WO2023167253A1 - High molecular weight triarylamine compound and organic electroluminescent element - Google Patents

High molecular weight triarylamine compound and organic electroluminescent element Download PDF

Info

Publication number
WO2023167253A1
WO2023167253A1 PCT/JP2023/007667 JP2023007667W WO2023167253A1 WO 2023167253 A1 WO2023167253 A1 WO 2023167253A1 JP 2023007667 W JP2023007667 W JP 2023007667W WO 2023167253 A1 WO2023167253 A1 WO 2023167253A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molecular weight
high molecular
structural unit
layer
Prior art date
Application number
PCT/JP2023/007667
Other languages
French (fr)
Japanese (ja)
Inventor
優太 三枝
和法 富樫
秀良 北原
美香 篠田
由香 吉澤
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Publication of WO2023167253A1 publication Critical patent/WO2023167253A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to high-molecular-weight compounds suitable for organic electroluminescence elements (organic EL elements), which are self-luminous elements suitable for various display devices, and the elements.
  • organic EL elements are self-luminous elements, they are brighter than liquid crystal elements, have excellent visibility, and are capable of a clear display.
  • An organic EL element has a structure in which a thin film (organic layer) of an organic compound is sandwiched between an anode and a cathode.
  • Methods for forming a thin film are roughly classified into a vacuum deposition method and a coating method.
  • the vacuum deposition method is a method of forming a thin film on a substrate in a vacuum using mainly low-molecular-weight compounds, and is a technology that has already been put to practical use.
  • the coating method mainly uses polymer compounds and forms a thin film on the substrate using a solution such as inkjet or printing. It is an essential technology for future large-area organic EL displays.
  • the vacuum deposition method using low-molecular-weight materials has extremely low material usage efficiency, and if the size is increased, the deflection of the shadow mask increases, making it difficult to perform uniform deposition on large substrates. There is also the problem of high manufacturing costs.
  • polymer materials can form a uniform film even on a large substrate by applying a solution dissolved in an organic solvent. law can be used. As a result, it is possible to increase the efficiency of material use, and to significantly reduce the manufacturing cost required for manufacturing the device.
  • TFB fluorene polymer
  • Patent Documents 6 and 7 a fluorene polymer called TFB has been known as a typical hole-transporting material that has hitherto been used in polymer organic EL devices (see Patent Documents 6 and 7).
  • TFB has insufficient hole-transporting properties and insufficient electron-blocking properties, some of the electrons pass through the light-emitting layer, and an improvement in luminous efficiency cannot be expected.
  • the film adhesion to the adjacent layer is low, there is a problem that the device cannot be expected to have a long life.
  • the present inventors have focused on the fact that triarylamine high-molecular-weight compounds containing naphthalene structural units and triarylamine structural units in the molecular main chain have high hole injection/transport capabilities and are expected to widen the gap.
  • the present invention was completed by discovering a high molecular weight compound with a novel wide-gap structure in addition to the hole injection/transport ability.
  • a repeating structural unit represented by the following general formula (3) which consists of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the general formula (2)
  • a high molecular weight compound comprising:
  • an organic EL device comprising an organic layer formed using the high molecular weight compound.
  • the organic layer is preferably a hole-transporting layer, an electron-blocking layer, a hole-injecting layer, or a light-emitting layer.
  • a repeating structural unit represented by the following general formula (3) which consists of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the following general formula (2). and having a weight average molecular weight of 10,000 or more and less than 1,000,000 in terms of polystyrene.
  • each R 1 is independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 8 carbon atoms, or an alkyloxy group. , a cycloalkyl or cycloalkyloxy group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • Each R 2 independently represents an alkyl group, cycloalkyl group or alkyloxy group having 3 to 40 carbon atoms.
  • X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
  • L represents a divalent phenylene group or naphthylene group, and n represents an integer of 0-3.
  • X is a hydrogen atom, diphenylamino group, phenyl group, naphthyl group, dibenzofuranyl group, dibenzothienyl group, phenanthrenyl group, fluorenyl group, carbazolyl group, indeno
  • the dashed line indicates a bond to the adjacent structural unit, and the solid line with a free tip extending from the ring indicates that the tip is a methyl group. showing.
  • An organic electroluminescence device comprising an organic layer formed using the high molecular weight compound according to any one of [1] to [7].
  • the high molecular weight compound of the present invention comprises a triarylamine structural unit (divalent group) represented by the above-described general formula (1) and a linking structural unit (divalent group) represented by general formula (2).
  • the high molecular weight compound of the present invention is (1) good hole injection characteristics; (2) high hole mobility; (3) having a wide gap and excellent electron blocking ability; (4) that the thin film state is stable; It has the characteristic of
  • An organic EL device in which an organic layer formed from the high molecular weight compound of the present invention, such as a hole transport layer, an electron blocking layer, a hole injection layer or a light emitting layer, is formed between a pair of electrodes, (1) high luminous efficiency and power efficiency; (2) low practical drive voltage; (3) long life; has the advantage of
  • Both the triarylamine structural unit and the linking structural unit possessed by the high molecular weight compound of the present invention are divalent groups represented by the following general formulas (1) and (2), respectively.
  • each R 1 is independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and having 1 to 1 carbon atoms.
  • alkyl group, alkyloxy group, cycloalkyl group, cycloalkyloxy group, alkenyl group and aryloxy group represented by R 1 include the following groups.
  • alkyl groups (having 1 to 8 carbon atoms) include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, neooctyl group and the like.
  • alkyloxy groups (having 1 to 8 carbon atoms) include methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, n-pentyloxy, n -hexyloxy group, n-heptyloxy group, n-octyloxy group and the like.
  • cycloalkyl groups (having 5 to 10 carbon atoms) include cyclopentyl, cyclohexyl, 1-adamantyl and 2-adamantyl groups.
  • Examples of cycloalkyloxy groups include cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, cyclooctyloxy, 1-adamantyloxy, and 2-adamantyloxy groups.
  • Examples of alkenyl groups include vinyl groups, allyl groups, isopropenyl groups and 2-butenyl groups.
  • Examples of aryloxy groups include phenyloxy groups and tolyloxy groups.
  • R 1 is preferably a deuterium atom. Synthetically, it is most preferred that a, b and c are zero.
  • each R 2 independently represents an alkyl group, a cycloalkyl group or an alkyloxy group having 3 to 40 carbon atoms.
  • Examples of the alkyl group, cycloalkyl group and alkyloxy group represented by R 2 include the same groups as those represented by R 1 .
  • R 2 is preferably an alkyl group having 3 to 40 carbon atoms, most preferably an n-hexyl group or an n-octyl group, in order to increase the solubility. is.
  • X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
  • Examples of the monovalent aryl group and monovalent heteroaryl group include the following groups.
  • aryl groups include phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, pyrenyl, perylenyl, and fluoranthenyl groups.
  • heteroaryl groups include pyridyl, pyrimidinyl, triazinyl, furyl, pyrrolyl, thienyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, indenocarbazolyl. benzoxazolyl, benzothiazolyl, quinoxalinyl, benzimidazolyl, pyrazolyl, dibenzofuranyl, dibenzothienyl, naphthyridinyl, phenanthrolinyl, acridinyl, and carbolinyl groups.
  • amino group, aryl group, and heteroaryl group described above may have a substituent.
  • Substituents include deuterium atoms, cyano groups, nitro groups, and the like, halogen atoms such as fluorine, chlorine, bromine, and iodine atoms; Alkyl groups, particularly those having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, neohexyl, n-heptyl, isoheptyl, neoheptyl, n-octyl, isooctyl, and neooctyl; alkyloxy groups, especially those having 1 to 8 carbon atoms
  • substituents may further have the substituents exemplified above.
  • substituents preferably exist independently, but these substituents are separated from each other via a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom. may be bonded to each other to form a ring.
  • X is a hydrogen atom, a diphenylamino group, a phenyl group, a naphthyl group, a dibenzofuranyl group, a dibenzothienyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, an indenocarbazolyl group, or an acridinyl group. is preferred, and from the viewpoint of synthesis, a hydrogen atom is particularly preferred.
  • the above aryl group and heteroaryl group may have a phenyl group as a substituent, and this phenyl group may further have a phenyl group as a substituent.
  • the aryl group can be a biphenylyl group, a terphenylyl group, and a triphenylenyl group.
  • L represents a divalent phenylene group or naphthylene group
  • n represents an integer of 0-3.
  • n is preferably 0.
  • the above L may have a substituent.
  • the substituents are the same as the substituents that X may have, and these substituents may further have a substituent.
  • FIGS. 1 and 2 specific examples of the linking structural unit represented by the general formula (2) are shown in FIGS. 1 and 2 as structural units 1 to 26.
  • the dashed line indicates a bond to the adjacent structural unit, and the solid line extending from the ring indicates that the free tip is a methyl group. showing.
  • Preferred specific examples of the linking structural unit are shown, but the linking structural unit used in the present invention is not limited to these structural units.
  • the high molecular weight of the present invention comprising a repeating unit represented by general formula (3), which consists of the triarylamine structural unit represented by general formula (1) and the linking structural unit represented by general formula (2).
  • the compound has excellent properties such as hole injection properties, hole mobility, electron blocking ability, thin film stability, and heat resistance.
  • the weight average molecular weight in terms of polystyrene measured by GPC is preferably 10,000 or more and less than 1,000,000, more preferably 10,000 or more and less than 500,000, and further It is preferably in the range of 10,000 or more and less than 200,000.
  • the high-molecular-weight compound of the present invention when applied to the formation of an organic layer in an organic EL device by coating, in order to ensure coatability, adhesion to other layers, and durability, other structural units It is preferred to include Such other structural units include, for example, a structural unit for enhancing thermal crosslinkability (thermal crosslinkable structural unit), and a triarylamine structural unit different from the triarylamine structural unit represented by general formula (1). There are structural units.
  • thermally crosslinkable structural unit examples include the structural units represented by the general formulas (4-1) to (4-143).
  • the dashed line indicates a bond to an adjacent structural unit
  • R is a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or having 3 to 40, an alkyl group, an alkyloxy group, a cycloalkyl group, a cycloalkyloxy group, an alkenyl group, or an aryloxy group.
  • Examples of the alkyl group, alkyloxy group, cycloalkyl group, cycloalkyloxy group, alkenyl group, and aryloxy group represented by R include the same groups as those shown for R 1 .
  • Preferred specific examples of the thermally crosslinkable structural unit have been shown, but the thermally crosslinkable structural unit used in the present invention is not limited to these structural units.
  • the triarylamine structural unit represented by general formula (1) is "structural unit A”
  • the linking structural unit represented by general formula (2) is “structural unit B”
  • thermal crosslinking 1 mol of structural unit A is represented by “structural unit C”
  • “structural unit D” is a triarylamine structural unit different from the triarylamine structural unit represented by general formula (1).
  • % or more particularly 20 mol % or more
  • the structural unit B is 1 mol % or more, particularly 30 to 70 mol %.
  • it preferably contains structural unit C in an amount of 1 mol% or more, particularly 5 to 20 mol%.
  • a copolymer is most suitable for forming an organic layer of an organic EL device.
  • the high-molecular-weight compounds of the present invention are synthesized by forming carbon-carbon bonds or carbon-nitrogen bonds, respectively, and linking structural units by Suzuki polymerization reaction or HARTWIG-BUCHWALD polymerization reaction. Specifically, a unit compound having each structural unit is prepared, the unit compound is appropriately boric acid esterified or halogenated, and polycondensation reaction is performed using an appropriate catalyst to obtain the high molecular weight compound of the present invention. Can be synthesized.
  • a triarylamine derivative represented by the following general formula (1a) can be used as a compound for introducing the triarylamine structural unit represented by the general formula (1).
  • Q is a hydrogen atom or a halogen atom (particularly preferably Br), and R 1 , R 2 and L are all the same as defined in general formula (1) above. be.
  • the compound in which Q is a hydrogen atom is a unit compound for introducing the triarylamine structural unit represented by the general formula (1), and the compound in which Q is a halogen atom. is the halide used to synthesize the polymer.
  • thermally crosslinkable structural unit C (general thermally crosslinkable structural unit A copolymer containing 5 mol % of formula (4-5)) is represented by the following general formula (5).
  • the intermediate for introducing the structural unit A and the structural unit C is a borate ester
  • the intermediate for introducing the structural unit B is a halide
  • the structural The intermediate for introducing the unit A and the structural unit C must be a halide
  • the intermediate for introducing the structural unit B must be a boric acid ester. That is, the molar ratios of halide and borate esters must be equal.
  • the above-described high molecular weight compound of the present invention is dissolved in an aromatic organic solvent such as benzene, toluene, xylene and anisole to prepare a coating liquid, which is coated on a predetermined substrate and dried by heating.
  • an aromatic organic solvent such as benzene, toluene, xylene and anisole.
  • the high molecular weight compound can be used as a constituent material of the hole injection layer and/or the hole transport layer of the organic EL device.
  • a hole injection layer and a hole transport layer formed of such a high molecular weight compound have higher hole injection properties, higher hole mobility, and electron blocking properties than those formed of conventional materials. is high, excitons generated in the light-emitting layer can be confined, the probability of recombination of holes and electrons can be improved, high luminous efficiency can be obtained, and the driving voltage can be lowered, and the organic EL The advantage of improved device durability can be realized.
  • the high molecular weight compound of the present invention having the above-described electrical properties has a wider gap than conventional materials and is effective in confining excitons, so it is naturally suitable for use in electron blocking layers and light-emitting layers. can do.
  • An organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention has a structure shown in FIG. 3, for example. That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6 and a cathode 7 are formed on a glass substrate 1 (a transparent substrate such as a transparent resin substrate may be used). is provided.
  • the organic EL device to which the high molecular weight compound of the present invention is applied is not limited to the layer structure described above, and a hole blocking layer can be provided between the light emitting layer 5 and the electron transport layer 6, and , as in the structure shown in FIG. Furthermore, an electron injection layer can be provided between the cathode and the electron transport layer. Additionally, some layers may be omitted. For example, a simple layer structure in which an anode, a hole-transporting layer, a light-emitting layer, an electron-transporting layer and a cathode are provided on a substrate may be employed. It is also possible to have a two-layer structure in which layers having the same function are superimposed.
  • the high-molecular-weight compound of the present invention utilizes its properties such as hole-injecting properties and hole-transporting properties to provide an organic layer (for example, a hole-injecting layer, a hole-transporting layer) provided between the anode and the cathode. , light emitting layer and electron blocking layer).
  • organic layer for example, a hole-injecting layer, a hole-transporting layer
  • light emitting layer and electron blocking layer for example, a light emitting layer and electron blocking layer.
  • the transparent anode may be formed of an electrode material known per se, and an electrode material having a large work function such as ITO and gold is vapor-deposited on a substrate (a transparent substrate such as a glass substrate). It is formed by
  • the hole injection layer provided on the transparent anode can be formed using a coating solution prepared by dissolving the high molecular weight compound of the present invention in an aromatic organic solvent such as toluene, xylene and anisole. can.
  • the hole injection layer can be formed by coating this coating liquid on the transparent anode by spin coating, inkjet, or the like.
  • the hole injection layer is formed of a conventionally known material such as the following, without using the high molecular weight compound of the present invention. It can also be formed using a material.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • PSS poly(styrene sulfonate)
  • a layer (thin film) using such a material can be formed by a coating method such as vapor deposition, spin coating, and inkjet. The same applies to other layers, and the film is formed by vapor deposition or coating depending on the type of film-forming material.
  • the hole transport layer provided on the hole injection layer can also be formed using the high molecular weight compound of the present invention by a coating method such as spin coating or inkjet. can.
  • a hole transport layer can be formed using a conventionally known hole transport material.
  • Typical examples of such hole transport materials are as follows.
  • benzidine derivatives such as N,N'-diphenyl-N,N'-di(m-tolyl)benzidine (hereinafter abbreviated as TPD); N,N'-diphenyl-N,N'-di( ⁇ -naphthyl)benzidine (hereinafter abbreviated as NPD); N,N,N',N'-tetrabiphenylylbenzidine;
  • Amine derivatives such as 1,1-bis[4-(di-4-tolylamino)phenyl]cyclohexane (hereinafter abbreviated as TAPC); various triphenylamine trimers and tetramers;
  • a coating-type polymer material that is also used as a hole injection layer.
  • the compounds for the hole transport layer described above including the high-molecular-weight compound of the present invention, may be formed individually, or two or more of them may be mixed to form a film. Also, a multilayer film in which a plurality of layers are formed using one or more of the above compounds and such layers are laminated can be used as the hole transport layer.
  • a layer that serves both as a hole-injecting layer and a hole-transporting layer can be used.
  • the transport layer can be formed by a coating method using a polymeric material such as PEDOT.
  • the hole-transporting layer (the same applies to the hole-injecting layer), tris(4-bromophenyl)ammoniumylhexachloroantimonate or a radialene derivative (see, for example, WO2014/009310) is used as a material normally used for the layer. etc. can be used by P-doping.
  • the hole transport layer (and the hole injection layer) can be formed using a polymer compound having a TPD basic skeleton.
  • an electron-blocking layer (which can be provided between the hole-transporting layer 11 and the light-emitting layer 13, as shown in FIG. 4) is also coated using the high-molecular-weight compound of the present invention by a coating method such as spin coating and inkjet. can be formed by
  • an electron-blocking compound having an electron-blocking action such as a carbazole derivative or a triphenylsilyl group
  • An electron blocking layer can also be formed using a compound having a triarylamine structure.
  • carbazole derivatives and compounds having a triarylamine structure are as follows.
  • carbazole derivatives such as 4,4′,4′′-tri(N-carbazolyl)triphenylamine (hereinafter abbreviated as TCTA); 9,9-bis[4-(carbazol-9-yl)phenyl]fluorene; 1,3-bis(carbazol-9-yl)benzene (hereinafter abbreviated as mCP); 2,2-bis(4-carbazol-9-ylphenyl)adamantane (hereinafter abbreviated as Ad-Cz); Compounds having a triarylamine structure, such as 9-[4-(carbazol-9-yl)phenyl]-9-[4-(triphenylsilyl)phenyl]-9H-fluorene.
  • TCTA 4,4′,4′′-tri(N-carbazolyl)triphenylamine
  • mCP 1,3-bis(carbazol-9-yl)benzene
  • Ad-Cz 2,2-bis(4-carbazol-9
  • the electron blocking layer including the high molecular weight compound of the present invention, may be formed independently, but it is also possible to form a film by mixing two or more kinds. Also, a multilayer film in which a plurality of layers are formed using one or more of the above compounds and such layers are laminated can be used as the electron blocking layer.
  • the light-emitting layer comprises metal complexes of quinolinol derivatives such as Alq3 ; various metal complexes such as zinc, beryllium and aluminum; It can be formed using a light-emitting material such as an anthracene derivative; a bisstyrylbenzene derivative; a pyrene derivative; an oxazole derivative;
  • the light-emitting layer can be composed of a host material and a dopant material.
  • a host material in addition to the light-emitting materials described above, thiazole derivatives, benzimidazole derivatives, polydialkylfluorene derivatives, and the like can be used, and furthermore, the high molecular weight compounds of the present invention described above can also be used.
  • Quinacridone, coumarin, rubrene, perylene, and derivatives thereof; benzopyran derivatives; rhodamine derivatives; aminostyryl derivatives and the like can be used as dopant materials.
  • Such a light-emitting layer can also have a single-layer structure using one or more of each light-emitting material, or can have a multi-layer structure in which a plurality of layers are laminated.
  • the light-emitting layer can also be formed using a phosphorescent light-emitting material as the light-emitting material.
  • a phosphorescent light-emitting material phosphorescent emitters of metal complexes such as iridium and platinum can be used.
  • green phosphorescent emitters such as Ir(ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6
  • red phosphorescent emitters such as Btp2Ir (acac) can be used.
  • These phosphorescent materials are used by doping a hole-injecting/transporting host material or an electron-transporting host material.
  • doping of the host material with the phosphorescent light-emitting material is preferably carried out by co-evaporation in the range of 1 to 30% by weight with respect to the entire light-emitting layer.
  • the high molecular weight compound of the present invention carry a fluorescent emitter, a phosphorescent emitter, or a material that emits delayed fluorescence, which is called a dopant, to form a light-emitting layer, the driving voltage is lowered and the luminous efficiency is improved. It is possible to realize an organic EL element with
  • the high molecular weight compound of the present invention can be used as a hole-injecting/transporting host material.
  • CBP 4,4'-di(N-carbazolyl)biphenyl
  • carbazole derivatives such as TCTA and mCP, and the like can also be used.
  • p-bis(triphenylsilyl)benzene (hereinafter abbreviated as UGH2) is used as the electron-transporting host material.
  • UGH2 p-bis(triphenylsilyl)benzene
  • TPBI 2,2′,2′′-(1,3,5-phenylene)-tris(1-phenyl-1H-benzimidazole)
  • a hole-blocking layer (not shown in the figure) provided between the light-emitting layer and the electron-transporting layer includes It can be formed using a compound having a known hole-blocking action. Examples of known compounds having such a hole-blocking action include the following.
  • phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP); metal complexes of quinolinol derivatives such as aluminum (III) bis(2-methyl-8-quinolinate)-4-phenylphenolate (hereinafter abbreviated as BAlq); various rare earth complexes; triazole derivatives; triazine derivatives; Oxadiazole derivatives.
  • BCP bathocuproine
  • BAlq metal complexes of quinolinol derivatives
  • BAlq aluminum (III) bis(2-methyl-8-quinolinate)-4-phenylphenolate
  • various rare earth complexes such as triazole derivatives; triazine derivatives; Oxadiazole derivatives.
  • These materials can also be used to form the electron-transporting layer described below, and can also be used as both a hole-blocking layer and an electron-transporting layer.
  • Such a hole-blocking layer can also have a single-layer or multi-layer laminated structure, and each layer is formed using one or more of the compounds having the hole-blocking action described above.
  • the electron-transporting layer is composed of an electron-transporting compound known per se, such as a quinolinol derivative such as Alq 3 and BAlq. It can be formed using metal complexes, various metal complexes, pyridine derivatives, pyrimidine derivatives, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, benzimidazole derivatives, and the like. can.
  • an electron-transporting compound known per se such as a quinolinol derivative such as Alq 3 and BAlq. It can be formed using metal complexes, various metal complexes, pyridine derivatives, pyrimidine derivatives, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivative
  • This electron-transporting layer can also have a single-layer or multi-layer laminated structure, and each layer is formed using one or more of the electron-transporting compounds described above.
  • the electron injection layer (not shown in the figure) provided as necessary is also known per se, such as , alkali metal salts such as lithium fluoride and cesium fluoride, alkaline earth metal salts such as magnesium fluoride, metal oxides such as aluminum oxide, and organometallic complexes such as lithium quinoline. .
  • an electrode material having a low work function such as aluminum, and a magnesium-silver alloy, a magnesium-indium alloy, or an aluminum-magnesium alloy can be used.
  • An alloy with a lower work function, such as, is used as an electrode material.
  • the high molecular weight compound of the present invention is used to form at least one layer of a hole injection layer, a hole transport layer, a light emitting layer, and an electron blocking layer, thereby improving luminous efficiency and power consumption.
  • An organic EL device having high efficiency, low practical driving voltage, low light emission start voltage, and extremely excellent durability can be obtained.
  • this organic EL element while having high luminous efficiency, the driving voltage is lowered, the current resistance is improved, and the maximum luminous luminance is improved.
  • the structural unit represented by the general formula (1) of the high molecular weight compound of the present invention is "structural unit A”
  • the connecting structural unit represented by general formula (2) is “structural unit B ”
  • Example 1 Synthesis of High Molecular Weight Compound A; The following ingredients were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through for 30 minutes.
  • Intermediate 1 5.6 g
  • Intermediate 2 0.4g
  • Intermediate 3 2.2 g
  • Tripotassium phosphate 6.9 g
  • Toluene 9ml
  • Water 5ml 1,4-dioxane: 27 ml
  • 1.4 mg of palladium(II) acetate and 11.5 mg of tri-o-tolylphosphine were added, heated, and stirred at 87° C. for 14 hours.
  • the average molecular weight and dispersity of high molecular weight compound A measured by GPC were as follows. Number average molecular weight Mn (converted to polystyrene): 60,000 Weight average molecular weight Mw (converted to polystyrene): 108,000 Dispersity (Mw/Mn): 1.8
  • this high molecular weight compound A contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
  • Example 2 Synthesis of high molecular weight compound B; The following ingredients were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through for 30 minutes.
  • Intermediate 1 5.4 g
  • Intermediate 3 2.2 g
  • Intermediate 4 0.5g Tripotassium phosphate: 7.4 g
  • 1.5 mg of palladium(II) acetate and 14.4 mg of tri-o-methoxyphenylphosphine were added, heated, and stirred at 87° C. for 10 hours.
  • the crude polymer was dissolved in toluene, silica gel was added for adsorption purification, and the silica gel was removed by filtration.
  • the obtained filtrate was concentrated under reduced pressure, 100 ml of toluene was added to the dried solid to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. 100 ml of toluene was added to the obtained precipitate to dissolve it, and the solution was added dropwise to 200 ml of n-hexane, and the obtained precipitate was collected by filtration. This operation was repeated one more time and dried to obtain 3.2 g of high molecular weight compound B (yield: 67%).
  • the average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows. Number average molecular weight Mn (converted to polystyrene): 73,000 Weight average molecular weight Mw (converted to polystyrene): 139,000 Dispersity (Mw/Mn): 1.9
  • this high molecular weight compound B contained 44 mol% of structural unit A, 50 mol% of structural unit B, and 6 mol% of structural unit C.
  • Example 3 Using the high molecular weight compounds A and B synthesized in Examples 1 and 2, a coating film having a thickness of 80 nm was prepared on an ITO substrate, and an ionization potential measuring device (manufactured by Sumitomo Heavy Industries, Ltd., PYS- 202 type) to measure the work function. The results were as follows. High molecular weight compound A: 5.63 eV High molecular weight compound B: 5.61 eV
  • the high molecular weight compound A of the present invention exhibits a favorable energy level compared to the work function of 5.4 eV of general hole-transporting materials such as NPD and TPD, and exhibits good hole-transporting ability. I know you have.
  • An organic EL device having a layered structure shown in FIG. 3 was produced by the following method. Specifically, after washing the glass substrate 1 with an ITO film having a film thickness of 50 nm with an organic solvent, the ITO surface was washed with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was spin-coated to a thickness of 50 nm so as to cover the transparent anode 2 (ITO) provided on the glass substrate 1, and dried on a hot plate at 200° C. for 10 minutes. Then, a hole injection layer 3 was formed.
  • PEDOT/PSS manufactured by Ossila
  • a coating liquid was prepared by dissolving 0.6 wt % of the high molecular weight compound A obtained in Example 1 in toluene.
  • the substrate on which the hole injection layer 3 is formed as described above is transferred into a glove box replaced with dry nitrogen, dried on a hot plate at 230° C. for 10 minutes, and then placed on the hole injection layer 3.
  • a coating layer having a thickness of 25 nm was formed by spin coating using the above coating liquid, and dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 4 .
  • the substrate on which the hole transport layer 4 was formed as described above was mounted in a vacuum deposition machine, and the pressure was reduced to 0.001 Pa or less.
  • ETM-1 and ETM-2 compounds of the following structural formulas, were prepared as electron transport materials.
  • an electron-transporting layer 6 having a thickness of 20 nm was formed by binary vapor deposition using the electron-transporting materials ETM-1 and ETM-2.
  • a cathode 7 was formed by vapor-depositing aluminum to a film thickness of 100 nm.
  • the glass substrate on which the transparent anode 2, the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6 and the cathode 7 are formed is placed in a glove box filled with dry nitrogen. It was moved, and another glass substrate for sealing was bonded together using a UV curable resin to form an organic EL element.
  • the characteristics of the produced organic EL device were measured at room temperature in the air. Further, the luminescence characteristics were measured when a DC voltage was applied to the produced organic EL device. The measurement results are shown in Table 1.
  • Example 4 except that a coating solution prepared by dissolving 0.6 wt % of the following TFB (hole-transporting polymer) in toluene instead of the high-molecular-weight compound A was used to form the hole-transporting layer 4.
  • An organic EL device was produced in the same manner as above.
  • TFB hole-transporting polymer
  • PFA hole-transporting polymer
  • Various characteristics of the organic EL device of Comparative Example 1 were evaluated in the same manner as in Example 4, and the results are shown in Table 1.
  • the voltage, luminance, luminous efficiency and power efficiency are obtained when a current with a current density of 10 mA/cm 2 is applied.
  • life of the element was measured by constant current driving with a light emission luminance of 700 cd/m 2 at the start of light emission (initial luminance) of 560 cd/m 2 (80% of the initial luminance of 100%). Equivalent: measured as the time to decay to 80% decay).
  • the luminous efficiency of the organic EL device of Comparative Example 1 was 5.52 cd/A when a current with a current density of 10 mA/cm 2 was applied, while the organic EL device of Example 4 was 7.52 cd/A. It was highly efficient at .83 cd/A.
  • the device life (80% attenuation) was 248 hours for the organic EL device of Example 4, which is longer than the 6 hours for the organic EL device of Comparative Example 1.
  • An organic EL device having a layer structure shown in FIG. 4 was produced by the following method. Specifically, after washing the glass substrate 8 with an ITO film having a thickness of 50 nm with an organic solvent, the ITO surface was washed with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was spin-coated to a thickness of 50 nm so as to cover the transparent anode 9 (ITO) provided on the glass substrate 8, and dried on a hot plate at 200° C. for 10 minutes. Then, a hole injection layer 10 was formed.
  • PEDOT/PSS manufactured by Ossila
  • a coating liquid was prepared by dissolving 0.4 wt% of a high molecular weight compound HTM-1 having the following structural formula in toluene.
  • the substrate on which the hole injection layer 10 is formed as described above is transferred into a glove box replaced with dry nitrogen, and dried on a hot plate at 230° C. for 10 minutes.
  • a coating layer having a thickness of 15 nm was formed by spin coating using the above coating solution, and dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 11 .
  • a coating liquid was prepared by dissolving 0.4 wt % of the high molecular weight compound A obtained in Example 1 in toluene.
  • a coating layer having a thickness of 15 nm is formed on the hole transport layer 11 by spin coating using the above coating liquid, and dried on a hot plate at 220° C. for 30 minutes to form an electron blocking layer 12 . did.
  • the substrate on which the electron blocking layer 12 was formed as described above was mounted in a vacuum deposition machine and the pressure was reduced to 0.001 Pa or less.
  • an electron transporting layer 14 having a thickness of 20 nm was formed by binary vapor deposition using the electron transporting materials ETM-1 and ETM-2.
  • a cathode 15 was formed by vapor-depositing aluminum to a film thickness of 100 nm.
  • the glass substrate on which the transparent anode 9, the hole injection layer 10, the hole transport layer 11, the electron blocking layer 12, the light emitting layer 13, the electron transport layer 14 and the cathode 15 are formed is replaced with dry nitrogen.
  • another glass substrate for sealing was attached using a UV curable resin to form an organic EL element.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Further, the luminescence characteristics were measured when a DC voltage was applied to the produced organic EL device. The measurement results are shown in Table 2.
  • Example 5 except that the electron blocking layer 12 was formed using a coating liquid prepared by dissolving 0.4 wt % of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A.
  • An organic EL device was produced in exactly the same manner. Various characteristics of the produced organic EL device were evaluated in the same manner as in Example 5, and the results are shown in Table 2.
  • An organic EL device having a layer structure shown in FIG. 4 was produced by the following method. Specifically, after washing the glass substrate 8 with an ITO film having a thickness of 50 nm with an organic solvent, the ITO surface was washed with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was spin-coated to a thickness of 50 nm so as to cover the transparent anode 9 (ITO) provided on the glass substrate 8, and dried on a hot plate at 200° C. for 10 minutes. Then, a hole injection layer 10 was formed.
  • PEDOT/PSS manufactured by Ossila
  • a coating liquid was prepared by dissolving 0.6 wt% of the high molecular weight compound HTM-1 in toluene.
  • the substrate on which the hole injection layer 10 is formed as described above is transferred into a glove box filled with dry nitrogen, and the above coating solution is applied onto the hole injection layer 3 by a spin coating method.
  • a coating layer having a thickness of 25 nm was formed and dried on a hot plate at 220° C. for 30 minutes to form hole transport layer 11 .
  • the substrate on which the hole transport layer 11 was formed as described above was mounted in a vacuum deposition machine, and the pressure was reduced to 0.001 Pa or less.
  • a cathode 15 was formed by vapor-depositing aluminum to a film thickness of 100 nm.
  • the glass substrate on which the transparent anode 9, the hole injection layer 10, the hole transport layer 11, the light emitting layer 13, the electron transport layer 14 and the cathode 15 are formed is placed in a glove box substituted with dry nitrogen. It was moved, and another glass substrate for sealing was bonded together using a UV curable resin to form an organic EL element.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Further, the luminescence characteristics were measured when a DC voltage was applied to the produced organic EL device. The measurement results are shown in Table 2.
  • the voltage, luminance, luminous efficiency and power efficiency are obtained when a current with a current density of 10 mA/cm 2 is applied.
  • life of the element was measured by constant current driving with a light emission luminance of 700 cd/m 2 at the start of light emission (initial luminance) of 560 cd/m 2 (80% of the initial luminance of 100%). Equivalent: measured as the time to decay to 80% decay).
  • the luminous efficiency of the organic EL device of Comparative Example 2 was 7.56 cd/A when a current with a current density of 10 mA/cm 2 was applied, while the organic EL device of Example 5 was 8.56 cd/A. It was highly efficient at .68 cd/A.
  • the device life (80% decay) was 20 hours for the organic EL device of Comparative Example 2, 408 hours for the organic EL device of Example 5, and 558 hours for the organic EL device of Example 6. It had a long life.
  • the organic EL element having the organic layer formed using the high molecular weight compound of the present invention can realize an organic EL element with high luminous efficiency and long life as compared with conventional organic EL elements. I found out.
  • the high-molecular-weight compound of the present invention has high hole-transporting ability, excellent electron-blocking ability, and good thermal crosslinkability, so it is excellent as a compound for coating-type organic EL devices.
  • a coating-type organic EL device using the high molecular weight compound of the present invention high luminous efficiency and power efficiency can be obtained, and durability can be improved. As a result, it has become possible to develop it into a wide range of applications such as home appliances and lighting, for example.

Abstract

The purpose of the present invention is to provide a high molecular weight material that exhibits excellent hole injection and transport performance and has electron blocking capabilities, and that has high stability when in the form of a thin film. Another purpose of the present invention is to provide an organic EL element that comprises an organic layer (a thin film) formed from the aforesaid high molecular weight material and has high luminous efficiency and a long service life. The present invention focused on a high molecular weight triarylamine compound, which contains, in the molecular main chain, a triarylamine structural unit containing a diphenylnaphthalene structure and a diphenylnaphthalene structural unit, and found a high molecular weight compound with a novel structure that has a wide gap in addition to hole injection and transport capabilities.

Description

トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子Triarylamine high molecular weight compound and organic electroluminescence device
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(有機EL素子)に適した高分子量化合物とその素子に関するものである。 The present invention relates to high-molecular-weight compounds suitable for organic electroluminescence elements (organic EL elements), which are self-luminous elements suitable for various display devices, and the elements.
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。 Since organic EL elements are self-luminous elements, they are brighter than liquid crystal elements, have excellent visibility, and are capable of a clear display.
 有機EL素子は、有機化合物の薄膜(有機層)を、陽極と陰極に挟んだ構成を有している。薄膜の形成方法としては、真空蒸着法と塗布法に大別される。真空蒸着法は、主に低分子化合物を用い、真空中で基板上に薄膜を形成する手法であり、既に実用化されている技術である。一方、塗布法は、主に高分子化合物を用い、インクジェットや印刷など、溶液を用いて基板上に薄膜を形成する手法であり、材料の使用効率が高く、大面積化、高精細化に適しており、今後の大面積有機ELディスプレイには不可欠の技術である。 An organic EL element has a structure in which a thin film (organic layer) of an organic compound is sandwiched between an anode and a cathode. Methods for forming a thin film are roughly classified into a vacuum deposition method and a coating method. The vacuum deposition method is a method of forming a thin film on a substrate in a vacuum using mainly low-molecular-weight compounds, and is a technology that has already been put to practical use. On the other hand, the coating method mainly uses polymer compounds and forms a thin film on the substrate using a solution such as inkjet or printing. It is an essential technology for future large-area organic EL displays.
 低分子材料を用いた真空蒸着法は、材料の使用効率が極端に低く、大型化すればシャドーマスクのたわみが大きくなり、大型基板への均一な蒸着は困難となる。また製造コストも高くなるといった問題も抱えている。 The vacuum deposition method using low-molecular-weight materials has extremely low material usage efficiency, and if the size is increased, the deflection of the shadow mask increases, making it difficult to perform uniform deposition on large substrates. There is also the problem of high manufacturing costs.
 一方、高分子材料は、有機溶剤に溶解させた溶液を塗布することにより、大型基板でも均一な膜を形成することが可能であり、これを利用してインクジェット法や印刷法に代表される塗布法を用いることができる。そのため、材料の使用効率を高めることが可能となり、素子作製にかかる製造コストを大幅に削減することができる。 On the other hand, polymer materials can form a uniform film even on a large substrate by applying a solution dissolved in an organic solvent. law can be used. As a result, it is possible to increase the efficiency of material use, and to significantly reduce the manufacturing cost required for manufacturing the device.
 これまで、高分子材料を用いた有機EL素子が、種々検討されてきたが、発光効率や寿命などの素子特性は必ずしも十分でないという問題があった(例えば、特許文献1~5参照)。 Various organic EL elements using polymeric materials have been studied so far, but there has been a problem that the element characteristics such as luminous efficiency and life are not necessarily sufficient (see Patent Documents 1 to 5, for example).
 また、これまで高分子有機EL素子に用いられてきた代表的な正孔輸送材料としては、TFBと呼ばれるフルオレンポリマーが知られていた(特許文献6~7参照)。しかしながら、TFBは正孔輸送性が不十分であり、かつ電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないという問題があった。また、隣接層との膜密着性が低いことから、素子の長寿命化も期待できないという問題があった。 In addition, a fluorene polymer called TFB has been known as a typical hole-transporting material that has hitherto been used in polymer organic EL devices (see Patent Documents 6 and 7). However, since TFB has insufficient hole-transporting properties and insufficient electron-blocking properties, some of the electrons pass through the light-emitting layer, and an improvement in luminous efficiency cannot be expected. In addition, since the film adhesion to the adjacent layer is low, there is a problem that the device cannot be expected to have a long life.
特開2005-272834号公報JP 2005-272834 A 特開2007-119763号公報JP 2007-119763 A 特開2007-162009号公報Japanese Patent Application Laid-Open No. 2007-162009 特開2007-177225号公報JP 2007-177225 A US7651746 B2US7651746 B2 国際公開第1999/054385号WO 1999/054385 国際公開第2005/059951号WO2005/059951
 本発明は、正孔の注入・輸送性能に優れ、電子阻止能力を有し、薄膜状態での安定性が高い高分子材料を提供することにある。また、本発明の目的は、前記高分子材料により形成された有機層(薄膜)を有しており、発光効率が高く、長寿命な有機EL素子を提供することにある。 An object of the present invention is to provide a polymer material that has excellent hole injection/transport performance, electron blocking capability, and high stability in a thin film state. Another object of the present invention is to provide an organic EL device having an organic layer (thin film) formed of the polymer material and having high luminous efficiency and long life.
 本発明者らは分子主鎖にナフタレン構造単位およびトリアリールアミン構造単位を含むトリアリールアミン高分子量化合物が高い正孔注入・輸送能力を有し、さらにワイドギャップ化も期待できることに着目し、種々のトリアリールアミン高分子量化合物を合成して検討した結果、正孔注入・輸送能力に加え、ワイドギャップである新規な構造の高分子量化合物を見出し、本発明を完成するに至った。 The present inventors have focused on the fact that triarylamine high-molecular-weight compounds containing naphthalene structural units and triarylamine structural units in the molecular main chain have high hole injection/transport capabilities and are expected to widen the gap. As a result of synthesizing and studying the triarylamine high molecular weight compound of No. 1, the present invention was completed by discovering a high molecular weight compound with a novel wide-gap structure in addition to the hole injection/transport ability.
 本発明によれば、下記一般式(1)で表されるトリアリールアミン構造単位および一般式(2)で表される連結構造単位からなる、下記一般式(3)で表される繰り返し構造単位を含む高分子量化合物が提供される。 According to the present invention, a repeating structural unit represented by the following general formula (3), which consists of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the general formula (2) A high molecular weight compound is provided comprising:
 また、本発明によれば、前記の高分子量化合物を用いて形成される有機層を備えた有機EL素子が提供される。 Further, according to the present invention, there is provided an organic EL device comprising an organic layer formed using the high molecular weight compound.
 本発明の有機EL素子においては、前記有機層が、正孔輸送層、電子阻止層、正孔注入層または発光層であることが好適である。 In the organic EL device of the present invention, the organic layer is preferably a hole-transporting layer, an electron-blocking layer, a hole-injecting layer, or a light-emitting layer.
 すなわち、本発明は以下に記載するものである。 That is, the present invention is described below.
[1]下記一般式(1)で表される、トリアリールアミン構造単位、および下記一般式(2)で表される連結構造単位からなる、下記一般式(3)で表される繰り返し構造単位を含み、ポリスチレン換算で10,000以上1,000,000未満の重量平均分子量を有している高分子量化合物。 [1] A repeating structural unit represented by the following general formula (3), which consists of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the following general formula (2). and having a weight average molecular weight of 10,000 or more and less than 1,000,000 in terms of polystyrene.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記式中、Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数が1~8のアルキル基もしくはアルキルオキシ基、炭素数5~10のシクロアルキル基もしくはシクロアルキルオキシ基、炭素数2~6のアルケニル基、または炭素数6~10のアリールオキシ基を示す。
 Rは、それぞれ独立に、炭素数が3~40である、アルキル基、シクロアルキル基、またはアルキルオキシ基を示す。
 Xは、水素原子、アミノ基、1価のアリール基、または1価のヘテロアリール基を示す。
 Lは、2価のフェニレン基、またはナフチレン基を示し、nは0~3の整数を示す。
 a、bおよびcはRの数であり、以下の整数である。
  a=0、1、2または3
  b=0、1、2、3または4
  c=0または1
In the above formula, each R 1 is independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 8 carbon atoms, or an alkyloxy group. , a cycloalkyl or cycloalkyloxy group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
Each R 2 independently represents an alkyl group, cycloalkyl group or alkyloxy group having 3 to 40 carbon atoms.
X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
L represents a divalent phenylene group or naphthylene group, and n represents an integer of 0-3.
a, b and c are the numbers of R 1 and are the following integers.
a = 0, 1, 2 or 3
b = 0, 1, 2, 3 or 4
c = 0 or 1
[2]前記一般式(1)、(2)および(3)において、a、bおよびcが0である[1]に記載の高分子量化合物。 [2] The high molecular weight compound according to [1], wherein a, b and c are 0 in the general formulas (1), (2) and (3).
[3]前記一般式(1)および(3)において、Rが炭素数3~40のアルキル基である[1]または[2]に記載の高分子量化合物。 [3] The high molecular weight compound according to [1] or [2], wherein R 2 is an alkyl group having 3 to 40 carbon atoms in general formulas (1) and (3).
[4]前記一般式(2)および(3)において、Xが水素原子、または置換されていても良いアミノ基、アリール基、もしくはヘテロアリール基である[1]~[3]のいずれか1項に記載の高分子量化合物。 [4] Any one of [1] to [3], wherein in the general formulas (2) and (3), X is a hydrogen atom, or an optionally substituted amino group, aryl group, or heteroaryl group The high molecular weight compound according to the item.
[5]前記一般式(2)および(3)において、Xが水素原子、ジフェニルアミノ基、フェニル基、ナフチル基、ジベンゾフラニル基、ジベンゾチエニル基、フェナントレニル基、フルオレニル基、カルバゾリル基、インデノカルバゾリル基、またはアクリジニル基である[1]~[3]のいずれか1項に記載の高分子量化合物。 [5] In the general formulas (2) and (3), X is a hydrogen atom, diphenylamino group, phenyl group, naphthyl group, dibenzofuranyl group, dibenzothienyl group, phenanthrenyl group, fluorenyl group, carbazolyl group, indeno The high molecular weight compound according to any one of [1] to [3], which is a carbazolyl group or an acridinyl group.
[6]熱架橋性構造単位、または前記一般式(1)で表されるトリアリールアミン構造単位とは異なるトリアリールアミン構造単位を含む[1]~[5]のいずれか1項に記載の高分子量化合物。 [6] The composition according to any one of [1] to [5], which contains a thermally crosslinkable structural unit or a triarylamine structural unit different from the triarylamine structural unit represented by the general formula (1). High molecular weight compounds.
[7]前記熱架橋性構造単位が下記一般式(4-1)~(4-143)に示す構造単位である[6]に記載の高分子量化合物。 [7] The high molecular weight compound according to [6], wherein the thermally crosslinkable structural unit is a structural unit represented by the following general formulas (4-1) to (4-143).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記式(4-1)~(4-143)において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、その先端がメチル基であることを示している。 In the above formulas (4-1) to (4-143), the dashed line indicates a bond to the adjacent structural unit, and the solid line with a free tip extending from the ring indicates that the tip is a methyl group. showing.
 前記式(4-1)~(4-143)中、Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
 aおよびbは、Rの数であり、以下の整数である。
  a=0、1、2または3
  b=0、1、2、3または4
In the above formulas (4-1) to (4-143), each R is independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the number of carbon atoms represents an alkyl group, cycloalkyl group, alkyloxy group, cycloalkyloxy group, alkenyl group, or aryloxy group in which is 3 to 40;
a and b are the numbers of R and are the following integers.
a = 0, 1, 2 or 3
b = 0, 1, 2, 3 or 4
[8][1]~[7]のいずれか1項に記載の高分子量化合物を用いて形成される有機層を備えた有機エレクトロルミネッセンス素子。 [8] An organic electroluminescence device comprising an organic layer formed using the high molecular weight compound according to any one of [1] to [7].
[9]前記有機層が正孔輸送層である、[8]に記載の有機エレクトロルミネッセンス素子。 [9] The organic electroluminescence device according to [8], wherein the organic layer is a hole transport layer.
[10]前記有機層が電子阻止層である、[8]に記載の有機エレクトロルミネッセンス素子。 [10] The organic electroluminescence device according to [8], wherein the organic layer is an electron blocking layer.
[11]前記有機層が正孔注入層である、[8]に記載の有機エレクトロルミネッセンス素子。 [11] The organic electroluminescence device according to [8], wherein the organic layer is a hole injection layer.
[12]前記有機層が発光層である、[8]に記載の有機エレクトロルミネッセンス素子。 [12] The organic electroluminescence device according to [8], wherein the organic layer is a light-emitting layer.
 本発明の高分子量化合物は、上述した一般式(1)で表されるトリアリールアミン構造単位(2価の基)および一般式(2)で表される連結構造単位(2価の基)からなる、前記一般式(3)で表される繰り返し構造単位として有するポリマーであり、好適には、GPC(ゲルパーミエーションクロマトグラフィ)で測定したポリスチレン換算での重量平均分子量が10,000以上1,000,000未満の範囲にある。 The high molecular weight compound of the present invention comprises a triarylamine structural unit (divalent group) represented by the above-described general formula (1) and a linking structural unit (divalent group) represented by general formula (2). A polymer having as a repeating structural unit represented by the general formula (3), preferably having a weight average molecular weight in terms of polystyrene measured by GPC (gel permeation chromatography) of 10,000 or more and 1,000 ,000.
 本発明の高分子量化合物は、
 (1)正孔の注入特性が良いこと、
 (2)正孔の移動度が大きいこと、
 (3)ワイドギャップであり、電子阻止能力に優れること、
 (4)薄膜状態が安定であること、
 という特性を有している。
The high molecular weight compound of the present invention is
(1) good hole injection characteristics;
(2) high hole mobility;
(3) having a wide gap and excellent electron blocking ability;
(4) that the thin film state is stable;
It has the characteristic of
 このような本発明の高分子量化合物により形成された有機層、例えば、正孔輸送層、電子阻止層、正孔注入層または発光層が、一対の電極間に形成されている有機EL素子は、
 (1)発光効率および電力効率が高いこと、
 (2)実用駆動電圧が低いこと、
 (3)長寿命であること、
 という利点を有している。
An organic EL device in which an organic layer formed from the high molecular weight compound of the present invention, such as a hole transport layer, an electron blocking layer, a hole injection layer or a light emitting layer, is formed between a pair of electrodes,
(1) high luminous efficiency and power efficiency;
(2) low practical drive voltage;
(3) long life;
has the advantage of
一般式(2)で表される連結構造単位として好適な構造単位1~12の化学構造である。It is a chemical structure of structural units 1 to 12 suitable as a linking structural unit represented by general formula (2). 一般式(2)で表される連結構造単位として好適な構造単位13~26の化学構造である。It is a chemical structure of structural units 13 to 26 suitable as a linking structural unit represented by general formula (2). 本発明の有機EL素子層構成の一例である。It is an example of the organic EL element layer structure of the present invention. 本発明の有機EL素子層構成の一例である。It is an example of the organic EL element layer structure of the present invention. 実施例1で合成された高分子量化合物AのH-NMRチャート図である。1 is a 1 H-NMR chart of high molecular weight compound A synthesized in Example 1. FIG. 実施例2で合成された高分子量化合物BのH-NMRチャート図である。1 is a 1 H-NMR chart of high molecular weight compound B synthesized in Example 2. FIG.
<トリアリールアミン構造単位および連結構造単位>
 本発明の高分子量化合物が有するトリアリールアミン構造単位および連結構造単位はいずれも2価の基であり、それぞれ下記の一般式(1)および(2)で表される。
<Triarylamine Structural Unit and Linking Structural Unit>
Both the triarylamine structural unit and the linking structural unit possessed by the high molecular weight compound of the present invention are divalent groups represented by the following general formulas (1) and (2), respectively.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 前記一般式(1)および(2)において、Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数が1~8のアルキル基もしくはアルキルオキシ基、炭素数5~10のシクロアルキル基もしくはシクロアルキルオキシ基、炭素数2~6のアルケニル基、または炭素数6~10のアリールオキシ基を示す。 In the above general formulas (1) and (2), each R 1 is independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and having 1 to 1 carbon atoms. 8 alkyl or alkyloxy group, cycloalkyl or cycloalkyloxy group having 5 to 10 carbon atoms, alkenyl group having 2 to 6 carbon atoms or aryloxy group having 6 to 10 carbon atoms.
 前記Rで示されるアルキル基、アルキルオキシ基、シクロアルキル基、シクロアルキルオキシ基、アルケニル基、およびアリールオキシ基の例としては、以下の基を例示することができる。 Examples of the alkyl group, alkyloxy group, cycloalkyl group, cycloalkyloxy group, alkenyl group and aryloxy group represented by R 1 include the following groups.
 アルキル基(炭素数が1~8)の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソへキシル基、ネオへキシル基、n-ヘプチル基、イソへプチル基、ネオへプチル基、n-オクチル基、イソオクチル基、ネオオクチル基等が挙げられる。
 アルキルオキシ基(炭素数が1~8)の例としては、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基等が挙げられる。
 シクロアルキル基(炭素数が5~10)の例としては、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等が挙げられる。
 シクロアルキルオキシ基(炭素数が5~10)の例としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基等が挙げられる。
 アルケニル基(炭素数が2~6)の例としては、ビニル基、アリル基、イソプロペニル基、2-ブテニル基等が挙げられる。
 アリールオキシ基(炭素数が6~10)の例としては、フェニルオキシ基、トリルオキシ基等が挙げられる。
Examples of alkyl groups (having 1 to 8 carbon atoms) include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, neooctyl group and the like.
Examples of alkyloxy groups (having 1 to 8 carbon atoms) include methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, n-pentyloxy, n -hexyloxy group, n-heptyloxy group, n-octyloxy group and the like.
Examples of cycloalkyl groups (having 5 to 10 carbon atoms) include cyclopentyl, cyclohexyl, 1-adamantyl and 2-adamantyl groups.
Examples of cycloalkyloxy groups (having 5 to 10 carbon atoms) include cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, cyclooctyloxy, 1-adamantyloxy, and 2-adamantyloxy groups. .
Examples of alkenyl groups (having 2 to 6 carbon atoms) include vinyl groups, allyl groups, isopropenyl groups and 2-butenyl groups.
Examples of aryloxy groups (having 6 to 10 carbon atoms) include phenyloxy groups and tolyloxy groups.
 本発明の高分子量化合物においては、a、bおよびcが0でない場合、前記のRは、重水素原子が好適である。合成上、a、bおよびcが0であることが最も好適である。 In the high molecular weight compound of the present invention, when a, b and c are not 0, R 1 is preferably a deuterium atom. Synthetically, it is most preferred that a, b and c are zero.
 前記一般式(1)において、Rは、それぞれ独立に、炭素数が3~40である、アルキル基、シクロアルキル基、またはアルキルオキシ基を示す。 In the general formula (1), each R 2 independently represents an alkyl group, a cycloalkyl group or an alkyloxy group having 3 to 40 carbon atoms.
 Rで示されるアルキル基、シクロアルキル基、およびアルキルオキシ基の例としては、Rにおいて示した基と同様の基が挙げられる。 Examples of the alkyl group, cycloalkyl group and alkyloxy group represented by R 2 include the same groups as those represented by R 1 .
 本発明の高分子量化合物においては、前記のRは、溶解性を高めるため、炭素数3~40のアルキル基であることが好ましく、n-ヘキシル基またはn-オクチル基であることが最も好適である。 In the high molecular weight compound of the present invention, R 2 is preferably an alkyl group having 3 to 40 carbon atoms, most preferably an n-hexyl group or an n-octyl group, in order to increase the solubility. is.
 前記一般式(1)および(2)において、a、bおよびcは、Rの数であり、以下の整数を示す。
  a=0、1、2または3
  b=0、1、2、3または4
  c=0または1
In the general formulas (1) and (2), a, b and c are the numbers of R1 and represent the following integers.
a = 0, 1, 2 or 3
b = 0, 1, 2, 3 or 4
c = 0 or 1
 前記一般式(2)において、Xは水素原子、アミノ基、1価のアリール基、または1価のヘテロアリール基を示す。 In the general formula (2), X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
 前記1価のアリール基、および1価のヘテロアリール基の例としては、以下の基を例示することができる。 Examples of the monovalent aryl group and monovalent heteroaryl group include the following groups.
 アリール基の例としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、およびフルオランテニル基等が挙げられる。 Examples of aryl groups include phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, pyrenyl, perylenyl, and fluoranthenyl groups.
 ヘテロアリール基の例としては、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、インデノカルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、およびカルボリニル基等が挙げられる。 Examples of heteroaryl groups include pyridyl, pyrimidinyl, triazinyl, furyl, pyrrolyl, thienyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, indenocarbazolyl. benzoxazolyl, benzothiazolyl, quinoxalinyl, benzimidazolyl, pyrazolyl, dibenzofuranyl, dibenzothienyl, naphthyridinyl, phenanthrolinyl, acridinyl, and carbolinyl groups.
 また、前記のアミノ基、アリール基、およびヘテロアリール基は、置換基を有していてもよい。置換基としては、重水素原子、シアノ基、およびニトロ基などに加え、
  ハロゲン原子、例えば、フッ素原子、塩素原子、臭素原子、およびヨウ素原子;
  アルキル基、特に炭素数が1~8のもの、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソへキシル基、ネオへキシル基、n-ヘプチル基、イソへプチル基、ネオへプチル基、n-オクチル基、イソオクチル基、およびネオオクチル基;
  アルキルオキシ基、特に炭素数1~8のもの、例えば、メチルオキシ基、エチルオキシ基、およびプロピルオキシ基;
  アルケニル基、例えば、ビニル基、およびアリル基;
  アリールオキシ基、例えば、フェニルオキシ基、およびトリルオキシ基;
  アリール基、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、およびトリフェニレニル基;
  ヘテロアリール基、例えば、ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、インデノカルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、およびカルボリニル基;
  アリールビニル基、例えば、スチリル基、およびナフチルビニル基;
  アシル基、例えば、アセチル基、およびベンゾイル基、等が挙げられる。
In addition, the amino group, aryl group, and heteroaryl group described above may have a substituent. Substituents include deuterium atoms, cyano groups, nitro groups, and the like,
halogen atoms such as fluorine, chlorine, bromine, and iodine atoms;
Alkyl groups, particularly those having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, neohexyl, n-heptyl, isoheptyl, neoheptyl, n-octyl, isooctyl, and neooctyl;
alkyloxy groups, especially those having 1 to 8 carbon atoms, such as methyloxy, ethyloxy, and propyloxy groups;
alkenyl groups, such as vinyl groups, and allyl groups;
aryloxy groups such as phenyloxy and tolyloxy groups;
aryl groups such as phenyl, biphenylyl, terphenylyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, pyrenyl, perylenyl, fluoranthenyl, and triphenylenyl groups;
heteroaryl groups such as pyridyl, pyrimidinyl, triazinyl, thienyl, furyl, pyrrolyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, indenocarbazolyl, benzoxazolyl, benzothiazolyl, quinoxalinyl, benzimidazolyl, pyrazolyl, dibenzofuranyl, dibenzothienyl, and carbolinyl groups;
aryl vinyl groups, such as styryl groups and naphthyl vinyl groups;
Acyl groups such as acetyl and benzoyl groups are included.
 また、これらの置換基は、前記で例示した置換基をさらに有していてもよい。
 さらに、これらの置換基は、それぞれ独立して存在していることが好ましいが、これらの置換基同士が、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成していてもよい。
Moreover, these substituents may further have the substituents exemplified above.
Furthermore, these substituents preferably exist independently, but these substituents are separated from each other via a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom. may be bonded to each other to form a ring.
 本発明においては、Xが水素原子、ジフェニルアミノ基、フェニル基、ナフチル基、ジベンゾフラニル基、ジベンゾチエニル基、フェナントレニル基、フルオレニル基、カルバゾリル基、インデノカルバゾリル基、またはアクリジニル基であることが好ましく、合成上、水素原子であることが特に好ましい。 In the present invention, X is a hydrogen atom, a diphenylamino group, a phenyl group, a naphthyl group, a dibenzofuranyl group, a dibenzothienyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, an indenocarbazolyl group, or an acridinyl group. is preferred, and from the viewpoint of synthesis, a hydrogen atom is particularly preferred.
 例えば、前記のアリール基およびヘテロアリール基は、置換基としてフェニル基を有していてもよく、このフェニル基は、さらに置換基としてフェニル基を有していてもよい。即ち、アリール基を例に取ると、このアリール基は、ビフェニリル基、ターフェニリル基、およびトリフェニレニル基であってもよい。 For example, the above aryl group and heteroaryl group may have a phenyl group as a substituent, and this phenyl group may further have a phenyl group as a substituent. Thus, taking the aryl group as an example, the aryl group can be a biphenylyl group, a terphenylyl group, and a triphenylenyl group.
 前記一般式(1)において、Lは2価のフェニレン基、またはナフチレン基を示し、nは0~3の整数を示す。本発明においては、nが0であることが好ましい。 In the general formula (1), L represents a divalent phenylene group or naphthylene group, and n represents an integer of 0-3. In the present invention, n is preferably 0.
 また、前記のLは置換基を有していてもよい。置換基としては、上述のXが有していてもよい置換基と同様の基であり、これらの置換基はさらに置換基を有していてもよい。 In addition, the above L may have a substituent. The substituents are the same as the substituents that X may have, and these substituents may further have a substituent.
 本発明において、上述した一般式(2)で表される連結構造単位の具体例を構造単位1~26として図1および図2に示した。なお、図1および図2に示した化学式において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、そのフリーの先端がメチル基であることを示している。連結構造単位として好ましい具体例を示したが、本発明で用いられる連結構造単位はこれらの構造単位に限定されるものではない。 In the present invention, specific examples of the linking structural unit represented by the general formula (2) are shown in FIGS. 1 and 2 as structural units 1 to 26. In the chemical formulas shown in FIGS. 1 and 2, the dashed line indicates a bond to the adjacent structural unit, and the solid line extending from the ring indicates that the free tip is a methyl group. showing. Preferred specific examples of the linking structural unit are shown, but the linking structural unit used in the present invention is not limited to these structural units.
<高分子量化合物>
 上述した一般式(1)で表されるトリアリールアミン構造単位および一般式(2)で表される連結構造単位からなる、一般式(3)で表される繰り返し単位を含む本発明の高分子量化合物は、既に述べたように、正孔の注入特性、正孔の移動度、電子阻止能力、薄膜安定性、耐熱性等の特性が優れているものであるが、これらの特性をより高め、且つ成膜性を確保するという観点から、GPCで測定したポリスチレン換算での重量平均分子量は、好ましくは10,000以上1,000,000未満、より好ましくは10,000以上500,000未満、さらに好ましくは10,000以上200,000未満の範囲である。
<High molecular weight compound>
The high molecular weight of the present invention comprising a repeating unit represented by general formula (3), which consists of the triarylamine structural unit represented by general formula (1) and the linking structural unit represented by general formula (2). As already mentioned, the compound has excellent properties such as hole injection properties, hole mobility, electron blocking ability, thin film stability, and heat resistance. And from the viewpoint of ensuring film formability, the weight average molecular weight in terms of polystyrene measured by GPC is preferably 10,000 or more and less than 1,000,000, more preferably 10,000 or more and less than 500,000, and further It is preferably in the range of 10,000 or more and less than 200,000.
 また、本発明の高分子量化合物は、例えばコーティングにより有機EL素子中の有機層の形成に適用した場合の塗布性や他の層との密着性、耐久性を確保するために、他の構造単位を含むことが好ましい。このような他の構造単位としては、例えば、熱架橋性を高めるための構造単位(熱架橋性構造単位)、および一般式(1)で表されるトリアリールアミン構造単位とは異なるトリアリールアミン構造単位がある。 Further, the high-molecular-weight compound of the present invention, for example, when applied to the formation of an organic layer in an organic EL device by coating, in order to ensure coatability, adhesion to other layers, and durability, other structural units It is preferred to include Such other structural units include, for example, a structural unit for enhancing thermal crosslinkability (thermal crosslinkable structural unit), and a triarylamine structural unit different from the triarylamine structural unit represented by general formula (1). There are structural units.
 前記熱架橋性構造単位の具体例としては、前記一般式(4-1)~(4-143)で示した構造単位が挙げられる。 Specific examples of the thermally crosslinkable structural unit include the structural units represented by the general formulas (4-1) to (4-143).
 なお、前記一般式(4-1)~(4-143)において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、その先端がメチル基であることを示している。
 また、式中のaおよびbは、Rの数であり、以下の整数である。
  a=0、1、2または3
  b=0、1、2、3または4
In the general formulas (4-1) to (4-143), the dashed line indicates a bond to an adjacent structural unit, and the solid line extending from the ring with a free tip has a methyl group at the tip. indicates that there is
Also, a and b in the formula are the numbers of R and are the following integers.
a = 0, 1, 2 or 3
b = 0, 1, 2, 3 or 4
 前記一般式(4-1)~(4-143)において、Rは、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、アルキルオキシ基、シクロアルキル基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。 In the general formulas (4-1) to (4-143), R is a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or having 3 to 40, an alkyl group, an alkyloxy group, a cycloalkyl group, a cycloalkyloxy group, an alkenyl group, or an aryloxy group.
 前記Rで示されるアルキル基、アルキルオキシ基、シクロアルキル基、シクロアルキルオキシ基、アルケニル基、およびアリールオキシ基の例としては、Rにおいて示した基と同様の基が挙げられる。
 熱架橋性構造単位として、好ましい具体例を示したが、本発明で用いられる熱架橋性構造単位はこれらの構造単位に限定されるものではない。
Examples of the alkyl group, alkyloxy group, cycloalkyl group, cycloalkyloxy group, alkenyl group, and aryloxy group represented by R include the same groups as those shown for R 1 .
Preferred specific examples of the thermally crosslinkable structural unit have been shown, but the thermally crosslinkable structural unit used in the present invention is not limited to these structural units.
 本発明の高分子量化合物において、一般式(1)で表されるトリアリールアミン構造単位を「構造単位A」、一般式(2)で表される連結構造単位を「構造単位B」、熱架橋性構造単位を「構造単位C」、および一般式(1)で表されるトリアリールアミン構造単位とは異なるトリアリールアミン構造単位を「構造単位D」で表したとき、構造単位Aを1モル%以上、特に20モル%以上含んでいることが好ましく、このような量で構造単位Aを含んでいることを条件として、構造単位Bを1モル%以上、特に30~70モル%の量で含み、さらには、構造単位Cを1モル%以上、特に5~20モル%の量で含んでいることが好ましく、このような条件を満足するように構造単位A、BおよびCを含む3元共重合体であることが、有機EL素子の有機層を形成する上で最も好適である。 In the high molecular weight compound of the present invention, the triarylamine structural unit represented by general formula (1) is "structural unit A", the linking structural unit represented by general formula (2) is "structural unit B", and thermal crosslinking 1 mol of structural unit A is represented by "structural unit C", and "structural unit D" is a triarylamine structural unit different from the triarylamine structural unit represented by general formula (1). % or more, particularly 20 mol % or more, provided that the structural unit A is contained in such an amount, the structural unit B is 1 mol % or more, particularly 30 to 70 mol %. Further, it preferably contains structural unit C in an amount of 1 mol% or more, particularly 5 to 20 mol%. A copolymer is most suitable for forming an organic layer of an organic EL device.
 本発明の高分子量化合物は、スズキ重合反応またはHARTWIG-BUCHWALD重合反応により、それぞれ炭素-炭素結合または炭素-窒素結合を形成して各構造単位を連鎖することにより合成される。具体的には、各構造単位を有する単位化合物を用意し、この単位化合物を適宜ホウ酸エステル化またはハロゲン化し、適宜の触媒を使用して重縮合反応することにより、本発明の高分子量化合物を合成することができる。 The high-molecular-weight compounds of the present invention are synthesized by forming carbon-carbon bonds or carbon-nitrogen bonds, respectively, and linking structural units by Suzuki polymerization reaction or HARTWIG-BUCHWALD polymerization reaction. Specifically, a unit compound having each structural unit is prepared, the unit compound is appropriately boric acid esterified or halogenated, and polycondensation reaction is performed using an appropriate catalyst to obtain the high molecular weight compound of the present invention. Can be synthesized.
 例えば、前記一般式(1)で表されるトリアリールアミン構造単位を導入するための化合物としては、下記一般式(1a)で表されるトリアリールアミン誘導体を使用することができる。 For example, as a compound for introducing the triarylamine structural unit represented by the general formula (1), a triarylamine derivative represented by the following general formula (1a) can be used.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記式(1a)中、Qは、水素原子またはハロゲン原子(特にBrが好ましい)であり、R、R、およびLは、いずれも前記一般式(1)中で定義したものと同じである。 In formula (1a) above, Q is a hydrogen atom or a halogen atom (particularly preferably Br), and R 1 , R 2 and L are all the same as defined in general formula (1) above. be.
 即ち、前記一般式(1a)において、Qが水素原子であるものが、一般式(1)で表されるトリアリールアミン構造単位を導入するための単位化合物であり、Qがハロゲン原子であるものが、ポリマーを合成するために使用されるハロゲン化物である。 That is, in the general formula (1a), the compound in which Q is a hydrogen atom is a unit compound for introducing the triarylamine structural unit represented by the general formula (1), and the compound in which Q is a halogen atom. is the halide used to synthesize the polymer.
 例えば、一般式(1)で表される構造単位Aを45モル%、一般式(2)で表される構造単位Bを50モル%、熱架橋性構造単位C(熱架橋性構造単位の一般式(4-5))を5モル%で含む共重合体は下記一般式(5)で表される。 For example, 45 mol% of structural unit A represented by general formula (1), 50 mol% of structural unit B represented by general formula (2), and thermally crosslinkable structural unit C (general thermally crosslinkable structural unit A copolymer containing 5 mol % of formula (4-5)) is represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 ただし、構造単位Aと構造単位Cを導入するための中間体がホウ酸エステル化体であり、これに対し、構造単位Bを導入するための中間体がハロゲン化体であるか、または、構造単位Aと構造単位Cを導入するための中間体がハロゲン化体であり、これに対し、構造単位Bを導入するための中間体がホウ酸エステル化体である必要がある。つまり、ハロゲン化体とホウ酸エステル化体のモル比率は等しくなければならない。 However, the intermediate for introducing the structural unit A and the structural unit C is a borate ester, whereas the intermediate for introducing the structural unit B is a halide, or the structural The intermediate for introducing the unit A and the structural unit C must be a halide, and the intermediate for introducing the structural unit B must be a boric acid ester. That is, the molar ratios of halide and borate esters must be equal.
 上述した本発明の高分子量化合物は、ベンゼン、トルエン、キシレンおよびアニソールなどの芳香族系有機溶媒に溶解させて塗布液を調製し、この塗布液を所定の基材上にコーティングし、加熱乾燥することにより、正孔注入性、正孔輸送性および電子阻止性などの特性に優れた薄膜を形成することができる。 The above-described high molecular weight compound of the present invention is dissolved in an aromatic organic solvent such as benzene, toluene, xylene and anisole to prepare a coating liquid, which is coated on a predetermined substrate and dried by heating. As a result, a thin film having excellent properties such as hole injection properties, hole transport properties, and electron blocking properties can be formed.
 例えば、前記高分子量化合物は、有機EL素子の正孔注入層および/または正孔輸送層の構成材料として使用することができる。このような高分子量化合物により形成された正孔注入層および正孔輸送層は、従来の材料で形成されたものに比して、正孔の注入性が高く、移動度が大きく、電子阻止性が高く、発光層内で生成した励起子を閉じ込めることができ、さらに正孔と電子が再結合する確率を向上させ、高発光効率を得ることができると共に、駆動電圧が低下して、有機EL素子の耐久性が向上するという利点を実現できる。 For example, the high molecular weight compound can be used as a constituent material of the hole injection layer and/or the hole transport layer of the organic EL device. A hole injection layer and a hole transport layer formed of such a high molecular weight compound have higher hole injection properties, higher hole mobility, and electron blocking properties than those formed of conventional materials. is high, excitons generated in the light-emitting layer can be confined, the probability of recombination of holes and electrons can be improved, high luminous efficiency can be obtained, and the driving voltage can be lowered, and the organic EL The advantage of improved device durability can be realized.
 また、前記のような電気特性を有する本発明の高分子量化合物は、従来の材料よりもワイドギャップであり、励起子の閉じ込めに有効なため、当然、電子阻止層や発光層にも好適に使用することができる。 In addition, the high molecular weight compound of the present invention having the above-described electrical properties has a wider gap than conventional materials and is effective in confining excitons, so it is naturally suitable for use in electron blocking layers and light-emitting layers. can do.
<有機EL素子>
 上述した本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子は、例えば図3に示す構造を有している。即ち、ガラス基板1(透明樹脂基板など、透明基板であればよい)の上に、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が設けられている。
<Organic EL element>
An organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention has a structure shown in FIG. 3, for example. That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6 and a cathode 7 are formed on a glass substrate 1 (a transparent substrate such as a transparent resin substrate may be used). is provided.
 本発明の高分子量化合物が適用される有機EL素子は、前記の層構造に限定されるものではなく、発光層5と電子輸送層6との間に正孔阻止層を設けることができ、また、図4に示す構造のように、正孔輸送層11と発光層13との間に電子阻止層12などを設けることができる。さらには、陰極と電子輸送層との間に電子注入層を設けることもできる。さらに、いくつかの層を省略することもできる。例えば、基板上に、陽極、正孔輸送層、発光層、電子輸送層および陰極を設けたシンプルな層構造とすることもできる。また、同一の機能を有する層を重ねた2層構造とすることも可能である。 The organic EL device to which the high molecular weight compound of the present invention is applied is not limited to the layer structure described above, and a hole blocking layer can be provided between the light emitting layer 5 and the electron transport layer 6, and , as in the structure shown in FIG. Furthermore, an electron injection layer can be provided between the cathode and the electron transport layer. Additionally, some layers may be omitted. For example, a simple layer structure in which an anode, a hole-transporting layer, a light-emitting layer, an electron-transporting layer and a cathode are provided on a substrate may be employed. It is also possible to have a two-layer structure in which layers having the same function are superimposed.
 本発明の高分子量化合物は、その正孔注入性や正孔輸送性などの特性を活かして、前記の陽極と陰極との間に設けられる有機層(例えば、正孔注入層、正孔輸送層、発光層および電子阻止層)の形成材料として好適に使用される。 The high-molecular-weight compound of the present invention utilizes its properties such as hole-injecting properties and hole-transporting properties to provide an organic layer (for example, a hole-injecting layer, a hole-transporting layer) provided between the anode and the cathode. , light emitting layer and electron blocking layer).
 前記の有機EL素子において、透明陽極は、それ自体公知の電極材料で形成されていてよく、ITOおよび金のような仕事関数の大きな電極材料を基板(ガラス基板等の透明基板)の上に蒸着することにより形成される。 In the organic EL element, the transparent anode may be formed of an electrode material known per se, and an electrode material having a large work function such as ITO and gold is vapor-deposited on a substrate (a transparent substrate such as a glass substrate). It is formed by
 また、透明陽極上に設けられている正孔注入層は、本発明の高分子量化合物を、例えばトルエン、キシレンおよびアニソールなどの芳香族系有機溶媒に溶解させた塗布液を用いて形成することができる。例えば、この塗布液を、スピンコート、インクジェットなどにより、透明陽極上にコーティングすることにより、正孔注入層を形成することができる。 Also, the hole injection layer provided on the transparent anode can be formed using a coating solution prepared by dissolving the high molecular weight compound of the present invention in an aromatic organic solvent such as toluene, xylene and anisole. can. For example, the hole injection layer can be formed by coating this coating liquid on the transparent anode by spin coating, inkjet, or the like.
 また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、前記の正孔注入層は本発明の高分子量化合物を用いずに、従来公知の材料、例えば以下の材料を用いて形成することもできる。
  銅フタロシアニンに代表されるポルフィリン化合物;
  スターバースト型のトリフェニルアミン誘導体;
  単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン(例えば、トリフェニルアミン3量体および4量体);
  ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物;
  塗布型の高分子材料、例えばポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、ポリ(スチレンスルフォネート)(PSS)等。
Further, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, the hole injection layer is formed of a conventionally known material such as the following, without using the high molecular weight compound of the present invention. It can also be formed using a material.
Porphyrin compounds represented by copper phthalocyanine;
starburst-type triphenylamine derivatives;
Arylamines having a structure linked by a single bond or a divalent group containing no heteroatoms (e.g., triphenylamine trimers and tetramers);
acceptor heterocyclic compounds such as hexacyanoazatriphenylene;
Coatable polymeric materials such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(styrene sulfonate) (PSS) and the like.
 このような材料を用いた層(薄膜)の形成は、蒸着法、スピンコートおよびインクジェットなどによるコーティング法により成膜することができる。これらは、他の層についても同様であり、膜形成材料の種類に応じて、蒸着法またはコーティング法により成膜が行われる。 A layer (thin film) using such a material can be formed by a coating method such as vapor deposition, spin coating, and inkjet. The same applies to other layers, and the film is formed by vapor deposition or coating depending on the type of film-forming material.
 前記の正孔注入層の上に設けられている正孔輸送層も、正孔注入層と同様に、本発明の高分子量化合物を用いて、スピンコートおよびインクジェットなどによるコーティング法によって形成することができる。 Similarly to the hole injection layer, the hole transport layer provided on the hole injection layer can also be formed using the high molecular weight compound of the present invention by a coating method such as spin coating or inkjet. can.
 また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、従来公知の正孔輸送材料を用いて正孔輸送層を形成することもできる。このような正孔輸送材料として代表的なものは、次のとおりである。
 ベンジジン誘導体、例えば、
  N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(以下、TPDと略す);
  N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以下、NPDと略す);
  N,N,N’,N’-テトラビフェニリルベンジジン;
 アミン系誘導体、例えば、
  1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以下、TAPCと略す);
  種々のトリフェニルアミン3量体および4量体;
 正孔注入層用としても使用される塗布型高分子材料。
Further, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, a hole transport layer can be formed using a conventionally known hole transport material. Typical examples of such hole transport materials are as follows.
benzidine derivatives, such as
N,N'-diphenyl-N,N'-di(m-tolyl)benzidine (hereinafter abbreviated as TPD);
N,N'-diphenyl-N,N'-di(α-naphthyl)benzidine (hereinafter abbreviated as NPD);
N,N,N',N'-tetrabiphenylylbenzidine;
Amine derivatives, such as
1,1-bis[4-(di-4-tolylamino)phenyl]cyclohexane (hereinafter abbreviated as TAPC);
various triphenylamine trimers and tetramers;
A coating-type polymer material that is also used as a hole injection layer.
 上述した正孔輸送層の化合物は、本発明の高分子量化合物を含め、それぞれ単独で成膜してもよいが、2種以上混合して成膜することもできる。また、前記化合物の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を正孔輸送層とすることもできる。 The compounds for the hole transport layer described above, including the high-molecular-weight compound of the present invention, may be formed individually, or two or more of them may be mixed to form a film. Also, a multilayer film in which a plurality of layers are formed using one or more of the above compounds and such layers are laminated can be used as the hole transport layer.
 また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、正孔注入層と正孔輸送層とを兼ねた層とすることもでき、このような正孔注入・輸送層は、PEDOTなどの高分子材料を用いて、コーティング法により形成することができる。 In addition, in an organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention, a layer that serves both as a hole-injecting layer and a hole-transporting layer can be used. - The transport layer can be formed by a coating method using a polymeric material such as PEDOT.
 なお、正孔輸送層(正孔注入層も同様)において、該層に通常使用される材料に対し、トリス(4-ブロモフェニル)アンモニウムイルヘキサクロロアンチモナートまたはラジアレン誘導体(例えば、WO2014/009310参照)などをPドーピングしたものを使用することができる。また、TPD基本骨格を有する高分子化合物などを用いて正孔輸送層(および正孔注入層)を形成することができる。 In addition, in the hole-transporting layer (the same applies to the hole-injecting layer), tris(4-bromophenyl)ammoniumylhexachloroantimonate or a radialene derivative (see, for example, WO2014/009310) is used as a material normally used for the layer. etc. can be used by P-doping. Also, the hole transport layer (and the hole injection layer) can be formed using a polymer compound having a TPD basic skeleton.
 さらに、電子阻止層(図4のように、正孔輸送層11と発光層13との間に設けることができる)も、本発明の高分子量化合物を用いて、スピンコートおよびインクジェットなどによるコーティング法によって形成することができる。 Further, an electron-blocking layer (which can be provided between the hole-transporting layer 11 and the light-emitting layer 13, as shown in FIG. 4) is also coated using the high-molecular-weight compound of the present invention by a coating method such as spin coating and inkjet. can be formed by
 また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、電子阻止作用を有する公知の電子阻止性化合物、例えば、カルバゾール誘導体や、トリフェニルシリル基を有し且つトリアリールアミン構造を有する化合物などを用いて電子阻止層を形成することもできる。カルバゾール誘導体およびトリアリールアミン構造を有する化合物の具体例は、以下の通りである。
 カルバゾール誘導体、例えば、
  4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(以下、TCTAと略す);
  9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン;
  1,3-ビス(カルバゾール-9-イル)ベンゼン(以下、mCPと略す);
  2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以下、Ad-Czと略す);
 トリアリールアミン構造を有する化合物、例えば、
  9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレン。
In addition, in an organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention, a known electron-blocking compound having an electron-blocking action, such as a carbazole derivative or a triphenylsilyl group, and An electron blocking layer can also be formed using a compound having a triarylamine structure. Specific examples of carbazole derivatives and compounds having a triarylamine structure are as follows.
carbazole derivatives, such as
4,4′,4″-tri(N-carbazolyl)triphenylamine (hereinafter abbreviated as TCTA);
9,9-bis[4-(carbazol-9-yl)phenyl]fluorene;
1,3-bis(carbazol-9-yl)benzene (hereinafter abbreviated as mCP);
2,2-bis(4-carbazol-9-ylphenyl)adamantane (hereinafter abbreviated as Ad-Cz);
Compounds having a triarylamine structure, such as
9-[4-(carbazol-9-yl)phenyl]-9-[4-(triphenylsilyl)phenyl]-9H-fluorene.
 電子阻止層も、本発明の高分子量化合物を含め、それぞれ単独で成膜してもよいが、2種以上混合して成膜することもできる。また、前記化合物の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を電子阻止層とすることもできる。 The electron blocking layer, including the high molecular weight compound of the present invention, may be formed independently, but it is also possible to form a film by mixing two or more kinds. Also, a multilayer film in which a plurality of layers are formed using one or more of the above compounds and such layers are laminated can be used as the electron blocking layer.
 本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、発光層は、Alqをはじめとするキノリノール誘導体の金属錯体;亜鉛、ベリリウムおよびアルミニウムなどの各種の金属錯体;アントラセン誘導体;ビススチリルベンゼン誘導体;ピレン誘導体;オキサゾール誘導体;ポリパラフェニレンビニレン誘導体などの発光材料を用いて形成することができる。 In an organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention, the light-emitting layer comprises metal complexes of quinolinol derivatives such as Alq3 ; various metal complexes such as zinc, beryllium and aluminum; It can be formed using a light-emitting material such as an anthracene derivative; a bisstyrylbenzene derivative; a pyrene derivative; an oxazole derivative;
 また、発光層をホスト材料とドーパント材料とで構成することもできる。この場合のホスト材料として、前記の発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、およびポリジアルキルフルオレン誘導体などを使用することができ、さらに、前述した本発明の高分子量化合物を使用することもできる。ドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレン、およびそれらの誘導体;ベンゾピラン誘導体;ローダミン誘導体;アミノスチリル誘導体などを用いることができる。 Also, the light-emitting layer can be composed of a host material and a dopant material. As the host material in this case, in addition to the light-emitting materials described above, thiazole derivatives, benzimidazole derivatives, polydialkylfluorene derivatives, and the like can be used, and furthermore, the high molecular weight compounds of the present invention described above can also be used. . Quinacridone, coumarin, rubrene, perylene, and derivatives thereof; benzopyran derivatives; rhodamine derivatives; aminostyryl derivatives and the like can be used as dopant materials.
 このような発光層も、各発光材料の1種または2種以上を用いた単層構成とすることもできるし、複数の層を積層した多層構造とすることもできる。 Such a light-emitting layer can also have a single-layer structure using one or more of each light-emitting material, or can have a multi-layer structure in which a plurality of layers are laminated.
 さらに、発光材料として燐光発光材料を使用して発光層を形成することもできる。燐光発光材料としては、イリジウムおよび白金などの金属錯体の燐光発光体を使用することができる。例えば、Ir(ppy)などの緑色の燐光発光体;FIrpicおよびFIr6などの青色の燐光発光体;BtpIr(acac)などの赤色の燐光発光体などを用いることができる。これらの燐光発光材料は、正孔注入・輸送性のホスト材料や電子輸送性のホスト材料にドープして使用される。 Furthermore, the light-emitting layer can also be formed using a phosphorescent light-emitting material as the light-emitting material. As the phosphorescent light-emitting material, phosphorescent emitters of metal complexes such as iridium and platinum can be used. For example, green phosphorescent emitters such as Ir(ppy) 3 ; blue phosphorescent emitters such as FIrpic and FIr6; and red phosphorescent emitters such as Btp2Ir (acac) can be used. These phosphorescent materials are used by doping a hole-injecting/transporting host material or an electron-transporting host material.
 なお、燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によって行うことが好ましい。 In order to avoid concentration quenching, doping of the host material with the phosphorescent light-emitting material is preferably carried out by co-evaporation in the range of 1 to 30% by weight with respect to the entire light-emitting layer.
 また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、および4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である。(Appl.Phys.Let.,98,083302(2011)参照)。 It is also possible to use materials that emit delayed fluorescence, such as CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, and 4CzIPN, as light-emitting materials. (See Appl. Phys. Let., 98, 083302 (2011)).
 本発明の高分子量化合物に、ドーパントと呼ばれている蛍光発光体、燐光発光体または遅延蛍光を放射する材料を担持させて発光層を形成することにより、駆動電圧が低下し、発光効率が改善された有機EL素子を実現できる By making the high molecular weight compound of the present invention carry a fluorescent emitter, a phosphorescent emitter, or a material that emits delayed fluorescence, which is called a dopant, to form a light-emitting layer, the driving voltage is lowered and the luminous efficiency is improved. It is possible to realize an organic EL element with
 本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、正孔注入・輸送性のホスト材料としては、本発明の高分子量化合物を用いることができる。その他に、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)、TCTAおよびmCPなどのカルバゾール誘導体などを用いることもできる。 In an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, the high molecular weight compound of the present invention can be used as a hole-injecting/transporting host material. In addition, 4,4'-di(N-carbazolyl)biphenyl (hereinafter abbreviated as CBP), carbazole derivatives such as TCTA and mCP, and the like can also be used.
 また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、電子輸送性のホスト材料としては、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)、および2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。 In an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, p-bis(triphenylsilyl)benzene (hereinafter abbreviated as UGH2) is used as the electron-transporting host material. , and 2,2′,2″-(1,3,5-phenylene)-tris(1-phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI) can be used.
 本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、発光層と電子輸送層との間に設ける正孔阻止層(図では示されていない)としては、それ自体公知の正孔阻止作用を有する化合物を用いて形成することができる。このような正孔阻止作用を有する公知化合物の例としては、以下のものをあげることができる。
 バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体;
 アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体;
 各種希土類錯体;
 トリアゾール誘導体;
 トリアジン誘導体;
 オキサジアゾール誘導体。
In an organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention, a hole-blocking layer (not shown in the figure) provided between the light-emitting layer and the electron-transporting layer includes It can be formed using a compound having a known hole-blocking action. Examples of known compounds having such a hole-blocking action include the following.
phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP);
metal complexes of quinolinol derivatives such as aluminum (III) bis(2-methyl-8-quinolinate)-4-phenylphenolate (hereinafter abbreviated as BAlq);
various rare earth complexes;
triazole derivatives;
triazine derivatives;
Oxadiazole derivatives.
 これらの材料は、以下に述べる電子輸送層の形成にも使用することができ、さらには、正孔阻止層兼電子輸送層として使用することもできる。 These materials can also be used to form the electron-transporting layer described below, and can also be used as both a hole-blocking layer and an electron-transporting layer.
 このような正孔阻止層も、単層または多層の積層構造とすることができ、各層は、上述した正孔阻止作用を有する化合物の1種または2種以上を用いて成膜される。 Such a hole-blocking layer can also have a single-layer or multi-layer laminated structure, and each layer is formed using one or more of the compounds having the hole-blocking action described above.
 本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、電子輸送層は、それ自体公知の電子輸送性の化合物、例えば、AlqおよびBAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、ピリジン誘導体、ピリミジン誘導体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体およびベンゾイミダゾール誘導体などを用いて形成することができる。 In an organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention, the electron-transporting layer is composed of an electron-transporting compound known per se, such as a quinolinol derivative such as Alq 3 and BAlq. It can be formed using metal complexes, various metal complexes, pyridine derivatives, pyrimidine derivatives, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, benzimidazole derivatives, and the like. can.
 この電子輸送層も、単層または多層の積層構造とすることができ、各層は、上述した電子輸送性化合物の1種または2種以上を用いて成膜される。 This electron-transporting layer can also have a single-layer or multi-layer laminated structure, and each layer is formed using one or more of the electron-transporting compounds described above.
 さらに、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、必要に応じて設けられる電子注入層(図では示されていない)も、それ自体公知のもの、例えば、フッ化リチウムおよびフッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物、およびリチウムキノリンなどの有機金属錯体などを用いて形成することができる。 Further, in the organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention, the electron injection layer (not shown in the figure) provided as necessary is also known per se, such as , alkali metal salts such as lithium fluoride and cesium fluoride, alkaline earth metal salts such as magnesium fluoride, metal oxides such as aluminum oxide, and organometallic complexes such as lithium quinoline. .
 本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子の陰極としては、アルミニウムのような仕事関数の低い電極材料、およびマグネシウム銀合金、マグネシウムインジウム合金、もしくはアルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。 As the cathode of an organic EL device having an organic layer formed using the high-molecular-weight compound of the present invention, an electrode material having a low work function such as aluminum, and a magnesium-silver alloy, a magnesium-indium alloy, or an aluminum-magnesium alloy can be used. An alloy with a lower work function, such as, is used as an electrode material.
 以上に述べたように、本発明の高分子量化合物を用いて、正孔注入層、正孔輸送層、発光層、および電子阻止層うちの少なくとも1つの層を形成することにより、発光効率および電力効率が高く、実用駆動電圧が低く、発光開始電圧も低く、極めて優れた耐久性を有する有機EL素子が得られる。特に、この有機EL素子では、高い発光効率を有しながら、駆動電圧が低下し、電流耐性が改善されて、最大発光輝度が向上している。 As described above, the high molecular weight compound of the present invention is used to form at least one layer of a hole injection layer, a hole transport layer, a light emitting layer, and an electron blocking layer, thereby improving luminous efficiency and power consumption. An organic EL device having high efficiency, low practical driving voltage, low light emission start voltage, and extremely excellent durability can be obtained. In particular, in this organic EL element, while having high luminous efficiency, the driving voltage is lowered, the current resistance is improved, and the maximum luminous luminance is improved.
 以下、本発明を次の実験例により説明する。
 なお、以下の説明において、本発明の高分子量化合物が有する一般式(1)で表される構造単位を「構造単位A」、一般式(2)で表される連結構造単位を「構造単位B」、熱架橋性構造単位を「構造単位C」、一般式(1)とは異なるトリアリールアミン構造単位を「構造単位D」として示した。
The present invention will now be described with reference to the following experimental examples.
In the following description, the structural unit represented by the general formula (1) of the high molecular weight compound of the present invention is "structural unit A", and the connecting structural unit represented by general formula (2) is "structural unit B ”, the thermally crosslinkable structural unit as “structural unit C”, and the triarylamine structural unit different from the general formula (1) as “structural unit D”.
 また、合成された化合物の精製は、カラムクロマトグラフによる精製、および/または溶媒による晶析法によって行った。化合物の同定は、NMR分析によって行った。 In addition, purification of the synthesized compounds was performed by column chromatography and/or solvent crystallization. Compound identification was performed by NMR analysis.
 本発明の高分子量化合物を製造するために、以下の中間体1~3を合成した。 In order to produce the high molecular weight compounds of the present invention, the following intermediates 1 to 3 were synthesized.
<中間体1の合成> <Synthesis of Intermediate 1>
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
  N,N-ビス(4-ブロモフェニル)-9,9-ジ-n-オクチル-9H-フルオレン-2-アミン:16.7g
  ビス(ピナコラト)ジボロン:11.9g
  酢酸カリウム:5.7g
  1,4-ジオキサン:170ml
 次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.19gを加えて加熱し、100℃で7時間撹拌した。室温まで冷却した後、水とトルエンを加え、分液操作を行うことによって有機層を採取した。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/20)で精製することによって中間体1の白色粉体7.6g(収率40%)を得た。
The following ingredients were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through for 30 minutes.
N,N-bis(4-bromophenyl)-9,9-di-n-octyl-9H-fluoren-2-amine: 16.7 g
Bis(pinacolato)diboron: 11.9 g
Potassium acetate: 5.7g
1,4-dioxane: 170 ml
Next, 0.19 g of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 100° C. for 7 hours. After cooling to room temperature, water and toluene were added and an organic layer was collected by liquid separation. The organic layer was dehydrated over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (ethyl acetate/n-hexane=1/20) to obtain 7.6 g of intermediate 1 as a white powder (yield 40%).
<中間体2の合成> <Synthesis of Intermediate 2>
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
  N,N-ビス(4-ブロモフェニル)-N-(ベンゾシクロブテン-4-イル)-アミン:8.0g
  ビス(ピナコラト)ジボロン:9.9g
  酢酸カリウム:4.6g
  1,4-ジオキサン:80ml
 次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.3gを加えて加熱し、90℃で11時間撹拌した。室温まで冷却した後、水とトルエンを加え、分液操作を行うことによって有機層を採取した。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をトルエン/メタノール=1/2により再結晶することによって、中間体2の白色粉体3.4g(収率35%)を得た。
The following ingredients were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through for 30 minutes.
N,N-bis(4-bromophenyl)-N-(benzocyclobuten-4-yl)-amine: 8.0 g
Bis(pinacolato)diboron: 9.9g
Potassium acetate: 4.6g
1,4-dioxane: 80 ml
Next, 0.3 g of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added and the mixture was heated and stirred at 90° C. for 11 hours. After cooling to room temperature, water and toluene were added and an organic layer was collected by liquid separation. The organic layer was dehydrated over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized from toluene/methanol=1/2 to obtain 3.4 g of intermediate 2 as a white powder (yield 35%).
<中間体3の合成> <Synthesis of Intermediate 3>
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 下記の成分を、窒素置換した反応容器に加えて-5℃で0.5時間撹拌した。
  1-アミノ-2,4-ジブロモナフタレン:9.5g
  エタノール:320mL
  濃硫酸:8.5mL
 1.1M亜硝酸ナトリウム水溶液52mLを滴下し、-5℃で1時間撹拌した。その後銅粉:2gを加え、濃硫酸;18.5mLを滴下し、室温で1時間撹拌後、1時間加熱し還流させた。エタノールを留去し、クロロホルムで抽出を行った。得られた有機層を硫酸ナトリウムで乾燥後、乾固し、粗製物をn-ヘキサンを溶離液とするカラムクロマトグラフィーを行った。1つ目のフラクションを回収し、得られた固体に対してエタノールを用いて再結晶を行い、中間体3を白色粉体5.8g(収率65%)として得た。
The following components were added to a reaction vessel purged with nitrogen and stirred at -5°C for 0.5 hours.
1-amino-2,4-dibromonaphthalene: 9.5 g
Ethanol: 320mL
Concentrated sulfuric acid: 8.5 mL
52 mL of a 1.1 M sodium nitrite aqueous solution was added dropwise, and the mixture was stirred at -5°C for 1 hour. After that, 2 g of copper powder was added, 18.5 mL of concentrated sulfuric acid was added dropwise, and after stirring at room temperature for 1 hour, the mixture was heated and refluxed for 1 hour. Ethanol was distilled off, and extraction was performed with chloroform. The obtained organic layer was dried over sodium sulfate and then evaporated to dryness, and the crude product was subjected to column chromatography using n-hexane as an eluent. A first fraction was collected, and the resulting solid was recrystallized using ethanol to obtain 5.8 g of intermediate 3 as a white powder (yield 65%).
<中間体4の合成> <Synthesis of Intermediate 4>
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
  N-(ベンゾシクロブテン-4-イル)-3,6-ジブロモカルバゾール:19.6g
  ビス(ピナコラト)ジボロン:24.5g
  酢酸カリウム:13.5g
  1,4-ジオキサン:120ml
 次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.4gを加えて加熱し、97℃で5時間撹拌した。室温まで冷却した後、水とトルエンを加え、分液操作を行うことによって有機層を採取した。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をトルエン/メタノール=1/5により再結晶することによって、中間体4の白色粉体14.5g(収率61%)を得た。
The following ingredients were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through for 30 minutes.
N-(benzocyclobuten-4-yl)-3,6-dibromocarbazole: 19.6 g
Bis(pinacolato)diboron: 24.5 g
Potassium acetate: 13.5g
1,4-dioxane: 120 ml
Next, 0.4 g of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 97° C. for 5 hours. After cooling to room temperature, water and toluene were added and an organic layer was collected by liquid separation. The organic layer was dehydrated over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized with toluene/methanol=1/5 to obtain 14.5 g of intermediate 4 as a white powder (yield 61%).
<実施例1>
高分子量化合物Aの合成;
 下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
  中間体1:5.6g
  中間体2:0.4g
  中間体3:2.2g
  リン酸三カリウム:6.9g
  トルエン:9ml
  水:5ml
  1,4-ジオキサン:27ml
 次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン11.5mgを加えて加熱し、87℃で14時間撹拌した。この後、フェニルボロン酸を17mg加えて1時間撹拌し、次いでブロモベンゼン242mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Aを3.6g(収率71%)得た。
<Example 1>
Synthesis of High Molecular Weight Compound A;
The following ingredients were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through for 30 minutes.
Intermediate 1: 5.6 g
Intermediate 2: 0.4g
Intermediate 3: 2.2 g
Tripotassium phosphate: 6.9 g
Toluene: 9ml
Water: 5ml
1,4-dioxane: 27 ml
Then, 1.4 mg of palladium(II) acetate and 11.5 mg of tri-o-tolylphosphine were added, heated, and stirred at 87° C. for 14 hours. After that, 17 mg of phenylboronic acid was added and stirred for 1 hour, then 242 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, the organic layer was collected by liquid separation and washed with saturated brine three times. After drying the organic layer with anhydrous sodium sulfate, the crude polymer was obtained by concentrating under reduced pressure. The crude polymer was dissolved in toluene, silica gel was added for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, 100 ml of toluene was added to the dried solid to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and dried to obtain 3.6 g of high molecular weight compound A (yield: 71%).
 高分子量化合物AのGPCで測定した平均分子量、分散度は、以下の通りであった。
  数平均分子量Mn(ポリスチレン換算):60,000
  重量平均分子量Mw(ポリスチレン換算):108,000
  分散度(Mw/Mn):1.8
The average molecular weight and dispersity of high molecular weight compound A measured by GPC were as follows.
Number average molecular weight Mn (converted to polystyrene): 60,000
Weight average molecular weight Mw (converted to polystyrene): 108,000
Dispersity (Mw/Mn): 1.8
 また、高分子量化合物AについてNMR測定を行った。H-NMR測定結果を図5に示した。化学組成式は下記の通りであった。 Moreover, the NMR measurement was performed about the high molecular weight compound A. 1 H-NMR measurement results are shown in FIG. The chemical composition formula was as follows.
 前記化学組成から理解されるように、この高分子量化合物Aは、構造単位Aを45モル%含み、構造単位Bを50モル%含み、構造単位Cを5モル%の量で含有していた。 As can be understood from the chemical composition, this high molecular weight compound A contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
<実施例2>
高分子量化合物Bの合成;
 下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
  中間体1:5.4g
  中間体3:2.2g
  中間体4:0.5g
  リン酸三カリウム:7.4g
  トルエン:9ml
  水:5ml
  1,4-ジオキサン:27ml
 次いで、酢酸パラジウム(II)を1.5mg、およびトリ-o-メトキシフェニルホスフィン14.4mgを加えて加熱し、87℃で10時間撹拌した。この後、フェニルボロン酸を163mg加えて1時間撹拌し、次いでブロモベンゼン2.1gを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。得られた沈殿物にトルエン100mlを加えて溶解させ、n-ヘキサン200ml中に滴下し、得られた沈殿物を濾取した。この操作をあと1回繰り返し、乾燥させることにより高分子量化合物Bを3.2g(収率67%)得た。
<Example 2>
Synthesis of high molecular weight compound B;
The following ingredients were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through for 30 minutes.
Intermediate 1: 5.4 g
Intermediate 3: 2.2 g
Intermediate 4: 0.5g
Tripotassium phosphate: 7.4 g
Toluene: 9ml
Water: 5ml
1,4-dioxane: 27 ml
Then, 1.5 mg of palladium(II) acetate and 14.4 mg of tri-o-methoxyphenylphosphine were added, heated, and stirred at 87° C. for 10 hours. After that, 163 mg of phenylboronic acid was added and stirred for 1 hour, then 2.1 g of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, the organic layer was collected by liquid separation and washed with saturated brine three times. After drying the organic layer with anhydrous sodium sulfate, the crude polymer was obtained by concentrating under reduced pressure. The crude polymer was dissolved in toluene, silica gel was added for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, 100 ml of toluene was added to the dried solid to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. 100 ml of toluene was added to the obtained precipitate to dissolve it, and the solution was added dropwise to 200 ml of n-hexane, and the obtained precipitate was collected by filtration. This operation was repeated one more time and dried to obtain 3.2 g of high molecular weight compound B (yield: 67%).
 高分子量化合物BのGPCで測定した平均分子量、分散度は、以下の通りであった。
  数平均分子量Mn(ポリスチレン換算):73,000
  重量平均分子量Mw(ポリスチレン換算):139,000
  分散度(Mw/Mn):1.9
The average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows.
Number average molecular weight Mn (converted to polystyrene): 73,000
Weight average molecular weight Mw (converted to polystyrene): 139,000
Dispersity (Mw/Mn): 1.9
 また、高分子量化合物BについてNMR測定を行った。H-NMR測定結果を図6に示した。化学組成式は下記の通りであった。 Further, NMR measurement was performed on the high molecular weight compound B. 1 H-NMR measurement results are shown in FIG. The chemical composition formula was as follows.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 前記化学組成から理解されるように、この高分子量化合物Bは、構造単位Aを44モル%含み、構造単位Bを50モル%含み、構造単位Cを6モル%の量で含有していた。 As can be understood from the chemical composition, this high molecular weight compound B contained 44 mol% of structural unit A, 50 mol% of structural unit B, and 6 mol% of structural unit C.
<実施例3>
 実施例1および2で合成された高分子量化合物AおよびBを用いて、ITO基板の上に膜厚80nmの塗布膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202型)で仕事関数を測定した。その結果は以下の通りであった。
  高分子量化合物A:5.63eV
  高分子量化合物B:5.61eV
<Example 3>
Using the high molecular weight compounds A and B synthesized in Examples 1 and 2, a coating film having a thickness of 80 nm was prepared on an ITO substrate, and an ionization potential measuring device (manufactured by Sumitomo Heavy Industries, Ltd., PYS- 202 type) to measure the work function. The results were as follows.
High molecular weight compound A: 5.63 eV
High molecular weight compound B: 5.61 eV
 本発明の高分子量化合物Aは、NPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。 The high molecular weight compound A of the present invention exhibits a favorable energy level compared to the work function of 5.4 eV of general hole-transporting materials such as NPD and TPD, and exhibits good hole-transporting ability. I know you have.
<実施例4>
有機EL素子の作製と評価;
 図3に示す層構造の有機EL素子を、以下の手法により作製した。
 具体的には、膜厚50nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板1に設けられている透明陽極2(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上、200℃で10分間乾燥して正孔注入層3を形成した。
<Example 4>
Preparation and evaluation of organic EL devices;
An organic EL device having a layered structure shown in FIG. 3 was produced by the following method.
Specifically, after washing the glass substrate 1 with an ITO film having a film thickness of 50 nm with an organic solvent, the ITO surface was washed with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was spin-coated to a thickness of 50 nm so as to cover the transparent anode 2 (ITO) provided on the glass substrate 1, and dried on a hot plate at 200° C. for 10 minutes. Then, a hole injection layer 3 was formed.
 実施例1で得られた高分子量化合物Aを、トルエンに0.6wt%溶解して塗布液を調製した。前記のようにして正孔注入層3が形成されている基板を、乾燥窒素にて置換したグローブボックス内に移し、ホットプレート上、230℃で10分間乾燥した後に、正孔注入層3の上に、前記の塗布液を用いてスピンコート法により25nmの厚みの塗布層を形成し、さらに、ホットプレート上、220℃で30分間乾燥して正孔輸送層4を形成した。 A coating liquid was prepared by dissolving 0.6 wt % of the high molecular weight compound A obtained in Example 1 in toluene. The substrate on which the hole injection layer 3 is formed as described above is transferred into a glove box replaced with dry nitrogen, dried on a hot plate at 230° C. for 10 minutes, and then placed on the hole injection layer 3. Then, a coating layer having a thickness of 25 nm was formed by spin coating using the above coating liquid, and dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 4 .
 前記のようにして正孔輸送層4が形成されている基板を、真空蒸着機内に取り付け0.001Pa以下まで減圧した。正孔輸送層4の上に、下記構造式の青色発光材料(EMD-1)とホスト材料(EMH-1)との二元蒸着により、膜厚34nmの発光層5を形成した。なお、二元蒸着では、蒸着速度比を、EMD-1:EMH-1=4:96とした。 The substrate on which the hole transport layer 4 was formed as described above was mounted in a vacuum deposition machine, and the pressure was reduced to 0.001 Pa or less. A light emitting layer 5 having a thickness of 34 nm was formed on the hole transport layer 4 by binary vapor deposition of a blue light emitting material (EMD-1) having the following structural formula and a host material (EMH-1). In the binary deposition, the deposition rate ratio was EMD-1:EMH-1=4:96.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 電子輸送材料として、下記構造式の化合物、ETM-1およびETM-2を用意した。 ETM-1 and ETM-2, compounds of the following structural formulas, were prepared as electron transport materials.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 前記で形成された発光層5の上に、前記の電子輸送材料ETM-1およびETM-2を用いて、二元蒸着により膜厚20nmの電子輸送層6を形成した。なお、二元蒸着では、蒸着速度比を、ETM-1:ETM-2=50:50とした。 On the light-emitting layer 5 formed above, an electron-transporting layer 6 having a thickness of 20 nm was formed by binary vapor deposition using the electron-transporting materials ETM-1 and ETM-2. In the binary deposition, the deposition rate ratio was ETM-1:ETM-2=50:50.
 最後に、アルミニウムを膜厚100nmとなるように蒸着して陰極7を形成した。
 このように、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
 作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表1に示した。
Finally, a cathode 7 was formed by vapor-depositing aluminum to a film thickness of 100 nm.
Thus, the glass substrate on which the transparent anode 2, the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6 and the cathode 7 are formed is placed in a glove box filled with dry nitrogen. It was moved, and another glass substrate for sealing was bonded together using a UV curable resin to form an organic EL element.
The characteristics of the produced organic EL device were measured at room temperature in the air. Further, the luminescence characteristics were measured when a DC voltage was applied to the produced organic EL device. The measurement results are shown in Table 1.
<比較例1>
 高分子量化合物Aに代えて、下記のTFB(正孔輸送性ポリマー)をトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例4と同様にして有機EL素子を作製した。
<Comparative Example 1>
Example 4 except that a coating solution prepared by dissolving 0.6 wt % of the following TFB (hole-transporting polymer) in toluene instead of the high-molecular-weight compound A was used to form the hole-transporting layer 4. An organic EL device was produced in the same manner as above.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 TFB(正孔輸送性ポリマー)は、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン](American Dye Source社製、Hole Transport Polymer ADS259BE)である。この比較例1の有機EL素子について、実施例4と同様に各種特性を評価し、その結果を表1に示した。 TFB (hole-transporting polymer) is poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl))diphenylamine ] (Hole Transport Polymer ADS259BE manufactured by American Dye Source) Various characteristics of the organic EL device of Comparative Example 1 were evaluated in the same manner as in Example 4, and the results are shown in Table 1.
 なお、各種特性の評価において、電圧、輝度、発光効率および電力効率は、電流密度10mA/cmの電流を流したときのものである。また、素子寿命は、発光開始時の発光輝度(初期輝度)を700cd/mとして定電流駆動を行った時、発光輝度が560cd/m(初期輝度を100%とした時の80%に相当:80%減衰)に減衰するまでの時間として測定した。 In the evaluation of various characteristics, the voltage, luminance, luminous efficiency and power efficiency are obtained when a current with a current density of 10 mA/cm 2 is applied. In addition, the life of the element was measured by constant current driving with a light emission luminance of 700 cd/m 2 at the start of light emission (initial luminance) of 560 cd/m 2 (80% of the initial luminance of 100%). Equivalent: measured as the time to decay to 80% decay).
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表1に示すように、電流密度10mA/cmの電流を流したときの発光効率は、比較例1の有機EL素子の5.52cd/Aに対して、実施例4の有機EL素子では7.83cd/Aと高効率であった。また、素子寿命(80%減衰)においては、比較例1の有機EL素子の6時間に対して、実施例4の有機EL素子では248時間と長寿命であった。 As shown in Table 1, the luminous efficiency of the organic EL device of Comparative Example 1 was 5.52 cd/A when a current with a current density of 10 mA/cm 2 was applied, while the organic EL device of Example 4 was 7.52 cd/A. It was highly efficient at .83 cd/A. In addition, the device life (80% attenuation) was 248 hours for the organic EL device of Example 4, which is longer than the 6 hours for the organic EL device of Comparative Example 1.
<実施例5>
 図4に示す層構造の有機EL素子を、以下の手法により作製した。
 具体的には、膜厚50nmのITOを成膜したガラス基板8を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板8に設けられている透明陽極9(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上、200℃で10分間乾燥して正孔注入層10を形成した。
<Example 5>
An organic EL device having a layer structure shown in FIG. 4 was produced by the following method.
Specifically, after washing the glass substrate 8 with an ITO film having a thickness of 50 nm with an organic solvent, the ITO surface was washed with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was spin-coated to a thickness of 50 nm so as to cover the transparent anode 9 (ITO) provided on the glass substrate 8, and dried on a hot plate at 200° C. for 10 minutes. Then, a hole injection layer 10 was formed.
 下記構造式の高分子量化合物HTM-1を、トルエンに0.4wt%溶解して塗布液を調製した。前記のようにして正孔注入層10が形成されている基板を、乾燥窒素にて置換したグローブボックス内に移し、ホットプレート上、230℃で10分間乾燥した後に、正孔注入層10の上に、前記の塗布液を用いてスピンコート法により15nmの厚みの塗布層を形成し、さらに、ホットプレート上、220℃で30分間乾燥して正孔輸送層11を形成した。 A coating liquid was prepared by dissolving 0.4 wt% of a high molecular weight compound HTM-1 having the following structural formula in toluene. The substrate on which the hole injection layer 10 is formed as described above is transferred into a glove box replaced with dry nitrogen, and dried on a hot plate at 230° C. for 10 minutes. Then, a coating layer having a thickness of 15 nm was formed by spin coating using the above coating solution, and dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 11 .
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 実施例1で得られた高分子量化合物Aを、トルエンに0.4wt%溶解して塗布液を調製した。正孔輸送層11の上に、前記の塗布液を用いてスピンコート法により15nmの厚みの塗布層を形成し、さらに、ホットプレート上、220℃で30分間乾燥して電子阻止層12を形成した。 A coating liquid was prepared by dissolving 0.4 wt % of the high molecular weight compound A obtained in Example 1 in toluene. A coating layer having a thickness of 15 nm is formed on the hole transport layer 11 by spin coating using the above coating liquid, and dried on a hot plate at 220° C. for 30 minutes to form an electron blocking layer 12 . did.
 前記のようにして電子阻止層12が形成されている基板を、真空蒸着機内に取り付け0.001Pa以下まで減圧した。電子阻止層12の上に、青色発光材料(EMD-1)とホスト材料(EMH-1)との二元蒸着により、膜厚34nmの発光層13を形成した。なお、二元蒸着では、蒸着速度比を、EMD-1:EMH-1=4:96とした。 The substrate on which the electron blocking layer 12 was formed as described above was mounted in a vacuum deposition machine and the pressure was reduced to 0.001 Pa or less. A light-emitting layer 13 having a thickness of 34 nm was formed on the electron-blocking layer 12 by binary vapor deposition of a blue light-emitting material (EMD-1) and a host material (EMH-1). In the binary deposition, the deposition rate ratio was EMD-1:EMH-1=4:96.
 前記で形成された発光層13の上に、電子輸送材料ETM-1およびETM-2を用いて、二元蒸着により膜厚20nmの電子輸送層14を形成した。なお、二元蒸着では、蒸着速度比を、ETM-1:ETM-2=50:50とした。 On the light emitting layer 13 formed above, an electron transporting layer 14 having a thickness of 20 nm was formed by binary vapor deposition using the electron transporting materials ETM-1 and ETM-2. In the binary deposition, the deposition rate ratio was ETM-1:ETM-2=50:50.
 最後に、アルミニウムを膜厚100nmとなるように蒸着して陰極15を形成した。
 このように、透明陽極9、正孔注入層10、正孔輸送層11、電子阻止層12、発光層13、電子輸送層14および陰極15が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
 作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表2に示した。
Finally, a cathode 15 was formed by vapor-depositing aluminum to a film thickness of 100 nm.
Thus, the glass substrate on which the transparent anode 9, the hole injection layer 10, the hole transport layer 11, the electron blocking layer 12, the light emitting layer 13, the electron transport layer 14 and the cathode 15 are formed is replaced with dry nitrogen. Then, another glass substrate for sealing was attached using a UV curable resin to form an organic EL element.
The characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Further, the luminescence characteristics were measured when a DC voltage was applied to the produced organic EL device. The measurement results are shown in Table 2.
<実施例6>
 高分子量化合物Aに代えて、実施例2で得られた高分子量化合物Bをトルエンに0.4wt%溶解して調製した塗布液を用いて電子阻止層12を形成した以外は、実施例5と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例5と同様に各種特性を評価し、その結果を表2に示した。
<Example 6>
Example 5 except that the electron blocking layer 12 was formed using a coating liquid prepared by dissolving 0.4 wt % of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner. Various characteristics of the produced organic EL device were evaluated in the same manner as in Example 5, and the results are shown in Table 2.
<比較例2>
 図4に示す層構造の有機EL素子を、以下の手法により作製した。
 具体的には、膜厚50nmのITOを成膜したガラス基板8を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板8に設けられている透明陽極9(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上、200℃で10分間乾燥して正孔注入層10を形成した。
<Comparative Example 2>
An organic EL device having a layer structure shown in FIG. 4 was produced by the following method.
Specifically, after washing the glass substrate 8 with an ITO film having a thickness of 50 nm with an organic solvent, the ITO surface was washed with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was spin-coated to a thickness of 50 nm so as to cover the transparent anode 9 (ITO) provided on the glass substrate 8, and dried on a hot plate at 200° C. for 10 minutes. Then, a hole injection layer 10 was formed.
 高分子量化合物HTM-1を、トルエンに0.6wt%溶解して塗布液を調製した。前記のようにして正孔注入層10が形成されている基板を、乾燥窒素にて置換したグローブボックス内に移し、正孔注入層3の上に、前記の塗布液を用いてスピンコート法により25nmの厚みの塗布層を形成し、さらに、ホットプレート上、220℃で30分間乾燥して正孔輸送層11を形成した。 A coating liquid was prepared by dissolving 0.6 wt% of the high molecular weight compound HTM-1 in toluene. The substrate on which the hole injection layer 10 is formed as described above is transferred into a glove box filled with dry nitrogen, and the above coating solution is applied onto the hole injection layer 3 by a spin coating method. A coating layer having a thickness of 25 nm was formed and dried on a hot plate at 220° C. for 30 minutes to form hole transport layer 11 .
 前記のようにして正孔輸送層11が形成されている基板を、真空蒸着機内に取り付け0.001Pa以下まで減圧した。正孔輸送層11の上に、青色発光材料(EMD-1)とホスト材料(EMH-1)との二元蒸着により、膜厚34nmの発光層13を形成した。なお、二元蒸着では、蒸着速度比を、EMD-1:EMH-1=4:96とした。 The substrate on which the hole transport layer 11 was formed as described above was mounted in a vacuum deposition machine, and the pressure was reduced to 0.001 Pa or less. A light-emitting layer 13 having a thickness of 34 nm was formed on the hole-transporting layer 11 by binary vapor deposition of a blue light-emitting material (EMD-1) and a host material (EMH-1). In the binary deposition, the deposition rate ratio was EMD-1:EMH-1=4:96.
 前記で形成された発光層13の上に、電子輸送材料(ETM-1)および(ETM-2)を用いての二元蒸着により、膜厚20nmの電子輸送層14を形成した。なお、二元蒸着では、蒸着速度比を、ETM-1:ETM-2=50:50とした。 An electron-transporting layer 14 having a thickness of 20 nm was formed on the light-emitting layer 13 formed above by binary vapor deposition using the electron-transporting materials (ETM-1) and (ETM-2). In the binary deposition, the deposition rate ratio was ETM-1:ETM-2=50:50.
 最後に、アルミニウムを膜厚100nmとなるように蒸着して陰極15を形成した。
 このように、透明陽極9、正孔注入層10、正孔輸送層11、発光層13、電子輸送層14および陰極15が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
 作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表2に示した。
Finally, a cathode 15 was formed by vapor-depositing aluminum to a film thickness of 100 nm.
Thus, the glass substrate on which the transparent anode 9, the hole injection layer 10, the hole transport layer 11, the light emitting layer 13, the electron transport layer 14 and the cathode 15 are formed is placed in a glove box substituted with dry nitrogen. It was moved, and another glass substrate for sealing was bonded together using a UV curable resin to form an organic EL element.
The characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Further, the luminescence characteristics were measured when a DC voltage was applied to the produced organic EL device. The measurement results are shown in Table 2.
 なお、各種特性の評価において、電圧、輝度、発光効率および電力効率は、電流密度10mA/cmの電流を流したときのものである。また、素子寿命は、発光開始時の発光輝度(初期輝度)を700cd/mとして定電流駆動を行った時、発光輝度が560cd/m(初期輝度を100%とした時の80%に相当:80%減衰)に減衰するまでの時間として測定した。 In the evaluation of various characteristics, the voltage, luminance, luminous efficiency and power efficiency are obtained when a current with a current density of 10 mA/cm 2 is applied. In addition, the life of the element was measured by constant current driving with a light emission luminance of 700 cd/m 2 at the start of light emission (initial luminance) of 560 cd/m 2 (80% of the initial luminance of 100%). Equivalent: measured as the time to decay to 80% decay).
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表2に示すように、電流密度10mA/cmの電流を流したときの発光効率は、比較例2の有機EL素子の7.56cd/Aに対して、実施例5の有機EL素子では8.68cd/Aと高効率であった。また、素子寿命(80%減衰)においては、比較例2の有機EL素子の20時間に対して、実施例5の有機EL素子では408時間、実施例6の有機EL素子では558時間といずれも長寿命であった。 As shown in Table 2, the luminous efficiency of the organic EL device of Comparative Example 2 was 7.56 cd/A when a current with a current density of 10 mA/cm 2 was applied, while the organic EL device of Example 5 was 8.56 cd/A. It was highly efficient at .68 cd/A. In addition, the device life (80% decay) was 20 hours for the organic EL device of Comparative Example 2, 408 hours for the organic EL device of Example 5, and 558 hours for the organic EL device of Example 6. It had a long life.
 このように、本発明の高分子量化合物を用いて形成されている有機層を備えた有機EL素子は、従来の有機EL素子と比較して、高発光効率、長寿命の有機EL素子を実現できることが分かった。 Thus, the organic EL element having the organic layer formed using the high molecular weight compound of the present invention can realize an organic EL element with high luminous efficiency and long life as compared with conventional organic EL elements. I found out.
 本発明の高分子量化合物は、正孔輸送能力が高く、電子阻止能力に優れており、熱架橋性が良好なので、塗布型有機EL素子用の化合物として優れている。本発明の高分子量化合物を用いて塗布型有機EL素子を作製することにより、高い発光効率および電力効率を得ることができると共に、耐久性を改善させることができる。それによって、例えば、家庭電化製品や照明などの幅広い用途への展開が可能となった。 The high-molecular-weight compound of the present invention has high hole-transporting ability, excellent electron-blocking ability, and good thermal crosslinkability, so it is excellent as a compound for coating-type organic EL devices. By producing a coating-type organic EL device using the high molecular weight compound of the present invention, high luminous efficiency and power efficiency can be obtained, and durability can be improved. As a result, it has become possible to develop it into a wide range of applications such as home appliances and lighting, for example.
  1、8・・・ガラス基板
  2、9・・・透明陽極
  3、10・・・正孔注入層
  4、11・・・正孔輸送層
  5、13・・・発光層
  6、14・・・電子輸送層
  7、15・・・陰極
  12・・・電子阻止層
 
DESCRIPTION OF SYMBOLS 1, 8... Glass substrate 2, 9... Transparent anode 3, 10... Hole injection layer 4, 11... Hole transport layer 5, 13... Light emitting layer 6, 14... Electron transport layer 7, 15... Cathode 12... Electron blocking layer

Claims (12)

  1.  下記一般式(1)で表されるトリアリールアミン構造単位、および下記一般式(2)で表される連結構造単位からなる、下記一般式(3)で表される繰り返し構造単位を含み、ポリスチレン換算で10,000以上1,000,000未満の重量平均分子量を有している高分子量化合物。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     式中、Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数が1~8のアルキル基もしくはアルキルオキシ基、炭素数5~10のシクロアルキル基もしくはシクロアルキルオキシ基、炭素数2~6のアルケニル基、または炭素数6~10のアリールオキシ基を示す。
     Rは、それぞれ独立に、炭素数が3~40である、アルキル基、シクロアルキル基、またはアルキルオキシ基を示す。
     Xは、水素原子、アミノ基、1価のアリール基、または1価のヘテロアリール基を示す。
     Lは、2価のフェニレン基、またはナフチレン基を示し、nは0~3の整数を示す。
     a、bおよびcは、Rの数であり、以下の整数である。
      a=0、1、2または3
      b=0、1、2、3または4
      c=0または1
    Polystyrene comprising a repeating structural unit represented by the following general formula (3), which consists of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the following general formula (2); A high molecular weight compound having an equivalent weight average molecular weight of 10,000 or more and less than 1,000,000.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    wherein each R 1 is independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 8 carbon atoms or an alkyloxy group; It represents a cycloalkyl group or cycloalkyloxy group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
    Each R 2 independently represents an alkyl group, cycloalkyl group or alkyloxy group having 3 to 40 carbon atoms.
    X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
    L represents a divalent phenylene group or naphthylene group, and n represents an integer of 0-3.
    a, b and c are the numbers of R 1 and are the following integers.
    a = 0, 1, 2 or 3
    b = 0, 1, 2, 3 or 4
    c = 0 or 1
  2.  前記一般式(1)、(2)および(3)において、a、bおよびcが0である請求項1に記載の高分子量化合物。 The high molecular weight compound according to claim 1, wherein a, b and c are 0 in the general formulas (1), (2) and (3).
  3.  前記一般式(1)および(3)において、Rが炭素数3~40のアルキル基である請求項1に記載の高分子量化合物。 2. The high molecular weight compound according to claim 1, wherein in the general formulas (1) and (3), R 2 is an alkyl group having 3 to 40 carbon atoms.
  4.  前記一般式(2)および(3)において、Xが水素原子、または置換されていてもよいアミノ基、アリール基、もしくはヘテロアリール基である請求項1に記載の高分子量化合物。 The high molecular weight compound according to claim 1, wherein in the general formulas (2) and (3), X is a hydrogen atom, or an optionally substituted amino group, aryl group, or heteroaryl group.
  5.  前記一般式(2)および(3)において、Xが水素原子、ジフェニルアミノ基、フェニル基、ナフチル基、ジベンゾフラニル基、ジベンゾチエニル基、フェナントレニル基、フルオレニル基、カルバゾリル基、インデノカルバゾリル基、またはアクリジニル基である請求項1に記載の高分子量化合物。 In the general formulas (2) and (3), X is a hydrogen atom, a diphenylamino group, a phenyl group, a naphthyl group, a dibenzofuranyl group, a dibenzothienyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, and an indenocarbazolyl. 2. The high molecular weight compound according to claim 1, which is a group or an acridinyl group.
  6.  熱架橋性構造単位、または前記一般式(1)で表されるトリアリールアミン構造単位とは異なるトリアリールアミン構造単位を含む請求項1に記載の高分子量化合物。 The high molecular weight compound according to claim 1, comprising a thermally crosslinkable structural unit or a triarylamine structural unit different from the triarylamine structural unit represented by the general formula (1).
  7.  前記熱架橋性構造単位が下記一般式(4-1)~(4-143)に示す構造単位である請求項6に記載の高分子量化合物。
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

     式中、Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
     aおよびbは、Rの数であり、以下の整数である。
      a=0、1、2または3
      b=0、1、2、3または4
     前記式(4-1)~(4-143)において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、その先端がメチル基であることを示している。
    7. The high molecular weight compound according to claim 6, wherein the thermally crosslinkable structural unit is a structural unit represented by the following general formulas (4-1) to (4-143).
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    In the formula, each R is independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group having 3 to 40 carbon atoms, cycloalkyl , an alkyloxy group, a cycloalkyloxy group, an alkenyl group, or an aryloxy group.
    a and b are the numbers of R and are the following integers.
    a = 0, 1, 2 or 3
    b = 0, 1, 2, 3 or 4
    In the above formulas (4-1) to (4-143), the dashed line indicates a bond to the adjacent structural unit, and the solid line with a free tip extending from the ring indicates that the tip is a methyl group. showing.
  8.  請求項1~7のいずれか1項に記載の高分子量化合物を用いて形成される有機層を備えた有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising an organic layer formed using the high molecular weight compound according to any one of claims 1 to 7.
  9.  前記有機層が正孔輸送層である、請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is a hole transport layer.
  10.  前記有機層が電子阻止層である、請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is an electron blocking layer.
  11.  前記有機層が正孔注入層である、請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is a hole injection layer.
  12.  前記有機層が発光層である、請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 8, wherein the organic layer is a light-emitting layer.
PCT/JP2023/007667 2022-03-04 2023-03-01 High molecular weight triarylamine compound and organic electroluminescent element WO2023167253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022033606 2022-03-04
JP2022-033606 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023167253A1 true WO2023167253A1 (en) 2023-09-07

Family

ID=87883847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007667 WO2023167253A1 (en) 2022-03-04 2023-03-01 High molecular weight triarylamine compound and organic electroluminescent element

Country Status (2)

Country Link
TW (1) TW202342578A (en)
WO (1) WO2023167253A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043896A (en) * 2007-08-08 2009-02-26 Canon Inc Organic light-emitting element and display
JP2010062442A (en) * 2008-09-05 2010-03-18 Canon Inc Organic light emitting element
WO2017086357A1 (en) * 2015-11-17 2017-05-26 保土谷化学工業株式会社 Organic electroluminescence element
WO2018101331A1 (en) * 2016-11-30 2018-06-07 保土谷化学工業株式会社 High molecular weight compound containing substituted triarylamine structural unit
WO2018168667A1 (en) * 2017-03-15 2018-09-20 保土谷化学工業株式会社 High-molecular-weight compound having substituted triarylamine skeleton
WO2020009069A1 (en) * 2018-07-03 2020-01-09 保土谷化学工業株式会社 High molecular weight triarylamine compound comprising terphenyl structure in molecular main chain and organic electroluminescent element comprising said high molecular weight compound
WO2020127176A1 (en) * 2018-12-20 2020-06-25 Merck Patent Gmbh Materials for electronic devices
WO2020246404A1 (en) * 2019-06-05 2020-12-10 保土谷化学工業株式会社 High-molecular-weight compound including substituted triarylamine structural unit, and organic electroluminescent device
WO2021040328A1 (en) * 2019-08-23 2021-03-04 주식회사 엘지화학 Organic light emitting device
WO2021070878A1 (en) * 2019-10-09 2021-04-15 保土谷化学工業株式会社 Organic electroluminescence element having organic layer comprising high molecular weight compound
JP2021517923A (en) * 2018-08-17 2021-07-29 エルジー・ケム・リミテッド Polymers, coating compositions containing them, and organic light emitting devices using them.
WO2021166921A1 (en) * 2020-02-20 2021-08-26 保土谷化学工業株式会社 High molecular weight compound and light emitting diode including said high molecular weight compound

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043896A (en) * 2007-08-08 2009-02-26 Canon Inc Organic light-emitting element and display
JP2010062442A (en) * 2008-09-05 2010-03-18 Canon Inc Organic light emitting element
WO2017086357A1 (en) * 2015-11-17 2017-05-26 保土谷化学工業株式会社 Organic electroluminescence element
WO2018101331A1 (en) * 2016-11-30 2018-06-07 保土谷化学工業株式会社 High molecular weight compound containing substituted triarylamine structural unit
WO2018168667A1 (en) * 2017-03-15 2018-09-20 保土谷化学工業株式会社 High-molecular-weight compound having substituted triarylamine skeleton
WO2020009069A1 (en) * 2018-07-03 2020-01-09 保土谷化学工業株式会社 High molecular weight triarylamine compound comprising terphenyl structure in molecular main chain and organic electroluminescent element comprising said high molecular weight compound
JP2021517923A (en) * 2018-08-17 2021-07-29 エルジー・ケム・リミテッド Polymers, coating compositions containing them, and organic light emitting devices using them.
WO2020127176A1 (en) * 2018-12-20 2020-06-25 Merck Patent Gmbh Materials for electronic devices
WO2020246404A1 (en) * 2019-06-05 2020-12-10 保土谷化学工業株式会社 High-molecular-weight compound including substituted triarylamine structural unit, and organic electroluminescent device
WO2021040328A1 (en) * 2019-08-23 2021-03-04 주식회사 엘지화학 Organic light emitting device
WO2021070878A1 (en) * 2019-10-09 2021-04-15 保土谷化学工業株式会社 Organic electroluminescence element having organic layer comprising high molecular weight compound
WO2021166921A1 (en) * 2020-02-20 2021-08-26 保土谷化学工業株式会社 High molecular weight compound and light emitting diode including said high molecular weight compound

Also Published As

Publication number Publication date
TW202342578A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7421476B2 (en) Triarylamine high molecular weight compounds containing a terphenyl structure in the molecular main chain and organic electroluminescent devices containing these high molecular weight compounds
JP7017558B2 (en) High molecular weight compound with substituted triarylamine skeleton
JP6942724B2 (en) High molecular weight compounds containing substituted triarylamine structural units
JP5807011B2 (en) Compound having carbazole ring structure and organic electroluminescence device
JPWO2011048822A1 (en) Organic electroluminescence device
WO2020246404A1 (en) High-molecular-weight compound including substituted triarylamine structural unit, and organic electroluminescent device
WO2021070878A1 (en) Organic electroluminescence element having organic layer comprising high molecular weight compound
WO2021166921A1 (en) High molecular weight compound and light emitting diode including said high molecular weight compound
WO2023167253A1 (en) High molecular weight triarylamine compound and organic electroluminescent element
WO2022244822A1 (en) High molecular weight triarylamine compounds, and organic electroluminescent elements containing these high molecular weight compounds
WO2023182377A1 (en) High-molecular-weight triarylamine compound and organic electroluminescent element
WO2022191141A1 (en) High molecular weight compounds having indeno-dibenzoheterole structure as partial structure, and organic electroluminescent elements comprising said high molecular weight compounds
WO2022065238A1 (en) Thermally-crosslinkable low molecular weight compound-containing composition for light emitting diode
JP2024052606A (en) High molecular weight compounds and organic electroluminescence devices using the same
JP2024008856A (en) High molecular weight compound and organic electroluminescent device using these
JP2023022389A (en) Spirobifluorene compound and organic electroluminescent element
KR20240022707A (en) Arylamine compound, organic electroluminescence element, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024504733

Country of ref document: JP

Kind code of ref document: A