WO2023167245A1 - Multifilament and method for producing same - Google Patents

Multifilament and method for producing same Download PDF

Info

Publication number
WO2023167245A1
WO2023167245A1 PCT/JP2023/007628 JP2023007628W WO2023167245A1 WO 2023167245 A1 WO2023167245 A1 WO 2023167245A1 JP 2023007628 W JP2023007628 W JP 2023007628W WO 2023167245 A1 WO2023167245 A1 WO 2023167245A1
Authority
WO
WIPO (PCT)
Prior art keywords
multifilament
yarns
raw
material composition
raw material
Prior art date
Application number
PCT/JP2023/007628
Other languages
French (fr)
Japanese (ja)
Inventor
健史 松尾
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023167245A1 publication Critical patent/WO2023167245A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch

Definitions

  • the present invention relates to a multifilament and a manufacturing method thereof.
  • Patent Document 1 discloses a multifilament having a plurality of monofilaments containing polyhydroxyalkanoate.
  • Patent Document 1 discloses obtaining the multifilament by a melt extrusion method. Specifically, in the manufacturing method described in Patent Document 1, the raw material composition is melted by heating, and the melted raw material composition is discharged from four discharge holes to obtain four raw yarns (A). and a step (B) of obtaining the multifilament by drawing the four raw yarns.
  • the average value of the fineness of single yarns in a multifilament is small.
  • the raw yarn may break and the multifilament may not be produced, or the single yarns may fuse together. I found out.
  • a first aspect of the present invention is a multifilament production method for producing a multifilament having a plurality of single yarns by a melt spinning method using a spinning nozzle having a plurality of discharge holes, A step (A) of obtaining a plurality of raw yarns by melting the raw material composition by heating and discharging the melted raw material composition from the discharge hole; A step (B) of obtaining the multifilament by drawing a plurality of the raw yarns,
  • the raw material composition contains a poly(3-hydroxyalkanoate)-based resin and a polyglycerol fatty acid ester,
  • the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than a temperature higher than the melting point by 25.0°C;
  • the draw ratio in the step (B) is 1.5 to 3.0 times.
  • the raw material composition contains 0.5 to 5.0 parts by weight of the polyglycerin fatty acid ester with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin.
  • the poly(3-hydroxyalkanoate) resin in the raw material composition has a weight average molecular weight of 3.0 ⁇ 10 5 to 7.0 ⁇ 10 5 .
  • the plurality of raw yarns are cooled to 50° C. or less
  • the plurality of raw yarns cooled in the step (A) are heated and drawn.
  • the second of the present invention is a multifilament having a plurality of single yarns
  • the single yarn is formed of a resin composition containing a poly(3-hydroxyalkanoate) resin and a polyglycerin fatty acid ester,
  • the average value of the fineness of the single yarn is 0.5 to 8.0 dtex, It relates to the multifilament, wherein the single yarn has a fusion rate of 18% or less.
  • the resin composition has a weight average molecular weight of 2.0 ⁇ 10 5 to 6.0 ⁇ 10 5 .
  • the average value of the fineness of the single yarn is small, when the multifilament is obtained from the raw yarn, it is possible to suppress the breakage of the raw yarn and to prevent the fusion of the single yarns. can be suppressed.
  • the second aspect of the present invention it is possible to provide a multifilament having a small average fineness of single yarns and a small fusion rate of single yarns.
  • the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than the temperature higher than the melting point by 25.0°C.
  • the average fineness of the single yarn is 0.5 to 8.0 dtex.
  • the raw material composition contains polymer components and additives.
  • the polymer component includes a poly(3-hydroxyalkanoate)-based resin. Moreover, the polymer component may contain other polymers besides the poly(3-hydroxyalkanoate)-based resin.
  • the poly(3-hydroxyalkanoate) resin is a polyester containing 3-hydroxyalkanoic acid as a monomer. That is, the poly(3-hydroxyalkanoate) resin is a resin containing 3-hydroxyalkanoic acid as a structural unit. Also, the poly(3-hydroxyalkanoate) resin is a biodegradable polymer.
  • biodegradability in this embodiment refers to the property of being decomposed into low-molecular-weight compounds by microorganisms in the natural world. Specifically, ISO 14855 (compost) and ISO 14851 (activated sludge) under aerobic conditions, ISO 14853 (aqueous phase) and ISO 15985 (solid phase) under anaerobic conditions, etc. Degradability can be determined. In addition, the degradability of microorganisms in seawater can be evaluated by measuring biochemical oxygen demand.
  • the poly(3-hydroxyalkanoate)-based resins include homopolymers and/or copolymers.
  • the poly(3-hydroxyalkanoate)-based resin preferably contains a structural unit represented by the following formula (1).
  • [-CHR-CH 2 -CO-O-] (1) (In formula (1) above, R represents an alkyl group represented by C p H 2p+1 , and p represents an integer of 1 to 15.)
  • the poly(3-hydroxyalkanoate)-based resin preferably contains 3-hydroxybutyrate as a structural unit.
  • the poly(3-hydroxybutyrate) resin is a resin containing 3-hydroxybutyrate as a structural unit.
  • Poly(3-hydroxybutyrate)-based resins include homopolymers and/or copolymers.
  • poly(3-hydroxyalkanoate) resins containing 3-hydroxybutyrate as a structural unit examples include P3HB, P3HB3HH, P3HB3HV, P3HB4HB, and poly(3-hydroxybutyrate-co-3-hydroxyoctanoate). , poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate) and the like.
  • P3HB means poly(3-hydroxybutyrate).
  • P3HB3HH means poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • P3HB3HV means poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
  • P3HB4HB means poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
  • the poly(3-hydroxyalkanoate) resins include P3HB. is preferred.
  • P3HB, P3HB3HH, P3HB3HV, P3HB4HB and the like are preferable as the poly(3-hydroxyalkanoate)-based resin from the viewpoint of achieving both excellent biodegradability and molding processability, but are not particularly limited.
  • P3HB3HH is preferable from the viewpoint of enhancing the strength of the multifilament according to the present embodiment and enhancing moldability.
  • the poly(3-hydroxyalkanoate) resin preferably contains 3-hydroxybutyrate as a structural unit in an amount of preferably 80 mol% or more, more preferably 85.0 mol% to 99.5 mol%, still more preferably 85 .0 mol % to 97.0 mol %.
  • the poly(3-hydroxyalkanoate) resin contains 80 mol % or more of 3-hydroxybutyrate as a structural unit, the rigidity of the multifilament is increased.
  • the poly(3-hydroxyalkanoate)-based resin contains 99.5 mol % or less of 3-hydroxybutyrate as a structural unit, the multifilament has excellent flexibility.
  • the polymer component may contain only one type of the poly(3-hydroxyalkanoate)-based resin, or may contain two or more types.
  • the poly(3-hydroxyalkanoate) resin contains a copolymer (P3HB3HH, etc.), it may contain two or more copolymers having different average composition ratios of structural units.
  • the weight average molecular weight of the poly(3-hydroxyalkanoate) resin in the raw material composition is preferably 3.0 ⁇ 10 5 to 7.0 ⁇ 10 5 , more preferably 3.5 ⁇ 10 5 to 7.0. ⁇ 10 5 , more preferably 4.0 ⁇ 10 5 to 7.0 ⁇ 10 5 , most preferably 4.5 ⁇ 10 5 to 6.5 ⁇ 10 5 . Since the weight average molecular weight of the poly(3-hydroxyalkanoate) resin in the raw material composition is 3.0 ⁇ 10 5 or more, the weight average molecular weight of the poly(3-hydroxyalkanoate) resin in the single yarn is It becomes easy to raise it, and as a result, it becomes easy to raise the intensity
  • the weight-average molecular weight of the poly(3-hydroxyalkanoate)-based resin in the raw material composition means the weight-average molecular weight of the poly(3-hydroxyalkanoate)-based resin in the raw material composition before being melted by heating.
  • the weight average molecular weight in the present embodiment is measured from the polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent.
  • GPC gel permeation chromatography
  • a column suitable for measuring the molecular weight may be used.
  • the other polymer is preferably biodegradable.
  • biodegradable polymers include, for example, polycaprolactone, polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene adipate terephthalate, polyethylene succinate, polyvinyl alcohol, polyglycolic acid, unmodified starch, modified starch, cellulose acetate, chitosan, poly(4-hydroxyalkanoate)-based resins, and the like.
  • the polycaprolactone is a polymer obtained by ring-opening polymerization of ⁇ -caprolactone.
  • the polymer component may contain one or two or more other polymers.
  • the polymer component preferably contains 50% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more of poly(3-hydroxyalkanoate)-based resin.
  • the additive contains polyglycerol fatty acid ester.
  • the polyglycerin fatty acid ester is an ester of polyglycerin and fatty acid.
  • polyglycerin examples include diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, heptaglycerin, octaglycerin, nonaglycerin, and decaglycerin.
  • Examples of the fatty acid include saturated fatty acid and unsaturated fatty acid.
  • the fatty acid is a concept that also includes hydroxy fatty acids.
  • the saturated fatty acid preferably has 4 to 24 carbon atoms.
  • saturated fatty acids having 4 to 24 carbon atoms include butyric acid (butanoic acid), valeric acid (pentanoic acid), caproic acid (hexanoic acid), enanthic acid (heptanoic acid), caprylic acid (octanoic acid), pelargone Acid (nonanoic acid), capric acid (decanoic acid), undecanoic acid, lauric acid (dodecanoic acid), myristic acid (tetradecanoic acid), pentadecanoic acid, palmitic acid (hexadecanoic acid), margaric acid (heptadecanoic acid), stearic acid ( octadecanoic acid), nonadecanic acid, arachidic acid (
  • the fatty acid is preferably saturated fatty acid, more preferably saturated fatty acid having 6 to 20 carbon atoms.
  • fatty acid one type may be used alone, or different types may be used together. Preferably, different types are used together.
  • the raw material composition preferably contains 0.5 to 5.0 parts by weight, more preferably 0.7 to 4.0 parts by weight, of the polyglycerol fatty acid ester based on 100 parts by weight of the poly(3-hydroxyalkanoate) resin. Contains 0 parts by weight.
  • the raw material composition contains 0.5 parts by weight or more of the polyglycerin fatty acid ester with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin, so that when obtaining a multifilament from the raw yarn, There is an advantage that it is possible to further suppress the breakage of the yarn and to further suppress the fusion between the single yarns.
  • the raw material composition preferably contains a crystal nucleating agent.
  • the crystal nucleating agent is a compound having an effect of promoting crystallization of poly(3-hydroxyalkanoate)-based resin. Also, the crystal nucleating agent has a higher melting point than the poly(3-hydroxyalkanoate)-based resin.
  • the crystal nucleating agent from the viewpoint of the effect of improving the crystallization speed of the poly(3-hydroxyalkanoate)-based resin, and from the viewpoint of compatibility and affinity with the poly(3-hydroxyalkanoate)-based resin, Sugar alcohol compounds, polyvinyl alcohol, chitin and chitosan are preferred. Pentaerythritol is preferred among the sugar alcohol compounds.
  • the content of the crystal nucleating agent in the raw material composition is preferably 10 parts by weight or less, more preferably 8 parts by weight or less, and 5 parts by weight or less with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin. More preferred.
  • the content of the crystal nucleating agent in the raw material composition is 10 parts by weight or less with respect to 100 parts by weight of the poly(3-hydroxyalkanoate)-based resin, when producing multifilaments from the melt, the melt is There is an advantage that the viscosity can be lowered, and as a result, multifilament can be easily produced.
  • the content of the lubricant in the raw material composition is preferably 12 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 8 parts by weight or less with respect to 100 parts by weight of the poly(3-hydroxyalkanoate)-based resin. , 5 parts by weight or less.
  • the raw material composition may further contain a plasticizer.
  • plasticizers include mixed radical dibasic acid esters (eg, “DAIFATTY” manufactured by Daihachi Chemical Industry Co., Ltd.), glycerin fatty acid esters (eg, “Rikemal” manufactured by Riken Vitamin Co., Ltd.), and the like.
  • the polyglycerin fatty acid ester may be contained as a plasticizer.
  • the plasticizer becomes a supercritical fluid under the temperature and pressure when kneading the material while heating in the step (A) described later, and also preferred are plasticizers that are gaseous under pressure (25° C., 1 atm).
  • plasticizers include nitrogen ( N2 ), carbon dioxide, lower aliphatic hydrocarbons, and the like.
  • the lower aliphatic hydrocarbons include propane, butane, and isobutane.
  • the melting point of the raw material composition is the temperature at the point (apex of the endothermic peak) at which the endothermic amount is maximum in the DSC curve obtained by differential scanning calorimetry (DSC).
  • the differential scanning calorimetry (DSC) is a method based on JIS K7122 (1987) "Transition heat measurement method for plastics". For example, measurement can be performed under the following conditions. Apparatus: Differential scanning calorimeter DSC6200 manufactured by Seiko Instruments Inc. Sample amount: 4 to 10 mg Measurement temperature range: 30°C to 200°C Heating rate: 10°C/min
  • the melting point of the raw material composition means the melting point of the raw material composition before melt spinning.
  • a spinning nozzle 104 having a plurality of discharge holes is used to discharge the melt obtained by the kneading extruder 102 through the plurality of discharge holes, thereby obtaining a plurality of molten raw yarns 100A.
  • the flow rate of the melt discharged from the plurality of discharge holes of the spinning nozzle 104 is adjusted by the gear pump 103 .
  • the temperature of the spinning nozzle 104 is, for example, 140-180°C.
  • the spinning nozzle 104 has a plurality of ejection holes, preferably 30 or more, more preferably 30 to 10,000, still more preferably 30 to 5,000.
  • the shape and size of each discharge hole are selected according to the properties (for example, appearance, fineness, strength, cross-sectional shape, etc.) required for the multifilament.
  • the shapes of the ejection holes are substantially the same.
  • the areas of the ejection holes are substantially the same.
  • the area of each discharge hole is preferably 1.0 ⁇ 10 ⁇ 3 to 20 mm 2 , more preferably 5.0 ⁇ 10 ⁇ 3 to 10 mm 2 .
  • the speed at which the melt is discharged from the spinning nozzle 104 (hereinafter also referred to as “spinning nozzle flow speed”) is preferably 0.02 m/min to 20 m/min, more preferably 0.05 m/min to 10 m/min, 0.1 m/min to 5.0 m/min is more preferable.
  • the plurality of cooled raw yarns 100A A spinning oil may be applied to each surface.
  • the spinning oil include cationic surfactants, anionic surfactants, nonionic surfactants, refined esterified oils, mineral oils, poly(oxyethylene)alkyl ethers, silicone oils, and paraffin waxes. These may be used alone or in combination of two or more.
  • silicone oil is preferable as the spinning oil.
  • anionic surfactants and nonionic surfactants are preferable as the spinning oil.
  • a spinning oil containing a silicone oil and an anionic surfactant for example, "Polymax FKY" manufactured by Marubishi Yuka Co., Ltd.
  • the step (A) it is preferable to cool the plurality of raw yarns 100A by cooling the plurality of raw yarns 100A in a molten state.
  • the step (A) by cooling the raw yarn 100A with a gas of 50° C. or less, the time in which the poly(3-hydroxyalkanoate) resin constituting the raw yarn 100A is crystallized is within the temperature range. It can be shortened, and the progress of crystallization of the poly(3-hydroxyalkanoate) resin can be suppressed. As a result, hardening of the raw yarn 100A can be suppressed. Further, in the step (A), by cooling the raw yarn 100A with a gas of 0° C.
  • the temperature is within the crystallizing temperature range of the poly(3-hydroxyalkanoate)-based resin constituting the raw yarn 100A. It becomes easier to secure a certain amount of time, and it becomes easier to crystallize the poly(3-hydroxyalkanoate) resin. This makes it easier to suppress breakage of the raw yarn 100A in the step (A). Therefore, it becomes easier to draw the raw yarn 100A in the step (B). As a result, it becomes easier to increase the strength of the multifilament.
  • the raw yarn 100A is cooled with a gas of 0 to 50° C. in the first cooling box 105, and the raw yarn 100A cooled in the first cooling box 105 is cooled to the second It may be cooled with a gas of 0 to 50° C. in the cooling box 106 .
  • the speed of the gas that is blown onto the plurality of molten yarns is preferably 0.05 to 5.0 m/s, more preferably 0.1 to 0.4 m/s. .
  • the speed of the gas is 0.05 m/s or more, the cooling effect of the gas is easily exhibited.
  • the speed of the gas is 5.0 m/s or less, the molten raw yarn 100A discharged from the spinning nozzle 104 is suppressed from being shaken by the gas.
  • the "velocity of the gas blown onto the plurality of raw yarns 100A in a molten state" means the relative speed of the gas with respect to the raw yarns 100A when the gas contacts the raw yarns 100A.
  • gas examples include air, inert gas (nitrogen gas, argon gas, etc.), water vapor, and the like.
  • the raw yarns are blown from at least four directions when viewed in the longitudinal direction of the raw yarns (cross-sectional view of the raw yarns perpendicular to the longitudinal direction of the raw yarns).
  • Blowing gas onto the yarn is preferred.
  • gas is blown onto the raw yarn from preferably 8 or more directions, more preferably 16 or more directions. It is preferable that the direction in which the gas is blown onto the raw yarn is between the direction perpendicular to the direction of flow of the raw yarn and the direction of flow of the raw yarn.
  • the distance between the ejection hole of the spinning nozzle 104 and the position at which the gas comes into contact with the raw yarn ejected from the ejection hole is determined by the required properties of the multifilament, but is generally shorter. is preferred.
  • the gas contacting the raw yarn is discharged outside the cooling box along the direction of flow of the raw yarn.
  • a straightening plate, a straightening fin, an ejector, a venturi tube, a transvector manufactured by Nijigi Co., Ltd., or the like is used. be able to.
  • the plurality of raw yarns 100A are taken up by the first take-up roll section 107.
  • the plurality of gas-cooled raw yarns 100A are taken up by the first take-up roll section 107 .
  • the first take-up roll section 107 is composed of two rolls.
  • the first take-up roll unit 107 may be composed of one roll, or may be composed of three or more rolls.
  • the plurality of raw yarns 100A taken by the first take-up roll section 107 are wound by the first take-up roll section 112 .
  • the plurality of raw yarns 100A are cooled to preferably 50°C or lower, more preferably 40°C or lower, still more preferably 25 to 35°C.
  • the plurality of raw yarns 100A are cooled to, for example, 0° C. or higher.
  • the plurality of raw yarns 100A are preferably cooled to a temperature equal to or higher than the glass transition temperature of the raw material composition.
  • the plurality of raw yarns may be cooled to 50°C or lower by blowing a gas of 0°C or higher and 50°C or lower.
  • the plurality of raw yarns 100A are cooled to some extent by blowing a gas of 0° C. or more and 50° C. or less, and the first winding from the first take-up roll portion 107
  • the plurality of raw yarns 100A may be cooled to 50° C. or less by being cooled by ambient air while being transported to the take-up roll section 112 .
  • the plurality of raw yarns 100A are not substantially drawn, or the plurality of raw yarns 100A are not drawn much. is preferred. That is, the draw ratio in the step (A) is preferably 1.5 times or less, more preferably 1.2 times or less, and even more preferably 1.05 times or less.
  • the speed (m/min) of the take-up roll used in the step (A) is set to the take-up roll used in the step (A) ("first take-up roll 107" in the first embodiment). It is the length per unit time of the plurality of raw yarns 100A to be taken.
  • the speed of the transport roll portion is the length per unit time of the plurality of raw yarns 100A transported by the transport roll portion. When a plurality of transport roll units are used, the highest speed among the plurality is defined as the "speed of the transport roll units".
  • the draw ratio in the step (A) is 1.0 times.
  • Step (B) As shown in FIG. 2, in the step (B), the plurality of raw yarns 100A are heated and drawn.
  • the plurality of raw yarns 100A are taken up from the first take-up roll 112 by the second take-up roll 113 .
  • the plurality of raw yarns 100A taken by the second take-up roll section 113 are drawn by the drawing roll section 114 .
  • the plurality of raw yarns 100A drawn by the drawing roll section 114 are wound by the second winding roll section 116 to obtain a multifilament.
  • the plurality of raw yarns 100A drawn by the drawing roll section 114 may be heated by the heat treatment roll section 115 and conveyed.
  • the second take-up roll section 113 is composed of two rolls.
  • the second take-up roll unit 113 may be composed of one roll, or may be composed of three or more rolls.
  • the plurality of raw yarns 100A are heated by the second take-up roll section 113 .
  • the plurality of raw yarns 100A are heated by the second take-up roll unit 113, which is suitable for increasing the orientation of the polymer component contained in the plurality of raw yarns 100A. It becomes easy to adjust the temperature of the plurality of raw yarns 100A so as to be within the temperature range, and as a result, it becomes easier to increase the orientation of the polymer component of the plurality of raw yarns 100A.
  • the temperature of the second take-up roll portion 113 is preferably 15°C or higher and lower than 60°C, more preferably 15°C to 55°C, and even more preferably 15°C to 30°C.
  • the temperature of the environment in which the step (B) is performed is 15° C. or higher, the plurality of raw yarns 100A may not be heated by the second take-up roll section 113 .
  • the take-up roll section 113, the drawing roll section 114, and the heat treatment roll section 115 heat the plurality of the raw yarns 100A.
  • the plurality of raw yarns 100A may be appropriately heated.
  • a plurality of the raw yarns 100A may be heated by the raw yarn take-up roll unit 112 .
  • a plurality of the raw yarns 100A may be heated by the second winding roll portion 116 to obtain a multifilament.
  • a plurality of the raw yarns 100A may be heated by all the rolls from the raw yarn winding roll 112 to the second winding roll 116 .
  • the plurality of raw yarns 100A are heated only in some of all the rolls from the raw yarn winding roll 112 to the second winding roll 116, and the other rolls heat the raw yarn 100A.
  • a mode in which the plurality of raw yarns 100A are not heated may be used.
  • the method of heating the polymer component of the plurality of yarns 100A in the step (B) of the first embodiment is to heat the rolls of the roll section.
  • a method of heating the polymer component of the plurality of raw yarns 100A may be used.
  • the roll unit has a container containing the roll and a liquid (such as water) contained together with the roll in the container, and the heating method heats the liquid to heat the plurality of raw materials.
  • a method of heating the polymer component of the thread 100A may be used.
  • drawing in a bath may be performed.
  • the heating method is a method of heating the polymer component of the plurality of yarns 100A by blowing a heated gas (e.g., air, etc.) onto the roll or near the roll. may Moreover, you may use these heating methods together.
  • the draw ratio in the step (B) is 1.5 times or more, preferably 1.7 times or more.
  • the draw ratio in the step (B) is, for example, 3.0 times or less.
  • the relaxation rate obtained by the following formula is preferably 1 to 15%.
  • Relaxation rate (%) ((speed of the drawing roll section 114 - winding roll section for winding the plurality of raw yarns drawn by the drawing roll section (in the first embodiment, "second winding speed of the take-up roll section 116 ′′))/speed of the take-up roll section for winding the plurality of raw yarns drawn by the drawing roll section) ⁇ 100
  • the speed (m/min) of the drawing roll section is the length per unit time of the drawing multifilament conveyed by the drawing roll section.
  • a plurality of stretching roll units may be used.
  • the speed (m/min) of the take-up roll used in the step (B) is the length per unit time of the drawing multifilament conveyed by the take-up roll.
  • the speed (m/min) of the winding roll section that winds the plurality of raw yarns drawn by the drawing roll section is the speed per unit time of the plurality of raw yarns wound on the winding roll section. length.
  • a method for manufacturing a multifilament according to the second embodiment is a method for manufacturing a multifilament by a spin-draw method.
  • a step of obtaining a plurality of raw yarns in a molten state by discharging a melt from a plurality of discharge holes, and a step of drawing the plurality of raw yarns by a drawing roll unit are carried out in one step.
  • the spin-draw method is also called the “SDY method” or the “direct spinning drawing method”.
  • the plurality of raw yarns 100A are cooled in the first cooling box 105, and in the step (B), the plurality of raw yarns 100A are taken up by the take-up roll section 207.
  • the plurality of raw yarns 100A cooled in the first cooling box 105 may be cooled in the second cooling box 106.
  • the take-up roll unit 207 is composed of two rolls in FIG. 1, it may be composed of one roll, or may be composed of three or more rolls.
  • Each drawing roll unit 208, 209, 210 is composed of two rolls in FIG. 1, but may be composed of one roll, or may be composed of three or more rolls. From the viewpoint of promoting the crystallization of the polymer component contained in the plurality of raw yarns 100A or improving the heat resistance of the polymer component contained in the plurality of raw yarns 100A, each of the drawing rolls 208, 209, The temperature of 210 is preferably 30-100°C, more preferably 40-90°C.
  • NDR Speed (m/min) of the take-up roll section (first take-up roll section) that first takes the yarn from the spinning nozzle/spinning nozzle flow rate (m/min)
  • the initial take-off roll portion is the first take-off roll portion 107 that takes off the plurality of raw yarns 100A.
  • the first take-up roll unit is the take-up roll unit 207 that takes over the plurality of raw yarns 100A.
  • the multifilament according to this embodiment has a plurality of single yarns.
  • the single yarn is made of a resin composition containing a poly(3-hydroxyalkanoate) resin and a polyglycerin fatty acid ester.
  • the average fineness of the single yarn is 0.5 to 8.0 dtex.
  • the fusion rate of the single yarn is 18% or less.
  • the resin composition contains a polymer component and additives.
  • the polymer component includes a poly(3-hydroxyalkanoate)-based resin.
  • the polymer component may contain other polymers described above in addition to the poly(3-hydroxyalkanoate)-based resin.
  • the additive contains polyglycerol fatty acid ester.
  • the additive may contain other additives described above in addition to the polyglycerol fatty acid ester.
  • the multifilament can be produced by the method for producing the multifilament.
  • the weight-average molecular weight of the resin composition is preferably 2.0 ⁇ 10 5 to 6.0 ⁇ 10 5 , more preferably 2, from the viewpoint of excellent processability when processing multifilament to obtain a processed product. .3 ⁇ 10 5 to 4.0 ⁇ 10 5 .
  • the multifilament preferably has 30 or more, more preferably 30 to 300,000, even more preferably 50 to 300,000 single filaments.
  • the average fineness of the single yarn is 0.5 to 8.0 dtex. Therefore, the multifilament can be used for various purposes. For example, multifilaments can be used as materials for making spun yarns.
  • the average fineness of the single yarn is preferably 1.0 dtex or more, more preferably 1.5 dtex or more.
  • the average fineness of the single yarn is preferably 5.0 dtex or less, more preferably 3.0 dtex or less.
  • the variation coefficient of the fineness of the single yarn is preferably 40% or less, more preferably 30% or less, still more preferably 25% or less, even more preferably 20% or less, and particularly preferably 15% or less. It is preferable that the coefficient of variation of the fineness of the single yarn is small, and the coefficient of variation of the fineness of the single yarn is, for example, 5% or more, more specifically 10% or more.
  • the variation coefficient of the fineness of the single yarn can be obtained as follows. First, the multifilament is cut with a knife so as to be perpendicular to the longitudinal direction, and the cut surface is photographed with a microscope to obtain a cross-sectional photograph. Next, in the cross-sectional photograph, the cross-sectional area of each single yarn is measured for all the single yarns constituting the multifilament. Alternatively, 30 or more single yarns are randomly selected from the multifilament, and the cross-sectional area of each single yarn is measured.
  • each single yarn is The cross-sectional area of the thread. Then, from the cross-sectional area of each single yarn, the arithmetic mean value of the cross-sectional area of the single yarn and the standard deviation of the cross-sectional area of the single yarn are obtained. Next, the coefficient of variation of the fineness of the single yarn is obtained from the following formula.
  • Coefficient of variation of fineness of single yarn (standard deviation of cross-sectional area of single yarn/arithmetic mean value of cross-sectional area of single yarn) x 100 (%)
  • the method for measuring the cross-sectional area is also described in JIS L 1015:2021 "Test method for chemical fiber staples", "8.5.3 Fineness fluctuation rate”.
  • the average tensile strength of the single yarn is preferably 1.5 cN/dtex or more, more preferably 1.7 cN/dtex or more, and still more preferably 2.0 cN/dtex or more.
  • the single yarn preferably has a large average tensile strength, but the average tensile strength of the single yarn is, for example, 10 cN/dtex or less.
  • the average tensile strength of single yarns can be obtained as follows. First, the tensile strength of each single yarn is measured for all the single yarns constituting the multifilament. Alternatively, 10 or more single yarns are randomly selected from the multifilament, and the tensile strength of each single yarn is measured. That is, since it may not be practical to measure the tensile strength of each single yarn for all the single yarns that make up the multifilament, 10 or more single yarns are randomly selected from the multifilament, Yarn tensile strength may be measured. Then, the arithmetic average value of the tensile strength of the single yarn is obtained from the tensile strength of each single yarn, and this value is taken as the average value of the tensile strength of the single yarn.
  • the tensile strength of each single yarn can be measured at an initial length of 20 mm and a speed of 20 mm/min based on JIS L 1015:2021 "Chemical fiber staple test method".
  • the fusion rate of the single yarn is 18% or less, preferably 15% or less, more preferably 10% or less. If the fusion rate is 18% or less, staples can be produced at a high yield, for example, when staples are produced by cutting multifilaments.
  • the fusion rate of the single yarn is preferably as small as possible, but is, for example, 0.1% or more.
  • the multifilament may be used as it is in filament form. Staples having a length of 20 cm or less may also be obtained by cutting multifilaments. Also, the staple may be used as it is in the form of filament. Further, a textile product (fiber body) may be produced using the multifilament and/or staple. The fiber product can be made into various shapes (for example, non-woven fabric, etc.). Multifilaments, staples, and textiles can be suitably used for conventionally known applications. Multifilaments, staples, and fiber products can be suitably used in fields such as agriculture (for example, gardening), fishery, forestry, medical industry, and food industry. Examples of the textile products include clothes, curtains, carpets, bags, shoes, wiping materials, sanitary products, automobile members, building materials, and filtering materials (filters).
  • the multifilament production method is a multifilament production method in which a multifilament having a plurality of single yarns is produced by a melt spinning method using a spinning nozzle having a plurality of discharge holes. Further, the method for producing a multifilament according to the present embodiment includes a step (A) of obtaining a plurality of raw yarns by melting a raw material composition by heating and discharging the melted raw material composition from the discharge hole; and a step (B) of obtaining the multifilament by drawing the raw yarn of the book.
  • the raw material composition contains a poly(3-hydroxyalkanoate)-based resin and a polyglycerin fatty acid ester.
  • the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than the temperature higher than the melting point by 25.0°C.
  • the average fineness of the single yarn is 0.5 to 8.0 dtex.
  • the raw material composition contains a polyglycerol fatty acid ester, and in the step (A), the above-mentioned By heating the raw material composition, although the average value of fineness of the single yarn is small, it is possible to suppress the breakage of the raw yarn when obtaining the multifilament from the raw yarn, and to prevent the fusion of the single yarns. can be suppressed.
  • the reason for this is considered as follows.
  • the fluidity of the heated raw material composition is increased by the polyglycerin fatty acid ester, so that even if the heating temperature in the step (A) (hereinafter also referred to as "spinning temperature") is set low, polyglycerin fatty acid can be obtained.
  • the raw yarn is less likely to break when the multifilament is obtained from the raw yarn.
  • the spinning temperature low, the poly(3-hydroxyalkanoate) resin contained in the raw yarn is less likely to be reduced in molecular weight, and as a result, the strength of the raw yarn is less likely to decrease.
  • the polyglycerin fatty acid ester is thought to be able to improve the lubricity of the raw yarn and suppress fusion between the single yarns.
  • the temperature of the raw yarn is within a temperature range where the raw yarn is difficult to fuse. (within a temperature range suitable for crystallizing the surface portion of the raw yarn). As a result, it is considered that it becomes easier to suppress the fusion between the single yarns.
  • the plurality of raw yarns are cooled to 50 ° C. or less, and in the step (B), the cooled in the step (A).
  • the plurality of raw yarns are heated and drawn.
  • a multifilament production method for producing a multifilament having a plurality of single yarns by a melt spinning method using a spinning nozzle having a plurality of discharge holes A step (A) of obtaining a plurality of raw yarns by melting the raw material composition by heating and discharging the melted raw material composition from the discharge hole; A step (B) of obtaining the multifilament by drawing a plurality of the raw yarns,
  • the raw material composition contains a poly(3-hydroxyalkanoate)-based resin and a polyglycerol fatty acid ester,
  • the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than a temperature higher than the melting point by 25.0°C;
  • step (A) the plurality of raw yarns are cooled to 50 ° C. or less, 5.
  • a multifilament having a plurality of single yarns The single yarn is formed of a resin composition containing a poly(3-hydroxyalkanoate) resin and a polyglycerin fatty acid ester, The average value of the fineness of the single yarn is 0.5 to 8.0 dtex, A multifilament, wherein the single yarn has a fusion rate of 18% or less.
  • Example 1-1 A multifilament was produced by the method of the first embodiment (sequential drawing method).
  • Step (A) First, the above materials were dry-blended in the proportions shown in Table 1 below, and the dry-blended materials were melt-kneaded at 150° C. by an extruder to obtain a raw material composition in the form of pellets.
  • Tables 1 and 2 below the content of each material is the amount (parts by weight) of each material with respect to 100 parts by weight of P3HB3HH. Also, “parts by weight” are simply expressed as "parts”.
  • the melting point of the pellet-shaped raw material composition was 147.6°C.
  • the melt flow rate (also referred to as “melt mass flow rate” or “MFR”) of the pellet-shaped raw material composition at 160° C. was 10.0 g/10 min.
  • the MFR at 160° C. was determined by a method according to ASTM-D1238 (ISO1133-1, JIS K7210-1:2011).
  • the MFR of the pellet-shaped raw material composition at 160 ° C. is measured by heating 5 g or more of the pellet-shaped raw material composition at 160 ° C. for 4 minutes, and then applying a load of 5 kg to the heated pellet-shaped raw material composition. did.
  • the pellet-shaped raw material composition is melted with a kneading extruder 102 (single-screw extruder, screw diameter: 25 mm) to form a melted raw material composition (also referred to as a "melt"). got Then, the melt is discharged from a spinning nozzle 104 (spinning temperature: 168° C., number of discharge holes: 180, shape of discharge holes: circular, diameter of discharge holes: 0.3 mm), and 180 raw yarns 100A are discharged. I really got it. The flow rate of the melt was adjusted to 2.0 kg/h by the gear pump 103.
  • 10° C. air (also referred to as “quench air”) was blown to 180 yarns 100A in a cooling box 105 at a speed of 0.1 m/s by a circular quench method.
  • the cooling box 106 no gas was blown.
  • the 180 raw yarns 100A cooled in the cooling box are taken up by the first take-up roll unit 107 (370 m/min), and the 180 raw yarns 100A are transferred to the first transport roll unit 108 (408 m/min).
  • second conveying roll unit 109 (408 m/min, 70° C.), third conveying roll unit 110 (408 m/min), and fourth conveying roll unit 111 (400 m/min) in order, then 180 rolls 100A of raw yarn was wound on the first winding roll (389 m/min) and stored at room temperature (5 to 35° C.) for 18 hours.
  • the average fineness of the raw yarn wound by the first winding roll was 4.8 dtex.
  • the NDR was set to 175 and the draw ratio was set to 1.05.
  • Step (B) As shown in FIG. 2, 180 yarns 100A are taken up from the first take-up roll 112 by the second take-up roll 113 (4.5 m/min, 30° C.), and stretched by the draw roll 114 (9.0° C.). 6 m/min, 30°C), conveyed by the heat treatment roll unit 115 (8.6 m/min, 95°C), and wound by the second winding roll unit 116 (8.6 m/min), A multifilament was obtained. The draw ratio was 2.1 times and the relaxation rate was 10%. In the multifilament, the single yarn was not broken.
  • the weight average molecular weight of the resin composition constituting the multifilament was 342,648.
  • Example 1-2> A multifilament was produced by the method (SDY method) of the second embodiment.
  • the melting point of the pellet-shaped raw material composition was 148.0°C.
  • the pellet-shaped raw material composition is melted with a kneading extruder 102 (single-screw extruder, screw diameter: 25 mm) to form a melted raw material composition (also referred to as "melt"). got Then, the melt is discharged from a spinning nozzle 104 (spinning temperature: 168° C., number of discharge holes: 180, shape of discharge holes: circular, diameter of discharge holes: 0.3 mm), and 180 raw yarns 100A are discharged. I really got it. The flow rate of the melt was adjusted to 2.0 kg/h by the gear pump 103.
  • Air of 10°C (also referred to as "quench air”) was blown to 180 yarns 100A in a cooling box 105 at a speed of 0.1 m/s by a circular quench method.
  • no gas was blown in the cooling box 106.
  • Step (B) Next, the 180 raw yarns 100A cooled in the cooling box are taken up by the take-up roll unit 207, drawn by the drawing roll units 208, 209, and 210 (60.0° C.), and the 180 raw yarns are taken off by the take-off roll unit. After passing through 211, 180 raw yarns were wound by a winding roll portion 212 to obtain a multifilament.
  • the NDR was set to 200
  • the draw ratio was set to 1.6
  • the relaxation rate was set to 5%.
  • the weight average molecular weight of the resin composition constituting the multifilament was 313,370.
  • Examples 1-3, 1-5, Comparative Examples 1-3, 1-7> A multifilament was obtained in the same manner as in Example 1-1, except that each condition was changed as shown in Table 1 below.
  • Example 1-4 Comparative Examples 1-1, 1-2, 1-4, 1-5, 1-6, 1-8 to 1-10> A multifilament was obtained in the same manner as in Example 1-2, except that each condition was changed as shown in Table 1 below.
  • Comparative Example 2-3 in which the diameter of the ejection hole in the spinning nozzle 104 was made small in order to reduce the average fineness of the single yarn, the single yarn was obtained more than Reference Example 2-1. The average value of fineness was small, and the single yarn fusion rate was high. Furthermore, in Comparative Examples 1-1 and 2-1, in which the spinning temperature was lower than in Comparative Examples 1-3 and 2-3, the raw yarn was cut when multifilaments were obtained from the raw yarn. Therefore, it can be seen that when an attempt is made to produce a multifilament with a small average fineness of single yarns, the original yarn breaks and the multifilament cannot be produced, or the single yarns are fused together.
  • Comparative Examples 1-2, 1-3, 1-6 and 1-7 in which no polyglycerin fatty acid ester was used , Comparative Examples 1-8 to 1-10 using azodicarbonamide (ADCA) as a plasticizer instead of polyglycerin fatty acid ester, and the spinning temperature was set to a temperature exceeding "the melting point of the raw material composition + 25.0 ° C.” Compared with Comparative Examples 1-4, the fusion rate of single yarns was low.
  • ADCA azodicarbonamide
  • ADCA azodicarbonamide
  • Comparative Example 2-4 which was made into a single yarn, the fusion rate of the single yarn was low.
  • Comparative Examples 1-1, 1-5, 2-1, and 2-5 in which no polyglycerol fatty acid ester was used the raw yarn was cut when multifilaments were obtained from the raw yarn. Therefore, according to the present invention, although the average fineness of the single yarn is small, when the multifilament is obtained from the raw yarn, it is possible to suppress the breakage of the raw yarn and to suppress the fusion of the single yarns. can.
  • poly(3-hydroxyalkanoate) resin has a weight average molecular weight of 4.0 ⁇ 10 5 to 7.0 ⁇ 10 5
  • poly(3 -Hydroxyalkanoate) resin had a low fusion rate of single yarns compared to Examples 1-4 and 1-5 in which the weight-average molecular weight of the resin was 379,967.
  • Example 1-3 in which the sequential drawing method was performed, the weight average molecular weight and spinning temperature of the poly(3-hydroxyalkanoate) resin were the same as in Example 1-3, and the SDY method was used.
  • the fusion rate of the single yarn was lower than in Example 1-2 in which .
  • Example 2-3 in which the sequential drawing method was performed, the weight average molecular weight and spinning temperature of the poly(3-hydroxyalkanoate) resin were the same as in Example 2-3, and Compared to Example 2-2 in which the SDY method was performed, the fusion rate of single yarns was low. Therefore, it can be seen that fusion between single yarns can be further suppressed by carrying out the sequential drawing method.
  • 100A raw yarn
  • 101 raw material input section
  • 102 kneading extruder
  • 103 gear pump
  • 104 spinning nozzle
  • 105 first cooling box
  • 106 second cooling box
  • 107 first take-up roll section
  • 108 first transport roll part
  • 109 second transport roll part
  • 110 third transport roll part
  • 111 fourth transport roll part
  • 112 first take-up roll part
  • 113 third 2 take-up roll unit
  • 114 stretching roll unit
  • 115 heat treatment roll unit
  • 116 second winding roll unit
  • 207 take-up roll section
  • 208 first drawing roll section
  • 209 second drawing roll section
  • 210 third drawing roll section
  • 211 take-off roll section
  • 212 winding roll section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

The present invention provides a method for producing a multifilament, whereby it becomes possible to prevent the breakage of a raw yarn during the production of the multifilament from the raw yarn and prevent the fusion of single yarns with each other in spite of the fact that the average value of fineness degrees of single yarns is small. The present invention is a method for producing a multifilament, in which a multifilament composed of a plurality of single yarns is produced by a melt spinning method using a spinning nozzle having a plurality of discharge holes. The method comprises (A) a step for melting a raw material composition by heating and then ejecting the melted raw material composition through the discharge holes to produce a plurality of raw yarns and (B) a step for stretching the plurality of raw yarns to produce the multifilament, in which the raw material composition comprises a poly(3-hydroxyalkanoate)-based resin and a polyglycerol fatty acid ester, the raw material composition is heated in a temperature range that is equal to or higher than the melting point of the raw material composition and higher by 25.0°C from the melting point in the step (A), and the average value of fineness degrees of the single yarns is 0.5 to 8.0 dtex.

Description

マルチフィラメント、及び、その製造方法Multifilament and its manufacturing method
 本発明は、マルチフィラメント、及び、その製造方法に関する。 The present invention relates to a multifilament and a manufacturing method thereof.
 近年、プラスチック廃棄物が、生態系への影響、燃焼時の有害ガス発生、大量の燃焼熱量による地球温暖化等、地球環境への大きな負荷を与える原因となっている問題がある。この問題を解決できるものとして、生分解性プラスチックの開発が盛んになっている。 In recent years, plastic waste has become a cause of great burden on the global environment, such as the impact on the ecosystem, the generation of toxic gas when burned, and global warming due to the large amount of combustion heat. The development of biodegradable plastics is gaining momentum as a means of solving this problem.
 このような生分解性プラスチックの中でも植物由来の原料を使用して得られる生分解性プラスチックを燃焼させた際に出る二酸化炭素は、もともと空気中にあったもので、大気中の二酸化炭素は増加しない。このことをカーボンニュートラルと称し、二酸化炭素削減目標値を課した京都議定書の下、重要視され、積極的な使用が望まれている。 Among these biodegradable plastics, the carbon dioxide emitted when burning biodegradable plastics obtained using plant-derived raw materials was originally in the air, and the amount of carbon dioxide in the atmosphere is increasing. do not. This is called carbon neutral, and under the Kyoto Protocol, which imposes carbon dioxide reduction targets, it is regarded as important and its active use is desired.
 最近、生分解性及びカーボンニュートラルの観点から、植物由来の原料を炭素源として微生物産生される生分解性プラスチックとして、脂肪族ポリエステル系樹脂が注目されており、特にポリヒドロキシアルカノエート系樹脂が注目されている。 Recently, from the viewpoint of biodegradability and carbon neutrality, aliphatic polyester-based resins have attracted attention as biodegradable plastics produced by microorganisms using plant-derived raw materials as carbon sources, and polyhydroxyalkanoate-based resins in particular have attracted attention. It is
 特許文献1には、ポリヒドロキシアルカノエートが含有された単糸を複数有するマルチフィラメントが開示されている。 Patent Document 1 discloses a multifilament having a plurality of monofilaments containing polyhydroxyalkanoate.
 また、特許文献1には、溶融押出法により前記マルチフィラメントを得ることが開示されている。
 具体的には、特許文献1に記載の製造方法は、原料組成物を加熱により溶融させ、溶融した原料組成物を4箇所の吐出孔から吐出することにより原糸を4本得る工程(A)と、4本の前記原糸を延伸することにより、前記マルチフィラメントを得る工程(B)とを有する。
Moreover, Patent Document 1 discloses obtaining the multifilament by a melt extrusion method.
Specifically, in the manufacturing method described in Patent Document 1, the raw material composition is melted by heating, and the melted raw material composition is discharged from four discharge holes to obtain four raw yarns (A). and a step (B) of obtaining the multifilament by drawing the four raw yarns.
国際公開第2017/122679号WO2017/122679
 ところで、マルチフィラメントにおける単糸の繊度の平均値が小さいことが求められることがある。
 本発明者が鋭意検討したところ、単糸の繊度の平均値が小さいマルチフィラメントを作製しようとすると、原糸が切れてマルチフィラメントが作製できないか、或いは、単糸どうしが融着することがあることを見出した。
By the way, it is sometimes required that the average value of the fineness of single yarns in a multifilament is small.
As a result of extensive studies by the present inventors, when attempting to produce a multifilament with a small average single yarn fineness, the raw yarn may break and the multifilament may not be produced, or the single yarns may fuse together. I found out.
 そこで、本発明は、単糸の繊度の平均値が小さいにも関わらず、原糸からマルチフィラメントを得る際に原糸が切れるのを抑制し、且つ、単糸どうしの融着を抑制し得る、マルチフィラメントの製造方法を提供することを第一の課題とする。また、本発明は、単糸の繊度の平均値が小さく、且つ、単糸の融着率が小さい、マルチフィラメントを提供することを第二の課題とする。 Therefore, the present invention can suppress the breakage of the raw yarn when obtaining a multifilament from the raw yarn and the fusion of the single yarns, despite the fact that the average value of the fineness of the single yarn is small. , the first object is to provide a method for manufacturing multifilament. A second object of the present invention is to provide a multifilament having a small average fineness of single yarns and a small fusion rate of single yarns.
 本発明の第一は、溶融紡糸法により、複数の吐出孔を有する紡糸ノズルを用いて、単糸を複数有するマルチフィラメントを製造する、マルチフィラメントの製造方法であって、
原料組成物を加熱により溶融させ、溶融した原料組成物を前記吐出孔から吐出することにより原糸を複数本得る工程(A)と、
複数本の前記原糸を延伸することにより、前記マルチフィラメントを得る工程(B)とを含み、
前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有し、
前記工程(A)では、前記原料組成物の融点以上で、且つ、該融点から25.0℃高い温度以下の温度範囲で、前記原料組成物を加熱し、
前記単糸の繊度の平均値が、0.5~8.0dtexである、マルチフィラメントの製造方法に関する。
 好ましくは、前記工程(B)における延伸倍率が1.5~3.0倍である。
 好ましくは、前記原料組成物は、前記ポリ(3-ヒドロキシアルカノエート)樹脂100重量部に対し、前記ポリグリセリン脂肪酸エステルを0.5~5.0重量部含有する。
 好ましくは、前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量が3.0×10~7.0×10である。
 好ましくは、前記工程(A)では、複数本の前記原糸を50℃以下に冷却し、
前記工程(B)では、前記工程(A)で冷却された複数本の前記原糸を加熱し、延伸する。
 好ましくは、前記工程(A)では、複数本の前記原糸を巻取ロール部で巻取り、
前記工程(B)では、前記巻取ロール部で巻き取った複数本の前記原糸を延伸する。
 好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、単独重合体及び/又は共重合体を含み、構成単位として3-ヒドロキシブチレートを80モル%以上含有する。
A first aspect of the present invention is a multifilament production method for producing a multifilament having a plurality of single yarns by a melt spinning method using a spinning nozzle having a plurality of discharge holes,
A step (A) of obtaining a plurality of raw yarns by melting the raw material composition by heating and discharging the melted raw material composition from the discharge hole;
A step (B) of obtaining the multifilament by drawing a plurality of the raw yarns,
The raw material composition contains a poly(3-hydroxyalkanoate)-based resin and a polyglycerol fatty acid ester,
In the step (A), the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than a temperature higher than the melting point by 25.0°C;
The method for producing a multifilament, wherein the single yarn has an average fineness of 0.5 to 8.0 dtex.
Preferably, the draw ratio in the step (B) is 1.5 to 3.0 times.
Preferably, the raw material composition contains 0.5 to 5.0 parts by weight of the polyglycerin fatty acid ester with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin.
Preferably, the poly(3-hydroxyalkanoate) resin in the raw material composition has a weight average molecular weight of 3.0×10 5 to 7.0×10 5 .
Preferably, in the step (A), the plurality of raw yarns are cooled to 50° C. or less,
In the step (B), the plurality of raw yarns cooled in the step (A) are heated and drawn.
Preferably, in the step (A), a plurality of the raw yarns are wound by a winding roll,
In the step (B), the plurality of raw yarns wound by the winding roll are drawn.
Preferably, the poly(3-hydroxyalkanoate)-based resin contains a homopolymer and/or copolymer and contains 80 mol % or more of 3-hydroxybutyrate as a structural unit.
 本発明の第二は、単糸を複数有するマルチフィラメントであって、
前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有する樹脂組成物で形成され、
前記単糸の繊度の平均値が、0.5~8.0dtexであり、
前記単糸の融着率が、18%以下である、マルチフィラメントに関する。
 好ましくは、前記樹脂組成物の重量平均分子量が、2.0×10~6.0×10である。
The second of the present invention is a multifilament having a plurality of single yarns,
The single yarn is formed of a resin composition containing a poly(3-hydroxyalkanoate) resin and a polyglycerin fatty acid ester,
The average value of the fineness of the single yarn is 0.5 to 8.0 dtex,
It relates to the multifilament, wherein the single yarn has a fusion rate of 18% or less.
Preferably, the resin composition has a weight average molecular weight of 2.0×10 5 to 6.0×10 5 .
 本発明の第一によれば、単糸の繊度の平均値が小さいにも関わらず、原糸からマルチフィラメントを得る際に原糸が切れるのを抑制し、且つ、単糸どうしの融着を抑制し得る。
 また、本発明の第二によれば、単糸の繊度の平均値が小さく、且つ、単糸の融着率が小さい、マルチフィラメントを提供し得る。
According to the first aspect of the present invention, although the average value of the fineness of the single yarn is small, when the multifilament is obtained from the raw yarn, it is possible to suppress the breakage of the raw yarn and to prevent the fusion of the single yarns. can be suppressed.
Moreover, according to the second aspect of the present invention, it is possible to provide a multifilament having a small average fineness of single yarns and a small fusion rate of single yarns.
第1の実施形態の工程(A)で用いる装置の概略図。The schematic of the apparatus used by the process (A) of 1st Embodiment. 第1の実施形態の工程(B)で用いる装置の概略図。The schematic of the apparatus used by the process (B) of 1st Embodiment. 第2の実施形態で用いる装置の概略図。Schematic diagram of the apparatus used in the second embodiment.
 以下、添付図面を参照しつつ、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below with reference to the accompanying drawings.
(本実施形態に係るマルチフィラメントの製造方法)
 まず、本実施形態に係るマルチフィラメントの製造方法について説明する。
(Manufacturing method of multifilament according to the present embodiment)
First, a method for manufacturing a multifilament according to this embodiment will be described.
 本実施形態に係るマルチフィラメントの製造方法は、溶融紡糸法により、複数の吐出孔を有する紡糸ノズルを用いて、単糸を複数有するマルチフィラメントを製造する方法である。
 また、本実施形態に係るマルチフィラメントの製造方法は、原料組成物を加熱により溶融させ、溶融した原料組成物たる溶融物を前記吐出孔から吐出することにより原糸を複数本得る工程(A)と、複数本の前記原糸を延伸することにより、前記マルチフィラメントを得る工程(B)とを含む。
 前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂(P3HA)、及び、ポリグリセリン脂肪酸エステルを含有する。
 前記工程(A)では、前記原料組成物の融点以上で、且つ、該融点から25.0℃高い温度以下の温度範囲で、前記原料組成物を加熱する。
 前記単糸の繊度の平均値は、0.5~8.0dtexである。
The method for producing a multifilament according to this embodiment is a method for producing a multifilament having a plurality of single yarns by a melt spinning method using a spinning nozzle having a plurality of discharge holes.
Further, in the method for producing a multifilament according to the present embodiment, the raw material composition is melted by heating, and the molten raw material composition is discharged from the discharge hole to obtain a plurality of raw yarns (A). and a step (B) of obtaining the multifilament by drawing a plurality of the raw yarns.
The raw material composition contains a poly(3-hydroxyalkanoate) resin (P3HA) and a polyglycerol fatty acid ester.
In the step (A), the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than the temperature higher than the melting point by 25.0°C.
The average fineness of the single yarn is 0.5 to 8.0 dtex.
 前記原料組成物は、ポリマー成分及び添加剤を含有する。 The raw material composition contains polymer components and additives.
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含む。
 また、前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂以外に、他のポリマーを含有してもよい。
The polymer component includes a poly(3-hydroxyalkanoate)-based resin.
Moreover, the polymer component may contain other polymers besides the poly(3-hydroxyalkanoate)-based resin.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシアルカン酸をモノマーとするポリエステルである。
 すなわち、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位として3-ヒドロキシアルカン酸を含む樹脂である。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、生分解性を有するポリマーである。
 なお、本実施形態における「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質をいう。具体的には、好気条件ではISO 14855(compost)及びISO 14851(activated sludge)、嫌気条件ではISO 14853(aqueous phase)及びISO 15985(solid phase)等、各環境に適合した試験に基づいて生分解性の有無が判断できる。また、海水中における微生物の分解性については、生物化学的酸素要求量(Biochemical oxygen demand)の測定により評価できる。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、単独重合体及び/又は共重合体を含む。
The poly(3-hydroxyalkanoate) resin is a polyester containing 3-hydroxyalkanoic acid as a monomer.
That is, the poly(3-hydroxyalkanoate) resin is a resin containing 3-hydroxyalkanoic acid as a structural unit.
Also, the poly(3-hydroxyalkanoate) resin is a biodegradable polymer.
In addition, "biodegradability" in this embodiment refers to the property of being decomposed into low-molecular-weight compounds by microorganisms in the natural world. Specifically, ISO 14855 (compost) and ISO 14851 (activated sludge) under aerobic conditions, ISO 14853 (aqueous phase) and ISO 15985 (solid phase) under anaerobic conditions, etc. Degradability can be determined. In addition, the degradability of microorganisms in seawater can be evaluated by measuring biochemical oxygen demand.
The poly(3-hydroxyalkanoate)-based resins include homopolymers and/or copolymers.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、下記式(1)で示される構成単位を含むことが好ましい。
[-CHR-CH-CO-O-]   (1)
(前記式(1)中、RはC2p+1で表されるアルキル基を示し、pは1~15の整数を示す。)
The poly(3-hydroxyalkanoate)-based resin preferably contains a structural unit represented by the following formula (1).
[-CHR-CH 2 -CO-O-] (1)
(In formula (1) above, R represents an alkyl group represented by C p H 2p+1 , and p represents an integer of 1 to 15.)
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレートを構成単位として含むことが好ましい。
 なお、ポリ(3-ヒドロキシブチレート)系樹脂は、構成単位として3-ヒドロキシブチレートを含む樹脂である。ポリ(3-ヒドロキシブチレート)系樹脂は、単独重合体及び/又は共重合体を含む。
The poly(3-hydroxyalkanoate)-based resin preferably contains 3-hydroxybutyrate as a structural unit.
The poly(3-hydroxybutyrate) resin is a resin containing 3-hydroxybutyrate as a structural unit. Poly(3-hydroxybutyrate)-based resins include homopolymers and/or copolymers.
 3-ヒドロキシブチレートを構成単位として含むポリ(3-ヒドロキシアルカノエート)系樹脂としては、例えば、P3HB、P3HB3HH、P3HB3HV、P3HB4HB、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)等が挙げられる。
 ここで、P3HBは、ポリ(3-ヒドロキシブチレート)を意味する。
 P3HB3HHは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)を意味する。
 P3HB3HVは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)を意味する。
 P3HB4HBは、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)を意味する。
Examples of poly(3-hydroxyalkanoate) resins containing 3-hydroxybutyrate as a structural unit include P3HB, P3HB3HH, P3HB3HV, P3HB4HB, and poly(3-hydroxybutyrate-co-3-hydroxyoctanoate). , poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate) and the like.
Here, P3HB means poly(3-hydroxybutyrate).
P3HB3HH means poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
P3HB3HV means poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
P3HB4HB means poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
 なお、P3HBは、P3HB自体、及び、P3HB以外のポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進する機能を有するので、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、P3HBを含むことが好ましい。 In addition, since P3HB has a function of promoting crystallization of P3HB itself and poly(3-hydroxyalkanoate) resins other than P3HB, the poly(3-hydroxyalkanoate) resins include P3HB. is preferred.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂としては、優れた生分解性と成型加工性の両立の観点から、P3HB、P3HB3HH、P3HB3HV、P3HB4HBなどが好ましいが、特に限定されない。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂としては、本実施形態に係るマルチフィラメントの強度を高め、かつ、成型加工性を高めるという観点から、P3HB3HHが好ましい。
P3HB, P3HB3HH, P3HB3HV, P3HB4HB and the like are preferable as the poly(3-hydroxyalkanoate)-based resin from the viewpoint of achieving both excellent biodegradability and molding processability, but are not particularly limited.
As the poly(3-hydroxyalkanoate)-based resin, P3HB3HH is preferable from the viewpoint of enhancing the strength of the multifilament according to the present embodiment and enhancing moldability.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位としての3-ヒドロキシブチレートを、好ましくは80モル%以上、より好ましくは85.0モル%~99.5モル%、更に好ましくは85.0モル%~97.0モル%含む。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂が構成単位としての3-ヒドロキシブチレートを80モル%以上含むことにより、マルチフィラメントの剛性が高くなる。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂が構成単位としての3-ヒドロキシブチレートを99.5モル%以下含むことにより、マルチフィラメントが柔軟性に優れる。
The poly(3-hydroxyalkanoate) resin preferably contains 3-hydroxybutyrate as a structural unit in an amount of preferably 80 mol% or more, more preferably 85.0 mol% to 99.5 mol%, still more preferably 85 .0 mol % to 97.0 mol %.
When the poly(3-hydroxyalkanoate) resin contains 80 mol % or more of 3-hydroxybutyrate as a structural unit, the rigidity of the multifilament is increased.
Further, since the poly(3-hydroxyalkanoate)-based resin contains 99.5 mol % or less of 3-hydroxybutyrate as a structural unit, the multifilament has excellent flexibility.
 前記ポリマー成分は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂を1種類のみ含んでもよく、2種以上含んでもよい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、共重合体(P3HB3HH等)を含む場合には、構成単位の平均組成比が異なる2種類以上の共重合体を含んでもよい。
The polymer component may contain only one type of the poly(3-hydroxyalkanoate)-based resin, or may contain two or more types.
When the poly(3-hydroxyalkanoate) resin contains a copolymer (P3HB3HH, etc.), it may contain two or more copolymers having different average composition ratios of structural units.
 前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量は、好ましくは3.0×10~7.0×10、より好ましくは3.5×10~7.0×10、さらに好ましくは4.0×10~7.0×10、最も好ましくは4.5×10~6.5×10である。
 前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量が3.0×10以上であることにより、単糸におけるポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量を高くしやすくなり、その結果、マルチフィラメントの強度を高めやすくなる。
 前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量が7.0×10以下であることにより、マルチフィラメントの成形がしやすくなる。
The weight average molecular weight of the poly(3-hydroxyalkanoate) resin in the raw material composition is preferably 3.0×10 5 to 7.0×10 5 , more preferably 3.5×10 5 to 7.0. ×10 5 , more preferably 4.0×10 5 to 7.0×10 5 , most preferably 4.5×10 5 to 6.5×10 5 .
Since the weight average molecular weight of the poly(3-hydroxyalkanoate) resin in the raw material composition is 3.0×10 5 or more, the weight average molecular weight of the poly(3-hydroxyalkanoate) resin in the single yarn is It becomes easy to raise it, and as a result, it becomes easy to raise the intensity|strength of a multifilament.
When the weight-average molecular weight of the poly(3-hydroxyalkanoate) resin in the raw material composition is 7.0×10 5 or less, multifilament molding is facilitated.
 前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量は、加熱による溶融前の前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量を意味する。 The weight-average molecular weight of the poly(3-hydroxyalkanoate)-based resin in the raw material composition means the weight-average molecular weight of the poly(3-hydroxyalkanoate)-based resin in the raw material composition before being melted by heating.
 なお、本実施形態における重量平均分子量は、クロロホルム溶離液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。 Note that the weight average molecular weight in the present embodiment is measured from the polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent. As the column in the GPC, a column suitable for measuring the molecular weight may be used.
 他のポリマーは、生分解性を有することが好ましい。 The other polymer is preferably biodegradable.
 生分解性を有する他のポリマーとしては、例えば、ポリカプロラクトン、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンアジペートテレフタレート、ポリエチレンサクシネート、ポリビニルアルコール、ポリグリコール酸、未変性デンプン、変性デンプン、酢酸セルロース、キトサン、ポリ(4-ヒドロキシアルカノエート)系樹脂等が挙げられる。
 前記ポリカプロラクトンは、ε-カプロラクトンが開環重合したポリマーである。
 前記ポリマー成分は、他のポリマーを1種含んでよく、また、2種以上含んでもよい。
Other biodegradable polymers include, for example, polycaprolactone, polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene adipate terephthalate, polyethylene succinate, polyvinyl alcohol, polyglycolic acid, unmodified starch, modified starch, cellulose acetate, chitosan, poly(4-hydroxyalkanoate)-based resins, and the like.
The polycaprolactone is a polymer obtained by ring-opening polymerization of ε-caprolactone.
The polymer component may contain one or two or more other polymers.
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂を、好ましくは50重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上含有する。 The polymer component preferably contains 50% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more of poly(3-hydroxyalkanoate)-based resin.
 原料組成物が生分解性を有するポリマーを含むことにより、マルチフィラメントが環境中に廃棄されたとしても、環境中で分解されやすいため、環境への負荷を抑制することができる。  By including a biodegradable polymer in the raw material composition, even if the multifilament is discarded in the environment, it is easily decomposed in the environment, so it is possible to reduce the burden on the environment.
 前記添加剤は、ポリグリセリン脂肪酸エステルを含有する。 The additive contains polyglycerol fatty acid ester.
 前記ポリグリセリン脂肪酸エステルは、ポリグリセリンと、脂肪酸とのエステルである。 The polyglycerin fatty acid ester is an ester of polyglycerin and fatty acid.
 前記ポリグリセリンとしては、例えば、ジグリセリン、トリグリセリン、テトラグリセリン、ペンタグリセリン、ヘキサグリセリン、ヘプタグリセリン、オクタグリセリン、ノナグリセリン、デカグリセリンなどが挙げられる。 Examples of the polyglycerin include diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, heptaglycerin, octaglycerin, nonaglycerin, and decaglycerin.
 前記脂肪酸としては、飽和脂肪酸、不飽和脂肪酸などが挙げられる。
 前記脂肪酸は、ヒドロキシ脂肪酸も含む概念である。
 前記飽和脂肪酸の炭素数は、4~24が好ましい。
 炭素数が4~24である飽和脂肪酸としては、例えば、酪酸(ブタン酸)、吉草酸(ペンタン酸)、カプロン酸(ヘキサン酸)、エナント酸(ヘプタン酸)、カプリル酸(オクタン酸)、ペラルゴン酸(ノナン酸)、カプリン酸(デカン酸)、ウンデカン酸、ラウリン酸(ドデカン酸)、ミリスチン酸(テトラデカン酸)、ペンタデカン酸、パルミチン酸(ヘキサデカン酸)、マルガリン酸(ヘプタデカン酸)、ステアリン酸(オクタデカン酸)、ノナデカン酸、アラキジン酸(エイコサン酸)、べヘン酸(ドコサン酸)、リグノセリン酸(テトラコサン酸)、イソステアリン酸(2-ヘプチルウンデカン酸)などが挙げられる。
 前記不飽和脂肪酸の炭素数は、12~24が好ましい。
 炭素数が12~24である不飽和脂肪酸としては、例えば、パルミトレイン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、エレオステアリン酸、ガドレイン酸、エイコサジエン酸、アラキドン酸、エルカ酸、ドコサジエン酸などが挙げられる。
 前記ヒドロキシ脂肪酸としては、例えば、リシノレイン酸、12-ヒドロキシステアリン酸、9-ヒドロキシステアリン酸、10-ヒドロキシステアリン酸などが挙げられる。
Examples of the fatty acid include saturated fatty acid and unsaturated fatty acid.
The fatty acid is a concept that also includes hydroxy fatty acids.
The saturated fatty acid preferably has 4 to 24 carbon atoms.
Examples of saturated fatty acids having 4 to 24 carbon atoms include butyric acid (butanoic acid), valeric acid (pentanoic acid), caproic acid (hexanoic acid), enanthic acid (heptanoic acid), caprylic acid (octanoic acid), pelargone Acid (nonanoic acid), capric acid (decanoic acid), undecanoic acid, lauric acid (dodecanoic acid), myristic acid (tetradecanoic acid), pentadecanoic acid, palmitic acid (hexadecanoic acid), margaric acid (heptadecanoic acid), stearic acid ( octadecanoic acid), nonadecanic acid, arachidic acid (eicosanoic acid), behenic acid (docosanoic acid), lignoceric acid (tetracosanoic acid), isostearic acid (2-heptylundecanoic acid), and the like.
The unsaturated fatty acid preferably has 12 to 24 carbon atoms.
Examples of unsaturated fatty acids having 12 to 24 carbon atoms include palmitoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, eleostearic acid, gadoleic acid, eicosadienoic acid, arachidonic acid, erucic acid, and docosadienoic acid. etc.
Examples of the hydroxy fatty acids include ricinoleic acid, 12-hydroxystearic acid, 9-hydroxystearic acid, and 10-hydroxystearic acid.
 前記脂肪酸は、好ましくは、飽和脂肪酸、より好ましくは、炭素数が6~20である飽和脂肪酸である。 The fatty acid is preferably saturated fatty acid, more preferably saturated fatty acid having 6 to 20 carbon atoms.
 前記脂肪酸としては、1種単独を使用してもよく、異なる種類のものを併用してもよい。好ましくは、異なる種類のものを併用する。 As the fatty acid, one type may be used alone, or different types may be used together. Preferably, different types are used together.
 前記原料組成物におけるポリグリセリン脂肪酸エステルの重量平均分子量は、好ましくは5.0×10~1.0×10、より好ましくは1.0×10~3.0×10である。 The weight average molecular weight of the polyglycerol fatty acid ester in the raw material composition is preferably 5.0×10 2 to 1.0×10 4 , more preferably 1.0×10 3 to 3.0×10 3 .
 前記原料組成物におけるポリグリセリン脂肪酸エステルの重量平均分子量は、加熱による溶融前の前記原料組成物におけるポリグリセリン脂肪酸エステルの重量平均分子量を意味する。 The weight average molecular weight of the polyglycerin fatty acid ester in the raw material composition means the weight average molecular weight of the polyglycerin fatty acid ester in the raw material composition before being melted by heating.
 前記原料組成物は、前記ポリ(3-ヒドロキシアルカノエート)樹脂100重量部に対し、前記ポリグリセリン脂肪酸エステルを、好ましくは0.5~5.0重量部、より好ましくは0.7~4.0重量部含有する。
 前記原料組成物は、前記ポリ(3-ヒドロキシアルカノエート)樹脂100重量部に対し、前記ポリグリセリン脂肪酸エステルを0.5重量部以上含有することにより、原糸からマルチフィラメントを得る際に原糸が切れるのをより一層抑制し、且つ、単糸どうしの融着をより一層抑制し得るという利点がある。
 前記原料組成物は、前記ポリ(3-ヒドロキシアルカノエート)樹脂100重量部に対し、前記ポリグリセリン脂肪酸エステルを5.0重量部以下含有することにより、ポリグリセリン脂肪酸エステルがマルチフィラメントの表面にブリードアウトするのを抑制できるという利点がある。
The raw material composition preferably contains 0.5 to 5.0 parts by weight, more preferably 0.7 to 4.0 parts by weight, of the polyglycerol fatty acid ester based on 100 parts by weight of the poly(3-hydroxyalkanoate) resin. Contains 0 parts by weight.
The raw material composition contains 0.5 parts by weight or more of the polyglycerin fatty acid ester with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin, so that when obtaining a multifilament from the raw yarn, There is an advantage that it is possible to further suppress the breakage of the yarn and to further suppress the fusion between the single yarns.
The raw material composition contains 5.0 parts by weight or less of the polyglycerin fatty acid ester with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin, so that the polyglycerin fatty acid ester bleeds onto the surface of the multifilament. There is an advantage that it is possible to suppress going out.
 ポリグリセリン脂肪酸エステル以外の添加剤としては、例えば、結晶核剤、滑剤、可塑剤、紡糸油剤、安定剤(酸化防止剤、紫外線吸収剤等)、着色剤(染料、顔料等)、無機充填剤、有機充填剤、帯電防止剤等が挙げられる。 Additives other than polyglycerol fatty acid esters include, for example, crystal nucleating agents, lubricants, plasticizers, spinning oils, stabilizers (antioxidants, ultraviolet absorbers, etc.), colorants (dyes, pigments, etc.), and inorganic fillers. , organic fillers, antistatic agents, and the like.
 ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進すべく、前記原料組成物は、結晶核剤を含有することが好ましい。
 前記結晶核剤は、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進する効果を有する化合物である。また、前記結晶核剤は、ポリ(3-ヒドロキシアルカノエート)系樹脂よりも融点が高い。
 前記結晶核剤としては、無機物(窒化ホウ素、酸化チタン、タルク、層状ケイ酸塩、炭酸カルシウム、塩化ナトリウム、及び金属リン酸塩など);天然物由来の糖アルコール化合物(ペンタエリスリトール、エリスリトール、ガラクチトール、マンニトール、及びアラビトール等);ポリビニルアルコール;キチン;キトサン;ポリエチレンオキシド;脂肪族カルボン酸塩;脂肪族アルコール;脂肪族カルボン酸エステル;ジカルボン酸誘導体(ジメチルアジペート、ジブチルアジペート、ジイソデシルアジペート、及びジブチルセバケート);C=OとNH、S及びOから選ばれる官能基とを分子内に有する環状化合物(インジゴ、キナクリドン、及びキナクリドンマゼンタなど);ソルビトール系誘導体(ビスベンジリデンソルビトール、及びビス(p-メチルベンジリデン)ソルビトールなど);窒素含有ヘテロ芳香族核(ピリジン環、トリアジン環、及びイミダゾール環など)を含む化合物(ピリジン、トリアジン、及びイミダゾールなど);リン酸エステル化合物;高級脂肪酸のビスアミド;高級脂肪酸の金属塩;並びに分岐状ポリ乳酸等が例示できる。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂であるP3HBは、結晶核剤として使用することも可能である。
 これらは単独で用いても良く、2種以上を組み合わせて用いても良い。
In order to promote crystallization of the poly(3-hydroxyalkanoate)-based resin, the raw material composition preferably contains a crystal nucleating agent.
The crystal nucleating agent is a compound having an effect of promoting crystallization of poly(3-hydroxyalkanoate)-based resin. Also, the crystal nucleating agent has a higher melting point than the poly(3-hydroxyalkanoate)-based resin.
Examples of the crystal nucleating agent include inorganic substances (boron nitride, titanium oxide, talc, layered silicate, calcium carbonate, sodium chloride, metal phosphate, etc.); sugar alcohol compounds derived from natural products (pentaerythritol, erythritol, gal lactitol, mannitol, and arabitol, etc.); polyvinyl alcohol; chitin; chitosan; polyethylene oxide; Sebacate); Cyclic compounds having C=O and functional groups selected from NH, S and O in the molecule (indigo, quinacridone, and quinacridone magenta, etc.); Sorbitol derivatives (bisbenzylidene sorbitol, and bis(p- methylbenzylidene) sorbitol, etc.); compounds containing a nitrogen-containing heteroaromatic nucleus (pyridine ring, triazine ring, imidazole ring, etc.) (pyridine, triazine, imidazole, etc.); phosphate ester compounds; bisamides of higher fatty acids; higher fatty acids and branched polylactic acid.
The poly(3-hydroxyalkanoate) resin P3HB can also be used as a crystal nucleating agent.
These may be used alone or in combination of two or more.
 前記結晶核剤としては、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化速度の改善効果の観点、並びに、ポリ(3-ヒドロキシアルカノエート)系樹脂との相溶性及び親和性の観点から、糖アルコール化合物、ポリビニルアルコール、キチン、キトサンが好ましい。
 また、該糖アルコール化合物のうち、ペンタエリスリトールが好ましい。
As the crystal nucleating agent, from the viewpoint of the effect of improving the crystallization speed of the poly(3-hydroxyalkanoate)-based resin, and from the viewpoint of compatibility and affinity with the poly(3-hydroxyalkanoate)-based resin, Sugar alcohol compounds, polyvinyl alcohol, chitin and chitosan are preferred.
Pentaerythritol is preferred among the sugar alcohol compounds.
 前記結晶核剤は、好ましくは、常温(25℃)で結晶構造を有する。
 前記結晶核剤が常温(25℃)で結晶構造を有することにより、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化がより促進されるという利点がある。
 また、常温(25℃)で結晶構造を有する結晶核剤は、好ましくは、常温(25℃)で粉末状となっている。
 さらに、常温(25℃)で粉末状となっている結晶核剤の平均粒子径は、好ましくは10μm以下である。
The crystal nucleating agent preferably has a crystal structure at room temperature (25°C).
Since the crystal nucleating agent has a crystal structure at normal temperature (25° C.), there is an advantage that the crystallization of the poly(3-hydroxyalkanoate)-based resin is further promoted.
Moreover, the crystal nucleating agent having a crystal structure at normal temperature (25°C) is preferably powdery at normal temperature (25°C).
Furthermore, the average particle size of the crystal nucleating agent that is powdery at room temperature (25° C.) is preferably 10 μm or less.
 原料組成物における結晶核剤の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し、0.05重量部以上が好ましく、0.1重量部以上がより好ましく、0.5重量部以上がさらに好ましい。原料組成物における結晶核剤の含有量がポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し0.05重量部以上であることにより、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化をより促進できるという利点がある。
 また、原料組成物における結晶核剤の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し、10重量部以下が好ましく、8重量部以下がより好ましく、5重量部以下がさらに好ましい。原料組成物における結晶核剤の含有量がポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し10重量部以下であることにより、溶融物からマルチフィラメントを作製する際に、該溶融物の粘度を低くすることができ、その結果、マルチフィラメントの作製がしやすくなるという利点がある。
 なお、P3HBは、ポリ(3-ヒドロキシアルカノエート)系樹脂であり、且つ、結晶核剤としても機能し得るので、原料組成物がP3HBを含む場合には、P3HBの量は、ポリ(3-ヒドロキシアルカノエート)系樹脂の量にも、結晶核剤の量にも含まれる。
The content of the crystal nucleating agent in the raw material composition is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, and 0.5 parts by weight with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin. Part by weight or more is more preferable. The content of the crystal nucleating agent in the raw material composition is 0.05 parts by weight or more with respect to 100 parts by weight of the poly(3-hydroxyalkanoate)-based resin, so that the poly(3-hydroxyalkanoate)-based resin is crystallized. has the advantage of being able to promote
In addition, the content of the crystal nucleating agent in the raw material composition is preferably 10 parts by weight or less, more preferably 8 parts by weight or less, and 5 parts by weight or less with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin. More preferred. When the content of the crystal nucleating agent in the raw material composition is 10 parts by weight or less with respect to 100 parts by weight of the poly(3-hydroxyalkanoate)-based resin, when producing multifilaments from the melt, the melt is There is an advantage that the viscosity can be lowered, and as a result, multifilament can be easily produced.
P3HB is a poly(3-hydroxyalkanoate) resin and can also function as a crystal nucleating agent. Therefore, when the raw material composition contains P3HB, the amount of P3HB is hydroxyalkanoate) resin and the crystal nucleating agent.
 前記原料組成物は、滑剤を含有してもよい。
 滑剤としては、例えば、ラウリン酸アミド、ミリスチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、及び、エルカ酸アミド等が挙げられる。前記ポリグリセリン脂肪酸エステルが滑剤として含まれていてもよい。
The raw material composition may contain a lubricant.
Lubricants include, for example, lauric acid amide, myristic acid amide, stearic acid amide, behenic acid amide, and erucic acid amide. The polyglycerin fatty acid ester may be contained as a lubricant.
 原料組成物における滑剤の含有量(滑剤の含有量には、ポリグリセリン脂肪酸エステルの含有量は含まない。)は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し、0.05重量部以上が好ましく、0.1重量部以上がより好ましく、0.5重量部以上がさらに好ましい。原料組成物における滑剤の含有量がポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し0.05重量部以上であることにより、単糸の滑性に優れるという利点がある。
 また、原料組成物における滑剤の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し、12重量部以下が好ましく、10重量部以下がより好ましく、8重量部以下がさらに好ましく、5重量部以下が最も好ましい。原料組成物における滑剤の含有量がポリ(3-ヒドロキシアルカノエート)系樹脂100重量部に対し12重量部以下であることにより、前記アミド結合を有する化合物がマルチフィラメントの表面にブリードアウトするのを抑制できるという利点がある。
The content of the lubricant in the raw material composition (the content of the lubricant does not include the content of the polyglycerin fatty acid ester) is 0.05 per 100 parts by weight of the poly(3-hydroxyalkanoate) resin. It is preferably at least 0.1 part by weight, even more preferably at least 0.5 part by weight. When the content of the lubricant in the raw material composition is 0.05 parts by weight or more per 100 parts by weight of the poly(3-hydroxyalkanoate)-based resin, there is an advantage that the lubricity of the single yarn is excellent.
In addition, the content of the lubricant in the raw material composition is preferably 12 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 8 parts by weight or less with respect to 100 parts by weight of the poly(3-hydroxyalkanoate)-based resin. , 5 parts by weight or less. By setting the content of the lubricant in the raw material composition to 12 parts by weight or less with respect to 100 parts by weight of the poly(3-hydroxyalkanoate)-based resin, the compound having an amide bond is prevented from bleeding out onto the surface of the multifilament. There is an advantage that it can be suppressed.
 前記原料組成物は、可塑剤を更に含有してもよい。
 可塑剤としては、例えば、混基二塩基酸エステル(例えば、大八化学工業社製の「DAIFATTY」)、グリセリン脂肪酸エステル(例えば、理研ビタミン社製の「リケマール」)等が挙げられる。前記ポリグリセリン脂肪酸エステルが可塑剤として含まれていてもよい。
The raw material composition may further contain a plasticizer.
Examples of plasticizers include mixed radical dibasic acid esters (eg, “DAIFATTY” manufactured by Daihachi Chemical Industry Co., Ltd.), glycerin fatty acid esters (eg, “Rikemal” manufactured by Riken Vitamin Co., Ltd.), and the like. The polyglycerin fatty acid ester may be contained as a plasticizer.
 また、マルチフィラメントの生分解性を高めるという観点から、前記可塑剤としては、後述する工程(A)で材料を加熱しながら混練する際の温度及び圧力下において超臨界流体となり、且つ、常温常圧(25℃、1気圧)下で気体となる可塑剤も好ましい。
 斯かる可塑剤としては、例えば、窒素(N)、二酸化炭素、低級脂肪族炭化水素などが挙げられる。
 前記低級脂肪族炭化水素としては、例えば、プロパン、ブタン、イソブタン等が挙げられる。
In addition, from the viewpoint of enhancing the biodegradability of the multifilament, the plasticizer becomes a supercritical fluid under the temperature and pressure when kneading the material while heating in the step (A) described later, and Also preferred are plasticizers that are gaseous under pressure (25° C., 1 atm).
Examples of such plasticizers include nitrogen ( N2 ), carbon dioxide, lower aliphatic hydrocarbons, and the like.
Examples of the lower aliphatic hydrocarbons include propane, butane, and isobutane.
 前記工程(A)では、前記原料組成物の融点以上で、且つ、該融点から25.0℃高い温度以下の温度範囲で、前記原料組成物を加熱する。
 前記工程(A)では、好ましくは該融点から10.0℃高い温度以上、より好ましくは該融点から15.0℃高い温度以上で前記原料組成物を加熱する。
 また、前記工程(A)では、好ましくは該融点から24.0℃高い温度以下、より好ましくは該融点から23.0℃高い温度以下で前記原料組成物を加熱する。
In the step (A), the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than the temperature higher than the melting point by 25.0°C.
In step (A), the raw material composition is preferably heated at a temperature higher than the melting point by 10.0°C or higher, more preferably at a temperature higher than the melting point by 15.0°C or higher.
In step (A), the raw material composition is preferably heated at a temperature not higher than 24.0°C above the melting point, more preferably at a temperature not higher than 23.0°C above the melting point.
 なお、原料組成物の融点は、示差走査熱量測定(DSC)で求めたDSC曲線において、吸熱量が最大となる点(吸熱ピークの頂点)における温度である。
 前記示差走査熱量測定(DSC)は、JIS K7122(1987)「プラスチックの転移熱測定方法」に準拠した方法である。
 例えば、以下の条件で測定を実施することができる。
  装置:セイコーインスツルメンツ社製の示差走査熱量計DSC6200
  試料量:4~10mg
  測定の温度範囲:30℃~200℃
  昇温速度:10℃/分
 また、原料組成物の融点は、溶融紡糸前の原料組成物の融点を意味する。
The melting point of the raw material composition is the temperature at the point (apex of the endothermic peak) at which the endothermic amount is maximum in the DSC curve obtained by differential scanning calorimetry (DSC).
The differential scanning calorimetry (DSC) is a method based on JIS K7122 (1987) "Transition heat measurement method for plastics".
For example, measurement can be performed under the following conditions.
Apparatus: Differential scanning calorimeter DSC6200 manufactured by Seiko Instruments Inc.
Sample amount: 4 to 10 mg
Measurement temperature range: 30°C to 200°C
Heating rate: 10°C/min The melting point of the raw material composition means the melting point of the raw material composition before melt spinning.
<第1の実施形態:逐次延伸法(後延伸法)>
 以下では、逐次延伸法(「後延伸法」ともいう。)でマルチフィラメントを製造する方法を例に挙げて、第1の実施形態に係るマルチフィラメントの製造方法について、図1、2を参照して説明する。
 第1の実施形態に係るマルチフィラメントの製造方法において、前記工程(A)では、複数本の前記原糸を巻取ロール部で巻取り、前記工程(B)では、前記巻取ロール部で巻き取った複数本の前記原糸を延伸する。
<First embodiment: Sequential stretching method (post-stretching method)>
In the following, a method for producing a multifilament by a sequential drawing method (also referred to as a “post-drawing method”) will be taken as an example, and the method for manufacturing a multifilament according to the first embodiment will be described with reference to FIGS. to explain.
In the method for manufacturing a multifilament according to the first embodiment, in the step (A), a plurality of the raw yarns are wound by the winding roll, and in the step (B), the winding is wound by the winding roll. The plurality of raw yarns taken are drawn.
(工程(A))
 図1に示すように、前記工程(A)では、まず、前記原料組成物を原料投入部101に投入する。
 次に、該原料投入部101から投入された原料組成物を混練押出機102で加熱により溶融させ、溶融した原料組成物たる溶融物を得る。
 前記混練押出機102は、スクリュー押出機である。該混練押出機102は、単軸押出機であっても、二軸押出機であってもよい。
(Step (A))
As shown in FIG. 1 , in the step (A), first, the raw material composition is charged into a raw material charging section 101 .
Next, the raw material composition fed from the raw material feeding section 101 is melted by heating in the kneading extruder 102 to obtain a molten material that is the melted raw material composition.
The kneading extruder 102 is a screw extruder. The kneading extruder 102 may be a single screw extruder or a twin screw extruder.
 そして、複数の吐出孔を有する紡糸ノズル104を用いて、前記混練押出機102で得られた溶融物を複数の前記吐出孔から吐出することで溶融状態の原糸100Aを複数本得る。
 なお、紡糸ノズル104の複数の吐出孔から吐出する溶融物の流量は、ギアポンプ103で調整する。
Then, a spinning nozzle 104 having a plurality of discharge holes is used to discharge the melt obtained by the kneading extruder 102 through the plurality of discharge holes, thereby obtaining a plurality of molten raw yarns 100A.
The flow rate of the melt discharged from the plurality of discharge holes of the spinning nozzle 104 is adjusted by the gear pump 103 .
 前記紡糸ノズル104の温度は、例えば、140~180℃である。 The temperature of the spinning nozzle 104 is, for example, 140-180°C.
 前記紡糸ノズル104は、吐出孔を複数、好ましくは30箇所以上、より好ましくは30~10000箇所、更に好ましくは30~5000箇所有する。
 各吐出孔の形状及び大きさは、マルチフィラメントにおいて要求される特性(例えば、外観、繊度、強度、断面形状など)に合わせて選定される。
 本実施形態では、吐出孔同士の形状は、略同じになっている。また、吐出孔同士の面積は、略同じになっている。
 各吐出孔の面積は、好ましくは1.0×10-3~20mm、より好ましくは5.0×10-3~10mmである。
The spinning nozzle 104 has a plurality of ejection holes, preferably 30 or more, more preferably 30 to 10,000, still more preferably 30 to 5,000.
The shape and size of each discharge hole are selected according to the properties (for example, appearance, fineness, strength, cross-sectional shape, etc.) required for the multifilament.
In this embodiment, the shapes of the ejection holes are substantially the same. Moreover, the areas of the ejection holes are substantially the same.
The area of each discharge hole is preferably 1.0×10 −3 to 20 mm 2 , more preferably 5.0×10 −3 to 10 mm 2 .
 紡糸ノズル104から溶融物が吐出される速度(以下、「紡糸ノズル流速」ともいう。)は、0.02m/min~20m/minが好ましく、0.05m/min~10m/minがより好ましく、0.1m/min~5.0m/minがさらに好ましい。 The speed at which the melt is discharged from the spinning nozzle 104 (hereinafter also referred to as “spinning nozzle flow speed”) is preferably 0.02 m/min to 20 m/min, more preferably 0.05 m/min to 10 m/min, 0.1 m/min to 5.0 m/min is more preferable.
 第1の実施形態では、隣接する単糸どうしの融着を抑制するという観点、隣接する単糸どうしが静電気により離れてしまうのを抑制するという観点などから、冷却された複数の前記原糸100Aそれぞれの表面に、紡糸油剤を塗布してもよい。
 前記紡糸油剤としては、例えば、カチオン界面活性剤、アニオン界面活性剤、ノニオン界面活性剤、精製エステル化油、鉱油、ポリ(オキシエチレン)アルキルエーテル、シリコーンオイル、パラフィンワックスなどが挙げられる。これは単独で用いてもよく、2種以上を用いてもよい。
 隣接する単糸どうしの融着を抑制するという観点では、前記紡糸油剤としては、シリコーンオイルが好ましい。
 隣接する単糸どうしが静電気により離れてしまうのを抑制するという観点では、前記紡糸油剤としては、アニオン界面活性剤、ノニオン界面活性剤が好ましい。
 前記紡糸油剤としては、例えば、シリコーンオイルとアニオン界面活性剤とを含む紡糸油剤(例えば、丸菱油化社製の「ポリマックスFKY」)を用いることができる。
In the first embodiment, from the viewpoint of suppressing fusion between adjacent single yarns and suppressing separation of adjacent single yarns due to static electricity, the plurality of cooled raw yarns 100A A spinning oil may be applied to each surface.
Examples of the spinning oil include cationic surfactants, anionic surfactants, nonionic surfactants, refined esterified oils, mineral oils, poly(oxyethylene)alkyl ethers, silicone oils, and paraffin waxes. These may be used alone or in combination of two or more.
From the viewpoint of suppressing fusion between adjacent single yarns, silicone oil is preferable as the spinning oil.
From the viewpoint of suppressing the separation of adjacent single yarns due to static electricity, anionic surfactants and nonionic surfactants are preferable as the spinning oil.
As the spinning oil, for example, a spinning oil containing a silicone oil and an anionic surfactant (for example, "Polymax FKY" manufactured by Marubishi Yuka Co., Ltd.) can be used.
 前記工程(A)では、溶融状態の複数本の前記原糸100Aにことで複数本の前記原糸100Aを冷却することが好ましい。
 前記工程(A)では、50℃以下の気体で前記原糸100Aを冷却することにより、原糸100Aを構成するポリ(3-ヒドロキシアルカノエート)系樹脂が結晶化する温度領域内となる時間を短くすることができ、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化の進行を抑制できる。これにより、原糸100Aが硬くなるのを抑制できる。
 また、前記工程(A)では、0℃以上の気体で前記原糸100Aを冷却することにより、原糸100Aを構成するポリ(3-ヒドロキシアルカノエート)系樹脂が結晶化する温度領域内となる時間をある程度確保しやすくなり、ポリ(3-ヒドロキシアルカノエート)系樹脂を結晶化させやすくなる。これにより、前記工程(A)で原糸100Aが切れるのを抑制しやすくなる。
 よって、前記工程(B)での原糸100Aの延伸が実施しやすくなる。その結果、マルチフィラメントの強度を高めやすくなる。
 第1の実施形態では、第1の冷却ボックス105内で0℃以上50℃以下の気体で前記原糸100Aを冷却することが好ましい。
 第1の実施形態では、第1の冷却ボックス105内で0~50℃の気体で前記原糸100Aを冷却し、該第1の冷却ボックス105内で冷却された原糸100Aを、第2の冷却ボックス106内で0~50℃の気体で冷却してもよい。
In the step (A), it is preferable to cool the plurality of raw yarns 100A by cooling the plurality of raw yarns 100A in a molten state.
In the step (A), by cooling the raw yarn 100A with a gas of 50° C. or less, the time in which the poly(3-hydroxyalkanoate) resin constituting the raw yarn 100A is crystallized is within the temperature range. It can be shortened, and the progress of crystallization of the poly(3-hydroxyalkanoate) resin can be suppressed. As a result, hardening of the raw yarn 100A can be suppressed.
Further, in the step (A), by cooling the raw yarn 100A with a gas of 0° C. or higher, the temperature is within the crystallizing temperature range of the poly(3-hydroxyalkanoate)-based resin constituting the raw yarn 100A. It becomes easier to secure a certain amount of time, and it becomes easier to crystallize the poly(3-hydroxyalkanoate) resin. This makes it easier to suppress breakage of the raw yarn 100A in the step (A).
Therefore, it becomes easier to draw the raw yarn 100A in the step (B). As a result, it becomes easier to increase the strength of the multifilament.
In the first embodiment, it is preferable to cool the raw yarn 100A in the first cooling box 105 with a gas of 0° C. or more and 50° C. or less.
In the first embodiment, the raw yarn 100A is cooled with a gas of 0 to 50° C. in the first cooling box 105, and the raw yarn 100A cooled in the first cooling box 105 is cooled to the second It may be cooled with a gas of 0 to 50° C. in the cooling box 106 .
 前記工程(A)では、溶融状態の複数本の前記原糸100Aに吹き付ける気体の温度は、好ましくは0~50℃であり、より好ましくは0~40℃である。
 また、前記工程(A)では、前記気体の温度は、前記原料組成物のガラス転移温度以上であることが好ましい。前記気体の温度は、前記原料組成物のガラス転移温度以上であることにより、原料組成物が塑性変形しやすくなり、原糸100Aが切れ難くなる。
 なお、「溶融状態の複数本の前記原糸100Aに吹き付ける気体の温度」とは、前記気体が前記原糸100Aに接触する際の前記気体の温度を意味する。
In the step (A), the temperature of the gas blown onto the plurality of molten yarns 100A is preferably 0 to 50.degree. C., more preferably 0 to 40.degree.
Moreover, in the step (A), the temperature of the gas is preferably equal to or higher than the glass transition temperature of the raw material composition. When the temperature of the gas is equal to or higher than the glass transition temperature of the raw material composition, the raw material composition is easily plastically deformed and the raw yarn 100A is difficult to cut.
The "temperature of the gas blown onto the plurality of raw yarns 100A in the molten state" means the temperature of the gas when the gas contacts the raw yarns 100A.
 前記工程(A)では、溶融状態の複数本の前記原糸に吹き付ける前記気体の速度を、好ましくは0.05~5.0m/s、より好ましくは0.1~0.4m/sにする。
 前記気体の速度が0.05m/s以上であることにより、気体による冷却効果が発揮されやすくなる。
 前記気体の速度が5.0m/s以下であることにより、紡糸ノズル104から吐出した溶融状態の原糸100Aが気体で揺れることが抑制される。その結果、溶融状態の原糸100A同士の融着及び/又は糸切れ等が生じることが抑制され、すなわち、紡糸安定性が高まる。
 なお、「溶融状態の複数本の前記原糸100Aに吹き付ける気体の速度」とは、前記気体が前記原糸100Aに接触する際の前記気体の前記原糸100Aに対する相対速度を意味する。
In the step (A), the speed of the gas that is blown onto the plurality of molten yarns is preferably 0.05 to 5.0 m/s, more preferably 0.1 to 0.4 m/s. .
When the speed of the gas is 0.05 m/s or more, the cooling effect of the gas is easily exhibited.
When the speed of the gas is 5.0 m/s or less, the molten raw yarn 100A discharged from the spinning nozzle 104 is suppressed from being shaken by the gas. As a result, fusion between the raw yarns 100A in a molten state and/or yarn breakage is suppressed, that is, the spinning stability is enhanced.
In addition, the "velocity of the gas blown onto the plurality of raw yarns 100A in a molten state" means the relative speed of the gas with respect to the raw yarns 100A when the gas contacts the raw yarns 100A.
 前記気体としては、空気、不活性ガス(窒素ガス、アルゴンガス等)、水蒸気等が挙げられる。 Examples of the gas include air, inert gas (nitrogen gas, argon gas, etc.), water vapor, and the like.
 溶融状態の複数の前記原糸に気体を吹き付ける方法としては、前記原糸の長手方向視(前記原糸の長手方向に垂直となる、前記原糸の断面視)において、少なくとも4方から前記原糸に気体を吹き付けること(いわゆる、サーキュラークエンチ法)が好ましい。
 前記サーキュラークエンチ法では、好ましくは8方以上、より好ましくは16方以上から前記原糸に気体を吹き付ける。
 前記原糸に気体を吹き付ける方向は、前記原糸の流れ方向に垂直な方向と、前記原糸の流れ方向との間の方向にすることが好ましい。
 前記紡糸ノズル104の吐出孔と、該吐出孔から吐出されて得られた原糸に前記気体が接する位置との間の距離は、マルチフィラメントの要求特性によって決定されるが、一般的に短い方が好ましい。
 前記工程(A)では、前記原糸に接触した気体を該原糸の流れ方向に沿って冷却ボックス外に排出させることが好ましい。前記原糸に接触した気体を該原糸の流れ方向に沿って冷却ボックス外に排出させるために、例えば、整流板、整流フィン、イジェクター、ベンチュリ管、虹技株式会社製のトランスベクター等を利用することができる。
As a method of blowing a gas onto a plurality of the raw yarns in a molten state, the raw yarns are blown from at least four directions when viewed in the longitudinal direction of the raw yarns (cross-sectional view of the raw yarns perpendicular to the longitudinal direction of the raw yarns). Blowing gas onto the yarn (so-called circular quench method) is preferred.
In the circular quenching method, gas is blown onto the raw yarn from preferably 8 or more directions, more preferably 16 or more directions.
It is preferable that the direction in which the gas is blown onto the raw yarn is between the direction perpendicular to the direction of flow of the raw yarn and the direction of flow of the raw yarn.
The distance between the ejection hole of the spinning nozzle 104 and the position at which the gas comes into contact with the raw yarn ejected from the ejection hole is determined by the required properties of the multifilament, but is generally shorter. is preferred.
In the step (A), it is preferable that the gas contacting the raw yarn is discharged outside the cooling box along the direction of flow of the raw yarn. In order to discharge the gas coming into contact with the raw yarn out of the cooling box along the flow direction of the raw yarn, for example, a straightening plate, a straightening fin, an ejector, a venturi tube, a transvector manufactured by Nijigi Co., Ltd., or the like is used. be able to.
 前記工程(A)では、複数の前記原糸100Aを第1の引取ロール部107で引き取る。
 具体的には、前記工程(A)では、気体で冷却された複数の前記原糸100Aを第1の引取ロール部107で引き取る。
 前記第1の引取ロール部107は、2つのロールで構成されている。なお、第1の引取ロール部107は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 そして、前記工程(A)では、前記第1の引取ロール部107で引き取った複数本の原糸100Aを第1の巻取ロール部112で巻き取る。
 第1の実施形態では、第1の搬送ロール部108、第2の搬送ロール部109、第3の搬送ロール部110、及び、第4の搬送ロール部111を用いて、前記第1の引取ロール部107で引き取った複数の前記原糸100Aを前記第1の巻取ロール部112まで搬送する。
 各搬送ロール部は、図1においては2つのロールで構成されているが、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
In the step (A), the plurality of raw yarns 100A are taken up by the first take-up roll section 107. As shown in FIG.
Specifically, in the step (A), the plurality of gas-cooled raw yarns 100A are taken up by the first take-up roll section 107 .
The first take-up roll section 107 is composed of two rolls. The first take-up roll unit 107 may be composed of one roll, or may be composed of three or more rolls.
Then, in the step (A), the plurality of raw yarns 100A taken by the first take-up roll section 107 are wound by the first take-up roll section 112 .
In the first embodiment, the first take-up roll is obtained by using the first transport roll unit 108, the second transport roll unit 109, the third transport roll unit 110, and the fourth transport roll unit 111. A plurality of the raw yarns 100A taken by the section 107 are transported to the first winding roll section 112 .
Each transport roll unit is composed of two rolls in FIG. 1, but may be composed of one roll, or may be composed of three or more rolls.
 前記工程(A)では、複数本の前記原糸100Aを、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは25~35℃に冷却する。前記工程(A)では、複数本の前記原糸100Aを、例えば0℃以上に冷却する。
 また、前記工程(A)では、複数本の前記原糸100Aを、好ましくは前記原料組成物のガラス転移温度以上の温度に冷却する。
 前記工程(A)では、0℃以上50℃以下の気体の吹き付けで、複数本の前記原糸を50℃以下まで冷却してもよい。また、前記工程(B)では、0℃以上50℃以下の気体の吹き付けで、複数本の前記原糸100Aをある程度まで冷却し、そして、前記第1の引取ロール部107から前記第1の巻取ロール部112まで複数本の前記原糸100Aを搬送している間に周囲の空気で冷却させて、複数本の前記原糸100Aを50℃以下まで冷却してもよい。
In the step (A), the plurality of raw yarns 100A are cooled to preferably 50°C or lower, more preferably 40°C or lower, still more preferably 25 to 35°C. In the step (A), the plurality of raw yarns 100A are cooled to, for example, 0° C. or higher.
Further, in the step (A), the plurality of raw yarns 100A are preferably cooled to a temperature equal to or higher than the glass transition temperature of the raw material composition.
In the step (A), the plurality of raw yarns may be cooled to 50°C or lower by blowing a gas of 0°C or higher and 50°C or lower. Further, in the step (B), the plurality of raw yarns 100A are cooled to some extent by blowing a gas of 0° C. or more and 50° C. or less, and the first winding from the first take-up roll portion 107 The plurality of raw yarns 100A may be cooled to 50° C. or less by being cooled by ambient air while being transported to the take-up roll section 112 .
 前記工程(B)で原糸を延伸すべく、前記工程(A)では、複数本の前記原糸100Aの延伸を実質的にしないか、或いは、複数本の前記原糸100Aの延伸をあまりしないことが好ましい。
 すなわち、前記工程(A)における延伸倍率が、好ましくは1.5倍以下、より好ましくは1.2倍以下、さらに好ましくは1.05倍以下である。
 前記工程(A)における延伸倍率は、下記式によって求めることができる。
  前記工程(A)における延伸倍率 = 搬送ロール部の速度(m/min) / 前記工程(A)で用いる引取ロール部(第1の実施形態では、「第1の引取ロール部107」)の速度(m/min)
In order to draw the raw yarn in the step (B), in the step (A), the plurality of raw yarns 100A are not substantially drawn, or the plurality of raw yarns 100A are not drawn much. is preferred.
That is, the draw ratio in the step (A) is preferably 1.5 times or less, more preferably 1.2 times or less, and even more preferably 1.05 times or less.
The draw ratio in the step (A) can be determined by the following formula.
Stretch ratio in the step (A) = speed of the transport roll (m/min) / speed of the take-up roll used in the step (A) ("first take-up roll 107" in the first embodiment) (m/min)
 なお、前記工程(A)で用いる引取ロール部の速度(m/min)は、前記工程(A)で用いる引取ロール部(第1の実施形態では、「第1の引取ロール部107」)に引き取られる複数本の前記原糸100Aの単位時間当たりの長さである。
 前記搬送ロール部の速度は、該搬送ロール部で搬送される複数本の前記原糸100Aの単位時間当たりの長さである。
 搬送ロール部を複数用いる場合には、複数のうちで最も高い速度を「搬送ロール部の速度」とする。
The speed (m/min) of the take-up roll used in the step (A) is set to the take-up roll used in the step (A) ("first take-up roll 107" in the first embodiment). It is the length per unit time of the plurality of raw yarns 100A to be taken.
The speed of the transport roll portion is the length per unit time of the plurality of raw yarns 100A transported by the transport roll portion.
When a plurality of transport roll units are used, the highest speed among the plurality is defined as the "speed of the transport roll units".
 搬送ロール部を用いない場合には、前記工程(A)での延伸倍率は1.0倍となる。 When the transport roll part is not used, the draw ratio in the step (A) is 1.0 times.
 なお、図1における前記工程(A)では、複数本の前記原糸100Aを第1の巻取ロール部112で巻き取るが、第1の実施形態では、複数本の前記原糸100Aを第1の巻取ロール部112で巻き取らずに、収容容器に収容させて、原糸を得てもよい。 In the step (A) in FIG. 1, the plurality of raw yarns 100A are wound by the first winding roll unit 112, but in the first embodiment, the plurality of raw yarns 100A are The raw yarn may be obtained by storing it in a storage container without winding it by the winding roll unit 112 .
(工程(B))
 図2に示すように、前記工程(B)では、複数本の前記原糸100Aを加熱し、延伸する。
(Step (B))
As shown in FIG. 2, in the step (B), the plurality of raw yarns 100A are heated and drawn.
 前記工程(B)では、前記第1の巻取ロール部112から、複数本の前記原糸100Aを第2の引取ロール部113で引き取る。
 次に、前記工程(B)では、前記第2の引取ロール部113で引き取った複数本の前記原糸100Aを延伸ロール部114で延伸する。
 そして、前記工程(B)では、前記延伸ロール部114で延伸した複数本の前記原糸100Aを第2の巻取ロール部116で巻き取って、マルチフィラメントを得る。
 また、前記工程(B)では、前記延伸ロール部114で延伸した複数本の前記原糸100Aを熱処理ロール部115で加熱しつつ搬送してもよい。
In the step (B), the plurality of raw yarns 100A are taken up from the first take-up roll 112 by the second take-up roll 113 .
Next, in the step (B), the plurality of raw yarns 100A taken by the second take-up roll section 113 are drawn by the drawing roll section 114 .
Then, in the step (B), the plurality of raw yarns 100A drawn by the drawing roll section 114 are wound by the second winding roll section 116 to obtain a multifilament.
Further, in the step (B), the plurality of raw yarns 100A drawn by the drawing roll section 114 may be heated by the heat treatment roll section 115 and conveyed.
 前記第2の引取ロール部113は、2つのロールで構成されている。なお、第2の引取ロール部113は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 前記工程(B)では、複数本の前記原糸100Aを前記第2の引取ロール部113で加熱することが好ましい。
 前記工程(B)では、複数本の前記原糸100Aを前記第2の引取ロール部113で加熱することにより、複数本の前記原糸100Aに含まれるポリマー成分の配向性を高めるのに適した温度領域内となるように複数本の前記原糸100Aの温度を調整するのが容易となり、その結果、複数本の前記原糸100Aのポリマー成分の配向性を高めやすくなる。
 前記第2の引取ロール部113の温度は、好ましくは15℃以上60℃未満、より好ましくは15~55℃、更に好ましくは15~30℃である。
 なお、前記工程(B)を実施する環境の温度が15℃以上である場合には、複数本の前記原糸100Aを前記第2の引取ロール部113で加熱しなくてもよい。
The second take-up roll section 113 is composed of two rolls. The second take-up roll unit 113 may be composed of one roll, or may be composed of three or more rolls.
Preferably, in the step (B), the plurality of raw yarns 100A are heated by the second take-up roll section 113 .
In the step (B), the plurality of raw yarns 100A are heated by the second take-up roll unit 113, which is suitable for increasing the orientation of the polymer component contained in the plurality of raw yarns 100A. It becomes easy to adjust the temperature of the plurality of raw yarns 100A so as to be within the temperature range, and as a result, it becomes easier to increase the orientation of the polymer component of the plurality of raw yarns 100A.
The temperature of the second take-up roll portion 113 is preferably 15°C or higher and lower than 60°C, more preferably 15°C to 55°C, and even more preferably 15°C to 30°C.
In addition, when the temperature of the environment in which the step (B) is performed is 15° C. or higher, the plurality of raw yarns 100A may not be heated by the second take-up roll section 113 .
 前記延伸ロール部114は、2つのロールで構成されている。なお、延伸ロール部114は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 前記工程(B)では、複数本の前記原糸100Aを前記延伸ロール部114で加熱してもしなくてもよい。
 前記工程(B)では、複数本の前記原糸100Aを前記延伸ロール部114で加熱することにより、複数本の前記原糸100Aに含まれるポリマー成分の結晶化を促進し、あるいは該ポリマー成分の耐熱性を向上させることができる。
 前記延伸ロール部114の温度は、好ましくは30~100℃、より好ましくは40~90℃である。
The stretching roll section 114 is composed of two rolls. The stretching roll unit 114 may be composed of one roll, or may be composed of three or more rolls.
In the step (B), the plurality of raw yarns 100A may or may not be heated by the drawing roll section 114 .
In the step (B), by heating the plurality of raw yarns 100A in the drawing roll unit 114, crystallization of the polymer component contained in the plurality of raw yarns 100A is accelerated, or the polymer component is Heat resistance can be improved.
The temperature of the stretching roll section 114 is preferably 30 to 100.degree. C., more preferably 40 to 90.degree.
 前記熱処理ロール115は、2つのロールで構成されている。なお、前記熱処理ロール115は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 前記工程(B)では、複数本の前記原糸100Aを前記熱処理ロール115で加熱することにより、複数本の前記原糸100Aに含まれるポリマー成分の結晶化を促進し、あるいは該第1の単糸に含まれるポリマー成分の耐熱性を向上させることができる。
 前記熱処理ロール115の温度は、好ましくは60~110℃、より好ましくは80~100℃である。
The heat treatment roll 115 is composed of two rolls. The heat treatment roll 115 may be composed of one roll, or may be composed of three or more rolls.
In the step (B), by heating the plurality of raw yarns 100A with the heat treatment roll 115, crystallization of the polymer component contained in the plurality of raw yarns 100A is promoted, or the first single The heat resistance of the polymer component contained in the thread can be improved.
The temperature of the heat treatment roll 115 is preferably 60 to 110.degree. C., more preferably 80 to 100.degree.
 なお、第1の実施形態の工程(B)では、引取ロール部113、延伸ロール部114、及び、熱処理ロール部115で複数本の前記原糸100Aを加熱しているが、複数本の前記原糸100Aのポリマー成分の配向性、結晶化、及び、耐熱性を制御するという目的を達成するために、複数本の前記原糸100Aを適宜加熱すればよい。
 例えば、原糸用巻取りロール部112で複数本の前記原糸100Aを加熱してもよい。
 また、第2の巻取ロール部116で複数本の前記原糸100Aを加熱して、マルチフィラメントを得てもよい。
 原糸用巻取りロール部112から第2の巻取ロール部116までの全てのロール部で複数本の前記原糸100Aを加熱してもよい。また、原糸用巻取りロール部112から第2の巻取ロール部116の全てのロール部のうちの一部のロール部のみで複数本の前記原糸100Aを加熱し、他のロール部では複数本の前記原糸100Aを加熱しない態様であってもよい。
 なお、ロール部での複数本の前記原糸100Aへの加熱のコントロールは、ロール部それぞれで実施するのが好ましい。
In the step (B) of the first embodiment, the take-up roll section 113, the drawing roll section 114, and the heat treatment roll section 115 heat the plurality of the raw yarns 100A. In order to achieve the purpose of controlling the orientation, crystallization, and heat resistance of the polymer component of the yarn 100A, the plurality of raw yarns 100A may be appropriately heated.
For example, a plurality of the raw yarns 100A may be heated by the raw yarn take-up roll unit 112 .
Alternatively, a plurality of the raw yarns 100A may be heated by the second winding roll portion 116 to obtain a multifilament.
A plurality of the raw yarns 100A may be heated by all the rolls from the raw yarn winding roll 112 to the second winding roll 116 . In addition, the plurality of raw yarns 100A are heated only in some of all the rolls from the raw yarn winding roll 112 to the second winding roll 116, and the other rolls heat the raw yarn 100A. A mode in which the plurality of raw yarns 100A are not heated may be used.
In addition, it is preferable to control the heating of the plurality of raw yarns 100A in the rolls at each of the rolls.
 また、第1の実施形態の工程(B)での複数本の前記原糸100Aのポリマー成分を加熱する方法(以下、単に「加熱方法」ともいう。)は、ロール部のロールを加熱することで、複数本の前記原糸100Aのポリマー成分を加熱する方法であってもよい。
 また、ロール部が、ロールを収容する容器と、該容器に前記ロールとともに収容される液体(水等)とを有し、前記加熱方法が、該液体を加熱することで、複数本の前記原糸100Aのポリマー成分を加熱する方法であってもよい。前記工程(B)では、例えば、浴中延伸を実施してもよい。
 さらに、前記加熱方法が、前記ロール部に、又は、前記ロール部付近に、加熱した気体(例えば、空気等)を吹き付けることで、複数本の前記原糸100Aのポリマー成分を加熱する方法であってもよい。
 また、これらの加熱方法を併用してもよい。
In addition, the method of heating the polymer component of the plurality of yarns 100A in the step (B) of the first embodiment (hereinafter also simply referred to as the "heating method") is to heat the rolls of the roll section. Alternatively, a method of heating the polymer component of the plurality of raw yarns 100A may be used.
Further, the roll unit has a container containing the roll and a liquid (such as water) contained together with the roll in the container, and the heating method heats the liquid to heat the plurality of raw materials. A method of heating the polymer component of the thread 100A may be used. In the step (B), for example, drawing in a bath may be performed.
Further, the heating method is a method of heating the polymer component of the plurality of yarns 100A by blowing a heated gas (e.g., air, etc.) onto the roll or near the roll. may
Moreover, you may use these heating methods together.
 前記工程(B)における延伸倍率は、1.5倍以上、好ましくは1.7倍以上である。前記工程(B)における延伸倍率は、例えば、3.0倍以下である。
 前記工程(B)における延伸倍率が1.5倍以上であることにより、複数本の前記原糸100Aのポリマー成分の配向性がより一層高くなる。
 前記工程(B)における延伸倍率は、下記式によって求めることができる。
  前記工程(B)における延伸倍率 = 延伸ロール部(m/min) / 前記工程(B)で用いる引取ロール部(第1の実施形態では、「第2の引取ロール部113」)の速度(m/min)
The draw ratio in the step (B) is 1.5 times or more, preferably 1.7 times or more. The draw ratio in the step (B) is, for example, 3.0 times or less.
When the draw ratio in the step (B) is 1.5 times or more, the orientation of the polymer component of the plurality of raw yarns 100A is further enhanced.
The draw ratio in the step (B) can be determined by the following formula.
Stretch ratio in the step (B) = stretching roll section (m/min) / speed (m /min)
 前記工程(B)において、下記式で求められる緩和率は、好ましくは1~15%である。
 緩和率(%) = ((前記延伸ロール部114の速度-前記延伸ロール部で延伸された複数本の前記原糸を巻き取る巻取ロール部(第1の実施形態では、「第2の巻取ロール部116」)の速度)/前記延伸ロール部で延伸された複数本の前記原糸を巻き取る巻取ロール部の速度)×100
In the step (B), the relaxation rate obtained by the following formula is preferably 1 to 15%.
Relaxation rate (%) = ((speed of the drawing roll section 114 - winding roll section for winding the plurality of raw yarns drawn by the drawing roll section (in the first embodiment, "second winding speed of the take-up roll section 116 ″))/speed of the take-up roll section for winding the plurality of raw yarns drawn by the drawing roll section)×100
 なお、前記延伸ロール部の速度(m/min)は、延伸ロール部で搬送される延伸用マルチフィラメントの単位時間当たりの長さである。
 第1実施形態では、延伸ロール部を1つのみ用いるが、延伸ロール部を複数用いてもよい。延伸ロール部を複数用いる場合には、複数のうちで最も高い速度を「延伸ロール部の速度」とする。
 前記工程(B)で用いる引取ロール部の速度(m/min)は、該引取ロール部で搬送される延伸用マルチフィラメントの単位時間当たりの長さである。
 前記延伸ロール部で延伸された複数本の前記原糸を巻き取る巻取ロール部の速度(m/min)は、該巻取ロール部に巻き取られる複数本の前記原糸の単位時間当たりの長さである。
The speed (m/min) of the drawing roll section is the length per unit time of the drawing multifilament conveyed by the drawing roll section.
Although only one stretching roll unit is used in the first embodiment, a plurality of stretching roll units may be used. When a plurality of stretching roll units are used, the highest speed among the plurality is defined as "stretch roll unit speed".
The speed (m/min) of the take-up roll used in the step (B) is the length per unit time of the drawing multifilament conveyed by the take-up roll.
The speed (m/min) of the winding roll section that winds the plurality of raw yarns drawn by the drawing roll section is the speed per unit time of the plurality of raw yarns wound on the winding roll section. length.
<第2の実施形態:スピンドロー法>
 次に、第2の実施形態について、図3を参照して説明する。
 なお、第1の実施形態と重複する説明は省略し、第2の実施形態で特に説明がないものは、第1の実施形態で説明したものと同じ内容とする。
<Second Embodiment: Spindraw Method>
Next, a second embodiment will be described with reference to FIG.
Note that explanations that duplicate those of the first embodiment will be omitted, and those that are not specifically explained in the second embodiment will be the same as those explained in the first embodiment.
 第2の実施形態に係るマルチフィラメントの製造方法は、スピンドロー法でマルチフィラメントを製造する方法である。
 スピンドロー法は、溶融物を複数の吐出孔から吐出することで溶融状態の原糸を複数本得る工程と、複数本の前記原糸を延伸ロール部で延伸する工程とを1工程で実施する方法である。スピンドロー法は、「SDY法」や「直接紡糸延伸法」とも呼ばれる。
A method for manufacturing a multifilament according to the second embodiment is a method for manufacturing a multifilament by a spin-draw method.
In the spin-draw method, a step of obtaining a plurality of raw yarns in a molten state by discharging a melt from a plurality of discharge holes, and a step of drawing the plurality of raw yarns by a drawing roll unit are carried out in one step. The method. The spin-draw method is also called the “SDY method” or the “direct spinning drawing method”.
 第2の実施形態の前記工程(B)では、図3に示すように、工程(A)で得られた複数本の前記原糸100Aを引取ロール部207で引き取る。
 次に、引取ロール部207で引き取った複数本の前記原糸100Aを、3つの延伸ロール部(第1の延伸ロール部208、第2の延伸ロール部209、及び、第3の延伸ロール部210)で延伸する。
 そして、前記工程(B)では、前記延伸ロール部で延伸された複数本の前記原糸100Aを巻取ロール部212で巻き取ることで、マルチフィラメントを得る。
 また、前記工程(B)では、前記延伸ロール部で延伸された複数本の前記原糸をテイクオフロール部211で搬送してもよい。
In the step (B) of the second embodiment, as shown in FIG. 3, the plurality of yarns 100A obtained in the step (A) are taken up by a take-up roll section 207. As shown in FIG.
Next, the plurality of raw yarns 100A taken by the take-up roll unit 207 are passed through three draw roll units (a first draw roll unit 208, a second draw roll unit 209, and a third draw roll unit 210). ).
Then, in the step (B), the plurality of raw yarns 100A drawn by the drawing roll section are wound by the winding roll section 212 to obtain a multifilament.
Further, in the step (B), the take-off roll section 211 may transport the plurality of raw yarns drawn by the drawing roll section.
 前記工程(A)では、複数本の前記原糸100Aを第1の冷却ボックス105で冷却し、前記工程(B)では、複数本の前記原糸100Aを引取ロール部207で引き取る。
 なお、第1の冷却ボックス105で冷却した複数本の前記原糸100Aを第2の冷却ボックス106で冷却してもよい。
 引取ロール部207は、図1においては2つのロールで構成されているが、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
In the step (A), the plurality of raw yarns 100A are cooled in the first cooling box 105, and in the step (B), the plurality of raw yarns 100A are taken up by the take-up roll section 207.
The plurality of raw yarns 100A cooled in the first cooling box 105 may be cooled in the second cooling box 106.
Although the take-up roll unit 207 is composed of two rolls in FIG. 1, it may be composed of one roll, or may be composed of three or more rolls.
 各延伸ロール部208、209、210は、図1においては2つのロールで構成されているが、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 複数本の前記原糸100Aに含まれるポリマー成分の結晶化を促進させる、あるいは複数本の前記原糸100Aに含まれるポリマー成分の耐熱性を向上させるという観点から、各延伸ロール部208、209、210の温度は、好ましくは30~100℃、より好ましくは40~90℃である。
Each drawing roll unit 208, 209, 210 is composed of two rolls in FIG. 1, but may be composed of one roll, or may be composed of three or more rolls.
From the viewpoint of promoting the crystallization of the polymer component contained in the plurality of raw yarns 100A or improving the heat resistance of the polymer component contained in the plurality of raw yarns 100A, each of the drawing rolls 208, 209, The temperature of 210 is preferably 30-100°C, more preferably 40-90°C.
 本実施形態において、紡糸ドラフト数値(NDR)は、好ましくは50以上、より好ましくは80以上である。また、NDRは、通常、5000以下である。
 NDRは、下記式で求めることができる。
  NDR = 紡糸ノズルから糸を最初に引き取る引取ロール部(最初の引取ロール部)の速度(m/min) / 紡糸ノズル流速(m/min)
 NDRが50以上であることにより、複数本の前記原糸100Aに含まれるポリマー成分の配向性を高めることができ、その結果、マルチフィラメントの強度をより一層高めることができる。
 なお、第1の実施形態(逐次延伸法)では、最初の引取ロール部は、複数本の前記原糸100Aを引き取る第1の引取ロール部107である。
 また、第2の実施形態(スピンドロー法)では、最初の引取ロール部は、複数本の前記原糸100Aを引き取る引取ロール部207である。
In this embodiment, the spin draft number (NDR) is preferably 50 or higher, more preferably 80 or higher. Also, the NDR is usually 5000 or less.
NDR can be calculated by the following formula.
NDR = Speed (m/min) of the take-up roll section (first take-up roll section) that first takes the yarn from the spinning nozzle/spinning nozzle flow rate (m/min)
When the NDR is 50 or more, the orientation of the polymer component contained in the plurality of raw yarns 100A can be enhanced, and as a result, the strength of the multifilament can be further enhanced.
In addition, in the first embodiment (sequential drawing method), the initial take-off roll portion is the first take-off roll portion 107 that takes off the plurality of raw yarns 100A.
Further, in the second embodiment (spin-draw method), the first take-up roll unit is the take-up roll unit 207 that takes over the plurality of raw yarns 100A.
(本実施形態に係るマルチフィラメント)
 次に、本実施形態に係るマルチフィラメントについて説明する。
(Multifilament according to the present embodiment)
Next, the multifilament according to this embodiment will be described.
 本実施形態に係るマルチフィラメントは、単糸を複数有する。
 前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有する樹脂組成物で形成されている。
 前記単糸の繊度の平均値は、0.5~8.0dtexである。
 前記単糸の融着率は、18%以下である。
The multifilament according to this embodiment has a plurality of single yarns.
The single yarn is made of a resin composition containing a poly(3-hydroxyalkanoate) resin and a polyglycerin fatty acid ester.
The average fineness of the single yarn is 0.5 to 8.0 dtex.
The fusion rate of the single yarn is 18% or less.
 前記樹脂組成物は、ポリマー成分及び添加剤を含有する。
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含む。
 また、前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂以外に、上述した他のポリマーを含有してもよい。
The resin composition contains a polymer component and additives.
The polymer component includes a poly(3-hydroxyalkanoate)-based resin.
Moreover, the polymer component may contain other polymers described above in addition to the poly(3-hydroxyalkanoate)-based resin.
 前記添加剤は、ポリグリセリン脂肪酸エステルを含有する。前記添加剤は、ポリグリセリン脂肪酸エステル以外に、上述した他の添加剤を含有してもよい。 The additive contains polyglycerol fatty acid ester. The additive may contain other additives described above in addition to the polyglycerol fatty acid ester.
 前記マルチフィラメントは、前記マルチフィラメントの製造方法で作製することができる。 The multifilament can be produced by the method for producing the multifilament.
 前記樹脂組成物の重量平均分子量は、マルチフィラメントを加工して加工製品を得る際の加工性に優れるという観点から、好ましくは2.0×10~6.0×10、より好ましくは2.3×10~4.0×10である。 The weight-average molecular weight of the resin composition is preferably 2.0×10 5 to 6.0×10 5 , more preferably 2, from the viewpoint of excellent processability when processing multifilament to obtain a processed product. .3×10 5 to 4.0×10 5 .
 また、前記マルチフィラメントは、単糸を、好ましくは30本以上、より好ましくは30~300,000本、更に好ましくは50~300,000本有する。 In addition, the multifilament preferably has 30 or more, more preferably 30 to 300,000, even more preferably 50 to 300,000 single filaments.
 前記単糸の繊度の平均値は、0.5~8.0dtexである。これにより、マルチフィラメントは、様々な用途に用いることができる。例えば、マルチフィラメントは、紡績糸を作製するための材料として用いることができる。
 前記単糸の繊度の平均値は、好ましくは1.0dtex以上、より好ましくは1.5dtex以上である。
 前記単糸の繊度の平均値は、好ましくは5.0dtex以下、より好ましくは3.0dtex以下である。
The average fineness of the single yarn is 0.5 to 8.0 dtex. Therefore, the multifilament can be used for various purposes. For example, multifilaments can be used as materials for making spun yarns.
The average fineness of the single yarn is preferably 1.0 dtex or more, more preferably 1.5 dtex or more.
The average fineness of the single yarn is preferably 5.0 dtex or less, more preferably 3.0 dtex or less.
 本実施形態において、単糸の繊度の平均値は、以下のようにして求めることができる。
 まず、マルチフィラメントの繊度(総繊度)を測定する。また、マルチフィラメントに含まれる単糸の本数を求める。
 そして、下記式から単糸の繊度の平均値を求める。
  単糸の繊度の平均値 = マルチフィラメントの繊度/マルチフィラメントに含まれる単糸の本数
In the present embodiment, the average fineness of single yarns can be obtained as follows.
First, the fineness (total fineness) of the multifilament is measured. Also, the number of single yarns contained in the multifilament is obtained.
Then, the average value of the fineness of the single yarn is obtained from the following formula.
Average fineness of single yarn = fineness of multifilament / number of single yarns contained in multifilament
 前記単糸の繊度の変動係数は、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは25%以下、さらに好ましくは20%以下、特に好ましくは15%以下である。
 前記単糸の繊度の変動係数は小さいことが好ましいが、前記単糸の繊度の変動係数は、例えば、5%以上、より具体的には10%以上である。
The variation coefficient of the fineness of the single yarn is preferably 40% or less, more preferably 30% or less, still more preferably 25% or less, even more preferably 20% or less, and particularly preferably 15% or less.
It is preferable that the coefficient of variation of the fineness of the single yarn is small, and the coefficient of variation of the fineness of the single yarn is, for example, 5% or more, more specifically 10% or more.
 前記単糸の繊度の変動係数は、以下のようにして求めることができる。
 まず、マルチフィラメントを長手方向に垂直となるように刃物で切断し、切断面を顕微鏡で撮影して断面写真を得る。
 次に、該断面写真において、マルチフィラメントを構成する全ての単糸について、各単糸の断面積を測定する。あるいは、マルチフィラメントから単糸を30本以上複数無作為に選択し、各単糸の断面積を測定する。すなわち、マルチフィラメントを構成する全ての単糸について、各単糸の断面積を測定するのが現実的ではない場合があるので、マルチフィラメントから単糸を30本以上無作為に選択し、各単糸の断面積を測定してもよい。
 そして、各単糸の断面積から、単糸の断面積の算術平均値、及び、単糸の断面積の標準偏差を求める。
 次に、下記式より、単糸の繊度の変動係数を求める。
  単糸の繊度の変動係数(%) = (単糸の断面積の標準偏差/単糸の断面積の算術平均値)×100(%)
 なお、断面積の測定方法については、JIS L 1015:2021「化学繊維ステープル試験方法」の「8.5.3 繊度変動率」などにも記載されている。
The variation coefficient of the fineness of the single yarn can be obtained as follows.
First, the multifilament is cut with a knife so as to be perpendicular to the longitudinal direction, and the cut surface is photographed with a microscope to obtain a cross-sectional photograph.
Next, in the cross-sectional photograph, the cross-sectional area of each single yarn is measured for all the single yarns constituting the multifilament. Alternatively, 30 or more single yarns are randomly selected from the multifilament, and the cross-sectional area of each single yarn is measured. That is, since it may not be practical to measure the cross-sectional area of each single yarn for all the single yarns that make up the multifilament, 30 or more single yarns are randomly selected from the multifilament, and each single yarn is The cross-sectional area of the thread may be measured.
Then, from the cross-sectional area of each single yarn, the arithmetic mean value of the cross-sectional area of the single yarn and the standard deviation of the cross-sectional area of the single yarn are obtained.
Next, the coefficient of variation of the fineness of the single yarn is obtained from the following formula.
Coefficient of variation of fineness of single yarn (%) = (standard deviation of cross-sectional area of single yarn/arithmetic mean value of cross-sectional area of single yarn) x 100 (%)
The method for measuring the cross-sectional area is also described in JIS L 1015:2021 "Test method for chemical fiber staples", "8.5.3 Fineness fluctuation rate".
 前記単糸の引張強度の平均値は、好ましくは1.5cN/dtex以上、より好ましくは1.7cN/dtex以上、さらに好ましくは2.0cN/dtex以上である。
 前記単糸の引張強度の平均値は大きいほうが好ましいが、前記単糸の引張強度の平均値は、例えば、10cN/dtex以下である。
The average tensile strength of the single yarn is preferably 1.5 cN/dtex or more, more preferably 1.7 cN/dtex or more, and still more preferably 2.0 cN/dtex or more.
The single yarn preferably has a large average tensile strength, but the average tensile strength of the single yarn is, for example, 10 cN/dtex or less.
 単糸の引張強度の平均値は、以下のようにして求めることができる。
 まず、マルチフィラメントを構成する全ての単糸について、各単糸の引張強度を測定する。あるいは、マルチフィラメントから単糸を10本以上無作為に選択し、各単糸の引張強度を測定する。すなわち、マルチフィラメントを構成する全ての単糸について、各単糸の引張強度を測定するのが現実的ではない場合があるので、マルチフィラメントから単糸を10本以上無作為に選択し、各単糸の引張強度を測定してもよい。
 そして、各単糸の引張強度から単糸の引張強度の算術平均値を求め、この値を単糸の引張強度の平均値とする。
The average tensile strength of single yarns can be obtained as follows.
First, the tensile strength of each single yarn is measured for all the single yarns constituting the multifilament. Alternatively, 10 or more single yarns are randomly selected from the multifilament, and the tensile strength of each single yarn is measured. That is, since it may not be practical to measure the tensile strength of each single yarn for all the single yarns that make up the multifilament, 10 or more single yarns are randomly selected from the multifilament, Yarn tensile strength may be measured.
Then, the arithmetic average value of the tensile strength of the single yarn is obtained from the tensile strength of each single yarn, and this value is taken as the average value of the tensile strength of the single yarn.
 各単糸の引張強度は、JIS L 1015:2021「化学繊維ステープル試験方法」に基づき、初期長20mm、速度20mm/minで測定することができる。
 例えば、各単糸の引張強度は、以下のようにして求めることができる。
 まず、引張測定装置オートグラフAG-I(島津製作所社製)を用いて、下記条件で、各単糸の切断時の荷重(cN)を測定する。
  各単糸の初期長さ:20mm
  引張速度:20mm/min
  ロードセル:定格容量が5Nであるロードセル
 また、各単糸の繊度を測定する。各単糸の繊度は、例えば、オートバイブロスコープ法で測定することができる。
 そして、下記式により、各単糸の引張強度を算出する。
  各単糸の引張強度(cN/dtex) = 各単糸の切断時の荷重(cN)/各単糸の繊度
The tensile strength of each single yarn can be measured at an initial length of 20 mm and a speed of 20 mm/min based on JIS L 1015:2021 "Chemical fiber staple test method".
For example, the tensile strength of each single yarn can be determined as follows.
First, using a tension measuring device Autograph AG-I (manufactured by Shimadzu Corporation), the load (cN) at the time of cutting each single yarn is measured under the following conditions.
Initial length of each single yarn: 20mm
Tensile speed: 20mm/min
Load cell: A load cell with a rated capacity of 5N Also, the fineness of each single yarn is measured. The fineness of each single yarn can be measured, for example, by an autoburoscope method.
Then, the tensile strength of each single yarn is calculated by the following formula.
Tensile strength of each single yarn (cN/dtex) = load at breaking of each single yarn (cN) / fineness of each single yarn
 前記単糸の融着率は、18%以下、好ましくは15%以下、より好ましくは10%以下である。融着率が18%以下であれば、例えば、マルチフィラメントを切断することによりステープルを製造する際に、高い収率でステープルを製造することができる。
 前記単糸の融着率は、小さいほど好ましいが、例えば、0.1%以上である。
The fusion rate of the single yarn is 18% or less, preferably 15% or less, more preferably 10% or less. If the fusion rate is 18% or less, staples can be produced at a high yield, for example, when staples are produced by cutting multifilaments.
The fusion rate of the single yarn is preferably as small as possible, but is, for example, 0.1% or more.
 前記単糸の融着率は、以下のようにして求めることができる。
 まず、マルチフィラメントに対して、マルチフィラメントの長手方向に垂直な面で該マルチフィラメントを切断することにより、該マルチフィラメントに含まれる単糸全てを切断する。
 次に、走査型電子顕微鏡(SEM)を用いて、該マルチフィラメントの切断面を観察して、該切断面におけるマルチフィラメントに含まれる単糸の総数と、該切断面において他の単糸に融着している単糸の数(「『該マルチフィラメントに含まれる単糸の総数』から『他の単糸に融着していない単糸の数』を引いた数」でもある。)とを数える。
 そして、下記式により、融着率を求める。
  融着率(%) = (切断面において他の単糸に融着している単糸の数/切断面におけるマルチフィラメントに含まれる単糸の総数)×100
The fusion rate of the single yarn can be determined as follows.
First, by cutting the multifilament along a plane perpendicular to the longitudinal direction of the multifilament, all single yarns contained in the multifilament are cut.
Next, using a scanning electron microscope (SEM), the cut surface of the multifilament is observed to determine the total number of single yarns contained in the multifilament on the cut surface and the number of single yarns fused to other single yarns on the cut surface. The number of single yarns attached (also ``the number obtained by subtracting ``the number of single yarns not fused to other single yarns'' from the ``total number of single yarns contained in the multifilament'') count.
Then, the fusion rate is obtained by the following formula.
Fusion rate (%) = (number of single yarns fused to other single yarns on the cut surface/total number of single yarns contained in the multifilament on the cut surface) x 100
 前記マルチフィラメントは、糸状のまま用いてもよい。
 また、マルチフィラメントを切断することにより、長さが20cm以下であるステープルを得てもよい。また、該ステープルは、糸状のまま用いてもよい。
 また、前記マルチフィラメント及び/又はステープルを用いて繊維製品(繊維体)を作製してもよい。
 該繊維製品は、種々の形状(例えば、不織布状など)にすることができる。
 マルチフィラメント、ステープル、及び、繊維製品は、従来公知の用途に好適に使用することができる。
 マルチフィラメント、ステープル、及び、繊維製品は、例えば、農業(例えば、園芸など)、漁業、林業、医療業、食品産業などの分野において好適に使用することができる。
 また、前記繊維製品としては、例えば、衣料、カーテン、絨毯、鞄、靴、ワイピング材、衛生品、自動車部材、建材、ろ過材(フィルター)等が挙げられる。
The multifilament may be used as it is in filament form.
Staples having a length of 20 cm or less may also be obtained by cutting multifilaments. Also, the staple may be used as it is in the form of filament.
Further, a textile product (fiber body) may be produced using the multifilament and/or staple.
The fiber product can be made into various shapes (for example, non-woven fabric, etc.).
Multifilaments, staples, and textiles can be suitably used for conventionally known applications.
Multifilaments, staples, and fiber products can be suitably used in fields such as agriculture (for example, gardening), fishery, forestry, medical industry, and food industry.
Examples of the textile products include clothes, curtains, carpets, bags, shoes, wiping materials, sanitary products, automobile members, building materials, and filtering materials (filters).
 なお、本発明は、上記実施形態に限定されるものではない。また、本発明は、上記した作用効果によって限定されるものでもない。さらに、本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the above embodiments. Moreover, the present invention is not limited by the above effects. Furthermore, the present invention can be modified in various ways without departing from the gist of the present invention.
 本実施形態に係るマルチフィラメントの製造方法は、溶融紡糸法により、複数の吐出孔を有する紡糸ノズルを用いて、単糸を複数有するマルチフィラメントを製造する、マルチフィラメントの製造方法である。
 また、本実施形態に係るマルチフィラメントの製造方法は、原料組成物を加熱により溶融させ、溶融した原料組成物を前記吐出孔から吐出することにより原糸を複数本得る工程(A)と、複数本の前記原糸を延伸することにより、前記マルチフィラメントを得る工程(B)とを含む。
 前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有する。
 前記工程(A)では、前記原料組成物の融点以上で、且つ、該融点から25.0℃高い温度以下の温度範囲で、前記原料組成物を加熱する。
 前記単糸の繊度の平均値は、0.5~8.0dtexである。
The multifilament production method according to the present embodiment is a multifilament production method in which a multifilament having a plurality of single yarns is produced by a melt spinning method using a spinning nozzle having a plurality of discharge holes.
Further, the method for producing a multifilament according to the present embodiment includes a step (A) of obtaining a plurality of raw yarns by melting a raw material composition by heating and discharging the melted raw material composition from the discharge hole; and a step (B) of obtaining the multifilament by drawing the raw yarn of the book.
The raw material composition contains a poly(3-hydroxyalkanoate)-based resin and a polyglycerin fatty acid ester.
In the step (A), the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than the temperature higher than the melting point by 25.0°C.
The average fineness of the single yarn is 0.5 to 8.0 dtex.
 本実施形態に係るマルチフィラメントの製造方法は、前記原料組成物がポリグリセリン脂肪酸エステルを含有し、且つ、前記工程(A)では、前記原料組成物の融点から25.0℃高い温度以下で前記原料組成物を加熱することによって、単糸の繊度の平均値が小さいにも関わらず、原糸からマルチフィラメントを得る際に原糸が切れるのを抑制し、且つ、単糸どうしの融着を抑制し得る。 In the method for producing a multifilament according to the present embodiment, the raw material composition contains a polyglycerol fatty acid ester, and in the step (A), the above-mentioned By heating the raw material composition, although the average value of fineness of the single yarn is small, it is possible to suppress the breakage of the raw yarn when obtaining the multifilament from the raw yarn, and to prevent the fusion of the single yarns. can be suppressed.
 この理由は、以下と考えられる。
 加熱された原料組成物の流動性が、ポリグリセリン脂肪酸エステルによって高まることにより、前記工程(A)での加熱温度(以下、「紡糸温度」ともいう。)を低く設定しても、ポリグリセリン脂肪酸エステルを用いない態様に比べて、原糸からマルチフィラメントを得る際に原糸が切れ難くなる。
 また、紡糸温度を低く設定することにより、原糸に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂が低分子化され難くなり、その結果、原糸の強度が低下し難くなる。
 また、前記ポリグリセリン脂肪酸エステルは、原糸の滑性を高めることができ、単糸どうしの融着を抑制し得ると考えられる。
 さらに、前記工程(A)では、前記原料組成物の融点から25.0℃高い温度以下で前記原料組成物を加熱することによって、原糸の温度が、原糸が融着しにくい温度領域内(原糸表面部分が結晶化するのに適した温度領域内)になっていると考えられる。その結果、単糸どうしの融着を抑制しやすくなると考えられる。
The reason for this is considered as follows.
The fluidity of the heated raw material composition is increased by the polyglycerin fatty acid ester, so that even if the heating temperature in the step (A) (hereinafter also referred to as "spinning temperature") is set low, polyglycerin fatty acid can be obtained. Compared with the embodiment in which no ester is used, the raw yarn is less likely to break when the multifilament is obtained from the raw yarn.
In addition, by setting the spinning temperature low, the poly(3-hydroxyalkanoate) resin contained in the raw yarn is less likely to be reduced in molecular weight, and as a result, the strength of the raw yarn is less likely to decrease.
In addition, the polyglycerin fatty acid ester is thought to be able to improve the lubricity of the raw yarn and suppress fusion between the single yarns.
Furthermore, in the step (A), by heating the raw material composition at a temperature higher than the melting point of the raw material composition by 25.0 ° C. or less, the temperature of the raw yarn is within a temperature range where the raw yarn is difficult to fuse. (within a temperature range suitable for crystallizing the surface portion of the raw yarn). As a result, it is considered that it becomes easier to suppress the fusion between the single yarns.
 また、本実施形態に係るマルチフィラメントの製造方法では、紡糸温度を低く設定することにより、前記工程(A)での原糸の温度斑を小さくでき、その結果、原糸が切れ難くなるという効果もある。前記工程(A)での原糸の温度斑を小さくできることにより、単糸の繊度のバラツキを抑制できるという効果もある。 In addition, in the method for producing a multifilament according to the present embodiment, by setting the spinning temperature low, the temperature unevenness of the raw yarn in the step (A) can be reduced, and as a result, the raw yarn is difficult to break. There is also By reducing the temperature variation of the raw yarn in the step (A), there is also an effect that the variation in the fineness of the single yarn can be suppressed.
 また、本実施形態に係るマルチフィラメントの製造方法は、前記工程(A)では、複数本の前記原糸を50℃以下に冷却し、前記工程(B)では、前記工程(A)で冷却された複数本の前記原糸を加熱し、延伸する。 Further, in the method for manufacturing a multifilament according to the present embodiment, in the step (A), the plurality of raw yarns are cooled to 50 ° C. or less, and in the step (B), the cooled in the step (A). The plurality of raw yarns are heated and drawn.
 本実施形態に係るマルチフィラメントの製造方法では、前記工程(A)で50℃以下に冷却された複数本の前記原糸を前記工程(B)で加熱して延伸することにより、周囲の空気で複数本の原糸を冷却しながら延伸するスピンドロー法(SDY法)に比べて、複数本の原糸を延伸する際に、ポリ(3-ヒドロキシアルカノエート)樹脂を含めたポリマー成分の配向性を高めるのに適した温度領域内となるように複数本の原糸の温度を調整するのが容易となり、その結果、複数本の原糸のポリマー成分の配向性を高めやすくなる。
 よって、本実施形態に係るマルチフィラメントの製造方法によれば、マルチフィラメントの強度を高めやすくなる。
In the method for producing a multifilament according to the present embodiment, the plurality of raw yarns cooled to 50 ° C. or less in the step (A) are heated and stretched in the step (B), so that the Compared to the spin-draw method (SDY method) in which multiple yarns are drawn while being cooled, the orientation of polymer components including poly(3-hydroxyalkanoate) resin when drawing multiple yarns It becomes easy to adjust the temperature of the plurality of raw yarns so as to be within a temperature range suitable for increasing the temperature, and as a result, it becomes easy to increase the orientation of the polymer components of the plurality of raw yarns.
Therefore, according to the method for manufacturing a multifilament according to the present embodiment, it becomes easier to increase the strength of the multifilament.
〔開示項目〕
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
〔項目1〕
 溶融紡糸法により、複数の吐出孔を有する紡糸ノズルを用いて、単糸を複数有するマルチフィラメントを製造する、マルチフィラメントの製造方法であって、
原料組成物を加熱により溶融させ、溶融した原料組成物を前記吐出孔から吐出することにより原糸を複数本得る工程(A)と、
複数本の前記原糸を延伸することにより、前記マルチフィラメントを得る工程(B)とを含み、
前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有し、
前記工程(A)では、前記原料組成物の融点以上で、且つ、該融点から25.0℃高い温度以下の温度範囲で、前記原料組成物を加熱し、
前記単糸の繊度の平均値が、0.5~8.0dtexである、マルチフィラメントの製造方法。
[Item 1]
A multifilament production method for producing a multifilament having a plurality of single yarns by a melt spinning method using a spinning nozzle having a plurality of discharge holes,
A step (A) of obtaining a plurality of raw yarns by melting the raw material composition by heating and discharging the melted raw material composition from the discharge hole;
A step (B) of obtaining the multifilament by drawing a plurality of the raw yarns,
The raw material composition contains a poly(3-hydroxyalkanoate)-based resin and a polyglycerol fatty acid ester,
In the step (A), the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than a temperature higher than the melting point by 25.0°C;
A method for producing a multifilament, wherein the single yarn has an average fineness of 0.5 to 8.0 dtex.
〔項目2〕
 前記工程(B)における延伸倍率が1.5~3.0倍である、項目1に記載のマルチフィラメントの製造方法。
[Item 2]
The method for producing a multifilament according to item 1, wherein the draw ratio in the step (B) is 1.5 to 3.0 times.
〔項目3〕
 前記原料組成物は、前記ポリ(3-ヒドロキシアルカノエート)樹脂100重量部に対し、前記ポリグリセリン脂肪酸エステルを0.5~5.0重量部含有する、項目1又は2に記載のマルチフィラメントの製造方法。
[Item 3]
The multifilament according to item 1 or 2, wherein the raw material composition contains 0.5 to 5.0 parts by weight of the polyglycerin fatty acid ester with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin. Production method.
〔項目4〕
 前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量が3.0×10~7.0×10である、項目1~3の何れか1項に記載のマルチフィラメントの製造方法。
[Item 4]
The multifilament product according to any one of items 1 to 3, wherein the poly(3-hydroxyalkanoate) resin in the raw material composition has a weight average molecular weight of 3.0×10 5 to 7.0×10 5 . Production method.
〔項目5〕
 前記工程(A)では、複数本の前記原糸を50℃以下に冷却し、
前記工程(B)では、前記工程(A)で冷却された複数本の前記原糸を加熱し、延伸する、項目1~4の何れか1項に記載のマルチフィラメントの製造方法。
[Item 5]
In the step (A), the plurality of raw yarns are cooled to 50 ° C. or less,
5. The method for producing a multifilament according to any one of items 1 to 4, wherein in the step (B), the plurality of raw yarns cooled in the step (A) are heated and drawn.
〔項目6〕
 前記工程(A)では、複数本の前記原糸を巻取ロール部で巻取り、
前記工程(B)では、前記巻取ロール部で巻き取った複数本の前記原糸を延伸する、項目1~5の何れか1項に記載のマルチフィラメントの製造方法。
[Item 6]
In the step (A), a plurality of the raw yarns are wound by a winding roll,
6. The method for producing a multifilament according to any one of items 1 to 5, wherein in the step (B), the plurality of raw yarns wound by the winding roll unit are drawn.
〔項目7〕
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、単独重合体及び/又は共重合体を含み、構成単位として3-ヒドロキシブチレートを80モル%以上含有する、項目1~6の何れか1項に記載のマルチフィラメントの製造方法。
[Item 7]
Any one of items 1 to 6, wherein the poly(3-hydroxyalkanoate)-based resin contains a homopolymer and/or copolymer and contains 80 mol% or more of 3-hydroxybutyrate as a structural unit. The method for producing the multifilament according to 1.
〔項目8〕
 単糸を複数有するマルチフィラメントであって、
前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有する樹脂組成物で形成され、
前記単糸の繊度の平均値が、0.5~8.0dtexであり、
前記単糸の融着率が、18%以下である、マルチフィラメント。
[Item 8]
A multifilament having a plurality of single yarns,
The single yarn is formed of a resin composition containing a poly(3-hydroxyalkanoate) resin and a polyglycerin fatty acid ester,
The average value of the fineness of the single yarn is 0.5 to 8.0 dtex,
A multifilament, wherein the single yarn has a fusion rate of 18% or less.
〔項目9〕
 前記樹脂組成物の重量平均分子量が、2.0×10~6.0×10である、項目8に記載のマルチフィラメント。
[Item 9]
The multifilament according to item 8, wherein the resin composition has a weight average molecular weight of 2.0×10 5 to 6.0×10 5 .
 次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。 Next, the present invention will be described more specifically with reference to examples and comparative examples. It should be noted that the present invention is by no means limited to these examples.
<材料>
 原料組成物を作製するのに下記の材料を用いた。
  ポリ(3-ヒドロキシアルカノエート)系樹脂(P3HA)として、(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂(3-ヒドロキシヘキサノエートの割合:6mol%、重量平均分子量(Mw):582,936)(P3HB3HH)
  ポリ(3-ヒドロキシアルカノエート)系樹脂(P3HA)として、(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂(3-ヒドロキシヘキサノエートの割合:6mol%、重量平均分子量(Mw):379,967)(P3HB3HH)
  ポリグリセリン脂肪酸エステル(ポリグリセリンと、パルミチン酸及びステアリン酸とのエステル)(太陽化学社製、チラバゾールVR-08)(PGFE)(重量平均分子量(Mw):1,700)
  アミド結合を有する滑剤たるエルカ酸アミド(EA)
  アミド結合を有する滑剤たるベヘン酸アミド(BA)
  結晶核剤たるペンタエリスリトール(PETL)(日本合成化学社製、ノイライザ―P)
  可塑剤たるアゾジカルボンアミド(ADCA)
<Material>
The following materials were used to make the raw material composition.
As poly(3-hydroxyalkanoate) resin (P3HA), (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin (percentage of 3-hydroxyhexanoate: 6 mol%, weight average molecular weight (Mw): 582,936) (P3HB3HH)
As poly(3-hydroxyalkanoate) resin (P3HA), (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin (percentage of 3-hydroxyhexanoate: 6 mol%, weight average molecular weight (Mw): 379,967) (P3HB3HH)
Polyglycerin fatty acid ester (ester of polyglycerin with palmitic acid and stearic acid) (Taiyo Kagaku Co., Ltd., Tirabazole VR-08) (PGFE) (weight average molecular weight (Mw): 1,700)
Erucamide (EA), a Lubricant with Amide Bonds
Behenic acid amide (BA) as a lubricant having an amide bond
Crystal nucleating agent pentaerythritol (PETL) (manufactured by Nippon Synthetic Chemical Co., Ltd., Neurizer-P)
Azodicarbonamide (ADCA) plasticizer
<実施例1-1>
 第1の実施形態の方法(逐次延伸法)によりマルチフィラメントを作製した。
<Example 1-1>
A multifilament was produced by the method of the first embodiment (sequential drawing method).
(工程(A))
 まず、上記の材料を下記表1の配合割合でドライブレンドし、ドライブレンドした材料を押出機により150℃で溶融混練してペレット状の原料組成物を得た。
 なお、下記表1、2において、各材料の含有量は、P3HB3HH100重量部に対する各材料の量(重量部)である。また、「重量部」を単に「部」と表している。
(Step (A))
First, the above materials were dry-blended in the proportions shown in Table 1 below, and the dry-blended materials were melt-kneaded at 150° C. by an extruder to obtain a raw material composition in the form of pellets.
In Tables 1 and 2 below, the content of each material is the amount (parts by weight) of each material with respect to 100 parts by weight of P3HB3HH. Also, "parts by weight" are simply expressed as "parts".
 該ペレット状の原料組成物の融点は、147.6℃であった。 The melting point of the pellet-shaped raw material composition was 147.6°C.
 また、該ペレット状の原料組成物の160℃でのメルトフローレート(「メルトマスフローレート」や「MFR」ともいう。)は、10.0g/10minであった。
 なお、160℃でのMFRは、ASTM-D1238(ISO1133-1、JIS K7210-1:2011)に準拠した方法で求めた。
 また、ベレット状の原料組成物の160℃でのMFRは、ベレット状の原料組成物5g以上を160℃で4分間加熱した後、加熱したベレット状の原料組成物に5kgの荷重をかけて測定した。
The melt flow rate (also referred to as “melt mass flow rate” or “MFR”) of the pellet-shaped raw material composition at 160° C. was 10.0 g/10 min.
The MFR at 160° C. was determined by a method according to ASTM-D1238 (ISO1133-1, JIS K7210-1:2011).
In addition, the MFR of the pellet-shaped raw material composition at 160 ° C. is measured by heating 5 g or more of the pellet-shaped raw material composition at 160 ° C. for 4 minutes, and then applying a load of 5 kg to the heated pellet-shaped raw material composition. did.
 そして、図1に示すように、混練押出機102(単軸押出機、スクリュー径:25mm)でベレット状の原料組成物を溶融して、溶融した原料組成物(「溶融物」ともいう。)を得た。
 そして、該溶融物を紡糸ノズル104(紡糸温度:168℃、吐出孔の数:180箇所、吐出孔の形状:円形、吐出孔の直径:0.3mm)から吐出して、原糸100Aを180本得た。
 なお、溶融物の流量は、ギアポンプ103で2.0kg/hに調整した。
Then, as shown in FIG. 1, the pellet-shaped raw material composition is melted with a kneading extruder 102 (single-screw extruder, screw diameter: 25 mm) to form a melted raw material composition (also referred to as a "melt"). got
Then, the melt is discharged from a spinning nozzle 104 (spinning temperature: 168° C., number of discharge holes: 180, shape of discharge holes: circular, diameter of discharge holes: 0.3 mm), and 180 raw yarns 100A are discharged. I really got it.
The flow rate of the melt was adjusted to 2.0 kg/h by the gear pump 103.
 冷却ボックス105で180本の原糸100Aに10℃の空気(「クエンチエア」ともいう。)を0.1m/sの速度でサーキュラークエンチ法により吹き付けた。なお、冷却ボックス106では、気体を吹き付けなかった。
 次に、冷却ボックスで冷却された180本の原糸100Aを第1の引取ロール部107(370m/min)で引き取り、180本の原糸100Aが第1の搬送ロール部108(408m/min)、第2の搬送ロール部109(408m/min、70℃)、第3の搬送ロール部110(408m/min)、第4の搬送ロール部111(400m/min)を順に通った後に、180本の原糸100Aを第1の巻取ロール部(389m/min)で巻き取り、室温(5~35℃)で18時間保管した。
 第1の巻取ロール部で巻き取った原糸の繊度の平均値は、4.8dtexであった。
 なお、NDRは175とし、延伸倍率は1.05とした。
10° C. air (also referred to as “quench air”) was blown to 180 yarns 100A in a cooling box 105 at a speed of 0.1 m/s by a circular quench method. In addition, in the cooling box 106, no gas was blown.
Next, the 180 raw yarns 100A cooled in the cooling box are taken up by the first take-up roll unit 107 (370 m/min), and the 180 raw yarns 100A are transferred to the first transport roll unit 108 (408 m/min). , second conveying roll unit 109 (408 m/min, 70° C.), third conveying roll unit 110 (408 m/min), and fourth conveying roll unit 111 (400 m/min) in order, then 180 rolls 100A of raw yarn was wound on the first winding roll (389 m/min) and stored at room temperature (5 to 35° C.) for 18 hours.
The average fineness of the raw yarn wound by the first winding roll was 4.8 dtex.
The NDR was set to 175 and the draw ratio was set to 1.05.
(工程(B))
 図2に示すように、第1の巻取ロール部112から180本の原糸100Aを第2の引取ロール部113(4.5m/min、30℃)で引き取り、延伸ロール部114(9.6m/min、30℃)で延伸し、熱処理ロール部115(8.6m/min、95℃)で搬送し、第2の巻取ロール部116(8.6m/min)で巻き取ることにより、マルチフィラメントを得た。
 延伸倍率は2.1倍とし、緩和率は10%とした。
 マルチフィラメントでは、単糸が切れていなかった。
(Step (B))
As shown in FIG. 2, 180 yarns 100A are taken up from the first take-up roll 112 by the second take-up roll 113 (4.5 m/min, 30° C.), and stretched by the draw roll 114 (9.0° C.). 6 m/min, 30°C), conveyed by the heat treatment roll unit 115 (8.6 m/min, 95°C), and wound by the second winding roll unit 116 (8.6 m/min), A multifilament was obtained.
The draw ratio was 2.1 times and the relaxation rate was 10%.
In the multifilament, the single yarn was not broken.
 また、マルチフィラメントを構成する樹脂組成物の重量平均分子量は、342,648であった。 Also, the weight average molecular weight of the resin composition constituting the multifilament was 342,648.
 なお、引取ロール部及び搬送ロール部としては、それぞれが同一速度及び同一温度の2つのロールで構成されたロール部を用いた。 As the take-up roll part and the transport roll part, a roll part composed of two rolls each having the same speed and the same temperature was used.
<実施例1-2>
 第2の実施形態の方法(SDY法)によりマルチフィラメントを作製した。
<Example 1-2>
A multifilament was produced by the method (SDY method) of the second embodiment.
(工程(A))
 まず、上記の材料を下記表1の配合割合でドライブレンドし、ドライブレンドした材料を押出機により150℃で溶融混練してペレット状の原料組成物を得た。
(Step (A))
First, the above materials were dry-blended in the proportions shown in Table 1 below, and the dry-blended materials were melt-kneaded at 150° C. by an extruder to obtain a raw material composition in the form of pellets.
 ベレット状の原料組成物の融点は、148.0℃であった。 The melting point of the pellet-shaped raw material composition was 148.0°C.
 また、ペレットの原料組成物の160℃でのメルトフローレート(「メルトマスフローレート」や「MFR」ともいう。)は、7.0g/10minであった。 In addition, the melt flow rate (also referred to as "melt mass flow rate" or "MFR") at 160°C of the pellet raw material composition was 7.0 g/10 min.
 そして、図3に示すように、混練押出機102(単軸押出機、スクリュー径:25mm)でベレット状の原料組成物を溶融して、溶融した原料組成物(「溶融物」ともいう。)を得た。
 そして、該溶融物を紡糸ノズル104(紡糸温度:168℃、吐出孔の数:180箇所、吐出孔の形状:円形、吐出孔の直径:0.3mm)から吐出して、原糸100Aを180本得た。
 なお、溶融物の流量は、ギアポンプ103で2.0kg/hに調整した。
Then, as shown in FIG. 3, the pellet-shaped raw material composition is melted with a kneading extruder 102 (single-screw extruder, screw diameter: 25 mm) to form a melted raw material composition (also referred to as "melt"). got
Then, the melt is discharged from a spinning nozzle 104 (spinning temperature: 168° C., number of discharge holes: 180, shape of discharge holes: circular, diameter of discharge holes: 0.3 mm), and 180 raw yarns 100A are discharged. I really got it.
The flow rate of the melt was adjusted to 2.0 kg/h by the gear pump 103.
 冷却ボックス105で180本の原糸100Aに10℃の空気(「クエンチエア」ともいう。)を0.1m/sの速度でサーキュラークエンチ法により吹き付けた。なお、冷却ボックス106では、気体を吹き付けなかった。 Air of 10°C (also referred to as "quench air") was blown to 180 yarns 100A in a cooling box 105 at a speed of 0.1 m/s by a circular quench method. In addition, in the cooling box 106, no gas was blown.
(工程(B))
 次に、冷却ボックスで冷却された180本の原糸100Aを引取ロール部207で引き取り、延伸ロール部208、209、210(60.0℃)で延伸し、180本の原糸がテイクオフロール部211を通った後に、180本の原糸を巻取ロール部212で巻き取って、マルチフィラメントを得た。
 NDRは200とし、延伸倍率は1.6、緩和率は5%とした。
 マルチフィラメントでは、単糸が切れていなかった。
 また、マルチフィラメントを構成する樹脂組成物の重量平均分子量は、313,370であった。
(Step (B))
Next, the 180 raw yarns 100A cooled in the cooling box are taken up by the take-up roll unit 207, drawn by the drawing roll units 208, 209, and 210 (60.0° C.), and the 180 raw yarns are taken off by the take-off roll unit. After passing through 211, 180 raw yarns were wound by a winding roll portion 212 to obtain a multifilament.
The NDR was set to 200, the draw ratio was set to 1.6, and the relaxation rate was set to 5%.
In the multifilament, the single yarn was not broken.
Moreover, the weight average molecular weight of the resin composition constituting the multifilament was 313,370.
 なお、引取ロール部及び搬送ロール部としては、それぞれが同一速度及び同一温度の2つのロールで構成されたロール部を用いた。 As the take-up roll part and the transport roll part, a roll part composed of two rolls each having the same speed and the same temperature was used.
<実施例1-3、1-5、比較例1-3、1-7>
 各条件を下記表1に記載のとおりに変更したこと以外は、実施例1-1と同様にして、マルチフィラメントを得た。
<Examples 1-3, 1-5, Comparative Examples 1-3, 1-7>
A multifilament was obtained in the same manner as in Example 1-1, except that each condition was changed as shown in Table 1 below.
<参考例1-1、1-2>
 溶融物を紡糸ノズル104(紡糸温度:168℃、吐出孔の数:240箇所、吐出孔の形状:円形、吐出孔の直径:1.1mm)から吐出して、原糸100Aを240本得たこと、溶融物の流量を4.8kg/hに調整したこと、各条件を下記表1に記載のとおりに変更したこと以外は、実施例1-1と同様にして、マルチフィラメントを得た。
<Reference Examples 1-1, 1-2>
The melt was discharged from a spinning nozzle 104 (spinning temperature: 168°C, number of discharge holes: 240, shape of discharge holes: circular, diameter of discharge holes: 1.1 mm) to obtain 240 yarns 100A. A multifilament was obtained in the same manner as in Example 1-1, except that the flow rate of the melt was adjusted to 4.8 kg / h, and each condition was changed as shown in Table 1 below.
<実施例1-4、比較例1-1、1-2、1-4、1-5、1-6、1-8~1-10>
 各条件を下記表1に記載のとおりに変更したこと以外は、実施例1-2と同様にして、マルチフィラメントを得た。
<Example 1-4, Comparative Examples 1-1, 1-2, 1-4, 1-5, 1-6, 1-8 to 1-10>
A multifilament was obtained in the same manner as in Example 1-2, except that each condition was changed as shown in Table 1 below.
<実施例2-1~2-5、比較例2-2~2-4、2-6~2-11、参考例2-1、2-2>
 クエンチエアの速度を0.5m/sにしたこと以外は、実施例1-1~1-5、比較例1-2~1-4、1-6~1-11、参考例1-1、1-2と同様にして、マルチフィラメントを得た。
<Examples 2-1 to 2-5, Comparative Examples 2-2 to 2-4, 2-6 to 2-11, Reference Examples 2-1, 2-2>
Examples 1-1 to 1-5, Comparative Examples 1-2 to 1-4, 1-6 to 1-11, Reference Examples 1-1 and 1, except that the quench air speed was 0.5 m/s A multifilament was obtained in the same manner as in -2.
<単糸の繊度の平均値、及び、単糸の引張強度の平均値>
 実施例及び比較例で得られた各マルチフィラメントに対して、マルチフィラメントにおける単糸の繊度の平均値、及び、単糸の引張強度の平均値を上述した方法で測定した。
 単糸の繊度の平均値、及び、単糸の引張強度の平均値を下記表1、2に示す。
<Average fineness of single yarn and average tensile strength of single yarn>
For each multifilament obtained in Examples and Comparative Examples, the average fineness of single yarns in the multifilament and the average tensile strength of single yarns were measured by the methods described above.
Tables 1 and 2 below show the average fineness of the single yarns and the average tensile strength of the single yarns.
<単糸の伸度、及び、単糸のヤング率>
 実施例及び比較例で得られた各マルチフィラメントに対して、マルチフィラメントにおける単糸の伸度、及び、単糸のヤング率を、JIS L 1015:2010 化学繊維ステープル試験方法に基づき、初期長20mm、速度20mm/minで測定した。
 単糸の伸度、及び、単糸のヤング率を下記表1、2に示す。
<Elongation of single yarn and Young's modulus of single yarn>
For each multifilament obtained in Examples and Comparative Examples, the elongation of the single yarn in the multifilament and the Young's modulus of the single yarn were measured with an initial length of 20 mm based on JIS L 1015:2010 Chemical fiber staple test method. , was measured at a speed of 20 mm/min.
The elongation of the single yarn and the Young's modulus of the single yarn are shown in Tables 1 and 2 below.
<単糸の融着率>
 実施例及び比較例で得られた各マルチフィラメントに対して、マルチフィラメントにおける単糸の融着率を上述した方法で測定した。
 単糸の融着率を下記表1、2に示す。
<Fusion rate of single yarn>
For each multifilament obtained in Examples and Comparative Examples, the fusion rate of single yarns in the multifilament was measured by the method described above.
The fusing rates of the single yarns are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2に示すように、重量平均分子量が379,967であるP3HB3HHを用い、逐次延伸法でマルチフィラメントを作製した態様において、単糸の繊度の平均値が12.7dtexと大きい参考例1-1、2-1には、単糸の融着率が3%であった。
 一方で、表1に示すように、単糸の繊度の平均値を小さくすべく、紡糸ノズル104における吐出孔の直径を小さくした比較例1-3では、参考例1-1よりも、単糸の繊度の平均値が小さく、単糸の融着率が高かった。
 また、表2に示すように、単糸の繊度の平均値を小さくすべく、紡糸ノズル104における吐出孔の直径を小さくした比較例2-3では、参考例2-1よりも、単糸の繊度の平均値が小さく、単糸の融着率が高かった。
 さらに、比較例1-3、2-3よりも紡糸温度を低くした比較例1-1、2-1では、原糸からマルチフィラメントを得る際に原糸が切れてしまった。
 従って、単糸の繊度の平均値が小さいマルチフィラメントを作製しようとすると、原糸が切れてマルチフィラメントが作製できないか、或いは、単糸どうしが融着することがあることがわかる。
As shown in Tables 1 and 2, P3HB3HH having a weight average molecular weight of 379,967 was used, and in the embodiment in which a multifilament was produced by the sequential drawing method, the average fineness of the single yarn was as large as 12.7 dtex. -1 and 2-1 had a single yarn fusion rate of 3%.
On the other hand, as shown in Table 1, in Comparative Example 1-3, in which the diameter of the ejection hole in the spinning nozzle 104 was reduced in order to reduce the average fineness of the single yarn, the single yarn The average value of the fineness of the yarn was small, and the fusion rate of the single yarn was high.
Further, as shown in Table 2, in Comparative Example 2-3, in which the diameter of the ejection hole in the spinning nozzle 104 was made small in order to reduce the average fineness of the single yarn, the single yarn was obtained more than Reference Example 2-1. The average value of fineness was small, and the single yarn fusion rate was high.
Furthermore, in Comparative Examples 1-1 and 2-1, in which the spinning temperature was lower than in Comparative Examples 1-3 and 2-3, the raw yarn was cut when multifilaments were obtained from the raw yarn.
Therefore, it can be seen that when an attempt is made to produce a multifilament with a small average fineness of single yarns, the original yarn breaks and the multifilament cannot be produced, or the single yarns are fused together.
 表1に示すように、本発明の範囲内である実施例1-1~1-5では、ポリグリセリン脂肪酸エステルを用いなかった比較例1-2、1-3、1-6、1-7、ポリグリセリン脂肪酸エステルの代わりに可塑剤たるアゾジカルボンアミド(ADCA)を用いた比較例1-8~1-10、紡糸温度を「原料組成物の融点+25.0℃」を超えた温度にした比較例1-4に比べて、単糸の融着率が低かった。
 また、表2に示すように、本発明の範囲内である実施例2-1~2-5では、ポリグリセリン脂肪酸エステルを用いなかった比較例2-2、2-3、2-6、2-7、ポリグリセリン脂肪酸エステルの代わりに可塑剤たるアゾジカルボンアミド(ADCA)を用いた比較例2-8~2-10、紡糸温度を「原料組成物の融点+25.0℃」を超えた温度にした比較例2-4に比べて、単糸の融着率が低かった。
 さらに、ポリグリセリン脂肪酸エステルを用いなかった比較例1-1、1-5、2-1、2-5では、原糸からマルチフィラメントを得る際に原糸が切れてしまった。
 従って、本発明によれば、単糸の繊度の平均値が小さいにも関わらず、原糸からマルチフィラメントを得る際に原糸が切れるのを抑制し、且つ、単糸どうしの融着を抑制し得る。
As shown in Table 1, in Examples 1-1 to 1-5 within the scope of the present invention, Comparative Examples 1-2, 1-3, 1-6 and 1-7 in which no polyglycerin fatty acid ester was used , Comparative Examples 1-8 to 1-10 using azodicarbonamide (ADCA) as a plasticizer instead of polyglycerin fatty acid ester, and the spinning temperature was set to a temperature exceeding "the melting point of the raw material composition + 25.0 ° C." Compared with Comparative Examples 1-4, the fusion rate of single yarns was low.
Further, as shown in Table 2, in Examples 2-1 to 2-5 within the scope of the present invention, Comparative Examples 2-2, 2-3, 2-6 and 2 in which polyglycerin fatty acid ester was not used -7, Comparative Examples 2-8 to 2-10 using azodicarbonamide (ADCA) as a plasticizer instead of polyglycerol fatty acid ester, spinning temperature above "melting point of raw material composition + 25.0 ° C." Compared to Comparative Example 2-4, which was made into a single yarn, the fusion rate of the single yarn was low.
Furthermore, in Comparative Examples 1-1, 1-5, 2-1, and 2-5 in which no polyglycerol fatty acid ester was used, the raw yarn was cut when multifilaments were obtained from the raw yarn.
Therefore, according to the present invention, although the average fineness of the single yarn is small, when the multifilament is obtained from the raw yarn, it is possible to suppress the breakage of the raw yarn and to suppress the fusion of the single yarns. can.
 表1に示すように、ポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量が4.0×10~7.0×10である実施例1-1~1-3では、ポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量が379,967である実施例1-4、1-5に比べて、単糸の融着率が低かった。
 また、表2に示すように、ポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量が4.0×10~7.0×10である実施例2-1~2-3では、ポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量が379,967である実施例2-4、2-5に比べて、単糸の融着率が低かった。
 従って、原料組成物におけるポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量を4.0×10~7.0×10の範囲内にすることにより、単糸どうしの融着をより一層抑制し得ることがわかる。
As shown in Table 1, in Examples 1-1 to 1-3 in which the poly(3-hydroxyalkanoate) resin has a weight average molecular weight of 4.0×10 5 to 7.0×10 5 , poly(3 -Hydroxyalkanoate) resin had a low fusion rate of single yarns compared to Examples 1-4 and 1-5 in which the weight-average molecular weight of the resin was 379,967.
Further, as shown in Table 2, in Examples 2-1 to 2-3 in which the poly(3-hydroxyalkanoate) resin had a weight average molecular weight of 4.0×10 5 to 7.0×10 5 , the poly Compared to Examples 2-4 and 2-5 in which the (3-hydroxyalkanoate) resin had a weight average molecular weight of 379,967, the fusion rate of single yarns was low.
Therefore, by setting the weight-average molecular weight of the poly(3-hydroxyalkanoate) resin in the raw material composition within the range of 4.0×10 5 to 7.0×10 5 , the single yarns can be further fused together. It turns out that it can be suppressed.
 表1に示すように、逐次延伸法を実施した実施例1-3では、実施例1-3とポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量及び紡糸温度が同じで、且つ、SDY法を実施した実施例1-2に比べて、単糸の融着率が低かった。
 また、表2に示すように、逐次延伸法を実施した実施例2-3では、実施例2-3とポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量及び紡糸温度が同じで、且つ、SDY法を実施した実施例2-2に比べて、単糸の融着率が低かった。
 従って、逐次延伸法を実施することにより、単糸どうしの融着をより一層抑制し得ることがわかる。
As shown in Table 1, in Example 1-3 in which the sequential drawing method was performed, the weight average molecular weight and spinning temperature of the poly(3-hydroxyalkanoate) resin were the same as in Example 1-3, and the SDY method was used. The fusion rate of the single yarn was lower than in Example 1-2 in which .
Further, as shown in Table 2, in Example 2-3 in which the sequential drawing method was performed, the weight average molecular weight and spinning temperature of the poly(3-hydroxyalkanoate) resin were the same as in Example 2-3, and Compared to Example 2-2 in which the SDY method was performed, the fusion rate of single yarns was low.
Therefore, it can be seen that fusion between single yarns can be further suppressed by carrying out the sequential drawing method.
 100A:原糸、101:原料投入部、102:混練押出機、103:ギアポンプ、104:紡糸ノズル、105:第1の冷却ボックス、106:第2の冷却ボックス、107:第1の引取ロール部、108:第1の搬送ロール部、109:第2の搬送ロール部、110:第3の搬送ロール部、111:第4の搬送ロール部、112:第1の巻取ロール部、113:第2の引取ロール部、114:延伸ロール部、115:熱処理ロール部、116:第2の巻取ロール部、
 207:引取ロール部、208:第1の延伸ロール部、209:第2の延伸ロール部、210:第3の延伸ロール部、211:テイクオフロール部、212:巻取ロール部
 
100A: raw yarn, 101: raw material input section, 102: kneading extruder, 103: gear pump, 104: spinning nozzle, 105: first cooling box, 106: second cooling box, 107: first take-up roll section , 108: first transport roll part, 109: second transport roll part, 110: third transport roll part, 111: fourth transport roll part, 112: first take-up roll part, 113: third 2 take-up roll unit, 114: stretching roll unit, 115: heat treatment roll unit, 116: second winding roll unit,
207: take-up roll section, 208: first drawing roll section, 209: second drawing roll section, 210: third drawing roll section, 211: take-off roll section, 212: winding roll section

Claims (9)

  1.  溶融紡糸法により、複数の吐出孔を有する紡糸ノズルを用いて、単糸を複数有するマルチフィラメントを製造する、マルチフィラメントの製造方法であって、
    原料組成物を加熱により溶融させ、溶融した原料組成物を前記吐出孔から吐出することにより原糸を複数本得る工程(A)と、
    複数本の前記原糸を延伸することにより、前記マルチフィラメントを得る工程(B)とを含み、
    前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有し、
    前記工程(A)では、前記原料組成物の融点以上で、且つ、該融点から25.0℃高い温度以下の温度範囲で、前記原料組成物を加熱し、
    前記単糸の繊度の平均値が、0.5~8.0dtexである、マルチフィラメントの製造方法。
    A multifilament production method for producing a multifilament having a plurality of single yarns by a melt spinning method using a spinning nozzle having a plurality of discharge holes,
    A step (A) of obtaining a plurality of raw yarns by melting the raw material composition by heating and discharging the melted raw material composition from the discharge hole;
    A step (B) of obtaining the multifilament by drawing a plurality of the raw yarns,
    The raw material composition contains a poly(3-hydroxyalkanoate)-based resin and a polyglycerol fatty acid ester,
    In the step (A), the raw material composition is heated in a temperature range equal to or higher than the melting point of the raw material composition and equal to or lower than a temperature higher than the melting point by 25.0°C;
    A method for producing a multifilament, wherein the single yarn has an average fineness of 0.5 to 8.0 dtex.
  2.  前記工程(B)における延伸倍率が1.5~3.0倍である、請求項1に記載のマルチフィラメントの製造方法。 The method for producing a multifilament according to claim 1, wherein the draw ratio in the step (B) is 1.5 to 3.0 times.
  3.  前記原料組成物は、前記ポリ(3-ヒドロキシアルカノエート)樹脂100重量部に対し、前記ポリグリセリン脂肪酸エステルを0.5~5.0重量部含有する、請求項1又は2に記載のマルチフィラメントの製造方法。 The multifilament according to claim 1 or 2, wherein the raw material composition contains 0.5 to 5.0 parts by weight of the polyglycerin fatty acid ester with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin. manufacturing method.
  4.  前記原料組成物におけるポリ(3-ヒドロキシアルカノエート)樹脂の重量平均分子量が3.0×10~7.0×10である、請求項1又は2に記載のマルチフィラメントの製造方法。 3. The method for producing a multifilament according to claim 1, wherein the poly(3-hydroxyalkanoate) resin in the raw material composition has a weight average molecular weight of 3.0×10 5 to 7.0×10 5 .
  5.  前記工程(A)では、複数本の前記原糸を50℃以下に冷却し、
    前記工程(B)では、前記工程(A)で冷却された複数本の前記原糸を加熱し、延伸する、請求項1又は2に記載のマルチフィラメントの製造方法。
    In the step (A), the plurality of raw yarns are cooled to 50 ° C. or less,
    3. The method for producing a multifilament according to claim 1, wherein in the step (B), the plurality of raw yarns cooled in the step (A) are heated and drawn.
  6.  前記工程(A)では、複数本の前記原糸を巻取ロール部で巻取り、
    前記工程(B)では、前記巻取ロール部で巻き取った複数本の前記原糸を延伸する、請求項1又は2に記載のマルチフィラメントの製造方法。
    In the step (A), a plurality of the raw yarns are wound by a winding roll,
    The method for producing a multifilament according to claim 1 or 2, wherein in the step (B), the plurality of raw yarns wound by the winding roll unit are drawn.
  7.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、単独重合体及び/又は共重合体を含み、構成単位として3-ヒドロキシブチレートを80モル%以上含有する、請求項1又は2に記載のマルチフィラメントの製造方法。 3. The multi according to claim 1 or 2, wherein the poly(3-hydroxyalkanoate)-based resin contains a homopolymer and/or copolymer and contains 80 mol% or more of 3-hydroxybutyrate as a structural unit. Filament manufacturing method.
  8.  単糸を複数有するマルチフィラメントであって、
    前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂、及び、ポリグリセリン脂肪酸エステルを含有する樹脂組成物で形成され、
    前記単糸の繊度の平均値が、0.5~8.0dtexであり、
    前記単糸の融着率が、18%以下である、マルチフィラメント。
    A multifilament having a plurality of single yarns,
    The single yarn is formed of a resin composition containing a poly(3-hydroxyalkanoate) resin and a polyglycerin fatty acid ester,
    The average value of the fineness of the single yarn is 0.5 to 8.0 dtex,
    A multifilament, wherein the single yarn has a fusion rate of 18% or less.
  9.  前記樹脂組成物の重量平均分子量が、2.0×10~6.0×10である、請求項8に記載のマルチフィラメント。
     
    9. The multifilament according to claim 8, wherein the resin composition has a weight average molecular weight of 2.0×10 5 to 6.0×10 5 .
PCT/JP2023/007628 2022-03-04 2023-03-01 Multifilament and method for producing same WO2023167245A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-033567 2022-03-04
JP2022033567 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023167245A1 true WO2023167245A1 (en) 2023-09-07

Family

ID=87883900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007628 WO2023167245A1 (en) 2022-03-04 2023-03-01 Multifilament and method for producing same

Country Status (1)

Country Link
WO (1) WO2023167245A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226757A (en) * 1999-02-03 2000-08-15 Toray Ind Inc Safety net
JP2000248426A (en) * 1999-03-02 2000-09-12 Toray Ind Inc Production of aliphatic polyester multifilament
JP2007197886A (en) * 2005-12-26 2007-08-09 Toray Ind Inc Crimped yarn, method for producing the same and fibrous structural material
JP2008174896A (en) * 2008-01-28 2008-07-31 Toray Ind Inc Safety net
US20120053689A1 (en) * 2010-03-26 2012-03-01 Tepha, Inc. Coatings for the manufacture and application of polyhydroxyalkanoate medical devices
WO2015029316A1 (en) * 2013-09-02 2015-03-05 国立大学法人東京工業大学 Polyester fiber
WO2019142920A1 (en) * 2018-01-22 2019-07-25 株式会社カネカ Method for producing nonwoven fabric
WO2021206154A1 (en) * 2020-04-09 2021-10-14 株式会社カネカ Method for producing aliphatic polyester fiber, aliphatic polyester fiber, and multifilament

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226757A (en) * 1999-02-03 2000-08-15 Toray Ind Inc Safety net
JP2000248426A (en) * 1999-03-02 2000-09-12 Toray Ind Inc Production of aliphatic polyester multifilament
JP2007197886A (en) * 2005-12-26 2007-08-09 Toray Ind Inc Crimped yarn, method for producing the same and fibrous structural material
JP2008174896A (en) * 2008-01-28 2008-07-31 Toray Ind Inc Safety net
US20120053689A1 (en) * 2010-03-26 2012-03-01 Tepha, Inc. Coatings for the manufacture and application of polyhydroxyalkanoate medical devices
WO2015029316A1 (en) * 2013-09-02 2015-03-05 国立大学法人東京工業大学 Polyester fiber
WO2019142920A1 (en) * 2018-01-22 2019-07-25 株式会社カネカ Method for producing nonwoven fabric
WO2021206154A1 (en) * 2020-04-09 2021-10-14 株式会社カネカ Method for producing aliphatic polyester fiber, aliphatic polyester fiber, and multifilament

Similar Documents

Publication Publication Date Title
WO2021206154A1 (en) Method for producing aliphatic polyester fiber, aliphatic polyester fiber, and multifilament
US10760183B2 (en) Biodegradable aliphatic polyester fiber and method for producing the same
ES2356354T3 (en) USE OF ORGANIC PHOSPHONIC OR PHOSPHONIC ACIDS, OR OF OXIDES, HYDROXIDES OR SALTS OF CARBOXYLIC ACIDS OF METALS AS THERMAL STABILIZERS FOR POLYHYDROXIALCANOATES.
TWI572645B (en) Porous film
JP7222923B2 (en) Nonwoven fabric manufacturing method
US20100240806A1 (en) Materials containing polyactic acid and cellulose fibers
TW201336667A (en) Uniaxially-oriented films comprising thermoplastic polyesters
CN102257068A (en) Biodegradable packaging film
ES2535394T3 (en) Use of polymer blends for the manufacture of sheet tapes
WO2012133231A1 (en) Biodegradable polyester fiber having excellent thermal stability and strength, and method for producing same
JP2022114186A (en) Biodegradable staple fiber nonwoven fabric
JP6592862B2 (en) Polyester fiber
WO2022097528A1 (en) Method for manufacturing biodegradable fibers
WO2022202397A1 (en) Multifilament, method for manufacturing multifilament, staple, and method for manufacturing staple
WO2023167245A1 (en) Multifilament and method for producing same
KR101221211B1 (en) Nonwoven fabric having biodegradable and low carbon-discharging property and preparing method thereof
WO2024090257A1 (en) Multifilament and method for producing same
WO2023022015A1 (en) Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same
JP3729565B2 (en) Method for producing polylactic acid composition
JP2011084837A (en) Spun-bonded nonwoven fabric and method for producing the same
JP6675612B2 (en) Method for producing biodegradable fiber
JP2002105752A (en) Bulky biodegradable yarn and method for producing the same
JP7289475B2 (en) Method for producing biodegradable fiber
Chodák et al. Sustainable synthetic fibres: the case of poly (hydroxyalkanoates)(PHA) and other fibres
WO2023106231A1 (en) Melt-blown nonwoven fabric and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763502

Country of ref document: EP

Kind code of ref document: A1