WO2023168780A1 - 光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法 - Google Patents

光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法 Download PDF

Info

Publication number
WO2023168780A1
WO2023168780A1 PCT/CN2022/086480 CN2022086480W WO2023168780A1 WO 2023168780 A1 WO2023168780 A1 WO 2023168780A1 CN 2022086480 W CN2022086480 W CN 2022086480W WO 2023168780 A1 WO2023168780 A1 WO 2023168780A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
optical glass
polishing liquid
weakly acidic
content
Prior art date
Application number
PCT/CN2022/086480
Other languages
English (en)
French (fr)
Inventor
占稳
刘文志
薛松海
姜超
林慧娴
Original Assignee
中国机械总院集团海西(福建)分院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国机械总院集团海西(福建)分院有限公司 filed Critical 中国机械总院集团海西(福建)分院有限公司
Publication of WO2023168780A1 publication Critical patent/WO2023168780A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the invention relates to the field of precision processing of optical glass. More specifically, the present invention relates to a low abrasive content and weakly acidic polishing liquid for ultra-precision processing of optical glass and a preparation method thereof.
  • Precision optical glass is widely used in aerospace, deep space exploration, nuclear energy industry, precision electronic instruments and other fields.
  • Optical glass materials are highly brittle and have low fracture toughness. They generally require ultra-precision grinding and ultra-precision polishing to achieve surface shape accuracy better than 0.1 ⁇ m, surface roughness Ra better than 10 nm, and surface defects and sub-surfaces. Damage is minimal.
  • the chemical mechanical polishing fluids used in optical glass processing technology mainly include: SiO 2 polishing fluid, CeO 2 polishing fluid and Al 2 O 3 polishing fluid.
  • SiO 2 polishing fluid is a metal ion polishing fluid. It is mainly used for high-precision polishing of silicon wafers, precision optical components, compound crystals, etc. It uses larger colloidal particles with a larger concentration and a pH value in the range of 10.5-11.5 The SiO 2 polishing liquid inside has better polishing effect.
  • Al 2 O 3 polishing fluid is widely used in precision polishing fields such as ceramic glass substrates and optical lenses.
  • CeO 2 polishing fluid has high selectivity and can effectively improve the surface quality of the workpiece being processed by properly coordinating the rough polishing and fine polishing processes. It has become a commonly used abrasive for optical glass polishing. However, in order to improve the dispersion of micron or nanoparticles, existing polishing fluids are usually prepared in alkaline solution systems (CN201110228844.8, CN200510078963.4).
  • polishing fluid is more suitable for optical glass reliability and precision processing performance requirements.
  • the purpose of the present invention is to provide a low abrasive content and weakly acidic polishing liquid for ultra-precision processing of optical glass and a preparation method thereof, which reduces the use of rare earth oxides and organic matter, has the characteristics of water-based green environmental protection and low economic cost.
  • a low abrasive content and weakly acidic polishing liquid for ultra-precision processing of optical glass including: nano abrasives, dispersants, synergists, suspending agents, defoaming agents and distilled water , adjust the pH of the polishing slurry to 6 ⁇ 7;
  • the nanoabrasive includes one or more of cerium oxide, lanthanum oxide, and zirconium oxide.
  • the nanoabrasive is one type, it is cerium oxide; in terms of mass percentage, the cerium oxide content in the nanoabrasive is 2.5%-4 %, lanthanum oxide content 0-0.5%, zirconium oxide content 0-0.3%, particle size range 100nm-500nm.
  • the nanoabrasive is a mixture of nanoparticle abrasives with a single particle size or nanoparticle abrasives with multiple particle sizes.
  • a certain gap in particle size is maintained, for example, 200 nm and 500 nm nanoparticle abrasives are mixed.
  • the purity of nanocerium oxide is 65% to 99.99%.
  • the purity of nanocerium oxide is 99.9%.
  • the dispersant contains one or more of 0.5%-1.5% polyethylene glycol, 8%-12% polyacrylic acid, and 2%-5% sodium hexametaphosphate.
  • the molecular weight of polyethylene glycol is 2000, and the polyacrylic acid with a molecular weight of 3 million accounts for 30% of the total mass of polyacrylic acid.
  • the synergist contains 0.5%-1% sodium chloride and 0.5-1% sodium fluoride.
  • the suspension contains one or more of 0.1%-0.3% sodium polyacrylate and 0.1%-0.3% polyacrylamide.
  • the pH adjuster is sodium hydroxide.
  • the mass percentage of each component in the polishing fluid is:
  • the nanoabrasive is one or more of 2.5%-4% cerium oxide, 0-0.5% lanthanum oxide, and 0-0.3% zirconium oxide;
  • the dispersant is one or more of 0.5%-1.5% polyethylene glycol, 8%-12% polyacrylic acid, and 2%-5% sodium hexametaphosphate;
  • the synergist is 0.5%-1% sodium chloride and 0.5-1% sodium fluoride;
  • the suspending agent is one or more of 0.1%-0.3% sodium polyacrylate and 0.1%-0.3% polyacrylamide;
  • the defoaming agent is 0.1%-0.3% alkylphenol polyoxyethylene ether
  • the balance consists of distilled water.
  • the invention also provides a method for preparing a low abrasive content and weakly acidic polishing liquid for ultra-precision processing of optical glass, which includes: adding part of distilled water to container A containing the dispersant, and stirring it with magnetic force until it is completely dissolved; Add nano-abrasive, synergist, suspending agent, and defoaming agent to container A in sequence, and stir while adding the remaining amount of distilled water; slowly add a small amount of sodium hydroxide to dissolve in the solution, and adjust the pH of the entire polishing slurry to within the range of 6-7 ; Then transfer container A to device B with ultrasonic dispersion function for stirring for 2h-5h, and control the water temperature in device B not to exceed 45°C.
  • the optimal ultrasonic stirring and dispersion time is 3 hours.
  • the present invention at least includes the following beneficial effects:
  • the present invention prepares a polishing liquid by examining the comprehensive properties of the dispersion average particle size/Zeta potential/rotational viscosity/suspension/pH of the polishing fluid and strictly screening the size, purity and addition amount of the nano-abrasive.
  • the polishing fluid reduces the use of rare earth oxides and organic matter, and highlights the characteristics of water-based green environmental protection and low economic cost utilization.
  • Figure 1 is a diagram showing the relationship between the dispersion and ultrasonic stirring time of the polishing liquid prepared by using nano-cerium oxide with a purity of 65% in Example 1 of the present invention
  • Figure 2 is a graph showing the relationship between the dispersion and ultrasonic stirring time of the polishing liquid prepared by using nano-cerium oxide with a purity of 99.9% according to the present invention
  • Figure 3 is a graph showing the relationship between the dispersion and ultrasonic stirring time of the polishing liquid prepared using nanometer cerium oxide with a purity of 99.99% according to the present invention
  • Figure 4 is a diagram showing the relationship between the polishing liquid prepared by using cerium oxide with different nanometer sizes and its dispersion according to the present invention
  • Figure 5 is a scanning electron microscope image of the polishing material of Example 1 of the present invention.
  • Figure 6 is an energy spectrum diagram of the polishing material of Example 1 of the present invention.
  • Figure 7 is an elemental composition diagram of the polishing material in Embodiment 1 of the present invention.
  • Figure 8 is a scanning electron microscope image of the polishing material of Example 2 of the present invention.
  • Figure 9 is an energy spectrum diagram of the polishing material of Example 2 of the present invention.
  • Figure 10 is an elemental composition diagram of the polishing material in Embodiment 2 of the present invention.
  • Figure 11 is a scanning electron microscope image of the polishing material of Comparative Example 1 of the present invention.
  • Figure 12 is an energy spectrum diagram of the polishing material of Comparative Example 1 of the present invention.
  • Figure 13 is an elemental composition diagram of the polishing material of Comparative Example 1 of the present invention.
  • the polishing liquid consists of a mass fraction of 4% cerium oxide (select cerium oxide powder with a purity of 65% and a particle size of 500nm), 0.2% lanthanum oxide, 0.5% polyethylene glycol, 8% polyacrylic acid, and 2% hexamethylene glycol.
  • the polishing liquid consists of a mass fraction of 1.5% cerium oxide (cerium oxide powder with a purity of 99.9% is selected, and its particle size is 200nm), 2.5% cerium oxide (cerium oxide powder with a purity of 99.9% is selected, and its particle size is 500nm), 0.5% cerium oxide One or more of lanthanum, 0.3% zirconia; 1% polyethylene glycol, 10% polyacrylic acid, 5% sodium hexametaphosphate, 0.5% sodium chloride, 0.5% sodium fluoride, 0.2% poly It is composed of sodium acrylate, 0.2% polyacrylamide, 0.1% alkylphenol polyoxyethylene ether, and the balance is water, as shown in Figures 8 to 10, which are scanning electron microscope images, energy spectral images, and elemental composition images of the polishing fluid.
  • the polishing liquid consists of a mass fraction of 3% cerium oxide (select cerium oxide powder with a purity of 99.99% and a particle size of 500nm), 0.5% lanthanum oxide, 0.5% zirconium oxide; 0.5% polyethylene glycol, and 8% polyacrylic acid , 2% sodium hexametaphosphate, 1% sodium chloride, 0.5% sodium fluoride; 0.3% sodium polyacrylate, 0.3% polyacrylamide, 0.3% alkylphenol polyoxyethylene ether, and the balance is water.
  • the polishing liquid consists of a mass fraction of 4% cerium oxide (select cerium oxide powder with a purity of 99.9% and a particle size of 200-500nm), 0.2% lanthanum oxide, 0.5% polyethylene glycol, 8% polyacrylic acid, 2% Sodium hexametaphosphate; 0.5% sodium chloride, 0.5% sodium fluoride, 0.3% sodium polyacrylate, 0.3% polyacrylamide, 0.1% alkylphenol polyoxyethylene ether, and the balance is water.
  • defoaming agent stir while adding the remaining amount of distilled water; slowly add a small amount of sodium hydroxide to dissolve in the solution, and adjust the pH of the entire polishing slurry to within the range of 6-7; then transfer container A to device B with ultrasonic dispersion function Stir during the process, control the water temperature in device B to not exceed 45°C, stir through device B with ultrasonic dispersion function, and detect the dispersion degree and dispersed particle size at 1h, 1.5h, 2h, 2.5h, and 3h.
  • the purity of nano-cerium oxide is selected to be 99.9%
  • the particle size is 500 nanometers
  • the powder content is 3%
  • the ultrasonic time is 3 hours.
  • the dispersion degree reaches 80%
  • the agglomeration degree is 20%
  • the particle size is about 250nm.
  • defoaming agent stir while adding the remaining amount of distilled water; slowly add a small amount of sodium hydroxide to dissolve in the solution, and adjust the pH of the entire polishing slurry to within the range of 6-7; then transfer container A to device B with ultrasonic dispersion function Stir during the process, control the water temperature in device B to not exceed 45°C, stir through device B with ultrasonic dispersion function, and detect the dispersion degree and dispersed particle size at 1h, 1.5h, 2h, 2.5h, and 3h.
  • the results As shown in Figure 3, select cerium oxide powder with a powder particle size of 500 nm, a purity of 99.99%, and a powder content of 3%.
  • the degree of dispersion gradually increases, the amount of agglomeration decreases, and the particle size gradually decreases. This is caused by long-term ultrasonic and mechanical stirring. After three hours of stirring, the dispersion reached more than 70%, the dispersed particle size reached about 290nm, and the agglomeration amount was 30%.
  • the cerium oxide powder in the polishing liquid of Example 4 was tested with particle sizes of 200nm, 300nm, 400nm, and 500nm. The test results are shown in Figure 4.
  • the cerium oxide powder had a purity of 99.99%, a content of 3%, and a dispersion time of 3h.
  • the dispersion amount gradually increases, and the dispersion particle size gradually increases.
  • the particle size is 300nm and 500nm, the dispersion amount reaches 80%, and the dispersion effect is good.
  • the dispersion particle sizes are 220nm and 320nm respectively.
  • Example 1 Use A as Example 1, B as Example 2, and C as Comparative Example (the main alkaline polishing fluid on the market) of this application to conduct performance index testing of optical glass polishing fluids, as shown in Table 1.
  • Figure 11-13 corresponds to Example 1 of the commercially available polishing slurry, which mainly consists of 30% cerium oxide (purity 65%), 5% lanthanum oxide, 5% zirconia, 3% alumina, and the weight of the cerium oxide. / dispersant weight ratio is 26.7 ⁇ 40.0 or 53.8 ⁇ 80, composed of water, pH 9-13.
  • polishing liquid prepared in Examples 1 to 4 of the present invention to apply the polishing process of aspherical optical fused silica glass. After the preliminary grinding process, the surface roughness of the glass can reach 1-5 microns. With the use of air bag polishing technology, the aspherical optical fused silica glass can be removed The efficiency is 0.1-30mm 3 /min, and the surface roughness is 1-10nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

一种光学玻璃超精密加工用低磨料含量和弱酸性抛光液,包括:纳米磨料、分散剂、增效剂、悬浮剂、消泡剂和蒸馏水,调节抛光浆料pH至6~7;所述纳米磨料包含氧化铈、氧化镧、氧化锆其中一种或多种,当所述纳米磨料为一种时为氧化铈;按质量百分数计,所述纳米磨料中氧化铈含量2.5%‐4%,氧化镧含量0‐0.5%,氧化锆含量0‐0.3%,粒径范围100nm‐500nm。能够减少稀土氧化物和有机物的使用,具有水性绿色环保,低经济成本的特点。

Description

光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法 技术领域
本发明涉及光学玻璃精密加工领域。更具体地说,本发明涉及一种光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法。
背景技术
精密光学玻璃广泛应用于航空航天、深空探索、核能工业、精密电子仪表等领域。光学玻璃材料脆性高,断裂韧性低,一般需经过超精密磨削加工和超精密抛光加工等工序制作,最终达到表面形状精度优于0.1μm、表面粗糙度Ra优于10nm、表面瑕疵与亚表面损伤极少。
用于光学玻璃加工工艺的化学机械抛光液主要有:SiO 2抛光液、CeO 2抛光液和Al 2O 3抛光液。SiO 2抛光液是一种金属离子型抛光液,主要应用于硅片、精密光学元件、化合物晶体等的高精度抛光,采用粒度较大的胶体粒子,浓度较大且pH值在10.5‐11.5范围内的SiO 2抛光液抛光效果较好。Al 2O 3抛光液广泛用于微晶玻璃基板、光学镜头等精密抛光领域,但Al 2O 3的高硬度容易对被加工工件表面带来损伤,且Al 2O 3颗粒的高表面能容易使之团聚,易对加工工件表面产生缺陷,通常需要进行表面改性。CeO 2抛光液具有高选择性,能通过合理配合粗抛光和精细抛光过程有效提高被加工工件表面质量,则成为光学玻璃抛光的常用磨料。但现有抛光液为提高微米或纳米颗粒的分散性通常选择偏碱性溶液体系制备(CN201110228844.8、CN200510078963.4),同时为提高表面去除效率在抛光浆料中选用磨料用量比重较大(CN 201811081283.1、CN201510995356.8)。由于碱性溶液容易对精密光学玻璃产生化学侵蚀,高组分磨料也容易对光学玻璃表面带来损伤,同时增加了抛光液的使用成本,研制一种偏酸性体系和低磨料高抛光性能的化学抛光液更适合光学玻璃可靠性和精密加工性能要求。
发明内容
本发明的目的是提供一种光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法,减少稀土氧化物和有机物使用,具有水性绿色环保,低经济成本的特点。
本发明解决此技术问题所采用的技术方案是:一种光学玻璃超精密加工用低磨料含量和弱酸性抛光液,包括:纳米磨料、分散剂、增效剂、悬浮剂、消泡剂和蒸馏水,调节抛光浆料pH至6~7;
所述纳米磨料包含氧化铈、氧化镧、氧化锆其中一种或多种,当所述纳米磨料为一种时为氧化铈;按质量百分数计,所述纳米磨料中氧化铈含量2.5%‐4%,氧化镧含量0‐0.5%,氧化锆含量0‐0.3%,粒径范围100nm‐500nm。
优选的是,所述纳米磨料采用单一粒径的纳米颗粒磨料或复配粒径的纳米颗粒磨料混合而成。
优选的是,采用复配粒径的纳米颗粒磨料混合时,粒径尺度保持一定差距,例如200nm和500nm的纳米颗粒磨料混合。
优选的是,纳米氧化铈的纯度为65%~99.99%。
优选的是,纳米氧化铈的纯度为99.9%。
优选的是,所述分散剂包含0.5%‐1.5%的聚乙二醇、8%‐12%聚丙烯酸、2%—5%六偏磷酸钠的其中一种或多种。
优选的是,聚乙二醇的分子量为2000,分子量为300万的聚丙烯酸占聚丙烯酸总质量的30%。
优选的是,所述增效剂包含0.5%‐1%氯化钠和0.5‐1%氟化钠。
优选的是,所述悬浮剂包含0.1%‐0.3%的聚丙烯酸钠、0.1%‐0.3%聚丙烯酰胺中的一种或多种。
优选的是,所述pH调节剂为氢氧化钠。
优选的是,按各组分在抛光液中的质量百分数为:
所述纳米磨料为2.5%‐4%氧化铈、0‐0.5%氧化镧、0‐0.3%氧化锆其中的一种或多种;
所述分散剂为0.5%‐1.5%的聚乙二醇、8%‐12%聚丙烯酸、2%—5%六偏磷酸钠其中的一种或多种;
所述增效剂为0.5%‐1%氯化钠和0.5‐1%氟化钠;
所述悬浮剂为0.1%‐0.3%的聚丙烯酸钠、0.1%‐0.3%聚丙烯酰胺中的一种或多种;
所述消泡剂为0.1%‐0.3%烷基酚聚氧乙烯醚;
余量为蒸馏水组成。
本发明还提供了一种光学玻璃超精密加工用低磨料含量和弱酸性抛光液的制备方法,包括:将装有分散剂的A容器中加入部分蒸馏水,并用磁力搅拌至其完全溶解;再向A容器中依次加入纳米磨料、增效剂、悬浮剂、消泡剂,边加余量蒸馏水边搅拌;缓慢加入少量氢氧化钠溶解在溶液中,调节整个抛光浆料pH在6‐7范围内;再将A容器转入带超声波分散功能的B装置中进行搅拌2h‐5h,控制B装置中水温不超过45℃。优选的是,超声时间与机械搅拌作用时间越长分散性越好,测得抛光液的分散粒径越小,通过实验验证超声搅拌分散时间为3小时最佳。
本发明至少包括以下有益效果:本发明通过考察抛光液的分散平均粒径/Zeta电位/旋转粘度/悬浮性/pH等综合性能,严格筛选纳米磨料的尺度,纯度和添加量,制备出了一种弱酸性体系和低磨料用料高抛光性能的抛光液,适合提升光学玻璃表面化学机械抛光可靠性和精密加工性能要求,满足减少光学元件残余表面形貌、亚表面层、工艺缺陷,提高表面光滑洁净效果。抛光液减少稀土氧化物和有机物使用,突出水性绿色环保,低经济成本利用特点。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是本发明实施例1采用纯度65%纳米氧化铈制备抛光液的分散性与超声搅拌时间关系图;
图2是本发明采用纯度99.9%纳米氧化铈制备抛光液的分散性与超声搅拌时间关系图;
图3是本发明采用纯度99.99%纳米氧化铈制备抛光液的分散性与超声搅拌时间关系图;
图4是本发明采用不同纳米尺寸氧化铈制备抛光液与其分散性的关系图;
图5是本发明实施例1的抛光料扫描电镜图;
图6是本发明实施例1的抛光料能谱图;
图7是本发明实施例1的抛光料元素组成图;
图8是本发明实施例2的抛光料扫描电镜图;
图9是本发明实施例2的抛光料能谱图;
图10是本发明实施例2的抛光料元素组成图;
图11是本发明对比例1的抛光料扫描电镜图;
图12是本发明对比例1的抛光料能谱图;
图13是本发明对比例1的抛光料元素组成图;
具体实施方式
下面结合实施例对本发明进行详细、完整的说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。在结合实施例对本发明进行说明前,需要特别指出的是:本发明中在包括下述说明在内的各部分中所提供的技术方案和技术特征,在不冲突的情况下,这些技术方案和技术特征可以相互组合。
此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1
所述抛光液由质量分数为4%氧化铈(选择纯度65%的氧化铈粉末,其粒径500nm)、0.2%氧化镧、0.5%的聚乙二醇、8%聚丙烯酸、2%六偏磷酸钠;0.5%‐氯化钠、0.5%氟化钠、0.3%的聚丙烯酸钠、0.3%聚丙烯酰胺、0.1%烷基酚聚氧乙烯醚、余量为水组成,如图5~7所示,为抛光液扫描电镜图、能谱图和元素组成图。
实施例2
所述抛光液由质量分数为1.5%氧化铈(选择纯度99.9%的氧化铈粉末,其粒径200nm)2.5%氧化铈(选择纯度99.9%的氧化铈粉末,其粒径500nm)、0.5%氧化镧、0.3%氧化锆其中的一种或多种;1%的聚乙二醇、10%聚丙烯酸、5%六偏磷酸钠、0.5%氯化钠、0.5%氟化钠、0.2%的聚丙烯酸钠、0.2%聚丙烯酰胺、0.1%烷基酚聚氧乙烯醚、余量为水组成,如图8~10所示,为抛光液扫描电镜图、能谱图和元素组成图。
实施例3
所述抛光液由质量分数为3%氧化铈(选择纯度99.99%的氧化铈粉末,其粒径500nm)、0.5%氧化镧、0.5%氧化锆;0.5%的聚乙二醇、8%聚丙烯酸、2%六偏磷酸钠、1%氯化钠、0.5%氟化钠;0.3%的聚丙烯酸钠、0.3%聚丙烯酰胺、0.3%烷基酚聚氧乙烯醚、余量为水组成。
实施例4
所述抛光液由质量分数为4%氧化铈(选择纯度99.9%的氧化铈粉末,其粒径200‐500nm)、0.2%氧化镧、0.5%的聚乙二醇、8%聚丙烯酸、2%六偏磷酸钠;0.5%氯化钠、0.5%氟化钠、0.3%的聚丙烯酸钠、0.3%聚丙烯酰胺、0.1%烷基酚聚氧乙烯醚、余量为水组成。
试验检测
1、纳米氧化铈分散性与超声搅拌分散时间的关系
实施例1的抛光液在制备过程中将装有分散剂的A容器中加入部分蒸馏水,并用磁力搅拌至其完全溶解;再向A容器中依次加入纳米磨料、增效剂、悬浮剂、消泡剂,边加余量蒸馏水边搅拌;缓慢加入少量氢氧化钠溶解在溶液中,调节整个抛光浆料pH在6‐7范围内;再将A容器转入带超声波分散功能的B装置中进行搅拌,控制B装置中水温不超过45℃,通过带超声波分散功能的B装置进行搅拌,时间在1h、1.5h、2h、2.5h、3h、3.5h时进行分散度和分散粒径的检测,结果如图1所示,随着分散时间增加分散比例(即分散度)大致呈增加趋势,团聚量减少,粒径大小大致呈下降趋势。这是由于长时间超声与机械搅拌作用引起的,经过3.5个小时搅拌,在3小时时分散度最好达90%以上,分散粒径尺寸达到230nm左右,团聚量10%以下,时间过长会导致粉末粒径减小,团聚量增加。
2、纳米氧化铈纯度与分散性关系
实施例2的抛光液的抛光液在制备过程中将装有分散剂的A容器中加入部分蒸馏水,并用磁力搅拌至其完全溶解;再向A容器中依次加入纳米磨料、增效剂、悬浮剂、消泡剂,边加余量蒸馏水边搅拌;缓慢加入少量氢氧化钠溶解在溶液中,调节整个抛光浆料pH在6‐7范围内;再将A容器转入带超声波分散功能的B装置中进行搅拌,控制B装置中水温不超过45℃,通过带超声波分散功能的B装置进行搅拌,时间在1h、1.5h、2h、2.5h、3h时进行分散度和分散粒径的检测,结果如图2所示,选取纳米氧化铈纯度为99.9%,粒径大小为500纳米,粉末含量3%,超声时间3h,随着时间增加粒径减小,分散度增加。在三小时分散后分散度达到80%,团聚度20%,粒径在250nm左右。
实施例3的抛光液的抛光液在制备过程中将装有分散剂的A容器中加入部分蒸馏水,并用磁力搅拌至其完全溶解;再向A容器中依次加入纳米磨料、增效剂、悬浮剂、消泡剂,边加余量蒸馏水边搅拌;缓慢加入少量氢氧化钠溶解在溶液中,调节整个抛光浆料pH在6‐7范围内;再将A容器转入带超声波分散功 能的B装置中进行搅拌,控制B装置中水温不超过45℃,通过带超声波分散功能的B装置进行搅拌,时间在1h、1.5h、2h、2.5h、3h时进行分散度和分散粒径的检测,结果如图3所示,选取粉末粒径500nm、纯度99.99%的氧化铈粉末,粉末含量3%。随着分散时间增加分散度逐渐增加,团聚量减少,粒径大小逐渐降低。这是由于长时间超声与机械搅拌作用引起的,经过三个小时搅拌,分散度达到70%以上,分散粒径尺寸达到290nm左右,团聚量30%。
3、氧化铈粉末尺寸与分散性的关系
实施例4抛光液中氧化铈粉末选取粒径大小为200nm、300nm、400nm、500nm进行试验,检测结果如图4所示,氧化铈粉末,纯度为99.99%,含量3%,分散时间3h,随着粉末粒径增加,分散量逐渐增加,分散粒径逐渐增加,粒径在300nm与500nm两种情况时,分散量达到80%,分散效果较好,分散粒径大小分别为220nm和320nm。
4、将本申请A为实施例1、B为实施例2、C为对比例(市场上主要的碱性抛光液)进行光学玻璃抛光液性能指标测试,如表1所示。
Figure PCTCN2022086480-appb-000001
5、图11‐13对应对比例1为市售抛光液,主要由质量分数为30%氧化铈(纯度65%)、5%氧化镧、5%氧化锆、3%氧化铝、其氧化铈重量/分散剂重量之比为26.7~40.0或53.8~80、水组成,pH在9‐13。
6、采用本发明实施例1~4制备的抛光液进行非球面光学熔石英玻璃进行抛光工艺的应用,经过前期磨削工艺玻璃表面粗糙度可达1‐5微米,配合气囊式抛光技术,去除效率0.1-30mm 3/min,表面粗糙度为1‐10nm。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。

Claims (10)

  1. 一种光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,包括:纳米磨料、分散剂、增效剂、悬浮剂、消泡剂和蒸馏水,调节抛光浆料pH至6~7;
    所述纳米磨料包含氧化铈、氧化镧、氧化锆其中一种或多种,当所述纳米磨料为一种时为氧化铈;按质量百分数计,所述纳米磨料中氧化铈含量2.5%‐4%,氧化镧含量0‐0.5%,氧化锆含量0‐0.3%,粒径范围100nm‐500nm。
  2. 如权利要求1所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,所述纳米磨料采用单一粒径的纳米颗粒磨料或复配粒径的纳米颗粒磨料混合而成。
  3. 如权利要求1所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,纳米氧化铈的纯度为65%~99.99%。
  4. 如权利要求3所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,纳米氧化铈的纯度为99.9%。
  5. 如权利要求1所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,所述分散剂包含0.5%‐1.5%的聚乙二醇、8%‐12%聚丙烯酸、2%—5%六偏磷酸钠的其中一种或多种。
  6. 如权利要求1所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,所述增效剂包含0.5%‐1%氯化钠和0.5‐1%氟化钠。
  7. 如权利要求1所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,所述悬浮剂包含0.1%‐0.3%的聚丙烯酸钠、0.1%‐0.3%聚丙烯酰胺中的一种或多种。
  8. 如权利要求1所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,所述pH调节剂为氢氧化钠。
  9. 如权利要求1所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液,其特征在于,按各组分在抛光液中的质量百分数为:
    所述纳米磨料为2.5%‐4%氧化铈、0‐0.5%氧化镧、0‐0.3%氧化锆其中的一种或多种;
    所述分散剂为0.5%‐1.5%的聚乙二醇、8%‐12%聚丙烯酸、2%—5%六偏磷酸钠其中的一种或多种;
    所述增效剂为0.5%‐1%氯化钠和0.5‐1%氟化钠;
    所述悬浮剂为0.1%‐0.3%的聚丙烯酸钠、0.1%‐0.3%聚丙烯酰胺中的一种或多种;
    所述消泡剂为0.1%‐0.3%烷基酚聚氧乙烯醚;
    余量为蒸馏水组成。
  10. 一种如权利要求1~9任一所述的光学玻璃超精密加工用低磨料含量和弱酸性抛光液的制备方法,其特征在于,包括:将装有分散剂的A容器中加入部分蒸馏水,并用磁力搅拌至其完全溶解;再向A容器中依次加入纳米磨料、增效剂、悬浮剂、消泡剂,边加余量蒸馏水边搅拌;缓慢加入少量氢氧化钠溶解在溶液中,调节整个抛光浆料pH在6‐7范围内;再将A容器转入带超声波分散功能的B装置中进行搅拌2h‐5h,控制B装置中水温不超过45℃。
PCT/CN2022/086480 2022-03-08 2022-04-13 光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法 WO2023168780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210227198.1 2022-03-08
CN202210227198.1A CN114479676B (zh) 2022-03-08 2022-03-08 光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法

Publications (1)

Publication Number Publication Date
WO2023168780A1 true WO2023168780A1 (zh) 2023-09-14

Family

ID=81485903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086480 WO2023168780A1 (zh) 2022-03-08 2022-04-13 光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法

Country Status (2)

Country Link
CN (1) CN114479676B (zh)
WO (1) WO2023168780A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627153A (zh) * 2022-10-19 2023-01-20 中国兵器科学研究院宁波分院 一种碳化硼陶瓷球用水基研磨液及其制备方法
CN116042098A (zh) * 2023-02-08 2023-05-02 广东粤港澳大湾区黄埔材料研究院 一种纳米氧化铝抛光液及在红外硫系玻璃抛光中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030119316A1 (en) * 2001-12-21 2003-06-26 Micron Technology, Inc. Methods for planarization of group VIII metal-containing surfaces using oxidizing agents
CN1750239A (zh) * 2004-09-14 2006-03-22 国际商业机器公司 基于氧化铈的抛光工艺和氧化铈基浆料
CN101608097A (zh) * 2009-07-14 2009-12-23 上海华明高纳稀土新材料有限公司 化学机械抛光用纳米氧化铈浆液及其制备方法
CN102504705A (zh) * 2011-10-17 2012-06-20 刘玉林 光通讯Zr02陶瓷插芯精密加工用抛光液及其制备方法
CN106479371A (zh) * 2016-08-15 2017-03-08 惠州市米特仑科技有限公司 一种高精度复合抛光液及其制备方法
CN107629701A (zh) * 2017-11-02 2018-01-26 东旭科技集团有限公司 抛光液及其制备方法
CN110524315A (zh) * 2019-08-07 2019-12-03 大连理工大学 一种光学石英玻璃的绿色经济环保化学机械抛光方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1838620B1 (en) * 2005-10-14 2016-12-14 Lg Chem, Ltd. Method for preparing a cerium oxide powder for a chemical mechanical polishing slurry
TWI384042B (zh) * 2007-05-16 2013-02-01 Cabot Microelectronics Corp 玻璃拋光組合物及方法
CN107353833B (zh) * 2017-07-24 2020-05-12 包头天骄清美稀土抛光粉有限公司 高选择性浅槽隔离化学机械抛光浆料的制备工艺
CN110358453A (zh) * 2018-04-10 2019-10-22 蓝思科技(长沙)有限公司 一种玻璃抛光用纳米氧化铈抛光液及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030119316A1 (en) * 2001-12-21 2003-06-26 Micron Technology, Inc. Methods for planarization of group VIII metal-containing surfaces using oxidizing agents
CN1750239A (zh) * 2004-09-14 2006-03-22 国际商业机器公司 基于氧化铈的抛光工艺和氧化铈基浆料
CN101608097A (zh) * 2009-07-14 2009-12-23 上海华明高纳稀土新材料有限公司 化学机械抛光用纳米氧化铈浆液及其制备方法
CN102504705A (zh) * 2011-10-17 2012-06-20 刘玉林 光通讯Zr02陶瓷插芯精密加工用抛光液及其制备方法
CN106479371A (zh) * 2016-08-15 2017-03-08 惠州市米特仑科技有限公司 一种高精度复合抛光液及其制备方法
CN107629701A (zh) * 2017-11-02 2018-01-26 东旭科技集团有限公司 抛光液及其制备方法
CN110524315A (zh) * 2019-08-07 2019-12-03 大连理工大学 一种光学石英玻璃的绿色经济环保化学机械抛光方法

Also Published As

Publication number Publication date
CN114479676A (zh) 2022-05-13
CN114479676B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
WO2023168780A1 (zh) 光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法
US6413441B1 (en) Magnetic polishing fluids
TWI554601B (zh) 研磨材料及研磨用組成物
CN108239484B (zh) 一种蓝宝石抛光用氧化铝抛光液及其制备方法
KR100354202B1 (ko) 광학 연마용 제형
JP3887230B2 (ja) 改良セリア粉末
CN113930165B (zh) 一种研磨助剂、制备方法、用途及研磨液和研磨方法
JP2011211178A (ja) 研磨用組成物
TW200300025A (en) Abrasive, method of polishing target member and process for producing semiconductor device
JPH08512357A (ja) 活性化研磨組成物
JP2008273780A (ja) 改質シリカ系ゾルおよびその製造方法
CN113549399B (zh) 适用于硅片粗抛光的化学机械抛光组合物及其应用
WO2007041199A2 (en) Polishing slurries and methods for utilizing same
US8808568B2 (en) Magnetorheological materials, method for making, and applications thereof
Zeng et al. Optimizing of the colloidal dispersity of silica nanoparticle slurries for chemical mechanical polishing
JP2007061989A (ja) 研磨用複合酸化物粒子およびスラリー状研磨材
CN114456716B (zh) 一种抛光蓝宝石用氧化铝抛光液及其制备方法
WO2007018376A1 (en) Producing method for cerium-based glass polishing material and method for using the same
JP2014024157A (ja) 研磨用組成物、硬脆材料の研磨方法及び硬脆材料基板の製造方法
JP2001047358A (ja) 研磨用組成物
JP2002326812A (ja) 結晶性酸化第二セリウムゾル及びその製造方法
KR102170240B1 (ko) 무기입자 수용성 현탁액 조성물 및 그의 용도
TWI847023B (zh) 鈰系研磨材漿料原液及其製造方法,以及研磨液
JP2001277106A (ja) 研磨方法及び研磨装置
KR100679460B1 (ko) 세리아-판상마이카 복합연마재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930412

Country of ref document: EP

Kind code of ref document: A1