution 4.
  • the first device indicates the feedback mode of the perceived content to the second device in the feedback frame, and the feedback mode of the perceived content is one of the following:
  • the second device that sends the trigger frame does not need to know in advance or judge whether the first device that receives the trigger frame has time to feedback the sensing content that is triggered to be fed back in the current measurement entity.
  • the first device notifies the second device when sending the sensing content whether the sensing content belongs to immediate mode or delayed mode feedback. For example, the first device indicates immediate mode or delayed mode through 1 bit.
  • the first device receives a trigger frame from the second device, and the trigger frame is used to trigger the first device to send sensing content.
  • the first device sends the sensing content and second information to the second device, and the second information indicates a feedback mode of the sensing content, where the feedback mode is one of an immediate mode or a delayed mode.
  • the second information may be carried in a perceptual measurement report, or may exist in a CSI change degree feedback frame or the like.
  • the second device can learn whether the sensing content is fed back by the first device in the immediate mode or the delayed mode. For example, the second device can learn whether the sensing content is the sensing content that is triggered to be fed back in the current measurement entity, or whether it is the sensing content in the current measurement entity.
  • Perceptual content that is triggered to feedback in y (y is an integer greater than or equal to 1) measurement entities.
  • the sensing content fed back by the first device is the sensing content that is triggered to be fed back in the current measurement entity, that is, the immediate feedback mode Formula
  • the first device does not need to indicate to the second device in advance the filling requirements for sensing of the trigger frame.
  • the first device i.e., the sensing receiving end
  • the first information sent by the first device to the second device indicates the filling requirement of the first device for the trigger frame, and the filling requirement is for sensing.
  • the second device causes the sent trigger frame to meet the filling requirement based on the first information
  • the first device can use the immediate mode to feed back the sensing measurement results to the second device.
  • the first device indicates the first device's filling requirement for the trigger frame to the second device through the first information, so that the trigger frame sent by the second device meets the filling requirement.
  • the trigger frame meets the filling requirement, which means giving the first device more time to react and process, so that the first device can use the immediate mode to feed back (or report) the measurement results for perception to the second device.
  • the filling requirement of the trigger frame by the first device can also be understood as: in order for the first device to adopt the immediate mode for sensing feedback, after the NDPA detection phase (for example, it may be that the first device receives the NDPA detection phase (after the NDP); it can also be understood as: in order for the first device to use the immediate mode for sensing feedback, in the sensing measurement entity, and before the first device feeds back the measurement results for sensing. .
  • filling can be performed within the time period between the first device receiving the PPDU that needs to be measured and feeding back the measurement results obtained based on measuring the PPDU, and the filling can be The location is not limited.
  • some of the above-mentioned solutions or embodiments use additional filling time after the trigger frame as an example.
  • the first device in order for the first device to use the immediate mode to feed back the measurement results for perception to the second device, it is not limited to There are other ways to implement additional padding time after the trigger frame.
  • the first device indicates the filling requirement to the second device.
  • the filling requirement can be understood as: the first device receives the first PPDU and the first device uses the immediate mode to send the second PPDU. the first duration between.
  • the second PPDU includes a measurement result for perception, and the measurement result for perception is obtained by the first device by measuring the first PPDU.
  • the first device indicates the filling requirement in the signaling interaction with the second device to indicate under what circumstances the first device can use the immediate mode for feedback and under what circumstances it can use the delayed mode for feedback.
  • the signaling interaction between the first device and the second device may be during the measurement establishment phase.
  • the first device notifies the filling requirement in a measurement establishment request frame or a measurement establishment response frame.
  • null data packet announcement may also be called a null data physical layer protocol data unit announcement (NDPA).
  • Null data packets can also be called null data physical layer protocol data units (null data physical layer protocol data unit, NDP).
  • Figure 7 is a schematic flow chart of another communication method provided by this application.
  • the first device sends first indication information to the second device.
  • the first indication information indicates the first time length between the first device receiving the first PPDU and sending the second PPDU in immediate mode.
  • the second PPDU includes a measurement result for perception, and the measurement result for perception is obtained based on the first PPDU.
  • the second device receives the first indication information from the first device.
  • the first indication information indicates a first duration between the end time of the first PPDU and the start time of the second PPDU sent by the first device in the immediate mode.
  • the first duration can be understood as one of the following:
  • the shortest length of time between the first device receiving the first PPDU and sending the second PPDU in immediate mode or,
  • the expected duration for which the first device can send the second PPDU in immediate mode or,
  • satisfying the duration threshold can be: greater than or equal to the duration threshold; not meeting the duration threshold can be: being less than the duration threshold.
  • satisfying the duration threshold can be: greater than the duration threshold; not meeting the duration threshold can be: less than or equal to the duration threshold, without limitation.
  • the first device sends the second PPDU.
  • the first device sends the first indication information to the second device, that is, when it reports to the second device that it uses the immediate mode to send measurement results for perception. filling requirements.
  • the first device After receiving the first indication information, if the second device meets the filling requirements indicated by the first indication information, the first device will use the immediate mode feedback; otherwise, due to insufficient time for the first device to respond, process, etc., the first device will only Can feedback in delayed mode.
  • the first device Taking the filling requirement as the first duration as an example, if the duration between the first device receiving the first PPDU and the first device sending the second PPDU meets the first duration, the first device will use the immediate mode to send the second PPDU; if If the time period between when a device receives the first PPDU and when the first device sends the second PPDU does not meet the first time period, the first device uses the delay mode to send the second PPDU.
  • the time period between the first device receiving the first PPDU and the first device sending the second PPDU satisfies the first time length, which may mean that the first device receives the first PPDU and the first device sends the second PPDU.
  • the duration between the second PPDU is greater than or equal to the first duration; the duration between the first device receiving the first PPDU and the first device sending the second PPDU does not meet the first duration, which may mean that the first device receives the first PPDU.
  • the time period until the first device sends the second PPDU is less than the first time period. or,
  • the time period between the first device receiving the first PPDU and the first device sending the second PPDU satisfies the first time period, which may mean that the time period between the first device receiving the first PPDU and the first device sending the second PPDU is greater than the first time period. ;
  • the time between the first device receiving the first PPDU and the first device sending the second PPDU does not meet the first time length, which may mean that the time between the first device receiving the first PPDU and the first device sending the second PPDU is less than or It is equal to the first duration and there is no limit.
  • step 720 if the time period between the first device receiving the first PPDU and sending the second PPDU meets the first time length, the first device uses the immediate mode to send the second PPDU. If the time period between receiving the first PPDU and sending the second PPDU does not meet the first time period, the first device uses the delay mode to send the second PPDU.
  • the first PPDU is an NDP in the NDPA detection phase
  • the second PPDU is a PPDU containing measurement results for perception.
  • the time between the first device receiving the first PPDU and sending the second PPDU in immediate mode is the end time of NDP to the start time of the second PPDU sent by the first device in immediate mode.
  • Figure 8 is an example of the duration between the first device receiving the first PPDU and sending the second PPDU.
  • the first PPDU is the NDP in the NDPA detection phase
  • the second PPDU is the PPDU in the reporting phase that contains the measurement results for perception.
  • the measurement result for perception (or perception content) is obtained by the first device by measuring the NDP.
  • the first indication information specifically indicates the duration between the end time of the NDP and the start time of the second PPDU sent by the first device in the immediate mode.
  • the first duration may include SIFS between the NDP and the trigger frame and SIFS between the trigger frame and the second PPDU.
  • the first duration may include some of these SIFS.
  • the first duration may not include these SIFS.
  • the first duration may also be the length of any time period between the end time of the NDP and the start time of the second PPDU, without limitation.
  • the end time of the first PPDU may refer to the end time of the second device sending the first PPDU, or it may also refer to the end time of the first device receiving the first PPDU.
  • the starting time of the second PPDU may refer to the starting time of the second device sending the second PPDU, or may refer to the starting time of the second device receiving the second PPDU, without limitation.
  • the end time and start time can be in microseconds.
  • the measurement result for perception can also be understood as the measurement result for perception corresponding to the first PPDU, or the measurement result for perception obtained by measuring the first PPDU.
  • the measurement result for perception may be the measurement result for perception corresponding to NDP.
  • it can also be understood as the measurement results for perception obtained by measuring NDP, etc.
  • the first indication information may indicate the index value of any row in Table 6, and the filling requirements and corresponding feedback modes corresponding to the index values are as shown in Table 6.
  • the filling requirement is at least 64 ⁇ s, or 64 ⁇ s can also be considered as a duration threshold. If the duration threshold is met, the immediate mode will be used, and the duration threshold is not met. , then use delay mode.
  • the first indication information indicates the filling requirement corresponding to the index value of any row in Table 6 and the feedback mode corresponding to the filling requirement.
  • the first indication information may specifically be "immediate mode and 64 ⁇ s", indicating that the duration threshold is 64 ⁇ s. If it is greater than or equal to 64 ⁇ s, the immediate mode is used; conversely, if it is less than 64 ⁇ s, the delay mode is used.
  • the minimum time between them is 0 ⁇ s. If the time between receiving the first PPDU and sending the second PPDU is greater than or equal to 0 ⁇ s, the corresponding delay mode is adopted. Similarly, 0 ⁇ s can also be considered as the duration threshold. If the duration threshold is met, the delay mode is adopted.
  • the first device indicates to the second device the time requirement required for adopting the corresponding feedback mode through the first indication information.
  • the time requirement can be represented by a time duration threshold. If the first device receives If the time between the first PPDU and the sending of the second PPDU meets the time threshold, the first device uses the corresponding feedback mode to feed back the measurement results for the perception.
  • the duration threshold can be one of 0 ⁇ s, 64 ⁇ s, 96 ⁇ s, 128 ⁇ s or 256 ⁇ s as shown in Table 6, or it can also be other values representing the duration.
  • the first device adopts the delay mode.
  • the first device uses the immediate mode to provide feedback; otherwise, the first device can only use the delayed mode to provide feedback.
  • the first indication information may indicate an index value in any row in Table 7, and the filling requirement corresponding to each index value defaults to the filling requirement when the first device adopts the immediate mode.
  • the first indication information indicates that the index value is 1, indicating that the filling requirement of the first device in immediate mode is at least 64 ⁇ s. If it is greater than or equal to 64 ⁇ s, the immediate mode is used; if it is less than 64 ⁇ s, the delay mode is used.
  • the first indication information may also indicate the filling requirement corresponding to the index value of any row in Table 7, and the filling requirement defaults to the filling requirement when the first device adopts the immediate mode.
  • the filling requirements in Table 6 or Table 7 may be the minimum filling requirements, that is, the end time of the first PPDU At least the required length of time between the start time of the second PPDU and the start time of the second PPDU.
  • the duration corresponding to the filling requirement in Table 6 or Table 7 may be greater than the duration corresponding to the minimum filling requirement.
  • the minimum filling requirement of the first device in immediate mode is 8 microseconds.
  • the first device sends the first indication information.
  • the filling requirement indicated by the first indication information may be a duration greater than 8 microseconds, for example, 10 microseconds. .
  • the index value can be several bits, for example, m bits.
  • these m bits can be carried in the frame interaction process before NDP, for example.
  • these m bits can be carried in the perception measurement establishment request frame or the perception measurement establishment response frame.
  • the first device may also use x bits to directly indicate the filling requirement.
  • the first indication information may be x bits, and the values of these x bits represent the duration corresponding to the filling requirement.
  • the filling requirement is a first time period between the first device receiving the first PPDU and sending the second PPDU in immediate mode.
  • x 6, 000000 represents 0 ⁇ s, 000011 represents 3 ⁇ s, etc.
  • the first indication information is 000011, it means that the minimum time required for the first device to use the immediate mode to feedback the measurement results for perception is 3 ⁇ s.
  • the first indication information is a specific value, it can be used to indicate that the first device adopts the delay mode. The specific value can be determined by agreement or negotiation between the first device and the second device, without limitation.
  • the first device can use the corresponding feedback mode to provide feedback. Otherwise, due to insufficient response, processing, etc. time, the first device can only provide feedback in the delayed mode.
  • the first device sends first indication information to the second device, and the first indication information indicates the shortest length of time between the first device receiving the first PPDU and sending the second PPDU in immediate mode.
  • the second device needs to ensure that the duration between the end time of the first PPDU and the time when the first device reports the measurement result for sensing meets the minimum duration, that is, is greater than or equal to the minimum duration.
  • a possible implementation is that the filling requirement indicated by the first device to the second device through the first indication information must be satisfied by the second device by default.
  • the first device also sends third indication information to the second device, and the third indication information indicates the filling indicated by the first indication information.
  • the first device reports the measurement result for perception in an immediate mode.
  • the first device may also receive the second indication information from the second device.
  • the second device The instruction information instructs the first device to adopt the immediate mode.
  • the first device indicates to the second device through the third indication information that the first device requires the immediate mode.
  • the second device sends second instruction information to the first device according to the third instruction information, and the second instruction information instructs the first device to adopt the immediate mode.
  • the step of the first device sending the third indication information to the second device may be preceded by the step of the first device receiving the second indication information from the second device.
  • the minimum duration requirement may be finally determined through negotiation between the first device and the second device.
  • the second device if the index value indicated by the first indication information sent by the first device is 2, the second device must satisfy the end time of NDP until the first device reports the third message containing the measurement results for perception.
  • the time between the starting moments of the two PPDUs is greater than or equal to 96 ⁇ s, so that the first device can use the immediate mode to feedback the measurement results for sensing.
  • the first device sends first indication information to the second device, and the first indication information indicates a first time length between the first device receiving the first PPDU and sending the second PPDU in immediate mode. However, it depends on the second device whether the first device feeds back the measurement results for the perception in an immediate mode or a delayed mode. Specifically, the first device instructs the second device through the first indication information to use the immediate mode to feedback the filling requirement for the perceived measurement result. According to the first indication information, the second device may decide (or select) that the first device uses an immediate mode or a delayed mode to feedback the sensing measurement result.
  • the second device If the second device requires the first device to use the immediate mode to feedback the measurement results for perception, the second device sends second instruction information to the first device, and the second instruction information instructs the first device to use the immediate mode to send the second PPDU; or , if the second device needs the first device to use the delay mode to feedback the measurement results for perception, the second device sends the second instruction information to the first device, and the second instruction information instructs the first device to use the delay mode to send the second PPDU. It should be noted that in this embodiment, after the first device notifies the second device of the filling requirement, whether the filling requirement is met or not is decided by the second device whether the first device adopts the immediate mode or the delayed mode.
  • the second device instructs the first device to adopt the delay mode through the second indication information.
  • the second device can also instruct the first device to adopt the immediate mode through the second instruction information.
  • the first indication information when the first indication information is a certain index value, it indicates that the first device adopts the delay mode.
  • the first device can also instruct the first device to adopt the delay mode by carrying a separate field in the second PPDU.
  • the second PPDU carries 1 bit. When the value of this 1 bit is set to 1, it indicates that the second PPDU is sent in delay mode. When the value of this 1 bit is set to 0, it indicates that the second PPDU is sent in immediate mode. It can also be understood that the first device explicitly indicates in the second PPDU that the feedback mode of the second PPDU is the immediate mode or the delayed mode.
  • index values shown in Figure 6 or Figure 7 above and the filling requirements corresponding to each index value are all examples. These index values can also be expressed in other ways.
  • Each table The duration corresponding to the filling requirement in can also be other values without limitation.
  • the filling requirement may be a filling duration requirement (for example, the first duration), or may be a minimum filling duration requirement required for the first device to adopt the immediate mode, or may also be a requirement for the first device to adopt the immediate mode. At least the need for padding bits etc.
  • the filling requirement may be that the second device adds more stages between the NDPA stage and the reporting stage, such as adding a detection stage based on a trigger frame; it may also be to increase the sending time of a certain frame, for example, in a frame carrying a trigger frame. Adding stuffing bits, etc. to the PPDU is not restricted. In fact, as long as the first device can obtain more processing time before reporting the measurement results for perception, so that the first device can have time to use the immediate mode to feedback the measurement results for perception.
  • the process of the perceptual measurement entity shown in Figure 2 is used as an example to illustrate the filling requirements.
  • the filling requirements are similar and can be shown in Figure 9 .
  • Figure 9 is another example of the duration between the first device receiving the first PPDU and sending the second PPDU.
  • the first device feeds back the degree of CSI change to the second device.
  • the filling requirement at this time may refer to the time from the end of the NDPA detection phase (that is, the end of the NDP in the NDPA detection phase) to the first The minimum length of time required between the moments when the device sends measurement reports (including the degree of CSI change).
  • the filling requirements in the above embodiments are illustrated by taking the duration as an example.
  • it can also be other quantities corresponding to the duration that can indicate the filling requirements, such as the number of bits, etc., without limitation.
  • the first device adopts the immediate mode or the delayed mode
  • the duration requirement is used as an example for explanation.
  • the duration requirement in the above embodiment can also be replaced by requirements for other parameters, such as the number of spatial streams, the size of the resource unit, the bandwidth size, the feedback size, etc. Taking spatial streams as an example, if the number of spatial streams for sensing measurement results that the first device needs to feed back is greater than 4, the first device adopts the delayed mode, otherwise the first device adopts the immediate mode. Based on the above embodiments designed based on duration, those skilled in the art can know how to apply parameters other than duration, which will not be described again.
  • the first device indicates to the second device the time requirement for using the immediate mode through the first indication information.
  • This duration requirement can also be used in association with other elements related to the feedback mode to achieve more precise indication of duration requirements.
  • the elements may include one or more of the number of spatial streams, the size of the RU, the number of bits, and the range of the number of bits.
  • the first device sends first indication information to the second device, and the first indication information instructs the first device to use the immediate mode to feedback the duration requirement for the sensing measurement results.
  • the duration requirement indicated by the first indication information may include more than one duration requirement, and each duration requirement is associated with several (may be one or more) elements related to the feedback mode.
  • the duration requirements indicated by the first instruction information include: duration requirement 1, duration requirement 2, duration requirement 3 and duration requirement 4.
  • the duration requirement 1 is the duration requirement when the number of spatial streams fed back by the first device is Q and the immediate mode feedback is adopted;
  • the duration requirement 2 is the duration when the number of spatial streams fed back by the first device is R and the immediate mode feedback is adopted.
  • duration requirement 3 is the duration requirement when the bandwidth fed back by the first device is m, the number of spatial streams is z, and immediate mode feedback is used;
  • duration requirement 4 is the RU size fed back by the first device is n, and immediate mode feedback is used.
  • duration requirement 1 and duration requirement 2 are both associated with the number of spatial streams
  • duration requirement 3 is associated with bandwidth and the number of spatial streams
  • duration requirement 4 is associated with the size of the RU.
  • the second device In the NDPA phase, if the second device indicates that the number of spatial streams that need to be fed back by the first device is Q, the second device can also determine based on the first indication information that the first device uses the immediate mode to feedback the NDP corresponding measurements in the NDPA detection phase.
  • the duration requirement of the result is specifically duration requirement 1. If the second device indicates that the number of spatial streams that the first device needs to feed back is R, the second device can determine the specific time requirements for the first device to use the immediate mode to feedback the measurement results corresponding to the NDP in the NDPA detection phase according to the first indication information. For the duration requirement 2.
  • Figure 5 is a schematic block diagram of a communication device provided by this application.
  • the communication device 1000 includes a processing unit 1100 , a receiving unit 1200 and a sending unit 1300 .
  • the communication device 1000 may correspond to the first device in the embodiment of the present application.
  • each unit of the communication device 1000 is used to implement the following functions:
  • the first indication information indicates the first time period between the first device receiving the first PPDU and sending the second PPDU in immediate mode.
  • the second PPDU includes a measurement result for perception, which is for perception. The measurement results are obtained based on the first PPDU;
  • the sending unit 1300 is used for:
  • the second PPDU is sent in immediate mode
  • the delay mode is used to send the second PPDU.
  • the receiving unit 1200 is configured to receive second indication information from the second device.
  • the second indication information instructs the communication device to send the second PPDU in immediate mode or delayed mode.
  • the information is determined based on the first indication information;
  • the sending unit 1300 is configured to send the second PPDU according to the second indication information.
  • the sending unit 1300 is also used to:
  • the third instruction information instructs the communication device that the time between receiving the first PPDU and sending the second PPDU must meet the first time length, or the third instruction information instructs the communication device to require immediate mode transmission.
  • the sending unit 1300 is configured to send the second PPDU in the immediate mode.
  • the first PPDU is NDP.
  • the first duration is the duration between the end time of the NDP and the start time of the second PPDU sent by the communication device in the immediate mode.
  • the time when the receiving unit 1200 receives the first indication information is before the starting time of the NDP.
  • the first PPDU is an NDP
  • the time when the receiving unit 1200 receives the second indication information is before the starting time of the NDP.
  • each unit of the communication device 1000 is used to implement the following functions:
  • the sending unit 1300 is configured to send first information to the second device.
  • the first information indicates the filling requirement of the communication device for the trigger frame, and the filling requirement is for perception;
  • the receiving unit 1200 is configured to receive a trigger frame from the second device, where the trigger frame has padding bits for perception, and the padding bits are determined based on padding requirements.
  • the first information indicates the mapping relationship between demand information and elements, where the demand information is used to determine filling bits and feedback modes, and the elements include the number of spatial streams, the size of the resource unit RU, and the number of bits. , one or more in the bit number range, and the feedback mode includes immediate mode or delayed mode.
  • the first information indicates the mapping relationship between the R pieces of demand information and the R elements.
  • the R pieces of demand information and the R elements are in one-to-one correspondence, and R is a positive integer.
  • the first information also indicates:
  • the first information indicates elements, and the elements have a mapping relationship with demand information, where the demand information is used to determine filling bits and feedback modes, and the elements include the number of spatial streams, the size of the resource unit RU, One or more of the number of bits, the range of the number of bits, and the feedback mode includes immediate mode or delayed mode.
  • the first information indicates demand information
  • the demand information has a mapping relationship with elements, where the demand information is used to determine filling bits and feedback modes, and the elements include the number of spatial streams and the size of the resource unit RU. , one or more of bit number, bit number range, and the feedback mode includes immediate mode or delayed mode.
  • demand information is used to determine filling bits and feedback modes, including:
  • the demand information is used to determine the minimum demand and feedback mode of filling bits, with the minimum demand being 0.
  • mapping relationship between demand information and elements also includes:
  • the first device's filling requirement for the trigger frame indicated by the requirement information is fixed; or,
  • the first device's filling requirement for the trigger frame indicated by the requirement information is fixed.
  • the element is the number of bits
  • the mapping relationship includes:
  • the duration q indicates the filling requirement
  • p, q and r are all positive integers.
  • mapping relationship between the number of bits p and the duration q satisfies the following relationship:
  • mapping relationship between the number of bits p, the duration q, and the preset number of bits threshold r satisfies the following relationship:
  • p, q and r are all positive integers, and the unit of q is microseconds.
  • the first information indicates one or more of the following:
  • the third index value indicates no filling requirement and delay mode.
  • the trigger frame is used to trigger the first device to feedback the first type of sensing content
  • the first type of sensing content belongs to one of at least two types of sensing content that the communication device supports feedback, and at least two One type of sensing content includes channel state information CSI or truncated channel impulse response TCIR.
  • the receiving unit 1200 is configured to receive a trigger frame from the second device, where, in one or more of the following situations, the trigger frame does not have padding bits for perception;
  • threshold-based channel change collection phase between the NDPA phase of the sensing measurement and receiving the trigger frame and feeding back the sensing content
  • the processing unit 1100 is configured to control the sending unit 1300 to send the sensing content to the second device in the immediate mode according to the trigger frame.
  • the receiving unit 1200 is used to receive a trigger frame from the second device, where the trigger frame is used to trigger the communication device to feedback the sensing content;
  • the processing unit 1100 is configured to control the sending unit 1300 to send the sensing content and second information to the second device according to the trigger frame.
  • the second information indicates the feedback mode of the sensing content, and the feedback mode is one of the following:
  • the communication device 1000 may correspond to the second device in the embodiment of the present application.
  • each unit of the communication device 1000 is used to implement the following functions:
  • Receiving unit 1200 used for:
  • the first indication information indicates the first time period between the first device receiving the first PPDU and sending the second PPDU in immediate mode, and the second PPDU contains measurement results for perception, the The measurement results for perception are obtained based on the first PPDU;
  • the second PPDU is sent in immediate mode if the time between the first device receiving the first PPDU and sending the second PPDU meets the first time length; or,
  • the second PPDU is sent in delay mode.
  • the sending unit 1300 is configured to send second instruction information to the first device according to the first instruction information, and the second instruction information instructs the first device to send the second instruction in immediate mode or delayed mode.
  • PPDU PPDU
  • the second indication information instructs the first device to send the second PPDU in immediate mode
  • the second PPDU is sent in immediate mode
  • the second PPDU is sent in the delay mode.
  • the receiving unit 1200 is used for:
  • Receive third indication information from the first device indicates that the time period between receiving the first PPDU and sending the second PPDU must meet the first time length, or the third indication information indicates that the first device requires Use immediate mode to send the second PPDU;
  • the second PPDU is sent in immediate mode.
  • the first PPDU is NDP.
  • the first duration is the duration between the end time of the NDP and the start time of the second PPDU sent by the first device in immediate mode.
  • the time when the receiving unit 1200 receives the first indication information is before the starting time of the NDP.
  • the first PPDU is an NDP
  • the time when the sending unit sends the second indication information is before the starting time of the NDP.
  • each unit of the communication device 1000 is used to implement the following functions:
  • the receiving unit 1200 is configured to receive first information from the first device.
  • the first information indicates the filling requirement of the first device for the trigger frame, and the filling requirement is for perception;
  • the sending unit 1300 is configured to send a trigger frame to the first device, where the trigger frame has padding bits for perception, and the padding bits are determined based on padding requirements.
  • the first information indicates a mapping relationship between demand information and elements, where the demand information
  • the information is used to determine the filling bits and feedback mode.
  • the elements include one or more of the number of spatial streams, the size of the resource unit RU, the number of bits, and the range of the number of bits.
  • the feedback mode includes immediate mode or delayed mode.
  • the first information indicates the mapping relationship between the R pieces of demand information and the R elements.
  • the R pieces of demand information and the R elements are in one-to-one correspondence, and R is a positive integer.
  • the first information also indicates:
  • the first information indicates elements, and the elements have a mapping relationship with demand information, where the demand information is used to determine filling bits and feedback modes, and the elements include the number of spatial streams, the size of the resource unit RU, One or more of the number of bits, the range of the number of bits, and the feedback mode includes immediate mode or delayed mode.
  • the first information indicates demand information
  • the demand information has a mapping relationship with elements, where the demand information is used to determine filling bits and feedback modes, and the elements include the number of spatial streams and the size of the resource unit RU. , one or more of bit number, bit number range, and the feedback mode includes immediate mode or delayed mode.
  • demand information is used to determine filling bits and feedback modes, including:
  • the demand information is used to determine the minimum demand and feedback mode of filling bits, with the minimum demand being 0.
  • mapping relationship between demand information and elements also includes:
  • the first device's filling requirement for the trigger frame indicated by the requirement information is fixed; or,
  • the first device's filling requirement for the trigger frame indicated by the requirement information is fixed.
  • the element is the number of bits
  • the mapping relationship includes:
  • the duration q indicates the filling requirement
  • p, q and r are all positive integers.
  • mapping relationship between the number of bits p and the duration q satisfies the following relationship:
  • mapping relationship between the number of bits p, the duration q, and the preset number of bits threshold r satisfies the following relationship:
  • p, q and r are all positive integers, and the unit of q is microseconds.
  • the first information indicates one or more of the following:
  • the third index value indicates no filling requirement and delay mode.
  • the trigger frame is used to trigger the first device to feedback the first type of sensing content
  • the first type of sensing content belongs to one of at least two types of sensing content that the communication device supports feedback, and at least two One type of sensing content includes channel state information CSI or truncated channel impulse response TCIR.
  • the receiving unit 1200 and the sending unit 1300 can also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the first device in addition to actions of sending and receiving.
  • the receiving unit 1200 is configured to perform the first device's
  • the sending unit 1300 is configured to perform the action of sending by the first device.
  • the sending unit 1300 performs the sending action of step 410 , and optionally also performs the sending action of step 430 .
  • the receiving unit 1200 performs the receiving action of step 420.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the second device in addition to actions of sending and receiving.
  • the receiving unit 1200 is configured to perform the receiving action of the second device, and the sending unit 1300 is configured to perform the sending action of the second device.
  • the receiving unit 1200 performs the receiving action of step 410 , and optionally also performs the receiving action of step 430 .
  • the sending unit 1300 performs the sending action of step 420.
  • FIG. 6 is a schematic structural diagram of a communication device provided by this application.
  • the communication device 10 includes: one or more processors 11 , one or more memories 12 and one or more communication interfaces 13 .
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the communication device 10 executes the method described in the embodiments of the present application. Processing performed by the first device or the second device.
  • the processor 11 may have the functions of the processing unit 1100 shown in FIG. 5
  • the communication interface 13 may have the functions of the receiving unit 1200 and/or the sending unit 1300 shown in FIG. 5 .
  • the processor 11 may be used to perform processing or operations performed internally by the communication device
  • the communication interface 13 may be used to perform operations of sending and/or receiving of the communication device.
  • the communication device 10 may be the first device in the method embodiment.
  • the communication interface 13 may be a transceiver of the first device.
  • a transceiver may include a receiver and/or a transmitter.
  • the processor 11 may be a baseband device of the first device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip (or chip system) installed in the first device.
  • communication interface 13 may be an interface circuit or an input/output interface.
  • the communication device 10 may be the second device in the method embodiment.
  • the communication interface 13 may be a transceiver of the second device.
  • a transceiver may include a receiver and/or a transmitter.
  • the processor 11 may be a baseband device of the second device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip (or chip system) installed in the second device.
  • communication interface 13 may be an interface circuit or an input/output interface.
  • the dotted box behind the device indicates that there can be more than one device.
  • the memory and the processor in the above device embodiments may be physically independent units, or the memory may be integrated with the processor, which is not limited herein.
  • this application also provides a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on the computer, the steps executed by the first device in each method embodiment of the application are caused. Operations and/or processing are performed.
  • This application also provides a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on the computer, the operations performed by the second device in each method embodiment of the application and /or processing is performed.
  • this application also provides a computer program product.
  • the computer program product includes computer program code or instructions.
  • the first device in each method embodiment of the application causes The operations and/or processing performed are performed.
  • the computer program product includes computer program code or instructions.
  • the operations performed by the second device in each method embodiment of the application and/or Processing is performed.
  • the present application also provides a chip, the chip includes a processor, a memory for storing a computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the first computer program installed with the chip
  • the device performs the operations and/or processing performed by the first device in any method embodiment.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit, etc.
  • the chip may further include the memory.
  • the application also provides a chip.
  • the chip includes a processor.
  • a memory used to store a computer program is provided independently of the chip.
  • the processor is used to execute the computer program stored in the memory, so that a second device equipped with the chip executes Operations and/or processes performed by the second device in any method embodiment.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit, etc.
  • the chip may further include the memory.
  • processors there may be one or more processors, one or more memories, and one or more memories.
  • the present application also provides a communication device (for example, it can be a chip or a chip system), including a processor and a communication interface.
  • the communication interface is used to receive (or input) data and/or information, and will receive The data and/or information is transmitted to the processor, the processor processes the data and/or information, and the communication interface is also used to output (or be referred to as output) the data and/or information processed by the processor. or information, so that the operations and/or processing performed by the first device in any method embodiment are performed.
  • the present application also provides a communication device (for example, it can be a chip or a chip system), including a processor and a communication interface.
  • the communication interface is used to receive (or input) data and/or information, and transfer the received Data and/or information are transmitted to the processor, the processor processes the data and/or information, and the communication interface is also used to output (or referred to as output) the data and/or information processed by the processor. , so that the operations and/or processing performed by the second device in any method embodiment are performed.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is used to execute a computer program or instructions stored in the at least one memory, The communication device is caused to perform the operations and/or processing performed by the first device in any method embodiment.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is used to execute a computer program or instructions stored in the at least one memory, so that the The communication device performs the operations and/or processing performed by the second device in any method embodiment.
  • this application also provides a wireless communication system, including the first device and the second device in the method embodiment of this application.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has the ability to process signals. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), or a field programmable gate array (field programmable gate array).
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the methods disclosed in the embodiments of the present application can be directly implemented by a hardware encoding processor, or executed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the methods provided by the above embodiments can be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product may include one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • numbers such as “first” and “second” are used in the embodiments of the present application to distinguish identical or similar items with basically the same functions and effects.
  • the first index value and the second index value are only used to distinguish different index values.
  • numbers such as “first” and “second” do not limit the number, size and execution order. And “first” and “second” are not necessarily different.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法和通信装置,在该方法中,感知接收设备提前向感知发送设备发送第一信息,以通过第一信息指示自己对于触发帧的填充需求,该填充需求是针对感知的。感知发送设备向感知接收设备发送具有所述针对感知的填充比特的触发帧,其中,所述填充比特是根据第一信息指示的所述填充需求确定的。因此,感知发送设备发送的触发帧是满足感知接收设备对于触发帧的填充需求的,从而使得感知接收设备有足够的时间接收触发帧并发送触发帧触发上报的感知内容,进而可以采用立即模式进行反馈,提高了感知接收端反馈感知内容的效率。

Description

通信方法和通信装置
本申请要求于2022年03月11日提交中国国家知识产权局、申请号为202210239627.7、申请名称为“通信方法和通信装置”的中国专利申请的优先权,以及于2022年4月25日提交中国国家知识产权局、申请号为202210439969.3、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术领域,更具体地,涉及一种通信方法和通信装置。
背景技术
在日常生活中,无线保真(wireless fidelity,Wi-Fi)设备发出的信号通常会经由各种障碍物的反射、衍射和散射后才被接收,这种现象使得实际接收到的信号往往是多路信号叠加得到的,即信道环境有可能变得复杂,但从另一个角度而言,这也为通过无线信号感知其所经过的物理环境带来了便利。通过分析被各种障碍物影响后的无线信号,如信道状态信息(channel state information,CSI)等,即可推断与感知周围环境,由此衍生出无线局域网(wireless local area network,WLAN)感知技术。由于Wi-Fi设备的广播部署以及感知需求的增加,利用普遍易获得的Wi-Fi设备进行感知是目前研究的热点。
目前WLAN感知技术中支持基于触发的反馈流程和基于非触发的反馈流程。在基于触发的反馈流程中,支持立即模式和延时模式两种反馈模式,然而基于这两种反馈模式的反馈效率并不高。
发明内容
本申请提供一种通信方法,可以提高感知反馈的效率。
第一方面,提供了一种通信方法,该方法包括:
第一设备向第二设备发送第一信息,第一信息指示第一设备对于触发帧的填充需求,所述填充需求是针对感知的;
第一设备接收来自于第二设备的触发帧,触发帧具有所述针对感知的填充比特,所述填充比特是根据所述填充需求确定的。
第二方面,提供了一种通信方法,该方法包括:
第二设备接收来自于第一设备的第一信息,第一信息指示第一设备对于触发帧的填充需求,所述填充需求是针对感知的;
第二设备向第一设备发送触发帧,触发帧具有针对所述感知的填充比特,所述填充比特是根据所述填充需求确定的。
在本申请的技术方中,第一设备提前向第二设备发送第一信息,以向第二设备指示自己对于触发帧的填充需求,该填充需求是针对感知的。第二设备根据第一信息指示的填充 需求,向第一设备发送的触发帧具有针对感知的填充比特。由于该针对感知的填充比特是根据第一信息指示的填充需求确定的,因此是满足第一设备对于触发帧的填充需求的。从而,第一设备接收到触发帧之后来得及在当前的测量实体中向第二设备反馈被触发帧触发上报的感知内容,提高了反馈效率。
在第一方面或第二方面的某些实现方式中,第一信息指示需求信息与要素的映射关系,其中,所述需求信息用于所述填充比特和反馈模式的确定,所述要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,所述反馈模式包括立即模式或延时模式。
在该技术方案中,第一设备不仅可以自己决定要素的动态范围,也可以决定不同要素范围各自对应的填充需求和反馈模式,提高了感知反馈的灵活性。
在第一方面或第二方面的某些实现方式中,第一信息指示R个需求信息与R个要素的映射关系,所述R个需求信息与所述R个要素是一一对应的,R为正整数。
在该实现方式中,可选地,第一信息还指示:
所述R的数值。
在第一方面或第二方面的某些实现方式中,第一信息指示所述要素,所述要素与所述需求信息具有映射关系,其中,所述需求信息用于所述填充比特和反馈模式的确定,所述要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,所述反馈模式包括立即模式或延时模式。
在该技术方案中,通过预设要素与需求信息的映射关系,第一设备仅需要指示要素,可以节省指示开销。
在第一方面或第二方面的某些实现方式中,第一信息指示所述需求信息,所述需求信息与要素具有映射关系,其中,所述需求信息用于所述填充比特和反馈模式的确定,所述要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,所述反馈模式包括立即模式或延时模式。
在该技术方案中,通过预设要素与需求信息的映射关系,第一设备仅需要指示需求信息,可以节省指示开销。
在第一方面或第二方面的某些实现方式中,所述需求信息用于所述填充比特和所述反馈模式的确定,包括:
所述需求信息用于所述填充比特的最低需求和所述反馈模式的确定,所述最低需求为0。
在该技术方案中,在一种可能的情况下,需求信息指示延时模式,以及在延时模式下,第一设备对于针对感知的填充比特的最低需求为零。或者,在另一种可能的情况下,需求信息指示立即模式,且在该立即模式下,第一设备对于针对感知的填充比特的最低需求为零。
在第一方面或第二方面的某些实现方式中,所述需求信息与要素的映射关系,还包括:
在所述要素的表征值大于或等于设定门限的情况下,所述需求信息所指示的第一设备对触发帧的填充需求是固定设置的;或者,
在所述要素的表征值小于或等于设定门限的情况下,所述需求信息所指示的第一设备对触发帧的填充需求是固定设置的。
在该技术方案中,在要素的表征值满足预设条件的情况下,需求信息所指示的填充需求是固定设置的,此时填充需求的确定不再受其它因素的影响。例如,感知测量的测量结果一旦大于8个空间流就采用延时模式,空间流数量的设定门限可以在通信协议标准中规定,或者也可以传输一个x值(例如,x=8)来指示,可以节省信令开销。
在第一方面或第二方面的某些实现方式中,所述要素为所述比特数目,所述映射关系包括:
所述比特数目p与时长q的映射关系;或者,
所述比特数目p与时长q以及预设比特数目门限r的映射关系;
其中,所述时长q指示所述填充需求,p,q和r均为正整数。
在该技术方案中,需求信息仅需要指示映射关系中涉及的一些参数的数值(例如,p和/或q,或者,p,q和r中的一个或多个),就能实现动态指示比较复杂的映射关系,可以节省指示开销。
在第一方面或第二方面的某些实现方式中,所述比特数目p与时长q的映射关系满足如下关系式:
(实际需要处理的比特数目/p)·q;和/或,
所述比特数目p与时长q以及预设比特数目门限r的映射关系满足如下关系式:
((实际需要处理的比特数目-r)/p)·q;
其中,p,q和r均为正整数,q的单位为微秒。
在第一方面或第二方面的某些实现方式中,第一信息指示如下一项或多项:
第一索引值,所述第一索引值指示第一设备对于触发帧的填充需求和所述立即模式;
第二索引值,所述第二索引值指示无所述填充需求和所述立即模式;
第三索引值,所述第三索引值指示无所述填充需求和所述延时模式。
在第一方面或第二方面的某些实现方式中,触发帧用于触发第一设备反馈第一类型的感知内容,所述第一类型的感知内容属于第一设备支持反馈的至少两个类型的感知内容之一,所述至少两个类型的感知内容包括信道状态信息CSI或截断信道冲击响应TCIR。
第三方面,提供一种通信方法,该方法包括:
第一设备接收来自于第二设备的触发帧,其中,在如下一种或多种情况下,触发帧不具有针对感知的填充比特;
在感知测量的数据分组宣告NDPA阶段和接收到触发帧并反馈感知内容之间存在触发帧探测阶段;
在感知测量的NDPA阶段和接收到触发帧并反馈感知内容之间存在基于阈值的信道变化收集阶段;或
在感知测量的NDPA阶段和接收到触发帧并反馈感知内容之间存在一个或多个其它阶段;
第一设备基于触发帧,采用立即模式向第二设备发送所述感知内容。
第四方面,提供一种通信方法,该方法包括:
第一设备接收来自于第二设备的触发帧,触发帧用于触发第一设备反馈感知内容;
第一设备根据触发帧,向第二设备发送所述感知内容和第二信息,所述第二信息指示所述感知内容的反馈模式,所述反馈模式为如下之一:
立即模式;
延时模式。
第五方面,提供一种通信方法,该方法包括:
第一设备向第二设备发送第一指示信息,第一指示信息指示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长,第二PPDU包含针对感知的测量结果,所述针对感知的测量结果是基于第一PPDU得到的;
第一设备发送第二PPDU。
结合第五方面,在第五方面的某些实现方式中,第一设备发送第二PPDU,包括:
若第一设备接收第一PPDU到发送第二PPDU之间的时长满足第一时长,第一设备采用立即模式发送第二PPDU;或者,
若第一设备接收第一PPDU到发送第二PPDU之间的时长不满足第一时长,第一设备采用延时模式发送第二PPDU。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:
第一设备接收来自于第二设备的第二指示信息,第二指示信息指示第一设备采用立即模式或者延时模式发送第二PPDU,第二指示信息是基于第一指示信息确定的;
第一设备发送第二PPDU,包括:
第一设备根据第二指示信息,发送第二PPDU。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:
第一设备向第二设备发送第三指示信息,第三指示信息指示第一设备接收第一PPDU到发送第二PPDU之间的时长必须满足所述第一时长,或者,第三指示信息指示第一设备要求采用立即模式发送第二PPDU;
第一设备发送第二PPDU,包括:
第一设备采用立即模式发送第二PPDU。
在第五方面或第第六方面的某些实现方式中,第一设备接收第一指示信息的时刻位于所述NDP的起始时刻之前。
在第五方面或第第六方面的某些实现方式中,第一PPDU为NDP,第一设备接收第二指示信息的时刻位于所述NDP的起始时刻之前。
第六方面,提供一种通信方法,该方法包括:
第二设备接收来自于第一设备的第一指示信息,第一指示信息指示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长,第二PPDU包含针对感知的测量结果,所述针对感知的测量结果是基于第一PPDU得到的;
第二设备接收来自于第一设备的第二PPDU。
结合第六方面,在第六方面的某些实现方式中,第二设备接收来自于第一设备的第二PPDU,包括:
若第一设备接收第一PPDU到发送第二PPDU之间的时长满足所述第一时长,第二设备接收来自于第一设备的第二PPDU,第二PPDU是采用立即模式发送的;或者,
若第一设备接收第一PPDU到发送第二PPDU之间的时长不满足所述第一时长,第二设备接收来自于第一设备的第二PPDU,第二PPDU是采用延时模式发送的。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:
第二设备根据第一指示信息,向第一设备发送第二指示信息,第二指示信息指示第一设备采用立即模式或者延时模式发送第二PPDU;
第二设备接收来自于第一设备的第二PPDU,包括:
第二设备接收来自于第一设备的第二PPDU,其中,
若第二指示信息指示第一设备采用立即模式发送第二PPDU,第二PPDU是采用立即模式发送的;或者,
若第二指示信息指示第一设备采用延时模式发送第二PPDU,第二PPDU是采用延时模式发送的。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:
第二设备接收来自于第一设备的第三指示信息,第三指示信息指示第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长必须满足第一时长,或者,第三指示信息指示第一设备要求采用立即模式发送第二PPDU;
第二设备接收来自于第一设备的第二PPDU,包括:
第二设备接收来自于第一设备的第二PPDU,第二PPDU是采用立即模式发送的。
结合第六方面,在第六方面的某些实现方式中,第二设备接收第一指示信息的时刻位于所述NDP的起始时刻之前。
结合第六方面,在第六方面的某些实现方式中,第一PPDU为NDP,第二设备发送第二指示信息的时刻位于所述NDP的起始时刻之前。
在第五方面或第第六方面的某些实现方式中,第一PPDU为NDP。
在第五方面或第第六方面的某些实现方式中,第一时长为NDP的结束时刻到第一设备采用立即模式发送的第二PPDU的起始时刻之间的时长。
第七方面,提供一种通信装置,所述通信装置具有实现第一方面、第三方面、第四方面和第五方面中的任一方面,或这些方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第八方面,提供一种通信装置,所述通信装置具有实现第二方面或或第六方面,或这些方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第九方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面、第三方面、第四方面和第五方面的任一方面,或这些方面的任一可能的实现方式中的方法。
第十方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第二方面或第六方面,或这些方面的任一可能的实现方式中的方法。
第十一方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第 一方面、第三方面、第四方面和第五方面的任一方面,或这些方面的任一可能的实现方式中的方法被执行。
第十二方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第二方面或第六方面,或这些方面的任一可能的实现方式中的方法被执行。
第十三方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面至第六方面的任一方面,或这些方面的任一可能的实现方式中的方法被执行。
第十四方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面至第六方面的任一方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十五方面,提供一种无线通信***,包括如第七方面所述的通信装置,和/或如第八方面所述的通信装置。
附图说明
图1为适用于本申请实施例的***架构的示例。
图2为感知测量实体的流程的一个示例。
图3为感知测量实体的流程的另一个示例。
图4为本申请提供的通信方法的示意性流程图。
图5为本申请提供的通信装置的示意性框图。
图6为本申请提供的通信装置的示意性结构图。
图7为本申请提供的另一种通信方法的示意性流程图。
图8为第一设备接收第一PPDU和发送第二PPDU之间的时长的一个示例。
图9为第一设备接收第一PPDU和发送第二PPDU之间的时长的另一个示例。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以适用于无线局域网(wireless local area network,WLAN)***,例如,可以适用于IEEE 802.11相关标准,例如802.11a/b/g标准、802.11n标准、802.11ac标准、802.11ax标准、802.11bf标准或未来的其它标准中。
参见图1,图1为适用于本申请实施例的***架构的示例。如图1,本申请提供的通信方法适用于接入点(access point,AP)与一个或多个站点(station,STA)之间的数据通信(例如,AP1与STA1、STA2之间的数据通信),也适用于AP与AP之间的数据通信(例如,AP1与AP2之间的数据通信),以及,STA与STA之间的数据通信(例如,STA2与STA3之间的数据通信)。
虽然本申请实施例主要以部署WLAN网络,尤其是应用IEEE 802.11***标准的网络为例进行说明,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,BLUETOOTH(蓝牙),高性能无线LAN(high performance  radio LAN,HIPERLAN)以及广域网(WAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请实施例还可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)等无线局域网***中。当然,本申请实施例还可以适用于其他可能的通信***,例如,长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)通信***,以及未来的第六代(6th generation,6G)通信***等。上述适用本申请的通信***仅是举例说明,适用本申请的通信***不限于此,在此统一说明,以下不再赘述。
其中,接入点可以为终端(例如,手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有Wi-Fi芯片的终端(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种WLAN制式的设备。本申请中的接入点可以是高效(high efficient,HE)AP或极高吞吐量(extremely high throughput,EHT)AP,还可以是适用未来某代Wi-Fi标准的接入点。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的多种WLAN制式。
为了便于理解本申请的技术方案,首先对本申请中涉及到的相关概念和技术作简单介绍。
感知发起端:发起一个感知过程的站点;
sensing initiator:a STA that initiates a WLAN sensing procedure.
感知响应端:参与一个由感知发起端发起的感知过程的站点;
sensing responder:a STA that participates in a WLAN sensing procedure initiated by a sensing initiator.
感知发送端:在感知过程内发送用于感知测量的物理层协议数据单元(physical protocol data unit,PPDU)的站点;
sensing transmitter:a STA that transmits PPDUs used for sensing measurements in a sensing procedure.
感知接收端:在感知过程内接收感知发送端发送的PPDU且进行感知测量的站点;
sensing receiver:a STA that receives PPDUs sent by a sensing transmitter and performs  sensing measurements in a sensing procedure.
另外,本申请中的触发帧可以为802.11标准中涉及到的triggering frame和trigger frame两种表述。其中,后者是前者的一种形式。前者可以解释为一个触发帧或者一个携带TRS控制域的帧(triggering frame:a trigger frame or a frame carrying a TRS Control subfield)。其中,TRS表示触发响应调度(triggered response scheduling)。本文中提及的触发帧包括上述两种形式的触发帧,不作限定。
例如,触发帧包括公共信息(common info)字段和用户信息列表(user info list)字段。该触发帧还可以包括以下一项或多项:帧控制(frame control)字段、时长(duration)字段、接收地址(receive address,RA)字段、发送地址(transmit address,TA)字段、填充(padding)字段或帧校验序列(FCS,frame check sequence)字段等。在802.11ax中涉及,当一个AP发送一个PPDU包含一个由二元卷积码(binary convolutional code,BCC)方式编码的触发帧时,表示AP将要向一个非AP的STA索取一个响应。此时,该AP需要确保物理层服务数据单元(PHY service data unit,PSDU)中跟随在SCH的最后一个比特后的比特数至少达到LPAD,MAC。SCH定义为下面二者之一:
(1)最后一个或唯一一个触发帧中的指向该STA的用户信息字段;
(2)PSDU中最后一个TRS控制(TRS Control)子字段
其中,LPAD,MAC遵循如下的计算方式:
LPAD,MAC=NDBPSmPAD
其中,NDBPS表示一个非高吞吐率(high-throughput,HT)、HT、非常高吞吐率(very high throughput,VHT)或者高效物理层协议数据单元(high efficient physical layer protocol data unit,HE PPDU)中的一个符号的数据比特。如果是高效多用户物理层协议数据单元(high efficient multiple user physical layer data unit,HE MU PPDU),此处的NDBPS可以替换为NDBPS,u,表示对应用户u的值。
对于一个非HT、HT、VHT的PPDU,mPAD有如下表示方式:
对于一个HE PPDU,mPAD有如下表示方式:
其中,mPAD的具体取值是基于MAC能力信息指示字段中的相应的Trigger frame MAC Padding子字段告知的。该字段有2个比特,可以告知的填充比特的需求是0微秒、8微秒或是16微秒,即告知MinTrigProctime。
这里确定mPAD的取值的公式产生的原因在于,HE PPDU相比于原来的PPDU,一个符号对应的时长变长,例如,原本的PPDU的符号时长可以为4微秒,而对于HE PPDU,一个符号对应的时长可以是16微秒。因此,当存在不同的时长要求时,通过该mPAD的公 式都可以达到对应要求。
另外,在WLAN感知技术中,感知流程可以支持基于触发的感知流程和基于非触发的感知流程。在基于触发的感知流程中,可以使用触发帧来触发对端设备的反馈。
在基于触发的感知流程中,在能力交互确认与测量建立等过程后,感知设备间可以进行基于触发帧的感知测量实体的发送和接收流程。下面给出测量实体中的流程的两个示例。
参见图2,图2为感知测量实体的流程的一个示例。
如图2,在空数据分组宣告(null data packet announcement,NDPA)探测阶段,感知发起端向感知响应端发送NDPA以及空数据分组(null data packet,NDP)。这种情况下,感知响应端可以为感知接收端,感知发起端可以为感知发送端。图2中以两个感知接收端为例,如感知接收端1和感知接收端2。感知发起端在报告阶段向感知响应端发送触发帧触发感知内容的反馈。感知响应端在报告阶段可以反馈测量报告,例如反馈测量报告可以包括信道状态信息(channel state information,CSI)。另外,图2中仅以NDPA、NDP、触发帧以及测量报告中相邻两者之间的时间间隔为短帧间间隔(short interframe space,SIFS)作为示例。
参见图3,图3为感知测量实体的流程的另一个示例。
如图3,在NDPA探测阶段,感知发起端向感知响应端发送NDPA以及NDP。在报告阶段的CSI变化程度反馈子阶段中,感知发起端发送触发帧A,触发帧A触发感知接收端反馈CSI变化程度。同时,感知发起端会向感知接收端发送一个阈值,该阈值用于筛选后续需要反馈感知内容的感知接收端。基于触发帧A,感知接收端1和感知接收端2反馈CSI变化程度。同时,感知接收端1和感知接收端2将各自感知到的CSI变化程度和来自于感知发起端的阈值进行比较。如果CSI变化程度小于该阈值,感知接收端不需要准备CSI变化程度反馈之后的用于反馈感知内容的帧。如果CSI变化程度大于或等于该阈值,感知接收端需要准备CSI变化程度反馈之后的用于反馈感知内容的帧。示例性地,感知接收端2感知到的CSI变化程度小于该阈值,感知接收端1感知到的CSI变化程度大于该阈值。感知接收端1和感知接收端2各自反馈CSI变化程度。之后,由于感知接收端2感知的CSI变化程度小于阈值,感知接收端2不准备后续的用于反馈感知内容的帧,感知接收端1准备后续的用于反馈感内容的帧。感知发起端接收来自于感知接收端1和感知接收端2反馈的CSI变化程度,并和设定的所述阈值比较。通过比较发现,来自于感知接收端1的CSI变化程度大于该阈值,来自于感知接收端2的CSI变化程度小于该阈值,因此,感知发起端通过触发帧B触发感知接收端1进行感知内容的反馈。可以发现,感知发起端基于设定的所述阈值,对需要反馈感知内容的感知接收端进行了筛选。基于触发帧B,感知接收端1向感知发起端进行感知内容的反馈。例如,感知接收端1反馈由NDP测量得到的CSI信息。
在基于触发的感知流程的反馈流程中涉及两种反馈模式,分别为立即反馈模式和延时反馈模式,也可以简称为立即模式和延时模式。接收触发帧的设备基于自己的能力告知对端设备自己可以立即反馈或是需要延时反馈。例如,立即模式:反馈的是当前或最近一次测量的PPDU结果;延迟模式:反馈的是前一次测量的PPDU结果。其中,测量的PPDU可以为NDP(null data PPDU)。可选地,立即模式和延时模式也可以理解为是在同一个 测量实体或是下y(y为大于或等于1的整数)个测量实体反馈当前测量实体中被触发帧触发反馈的感知内容,例如,反馈感知测量结果。
为了解决在延时模式下,当前测量实体中被触发帧触发反馈的内容需要延时到之后的测量实体才能反馈,导致反馈效率不高的问题,本申请提供一种通信的方案,旨在提高感知反馈的效率。
在本申请中考虑对触发帧增加针对感知的填充使得反馈流程更加高效。通过针对感知的填充,更多的设备将能够支持立即反馈。此外,针对感知的填充比特可以是动态变化的(例如,一个非AP的STA,在一些情况下可以使用延时模式而在另一些情况下可以使用立即模式)。下面会对本申请提出的各方案作详细介绍。
本申请各实施例中提及的第一设备为感知接收端的示例,第二设备为感知发送端的示例。或者说,第一设备为接收用于触发感知反馈的触发帧的设备,第二设备为发送用于触发感知反馈的触发帧的设备,以下不再重复说明。示例性地,第一设备可以为STA,第二设备可以为AP,如AP1和STA1。或者,第一设备和第二设备均为图1中的STA,如STA2和STA3。再或者,第一设备和第二设备均为AP,如AP1和AP2。
图4为本申请提供的通信方法的示意性流程图。
410、第一设备向第二设备发送第一信息,第一信息指示第一设备对于触发帧的填充需求,所述填充需求是针对感知的。其中,触发帧用于触发第一设备发送感知内容。例如,感知内容可以包括以下一项或多项:CSI、截断信道冲击响应(truncated channel impulse response,TCIR)、或者过滤图。其中,过滤图包括距离、方位角、高度或多普勒信息中的一个或者多个信息。例如,过滤图可以是二维、三维或四维的。
可选地,触发帧可能具有一种或多种用途的填充比特,在本申请的实施例中,若没有特别说明,填充比特均是指针对感知的填充比特。针对感知的填充比特也可以理解为,为了使感知接收端采用立即模式进行感知反馈而为触发帧增加的填充比特。在一种可能的实现中,该针对感知的填充比特可以包含在触发帧中,例如,包含于触发帧中自带的padding字段。在另一种可能的实现中,该针对感知的填充比特可以包含在Post-EOF A-MPDU(aggregate medium access control(MAC)protocol data unit)padding字段。其中,EOF表示帧结束(end of frame)。在另一种可能的实现中,该针对感知的填充比特可以位于触发帧之后,例如,在A-MPDU中通过在之后聚合其它MPDU来实现,其中,A-MPDU之后聚合的其它MPDU即被视为针对感知的填充比特。可替换地,触发帧具有针对感知的填充比特,也可以认为该触发帧关联有针对感知的填充比特,或者说,该针对感知的填充比特的位置不一定位于触发帧中,但是是感知发送端针对感知而为触发帧增加的。
在一种可能的实现方案中,根据上文对立即模式和延时模式的介绍可知,本申请提供的技术方案,通过为触发帧增加针对感知的填充比特,使得感知接收端可以采用立即模式进行感知反馈。也或者说,本申请提供的技术方案,是满足一定填充需求的立即模式。
具体地,感知接收端向感知发送端发送第一信息,第一信息指示感知接收端对于触发帧的针对感知的填充需求。
可选地,在本申请中,针对感知的填充需求可以体现为时间长度、比特数目、字节数目等。其中,时间长度的单位可以采用微秒、时隙或其它形式。此外,针对感知的填充需 求还可以是其它与时间长度有关的参量,例如下文介绍的mPAD的取值。示例性地,对于这些与时间长度有关的参量,可以通过对其进行一些转换和/或计算,得到时间长度。本申请中对于填充需求的具体形式不作限定,本领域技术人员还可以采用其它方式。
420、第一设备接收来自于第二设备的触发帧,触发帧具有所述针对感知的填充比特,该填充比特是根据所述填充需求确定的。
可选地,方法400可以包括步骤430。
430、第一设备基于触发帧,采用立即模式向第二设备发送感知内容。
在本申请的技术方案中,在感知发送端发送用于触发感知反馈的触发帧之前,感知发送端提前获知了感知接收端对于触发帧的填充需求,从而基于该填充需求确定触发帧的填充比特,使得增加填充比特之后,可以保证感知接收端能够采用立即模式进行感知反馈,提高了反馈效率。
在本申请中,第一信息指示第一设备对于触发帧的填充需求,具体可有多种方案。
下面介绍几种不同的方案。
方案1
第一信息指示如下一项或多项:
第一索引值,第一索引值指示第一设备对于触发帧的填充需求和立即模式;
第二索引值,第二索引值指示无填充需求和立即模式;
第三索引值,第三索引值指示无填充需求和延时模式。
在本申请各实施例中,立即模式和延时模式属于第一设备基于触发帧反馈感知内容时的两种反馈模式。立即模式表示第一设备可以在当前测量实体中反馈被触发反馈的感知内容;延时模式表示第一设备在下y个测量实体中反馈在当前测量实体被触发反馈的感知内容。第二索引值或第三索引值指示的无填充需求,可以是指第一设备对于针对感知的填充比特的最低需求为0,针对此种情况的立即模式或延时模式,第二设备发送的触发帧可以不具有针对感知的填充比特。
需要注意的是,在本申请中,第一设备对于触发帧无填充需求,是指第一设备对于触发帧没有针对感知的填充需求,而对于除了针对感知的填充需求之外的其它填充需求的确定,可以与WLAN***涉及的相关标准中的规定相同,例如与802.11ax或802.11be标准中相同。在一种可能的实现方式中,基于来自于第一设备的第一信息的指示,第二设备在发送针对感知的触发帧时,触发帧只需要满足第一信息所指示的针对感知的填充需求,而不需要再考虑如802.11ax中规定的其它填充需求。在另一种可能的实现方式中,基于来自于第一设备的第一信息的指示,第二设备在发送针对感知的触发帧时,触发帧的填充部分是第二设备同时考虑了针对感知的填充需求以及如802.11ax中规定的其它填充需求的,示例性地,此时触发帧中的填充需求是针对感知的填充需求和其它填充需求的相加,此时,第一设备对于触发帧的填充需求可以认为是在满足如802.11ax中规定的填充需求的基础上,额外需要满足的针对感知的填充需求。在再一种可能的实现方式中,在延时模式下,第一设备对于触发帧没有额外的针对感知的填充需求(如对于针对感知的填充比特的最低需求为零),但是触发帧需要满足如802.11ax中规定的所有触发帧本身需要满足的填充需求,该填充需求可以通过现有的相关字段指示。
可选地,作为方案1的一个示例,第一信息所指示的第一索引值可以如表1中所示的 ID=1~ID=5中的任意一个。
例如,第一索引值为1,即第一索引值指示的填充需求为16μs。第一索引值为2,即第一索引值指示的填充需求为32μs。
示例性地,第二索引值可以如表1中的ID=0,其中,ID=0用于指示立即模式,此时第一设备对于触发帧无填充需求。即第二索引值指示无填充需求和立即模式。
示例性地,第三索引值可以如表1中的ID=7,其中,ID=7用于指示延时模式,此时,第一设备对于触发帧无填充需求。即第三索引值指示无填充需求和延时模式。
示例性,ID=0~ID=7可以为3比特,这3比特具有8个取值,该8个取值分别指示如表1中所示的填充需求和反馈模式。
表1
如表1,“立即模式(0μs)”表示无填充需求的立即模式,“延时模式(0μs)”表示无填充需求的延时模式。其它立即模式为有填充需求的立即模式,例如,“立即模式且16μs”表示填充需求为16μs,且为立即模式;“立即模式且32μs”表示填充需求为32μs且为立即模式。
可选地,在该方案中,在一种实现中,第一信息仅指示一个第一索引值。可选地,第一信息还指示第二索引值和第三索引值。
需要说明的是,表1和表2中的ID的取值仅是作为示例,也可以为其它取值,只要能够区分不同的填充需求,或者无填充需求的立即模式延时模式即可。此外,第一索引值、第二索引值以及第三索引值中的一个或多个也可以替换为数字之外的其它表示方式,例如字母或者字符串等。例如,第二索引值也可以替换为字符串“immediate feedback”或“no need for additional padding”或“immediate mode”等,第三索引值可以替换为“delayed feedback”或“delayed mode”等,不作限定。
另外,表1中,ID=0可以理解为一个特例,此时既表示无填充比特需求,同时也表示立即模式。
另外,表1以ID的不同取值来指示不同的填充需求,本领域技术人员也可以想到其它指示不同的填充需求的实现方式。例如,第一索引值指示的填充需求可以通过时间长度(例如表1中的以微秒为单位的时间长度)来表征,也可以通过其它参数来表征,例如,所述填充需求还可以比特数目、字节数目等来表征,还可以通过其它与时间长度有关的参 量来表征,例如上文中介绍的mPAD的取值来表征。换句话说,第一信息指示第一设备对于触发帧的填充需求的具体形式是不是唯一的,本领域技术人员还可以采用其它方式,不作限定。
可选地,如果第一索引值所指示的填充需求通过参数mPAD来表征,此时,第一索引值、第二索引值或第三索引值各自所指示的填充需求可以如表2所示:
表2
如表2,ID=0为第二索引值的示例,“立即模式(mPAD=0)”表示无填充需求的立即模式。ID=7为第三索引值的示例,“延时模式(mPAD=0)”表示无填充需求的延时模式。ID=1~ID=6为第一索引值的示例,第一索引值对应的立即模式为有填充需求的立即模式,例如,“立即模式且mPAD=1”~“立即模式且mPAD=6”,具体的填充需求是根据各索引值的取值(如,SP_DELAY)来确定的。示例性地,SP_DELAY表示感知填充延时子域值(sensing padding delay subfield value),可以在能力交互阶段指示。也即,在该实施例中,第一信息具体可以为SP_DELAY。应理解,表2中的ID的取值即为SP_DELAY的取值。可选地,“第一信息指示第一索引值、第二索引值和第三索引值中的一项或多项”也可以替换为“第一信息指示SP_DELAY”。
示例性地,根据SP_DELAY的取值确定填充需求的过程可以如下:
LPAD,MAC=NDBPSmPAD    (1)
可知,根据SP_DELAY的取值和公式(2),确定mPAD的取值。进一步地,再根据公式(1),可以确定LPAD,MAC。需要说明的是,表2中,是以公式(1)中的NDBPS对应16微秒为例进行说明的,NDBPS还可以为其它取值,不作限定。
此外,SP_DELAY可用于按照其它的计算方式来计算mPAD,例如,线性关系、指数关系以及对数关系等。此外,mPAD和LPAD,MAC之间也可以满足线性关系、指数关系、对数关系或其它计算方式,公式(1)和公式(2)仅是作为示例。
可见,SP_DELAY的不同取值计算得到LPAD,MAC的不同数值,LPAD,MAC的不同数值对应不同的填充需求。
这里,公式(1)和公式(2)对于下文各实施例中也是适用的,不再重复说明。例如, 下文的表3~表5中涉及的mPAD,结合公式(1),可以转化为针对感知的填充比特的需求。
应理解,表2仅仅是为了便于理解各索引值指示的填充需求以及反馈模式而给出的示例。
可选地,在步骤210中,第一设备向第二设备发送第一信息,可以是在基于触发的感知流程的任何合适的阶段。例如,能力指示阶段中的某个阶段,或者,能力指示阶段之前的某个阶段。示例性地,第一信息可以是用于能力交互的信息,可以通过关联请求(association request)、探测请求(probe request)或感知测量建立(sensing measurement setup)等帧交互。此外,第一信息可以通过不同类型的帧携带,例如,控制帧、管理帧和数据帧等,不作限制。更具体地,第一信息可以携带在PPDU中的高效(high efficient,HE)能力要素、极高吞吐量(extremely high throughput,EHT)能力要素中,示例性地,这些要素中包括感知能力要素,第一信息可以携带在该感知能力要素中。
可选地,第一信息指示第一设备对于触发帧的填充需求,此外,第一设备还可以向第二设备指示发送感知内容的模式。可选地,第一信息与指示感知内容的反馈模式的信息(例如,第二信息)可以是互相独立指示的,也可以是联合指示的,不作限定。
此外,需要说明的是,第一设备对于触发帧的填充需求不仅可以适用于立即模式,也可以适用于延时模式,不作限定。例如,根据上文的介绍可知,本申请提供的技术方案,可以使第一设备采用立即模式向第二设备反馈感知内容,该立即模式是满足第一设备对于触发帧的针对感知的填充需求的一种立即模式。当第一设备对于触发帧的填充需求适用于延时模式的情况下,第一设备向第二设备发送第一信息,第一信息指示第一设备对于触发帧的针对感知的填充需求和延时模式。
可选地,另一些方案中,第一信息可以指示需求信息与与一个或多个要素的映射关系,如下面的方案2。其中,所述需求信息用于所述针对感知的填充比特和反馈模式的确定,反馈模式可以包括立即模式或延时模式,所述要素包括以下一种或者多种:空间流数量、资源单元的大小、比特数目以及比特数目的范围等。
可选地,在所述要素为比特数目的各实施例中,该比特数目可以为第一设备反馈的比特数目,例如第一设备反馈的CSI信息的比特数目;或者,该比特数目可以是与感知反馈相关的计算涉及的比特数目,例如,第一设备在反馈CSI变化程度时计算涉及的比特数目等,不作限定。
在本申请,“要素”是指考虑针对感知的填充比特时需要关注的成分。这里列举的要素仅是作为示例,还可以为其它要素,不作限定。
方案2
第一信息指示需求信息与要素的映射关系,所述需求信息用于所述针对感知的填充比特和反馈模式的确定。
实现方式1
第一信息指示R个需求信息与R个要素的映射关系,所述R个需求信息与所述R个要素之间是一一对应的,R为正整数。
下面以表3作为示例进行说明。
表3
如表3中所示,假设第一信息指示8个需求信息和8个要素,所述8个需求信息分别如立即模式且mPAD=A,立即模式且mPAD=B,…,立即模式且mPAD=H,所述8个要素分别如[a0,b0],[a1,b1],…,[a7,b7]。在此示例中,要素为比特数目范围。其中,每个比特数目范围唯一对应一个需求信息,每个需求信息可用于确定第一设备对触发帧的填充需求。
可选地,在该实现方式中,第一信息还可以指示R的数值。例如在表3中,R为8。
可选地,所述R个要素可以为相同的要素。例如,在所述要素为比特数目范围的情况下,所述R个要素即为R个比特数目范围,每个比特数目范围对应所述R个需求信息中的一个需求信息。假设所述R个比特数目范围包括第一比特数目范围[a1,b1],第一比特数目范围[a1,b1]对应所述R个需求信息中的第一需求信息,即立即模式且mPAD=B,则表示如果第一设备实际处理的比特数量为[a1,b1]这个范围内,触发帧需要满足根据mPAD=B确定的填充需求,且此时第一设备可以采用立即模式反馈感知内容。例如,[a1,b1]为[5000,10000],根据mPAD=B确定的填充需求为16μs,表示第一设备处理的比特数量在5000个比特到10000个比特之间,第一设备对于触发帧的填充需求均是16μs,此时第一设备可以采用立即模式反馈感知内容。再例如,[a2,b2]为[10001,100000],根据mPAD=C确定的填充需求为32μs,表示第一设备处理的比特数量在10001个比特到10万个比特之间,第一设备对于触发帧的填充需求均是32μs,此时第一设备可以采用立即模式反馈感知内容。
可选地,在表3的基础上兼容立即模式和延时模式,第一信息指示的映射关系可以如4或表5所示。应理解,表4和表5仅是作为要素和需求信息的映射关系的示例,并不对具体的映射关系做限定。例如,当要素为比特数目范围时,比特数目范围与需求信息的映射关系可以满足表4或表5中的一行或若干行,或全部行。
表4

表5
示例性地,在表4或表5中,比特数目范围的界限值(例如,表4中的a0,b0,a1,b1,..,a7和b7,或者,如表5中的a,b,c和+∞)可以采用若干数量的比特(例如,x个比特)来指示,例如,采用4比特(即x=4)来指示这些界限值,每两个界限值对应一个比特数目范围。可以理解的是,4比特可以表示16个索引,依次为0~15,每个索引对应一个界限值。
以表5为例,在一种实现方式中,可以采用以2为底数、x个比特所表示的索引为指数的幂的形式来指示比特数目范围。或者说,每个比特数目范围的界限值是以2为底数、索引为指数的幂。以4比特为例,采用这种实现方式,可以指示的比特数目范围最大可以达到215。在另一种实现方式中,除了+∞之外的其它界限值是以2为底数、x个比特所表示的索引为指数的幂,而这x个比特所表示的多个索引中的某个索引可以直接指示正无穷或者0。继续即x=4为例,采用4个比特可以表示索引0~15,可以选择最后一个索引15可以直接指示正无穷,选择第一个索引0来指示0。
为了进一步地节省指示开销,基于一个正整数w,可以扩大要指示的比特数目范围,其中,w可以是预设或默认的值,例如,w=10。例如,以表5中的第一行的比特数目范围为例,该比特数目范围可以达到2a+w,其中,小于2w的比特数目都默认遵循第一行的比特数目范围对应的需求信息,通过设置w,可以使指示这些界限值的比特变少,从而达到使用较少的比特数指示较大的比特数目范围的目的。
此外,示例性地,mPAD=A表示填充需求为32微秒,mPAD=B表示填充需求为128微秒。
实现方式2
第一信息指示所述要素,所述要素与所述需求信息具有映射关系。
其中,所述需求信息用于所述填充比特和反馈模式的确定,所述要素包括空间流数量、RU的大小、比特数目、比特数目范围中的一个或多个,所述反馈模式包括立即模式或延时模式。
在实现方式2中,第一信息仅指示要素,但是要素与需求信息之间具有映射关系。该映射关系可以是预设的。第一设备向第二设备指示要素,第二设备根据预设的映射关系,可以确定反馈模式和第一设备对于触发帧的填充需求,其中,反馈模式包括立即模式或延 时模式。
以上述表5为例,预设4个需求信息,分别为立即模式且mPAD=0、立即模式且mPAD=A、立即模式且mPAD=B以及延时模式且mPAD=0,其中,立即模式且mPAD=A和立即模式且mPAD=B用于指示有填充需求的立即模式,其余两个需求信息指示无填充需求的立即模式或延时模式。在实现方式2中,第一信息指示4个比特数目范围,分别为0~a,a~b,b~c,c~+∞,假设预设的要素与需求信息的对应关系为:第一信息指示的4个要素按照从前往后的顺序分别与立即模式且mPAD=0、立即模式且mPAD=A、立即模式且mPAD=B、延时模式且mPAD=0对应,则如果第一信息指示的要素的顺序为0~a,a~b,b~c,c~+∞,则第一信息在仅指示要素的情况下,也可以指示出表5中的需求信息与要素的映射关系。
实现方式3
第一信息指示所述需求信息,所述需求信息与所述要素具有映射关系。
在实现方式3中,第一信息仅指示需求信息,但是需求信息与要素之间具有映射关系,该预设关系也可以是预设的。第一设备向第二设备指示所述需求信息,第二设备根据预设的映射关系,可以确定反馈模式和第一设备对于触发帧的填充需求。反馈模式包括立即模式或延时模式。
以上述表5为例,预设4个要素与4个需求信息的映射关系,并且所述要素为比特数目范围,分别为0~a,a~b,b~c,c~+∞。在实现方式3中,第一信息指示4个需求信息,分别为立即模式且mPAD=0、立即模式且mPAD=A、立即模式且mPAD=B以及延时模式且mPAD=0,其中,立即模式且mPAD=A和立即模式且mPAD=B用于指示有填充需求的立即模式,其余两个需求信息指示无填充需求的立即模式或延时模式。假设预设的映射关系为:第一信息指示的4个需求信息按照从前往后的顺序分别与4个要素0~a,a~b,b~c,c~+∞是一一对应的,则如果第一信息指示的要素的顺序为立即模式且mPAD=0、立即模式且mPAD=A、立即模式且mPAD=B以及延时模式且mPAD=0的情况下,第一信息在仅指示需求信息的情况下,也可以指示出表5中的需求信息与要素的映射关系,从而节省指示开销。
可见,在方案2中,R个需求信息与R个要素之间具有映射关系。第一信息可以指示该映射关系,或者第一设备与第二设备之间约定映射关系,或者预配置映射关系,第一信息指示要素或需求信息,也可以实现对反馈模式和第一设备对触发帧的填充需求的指示。在本申请各实施例中,没有特别说明的情况下,延时模式下的触发帧不具有针对感知的填充比特,或者说,延时模式无填充需求。
在方案2中,均以要素为比特数目范围为例进行说明,要素还可以为比特数目、RU的尺寸、空间流数量等,具体的实现都是类似,不再赘述。
可选地,方案2中的所述R个要素也可以为不同的要素。例如,在根据不同的比特数目范围确定不同的填充需求的同时,一旦RU大于某个尺寸,或空间流数量大于某个门限,需求信息即指示延时模式。可见,此时R个需求信息不仅与比特数目范围具有映射关系,还与RU的尺寸或者空间流数量具有映射关系。此时,R个需求信息与多个要素具有映射关系。
可选地,在一个示例中,所述要素和所述需求信息指示的填充需求之间的映射关系可以是线性的。
以要素为比特数目为例,第一信息指示第一设备反馈的比特数目为p时需要额外的时 长q微秒。可选地,p和q可以是一个固定设置,另一个由第一信息指示,或者p和q均由第一信息指示。如果第一设备通过第一信息告知第二设备,第一设备反馈p比特需要q微秒,则第二设备可以知晓如果要满足第一设备对于触发帧的填充需求,至少需要增加多少针对感知的填充比特。该至少需要增加的针对感知的填充比特的量可以是以时长来表征的
示例性地,该映射关系为线性映射关系时,至少需要增加的时长可以根据如下公式(3)确定:
(实际要处理的比特数目/p)·q    (3)
在这个示例中,假设p=5000,q为4微秒,则第二设备在发送触发帧时,至少需要增加的时长为(实际要处理的比特数目/5000)·4微秒。
此外,按照公式(2)计算至少需要增加的时长时,(实际要处理的比特数目/p)对应的数值还可以按照规定进行化简,例如,向上取整、向下取整,或者在按照公式(3)计算完成之后再进行化简,或者按规定取某个数值的倍数等,不作限定。
可选地,在另一个示例中,所述要素与根据所述需求信息确定的填充需求之间的映射关系可以是非线性的。
以所述要素为比特数目为例,例如,所述比特数目与所述填充需求之间的映射关系可以根据公式(4)计算:
((实际要处理的比特数目-r)/p)·q    (4)
其中,r为一个预设比特数目的门限。
根据公式(4)可以发现,当第一设备实际要处理的比特数目小于门限r的情况下,第一设备对于触发帧无填充需求。
此外,可选地,在上述方案2的任一实现方式中,所述需求信息与要素之间可以满足一种更加直接的映射关系。例如,该映射关系可以为:
在所述要素的表征值大于或等于所述要素的设定门限的情况下,所述需求信息所指示的填充需求或反馈模式是固定设置的;和/或,
在所述要素的表征值小于或等于所述要素的设定门限的情况下,所述需求信息所指示的填充需求或反馈模式是固定设置的。
可选地,所述需求信息所指示的填充需求或反馈模式是固定设置的。
例如,当所述要素的表征值大于或等于所述要素的设定门限的情况下,所述需求信息指示延时模式,或者所述需求信息指示某个确定的填充需求,例如mPAD=10对应的填充需求。又例如,当所述要素的表征值小于或等于所述要素的设定门限的情况下,所述需求信息指示立即模式以及无填充需求。可选地,这些示例中的设定门限可以是在标准中固定设置的,也可以是第一设备和第二设备之间通过信令传输的,不作限定。
以所述要素为比特数目为例,该映射关系可以为:一旦第一设备需要处理的比特数目大于某个设定门限,或者空间流数量大于某个设定门限,或者RU大于某个设定尺寸,就可以直接采用延时模式,或者采用某个指定的填充需求。
如上文所述,触发帧用于触发第一设备反馈感知内容。
可选地,在一种更为具体的实现方式中,触发帧用于触发第一设备反馈第一类型的感知内容。第一类型属于第一设备支持反馈的至少两个类型的感知内容之一,该至少两个类 型的感知内容包括CSI或或截断信道冲击响应(truncated channel impulse response,TCIR)类型。
在本申请中,感知内容不同,即为感知内容的类型不同。例如,感知内容为CSI,与感知内容为TCIR,为感知内容的两种不同类型。
第二设备发送的触发帧可用于触发第一设备反馈某个类型的感知内容。在此情况下,第一信息指示第一设备对于该触发某个类型的感知内容的反馈的触发帧的填充需求。例如,触发帧A触发第一设备反馈CSI,第一信息指示第一设备对于触发帧A的填充需求。触发帧B触发第一设备反馈TCIR,第一信息指示第一设备对于触发帧B的填充需求。对于任一类型的感知内容的反馈,第一信息指示第一设备对于触发帧的填充需求的具体实现,可以为上述方案1,方案2中的任一实现方式,不作限定。例如,第一设备对于CSI类型的感知内容,采用方案1来指示第一设备对于触发帧的填充需求,对于TCIR类型的感知内容,采用方案2中的某个实现方式来指示第一设备对于触发帧的填充需求。或者,针对不同类型的感知内容,也可采用相同的方案来指示第一设备对于各自的触发帧的填充需求。
以上方案1以及方案2的各实施例提供了通过为触发帧增加所述针对感知的填充比特的前提下,使得第一设备可以采用立即模式向第二设备反馈感知内容的方法。可以理解,由于第一设备提前向第二设备指示了第一设备对于触发帧的填充需求,从而第二设备在发送触发帧时,通过增加所述针对感知的填充比特,从而满足第一设备对于触发帧的填充需求,使得第一设备可以有足够的时间接收触发帧并反馈感知内容。采用上述方案1~方案2中的任意一个实施例,可以提高感知接收端反馈感知内容的效率。同时,感知接收端反馈感知内容的模式也更加灵活。
如本申请的上述实施例中所述,需求信息用于针对感知的填充需求和反馈模式的确定,具体地,在上述实施例中可能涉及:需求信息指示立即模式和填充需求,或者需求信息指示立即模式以及无填充需求,或者需求信息指示延时模式以及无填充需求。为了实现方式上的灵活,本申请还提供一些其它的实现方式。例如,需求信息可以仅指示填充需求,此时默认或者隐含指示立即模式,以如下表a为例,对于比特数目范围[a1,b1],需求信息仅指示mPAD=A,隐含指示为立即模式。对于比特数目范围[a2,b2],…,[a6,b6]也是类似的。在此实现方式中,对于无填充需求的立即模式和延时模式,需求信息可以指示立即模式或延时模式。如下表a或表b作为示例说明。
表a
表b
可选地,对于无填充需求的立即模式,可以通过mPAD=0来隐含指示。当mPAD为0之外的其它取值的情况下,隐含指示有填充需求的立即模式,且mPAD的取值用于确定具体的填充需求。此外,当需求信息指示“延时模式”时,表示无填充需求的延时模式。示例性地,如下面的表c或表d。
表c
表d
此外,可选地,在再一种实现中,当需求信息指示填充需求时,既可以表示立即模式,也可以指示延时模式。例如,需求信息指示的时间长度不为零,例如为16微秒、32微秒、64微秒或128微秒等,可以表示立即模式下的填充需求,也可以表示延时模式下的填充需求。又例如,需求信息指示的mPAD的取值不为零时,例如mPAD=A或者mPAD=B等,可以表示立即模式下的填充需求为mPAD=A或mPAD=B,或者延时模式下的填充需求为mPAD=A或mPAD=B,不作限定。示例性地,此时可以通过额外新增1比特来区分立即模式或延时模式。
下面再提供一种第一设备对于触发帧无填充需求的方案,如方案3。
方案3
在一些情况下,第一设备接收到来自于第二设备的触发帧之后,采用立即模式向第二 设备发送感知内容。
可选地,这些情况可以包括以下一种或多种:
在感知测量的数据分组宣告NDPA阶段和接收到触发帧并发送感知内容之间存在触发帧探测阶段;
在感知测量的NDPA阶段和接收到触发帧并发送感知内容之间存在基于阈值的信道变化收集阶段;或
在感知测量的NDPA阶段和接收到触发帧并发送感知内容之间存在一个或多个其它阶段。
应理解,在上述情况下,由于NDPA阶段之后存在更多其它阶段的情况下,相当于已经给了第一设备更多的反应和处理的时间,因此,第一设备对于用于触发第一设备反馈感知内容的触发帧可以没有填充需求。
可选地,在上述情况下第一设备对于触发帧无填充需求可以是默认的,不需要第一设备向第二设备指示。或者,在上述情况下,第一设备对于触发帧的填充需求也可以是由第一设备向第二设备指示。例如,第一设备向第二设备发送z比特的指示信息,所述z比特的指示信息指示上述情况下是否有最低的填充需求。示例性地,所述z比特的指示信息可以包括2比特,可以指示4种情况,其中包括上述三种情况。或者,所述z比特的指示信息可以包括1比特,以指示符合上述任意一种情况时,第一设备均没有最低的填充需求。
在上述方案1~2中,第二设备接收来自于第一设备的第一信息,并根据第一信息提前知晓第一设备对于触发帧的填充需求,从而在发送触发帧时,第二设备为触发帧增加针对感知的填充比特,以满足第一设备对于触发帧的填充需求。从而,第一设备能够来得及在当前的测量实体中反馈被触发帧触发反馈的感知内容。
下面再提供一个第一设备向第二设备指示感知内容的反馈模式的方案,如方案4。
方案4
第一设备在反馈帧中向第二设备指示感知内容的反馈模式,感知内容的反馈模式为如下之一:
立即模式;
延时模式。
在方案4中,发送触发帧的第二设备无需提前知晓或者判断接收触发帧的第一设备是否来得及在当前测量实体中反馈被触发反馈的感知内容,第二设备向第一设备发送触发帧之后,第一设备在发送感知内容时再告知第二设备,该感知内容是属于立即模式或是延时模式的反馈。例如,第一设备通过1比特来指示立即模式或延时模式。
例如,第一设备接收来自于第二设备的触发帧,触发帧用于触发第一设备发送感知内容。第一设备向第二设备发送感知内容和第二信息,第二信息指示感知内容的反馈模式,其中,反馈模式为立即模式或延时模式之一。
可选地,第二信息可以携带在感知测量报告中,也可以存在于CSI变化程度反馈帧中等。第二设备基于第二信息,可以获知感知内容是第一设备采用立即模式或延时模式的反馈的,例如,第二设备可以获知感知内容是当前测量实体中被触发反馈的感知内容,还是上y(y为大于或等于1的整数)个测量实体中被触发反馈的感知内容。例如,当y=0时,表示第一设备反馈的感知内容是当前测量实体中被触发反馈的感知内容,也即立即反馈模 式;y=3时,表示第一设备反馈的感知内容是上3个测量实体中被触发反馈的感知内容,也延时模式。
采用方案4,第一设备不需要提前向第二设备指示有关触发帧的针对感知的填充需求,第一设备(即感知接收端)可以自行判断是否可以立即反馈或延时反馈。
在前述的一些方案或实施例中,第一设备向第二设备发送的第一信息指示第一设备对于触发帧的填充需求,该填充需求是针对感知的。当第二设备根据第一信息,使得发送的触发帧满足该填充需求,第一设备即可采用立即模式向第二设备反馈针对感知的测量结果。应理解,在基于触发的感知流程中,由于触发帧的格式较为复杂,且需要第一设备准备对应的响应,因此需要给第一设备更多的反应和处理的时间。因此,第一设备通过第一信息向第二设备指示第一设备对于触发帧的填充需求,以使第二设备发送的触发帧满足该填充需求。实际上,触发帧满足该填充需求,即是给了第一设备更多进行反应和处理的时间,使得第一设备能够采用立即模式向第二设备反馈(或者说,上报)针对感知的测量结果。
可选地,第一设备对于触发帧的填充需求,还可以理解为:为了使第一设备采用立即模式进行感知反馈,在NDPA探测阶段之后(例如,可以是第一设备接收到NDPA探测阶段中的NDP之后)需要额外填充的时间;也可以理解为:为了使第一设备采用立即模式进行感知反馈,在感知测量实体中,且在第一设备反馈针对感知的测量结果之前需要额外填充的时间。或者说,为了使第一设备采用立即模式反馈针对感知的测量结果,可以在第一设备接收到需要测量的PPDU和反馈基于测量该PPDU获得的测量结果之间的时间段内进行填充,而填充的位置不作限定。例如,上述的一些方案或实施例,是以在触发帧之后额外增加填充时间作为示例的,而实际上,要使第一设备采用立即模式向第二设备反馈针对感知的测量结果,不限于在触发帧之后额外增加填充时间,还可以有一些其它的实现方式。
下面再介绍一些实施例,在这些实施例中,第一设备向第二设备指示填充需求,该填充需求可以理解为:第一设备接收到第一PPDU到第一设备采用立即模式发送第二PPDU之间的第一时长。其中,第二PPDU包含针对感知的测量结果,该针对感知的测量结果是第一设备通过测量第一PPDU获得的。
在一个实施例中,第一设备在与第二设备的信令交互中指示填充需求,以指示第一设备在什么情况下可以采用立即模式进行反馈,在什么情况下可以采用延时模式进行反馈。示例性地,第一设备与第二设备的信令交互可以是在测量建立阶段,例如,第一设备在测量建立请求帧或者测量建立响应帧中告知该填充需求。
在下述的实施例中,空数据分组宣告也可以称为空数据物理层协议数据单元宣告(null data physical layer protocol data unit announcement,NDPA)。空数据分组也可以称为空数据物理层协议数据单元(null data physical layer protocol data unit,NDP)。
下面结合图7对该实施例进行说明。
参见图7,图7为本申请提供的另一种通信方法的示意性流程图。
710、第一设备向第二设备发送第一指示信息,第一指示信息指示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长。
其中,第二PPDU包含针对感知的测量结果,该针对感知的测量结果是基于第一PPDU得到的。
第二设备接收来自于第一设备的第一指示信息。
可选地,第一指示信息指示第一PPDU的结束时刻到第一设备采用立即模式发送的第二PPDU的起始时刻之间的第一时长。可选地,第一时长可以理解为如下之一:
第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的最短时长;或者,
第一设备接收第一PPDU的结束时刻到采用立即模式发送第二PPDU的起始时刻之间的时长;
第一设备能够采用立即模式发送第二PPDU的期望时长;或者,
第一设备采用立即模式发送第二PPDU所需要的时长;或者,
第一设备采用立即模式发送第二PPDU所需要的最短时长;或者,
用于决定第一设备是否能够采用立即模式发送第二PPDU的时长门限;其中,若满足该时长门限,则第一设备能够采用立即模式发送第二PPDU;否则,第一设备只能采用延时模式发送第二PPDU。这里,满足时长门限可以为:大于或等于该时长门限;不满足时长门限可以为:小于该时长门限。或者,满足时长门限可以为:大于该时长门限;不满足时长门限可以为:小于或等于该时长门限,不作限定。
720、第一设备发送第二PPDU。
可选地,在一种实现方式中,对于第一设备而言,第一设备向第二设备发送第一指示信息,即是向第二设备上报了自己采用立即模式发送针对感知的测量结果时的填充需求。第二设备在接收到第一指示信息之后,如果满足了第一指示信息指示的填充需求,则第一设备采用立即模式反馈;否则,由于第一设备反应、处理等时间不足,第一设备只能以延时模式反馈。以该填充需求为第一时长为例,如果第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长满足第一时长,第一设备则采用立即模式发送第二PPDU;若第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长不满足第一时长,第一设备则采用延时模式发送第二PPDU。
在该实施例中,如上文所述,第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长满足第一时长,可以是指第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长,大于或等于第一时长;第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长不满足第一时长,可以是指第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长小于第一时长。或者,
第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长满足第一时长,可以是指第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长大于第一时长;第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长不满足第一时长,可以是指第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长小于或等于第一时长,不作限制。
因此,在步骤720中,若第一设备接收第一PPDU到发送第二PPDU之间的时长满足第一时长,第一设备则采用立即模式发送第二PPDU。若第一设备接收第一PPDU到发送第二PPDU之间的时长不满足第一时长,则第一设备采用延时模式发送第二PPDU。
示例性地,第一PPDU为NDPA探测阶段的NDP,第二PPDU为包含针对感知的测量结果的PPDU。在该示例中,第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的时长,即为NDP的结束时刻到第一设备采用立即模式发送的第二PPDU的起始时 刻之间的时长。图8为第一设备接收第一PPDU和发送第二PPDU之间的时长的一个示例。如图8,第一PPDU为NDPA探测阶段中的NDP,第二PPDU为报告阶段的包含针对感知的测量结果的PPDU。其中,针对感知的测量结果(也或者说感知内容)是第一设备通过测量该NDP获得的。在此示例中,第一指示信息具体指示NDP的结束时刻到第一设备采用立即模式发送的第二PPDU的起始时刻之间的时长。可选地,第一时长可以包括NDP和触发帧之间的SIFS以及触发帧和第二PPDU之间的SIFS。或者,第一时长可以包括这些SIFS中的部分SIFS。或者,第一时长也可以不包括这些SIFS。或者,第一时长也可以为NDP的结束时刻到第二PPDU的起始时刻之间的任意时间段的长度,不作限制。
可选地,第一PPDU的结束时刻,可以是指第二设备发送第一PPDU的结束时刻,或者,也可以是指第一设备接收第一PPDU的结束时刻。类似地,第二PPDU的起始时刻,可以是指第二设备发送第二PPDU的起始时刻,也可以是指第二设备接收第二PPDU的起始时刻,不作限定。可选地,结束时刻和起始时刻可以是以微秒为单位的。
可选地,在这些实施例中,针对感知的测量结果,也可以理解为第一PPDU对应的针对感知的测量结果,或者通过测量第一PPDU获得的针对感知的测量结果。当第一PPDU为NDP时,该针对感知的测量结果可以为NDP对应的针对感知的测量结果。或者,也可以理解为,通过测量NDP获得的针对感知的测量结果等。
示例性地,第一指示信息可以指示表6中任意一行的索引值,该索引值对应的填充需求以及对应的反馈模式如表6中所示。
表6
例如,以第一指示信息指示的索引值为ID=1作为示例,或者说,第一指示信息包含的索引值为“1”,其中,“ID=1”对应“立即模式且64μs”,表示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的最短时长为64μs。换句话说,若需要第一设备采用立即模式反馈针对感知的测量结果,填充需求至少为64μs,或者也可以认为64μs为一个时长门限,满足该时长门限,则采用立即模式,不满足该时长门限,则采用延时模式。以满足时长门限为:大于或等于该时长门限为例,若第一设备接收第一PPDU到发送第二PPDU之间的时长等于或大于64μs,第一设备采用立即模式反馈针对感知的测量结果;若第一设备接收第一PPDU到发送第二PPDU之间的时长小于64μs,第一设备采用延时模式反馈针对感知的测量结果。再例如,“ID=0”对应“立即模式且0μs”,表示时长门限为0μs,若第一设备接收第一PPDU到发送第二PPDU之间的时长等于或大于0μs,则第一设备采用立 即模式。
可选地,第一指示信息指示表6中任意一行的索引值对应的填充需求以及该填充需求对应的反馈模式。示例性地,第一指示信息具体可以为“立即模式且64μs”,表示时长门限为64μs,若大于或等于64μs,则采用立即模式;反之,若小于64μs,则采用延时模式。
此外,考虑到仅支持延时模式的接收端,表6中还包括ID=7的情况。示例性地,第一指示信息指示的索引值为ID=7,其中,“ID=7”对应“延时模式且0μs”,表示第一设备接收第一PPDU到采用延时模式发送第二PPDU之间的最短时长为0μs。若第一设备接收第一PPDU到发送第二PPDU之间的时长大于或等于0μs,则采用对应的延时模式。类似地,也可以认为0μs为时长门限,若满足该时长门限,则采用延时模式。
可见,在该实施例中,第一设备通过第一指示信息向第二设备指示了自己采用相应的反馈模式所需的时长需求,该时长需求可以用一个时长门限来表示,若第一设备接收第一PPDU到发送第二PPDU之间的时长满足该时长门限,则第一设备采用对应的反馈模式反馈针对感知的测量结果。示例性地,该时长门限可以如表6中所示的0μs,64μs,96μs,128μs或256μs中的一个,或者,也可以为其它表示时长的数值。特别地,当时长门限为0μs且对应延时模式(即ID=7)时,表示第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长满足0μs时,第一设备采用延时模式反馈针对感知的测量结果;当时长门限为0μs且对应立即模式(即ID=0)时,表示第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长满足0μs时,第一设备采用立即模式反馈针对感知的测量结果。
应理解,在表6中,当不考虑ID=7对应的填充需求以及该填充需求对应的延时模式,则当第一设备接收第一PPDU到第一设备发送第二PPDU之间的时长满足第一指示信息所指示的填充需求(或者说,时长需求),则第一设备采用立即模式进行反馈;否则第一设备只能采用延时模式进行反馈。
可选地,第一指示信息可以指示如表7中任意一行的索引值,每个索引值对应的填充需求默认为第一设备采用立即模式时的填充需求。例如,第一指示信息指示索引值为1,表示第一设备采用立即模式的填充需求至少为64μs。若大于或等于64μs,则采用立即模式;若小于64μs,则采用延时模式。或者,第一指示信息也可以指示表7中任意一行的索引值对应的填充需求,该填充需求默认为第一设备采用立即模式时的填充需求。
表7
应理解,表6或表7中的填充需求可以为最低填充需求,也即第一PPDU的结束时刻 到第二PPDU的起始时刻之间至少需要满足的时长。或者,表6或表7中的填充需求对应的时长可以大于最低填充需求对应的时长。作为一个示例,第一设备采用立即模式的最低填充需求为8微秒,第一设备发送第一指示信息,第一指示信息指示的填充需求可以为大于8微秒的一个时长,例如10微秒。
可选地,在上述表6或表7的示例中,索引值具体可以为若干个比特,例如,m个比特,可选地,这m个比特可以携带在NDP之前的帧交互过程中,例如,可以在感知测量建立请求帧或者感知测量建立响应帧中携带这m个比特。根据表6或表7可知,这m个比特的不同取值分别对应不同的填充需求。以m=3为例,001对应的填充需求为64μs,010对应的填充需求为96μs,等。
可选地,第一设备也可以采用x个比特来直接指示该填充需求。换句话说,第一指示信息可以为x个比特,这x个比特的取值即表示填充需求对应的时长。示例性地,该填充需求为第一设备接收第一PPDU和采用立即模式发送第二PPDU之间的第一时长。例如,x=6,000000表示0μs,000011表示3μs等。若第一指示信息为000011,表示第一设备采用立即模式反馈针对感知的测量结果所需的最短时长为3μs。在这种实现中,当第一指示信息为一个特定数值时,可以用来表示第一设备采用延时模式。该特定数值可以由第一设备和第二设备约定或协商确定,不作限制。
可以看出,在该实施例中,如果在NDPA探测阶段的结束时刻到第一设备上报针对感知的测量结果之间的时间满足(等于或大于)第一指示信息所指示的最短时长,则第一设备可以采用对应的反馈模式进行反馈,否则,由于反应、处理等时间不满足,第一设备只能以延时模式进行反馈。
此外,在表6或表7中,预留的索引值,可以认为是第一设备在向第二设备指示填充需求时不会发送的索引值。或者,第二设备的角度而言,如果第一指示信息指示的索引值为预留的索引值,例如,表6中的ID=5或ID=6,第二设备忽略该第一指示信息或不处理第一指示信息。
在另一个实施例中,第一设备向第二设备发送第一指示信息,第一指示信息指示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的最短时长。第二设备需要保证第一PPDU的结束时间到第一设备上报针对感知的测量结果的时间之间的时长满足该最短时长,也即大于或等于该最短时长。在该实施例中,一种可能的实现为,第一设备通过向第一指示信息向第二设备指示的填充需求,默认是第二设备必须要满足的。另一种可能的实现为,第一设备向第二设备发送第一指示信息的同时,第一设备还向第二设备发送第三指示信息,第三指示信息指示第一指示信息所指示的填充需求是第二设备必须要满足的。在该实施例中,第一设备采用立即模式上报该针对感知的测量结果。可选地,在一个示例中,第一设备向第二设备发送了第三指示信息的情况下,第一设备还可能接收来自于第二设备的第二指示信息,在此情况下,第二指示信息指示第一设备采用立即模式。该示例可以理解为,第一设备通过第三指示信息向第二设备指示第一设备要求采用立即模式。之后,第二设备根据第三指示信息,向第一设备发送第二指示信息,第二指示信息指示第一设备采用立即模式。第一设备向第二设备发送第三指示信息的步骤,可以位于第一设备接收来自于第二设备的第二指示信息的步骤之前。可选地,该最短时长需求可以是经过第一设备和第二设备的协商而最终确定的。
以表6中ID=2为例,如果第一设备发送的第一指示信息指示的索引值为2,则第二设备必须满足NDP的结束时刻到第一设备上报包含针对感知的测量结果的第二PPDU的起始时刻之间的时长大于或等于96μs,从而使得第一设备可以采用立即模式反馈针对感知的测量结果。
在再一个实施例中,第一设备向第二设备发送第一指示信息,第一指示信息指示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长。但是,第一设备采用立即模式或延时模式反馈针对感知的测量结果,取决于第二设备。具体地,第一设备通过第一指示信息向第二设备指示第一设备采用立即模式反馈针对感知的测量结果的填充需求。第二设备根据第一指示信息,可以决定(或者说,选择)第一设备采用立即模式或延时模式反馈该针对感知的测量结果。若第二设备需要第一设备采用立即模式反馈该针对感知的测量结果,则第二设备向第一设备发送第二指示信息,第二指示信息指示第一设备采用立即模式发送第二PPDU;或者,若第二设备需要第一设备采用延时模式反馈该针对感知的测量结果,则第二设备向第一设备发送第二指示信息,第二指示信息指示第一设备采用延时模式发送第二PPDU。应注意,在该实施例中,第一设备告知第二设备填充需求之后,无论是否满足填充需求,第一设备采用立即模式或延时模式是由第二设备来决定的。示例性地,在满足填充需求的情况下,若第二设备需要第一设备采用延时模式,则第二设备通过第二指示信息指示第一设备采用延时模式。当然,在满足填充需求的情况下,若第二设备需要第一设备采用立即模式,则第二设备也可以通过第二指示信息指示第一设备采用立即模式。
可选地,当第一指示信息为某个索引值时,表示第一设备采用延时模式。这在上述几个实施例中均是适用的。例如,在表6或表7中,当第一指示信息指示的索引值为ID=7时,表示第一设备采用延时模式。这里,ID=7对应延时模式仅是作为示例,也可以为其它索引值和延时模式对应。这在上述几个实施例中都是适用的。
可选地,在上述任意一个实施例中,第一设备还可以通过在第二PPDU中携带单独的一个字段,来指示第一设备采用延时模式。例如,第二PPDU中携带1个比特,当该1比特的取值置为1时,表示第二PPDU是采用延时模式发送的。当该1比特的取值置为0时,表示第二PPDU是采用立即模式发送的。也可以理解为,第一设备在第二PPDU中显式指示第二PPDU的反馈模式为立即模式或延时模式。
此外,以上图6或图7中所示的索引值以及每个索引值对应的填充需求(例如,64μs,96μs,128μs等)均是作为示例,这些索引值也可以采用其它方式表示,各表格中的填充需求对应的时长也可以为其它数值,不作限定。
可选地,本文中提及的“填充需求”在不同的实现方式中,可以有不同的理解。示例性地,填充需求可以为填充时长(例如,第一时长)的需求,或者可以为第一设备采用立即模式所需要的最短填充时长需求,或者还可以为第一设备采用立即模式所需要的至少填充比特的需求等。例如,填充需求可以是第二设备在NDPA阶段和报告阶段之间增加更多的阶段,例如增加基于触发帧的探测阶段;也可以是增加某一个帧的发送时间,例如,在携带触发帧的PPDU中增加填充比特等,不作限制。实际上,只要能够使得第一设备在上报针对感知的测量结果之前获得更多的处理时长,使得第一设备能够来得及采用立即模式反馈该针对感知的测量结果即可。
此外,上述实施例中均以图2中所示的感知测量实体的流程作为示例,来说明填充需求的。若以图3中所示的感知测量实体的流程为例,填充需求也是类似的,可以如图9中所示。图9为第一设备接收第一PPDU和发送第二PPDU之间的时长的另一个示例。在该示例中,第一设备向第二设备反馈CSI变化程度,此时的填充需求可以是指,从NDPA探测阶段的结束时刻(也即,NDPA探测阶段中的NDP的结束时刻)到第一设备发送测量报告(包含CSI变化程度)的时刻之间所需的最短时长。
此外,上述几个实施例中的填充需求是以时长为例来说明的,当然也可以是其它与时长对应的可以指示填充需求的量,例如,比特数等,不作限制。
此外,上述实施例中,第一设备采用立即模式或延时模式,是以时长需求作为示例来说明的。可替换地,上述实施例中的时长需求也可以替换为其它参数的需求,例如,空间流数、资源单元的大小、带宽大小以及反馈尺寸等的需求。以空间流为例,若第一设备需要反馈的针对感知的测量结果的空间流数大于4个,则第一设备采用延时模式,否则第一设备采用立即模式。本领域技术人员基于上述以时长设计的实施例,可以获知时长之外的其它参数如何应用,不再予以赘述。
可选地,上述实施例中,第一设备通过第一指示信息向第二设备指示采用立即模式的时长需求。该时长需求还可以和反馈模式相关的其它要素关联起来使用,以实现更精准化的时长需求的指示。所述要素可以包括空间流数量、RU的大小、比特数目、比特数目范围中的一个或多个。作为一个示例,在NDPA探测阶段之前的测量建立请求阶段,第一设备向第二设备发送第一指示信息,第一指示信息指示第一设备采用立即模式反馈针对感知的测量结果的时长需求。作为一个示例,第一指示信息指示的时长需求可以包括不止一个时长需求,每个时长需求关联若干个(可以为一个或多个)和反馈模式相关的要素。例如,第一指示信息指示的时长需求包括:时长需求1,时长需求2,时长需求3以及时长需求4。其中,时长需求1为第一设备反馈的空间流数为Q,且采用立即模式反馈时的时长需求;时长需求2为第一设备反馈的空间流数为R,且采用立即模式反馈时的时长需求;时长需求3为第一设备反馈的带宽为m,空间流数为z个,且采用立即模式反馈时的时长需求;时长需求4为第一设备反馈的RU的尺寸为n,且采用立即模式反馈时的时长需求。在该示例中,时长需求1和时长需求2均关联空间流数,时长需求3关联带宽和空间流数;时长需求4关联RU的尺寸。
在NDPA阶段,若第二设备指示第一设备需要反馈的空间流数为Q,则第二设备根据第一指示信息同时可以确定第一设备采用立即模式反馈该NDPA探测阶段中的NDP对应的测量结果的时长需求具体为时长需求1。若第二设备指示第一设备需要反馈的空间流数为R,则第二设备根据第一指示信息可以确定第一设备采用立即模式反馈该NDPA探测阶段中的NDP对应的测量结果的时长需求具体为时长需求2。
以上对本申请提供的通信方法进行了详细说明,下面介绍本申请提供的通信装置。
参见图5,图5为本申请提供的通信装置的示意性框图。如图5,通信装置1000包括处理单元1100、接收单元1200和发送单元1300。
可选地,通信装置1000可以对应本申请实施例中的第一设备。
在这种情况下,在一些方案中,通信装置1000的各单元用于实现如下功能:
发送单元1300,用于:
向第二设备发送第一指示信息,第一指示信息指示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长,第二PPDU包含针对感知的测量结果,该针对感知的测量结果是基于第一PPDU得到的;
以及,向第一设备发送第二PPDU。
可选地,在一个实施例中,发送单元1300,用于:
若通信装置接收第一PPDU到发送第二PPDU之间的时长满足第一时长,采用立即模式发送第二PPDU;或者,
若通信装置接收第一PPDU到发送第二PPDU之间的时长不满足第一时长,采用延时模式发送第二PPDU。
可选地,在一个实施例中,接收单元1200,用于接收来自于第二设备的第二指示信息,第二指示信息指示通信装置采用立即模式或者延时模式发送第二PPDU,第二指示信息是基于第一指示信息确定的;
发送单元1300,用于根据第二指示信息,发送第二PPDU。
可选地,在一个实施例中,发送单元1300,还用于:
向第二设备发送第三指示信息,第三指示信息指示通信装置接收第一PPDU到发送第二PPDU之间的时长必须满足第一时长,或者,第三指示信息指示通信装置要求采用立即模式发送第二PPDU;
以及,发送单元1300,用于采用立即模式发送第二PPDU。
可选地,在一个实施例中,第一PPDU为NDP。
可选地,在一个实施例中,第一时长为NDP的结束时刻到通信设备采用立即模式发送的第二PPDU的起始时刻之间的时长。
可选地,在一个实施例中,接收单元1200接收第一指示信息的时刻位于NDP的起始时刻之前。
可选地,在一个实施例中,第一PPDU为NDP,接收单元1200接收第二指示信息的时刻位于NDP的起始时刻之前。
可选地,在另一些方案中,通信装置1000的各单元用于实现如下功能:
发送单元1300,用于向第二设备发送第一信息,第一信息指示通信装置对于触发帧的填充需求,填充需求是针对感知的;
接收单元1200,用于接收来自于第二设备的触发帧,触发帧具有针对感知的填充比特,填充比特是根据填充需求确定的。
可选地,在一个实施例中,第一信息指示需求信息与要素的映射关系,其中,需求信息用于填充比特和反馈模式的确定,要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,反馈模式包括立即模式或延时模式。
可选地,在一个实施例中,第一信息指示R个需求信息与R个要素的映射关系,R个需求信息与R个要素是一一对应的,R为正整数。
在该实现方式中,可选地,第一信息还指示:
R的数值。
可选地,在一个实施例中,第一信息指示要素,要素与需求信息具有映射关系,其中,需求信息用于填充比特和反馈模式的确定,要素包括空间流数量、资源单元RU的大小、 比特数目、比特数目范围中的一个或多个,反馈模式包括立即模式或延时模式。
可选地,在一个实施例中,第一信息指示需求信息,需求信息与要素具有映射关系,其中,需求信息用于填充比特和反馈模式的确定,要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,反馈模式包括立即模式或延时模式。
可选地,在一个实施例中,需求信息用于填充比特和反馈模式的确定,包括:
需求信息用于填充比特的最低需求和反馈模式的确定,最低需求为0。
可选地,在一个实施例中,需求信息与要素的映射关系,还包括:
在要素的表征值大于或等于设定门限的情况下,需求信息所指示的第一设备对触发帧的填充需求是固定设置的;或者,
在要素的表征值小于或等于设定门限的情况下,需求信息所指示的第一设备对触发帧的填充需求是固定设置的。
可选地,在一个实施例中,要素为比特数目,映射关系包括:
比特数目p与时长q的映射关系;或者,
比特数目p与时长q以及预设比特数目门限r的映射关系;
其中,时长q指示填充需求,p,q和r均为正整数。
可选地,在一个实施例中,比特数目p与时长q的映射关系满足如下关系式:
(实际需要处理的比特数目/p)·q;和/或,
比特数目p与时长q以及预设比特数目门限r的映射关系满足如下关系式:
((实际需要处理的比特数目-r)/p)·q;
其中,p,q和r均为正整数,q的单位为微秒。
可选地,在一个实施例中,第一信息指示如下一项或多项:
第一索引值,第一索引值指示填充需求和立即模式;
第二索引值,第二索引值指示无填充需求和立即模式;
第三索引值,第三索引值指示无填充需求和延时模式。
可选地,在一个实施例中,触发帧用于触发第一设备反馈第一类型的感知内容,第一类型的感知内容属于通信装置支持反馈的至少两个类型的感知内容之一,至少两个类型的感知内容包括信道状态信息CSI或截断信道冲击响应TCIR。
在另一个方案中,接收单元1200,用于接收来自于第二设备的触发帧,其中,在如下一种或多种情况下,触发帧不具有针对感知的填充比特;
在感知测量的数据分组宣告NDPA阶段和接收到触发帧并反馈感知内容之间存在触发帧探测阶段;
在感知测量的NDPA阶段和接收到触发帧并反馈感知内容之间存在基于阈值的信道变化收集阶段;或
在感知测量的NDPA阶段和接收到触发帧并反馈感知内容之间存在一个或多个其它阶段;
处理单元1100,用于根据触发帧,控制发送单元1300采用立即模式向第二设备发送感知内容。
在另一个方案中,接收单元1200,用于接收来自于第二设备的触发帧,触发帧用于触发通信装置反馈感知内容;
处理单元1100,用于根据触发帧,控制发送单元1300向第二设备发送感知内容和第二信息,第二信息指示感知内容的反馈模式,反馈模式为如下之一:
立即模式;
延时模式。
可选地,通信装置1000可以对应本申请实施例中的第二设备。
在一些方案中,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于:
接收来自于第一设备的第一指示信息,第一指示信息指示第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长,第二PPDU包含针对感知的测量结果,该针对感知的测量结果是基于第一PPDU得到的;
以及,接收来自于第一设备的第二PPDU。
可选地,在一个实施例中,若第一设备接收第一PPDU到发送第二PPDU之间的时长满足第一时长,第二PPDU是采用立即模式发送的;或者,
若第一设备接收第一PPDU到发送第二PPDU之间的时长不满足第一时长,第二PPDU是采用延时模式发送的。
可选地,在一个实施例中,发送单元1300,用于根据第一指示信息,向第一设备发送第二指示信息,第二指示信息指示第一设备采用立即模式或者延时模式发送第二PPDU;
以及,若第二指示信息指示第一设备采用立即模式发送第二PPDU,第二PPDU是采用立即模式发送的;或者,
若第二指示信息指示第一设备采用延时模式发送第二PPDU,第二PPDU是采用延时模式发送的。
可选地,在一个实施例中,接收单元1200,用于:
接收来自于第一设备的第三指示信息,第三指示信息指示第一设备接收第一PPDU到发送第二PPDU之间的时长必须满足第一时长,或者,第三指示信息指示第一设备要求采用立即模式发送第二PPDU;
以及,第二PPDU是采用立即模式发送的。
可选地,在一个实施例中,第一PPDU为NDP。
可选地,在一个实施例中,第一时长为NDP的结束时刻到第一设备采用立即模式发送的第二PPDU的起始时刻之间的时长。
可选地,在一个实施例中,接收单元1200接收第一指示信息的时刻位于NDP的起始时刻之前。
可选地,在一个实施例中,第一PPDU为NDP,发送单元发送第二指示信息的时刻位于NDP的起始时刻之前。
可选地,在另一些方案中,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收来自于第一设备的第一信息,第一信息指示第一设备对于触发帧的填充需求,填充需求是针对感知的;
发送单元1300,用于向第一设备发送触发帧,触发帧具有针对感知的填充比特,填充比特是根据填充需求确定的。
可选地,在一个实施例中,第一信息指示需求信息与要素的映射关系,其中,需求信 息用于填充比特和反馈模式的确定,要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,反馈模式包括立即模式或延时模式。
可选地,在一个实施例中,第一信息指示R个需求信息与R个要素的映射关系,R个需求信息与R个要素是一一对应的,R为正整数。
在该实现方式中,可选地,第一信息还指示:
R的数值。
可选地,在一个实施例中,第一信息指示要素,要素与需求信息具有映射关系,其中,需求信息用于填充比特和反馈模式的确定,要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,反馈模式包括立即模式或延时模式。
可选地,在一个实施例中,第一信息指示需求信息,需求信息与要素具有映射关系,其中,需求信息用于填充比特和反馈模式的确定,要素包括空间流数量、资源单元RU的大小、比特数目、比特数目范围中的一个或多个,反馈模式包括立即模式或延时模式。
可选地,在一个实施例中,需求信息用于填充比特和反馈模式的确定,包括:
需求信息用于填充比特的最低需求和反馈模式的确定,最低需求为0。
可选地,在一个实施例中,需求信息与要素的映射关系,还包括:
在要素的表征值大于或等于设定门限的情况下,需求信息所指示的第一设备对触发帧的填充需求是固定设置的;或者,
在要素的表征值小于或等于设定门限的情况下,需求信息所指示的第一设备对触发帧的填充需求是固定设置的。
可选地,在一个实施例中,要素为比特数目,映射关系包括:
比特数目p与时长q的映射关系;或者,
比特数目p与时长q以及预设比特数目门限r的映射关系;
其中,时长q指示填充需求,p,q和r均为正整数。
可选地,在一个实施例中,比特数目p与时长q的映射关系满足如下关系式:
(实际需要处理的比特数目/p)·q;和/或,
比特数目p与时长q以及预设比特数目门限r的映射关系满足如下关系式:
((实际需要处理的比特数目-r)/p)·q;
其中,p,q和r均为正整数,q的单位为微秒。
可选地,在一个实施例中,第一信息指示如下一项或多项:
第一索引值,第一索引值指示填充需求和立即模式;
第二索引值,第二索引值指示无填充需求和立即模式;
第三索引值,第三索引值指示无填充需求和延时模式。
可选地,在一个实施例中,触发帧用于触发第一设备反馈第一类型的感知内容,第一类型的感知内容属于通信装置支持反馈的至少两个类型的感知内容之一,至少两个类型的感知内容包括信道状态信息CSI或截断信道冲击响应TCIR。
在以上各实现方式中,接收单元1200和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在通信装置1000对应第一设备的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由第一设备内部实现的处理和/或操作。接收单元1200用于执行第一设备的 接收的动作,发送单元1300用于执行第一设备的发送的动作。
例如,在图4中,发送单元1300执行步骤410的发送的动作,可选地,还执行步骤430的发送的动作。接收单元1200执行步骤420的接收的动作。
在通信装置1000对应第二设备的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由第二设备内部实现的处理和/或操作。接收单元1200用于执行第二设备的接收的动作,发送单元1300用于执行第二设备的发送的动作。
例如,在图4中,接收单元1200执行步骤410的接收的动作,可选地,还执行步骤430的接收的动作。发送单元1300执行步骤420的发送的动作。
参见图6,图6为本申请提供的通信装置的示意性结构图。如图6,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得通信装置10执行本申请各方法实施例中由第一设备或第二设备执行的处理。
例如,处理器11可以具有图5中所示的处理单元1100的功能,通信接口13可以具有图5中所示的接收单元1200和/或发送单元1300的功能。具体地,处理器11可以用于执行由通信装置内部执行的处理或操作,通信接口13用于执行通信装置的发送和/或接收的操作。
在一种实现方式中,通信装置10可以为方法实施例中的第一设备。在这种实现方式中,通信接口13可以为第一设备的收发器。收发器可以包括接收器和/或发射器。可选地,处理器11可以为第一设备的基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在第一设备中的芯片(或芯片***)。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
在一种实现方式中,通信装置10可以为方法实施例中的第二设备。在这种实现方式中,通信接口13可以为第二设备的收发器。收发器可以包括接收器和/或发射器。可选地,处理器11可以为第二设备的基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在第二设备中的芯片(或芯片***)。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
其中,图6中器件(例如,处理器、存储器或通信接口)后面的虚线框表示该器件可以为一个以上。
可选地,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不作限定。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由第一设备执行的操作和/或处理被执行。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由第二设备执行的操作和/或处理被执行。
此外,本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由第一设备 执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由第二设备执行的操作和/或处理被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器,用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,使得安装有所述芯片的第一设备执行任意一个方法实施例中由第一设备执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
本申请还提供一种芯片,所述芯片包括处理器,用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,使得安装有所述芯片的第二设备执行任意一个方法实施例中由第二设备执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
可选地,上述处理器可以为一个或多个,所述存储器可以为一个或多个,所述存储器可以为一个或多个。
此外,本申请还提供一种通信装置(例如,可以为芯片或芯片***),包括处理器和通信接口,所述通信接口用于接收(或称为输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出(或称为输出)经处理器处理之后的数据和/或信息,以使得任意一个方法实施例中由第一设备执行的操作和/或处理被执行。
本申请还提供一种通信装置(例如,可以为芯片或芯片***),包括处理器和通信接口,所述通信接口用于接收(或称为输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出(或称为输出)经处理器处理之后的数据和/或信息,以使得任意一个方法实施例中由第二设备执行的操作和/或处理被执行。
此外,本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得所述通信装置执行任意一个方法实施例中由第一设备执行的操作和/或处理。
本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得所述通信装置执行任意一个方法实施例中由第二设备执行的操作和/或处理。
此外,本申请还提供一种无线通信***,包括本申请方法实施例中的第一设备和第二设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field  programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述实施例所提供的方法,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
为了便于清楚描述本申请实施例的技术方案,本申请的实施例中采用了“第一”、“第二”等编号对功能和作用基本相同的相同项或相似项进行区分。例如,第一索引值和第二索引值仅仅是为了区分不同的索引值。本领域技术人员可以理解“第一”、“第二”等编号并不对数量、大小和执行次序进行限定。并且“第一”、“第二”也并不限定一定不同。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,A、B以及C均可以为单数或者复数,不作限定。
此外,字符“/”一般表示前后关联对象是一种“或”的关系。“当….时”也可以替换为“在….情况下”。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种通信方法,其特征在于,包括:
    第一设备向第二设备发送第一指示信息,所述第一指示信息指示所述第一设备接收第一物理层协议数据单元PPDU到采用立即模式发送第二PPDU之间的第一时长,所述第二PPDU包含针对感知的测量结果,所述针对感知的测量结果是基于所述第一PPDU得到的;
    所述第一设备发送所述第二PPDU。
  2. 如权利要求1所述的方法,其特征在于,所述第一设备发送所述第二PPDU,包括:
    若所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长满足所述第一时长,所述第一设备采用所述立即模式发送所述第二PPDU;或者,
    若所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长不满足所述第一时长,所述第一设备采用延时模式发送所述第二PPDU。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自于所述第二设备的第二指示信息,所述第二指示信息指示所述第一设备采用所述立即模式或者延时模式发送所述第二PPDU,所述第二指示信息是基于所述第一指示信息确定的;
    所述第一设备发送所述第二PPDU,包括:
    所述第一设备根据所述第二指示信息,发送所述第二PPDU。
  4. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第三指示信息,所述第三指示信息指示所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长必须满足所述第一时长,或者,所述第三指示信息指示所述第一设备要求采用所述立即模式发送所述第二PPDU;
    所述第一设备发送所述第二PPDU,包括:
    所述第一设备采用所述立即模式发送所述第二PPDU。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述第一PPDU为空数据物理层协议数据单元NDP。
  6. 如权利要求5所述的方法,其特征在于,所述第一时长为所述NDP的结束时刻到所述第一设备采用所述立即模式发送的所述第二PPDU的起始时刻之间的时长。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一设备接收所述第一指示信息的时刻位于所述NDP的起始时刻之前。
  8. 如权利要求3所述的方法,其特征在于,所述第一PPDU为空数据物理层协议数据单元NDP,所述第一设备接收所述第二指示信息的时刻位于所述NDP的起始时刻之前。
  9. 一种通信方法,其特征在于,包括:
    第二设备接收来自于第一设备的第一指示信息,所述第一指示信息指示所述第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长,所述第二PPDU包含针对感知的测量结果,所述针对感知的测量结果是基于所述第一PPDU得到的;
    所述第二设备接收来自于所述第一设备的所述第二PPDU。
  10. 如权利要求9所述的方法,其特征在于,所述第二设备接收来自于所述第一设备的所述第二PPDU,包括:
    若所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长满足所述第一时长,所述第二设备接收来自于所述第一设备的所述第二PPDU,所述第二PPDU是采用所述立即模式发送的;或者,
    若所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长不满足所述第一时长,所述第二设备接收来自于所述第一设备的所述第二PPDU,所述第二PPDU是采用所述延时模式发送的。
  11. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第一指示信息,向所述第一设备发送第二指示信息,所述第二指示信息指示所述第一设备采用所述立即模式或者延时模式发送所述第二PPDU;
    所述第二设备接收来自于所述第一设备的所述第二PPDU,包括:
    所述第二设备接收来自于所述第一设备的所述第二PPDU,其中,
    若所述第二指示信息指示所述第一设备采用所述立即模式发送所述第二PPDU,所述第二PPDU是采用所述立即模式发送的;或者,
    若所述第二指示信息指示所述第一设备采用延时模式发送所述第二PPDU,所述第二PPDU是采用所述延时模式发送的。
  12. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自于所述第一设备的第三指示信息,所述第三指示信息指示所述第一设备接收所述第一PPDU到所述第一设备发送所述第二PPDU之间的时长必须满足所述第一时长,或者,所述第三指示信息指示所述第一设备要求采用所述立即模式发送所述第二PPDU;
    所述第二设备接收来自于所述第一设备的所述第二PPDU,包括:
    所述第二设备接收来自于所述第一设备的所述第二PPDU,所述第二PPDU是采用所述立即模式发送的。
  13. 如权利要求9-12中任一项所述的方法,其特征在于,所述第一PPDU为空数据物理层协议数据单元NDP。
  14. 如权利要求13所述的方法,其特征在于,所述第一时长为所述NDP的结束时刻到所述第一设备采用所述立即模式发送的所述第二PPDU的起始时刻之间的时长。
  15. 如权利要求13或14所述的方法,其特征在于,所述第二设备接收所述第一指示信息的时刻位于所述NDP的起始时刻之前。
  16. 如权利要求11所述的方法,其特征在于,所述第一PPDU为空数据物理层协议数据单元NDP,所述第二设备发送所述第二指示信息的时刻位于所述NDP的起始时刻之前。
  17. 一种通信装置,其特征在于,包括:
    发送单元,用于向第二设备发送第一指示信息,所述第一指示信息指示所述通信装置接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长,所述第二PPDU包含针对感知的测量结果,所述针对感知的测量结果是基于所述第一PPDU得到的
    所述发送单元,还用于发送所述第二PPDU。
  18. 如权利要求17所述的通信装置,其特征在于,所述发送单元,用于:
    若所述通信装置接收所述第一PPDU到发送所述第二PPDU之间的时长满足所述第一时长,采用所述立即模式发送所述第二PPDU;或者,
    若所述通信装置接收所述第一PPDU到发送所述第二PPDU之间的时长不满足所述第一时长,采用延时模式发送所述第二PPDU。
  19. 如权利要求17所述的通信装置,其特征在于,所述通信装置还包括:
    接收单元,用于接收来自于所述第二设备的第二指示信息,所述第二指示信息指示所述通信装置采用所述立即模式或者延时模式发送所述第二PPDU,所述第二指示信息是基于所述第一指示信息确定的;
    所述发送单元,用于根据所述第二指示信息,发送所述第二PPDU。
  20. 如权利要求17所述的通信装置,其特征在于,所述发送单元,还用于:
    向所述第二设备发送第三指示信息,所述第三指示信息指示所述通信装置接收所述第一PPDU到发送所述第二PPDU之间的时长必须满足所述第一时长,或者,所述第三指示信息指示所述通信装置要求采用所述立即模式发送所述第二PPDU;
    以及,所述发送单元,用于采用所述立即模式发送所述第二PPDU。
  21. 如权利要求17-20中任一项所述的通信装置,其特征在于,所述第一PPDU为NDP。
  22. 如权利要求21所述的通信装置,其特征在于,所述第一时长为所述NDP的结束时刻到所述通信设备采用所述立即模式发送的所述第二PPDU的起始时刻之间的时长。
  23. 如权利要求21或22所述的通信装置,其特征在于,所述通信装置还包括接收单元,所述接收单元接收所述第一指示信息的时刻位于所述NDP的起始时刻之前。
  24. 如权利要求19所述的通信装置,其特征在于,所述第一PPDU为NDP,所述接收单元接收所述第二指示信息的时刻位于所述NDP的起始时刻之前。
  25. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自于第一设备的第一指示信息,所述第一指示信息指示所述第一设备接收第一PPDU到采用立即模式发送第二PPDU之间的第一时长,所述第二PPDU包含针对感知的测量结果,所述针对感知的测量结果是基于所述第一PPDU得到的;
    所述接收单元,还用于接收来自于所述第一设备的所述第二PPDU。
  26. 如权利要求25所述的通信装置,其特征在于,若所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长满足所述第一时长,所述第二PPDU是采用所述立即模式发送的;或者,
    若所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长不满足所述第一时长,所述第二PPDU是采用所述延时模式发送的。
  27. 如权利要求25所述的通信装置,其特征在于,所述通信装置还包括:
    发送单元,用于根据所述第一指示信息,向所述第一设备发送第二指示信息,所述第二指示信息指示所述第一设备采用所述立即模式或者延时模式发送所述第二PPDU;
    以及,若所述第二指示信息指示所述第一设备采用所述立即模式发送所述第二PPDU,所述第二PPDU是采用所述立即模式发送的;或者,
    若所述第二指示信息指示所述第一设备采用延时模式发送所述第二PPDU,所述第二 PPDU是采用所述延时模式发送的。
  28. 如权利要求25所述的通信装置,其特征在于,所述接收单元还用于:
    接收来自于所述第一设备的第三指示信息,所述第三指示信息指示所述第一设备接收所述第一PPDU到发送所述第二PPDU之间的时长必须满足所述第一时长,或者,所述第三指示信息指示所述第一设备要求采用所述立即模式发送所述第二PPDU;
    以及,所述第二PPDU是采用所述立即模式发送的。
  29. 如权利要求25-28中任一项所述的通信装置,其特征在于,所述第一PPDU为NDP。
  30. 如权利要求29所述的通信装置,其特征在于,所述第一时长为所述NDP的结束时刻到所述第一设备采用所述立即模式发送的所述第二PPDU的起始时刻之间的时长。
  31. 如权利要求29或30所述的通信装置,其特征在于,所述接收单元接收所述第一指示信息的时刻位于所述NDP的起始时刻之前。
  32. 如权利要求27所述的通信装置,其特征在于,所述第一PPDU为NDP,所述发送单元发送所述第二指示信息的时刻位于所述NDP的起始时刻之前。
  33. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-8中任一项所述的方法,或者执行如权利要求9-16中任一项所述的方法。
  34. 一种芯片,其特征在于,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以执行如权利要求1-8中任一项所述的方法,或者执行如权利要求9-16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如权利要求1-8中任一项所述的方法被实现,或者如权利要求9-16中任一项所述的方法被实现。
  36. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如权利要求1-8中任一项所述的方法被实现,或者如权利要求9-16中任一项所述的方法被实现。
PCT/CN2023/077148 2022-03-11 2023-02-20 通信方法和通信装置 WO2023169191A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210239627 2022-03-11
CN202210239627.7 2022-03-11
CN202210439969.3A CN116781208A (zh) 2022-03-11 2022-04-25 通信方法和通信装置
CN202210439969.3 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023169191A1 true WO2023169191A1 (zh) 2023-09-14

Family

ID=87937180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077148 WO2023169191A1 (zh) 2022-03-11 2023-02-20 通信方法和通信装置

Country Status (1)

Country Link
WO (1) WO2023169191A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107346996A (zh) * 2016-05-06 2017-11-14 华为技术有限公司 一种信息反馈方法及装置
US20180138959A1 (en) * 2015-04-16 2018-05-17 Lg Electronics Inc. Channel sounding method in wireless communication system, and apparatus therefor
CN110831072A (zh) * 2019-10-28 2020-02-21 普联技术有限公司 一种基于wlan的mcs选择方法及***
CN110870358A (zh) * 2018-06-27 2020-03-06 Lg电子株式会社 无线lan***中的信号发送/接收方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138959A1 (en) * 2015-04-16 2018-05-17 Lg Electronics Inc. Channel sounding method in wireless communication system, and apparatus therefor
CN107346996A (zh) * 2016-05-06 2017-11-14 华为技术有限公司 一种信息反馈方法及装置
CN110870358A (zh) * 2018-06-27 2020-03-06 Lg电子株式会社 无线lan***中的信号发送/接收方法及其装置
CN110831072A (zh) * 2019-10-28 2020-02-21 普联技术有限公司 一种基于wlan的mcs选择方法及***

Similar Documents

Publication Publication Date Title
WO2021023093A1 (zh) 感知方法和通信装置
CN107113782B (zh) 用于数字通信中避免干扰的***和方法
WO2020134944A1 (zh) 干扰测量的方法和通信装置
CN110089148B (zh) 聚合mpdu、用于发送对其的响应帧的方法及使用其的无线通信终端
WO2010143894A2 (en) Method and apparatus for transmitting frame in wireless local area network (wlan) system
EP3306975B1 (en) Wlan link self-adaptation method and network device
WO2021129401A1 (zh) 信道探测方法及装置
TW201640856A (zh) 控制訊框聚合訊框
WO2021139681A1 (zh) 一种数据帧的接收状态确定方法及通信装置
WO2020001343A1 (zh) 一种通信方法及装置
WO2019137445A1 (zh) 信道状态信息的测量方法和装置
US20140140333A1 (en) Method and device for transmitting a frame using a multiple physical layer in a wireless lan system
JP7127699B2 (ja) 信号伝送方法、中央アクセススポイントap、及び遠隔無線ユニットrru
WO2018036253A1 (zh) 信道状态信息的反馈方法和设备
WO2023169191A1 (zh) 通信方法和通信装置
EP4072194A1 (en) Wireless local area network transmission method and device, and transceiver
TWI687067B (zh) 無線通信方法和裝置
WO2024131655A1 (zh) 一种信息指示的方法和通信装置
WO2023108371A1 (zh) 感知方法和设备
WO2023093711A1 (zh) 频谱感知方法及装置、存储介质、程序产品
WO2024055951A1 (zh) 通信方法及装置
WO2017036258A1 (zh) 竞争接入方法、竞争接入装置、站点及竞争接入***
WO2023231707A1 (zh) 一种用于感知的方法和装置
WO2022213891A1 (zh) 一种传输需求指示的方法和装置
CN116781208A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765769

Country of ref document: EP

Kind code of ref document: A1