WO2023166971A1 - Polyimide resin composition and molded body - Google Patents

Polyimide resin composition and molded body Download PDF

Info

Publication number
WO2023166971A1
WO2023166971A1 PCT/JP2023/004918 JP2023004918W WO2023166971A1 WO 2023166971 A1 WO2023166971 A1 WO 2023166971A1 JP 2023004918 W JP2023004918 W JP 2023004918W WO 2023166971 A1 WO2023166971 A1 WO 2023166971A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide resin
carbon atoms
resin composition
formula
Prior art date
Application number
PCT/JP2023/004918
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 藤井
敦史 酒井
勇希 佐藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023166971A1 publication Critical patent/WO2023166971A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to polyimide resin compositions and molded articles.
  • Polyimide resins are useful engineering plastics with high thermal stability, high strength, and high solvent resistance due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, and are applied in a wide range of fields.
  • polyimide resins have high heat resistance, they do not exhibit thermoplasticity and have a problem of low moldability.
  • polyimide resins having thermoplasticity have also been reported.
  • Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can also be applied to moldings used in harsh environments where general-purpose thermoplastic resins such as nylon and polyester cannot be used.
  • thermoplasticity to polyimide resins As one of the molecular designs for imparting thermoplasticity to polyimide resins, a method of incorporating a flexible structure such as an aliphatic structure into the main chain is generally known.
  • the aliphatic structure has the merits of being able to impart thermoplasticity to polyimide relatively easily, and being easy to exhibit low dielectric properties due to its bulkiness.
  • thermoplastic polyimide resins there is a problem that it is inferior to the aromatic structure in oxidation resistance, and as a result, the high flame retardancy inherent in polyimide is lowered.
  • Patent Document 1 describes that a polyimide resin composition containing a polyimide resin having a specific structure and a metal phosphinate flame retardant is excellent in moldability and can achieve both high flame retardancy and good appearance. is disclosed.
  • polyimide resins semi-aromatic polyimide resins, wholly aliphatic polyimide resins, or polyimide resins having bulky substituents such as fluorine, in addition to the high heat resistance and dimensional stability inherent in polyimide resins, As a resin material, it can achieve extremely low dielectric properties (low dielectric constant and low dielectric loss tangent). Therefore, polyimide resin is attracting attention for its application to 5th generation mobile communication system (5G)-related members (flexible printed circuit boards, antennas, etc.), which require low dielectric properties, and other electrical and electronic members.
  • 5G 5th generation mobile communication system
  • An object of the present invention is to provide a polyimide resin composition capable of producing a molded article having both high flame retardancy and good appearance even when the thickness is thin (for example, 500 ⁇ m or less).
  • the present inventors have found that a polyimide resin composition containing a polyimide resin obtained by combining specific different polyimide structural units at a specific ratio and an organic flame retardant having a specific structure can solve the above problems. That is, the present invention relates to the following. [1] A repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2) are included, and the sum of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) A polyimide resin composition containing a polyimide resin (A) having a content ratio of the repeating structural unit of the formula (1) of 20 to 70 mol% and a compound (B) represented by the following formula (5).
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms
  • R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms
  • p 51 is an integer of 0 to 6
  • p 52 and p 53 are each independently an integer of 0 to 4
  • p 63 and p 66 are each independently an integer of 0 to 3 an integer, when p 51 to p 53 , p 63 or p 66 is 2 or more, a plurality of R 51 to R 53 , R 63 or R
  • the polyimide resin composition of the present invention it is possible to produce a molded article that achieves both high flame retardancy and good appearance even when the thickness is thin (for example, 500 ⁇ m or less). Furthermore, the polyimide resin composition and molded articles containing the same have high heat resistance (high glass transition temperature) and low dielectric properties.
  • the polyimide resin composition and molded article of the present invention are used for applications requiring high flame retardancy, low dielectric constant and low dielectric loss tangent, for example, 5G, or 70G to 300GHz frequency band 6th generation Mobile communication system (6G) related parts, various antennas, various antenna substrates, wire coating materials, bonding sheets, insulating films, raw materials for carbon fiber reinforced plastics (CFRP), high frequency circuit boards, printed wiring boards, chip-on-films (COF) Flexible substrates, multilayer laminates, LED mounting substrates, industrial robot substrates, home robot communication substrates, semiconductor element materials, high frequency device wafers, Wi-fi chips, wireless communication devices, transmission lines, bearing coatings, heat insulation Shafts, trays, various belts, heat-resistant low-dielectric tape, heat-resistant low-dielectric tubes, various sensors, various radars, radomes (radomes), optical communication modules (TOSA/ROSA), 8k-TV cable mobile terminals or digital home appliances, bases Stations, drones, surveillance cameras, indoor or outdoor
  • the polyimide resin composition of the present invention comprises a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), wherein the repeating structural unit of the formula (1) and the formula (2) contains a polyimide resin (A) having a content ratio of 20 to 70 mol % of repeating structural units of the formula (1) with respect to the total repeating structural units of and a compound (B) represented by the following formula (5).
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms
  • R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms
  • p 51 is an integer of 0 to 6
  • p 52 and p 53 are each independently an integer of 0 to 4
  • p 63 and p 66 are each independently an integer of 0 to 3 an integer, when p 51 to p 53 , p 63 or p 66 is 2 or more, a plurality of R 51 to R 53 , R 63 or R 66 may be the same or different
  • n is 1; is an integer of ⁇ 10.
  • the polyimide resin composition of the present invention expresses thermoplasticity by containing a polyimide resin (A) obtained by combining specific different polyimide structural units in the above specific ratio, and a resin composition having excellent moldability. Become.
  • a molded article that can achieve both high flame retardancy and good appearance even when the thickness is thin (for example, 500 ⁇ m or less) can be obtained. can be made.
  • Compound (B) has high heat resistance among aromatic condensed phosphate flame retardants.
  • the polyimide resin (A) since it is an organic flame retardant with a melting point, it is compatible with the polyimide resin (A) during thermoforming, unlike a granular flame retardant that does not have a melting point such as a metal phosphinate flame retardant. It is considered relatively high. Therefore, according to the polyimide resin composition of the present invention, even when a molded article having a small thickness is produced, high flame retardancy can be exhibited, and the compound (B) precipitates, thermally decomposes, and bleeds out in the molded article. etc. are unlikely to occur, and it is thought that a good appearance can be maintained.
  • the polyimide resin (A) is a highly crystalline thermoplastic resin, and when a granular flame retardant having no melting point such as a metal phosphinate flame retardant is added thereto, the flame retardant acts as a crystal nucleating agent. It tends to promote crystallization. In general, if the crystallization of the crystalline thermoplastic resin is too rapid, solidification proceeds as the crystallization progresses, and the extrudability during melt-kneading and cooling may decrease. However, the compound (B) has the effect of delaying the crystallization of the polyimide resin (A), that is, reducing the solidification speed, and also has the effect of improving the extrudability of the resulting polyimide resin composition. Furthermore, since the polyimide resin composition containing the compound (B) can maintain or improve the low dielectric properties derived from the polyimide resin (A), it can achieve extremely low dielectric constant and dielectric loss tangent as a resin material.
  • the polyimide resin (A) used in the present invention contains a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the formula (
  • the content ratio of the repeating structural units of formula (1) to the total repeating structural units of 2) is 20 to 70 mol %.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the polyimide resin (A) used in the present invention is a thermoplastic resin, and its form is preferably powder or pellets.
  • the thermoplastic polyimide resin is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid, for example, a polyimide resin having no glass transition temperature (Tg), or a temperature lower than the glass transition temperature It is distinguished from polyimide resin that decomposes at
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
  • Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean.
  • a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • (m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X 1 contains at least one, preferably 1 to 3, aromatic rings.
  • X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-4) below.
  • R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms;
  • p 11 to p 13 are each independently an integer of 0 to 2, preferably 0;
  • p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • L 11 to L 13 are each independently a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22. Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3).
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain tetravalent is selected so that the number of carbon atoms in the group is in the range of 18-22.
  • X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms.
  • the chain aliphatic group means a group derived from a chain aliphatic compound, the chain aliphatic compound may be saturated or unsaturated, straight-chain It may be single or branched, and may contain a heteroatom such as an oxygen atom.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group.
  • the alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
  • R 2 is preferably at least one selected from the group consisting of an octamethylene group and a decamethylene group, and more preferably an octamethylene group.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms containing an ether group.
  • the number of carbon atoms is preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms.
  • a divalent group represented by the following formula (R2-1) or (R2-2) is preferred.
  • (m 21 and m 22 are each independently an integer of 1 to 15, preferably 1 to 13, more preferably 1 to 11, still more preferably 1 to 9.
  • m 23 to m 25 are each independently an integer of 1 to 14, preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8.) Since R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms), m 21 and m 22 in formula (R2-1) are divalent groups represented by formula (R2-1) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 carbon atoms to 12, more preferably 8 to 10 carbon atoms). That is, m 21 +m 22 is 5 to 16 (preferably 6 to 14, more preferably 7 to 12, still more preferably 8 to 10).
  • m 23 to m 25 in formula (R2-2) are divalent groups represented by formula (R2-2) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably It is selected to fall within the range of 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms. That is, m 23 +m 24 +m 25 is 5 to 16 (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms).
  • X2 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is 20 to 70 mol %.
  • the content ratio of the repeating structural unit of formula (1) is within the above range, the polyimide resin can be sufficiently crystallized even in a general injection molding cycle.
  • the content ratio is less than 20 mol %, moldability is deteriorated, and when it exceeds 70 mol %, crystallinity is deteriorated, resulting in deterioration of heat resistance.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 65 mol% or less from the viewpoint of expressing high crystallinity.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 20 mol % or more and less than 40 mol %. Within this range, the crystallinity of the polyimide resin (A) is high, and a resin composition having more excellent heat resistance can be obtained.
  • the content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less.
  • the total content ratio of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) with respect to all repeating structural units constituting the polyimide resin (A) is preferably 50 to 100 mol%, more preferably 75 ⁇ 100 mol%, more preferably 80 to 100 mol%, still more preferably 85 to 100 mol%.
  • Polyimide resin (A) may further contain a repeating structural unit of the following formula (3).
  • the content ratio of the repeating structural unit of formula (3) to the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) is preferably 25 mol % or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol %.
  • the content ratio is preferably 5 mol % or more, more preferably 10 mol % or more, from the viewpoint of improving heat resistance, and is preferably 20 mol % or less, more preferably 20 mol % or less, from the viewpoint of maintaining crystallinity. Preferably, it is 15 mol % or less.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one, preferably 1 to 3, aromatic rings. A monovalent or divalent electron-withdrawing group may be bonded to the aromatic ring.
  • Examples of monovalent electron-withdrawing groups include nitro group, cyano group, p-toluenesulfonyl group, halogen, halogenated alkyl group, phenyl group and acyl group.
  • Examples of divalent electron-withdrawing groups include fluorinated alkylene groups (e.g., -C(CF 3 ) 2 -, -(CF 2 ) p - (where p is an integer of 1 to 10)). -CO-, -SO 2 -, -SO-, -CONH-, -COO-, etc., in addition to halogenated alkylene groups.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • (m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1.
  • R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
  • X3 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • Polyimide resin (A) may further contain a repeating structural unit represented by the following formula (4).
  • R 4 is a divalent group containing —SO 2 — or —Si(R x )(R y )O—, and R x and R y each independently represent a chain aliphatic group having 1 to 3 carbon atoms or a phenyl group, and X 4 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • X 4 is defined in the same manner as X 1 in formula (1), and the preferred embodiments are also the same.
  • the terminal structure of the polyimide resin (A) is not particularly limited, it preferably has a chain aliphatic group having 5 to 14 carbon atoms at its terminal.
  • the chain aliphatic group may be saturated or unsaturated, linear or branched.
  • saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
  • Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group and 1-octenyl group. , 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
  • the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group.
  • the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one type of chain aliphatic group may be used, or two or more types thereof may be used.
  • the chain aliphatic group is particularly preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group and isodecyl group. More preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group, isooctyl group and It is at least one selected from the group consisting of 2-ethylhexyl groups.
  • the polyimide resin (A) preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups.
  • the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is 100 in total of all repeating structural units constituting the polyimide resin (A). It is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more based on mol %.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is It is preferably 10 mol % or less, more preferably 6 mol % or less, still more preferably 3.5 mol % or less, based on a total of 100 mol % of all repeating structural units.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) can be obtained by depolymerizing the polyimide resin (A).
  • Polyimide resin (A) preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher.
  • the melting point of the polyimide resin is more preferably 280° C. or higher, more preferably 290° C. or higher from the viewpoint of heat resistance, and preferably 345° C. or lower, more preferably 340° C. from the viewpoint of expressing high moldability. 335° C. or lower, more preferably 335° C. or lower.
  • the glass transition temperature of the polyimide resin (A) is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. from the viewpoint of expressing high moldability. Below, more preferably 230° C.
  • both the melting point and glass transition temperature of the polyimide resin (A) can be measured with a differential scanning calorimeter.
  • the polyimide resin (A) is measured by a differential scanning calorimeter, and after melting the polyimide resin, it is cooled at a cooling rate of 20 ° C./min.
  • the heat quantity at the crystallization exothermic peak (hereinafter also simply referred to as “crystallization exothermic value”) observed when the It is preferably 17.0 mJ/mg or more, and more preferably 17.0 mJ/mg or more.
  • the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
  • the melting point, glass transition temperature and heat of crystallization of the polyimide resin (A) can be measured by the methods described in Examples.
  • Logarithmic viscosity at 30 ° C. of 0.5 mass% concentrated sulfuric acid solution of polyimide resin (A) is preferably in the range of 0.2 to 2.0 dL / g, more preferably 0.3 to 1.8 dL / g . If the logarithmic viscosity is 0.2 dL / g or more, sufficient mechanical strength is obtained when the resulting polyimide resin composition is formed into a molded product, and if it is 2.0 dL / g or less, moldability and handling becomes better.
  • the weight average molecular weight Mw of the polyimide resin (A) is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000, still more preferably 30, 000 to 70,000, more preferably 35,000 to 65,000. If the weight-average molecular weight Mw of the polyimide resin (A) is 10,000 or more, the mechanical strength of the molded article obtained is good, and if it is 40,000 or more, the stability of the mechanical strength is good. ,000 or less, the moldability is improved.
  • the weight average molecular weight Mw of the polyimide resin (A) can be measured by gel permeation chromatography (GPC) using polymethyl methacrylate (PMMA) as a standard sample.
  • Polyimide resin (A) can be produced by reacting a tetracarboxylic acid component and a diamine component.
  • the tetracarboxylic acid component contains a tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring
  • the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a linear aliphatic diamine. .
  • the tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in its structure.
  • the tetracarboxylic acid preferably has 6 to 26 carbon atoms.
  • Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, and 3,3′,4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferred. Among these, pyromellitic acid is more preferable.
  • Derivatives of tetracarboxylic acids containing at least one aromatic ring include anhydrides or alkyl esters of tetracarboxylic acids containing at least one aromatic ring.
  • the tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms.
  • Anhydrides of tetracarboxylic acids include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl sulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, 8-naphthalenetetracarboxylic dianhydride and the like are included.
  • alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • At least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
  • the diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4- Bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis(2-methylcyclohexylamine) , carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4'-Diaminodicyclohexylpropane and the like are preferred.
  • Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited.
  • the chain aliphatic diamine may be linear or branched, and preferably has 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 7 to 12 carbon atoms. In addition, if the chain portion has 5 to 16 carbon atoms, an ether bond may be included therebetween.
  • Chain aliphatic diamines such as 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta methylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like are preferred.
  • Chain aliphatic diamines may be used singly or in combination. Among these, chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Available.
  • the molar amount of the diamine charged containing at least one alicyclic hydrocarbon structure with respect to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine The ratio is preferably 20-70 mol %.
  • the molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of expressing high crystallinity, preferably 60 mol% or less, more preferably 50 mol% or more.
  • the diamine component may contain a diamine containing at least one aromatic ring.
  • the diamine containing at least one aromatic ring preferably has 6 to 22 carbon atoms, such as orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl.
  • the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol %.
  • the molar ratio is preferably 5 mol % or more, more preferably 10 mol % or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol % or less, and more preferably 20 mol % or less. Preferably, it is 15 mol % or less.
  • the molar ratio is preferably 12 mol% or less, more preferably 10 mol% or less, even more preferably 5 mol% or less, and even more preferably 0 mol. %.
  • the charged amount ratio of the tetracarboxylic acid component and the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
  • a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component.
  • the terminal blocking agent at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable.
  • the amount of the terminal blocking agent used may be an amount that can introduce a desired amount of terminal groups into the polyimide resin (A), and is 0.0001 to 0.001 to 0.001 to 1 mol of the tetracarboxylic acid and/or derivative thereof. 1 mol is preferred, 0.001 to 0.06 mol is more preferred, and 0.002 to 0.035 mol is even more preferred.
  • a monoamine terminal blocking agent is preferable as the terminal blocking agent, and from the viewpoint of improving heat aging resistance by introducing the chain aliphatic group having 5 to 14 carbon atoms described above at the end of the polyimide resin (A). , monoamines having a chain aliphatic group of 5 to 14 carbon atoms are more preferred, and monoamines having a saturated linear aliphatic group of 5 to 14 carbon atoms are even more preferred.
  • the terminal blocking agent is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. , more preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, most preferably n-octylamine, isooctylamine, and 2-ethylhexylamine.
  • polymerization method for producing the polyimide resin (A) As a polymerization method for producing the polyimide resin (A), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
  • the polyimide resin composition of the present invention contains a polyimide resin (A) and a compound (B) represented by the following formula (5).
  • the compound (B) represented by the formula (5) as a flame retardant for the polyimide resin (A) having the specific structure, the molded article obtained has a high flame retardancy even when the thickness is thin. Flammability and good appearance are obtained.
  • the extrudability of the polyimide resin composition can be improved, and furthermore, extremely low dielectric constant and dielectric loss tangent can be achieved as a resin material.
  • R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms;
  • R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms,
  • p 51 is an integer of 0 to 6
  • p 52 and p 53 are each independently an integer of 0 to 4
  • p 63 and p 66 are each independently an integer of 0 to 3 an integer, when p 51 to p 53 , p 63 or p 66 is 2 or more, a plurality of R 51 to R 53 , R 63 or R 66 may be the same or different
  • n is 1; is an integer of ⁇ 10.
  • R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. It is an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be either linear or branched, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert- Butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, 1,2-dimethylpropyl group, neopentyl group (2,2-dimethylpropyl group), tert-pentyl group (1,1- dimethylpropyl group), n-hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 1 , 2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbut
  • the alkoxy group having 1 to 10 carbon atoms may be either linear or branched, and examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert -butoxy group, n-pentyloxy group, isopentyloxy group, 2-methylbutoxy group, 1-methylbutoxy group, 1,2-dimethylpropoxy group, neopentyloxy group (2,2-dimethylpropoxy group), tert -pentyloxy group (1,1-dimethylpropoxy group), n-hexyloxy group, isohexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 3-methylpentyloxy group, 1-ethylbutoxy group, 2-ethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 2,3-dimethyl
  • R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, more preferably It is an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms may be either linear or branched, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, or tert -Butyl group.
  • a methyl group, an ethyl group, an n-propyl group or an isopropyl group is preferred, a methyl group or an ethyl group is more preferred, and a methyl group is even more preferred.
  • the alkoxy group having 1 to 4 carbon atoms may be either linear or branched, and examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, or A tert-butoxy group can be mentioned.
  • methoxy, ethoxy, n-propoxy and isopropoxy are preferred, and methoxy and ethoxy are more preferred.
  • p51 is an integer of 0-6, preferably 0-5, more preferably 0-3.
  • p52 and p53 are each independently an integer of 0-4, preferably 0-2, more preferably 0;
  • p 63 and p 66 are each independently an integer of 0-3, preferably 0-1, more preferably 0;
  • n is an integer of 1 to 10, preferably 1 to 5, more preferably 1 to 3, still more preferably 1;
  • the compound (B) consists of compounds represented by the following structural formulas (B1) to (B3) from the viewpoint of achieving both high flame retardancy and good appearance even in a thin molded article having a thickness of, for example, 500 ⁇ m or less. It is preferably at least one selected from the group. More preferably, compound (B) is a compound represented by the following structural formula (B3).
  • the content of the compound (B) in the polyimide resin composition is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 30 parts by mass, more preferably 100 parts by mass of the polyimide resin (A). 1 to 30 parts by mass, more preferably 2 to 30 parts by mass, even more preferably 4 to 25 parts by mass, even more preferably 5 to 25 parts by mass, even more preferably 5 to 20 parts by mass, even more preferably 5 to 15 parts by mass. If the content of the compound (B) is 0.1 parts by mass or more with respect to 100 parts by mass of the polyimide resin (A), it is easy to impart a flame retardant improvement effect and low dielectric properties, and if it is 30 parts by mass or less, a good Appearance and heat resistance can be maintained.
  • Component (C) At least one selected from the group consisting of metal phosphinate (C1) and fluororesin (C2)>
  • the polyimide resin composition of the present invention has at least one selected from the group consisting of metal phosphinate (C1) and fluororesin (C2) for the purpose of improving anti-drip effect and further enhancing flame retardancy. of component (C).
  • the metal phosphinate (C1) is a salt of at least one metal selected from the group consisting of Mg, Ca, Al, Zn, Ti, Sn, Zr, and Fe from the viewpoint of improving the anti-drip effect. preferable.
  • the metal is more preferably at least one selected from the group consisting of Mg, Ca, and Al, and more preferably Al.
  • the metal phosphinate (C1) is preferably a compound represented by the following formula (i) from the viewpoint of improving the anti-drip effect and obtaining a good appearance.
  • R′ and R′′ are each independently a hydrocarbon group having 1 to 12 carbon atoms, M is a metal atom, and p is the valence of the metal atom represented by M.
  • R′ and R′′ each independently represent a hydrocarbon group having 1 to 12 carbon atoms.
  • the hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, An aralkyl group and the like can be mentioned.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n -decyl group, n-undecyl group, lauryl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group, 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group and isododecyl group.
  • Examples of the cycloalkyl group include cycloalkyl groups having 5 to 12 carbon atoms such as cyclopentyl group, cyclohexyl group, cyclooctyl group and cyclodecanyl group.
  • Examples of the alkenyl group include vinyl group, allyl group, butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group and 1-octenyl group. 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, and other alkenyl groups having 2 to 12 carbon atoms.
  • aryl group examples include aryl groups having 6 to 12 carbon atoms such as phenyl group, toluyl group, biphenyl group and naphthyl group.
  • aralkyl group examples include aralkyl groups having 7 to 12 carbon atoms such as aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group.
  • R′ and R′′ are preferably alkyl groups.
  • the number of carbon atoms in the alkyl group is preferably 1-8, more preferably 1-6, and still more preferably 1-3.
  • R' and R'' may be the same or different, but are preferably the same.
  • M is a metal atom, preferably at least one selected from the group consisting of Mg, Ca, Al, Zn, Ti, Sn, Zr, and Fe. M is more preferably at least one selected from the group consisting of Mg, Ca and Al, more preferably Al.
  • the metal phosphinate (C1) is preferably a compound (dialkylaluminum phosphinate) in which R′ and R′′ are alkyl groups having 1 to 12 carbon atoms and M is Al in the above formula (i). In this case, p in the above formula (i) is 3. More preferred embodiments of R' and R'' are the same as above. More preferably, the metal phosphinate (C1) is a compound (aluminum diethylphosphinate) in which R′ and R′′ are ethyl groups and M is Al in the formula (i). Aluminum diethylphosphinate is is a compound represented by the following structural formula (ii).
  • the metal phosphinate (C1) is a metal phosphinate, it is usually a solid compound, and is preferably powdery from the viewpoint of dispersibility in the polyimide resin (A). In addition, from the viewpoint of improving the anti-drip effect and maintaining a good appearance, it is preferable that the metal phosphinate (C1) has a small particle size. From the above viewpoint, the particle diameter (D50) of the metal phosphinate (C1) is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, even more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. be.
  • the particle diameter (D50) of the metal phosphinate (C1) is 40 ⁇ m or less, particularly 10 ⁇ m or less, the obtained polyimide resin composition and molded article have higher flame retardancy and good appearance.
  • the particle diameter (D50) of the metal phosphinate (C1) is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more.
  • the particle size (D50) of the metal phosphinate (C1) can be measured with a laser diffraction particle size distribution meter.
  • the phosphorus content of the metal phosphinate (C1) is preferably 0.5% by mass or more, more preferably 1% by mass or more, from the viewpoint of improving the anti-drip effect. From the viewpoint of expression, it is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more. Moreover, from the viewpoint of improving the dispersibility in the polyimide resin (A) and maintaining a good appearance, the phosphorus content of the metal phosphinate (C1) is preferably 40% by mass or less.
  • the phosphinate metal salt (C1) can be produced by a known method.
  • a commercially available metal phosphinate flame retardant can also be used as the metal phosphinate (C1).
  • Examples of commercially available metal phosphinate flame retardants include "EXOLIT OP1230", “EXOLIT OP1240", “EXOLIT OP1400", “EXOLIT OP930", “EXOLIT OP935" and “EXOLIT OP945" manufactured by Clariant Chemicals Co., Ltd. , "EXOLIT OP945TP” and the like.
  • fluororesin (C2) examples include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP), A copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (PFA), a copolymer of tetrafluoroethylene and ethylene (ETFE), a copolymer of tetrafluoroethylene and perfluoroalkoxyethylene, etc. 1 type, or 2 or more types can be used among these.
  • polytetrafluoroethylene is preferable from the viewpoint of improving the anti-drip effect and maintaining good appearance and heat resistance.
  • the fluororesin (C2) used in the present invention is preferably powdery from the viewpoint of dispersibility in the polyimide resin (A) and handleability.
  • its average particle size (D50) is not particularly limited, but from the viewpoint of dispersibility and handleability in the polyimide resin (A), preferably 1 to 50 ⁇ m, more preferably 2 to 40 ⁇ m, more preferably 3 to 30 ⁇ m, even more preferably 5 to 20 ⁇ m.
  • the average particle diameter (D50) can be measured with a laser diffraction light scattering particle size distribution analyzer.
  • polytetrafluoroethylene includes, for example, Kitamura Co., Ltd. "KT-300M”, “KT-400M”, “KT-600M”, “KTL-450A”, “KTL-450”, “KTL-610", “KTL-610A”, “KTL-620", “KTL-20N”, “KTL-10N”, “KTL-10S”, “KTL-9N”, “KTL-9S”, “KTL” -8N", “KTL-4N", "KTL-2N”, “KTL-1N”, “KTL-8F”, “KTL-8FH”, “KTL-500F", 3M Dynion PTFE manufactured by 3M Japan Ltd.
  • the component (C) may be used alone or in combination of two or more, and the metal phosphinate (C1) and the fluororesin (C2) may be used in combination.
  • a metal phosphinate (C1) is preferred as the component (C) from the viewpoints of improving the anti-drip effect, maintaining good appearance and heat resistance, and adhesion to metals such as copper and steel plates.
  • the content of the component (C) in the polyimide resin composition is preferably 0.01 to 5 parts by mass, more preferably 0.05, per 100 parts by mass of the polyimide resin (A). to 3 parts by mass, more preferably 0.1 to 2 parts by mass, and even more preferably 0.2 to 2 parts by mass. If the content of the component (C) in the polyimide resin composition is 0.01 parts by mass or more with respect to 100 parts by mass of the polyimide resin (A), it is easy to impart a drip prevention effect, and if it is 5 parts by mass or less, it is good. Appearance and heat resistance can be maintained.
  • the mass ratio of the component (B) to the component (C) in the polyimide resin composition [(B) / (C)] is the anti-drip effect, flame retardancy, good appearance And from the viewpoint of obtaining heat resistance, it is preferably 1.0 to 40, more preferably 5.0 to 30, still more preferably 10 to 20.
  • polyimide The smaller the content of component (C) in the resin composition, the better.
  • the content of the component (C) in the polyimide resin composition is more preferably 1 per 100 parts by mass of the polyimide resin (A). 0.5 parts by mass or less, more preferably 1 part by mass or less, even more preferably 0.5 parts by mass or less, and even more preferably 0.1 parts by mass or less.
  • the polyimide resin composition of the present invention contains fillers, reinforcing fibers, delustering agents, plasticizers, antistatic agents, anti-coloring agents, anti-gelling agents, coloring agents, slidability improvers, antioxidants, and conductive agents.
  • Additives other than component (C), such as agents and resin modifiers, can be blended as needed.
  • inorganic fillers such as mica and talc, especially when micro- to submicron-sized or nano-sized powders (solid particles) are added, the resulting molded body (especially Film) This is preferable because it can provide the effect of lowering the CTE (coefficient of linear expansion) of the filler while ensuring the appearance.
  • the particle diameter (D50) of the solid particles and hollow materials is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. , more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the thickness is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more.
  • D50 can be measured with a laser diffraction particle size distribution meter.
  • the amount thereof is not particularly limited, but from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin (A), usually 50 mass in the polyimide resin composition % or less, preferably 0.0001 to 30% by mass, more preferably 0.001 to 15% by mass, still more preferably 0.01 to 10% by mass.
  • the polyimide resin composition of the present invention may contain other resins than the polyimide resin (A) as long as the properties thereof are not impaired.
  • a highly heat-resistant thermoplastic resin is preferable, and examples thereof include polyamide resins, polyester resins, polyimide resins other than the polyimide resin (A), polycarbonate resins, polyetherimide resins, polyamideimide resins, and polyphenylene etherimide. Resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyarylate resin, liquid crystal polymer, polyetheretherketone resin, polyetherketone resin, polyetherketoneketone resin, polyetheretherketoneketone resin, polybenzimidazole resin, etc.
  • polyetherimide resins one or more selected from the group consisting of polyetherimide resins, polyphenylene sulfide resins, and polyether ether ketone resins is preferable from the viewpoint of heat resistance, molding processability, strength and solvent resistance, and has low water absorption.
  • a liquid crystal polymer is preferred, and from the viewpoint of obtaining high flame retardancy, a polyphenylene sulfide resin is preferred.
  • the polyimide resin (A) is used in combination with another resin, there is no particular limitation on the blending ratio as long as the properties of the polyimide resin composition are not impaired.
  • the total content of the polyimide resin (A) and the compound (B) in the polyimide resin composition of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, from the viewpoint of obtaining the effects of the present invention. , More preferably 50% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more, and 100% by mass It is below.
  • the polyimide resin composition of the present invention can take any form, pellets are preferred. Since the polyimide resin composition of the present invention and the polyimide resin (A) used therein have thermoplasticity, for example, the polyimide resin (A), the compound (B), and optionally various optional components are added and dry blended. After that, or after feeding the compound (B) and optional components from a place different from the feeding of the polyimide resin (A) to the extruder, the strands are extruded by melt-kneading in the extruder, and the strands are cut. It can be pelletized by Further, by introducing the pellets into various molding machines and thermoforming them by the method described below, a molded body having a desired shape can be easily produced.
  • the polyimide resin composition of the present invention does not contain a solvent from the viewpoint of forming pellets.
  • the solvent content in the polyimide resin composition is preferably 5% by mass or less, more preferably 1% by mass or less, and even more preferably 0.1% by mass or less.
  • the present invention provides a molded article containing the polyimide resin composition.
  • the shape of the molded body is not particularly limited, but from the viewpoint of effectively exhibiting the effect of the present invention that high flame retardancy and good appearance can be obtained even with a thin molded body, the thickness is 500 ⁇ m. It is preferably 200 ⁇ m or less, more preferably less than 100 ⁇ m, still more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less in film shape.
  • the lower limit of the thickness is usually 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • the term "thickness of the film-shaped molded article" means the average value of the thickness of the film-shaped molded article.
  • the film-shaped molded body includes the form of a resin layer constituting a multilayer laminate, the form of a coating layer, and the like, in addition to the form of a resin film.
  • the shape of the molded article of the present invention is not limited to a film shape having a thickness of 500 ⁇ m or less.
  • the effect of the present invention can be obtained even with a flat plate-shaped compact having a thickness exceeding 500 ⁇ m.
  • thermoforming Since the polyimide resin composition of the present invention has thermoplasticity, the molded article of the present invention can be easily produced by thermoforming.
  • thermoforming methods include injection molding, extrusion molding, inflation molding, blow molding, hot press molding, vacuum molding, pressure molding, laser molding, welding, and welding. Molding is also possible by the method. Extrusion molding is preferred when producing a film-shaped molding having a thickness of 500 ⁇ m or less. Injection molding or the like can be used to manufacture a flat molded article having a thickness of more than 500 ⁇ m. Thermoforming is preferred because molding can be performed without setting the molding temperature to a high temperature exceeding, for example, 400°C.
  • injection molding is preferable because molding can be performed without setting the molding temperature and the mold temperature at the time of molding to a high temperature.
  • the molding temperature is preferably 400° C. or lower, more preferably 360° C. or lower
  • the mold temperature is preferably 260° C. or lower, more preferably 220° C. or lower.
  • the polyimide resin (A) used in the present invention has a very fast crystallization rate compared to general crystalline resins, so even at a mold temperature that is much lower than the glass transition temperature (for example, Tg-50 ° C.) , it is possible to proceed with crystallization.
  • a method for producing a molded product preferably includes a step of thermoforming a polyimide resin composition at 290 to 360°C.
  • Thermoforming at temperatures above 360° C. to 390° C. is also possible, but from the viewpoint of suppressing deterioration of the polyimide resin (A) and other resin components, thermoforming at a temperature of 360° C. or less is preferred.
  • Specific procedures include, for example, the following method. First, the polyimide resin (A), compound (B) and optionally various optional components are added and dry blended, and then introduced into an extruder, preferably melted at 290 to 360 ° C. and extruded. Melt-knead and extrude in the machine to produce pellets.
  • the polyimide resin (A) is introduced into the extruder, preferably melted at 290 to 360 ° C., and the compound (B) and various optional components are introduced here, and the polyimide resin (A ) and extruded to produce the aforementioned pellets. After the pellets are dried, they are introduced into various molding machines and thermoformed preferably at 290 to 360° C. to produce a molded article having a desired shape. Since the polyimide resin composition of the present invention can be subjected to thermoforming such as extrusion molding at a relatively low temperature of 290 to 360 ° C., it has excellent moldability and can easily produce a molded product having a desired shape. can do. The temperature during thermoforming is preferably 310-360°C.
  • the polyimide resin composition and molded article of the present invention exhibit high flame retardancy even when formed into a thin molded article having a thickness of 500 ⁇ m or less.
  • the flame retardancy can be evaluated by a method conforming to the UL94 VTM test (thin material vertical burning test; ASTM D4804), specifically based on the method described in Examples.
  • the polyimide resin composition and molded article of the present invention have low dielectric properties, and can achieve, for example, a dielectric constant of 3.0 or less and a dielectric loss tangent of 0.005 or less at a measurement frequency of 10 GHz.
  • the dielectric constant is preferably 2.90 or less, more preferably 2.85 or less
  • the dielectric loss tangent is preferably 0.004 or less, more preferably 0.003 or less.
  • the dielectric constant and dielectric loss tangent can be specifically measured by the methods described in Examples.
  • the polyimide resin composition of the present invention a molded article having both high flame retardancy and good appearance can be produced even when the thickness is thin (for example, 500 ⁇ m or less). Furthermore, the polyimide resin composition and the molded article containing it have high heat resistance (high glass transition temperature) and low dielectric properties, so that high flame retardancy, low dielectric constant and low dielectric loss tangent are required.
  • 5G or 6th generation mobile communication system 6G related parts using the frequency band of 70G to 300GHz (smartphones, flexible printed circuit boards, metal foil laminates such as copper clad laminates, antennas, antenna substrates, etc.),
  • various antennas microwave antennas, millimeter wave antennas, waveguide slot antennas, horn antennas, lens antennas, printed antennas, triplate antennas, microstrip antennas, patch antennas, etc.
  • various antenna substrates (77 GHz) Automotive millimeter wave radar antenna substrate, terahertz wave radar antenna substrate, aircraft radar antenna substrate, caterpillar type special vehicle antenna substrate, WiGig antenna substrate, etc.), wire coating materials (low dielectric wire coating materials, etc.), bonding Sheets, insulating films, raw materials for carbon fiber reinforced plastics (CFRP), high-frequency circuit boards, printed wiring boards, chip-on-film (COF) flexible boards, multi-layer laminates, LED mounting boards, industrial robot boards, communications for home robots substrates, semiconductor element materials, high-
  • the present invention provides a metal foil laminate having a layer made of a molded body containing the polyimide resin composition and a layer made of a metal foil.
  • the metal foil laminate mainly includes a copper-clad laminate, and the copper-clad laminate is a layer (hereinafter also simply referred to as "resin film layer") made of a film-shaped molded body containing the polyimide resin composition. and at least one copper foil layer.
  • a laminate having a configuration in which a copper foil is laminated on at least one surface, preferably both surfaces of a resin film containing the polyimide resin composition can be mentioned.
  • the resin film used for manufacturing the copper-clad laminate can be manufactured by the same method as the method for manufacturing the molded product.
  • the thickness of the resin film and the resin film layer in the copper-clad laminate is preferably 5 to 500 ⁇ m from the viewpoint of ensuring the strength of the copper-clad laminate and improving the adhesion between the resin film layer and the copper foil layer. , more preferably 10 to 300 ⁇ m, still more preferably 12.5 to 200 ⁇ m.
  • the copper foil used for producing the copper-clad laminate is not particularly limited, and commercially available rolled copper foil, electrolytic copper foil, etc. can be used, but rolled copper foil is preferable from the viewpoint of flexibility.
  • the thickness of the copper foil layer and the copper foil used for its formation is preferably 2 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, from the viewpoint of ensuring sufficient conductivity and improving adhesion with the resin film layer. More preferably, it is 5 to 20 ⁇ m.
  • the thickness is the thickness per copper foil layer or per copper foil.
  • the surface roughness of the copper foil used in the production of the copper-clad laminate is not particularly limited, but the surface roughness of the copper foil is directly linked to the electrical properties of the laminate itself obtained after laminating the resin film, and generally In theory, the lower the roughness, the better the dielectric properties of the laminate. Therefore, the maximum height Rz of the copper foil surface is preferably in the range of 0.1 to 1 ⁇ m, more preferably in the range of 0.2 to 0.8 ⁇ m. The maximum height Rz of the copper foil surface can be measured, for example, with a surface roughness meter.
  • the thickness of the copper-clad laminate is preferably 15-600 ⁇ m, more preferably 25-500 ⁇ m, still more preferably 50-300 ⁇ m, from the viewpoint of improving the strength and conductivity of the copper-clad laminate.
  • the copper-clad laminate may have any layer other than the resin film layer and the copper foil layer as long as the effects of the present invention are not impaired.
  • the method for producing the copper-clad laminate is not particularly limited, and known methods can be used. For example, there is a method of stacking the resin film and the copper foil on top of each other, and then laminating them under heating and pressurizing conditions. Since the resin film contains the thermoplastic polyimide resin (A), it can be bonded to the copper foil by pressure bonding with the surface melted by heat.
  • the apparatus used for manufacturing the copper-clad laminate may be any apparatus as long as it can bond the resin film and the copper foil together under heat and pressure conditions. Examples include a roll laminator, flat plate laminator, vacuum press apparatus, A double belt press device and the like can be mentioned.
  • a double belt press device is equipped with endless belts arranged in a pair of upper and lower parts, and between the belts, film-shaped materials (resin film and copper foil) forming each layer are continuously fed and heated through the endless belts. It is an apparatus capable of producing a laminate by heating and pressurizing the above materials using a pressurizing mechanism.
  • the double belt press device include the device described in JP-A-2010-221694 and the double belt press device manufactured by DIMCO Co., Ltd.
  • the heating temperature for producing a copper-clad laminate by the above method is not particularly limited as long as it is a temperature at which the resin film can be softened or melted. It is in the range of 250-400°C, more preferably 280-350°C.
  • the pressure conditions for producing the copper-clad laminate are preferably from 0.1 to 0.1, from the viewpoint of improving the adhesion between the resin film and the copper foil, and from the viewpoint of reducing the burden on the apparatus and manufacturing. 20 MPa, more preferably 0.15 to 15 MPa, still more preferably 0.2 to 12 MPa.
  • the pressurization time is preferably in the range of 1 to 600 seconds, more preferably 5 to 400 seconds, and even more preferably 10 to 300 seconds.
  • the resin film is characterized in that it can be heat-sealed, but it is also possible to bond the resin film and the copper foil together using an adhesive in the production of the copper-clad laminate.
  • an adhesive a varnish-like adhesive, a sheet-like adhesive, a powder-like adhesive, or the like can be arbitrarily selected.
  • the adhesive also have low dielectric properties. Examples of adhesives with low dielectric properties include the "PIAD" series of polyimide adhesives manufactured by Arakawa Chemical Industries, Ltd.
  • IR measurement ⁇ Infrared spectroscopic analysis (IR measurement)>
  • the IR measurement of the polyimide resin was performed using "JIR-WINSPEC50" manufactured by JEOL Ltd.
  • the melting point Tm, glass transition temperature Tg, crystallization temperature Tc, and crystallization heat value ⁇ Hm of the polyimide resin or polyimide resin composition were measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.). was measured using In a nitrogen atmosphere, the polyimide resin or polyimide resin composition was subjected to thermal history under the following conditions.
  • the thermal history conditions were a first temperature increase (temperature increase rate of 10° C./min), then cooling (temperature decrease rate of 20° C./min), and then a second temperature increase (temperature increase rate of 10° C./min).
  • the melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised.
  • the glass transition temperature Tg was determined by reading the value observed at the second heating.
  • the crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling.
  • the crystallization heat value ⁇ Hm (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
  • the semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.).
  • the measurement conditions for the polyimide resin having a semi-crystallization time of 20 seconds or less were held at 420° C. for 10 minutes in a nitrogen atmosphere to melt the polyimide resin completely, and then perform a rapid cooling operation at a cooling rate of 70° C./min. Second, the time taken from the appearance of the observed crystallization peak to the peak top was calculated and determined.
  • the film was wound in a cylindrical shape, attached vertically to a clamp, and subjected to two 3-second indirect flames with a 20 mm flame using methane gas, and the flame retardancy was evaluated from the combustion behavior.
  • a flat plate-like molded body of 80 mm ⁇ 10 mm ⁇ 4 mm in thickness was produced by the method described later, and the flat plate was heated at 23 ⁇ 2° C. and 50 ⁇ 5% RI. H. after conditioning for 48 hours at 25 ⁇ 10° C., 75% R.I. H. It was used for the UL94V test (20 mm vertical burn test; ASTM D3801) under the following test environment. Specifically, the flat plate was vertically attached to a clamp, and 20-mm flame using methane gas was applied twice for 10 seconds, and the flame retardancy was evaluated from the combustion behavior.
  • V-0 if it has flame retardancy equivalent to V-0 according to the criteria of UL94V
  • V-1 if it has flame retardancy equivalent to V-1
  • V-2 flame retardancy equivalent to V-2 If it has, it is written as "V-2”.
  • the flame retardance is higher in the order of V-0>1>2, and when the flame retardance equivalent to V-2 is not achieved, it is judged as "V unsuitable”.
  • ⁇ Dielectric constant and dielectric loss tangent> Using the polyimide resin or the polyimide resin composition obtained in each example, a film-shaped molded body is produced by extrusion molding by the method described later, and then cut to 62 mm ⁇ 75 mm ⁇ thickness 0.05 ⁇ A 0.01 mm evaluation film was obtained. After drying the film in a hot air dryer at 100°C for 24 hours, it was dried at 23 ⁇ 2°C and 50 ⁇ 5% RH. H. was conditioned for 48 hours at . After that, it was immediately used for measurement. As a measuring device, "P5008A Keysight Streamline USB Vector Network Analyzer, 53 GHz" manufactured by Keysight Technologies, Inc.
  • a molded body of 200 mm ⁇ 50 mm ⁇ thickness 0.05 ⁇ 0.01 mm is produced by the method described later, and the appearance is visually observed and evaluated according to the following criteria. and shown in Table 4.
  • ⁇ Strand extrudability> The strand extrudability of the polyimide resin or polyimide resin composition was evaluated according to the following criteria and shown in Table 4.
  • AA Maintains a constant strand diameter and can be continuously extruded without breaking. Also, after extrusion, it takes 3 seconds or longer for the strands to become opaque.
  • A Maintains a constant strand diameter and can be continuously extruded without breaking. Also, after extrusion, the strands become opaque within 3 seconds.
  • C Strand breakage, strong smoke emission, and vent-up occurred, making it difficult to continuously extrude.
  • Production Example 1 (Production of Polyimide Resin 1)
  • a 2 L separable flask equipped with a Dean-Stark apparatus, a Liebig condenser, a thermocouple, and four paddle blades 500 g of 2-(2-methoxyethoxy) ethanol (manufactured by Nippon Nyukazai Co., Ltd.) and pyromellitic dianhydride ( 218.12 g (1.00 mol) of Mitsubishi Gas Chemical Co., Ltd.) was introduced, and after nitrogen flow, the mixture was stirred at 150 rpm to form a uniform suspension.
  • 1,8- A mixed diamine solution was prepared by dissolving 93.77 g (0.65 mol) of octamethylenediamine (manufactured by Kanto Chemical Co., Ltd.) in 250 g of 2-(2-methoxyethoxy)ethanol. The mixed diamine solution was added slowly using a plunger pump. Heat was generated by the dropwise addition, but the internal temperature was adjusted to be within the range of 40 to 80°C.
  • Table 1 shows the composition and evaluation results of the polyimide resin in Production Example 1.
  • the mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
  • Examples 1 to 8, Comparative Examples 1 to 3 manufactured and evaluation of polyimide resin composition and molded article (resin film)
  • the polyimide resin 1 obtained in Production Example 1, the compounds shown in Tables 2 to 4, and other components were thoroughly mixed by dry blending.
  • the resulting mixed powder was extruded in a co-rotating twin-screw kneading extruder (“HK-25D-41D” manufactured by Parker Corporation) at a barrel temperature of 350° C. and a screw rotation speed of 120 rpm to form strands having a diameter of 2 to 3 mm. pushed out.
  • the strand extrudability at this time was evaluated according to the above criteria.
  • pelletizer Fluorescence FC-Mini-4/N manufactured by Hoshi Plastics Co., Ltd.
  • the obtained pellets were dried at 190° C. for 10 hours and then used for extrusion molding.
  • the pellets were put into a ⁇ 20 mm single-screw extruder equipped with a T-die with a width of 150 mm, melt-kneaded at a resin temperature of 340 to 360° C., and continuously extruded through the T-die of the single-screw extruder.
  • EXOLIT OP945 Metal phosphinate flame retardant (aluminum diethylphosphinate) represented by the following structural formula (ii), manufactured by Clariant Chemicals Co., Ltd., particle size (D50): 1.3 ⁇ m, phosphorus content: 23% by mass (C2)
  • KTL-450 Polytetrafluoroethylene (PTFE), manufactured by Kitamura Co., Ltd.
  • Tables 2 and 3 show the evaluation results of flame retardancy.
  • Table 2 shows that the molded articles containing the polyimide resin composition of the present invention have a shorter burning time and better flame retardancy than the molded articles of the comparative examples. Also, from Table 3, in particular, in Examples 2 to 8, despite the very thin molded body with a thickness of 0.05 mm ⁇ 0.01 mm, it has flame retardancy equivalent to VTM-0 according to the UL94 VTM criteria. I was able to achieve it.
  • Table 4 shows evaluation results of thermophysical properties, dielectric properties, appearance, and strand extrudability. From Table 4, all the molded articles containing the polyimide resin composition of the present invention have good appearance. Regarding the strand extrudability, the polyimide resin compositions of Examples 1 to 5 containing only the compound (B) as the flame retardant showed particularly good results. This is probably because, unlike other flame retardants (component (C1)), the compound (B) does not act as a crystal nucleating agent and has the effect of delaying the crystallization of the polyimide resin (A).
  • the molded article containing the polyimide resin composition of the present invention had a dielectric constant of 3 or less and a dielectric loss tangent of 0.005 or less, showing extremely low dielectric constant and dielectric loss tangent as a resin molded article.
  • Example 9 (manufacture and evaluation of polyimide resin composition and molded article (4 mm thick flat plate)) Pellets of the polyimide resin composition were produced in the same manner as in Example 2. The pellets were dried at 190° C. for 10 hours and then used for injection molding. Using an injection molding machine (“ROBOSHOT ⁇ -S30iA” manufactured by FANUC CORPORATION), injection molding is performed with a barrel temperature of 350 ° C, a mold temperature of 200 ° C, and a molding cycle of 50 seconds. A type 1A test piece was prepared. After processing the obtained type 1A test piece into a flat plate of 80 mm ⁇ 10 mm ⁇ 4 mm in thickness, flame retardancy was evaluated by the method described above. Table 5 shows the results. The evaluation results other than flame retardancy are the same as in Example 2.
  • ROBOSHOT ⁇ -S30iA manufactured by FANUC CORPORATION
  • the molded article containing the polyimide resin composition of the present invention exhibited good flame retardancy even when the thickness exceeded 500 ⁇ m.
  • the polyimide resin composition of the present invention it is possible to produce a molded article that achieves both high flame retardancy and good appearance even when the thickness is thin (for example, 500 ⁇ m or less). Furthermore, the polyimide resin composition and molded articles containing the same have high heat resistance (high glass transition temperature) and low dielectric properties.
  • the polyimide resin composition and molded article of the present invention are used for applications requiring high flame retardancy, low dielectric constant and low dielectric loss tangent, for example, 5G, or 70G to 300GHz frequency band 6th generation Mobile communication system (6G) related parts, various antennas, various antenna substrates, wire coating materials, bonding sheets, insulating films, raw materials for carbon fiber reinforced plastics (CFRP), high frequency circuit boards, printed wiring boards, chip-on-films (COF) Flexible substrates, multilayer laminates, LED mounting substrates, industrial robot substrates, home robot communication substrates, semiconductor element materials, high frequency device wafers, Wi-fi chips, wireless communication devices, transmission lines, bearing coatings, heat insulation Shafts, trays, various belts, heat-resistant low-dielectric tape, heat-resistant low-dielectric tubes, various sensors, various radars, radomes (radomes), optical communication modules (TOSA/ROSA), 8k-TV cable mobile terminals or digital home appliances, bases Stations, drones, surveillance cameras, indoor or outdoor

Abstract

A polyimide resin composition that contains polyimide resin (A) having a specific structure and compound (B) represented by formula (5). (R51 is an alkyl group having 1-10 carbon atoms or an alkoxy group having 1-10 carbon atoms. R52 to R53 and R61 to R66 are independently an alkyl group having 1-4 carbon atoms or an alkoxy group having 1-4 carbon atoms. p51 is an integer of 0-6, p52 and p53 are independently an integer of 0-4, and p63 and p66 are independently an integer of 0-3. When p51 to p53, p63 or p66 are 2 or more, the multiple R51s to R53s, R63s or R66s may be either the same as or different from each other. n is an integer of 1-10.)

Description

ポリイミド樹脂組成物及び成形体Polyimide resin composition and molded article
 本発明は、ポリイミド樹脂組成物及び成形体に関する。 The present invention relates to polyimide resin compositions and molded articles.
 ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。
 ポリイミド樹脂は高耐熱性である反面、熱可塑性を示さず、成形加工性が低いという問題があったが、近年、熱可塑性を有するポリイミド樹脂も報告されている。熱可塑性ポリイミド樹脂はポリイミド樹脂が本来有している耐熱性に加え、成形加工性にも優れる。そのため熱可塑性ポリイミド樹脂は、汎用の熱可塑性樹脂であるナイロンやポリエステルが適用できなかった過酷な環境下で使用される成形体への適用も可能である。
Polyimide resins are useful engineering plastics with high thermal stability, high strength, and high solvent resistance due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, and are applied in a wide range of fields.
Although polyimide resins have high heat resistance, they do not exhibit thermoplasticity and have a problem of low moldability. In recent years, polyimide resins having thermoplasticity have also been reported. Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can also be applied to moldings used in harsh environments where general-purpose thermoplastic resins such as nylon and polyester cannot be used.
 ポリイミド樹脂に熱可塑性を付与するための分子設計の一つとして、脂肪族構造のような柔軟な構造を主鎖に組み込む手法が一般的には知られている。脂肪族構造はポリイミドに対して比較的容易に熱可塑性を付与できることや、その嵩高さに起因して低誘電特性を発現しやすいといったメリットがある。その一方、芳香族構造と比較して耐酸化性に劣り、結果として元来ポリイミドが有する高い難燃性を低下させてしまうという課題がある。
 このような熱可塑性ポリイミド樹脂を高難燃性が要求される用途に適用するため、難燃剤を添加して難燃性を向上させる検討もなされている。例えば特許文献1には、特定構造のポリイミド樹脂及びホスフィン酸金属塩系難燃剤を含有するポリイミド樹脂組成物が、成形加工性に優れると共に、高い難燃性と良好な外観とを両立し得ることが開示されている。
As one of the molecular designs for imparting thermoplasticity to polyimide resins, a method of incorporating a flexible structure such as an aliphatic structure into the main chain is generally known. The aliphatic structure has the merits of being able to impart thermoplasticity to polyimide relatively easily, and being easy to exhibit low dielectric properties due to its bulkiness. On the other hand, there is a problem that it is inferior to the aromatic structure in oxidation resistance, and as a result, the high flame retardancy inherent in polyimide is lowered.
In order to apply such thermoplastic polyimide resins to applications requiring high flame retardancy, studies have been made to improve flame retardancy by adding flame retardants. For example, Patent Document 1 describes that a polyimide resin composition containing a polyimide resin having a specific structure and a metal phosphinate flame retardant is excellent in moldability and can achieve both high flame retardancy and good appearance. is disclosed.
国際公開第2019/220968号WO2019/220968
 ポリイミド樹脂の中でも、特に半芳香族系ポリイミド樹脂や全脂肪族系ポリイミド樹脂、あるいはフッ素などの嵩高い置換基を有したポリイミド樹脂は、元来ポリイミド樹脂が有する高い耐熱性や寸法安定性に加え、樹脂材料としては極めて低い誘電特性(低誘電率及び低誘電正接)を達成できる。そのため、ポリイミド樹脂は低誘電特性が要求される第5世代移動通信システム(5G)関連部材(フレキシブルプリント基板、アンテナ等)、その他電気・電子部材への適用も注目されている。これらの用途においては低誘電特性の他に、特許文献1の開示技術と同様に、高難燃性を有すること、難燃剤等を添加してもブリードアウト等が生じず外観が良好であることが要求される。
 しかしながらフレキシブルプリント基板のように、成形体の厚さが薄い場合、例えば成形体の厚さが500μm以下、200μm以下、さらには100μmを下回る場合には、高難燃性及び良好な外観を極めて達成し難くなる。特許文献1の開示技術はこの点において改善の余地があった。
 本発明の課題は、厚さが薄い(例えば500μm以下)場合であっても高い難燃性と良好な外観とを両立し得る成形体を作製できるポリイミド樹脂組成物を提供することにある。
Among polyimide resins, semi-aromatic polyimide resins, wholly aliphatic polyimide resins, or polyimide resins having bulky substituents such as fluorine, in addition to the high heat resistance and dimensional stability inherent in polyimide resins, As a resin material, it can achieve extremely low dielectric properties (low dielectric constant and low dielectric loss tangent). Therefore, polyimide resin is attracting attention for its application to 5th generation mobile communication system (5G)-related members (flexible printed circuit boards, antennas, etc.), which require low dielectric properties, and other electrical and electronic members. In these applications, in addition to low dielectric properties, it must have high flame retardancy, as with the technology disclosed in Patent Document 1, and have a good appearance without causing bleed-out even when a flame retardant or the like is added. is required.
However, when the thickness of the molded body is thin, such as a flexible printed circuit board, for example, when the thickness of the molded body is 500 μm or less, 200 μm or less, or even less than 100 μm, high flame retardancy and good appearance are extremely achieved. becomes difficult. The technology disclosed in Patent Document 1 has room for improvement in this regard.
SUMMARY OF THE INVENTION An object of the present invention is to provide a polyimide resin composition capable of producing a molded article having both high flame retardancy and good appearance even when the thickness is thin (for example, 500 μm or less).
 本発明者らは、特定の異なるポリイミド構成単位を特定の比率で組み合わせたポリイミド樹脂と、特定構造を有する有機系難燃剤とを含有するポリイミド樹脂組成物が上記課題を解決できることを見出した。
 すなわち本発明は、下記に関する。
[1]下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(5)で示される化合物(B)とを含有する、ポリイミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000006

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Figure JPOXMLDOC01-appb-C000007

(R51は炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基である。R52~R53、及びR61~R66はそれぞれ独立に炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。p51は0~6の整数、p52及びp53はそれぞれ独立に0~4の整数であり、p63及びp66はそれぞれ独立に0~3の整数である。p51~p53、p63、又はp66が2以上である場合、複数のR51~R53、R63又はR66は、互いに同一でも異なっていてもよい。nは1~10の整数である。)
The present inventors have found that a polyimide resin composition containing a polyimide resin obtained by combining specific different polyimide structural units at a specific ratio and an organic flame retardant having a specific structure can solve the above problems.
That is, the present invention relates to the following.
[1] A repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2) are included, and the sum of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) A polyimide resin composition containing a polyimide resin (A) having a content ratio of the repeating structural unit of the formula (1) of 20 to 70 mol% and a compound (B) represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000006

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
Figure JPOXMLDOC01-appb-C000007

(R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms; R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, p 51 is an integer of 0 to 6, p 52 and p 53 are each independently an integer of 0 to 4, p 63 and p 66 are each independently an integer of 0 to 3 an integer, when p 51 to p 53 , p 63 or p 66 is 2 or more, a plurality of R 51 to R 53 , R 63 or R 66 may be the same or different, n is 1; is an integer of ~10.)
 本発明のポリイミド樹脂組成物によれば、厚さが薄い(例えば500μm以下)場合であっても高い難燃性と良好な外観とを両立し得る成形体を作製できる。さらに、該ポリイミド樹脂組成物及びこれを含む成形体は高耐熱性(高ガラス転移温度)及び低誘電特性を有する。そのため本発明のポリイミド樹脂組成物及び成形体は、高い難燃性と、低誘電率及び低誘電正接とが要求される用途、例えば、5G、又は70G~300GHzの周波数帯を使用する第6世代移動通信システム(6G)関連部材、各種アンテナ、各種アンテナ基板、電線被覆材、ボンディングシート、絶縁フィルム、炭素繊維強化プラスチック(CFRP)用原料、高周波回路基板、プリント配線基板、チップオンフィルム(COF)フレキシブル基板、多層積層板、LED搭載基板、産業用ロボット基板、家庭用ロボットの通信用基板、半導体素子材料、高周波デバイス用ウエハ、Wi-fiチップ、無線通信デバイス、伝送線路、ベアリング用コート、断熱軸、トレー、各種ベルト、耐熱低誘電テープ、耐熱低誘電チューブ、各種センサ、各種レーダ、レドーム(レーダードーム)、光通信モジュール(TOSA/ROSA)、8k-TVのケーブルモバイル端末又はデジタル家電、基地局、ドローン、監視カメラ、室内又は屋外サーバ、人工衛星、宇宙ステーション用通信機器等に適用できる。 According to the polyimide resin composition of the present invention, it is possible to produce a molded article that achieves both high flame retardancy and good appearance even when the thickness is thin (for example, 500 μm or less). Furthermore, the polyimide resin composition and molded articles containing the same have high heat resistance (high glass transition temperature) and low dielectric properties. Therefore, the polyimide resin composition and molded article of the present invention are used for applications requiring high flame retardancy, low dielectric constant and low dielectric loss tangent, for example, 5G, or 70G to 300GHz frequency band 6th generation Mobile communication system (6G) related parts, various antennas, various antenna substrates, wire coating materials, bonding sheets, insulating films, raw materials for carbon fiber reinforced plastics (CFRP), high frequency circuit boards, printed wiring boards, chip-on-films (COF) Flexible substrates, multilayer laminates, LED mounting substrates, industrial robot substrates, home robot communication substrates, semiconductor element materials, high frequency device wafers, Wi-fi chips, wireless communication devices, transmission lines, bearing coatings, heat insulation Shafts, trays, various belts, heat-resistant low-dielectric tape, heat-resistant low-dielectric tubes, various sensors, various radars, radomes (radomes), optical communication modules (TOSA/ROSA), 8k-TV cable mobile terminals or digital home appliances, bases Stations, drones, surveillance cameras, indoor or outdoor servers, artificial satellites, communication equipment for space stations, etc.
[ポリイミド樹脂組成物]
 本発明のポリイミド樹脂組成物は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(5)で示される化合物(B)とを含有する。
Figure JPOXMLDOC01-appb-C000008

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Figure JPOXMLDOC01-appb-C000009

(R51は炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基である。R52~R53、及びR61~R66はそれぞれ独立に炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。p51は0~6の整数、p52及びp53はそれぞれ独立に0~4の整数であり、p63及びp66はそれぞれ独立に0~3の整数である。p51~p53、p63、又はp66が2以上である場合、複数のR51~R53、R63又はR66は、互いに同一でも異なっていてもよい。nは1~10の整数である。)
[Polyimide resin composition]
The polyimide resin composition of the present invention comprises a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), wherein the repeating structural unit of the formula (1) and the formula (2) contains a polyimide resin (A) having a content ratio of 20 to 70 mol % of repeating structural units of the formula (1) with respect to the total repeating structural units of and a compound (B) represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000008

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
Figure JPOXMLDOC01-appb-C000009

(R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms; R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, p 51 is an integer of 0 to 6, p 52 and p 53 are each independently an integer of 0 to 4, p 63 and p 66 are each independently an integer of 0 to 3 an integer, when p 51 to p 53 , p 63 or p 66 is 2 or more, a plurality of R 51 to R 53 , R 63 or R 66 may be the same or different, n is 1; is an integer of ~10.)
 本発明のポリイミド樹脂組成物は、特定の異なるポリイミド構成単位を上記の特定の比率で組み合わせてなるポリイミド樹脂(A)を含有することにより熱可塑性を発現し、成形加工性に優れる樹脂組成物となる。また当該ポリイミド樹脂(A)と特定の化合物(B)とを組み合わせることで、厚さが薄い(例えば500μm以下)場合であっても高い難燃性と良好な外観とを両立し得る成形体を作製できる。
 本発明において上記効果が得られる理由は定かではないが、次のように考えられる。化合物(B)は芳香族縮合リン酸エステル系難燃剤の中でも高耐熱性を有する。一方で、融点を有する有機系難燃剤であることから、ホスフィン酸金属塩系難燃剤等の融点を有さない粒状難燃剤とは異なり、熱成形時のポリイミド樹脂(A)との相溶性が比較的高いと考えられる。そのため本発明のポリイミド樹脂組成物によれば、厚さの薄い成形体を作製した場合でも高い難燃性を発現することができ、成形体中で化合物(B)の析出、熱分解、ブリードアウト等が起こり難く、良好な外観を維持できると考えられる。
The polyimide resin composition of the present invention expresses thermoplasticity by containing a polyimide resin (A) obtained by combining specific different polyimide structural units in the above specific ratio, and a resin composition having excellent moldability. Become. In addition, by combining the polyimide resin (A) and the specific compound (B), a molded article that can achieve both high flame retardancy and good appearance even when the thickness is thin (for example, 500 μm or less) can be obtained. can be made.
Although the reason why the above effect is obtained in the present invention is not clear, it is considered as follows. Compound (B) has high heat resistance among aromatic condensed phosphate flame retardants. On the other hand, since it is an organic flame retardant with a melting point, it is compatible with the polyimide resin (A) during thermoforming, unlike a granular flame retardant that does not have a melting point such as a metal phosphinate flame retardant. It is considered relatively high. Therefore, according to the polyimide resin composition of the present invention, even when a molded article having a small thickness is produced, high flame retardancy can be exhibited, and the compound (B) precipitates, thermally decomposes, and bleeds out in the molded article. etc. are unlikely to occur, and it is thought that a good appearance can be maintained.
 ポリイミド樹脂(A)は結晶性が高い熱可塑性樹脂であり、ここにホスフィン酸金属塩系難燃剤等の融点を有さない粒状難燃剤を添加すると、該難燃剤が結晶核剤として作用して結晶化を促進させる傾向がある。一般に、結晶性熱可塑性樹脂の結晶化が速すぎると、結晶化進行に伴って固化が進行し、溶融混練~冷却時の押出性が低下する場合がある。しかしながら化合物(B)はポリイミド樹脂(A)の結晶化を遅延、すなわち固化速度を低下させる効果があり、得られるポリイミド樹脂組成物の押出性を向上させる効果も有する。
 さらに、化合物(B)を含むポリイミド樹脂組成物は、ポリイミド樹脂(A)に由来する低誘電特性を維持又は向上させることができるため、樹脂材料としては極めて低い誘電率及び誘電正接を達成できる。
The polyimide resin (A) is a highly crystalline thermoplastic resin, and when a granular flame retardant having no melting point such as a metal phosphinate flame retardant is added thereto, the flame retardant acts as a crystal nucleating agent. It tends to promote crystallization. In general, if the crystallization of the crystalline thermoplastic resin is too rapid, solidification proceeds as the crystallization progresses, and the extrudability during melt-kneading and cooling may decrease. However, the compound (B) has the effect of delaying the crystallization of the polyimide resin (A), that is, reducing the solidification speed, and also has the effect of improving the extrudability of the resulting polyimide resin composition.
Furthermore, since the polyimide resin composition containing the compound (B) can maintain or improve the low dielectric properties derived from the polyimide resin (A), it can achieve extremely low dielectric constant and dielectric loss tangent as a resin material.
<ポリイミド樹脂(A)>
 本発明に用いるポリイミド樹脂(A)は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%である。
Figure JPOXMLDOC01-appb-C000010

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
<Polyimide resin (A)>
The polyimide resin (A) used in the present invention contains a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the formula ( The content ratio of the repeating structural units of formula (1) to the total repeating structural units of 2) is 20 to 70 mol %.
Figure JPOXMLDOC01-appb-C000010

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
 本発明に用いるポリイミド樹脂(A)は熱可塑性樹脂であり、その形態としては粉末又はペレットであることが好ましい。熱可塑性ポリイミド樹脂は、例えばポリアミド酸等のポリイミド前駆体の状態で成形した後にイミド環を閉環して形成される、ガラス転移温度(Tg)を持たないポリイミド樹脂、あるいはガラス転移温度よりも低い温度で分解してしまうポリイミド樹脂とは区別される。 The polyimide resin (A) used in the present invention is a thermoplastic resin, and its form is preferably powder or pellets. The thermoplastic polyimide resin is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid, for example, a polyimide resin having no glass transition temperature (Tg), or a temperature lower than the glass transition temperature It is distinguished from polyimide resin that decomposes at
 式(1)の繰り返し構成単位について、以下に詳述する。
 Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
The repeating structural unit of formula (1) is described in detail below.
R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. Here, the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean. Among these, a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000011

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
Figure JPOXMLDOC01-appb-C000011

(m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1; m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
 Rは、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000012

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
Figure JPOXMLDOC01-appb-C000012

In the divalent group represented by the above formula (R1-3), the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring. The aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
X 1 contains at least one, preferably 1 to 3, aromatic rings.
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000013

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-4) below.
Figure JPOXMLDOC01-appb-C000013

(R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms; p 11 to p 13 are each independently an integer of 0 to 2, preferably 0; p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0. p 17 is an integer of 0 to 4, preferably 0. L 11 to L 13 are each independently a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.)
Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22.
Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3). L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain tetravalent is selected so that the number of carbon atoms in the group is in the range of 18-22.
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000014
X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
Figure JPOXMLDOC01-appb-C000014
 次に、式(2)の繰り返し構成単位について、以下に詳述する。
 Rは炭素数5~16の2価の鎖状脂肪族基であり、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。ここで、鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよく、酸素原子等のヘテロ原子を含んでいてもよい。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選ばれる少なくとも1種であり、特に好ましくはオクタメチレン基である。
Next, the repeating structural unit of formula (2) will be described in detail below.
R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms. Here, the chain aliphatic group means a group derived from a chain aliphatic compound, the chain aliphatic compound may be saturated or unsaturated, straight-chain It may be single or branched, and may contain a heteroatom such as an oxygen atom.
R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group. The alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
R 2 is preferably at least one selected from the group consisting of an octamethylene group and a decamethylene group, and more preferably an octamethylene group.
 また、Rの別の好適な様態として、エーテル基を含む炭素数5~16の2価の鎖状脂肪族基が挙げられる。該炭素数は、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。その中でも好ましくは下記式(R2-1)又は(R2-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000015

(m21及びm22は、それぞれ独立に、1~15の整数であり、好ましくは1~13、より好ましくは1~11、更に好ましくは1~9である。m23~m25は、それぞれ独立に、1~14の整数であり、好ましくは1~12、より好ましくは1~10、更に好ましくは1~8である。)
 なお、Rは炭素数5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の2価の鎖状脂肪族基であるので、式(R2-1)におけるm21及びm22は、式(R2-1)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m21+m22は5~16(好ましくは6~14、より好ましくは7~12、更に好ましくは8~10)である。
 同様に、式(R2-2)におけるm23~m25は、式(R2-2)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m23+m24+m25は5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)である。
Another preferred embodiment of R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms containing an ether group. The number of carbon atoms is preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms. Among them, a divalent group represented by the following formula (R2-1) or (R2-2) is preferred.
Figure JPOXMLDOC01-appb-C000015

(m 21 and m 22 are each independently an integer of 1 to 15, preferably 1 to 13, more preferably 1 to 11, still more preferably 1 to 9. m 23 to m 25 are each independently an integer of 1 to 14, preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8.)
Since R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms), m 21 and m 22 in formula (R2-1) are divalent groups represented by formula (R2-1) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 carbon atoms to 12, more preferably 8 to 10 carbon atoms). That is, m 21 +m 22 is 5 to 16 (preferably 6 to 14, more preferably 7 to 12, still more preferably 8 to 10).
Similarly, m 23 to m 25 in formula (R2-2) are divalent groups represented by formula (R2-2) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably It is selected to fall within the range of 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms. That is, m 23 +m 24 +m 25 is 5 to 16 (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms).
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。 X2 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は20~70モル%である。式(1)の繰り返し構成単位の含有比が上記範囲である場合、一般的な射出成型サイクルにおいても、ポリイミド樹脂を十分に結晶化させ得ることが可能となる。該含有量比が20モル%未満であると成形加工性が低下し、70モル%を超えると結晶性が低下するため、耐熱性が低下する。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は、高い結晶性を発現する観点から、好ましくは65モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下である。
 中でも、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比は20モル%以上、40モル%未満であることが好ましい。この範囲であるとポリイミド樹脂(A)の結晶性が高くなり、より耐熱性に優れる樹脂組成物を得ることができる。
 上記含有比は、成形加工性の観点からは、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より更に好ましくは35モル%以下である。
The content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is 20 to 70 mol %. When the content ratio of the repeating structural unit of formula (1) is within the above range, the polyimide resin can be sufficiently crystallized even in a general injection molding cycle. When the content ratio is less than 20 mol %, moldability is deteriorated, and when it exceeds 70 mol %, crystallinity is deteriorated, resulting in deterioration of heat resistance.
The content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 65 mol% or less from the viewpoint of expressing high crystallinity. It is more preferably 60 mol % or less, still more preferably 50 mol % or less.
Above all, the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 20 mol % or more and less than 40 mol %. Within this range, the crystallinity of the polyimide resin (A) is high, and a resin composition having more excellent heat resistance can be obtained.
The content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less.
 ポリイミド樹脂(A)を構成する全繰り返し構成単位に対する、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%、更に好ましくは80~100モル%、より更に好ましくは85~100モル%である。 The total content ratio of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) with respect to all repeating structural units constituting the polyimide resin (A) is preferably 50 to 100 mol%, more preferably 75 ~100 mol%, more preferably 80 to 100 mol%, still more preferably 85 to 100 mol%.
 ポリイミド樹脂(A)は、さらに、下記式(3)の繰り返し構成単位を含有してもよい。その場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、好ましくは25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000016

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Polyimide resin (A) may further contain a repeating structural unit of the following formula (3). In that case, the content ratio of the repeating structural unit of formula (3) to the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) is preferably 25 mol % or less. On the other hand, the lower limit is not particularly limited as long as it exceeds 0 mol %.
The content ratio is preferably 5 mol % or more, more preferably 10 mol % or more, from the viewpoint of improving heat resistance, and is preferably 20 mol % or less, more preferably 20 mol % or less, from the viewpoint of maintaining crystallinity. Preferably, it is 15 mol % or less.
Figure JPOXMLDOC01-appb-C000016

(R 3 is a C 6-22 divalent group containing at least one aromatic ring. X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.)
 Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 また、前記芳香環には1価もしくは2価の電子求引性基が結合していてもよい。1価の電子求引性基としてはニトロ基、シアノ基、p-トルエンスルホニル基、ハロゲン、ハロゲン化アルキル基、フェニル基、アシル基などが挙げられる。2価の電子求引性基としては、フッ化アルキレン基(例えば-C(CF-、-(CF-(ここで、pは1~10の整数である))のようなハロゲン化アルキレン基のほかに、-CO-、-SO-、-SO-、-CONH-、-COO-などが挙げられる。
R 3 is a C 6-22 divalent group containing at least one aromatic ring. The aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
R 3 contains at least one, preferably 1 to 3, aromatic rings.
A monovalent or divalent electron-withdrawing group may be bonded to the aromatic ring. Examples of monovalent electron-withdrawing groups include nitro group, cyano group, p-toluenesulfonyl group, halogen, halogenated alkyl group, phenyl group and acyl group. Examples of divalent electron-withdrawing groups include fluorinated alkylene groups (e.g., -C(CF 3 ) 2 -, -(CF 2 ) p - (where p is an integer of 1 to 10)). -CO-, -SO 2 -, -SO-, -CONH-, -COO-, etc., in addition to halogenated alkylene groups.
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000017

(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
Figure JPOXMLDOC01-appb-C000017

(m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1; m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1. R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms. p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0. L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.)
Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22.
Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。 X3 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
 ポリイミド樹脂(A)は、さらに、下記式(4)で示される繰り返し構成単位を含有してもよい。
Figure JPOXMLDOC01-appb-C000018

(Rは-SO-又は-Si(R)(R)O-を含む2価の基であり、R及びRはそれぞれ独立に、炭素数1~3の鎖状脂肪族基又はフェニル基を表す。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
Polyimide resin (A) may further contain a repeating structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000018

(R 4 is a divalent group containing —SO 2 — or —Si(R x )(R y )O—, and R x and R y each independently represent a chain aliphatic group having 1 to 3 carbon atoms or a phenyl group, and X 4 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.)
X 4 is defined in the same manner as X 1 in formula (1), and the preferred embodiments are also the same.
 ポリイミド樹脂(A)の末端構造には特に制限はないが、炭素数5~14の鎖状脂肪族基を末端に有することが好ましい。
 該鎖状脂肪族基は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。ポリイミド樹脂(A)が上記特定の基を末端に有すると、耐熱老化性に優れる樹脂組成物を得ることができる。
 炭素数5~14の飽和鎖状脂肪族基としては、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、n-テトラデシル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基等が挙げられる。
 炭素数5~14の不飽和鎖状脂肪族基としては、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基等が挙げられる。
 中でも、上記鎖状脂肪族基は飽和鎖状脂肪族基であることが好ましく、飽和直鎖状脂肪族基であることがより好ましい。また耐熱老化性を得る観点から、上記鎖状脂肪族基は好ましくは炭素数6以上、より好ましくは炭素数7以上、更に好ましくは炭素数8以上であり、好ましくは炭素数12以下、より好ましくは炭素数10以下、更に好ましくは炭素数9以下である。上記鎖状脂肪族基は1種のみでもよく、2種以上でもよい。
 上記鎖状脂肪族基は、特に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、n-デシル基、及びイソデシル基からなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、及びイソノニル基からなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチル基、イソオクチル基、及び2-エチルヘキシル基からなる群から選ばれる少なくとも1種である。
 またポリイミド樹脂(A)は、耐熱老化性の観点から、末端アミノ基及び末端カルボキシ基以外に、炭素数5~14の鎖状脂肪族基のみを末端に有することが好ましい。上記以外の基を末端に有する場合、その含有量は、好ましくは炭素数5~14の鎖状脂肪族基に対し10モル%以下、より好ましくは5モル%以下である。
Although the terminal structure of the polyimide resin (A) is not particularly limited, it preferably has a chain aliphatic group having 5 to 14 carbon atoms at its terminal.
The chain aliphatic group may be saturated or unsaturated, linear or branched. When the polyimide resin (A) has the above specific group at its terminal, a resin composition having excellent heat aging resistance can be obtained.
Examples of saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group and 1-octenyl group. , 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
Among them, the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group. From the viewpoint of obtaining heat aging resistance, the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one type of chain aliphatic group may be used, or two or more types thereof may be used.
The chain aliphatic group is particularly preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group and isodecyl group. more preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group, isooctyl group and It is at least one selected from the group consisting of 2-ethylhexyl groups.
Moreover, from the viewpoint of heat aging resistance, the polyimide resin (A) preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups. When a group other than the above is present at the terminal, the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、優れた耐熱老化性を発現する観点から、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、更に好ましくは0.2モル%以上である。また、十分な分子量を確保し良好な機械的物性を得るためには、ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは10モル%以下、より好ましくは6モル%以下、更に好ましくは3.5モル%以下である。
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を解重合することにより求めることができる。
From the viewpoint of exhibiting excellent heat aging resistance, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is 100 in total of all repeating structural units constituting the polyimide resin (A). It is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more based on mol %. In addition, in order to secure a sufficient molecular weight and obtain good mechanical properties, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is It is preferably 10 mol % or less, more preferably 6 mol % or less, still more preferably 3.5 mol % or less, based on a total of 100 mol % of all repeating structural units.
The content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) can be obtained by depolymerizing the polyimide resin (A).
 ポリイミド樹脂(A)は、360℃以下の融点を有し、かつ150℃以上のガラス転移温度を有することが好ましい。ポリイミド樹脂の融点は、耐熱性の観点から、より好ましくは280℃以上、更に好ましくは290℃以上であり、高い成形加工性を発現する観点からは、好ましくは345℃以下、より好ましくは340℃以下、更に好ましくは335℃以下である。また、ポリイミド樹脂(A)のガラス転移温度は、耐熱性の観点から、より好ましくは160℃以上、より好ましくは170℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。
 ポリイミド樹脂(A)の融点、ガラス転移温度は、いずれも示差走査型熱量計により測定することができる。
 またポリイミド樹脂(A)は、結晶性、耐熱性、機械的強度、耐薬品性を向上させる観点から、示差走査型熱量計測定により、該ポリイミド樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(以下、単に「結晶化発熱量」ともいう)が、5.0mJ/mg以上であることが好ましく、10.0mJ/mg以上であることがより好ましく、17.0mJ/mg以上であることが更に好ましい。結晶化発熱量の上限値は特に限定されないが、通常、45.0mJ/mg以下である。
 ポリイミド樹脂(A)の融点、ガラス転移温度、結晶化発熱量は、具体的には実施例に記載の方法で測定できる。
Polyimide resin (A) preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher. The melting point of the polyimide resin is more preferably 280° C. or higher, more preferably 290° C. or higher from the viewpoint of heat resistance, and preferably 345° C. or lower, more preferably 340° C. from the viewpoint of expressing high moldability. 335° C. or lower, more preferably 335° C. or lower. Further, the glass transition temperature of the polyimide resin (A) is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. from the viewpoint of expressing high moldability. Below, more preferably 230° C. or less, and still more preferably 200° C. or less.
Both the melting point and glass transition temperature of the polyimide resin (A) can be measured with a differential scanning calorimeter.
In addition, from the viewpoint of improving crystallinity, heat resistance, mechanical strength, and chemical resistance, the polyimide resin (A) is measured by a differential scanning calorimeter, and after melting the polyimide resin, it is cooled at a cooling rate of 20 ° C./min. The heat quantity at the crystallization exothermic peak (hereinafter also simply referred to as “crystallization exothermic value”) observed when the It is preferably 17.0 mJ/mg or more, and more preferably 17.0 mJ/mg or more. Although the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
Specifically, the melting point, glass transition temperature and heat of crystallization of the polyimide resin (A) can be measured by the methods described in Examples.
 ポリイミド樹脂(A)の0.5質量%濃硫酸溶液の30℃における対数粘度は、好ましくは0.2~2.0dL/g、より好ましくは0.3~1.8dL/gの範囲である。対数粘度が0.2dL/g以上であれば、得られるポリイミド樹脂組成物を成形体とした際に十分な機械的強度が得られ、2.0dL/g以下であると、成形加工性及び取り扱い性が良好になる。対数粘度μは、キャノンフェンスケ粘度計を使用して、30℃において濃硫酸及び上記ポリイミド樹脂溶液の流れる時間をそれぞれ測定し、下記式から求められる。
  μ=ln(ts/t)/C
   t:濃硫酸の流れる時間
   ts:ポリイミド樹脂溶液の流れる時間
   C:0.5(g/dL)
Logarithmic viscosity at 30 ° C. of 0.5 mass% concentrated sulfuric acid solution of polyimide resin (A) is preferably in the range of 0.2 to 2.0 dL / g, more preferably 0.3 to 1.8 dL / g . If the logarithmic viscosity is 0.2 dL / g or more, sufficient mechanical strength is obtained when the resulting polyimide resin composition is formed into a molded product, and if it is 2.0 dL / g or less, moldability and handling becomes better. The logarithmic viscosity μ is obtained from the following formula by measuring the flow times of concentrated sulfuric acid and the polyimide resin solution at 30° C. using a Canon Fenske viscometer.
μ=ln(ts/ t0 )/C
t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 (g/dL)
 ポリイミド樹脂(A)の重量平均分子量Mwは、好ましくは10,000~150,000、より好ましくは15,000~100,000、更に好ましくは20,000~80,000、より更に好ましくは30,000~70,000、より更に好ましくは35,000~65,000の範囲である。ポリイミド樹脂(A)の重量平均分子量Mwが10,000以上であれば得られる成形体の機械的強度が良好になり、40,000以上であれば機械的強度の安定性が良好になり、150,000以下であれば成形加工性が良好になる。
 ポリイミド樹脂(A)の重量平均分子量Mwは、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができる。
The weight average molecular weight Mw of the polyimide resin (A) is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000, still more preferably 30, 000 to 70,000, more preferably 35,000 to 65,000. If the weight-average molecular weight Mw of the polyimide resin (A) is 10,000 or more, the mechanical strength of the molded article obtained is good, and if it is 40,000 or more, the stability of the mechanical strength is good. ,000 or less, the moldability is improved.
The weight average molecular weight Mw of the polyimide resin (A) can be measured by gel permeation chromatography (GPC) using polymethyl methacrylate (PMMA) as a standard sample.
(ポリイミド樹脂(A)の製造方法)
 ポリイミド樹脂(A)は、テトラカルボン酸成分とジアミン成分とを反応させることにより製造することができる。該テトラカルボン酸成分は少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体を含有し、該ジアミン成分は少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含有する。
(Method for producing polyimide resin (A))
Polyimide resin (A) can be produced by reacting a tetracarboxylic acid component and a diamine component. The tetracarboxylic acid component contains a tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring, and the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a linear aliphatic diamine. .
 少なくとも1つの芳香環を含むテトラカルボン酸は4つのカルボキシ基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸は、炭素数6~26であるものが好ましい。前記テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が好ましい。これらの中でもピロメリット酸がより好ましい。 The tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in its structure. The tetracarboxylic acid preferably has 6 to 26 carbon atoms. Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, and 3,3′,4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferred. Among these, pyromellitic acid is more preferable.
 少なくとも1つの芳香環を含むテトラカルボン酸の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸の無水物又はアルキルエステル体が挙げられる。前記テトラカルボン酸誘導体は、炭素数6~38であるものが好ましい。テトラカルボン酸の無水物としては、ピロメリット酸一無水物、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。 Derivatives of tetracarboxylic acids containing at least one aromatic ring include anhydrides or alkyl esters of tetracarboxylic acids containing at least one aromatic ring. The tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms. Anhydrides of tetracarboxylic acids include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl sulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, 8-naphthalenetetracarboxylic dianhydride and the like are included. Examples of alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like. In the above alkyl ester of tetracarboxylic acid, the alkyl group preferably has 1 to 3 carbon atoms.
 少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体は、上記から選ばれる少なくとも1つの化合物を単独で用いてもよく、2つ以上の化合物を組み合わせて用いてもよい。 As the tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring, at least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
 少なくとも1つの脂環式炭化水素構造を含むジアミンの炭素数は6~22が好ましく、例えば、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が好ましい。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。 The diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4- Bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis(2-methylcyclohexylamine) , carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4'-Diaminodicyclohexylpropane and the like are preferred. These compounds may be used alone, or two or more compounds selected from these may be used in combination. Among these, 1,3-bis(aminomethyl)cyclohexane can be preferably used. Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited.
 鎖状脂肪族ジアミンは、直鎖状であっても分岐状であってもよく、炭素数は5~16が好ましく、6~14がより好ましく、7~12が更に好ましい。また、鎖部分の炭素数が5~16であれば、その間にエーテル結合を含んでいてもよい。鎖状脂肪族ジアミンとして例えば1,5-ペンタメチレンジアミン、2-メチルペンタン-1,5-ジアミン、3-メチルペンタン-1,5-ジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が好ましい。
 鎖状脂肪族ジアミンは1種類あるいは複数を混合して使用してもよい。これらのうち、炭素数が8~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,8-オクタメチレンジアミン及び1,10-デカメチレンジアミンからなる群から選ばれる少なくとも1種が好適に使用できる。
The chain aliphatic diamine may be linear or branched, and preferably has 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 7 to 12 carbon atoms. In addition, if the chain portion has 5 to 16 carbon atoms, an ether bond may be included therebetween. Chain aliphatic diamines such as 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta methylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like are preferred.
Chain aliphatic diamines may be used singly or in combination. Among these, chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Available.
 ポリイミド樹脂(A)を製造する際、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの脂環式炭化水素構造を含むジアミンの仕込み量のモル比は20~70モル%であることが好ましい。該モル量は、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、好ましくは60モル%以下、より好ましくは50モル%以下、更に好ましくは40モル%未満、更に好ましくは35モル%以下である。 When producing the polyimide resin (A), the molar amount of the diamine charged containing at least one alicyclic hydrocarbon structure with respect to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine The ratio is preferably 20-70 mol %. The molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of expressing high crystallinity, preferably 60 mol% or less, more preferably 50 mol% or more. mol % or less, more preferably less than 40 mol %, more preferably 35 mol % or less.
 また、上記ジアミン成分中に、少なくとも1つの芳香環を含むジアミンを含有してもよい。少なくとも1つの芳香環を含むジアミンの炭素数は6~22が好ましく、例えば、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。 In addition, the diamine component may contain a diamine containing at least one aromatic ring. The diamine containing at least one aromatic ring preferably has 6 to 22 carbon atoms, such as orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl. Benzenediamine, 1,4-diethynylbenzenediamine, 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4 ,4'-diaminodiphenylmethane, α,α'-bis(4-aminophenyl)1,4-diisopropylbenzene, α,α'-bis(3-aminophenyl)-1,4-diisopropylbenzene, 2,2- bis[4-(4-aminophenoxy)phenyl]propane, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene and the like.
 上記において、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記モル比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
 また、前記モル比は、ポリイミド樹脂(A)の着色を少なくする観点からは、好ましくは12モル%以下、より好ましくは10モル%以下、更に好ましくは5モル%以下、より更に好ましくは0モル%である。
In the above, the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less. preferable. On the other hand, the lower limit is not particularly limited as long as it exceeds 0 mol %.
From the viewpoint of improving heat resistance, the molar ratio is preferably 5 mol % or more, more preferably 10 mol % or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol % or less, and more preferably 20 mol % or less. Preferably, it is 15 mol % or less.
In addition, from the viewpoint of reducing the coloring of the polyimide resin (A), the molar ratio is preferably 12 mol% or less, more preferably 10 mol% or less, even more preferably 5 mol% or less, and even more preferably 0 mol. %.
 ポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分と前記ジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 When producing the polyimide resin (A), the charged amount ratio of the tetracarboxylic acid component and the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component. .
 またポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分、前記ジアミン成分の他に、末端封止剤を混合してもよい。末端封止剤としては、モノアミン類及びジカルボン酸類からなる群から選ばれる少なくとも1種が好ましい。末端封止剤の使用量は、ポリイミド樹脂(A)中に所望量の末端基を導入できる量であればよく、前記テトラカルボン酸及び/又はその誘導体1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましく、0.002~0.035モルが更に好ましい。
 中でも、末端封止剤としてはモノアミン類末端封止剤が好ましく、ポリイミド樹脂(A)の末端に前述した炭素数5~14の鎖状脂肪族基を導入して耐熱老化性を向上させる観点から、炭素数5~14の鎖状脂肪族基を有するモノアミンがより好ましく、炭素数5~14の飽和直鎖状脂肪族基を有するモノアミンが更に好ましい。
 末端封止剤は、特に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、イソノニルアミン、n-デシルアミン、及びイソデシルアミンからなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、及びイソノニルアミンからなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチルアミン、イソオクチルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種である。
Moreover, when producing the polyimide resin (A), a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component. As the terminal blocking agent, at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable. The amount of the terminal blocking agent used may be an amount that can introduce a desired amount of terminal groups into the polyimide resin (A), and is 0.0001 to 0.001 to 0.001 to 1 mol of the tetracarboxylic acid and/or derivative thereof. 1 mol is preferred, 0.001 to 0.06 mol is more preferred, and 0.002 to 0.035 mol is even more preferred.
Among them, a monoamine terminal blocking agent is preferable as the terminal blocking agent, and from the viewpoint of improving heat aging resistance by introducing the chain aliphatic group having 5 to 14 carbon atoms described above at the end of the polyimide resin (A). , monoamines having a chain aliphatic group of 5 to 14 carbon atoms are more preferred, and monoamines having a saturated linear aliphatic group of 5 to 14 carbon atoms are even more preferred.
The terminal blocking agent is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. , more preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, most preferably n-octylamine, isooctylamine, and 2-ethylhexylamine.
 ポリイミド樹脂(A)を製造するための重合方法としては、公知の重合方法が適用でき、国際公開第2016/147996号に記載の方法を用いることができる。 As a polymerization method for producing the polyimide resin (A), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
<化合物(B)>
 本発明のポリイミド樹脂組成物は、ポリイミド樹脂(A)と、下記式(5)で示される化合物(B)とを含有する。
 前記特定の構造を有するポリイミド樹脂(A)に対し、難燃剤として式(5)で示される化合物(B)を用いることにより、得られる成形体は、厚さが薄い場合であっても高い難燃性及び良好な外観が得られる。また化合物(B)を用いることで、ポリイミド樹脂組成物の押出性も向上し、さらに、樹脂材料としては極めて低い誘電率及び誘電正接を達成できる。
Figure JPOXMLDOC01-appb-C000019

(R51は炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基である。R52~R53、及びR61~R66はそれぞれ独立に炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。p51は0~6の整数、p52及びp53はそれぞれ独立に0~4の整数であり、p63及びp66はそれぞれ独立に0~3の整数である。p51~p53、p63、又はp66が2以上である場合、複数のR51~R53、R63又はR66は、互いに同一でも異なっていてもよい。nは1~10の整数である。)
<Compound (B)>
The polyimide resin composition of the present invention contains a polyimide resin (A) and a compound (B) represented by the following formula (5).
By using the compound (B) represented by the formula (5) as a flame retardant for the polyimide resin (A) having the specific structure, the molded article obtained has a high flame retardancy even when the thickness is thin. Flammability and good appearance are obtained. Moreover, by using the compound (B), the extrudability of the polyimide resin composition can be improved, and furthermore, extremely low dielectric constant and dielectric loss tangent can be achieved as a resin material.
Figure JPOXMLDOC01-appb-C000019

(R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms; R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, p 51 is an integer of 0 to 6, p 52 and p 53 are each independently an integer of 0 to 4, p 63 and p 66 are each independently an integer of 0 to 3 an integer, when p 51 to p 53 , p 63 or p 66 is 2 or more, a plurality of R 51 to R 53 , R 63 or R 66 may be the same or different, n is 1; is an integer of ~10.)
 式(5)において、R51は炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基であり、好ましくは炭素数1~10のアルキル基、より好ましくは炭素数1~6のアルキル基、更に好ましくは炭素数1~4のアルキル基である。 In formula (5), R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. It is an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms.
 炭素数1~10のアルキル基としては、直鎖及び分岐状のいずれであってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、1,2-ジメチルプロピル基、ネオペンチル基(2,2-ジメチルプロピル基)、tert-ペンチル基(1,1-ジメチルプロピル基)、n-ヘキシル基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、n-ヘプチル基、イソヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1-プロピルブチル基、1,1-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、1,4-ジメチルペンチル基、1-エチル-1-メチルブチル基、1-エチル-2-メチルブチル基、1-エチル-3-メチルブチル基、2-エチル-1-メチルブチル基、2-エチル-1-メチルブチル基、2-エチル-2-メチルブチル基、2-エチル-3-メチルブチル基、1,1-ジエチルプロピル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-プロピルヘプチル基、2-プロピルヘプチル基、ノニル基、及びデシル基が挙げられる。 The alkyl group having 1 to 10 carbon atoms may be either linear or branched, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert- Butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, 1,2-dimethylpropyl group, neopentyl group (2,2-dimethylpropyl group), tert-pentyl group (1,1- dimethylpropyl group), n-hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 1 , 2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethyl-1-methylpropyl group, 1-ethyl-2-methylpropyl group , n-heptyl group, isoheptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group , 1-propylbutyl group, 1,1-dimethylpentyl group, 1,2-dimethylpentyl group, 1,3-dimethylpentyl group, 1,4-dimethylpentyl group, 1-ethyl-1-methylbutyl group, 1- ethyl-2-methylbutyl group, 1-ethyl-3-methylbutyl group, 2-ethyl-1-methylbutyl group, 2-ethyl-1-methylbutyl group, 2-ethyl-2-methylbutyl group, 2-ethyl-3-methylbutyl group, 1,1-diethylpropyl group, n-octyl group, isooctyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 1- Examples include ethylhexyl, 2-ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 1-propylheptyl, 2-propylheptyl, nonyl, and decyl.
 上記のアルキル基の中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、1,2-ジメチルプロピル基、ネオペンチル基(2,2-ジメチルプロピル基)、tert-ペンチル基(1,1-ジメチルプロピル基)、n-ヘキシル基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチル-1-メチルプロピル基、又は1-エチル-2-メチルプロピル基が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、又はtert-ブチル基がより好ましく、メチル基又はエチル基が更に好ましく、メチル基がより更に好ましい。 Among the above alkyl groups, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, 1,2-dimethylpropyl group, neopentyl group (2,2-dimethylpropyl group), tert-pentyl group (1,1-dimethylpropyl group), n-hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2- A dimethylbutyl group, a 2,3-dimethylbutyl group, a 1-ethyl-1-methylpropyl group, or a 1-ethyl-2-methylpropyl group is preferable, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n -butyl group, isobutyl group, or tert-butyl group is more preferred, methyl group or ethyl group is more preferred, and methyl group is even more preferred.
 炭素数1~10のアルコキシ基としては、直鎖及び分岐状のいずれであってもよく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、2-メチルブトキシ基、1-メチルブトキシ基、1,2-ジメチルプロポキシ基、ネオペンチルオキシ基(2,2-ジメチルプロポキシ基)、tert-ペンチルオキシ基(1,1-ジメチルプロポキシ基)、n-ヘキシルオキシ基、イソヘキシルオキシ基、1-メチルペンチルオキシ基、2-メチルペンチルオキシ基、3-メチルペンチルオキシ基、1-エチルブトキシ基、2-エチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチル-1-メチルプロポキシ基、1-エチル-2-メチルプロポキシ基、n-ヘプチルオキシ基、イソヘプチルオキシ基、1-メチルヘキシルオキシ基、2-メチルヘキシルオキシ基、3-メチルヘキシルオキシ基、4-メチルヘキシルオキシ基、1-エチルペンチルオキシ基、2-エチルペンチルオキシ基、3-エチルペンチルオキシ基、1-プロピルブトキシ基、1,1-ジメチルペンチルオキシ基、1,2-ジメチルペンチルオキシ基、1,3-ジメチルペンチルオキシ基、1,4-ジメチルペンチルオキシ基、1-エチル-1-メチルブトキシ基、1-エチル-2-メチルブトキシ基、1-エチル-3-メチルブトキシ基、2-エチル-1-メチルブトキシ基、2-エチル-1-メチルブトキシ基、2-エチル-2-メチルブトキシ基、2-エチル-3-メチルブトキシ基、1,1-ジエチルプロポキシ基、n-オクチルオキシ基、イソオクチルオキシ基、1-メチルヘプチルオキシ基、2-メチルヘプチルオキシ基、3-メチルヘプチルオキシ基、4-メチルヘプチルオキシ基、5-メチルヘプチルオキシ基、1-エチルヘキシルオキシ基、2-エチルヘキシルオキシ基、3-エチルヘキシルオキシ基、4-エチルヘキシルオキシ基、1-プロピルヘプチルオキシ基、2-プロピルヘプチルオキシ基、ノニルオキシ基、デシルオキシ基等が挙げられる。 The alkoxy group having 1 to 10 carbon atoms may be either linear or branched, and examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert -butoxy group, n-pentyloxy group, isopentyloxy group, 2-methylbutoxy group, 1-methylbutoxy group, 1,2-dimethylpropoxy group, neopentyloxy group (2,2-dimethylpropoxy group), tert -pentyloxy group (1,1-dimethylpropoxy group), n-hexyloxy group, isohexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 3-methylpentyloxy group, 1-ethylbutoxy group, 2-ethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 2,3-dimethylbutoxy group, 1- ethyl-1-methylpropoxy group, 1-ethyl-2-methylpropoxy group, n-heptyloxy group, isoheptyloxy group, 1-methylhexyloxy group, 2-methylhexyloxy group, 3-methylhexyloxy group, 4-methylhexyloxy group, 1-ethylpentyloxy group, 2-ethylpentyloxy group, 3-ethylpentyloxy group, 1-propylbutoxy group, 1,1-dimethylpentyloxy group, 1,2-dimethylpentyloxy group, 1,3-dimethylpentyloxy group, 1,4-dimethylpentyloxy group, 1-ethyl-1-methylbutoxy group, 1-ethyl-2-methylbutoxy group, 1-ethyl-3-methylbutoxy group, 2-ethyl-1-methylbutoxy group, 2-ethyl-1-methylbutoxy group, 2-ethyl-2-methylbutoxy group, 2-ethyl-3-methylbutoxy group, 1,1-diethylpropoxy group, n- octyloxy group, isooctyloxy group, 1-methylheptyloxy group, 2-methylheptyloxy group, 3-methylheptyloxy group, 4-methylheptyloxy group, 5-methylheptyloxy group, 1-ethylhexyloxy group, 2-ethylhexyloxy group, 3-ethylhexyloxy group, 4-ethylhexyloxy group, 1-propylheptyloxy group, 2-propylheptyloxy group, nonyloxy group, decyloxy group and the like.
 上記のアルコキシ基の中でも、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、2-メチルブトキシ基、1-メチルブトキシ基、1,2-ジメチルプロポキシ基、ネオペンチルオキシ基(2,2-ジメチルプロポキシ基)、tert-ペンチルオキシ基(1,1-ジメチルプロポキシ基)、n-ヘキシルオキシ基、イソヘキシルオキシ基、1-メチルペンチルオキシ基、2-メチルペンチルオキシ基、3-メチルペンチルオキシ基、1-エチルブトキシ基、2-エチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチル-1-メチルプロポキシ基又は1-エチル-2-メチルプロポキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基又はtert-ブトキシ基がより好ましい。 Among the above alkoxy groups, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, n-pentyloxy, isopentyloxy, 2-methylbutoxy group, 1-methylbutoxy group, 1,2-dimethylpropoxy group, neopentyloxy group (2,2-dimethylpropoxy group), tert-pentyloxy group (1,1-dimethylpropoxy group), n-hexyloxy group , isohexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 3-methylpentyloxy group, 1-ethylbutoxy group, 2-ethylbutoxy group, 1,1-dimethylbutoxy group, 1,2 -dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 2,3-dimethylbutoxy group, 1-ethyl-1-methylpropoxy group or 1-ethyl-2-methylpropoxy group is preferred. , methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy or tert-butoxy are more preferred.
 R52~R53、及びR61~R66はそれぞれ独立に炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基であり、好ましくは炭素数1~4のアルキル基、より好ましくは炭素数1~3のアルキル基、更に好ましくは炭素数1又は2のアルキル基である。
 炭素数1~4のアルキル基としては、直鎖及び分岐状のいずれであってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、又はtert-ブチル基が挙げられる。
 上記のアルキル基の中でも、メチル基、エチル基、n-プロピル基又はイソプロピル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が更に好ましい。
R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, more preferably It is an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms.
The alkyl group having 1 to 4 carbon atoms may be either linear or branched, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, or tert -Butyl group.
Among the above alkyl groups, a methyl group, an ethyl group, an n-propyl group or an isopropyl group is preferred, a methyl group or an ethyl group is more preferred, and a methyl group is even more preferred.
 炭素数1~4のアルコキシ基としては、直鎖及び分岐状のいずれであってもよく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、又はtert-ブトキシ基が挙げられる。
 上記のアルコキシ基の中でも、メトキシ基、エトキシ基、n-プロポキシ基又はイソプロポキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。
The alkoxy group having 1 to 4 carbon atoms may be either linear or branched, and examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, or A tert-butoxy group can be mentioned.
Among the above alkoxy groups, methoxy, ethoxy, n-propoxy and isopropoxy are preferred, and methoxy and ethoxy are more preferred.
 式(5)中、p51は0~6の整数であり、好ましくは0~5、より好ましくは0~3である。
 p52及びp53はそれぞれ独立に0~4の整数であり、好ましくは0~2、より好ましくは0である。
 p63及びp66はそれぞれ独立に0~3の整数であり、好ましくは0~1、より好ましくは0である。
 nは、1~10、好ましくは1~5、より好ましくは1~3、更に好ましくは1の整数である。
In formula (5), p51 is an integer of 0-6, preferably 0-5, more preferably 0-3.
p52 and p53 are each independently an integer of 0-4, preferably 0-2, more preferably 0;
p 63 and p 66 are each independently an integer of 0-3, preferably 0-1, more preferably 0;
n is an integer of 1 to 10, preferably 1 to 5, more preferably 1 to 3, still more preferably 1;
 化合物(B)は、厚さが例えば500μm以下である薄い成形体においても高い難燃性と良好な外観とを両立する観点から、下記構造式(B1)~(B3)で示される化合物からなる群から選ばれる少なくとも1種であることが好ましい。より好ましくは、化合物(B)は下記構造式(B3)で示される化合物である。
Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022
The compound (B) consists of compounds represented by the following structural formulas (B1) to (B3) from the viewpoint of achieving both high flame retardancy and good appearance even in a thin molded article having a thickness of, for example, 500 μm or less. It is preferably at least one selected from the group. More preferably, compound (B) is a compound represented by the following structural formula (B3).
Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022
 化合物(B)として、大八化学工業(株)製「SR-3000」等の市販品を用いることもできる。 Commercially available products such as "SR-3000" manufactured by Daihachi Chemical Industry Co., Ltd. can also be used as the compound (B).
 ポリイミド樹脂組成物中の化合物(B)の含有量は、ポリイミド樹脂(A)100質量部に対し、好ましくは0.1~30質量部、より好ましくは0.5~30質量部、更に好ましくは1~30質量部、より更に好ましくは2~30質量部、より更に好ましくは4~25質量部、より更に好ましくは5~25質量部、より更に好ましくは5~20質量部、より更に好ましくは5~15質量部である。化合物(B)の含有量がポリイミド樹脂(A)100質量部に対し0.1質量部以上であれば難燃性向上効果及び低誘電特性を付与しやすく、30質量部以下であれば良好な外観及び耐熱性を維持できる。 The content of the compound (B) in the polyimide resin composition is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 30 parts by mass, more preferably 100 parts by mass of the polyimide resin (A). 1 to 30 parts by mass, more preferably 2 to 30 parts by mass, even more preferably 4 to 25 parts by mass, even more preferably 5 to 25 parts by mass, even more preferably 5 to 20 parts by mass, even more preferably 5 to 15 parts by mass. If the content of the compound (B) is 0.1 parts by mass or more with respect to 100 parts by mass of the polyimide resin (A), it is easy to impart a flame retardant improvement effect and low dielectric properties, and if it is 30 parts by mass or less, a good Appearance and heat resistance can be maintained.
<成分(C):ホスフィン酸金属塩(C1)及びフッ素樹脂(C2)からなる群から選ばれる少なくとも1種>
 本発明のポリイミド樹脂組成物は、ドリップ防止効果を向上させ、難燃性をより高めること等を目的として、ホスフィン酸金属塩(C1)及びフッ素樹脂(C2)からなる群から選ばれる少なくとも1種の成分(C)を含有することができる。
<Component (C): At least one selected from the group consisting of metal phosphinate (C1) and fluororesin (C2)>
The polyimide resin composition of the present invention has at least one selected from the group consisting of metal phosphinate (C1) and fluororesin (C2) for the purpose of improving anti-drip effect and further enhancing flame retardancy. of component (C).
(ホスフィン酸金属塩(C1))
 ホスフィン酸金属塩(C1)は、ドリップ防止効果向上の観点から、Mg、Ca、Al、Zn、Ti、Sn、Zr、及びFeからなる群から選ばれる少なくとも1種の金属の塩であることが好ましい。当該金属としては、より好ましくはMg、Ca、及びAlからなる群から選ばれる少なくとも1種であり、更に好ましくはAlである。
(Phosphinate metal salt (C1))
The metal phosphinate (C1) is a salt of at least one metal selected from the group consisting of Mg, Ca, Al, Zn, Ti, Sn, Zr, and Fe from the viewpoint of improving the anti-drip effect. preferable. The metal is more preferably at least one selected from the group consisting of Mg, Ca, and Al, and more preferably Al.
 ドリップ防止効果向上の観点、及び良好な外観を得る観点から、ホスフィン酸金属塩(C1)は、より具体的には下記式(i)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000023

(R’及びR”はそれぞれ独立に炭素数1~12の炭化水素基であり、Mは金属原子である。pはMで示される金属原子の価数である。)
More specifically, the metal phosphinate (C1) is preferably a compound represented by the following formula (i) from the viewpoint of improving the anti-drip effect and obtaining a good appearance.
Figure JPOXMLDOC01-appb-C000023

(R′ and R″ are each independently a hydrocarbon group having 1 to 12 carbon atoms, M is a metal atom, and p is the valence of the metal atom represented by M.)
 前記式(i)において、R’及びR”はそれぞれ独立に炭素数1~12の炭化水素基を示す。当該炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基等が挙げられる。
 上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基等の、炭素数1~12のアルキル基が挙げられる。
 上記シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデカニル基等の、炭素数5~12のシクロアルキル基が挙げられる。
 上記アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基等の、炭素数2~12のアルケニル基が挙げられる。
 上記アリール基としては、例えば、フェニル基、トルイル基、ビフェニル基、ナフチル基等の、炭素数6~12のアリール基が挙げられる。
 また、上記アラルキル基としては、例えば、ベンジル基、フェニルエチル基、フェニルプロピル等のアラルキル基等の、炭素数7~12のアラルキル基が挙げられる。
 上記の中でも、R’及びR”はアルキル基であることが好ましい。アルキル基の炭素数は、好ましくは1~8、より好ましくは1~6、更に好ましくは1~3である。
 R’及びR”は同一でも異なっていてもよいが、同一であることが好ましい。
In the above formula (i), R′ and R″ each independently represent a hydrocarbon group having 1 to 12 carbon atoms. Examples of the hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, An aralkyl group and the like can be mentioned.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n -decyl group, n-undecyl group, lauryl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group, 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group and isododecyl group.
Examples of the cycloalkyl group include cycloalkyl groups having 5 to 12 carbon atoms such as cyclopentyl group, cyclohexyl group, cyclooctyl group and cyclodecanyl group.
Examples of the alkenyl group include vinyl group, allyl group, butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group and 1-octenyl group. 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, and other alkenyl groups having 2 to 12 carbon atoms.
Examples of the aryl group include aryl groups having 6 to 12 carbon atoms such as phenyl group, toluyl group, biphenyl group and naphthyl group.
Examples of the aralkyl group include aralkyl groups having 7 to 12 carbon atoms such as aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group.
Among the above, R′ and R″ are preferably alkyl groups. The number of carbon atoms in the alkyl group is preferably 1-8, more preferably 1-6, and still more preferably 1-3.
R' and R'' may be the same or different, but are preferably the same.
 前記式(i)において、Mは金属原子であり、Mg、Ca、Al、Zn、Ti、Sn、Zr、及びFeからなる群から選ばれる少なくとも1種であることが好ましい。Mは、より好ましくはMg、Ca、及びAlからなる群から選ばれる少なくとも1種であり、更に好ましくはAlである。 In the above formula (i), M is a metal atom, preferably at least one selected from the group consisting of Mg, Ca, Al, Zn, Ti, Sn, Zr, and Fe. M is more preferably at least one selected from the group consisting of Mg, Ca and Al, more preferably Al.
 ホスフィン酸金属塩(C1)としては、前記式(i)においてR’及びR”が炭素数1~12のアルキル基であり、MがAlである化合物(ジアルキルホスフィン酸アルミニウム)であることが好ましい。この場合、前記式(i)におけるpは3である。R’及びR”のより好ましい態様は前記と同じである。
 更に好ましくは、ホスフィン酸金属塩(C1)は、前記式(i)においてR’及びR”がエチル基であり、MがAlである化合物(ジエチルホスフィン酸アルミニウム)である。ジエチルホスフィン酸アルミニウムは、下記構造式(ii)で示される化合物である。
Figure JPOXMLDOC01-appb-C000024
The metal phosphinate (C1) is preferably a compound (dialkylaluminum phosphinate) in which R′ and R″ are alkyl groups having 1 to 12 carbon atoms and M is Al in the above formula (i). In this case, p in the above formula (i) is 3. More preferred embodiments of R' and R'' are the same as above.
More preferably, the metal phosphinate (C1) is a compound (aluminum diethylphosphinate) in which R′ and R″ are ethyl groups and M is Al in the formula (i). Aluminum diethylphosphinate is is a compound represented by the following structural formula (ii).
Figure JPOXMLDOC01-appb-C000024
 ホスフィン酸金属塩(C1)はホスフィン酸金属塩であることから、通常、固体の化合物であり、ポリイミド樹脂(A)への分散性の観点からは粉末状であることが好ましい。また、ドリップ防止効果向上の観点、及び良好な外観を維持する観点からは、ホスフィン酸金属塩(C1)の粒子径が小さいことが好ましい。上記観点から、ホスフィン酸金属塩(C1)の粒子径(D50)は、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは20μm以下、より更に好ましくは10μm以下、より更に好ましくは5μm以下である。ホスフィン酸金属塩(C1)の粒子径(D50)が40μm以下、特に10μm以下であると、得られるポリイミド樹脂組成物及び成形体において、より高い難燃性と良好な外観とが得られる。またホスフィン酸金属塩(C1)の粒子径(D50)は、取り扱い性(舞い上がり性)や凝集抑制の観点からは、好ましくは0.1μm以上であり、より好ましくは0.5μm以上、更に好ましくは1μm以上である。
 ホスフィン酸金属塩(C1)の粒子径(D50)は、レーザー回折式粒度分布計により測定することができる。
Since the metal phosphinate (C1) is a metal phosphinate, it is usually a solid compound, and is preferably powdery from the viewpoint of dispersibility in the polyimide resin (A). In addition, from the viewpoint of improving the anti-drip effect and maintaining a good appearance, it is preferable that the metal phosphinate (C1) has a small particle size. From the above viewpoint, the particle diameter (D50) of the metal phosphinate (C1) is preferably 40 μm or less, more preferably 30 μm or less, still more preferably 20 μm or less, even more preferably 10 μm or less, and even more preferably 5 μm or less. be. When the particle diameter (D50) of the metal phosphinate (C1) is 40 µm or less, particularly 10 µm or less, the obtained polyimide resin composition and molded article have higher flame retardancy and good appearance. The particle diameter (D50) of the metal phosphinate (C1) is preferably 0.1 µm or more, more preferably 0.5 µm or more, and still more preferably 1 μm or more.
The particle size (D50) of the metal phosphinate (C1) can be measured with a laser diffraction particle size distribution meter.
 ホスフィン酸金属塩(C1)のリン含有量は、ドリップ防止効果向上の観点から、好ましくは0.5質量%以上、より好ましくは1質量%以上、ドリップ防止効果に加えてさらに高い難燃性を発現する観点からは、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上である。また、ポリイミド樹脂(A)への分散性向上の観点、及び良好な外観を維持する観点から、ホスフィン酸金属塩(C1)のリン含有量は好ましくは40質量%以下である。 The phosphorus content of the metal phosphinate (C1) is preferably 0.5% by mass or more, more preferably 1% by mass or more, from the viewpoint of improving the anti-drip effect. From the viewpoint of expression, it is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more. Moreover, from the viewpoint of improving the dispersibility in the polyimide resin (A) and maintaining a good appearance, the phosphorus content of the metal phosphinate (C1) is preferably 40% by mass or less.
 ホスフィン酸金属塩(C1)は公知の方法で製造することができる。また、ホスフィン酸金属塩(C1)として市販のホスフィン酸金属塩系難燃剤を用いることもできる。市販のホスフィン酸金属塩系難燃剤としては、例えば、クラリアントケミカルズ(株)製の「EXOLIT OP1230」、「EXOLIT OP1240」、「EXOLIT OP1400」、「EXOLIT OP930」、「EXOLIT OP935」、「EXOLIT OP945」、「EXOLIT OP945TP」等が挙げられる。 The phosphinate metal salt (C1) can be produced by a known method. A commercially available metal phosphinate flame retardant can also be used as the metal phosphinate (C1). Examples of commercially available metal phosphinate flame retardants include "EXOLIT OP1230", "EXOLIT OP1240", "EXOLIT OP1400", "EXOLIT OP930", "EXOLIT OP935" and "EXOLIT OP945" manufactured by Clariant Chemicals Co., Ltd. , "EXOLIT OP945TP" and the like.
(フッ素樹脂(C2))
 フッ素樹脂(C2)としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体(FEP)、テトラフルオロエチレンとパーフルオロアルキルビニルエーテルとの共重合体(PFA)、テトラフルオロエチレンとエチレンとの共重合体(ETFE)、テトラフルオロエチレンとパーフルオロアルコキシエチレンとの共重合体、等が挙げられ、これらのうち1種又は2種以上を用いることができる。中でも、ドリップ防止効果向上の観点、良好な外観及び耐熱性を維持する観点からは、ポリテトラフルオロエチレンが好ましい。
(Fluororesin (C2))
Examples of the fluororesin (C2) include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP), A copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (PFA), a copolymer of tetrafluoroethylene and ethylene (ETFE), a copolymer of tetrafluoroethylene and perfluoroalkoxyethylene, etc. 1 type, or 2 or more types can be used among these. Among them, polytetrafluoroethylene is preferable from the viewpoint of improving the anti-drip effect and maintaining good appearance and heat resistance.
 本発明に用いるフッ素樹脂(C2)は、ポリイミド樹脂(A)への分散性及び取り扱い性の観点から、粉末状であることが好ましい。フッ素樹脂(C2)が粉末状である場合、その平均粒径(D50)は特に制限されないが、ポリイミド樹脂(A)への分散性及び取り扱い性の観点から、好ましくは1~50μm、より好ましくは2~40μm、更に好ましくは3~30μm、より更に好ましくは5~20μmである。
 上記平均粒径(D50)は、レーザー回折光散乱式粒度分布測定器により測定することができる。
The fluororesin (C2) used in the present invention is preferably powdery from the viewpoint of dispersibility in the polyimide resin (A) and handleability. When the fluororesin (C2) is powdery, its average particle size (D50) is not particularly limited, but from the viewpoint of dispersibility and handleability in the polyimide resin (A), preferably 1 to 50 μm, more preferably 2 to 40 μm, more preferably 3 to 30 μm, even more preferably 5 to 20 μm.
The average particle diameter (D50) can be measured with a laser diffraction light scattering particle size distribution analyzer.
 フッ素樹脂(C2)として、市販品を用いることもできる。市販のフッ素樹脂のうちポリテトラフルオロエチレンとしては、例えば(株)喜多村製の「KT-300M」、「KT-400M」、「KT-600M」、「KTL-450A」、「KTL-450」、「KTL-610」、「KTL-610A」、「KTL-620」、「KTL-20N」、「KTL-10N」、「KTL-10S」、「KTL-9N」、「KTL-9S」、「KTL-8N」、「KTL-4N」、「KTL-2N」、「KTL-1N」、「KTL-8F」、「KTL-8FH」、「KTL-500F」、スリーエム ジャパン(株)製の3MダイニオンPTFEマイクロパウダー「TF9201Z」、「TF9205」、「TF9207」、ダイキン工業(株)製のFA-500H、FA-5601等の「ポリフロンMPA」シリーズ、「ポリフロンPTFE-M」シリーズ、「ポリフロンPTFE-F」シリーズ、「ポリフロンPTFE ルブロン」シリーズ等が挙げられる。 A commercially available product can also be used as the fluororesin (C2). Among commercially available fluororesins, polytetrafluoroethylene includes, for example, Kitamura Co., Ltd. "KT-300M", "KT-400M", "KT-600M", "KTL-450A", "KTL-450", "KTL-610", "KTL-610A", "KTL-620", "KTL-20N", "KTL-10N", "KTL-10S", "KTL-9N", "KTL-9S", "KTL" -8N", "KTL-4N", "KTL-2N", "KTL-1N", "KTL-8F", "KTL-8FH", "KTL-500F", 3M Dynion PTFE manufactured by 3M Japan Ltd. Micropowder "TF9201Z", "TF9205", "TF9207", "Polyflon MPA" series such as FA-500H and FA-5601 manufactured by Daikin Industries, Ltd., "Polyflon PTFE-M" series, "Polyflon PTFE-F" series, and the "Polyflon PTFE Rubron" series.
 成分(C)は1種又は2種以上を用いてもよく、ホスフィン酸金属塩(C1)とフッ素樹脂(C2)とを併用してもよい。ドリップ防止効果向上の観点、良好な外観及び耐熱性、並びに、銅、鋼板等の金属への密着性を維持する観点からは、成分(C)としてはホスフィン酸金属塩(C1)が好ましい。 The component (C) may be used alone or in combination of two or more, and the metal phosphinate (C1) and the fluororesin (C2) may be used in combination. A metal phosphinate (C1) is preferred as the component (C) from the viewpoints of improving the anti-drip effect, maintaining good appearance and heat resistance, and adhesion to metals such as copper and steel plates.
 成分(C)を用いる場合、ポリイミド樹脂組成物中の成分(C)の含有量は、ポリイミド樹脂(A)100質量部に対し、好ましくは0.01~5質量部、より好ましくは0.05~3質量部、更に好ましくは0.1~2質量部、より更に好ましくは0.2~2質量部である。ポリイミド樹脂組成物中の成分(C)の含有量がポリイミド樹脂(A)100質量部に対し0.01質量部以上であればドリップ防止効果を付与しやすく、5質量部以下であれば良好な外観及び耐熱性を維持できる。
 また、成分(C)を用いる場合、ポリイミド樹脂組成物中の成分(C)に対する成分(B)の質量比[(B)/(C)]は、ドリップ防止効果、難燃性、良好な外観及び耐熱性を得る観点から、好ましくは1.0~40、より好ましくは5.0~30、更に好ましくは10~20である。
When the component (C) is used, the content of the component (C) in the polyimide resin composition is preferably 0.01 to 5 parts by mass, more preferably 0.05, per 100 parts by mass of the polyimide resin (A). to 3 parts by mass, more preferably 0.1 to 2 parts by mass, and even more preferably 0.2 to 2 parts by mass. If the content of the component (C) in the polyimide resin composition is 0.01 parts by mass or more with respect to 100 parts by mass of the polyimide resin (A), it is easy to impart a drip prevention effect, and if it is 5 parts by mass or less, it is good. Appearance and heat resistance can be maintained.
Further, when using the component (C), the mass ratio of the component (B) to the component (C) in the polyimide resin composition [(B) / (C)] is the anti-drip effect, flame retardancy, good appearance And from the viewpoint of obtaining heat resistance, it is preferably 1.0 to 40, more preferably 5.0 to 30, still more preferably 10 to 20.
 但し、厚さが500μm以下の薄い成形体においても高い難燃性、良好な外観及び耐熱性を得る観点、特に、得られるポリイミド樹脂組成物及び成形体の燃焼時間を低減させる観点からは、ポリイミド樹脂組成物中の成分(C)の含有量は少ない方が好ましい。ポリイミド樹脂組成物及び成形体の燃焼時間の低減を優先させる観点からは、ポリイミド樹脂組成物中の成分(C)の含有量は、ポリイミド樹脂(A)100質量部に対し、より更に好ましくは1.5質量部以下、より更に好ましくは1質量部以下、より更に好ましくは0.5質量部以下、より更に好ましくは0.1質量部以下とすることができる。 However, from the viewpoint of obtaining high flame retardancy, good appearance and heat resistance even in a thin molded article having a thickness of 500 μm or less, in particular, from the viewpoint of reducing the burning time of the resulting polyimide resin composition and molded article, polyimide The smaller the content of component (C) in the resin composition, the better. From the viewpoint of prioritizing the reduction of the burning time of the polyimide resin composition and the molded article, the content of the component (C) in the polyimide resin composition is more preferably 1 per 100 parts by mass of the polyimide resin (A). 0.5 parts by mass or less, more preferably 1 part by mass or less, even more preferably 0.5 parts by mass or less, and even more preferably 0.1 parts by mass or less.
<添加剤>
 本発明のポリイミド樹脂組成物には、充填剤、強化繊維、艶消剤、可塑剤、帯電防止剤、着色防止剤、ゲル化防止剤、着色剤、摺動性改良剤、酸化防止剤、導電剤、樹脂改質剤等の成分(C)以外の添加剤を、必要に応じて配合することができる。各種添加剤の効果に関して、例えばマイカやタルクなどの無機充填剤であって、特にマイクロ~サブミクロンサイズ、あるいはナノサイズのパウダー(中実粒子)を添加した場合には、得られる成形体(特にフィルム)外観を担保した上で充填剤が持つ低CTE(線膨張係数)化効果を付与できるため好適である。また、中空シリカをはじめとした中空材料、その中でもマイクロ~サブミクロンサイズ、あるいはナノサイズの中空材料を添加した場合には、フィルム外観を担保した上で充填剤が持つ低誘電特性改善効果を付与できるため好適である。良好な外観を担保した上で低CTE化効果、もしくは低誘電特性改善効果を付与する観点から、前記中実粒子及び中空材料の粒子径(D50)は、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは20μm以下、より更に好ましくは10μm以下、より更に好ましくは5μm以下である。また、取り扱い性向上(舞い上がり抑制)及び凝集抑制の観点からは、好ましくは0.1μm以上であり、より好ましくは0.5μm以上、更に好ましくは1μm以上である。D50は、レーザー回折式粒度分布計により測定することができる。
 上記添加剤を用いる場合、その配合量には特に制限はないが、ポリイミド樹脂(A)由来の物性を維持しつつ添加剤の効果を発現させる観点から、ポリイミド樹脂組成物中、通常、50質量%以下であり、好ましくは0.0001~30質量%、より好ましくは0.001~15質量%、更に好ましくは0.01~10質量%である。
<Additive>
The polyimide resin composition of the present invention contains fillers, reinforcing fibers, delustering agents, plasticizers, antistatic agents, anti-coloring agents, anti-gelling agents, coloring agents, slidability improvers, antioxidants, and conductive agents. Additives other than component (C), such as agents and resin modifiers, can be blended as needed. Regarding the effects of various additives, for example, inorganic fillers such as mica and talc, especially when micro- to submicron-sized or nano-sized powders (solid particles) are added, the resulting molded body (especially Film) This is preferable because it can provide the effect of lowering the CTE (coefficient of linear expansion) of the filler while ensuring the appearance. In addition, hollow materials such as hollow silica, especially micro- to submicron-sized or nano-sized hollow materials, can be added to improve the low dielectric properties of fillers while maintaining the appearance of the film. This is preferable because it can be done. From the viewpoint of imparting a low CTE effect or a low dielectric property improvement effect while ensuring good appearance, the particle diameter (D50) of the solid particles and hollow materials is preferably 40 μm or less, more preferably 30 μm or less. , more preferably 20 μm or less, still more preferably 10 μm or less, and even more preferably 5 μm or less. Moreover, from the viewpoints of handling improvement (suppression of flying up) and aggregation suppression, the thickness is preferably 0.1 μm or more, more preferably 0.5 μm or more, and still more preferably 1 μm or more. D50 can be measured with a laser diffraction particle size distribution meter.
When the additive is used, the amount thereof is not particularly limited, but from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin (A), usually 50 mass in the polyimide resin composition % or less, preferably 0.0001 to 30% by mass, more preferably 0.001 to 15% by mass, still more preferably 0.01 to 10% by mass.
 また、本発明のポリイミド樹脂組成物には、その特性が阻害されない範囲で、ポリイミド樹脂(A)以外の他の樹脂を配合することができる。当該他の樹脂としては、高耐熱性の熱可塑性樹脂が好ましく、例えば、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂(A)以外のポリイミド樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンエーテルイミド樹脂、ポリフェニレンサルファイド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、液晶ポリマー、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルエーテルケトンケトン樹脂、ポリベンゾイミダゾール樹脂、等が挙げられる。これらの中でも、耐熱性、成形加工性、強度及び耐溶剤性の観点から、ポリエーテルイミド樹脂、ポリフェニレンサルファイド樹脂、及びポリエーテルエーテルケトン樹脂からなる群から選ばれる1種以上が好ましく、低吸水性の観点からは液晶ポリマーが好ましく、高い難燃性を得る観点からはポリフェニレンサルファイド樹脂が好ましい。
 ポリイミド樹脂(A)と他の樹脂とを併用する場合、ポリイミド樹脂組成物の特性が阻害されない範囲であれば、その配合比率には特に制限はない。
Further, the polyimide resin composition of the present invention may contain other resins than the polyimide resin (A) as long as the properties thereof are not impaired. As the other resin, a highly heat-resistant thermoplastic resin is preferable, and examples thereof include polyamide resins, polyester resins, polyimide resins other than the polyimide resin (A), polycarbonate resins, polyetherimide resins, polyamideimide resins, and polyphenylene etherimide. Resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyarylate resin, liquid crystal polymer, polyetheretherketone resin, polyetherketone resin, polyetherketoneketone resin, polyetheretherketoneketone resin, polybenzimidazole resin, etc. Among these, one or more selected from the group consisting of polyetherimide resins, polyphenylene sulfide resins, and polyether ether ketone resins is preferable from the viewpoint of heat resistance, molding processability, strength and solvent resistance, and has low water absorption. From the viewpoint of above, a liquid crystal polymer is preferred, and from the viewpoint of obtaining high flame retardancy, a polyphenylene sulfide resin is preferred.
When the polyimide resin (A) is used in combination with another resin, there is no particular limitation on the blending ratio as long as the properties of the polyimide resin composition are not impaired.
 但し、本発明のポリイミド樹脂組成物中のポリイミド樹脂(A)及び化合物(B)の合計含有量は、本発明の効果を得る観点から、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上、より更に好ましくは70質量%以上、より更に好ましくは80質量%以上、より更に好ましくは90質量%以上、より更に好ましくは95質量%以上であり、100質量%以下である。 However, the total content of the polyimide resin (A) and the compound (B) in the polyimide resin composition of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, from the viewpoint of obtaining the effects of the present invention. , More preferably 50% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more, and 100% by mass It is below.
 本発明のポリイミド樹脂組成物は任意の形態をとることができるが、ペレットであることが好ましい。
 本発明のポリイミド樹脂組成物及びこれに用いるポリイミド樹脂(A)は熱可塑性を有するため、例えばポリイミド樹脂(A)、化合物(B)、及び必要に応じて各種任意成分を添加してドライブレンドした後、あるいは、ポリイミド樹脂(A)の押出機へのフィードとは別の個所より化合物(B)及び任意の成分を別フィードした後、押出機内で溶融混練してストランドを押出し、ストランドをカットすることによりペレット化することができる。また、当該ペレットを各種成形機に導入して後述の方法で熱成形することにより、所望の形状を有する成形体を容易に製造することができる。
 上記ペレットの製造過程、及び熱成形過程では通常、難燃剤のブリードアウト又は熱分解、着色、白化等が起こりやすいが、本発明のポリイミド樹脂組成物ではこれらの不具合が起こりにくく、良好な外観を維持できる。
 本発明のポリイミド樹脂組成物は、ペレット形態にする観点から、溶剤を含まないことが好ましい。具体的には、ポリイミド樹脂組成物中の溶剤の含有量は、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.1質量%以下である。
Although the polyimide resin composition of the present invention can take any form, pellets are preferred.
Since the polyimide resin composition of the present invention and the polyimide resin (A) used therein have thermoplasticity, for example, the polyimide resin (A), the compound (B), and optionally various optional components are added and dry blended. After that, or after feeding the compound (B) and optional components from a place different from the feeding of the polyimide resin (A) to the extruder, the strands are extruded by melt-kneading in the extruder, and the strands are cut. It can be pelletized by Further, by introducing the pellets into various molding machines and thermoforming them by the method described below, a molded body having a desired shape can be easily produced.
In the production process of the pellets and the thermoforming process, bleed-out or thermal decomposition of the flame retardant, coloration, whitening, etc. are usually likely to occur, but the polyimide resin composition of the present invention is less likely to cause these problems and has a good appearance. can be maintained.
It is preferable that the polyimide resin composition of the present invention does not contain a solvent from the viewpoint of forming pellets. Specifically, the solvent content in the polyimide resin composition is preferably 5% by mass or less, more preferably 1% by mass or less, and even more preferably 0.1% by mass or less.
[成形体]
 本発明は、前記ポリイミド樹脂組成物を含む成形体を提供する。
 成形体の形状は特に制限されないが、厚さが薄い成形体であっても高い難燃性と良好な外観とが得られるという本発明の効果を有効に発揮する観点からは、厚さが500μm以下、好ましくは200μm以下、より好ましくは100μm未満、更に好ましくは80μm以下、より更に好ましくは60μm以下のフィルム形状であることが好ましい。厚さの下限値は、通常、5μm以上、好ましくは10μm以上である。
 本明細書において「フィルム形状の成形体の厚さ」とは、フィルム形状の成形体の厚さの平均値を意味する。またフィルム形状の成形体には、樹脂フィルムの形態の他、多層積層板を構成する樹脂層の形態、コーティング層の形態等が含まれる。
 但し本発明の成形体の形状は厚さ500μm以下のフィルム形状に限定されない。例えば、厚さが500μmを超える平板状の成形体であっても、本発明の効果を得ることができる。
[Molded body]
The present invention provides a molded article containing the polyimide resin composition.
The shape of the molded body is not particularly limited, but from the viewpoint of effectively exhibiting the effect of the present invention that high flame retardancy and good appearance can be obtained even with a thin molded body, the thickness is 500 μm. It is preferably 200 μm or less, more preferably less than 100 μm, still more preferably 80 μm or less, and even more preferably 60 μm or less in film shape. The lower limit of the thickness is usually 5 μm or more, preferably 10 μm or more.
As used herein, the term "thickness of the film-shaped molded article" means the average value of the thickness of the film-shaped molded article. The film-shaped molded body includes the form of a resin layer constituting a multilayer laminate, the form of a coating layer, and the like, in addition to the form of a resin film.
However, the shape of the molded article of the present invention is not limited to a film shape having a thickness of 500 μm or less. For example, the effect of the present invention can be obtained even with a flat plate-shaped compact having a thickness exceeding 500 μm.
 本発明のポリイミド樹脂組成物は熱可塑性を有するため、熱成形することにより容易に本発明の成形体を製造できる。熱成形方法としては射出成形、押出成形、インフレーション成形、ブロー成形、熱プレス成形、真空成形、圧空成形、レーザー成形、溶接、溶着等が挙げられ、熱溶融工程を経る成形方法であればいずれの方法でも成形が可能である。厚さ500μm以下のフィルム形状の成形体を製造する場合は、押出成形が好ましい。また、厚さが500μmを超える平板状の成形体を製造する場合は、射出成形等を用いることができる。
 熱成形は、成形温度を例えば400℃を超える高温に設定することなく成形可能であるため好ましい。中でも射出成形を行う場合には、成形温度及び成形時の金型温度を高温に設定することなく成形可能であるため好ましい。例えば射出成形においては、成形温度を好ましくは400℃以下、より好ましくは360℃以下とし、金型温度を好ましくは260℃以下、より好ましくは220℃以下として成形が可能である。なお、本発明で用いるポリイミド樹脂(A)は、一般的な結晶性樹脂と比べると結晶化速度が極めて速いため、ガラス転移温度を大きく下回る(例えばTg-50℃)ような金型温度においても、結晶化を進行させることが可能である。
Since the polyimide resin composition of the present invention has thermoplasticity, the molded article of the present invention can be easily produced by thermoforming. Examples of thermoforming methods include injection molding, extrusion molding, inflation molding, blow molding, hot press molding, vacuum molding, pressure molding, laser molding, welding, and welding. Molding is also possible by the method. Extrusion molding is preferred when producing a film-shaped molding having a thickness of 500 μm or less. Injection molding or the like can be used to manufacture a flat molded article having a thickness of more than 500 μm.
Thermoforming is preferred because molding can be performed without setting the molding temperature to a high temperature exceeding, for example, 400°C. Among them, injection molding is preferable because molding can be performed without setting the molding temperature and the mold temperature at the time of molding to a high temperature. For example, in injection molding, the molding temperature is preferably 400° C. or lower, more preferably 360° C. or lower, and the mold temperature is preferably 260° C. or lower, more preferably 220° C. or lower. In addition, the polyimide resin (A) used in the present invention has a very fast crystallization rate compared to general crystalline resins, so even at a mold temperature that is much lower than the glass transition temperature (for example, Tg-50 ° C.) , it is possible to proceed with crystallization.
 成形体を製造する方法としては、ポリイミド樹脂組成物を290~360℃で熱成形する工程を有することが好ましい。360℃超~390℃での熱成形も可能であるが、ポリイミド樹脂(A)や他の樹脂成分の劣化を抑制する観点からは、360℃以下の温度で熱成形することが好ましい。具体的な手順としては、例えば以下の方法が挙げられる。
 まず、ポリイミド樹脂(A)に、化合物(B)及び必要に応じて各種任意成分を添加してドライブレンドした後、これを押出機内に導入して、好ましくは290~360℃で溶融して押出機内で溶融混練及び押出し、ペレットを作製する。あるいは、ポリイミド樹脂(A)を押出機内に導入して、好ましくは290~360℃で溶融し、ここに化合物(B)及び必要に応じて各種任意成分を導入して押出機内でポリイミド樹脂(A)と溶融混練し、押出すことで前述のペレットを作製してもよい。
 上記ペレットを乾燥させた後、各種成形機に導入して好ましくは290~360℃で熱成形し、所望の形状を有する成形体を製造することができる。
 本発明のポリイミド樹脂組成物は290~360℃という比較的低い温度で押出成形等の熱成形を行うことが可能であるため、成形加工性に優れ、所望の形状を有する成形品を容易に製造することができる。熱成形時の温度は、好ましくは310~360℃である。
A method for producing a molded product preferably includes a step of thermoforming a polyimide resin composition at 290 to 360°C. Thermoforming at temperatures above 360° C. to 390° C. is also possible, but from the viewpoint of suppressing deterioration of the polyimide resin (A) and other resin components, thermoforming at a temperature of 360° C. or less is preferred. Specific procedures include, for example, the following method.
First, the polyimide resin (A), compound (B) and optionally various optional components are added and dry blended, and then introduced into an extruder, preferably melted at 290 to 360 ° C. and extruded. Melt-knead and extrude in the machine to produce pellets. Alternatively, the polyimide resin (A) is introduced into the extruder, preferably melted at 290 to 360 ° C., and the compound (B) and various optional components are introduced here, and the polyimide resin (A ) and extruded to produce the aforementioned pellets.
After the pellets are dried, they are introduced into various molding machines and thermoformed preferably at 290 to 360° C. to produce a molded article having a desired shape.
Since the polyimide resin composition of the present invention can be subjected to thermoforming such as extrusion molding at a relatively low temperature of 290 to 360 ° C., it has excellent moldability and can easily produce a molded product having a desired shape. can do. The temperature during thermoforming is preferably 310-360°C.
<難燃性>
 本発明のポリイミド樹脂組成物及び成形体は、厚さが500μm以下の薄い成形体とした場合でも高い難燃性を発現する。該難燃性は、UL94VTM試験(薄手材料垂直燃焼試験;ASTM D4804)に準拠した方法で、具体的には実施例に記載の方法に基づいて評価することができる。
<Flame Retardant>
The polyimide resin composition and molded article of the present invention exhibit high flame retardancy even when formed into a thin molded article having a thickness of 500 μm or less. The flame retardancy can be evaluated by a method conforming to the UL94 VTM test (thin material vertical burning test; ASTM D4804), specifically based on the method described in Examples.
<低誘電特性>
 本発明のポリイミド樹脂組成物及び成形体は低誘電特性を有し、例えば、測定周波数10GHzにおける誘電率が3.0以下で且つ誘電正接が0.005以下を達成することができる。該誘電率は、好ましくは2.90以下、より好ましくは2.85以下であり、誘電正接は、好ましくは0.004以下、より好ましくは0.003以下である。誘電率及び誘電正接は、具体的には実施例に記載の方法により測定できる。
<Low dielectric properties>
The polyimide resin composition and molded article of the present invention have low dielectric properties, and can achieve, for example, a dielectric constant of 3.0 or less and a dielectric loss tangent of 0.005 or less at a measurement frequency of 10 GHz. The dielectric constant is preferably 2.90 or less, more preferably 2.85 or less, and the dielectric loss tangent is preferably 0.004 or less, more preferably 0.003 or less. The dielectric constant and dielectric loss tangent can be specifically measured by the methods described in Examples.
<用途>
 本発明のポリイミド樹脂組成物によれば、厚さが薄い(例えば500μm以下)場合であっても高い難燃性と良好な外観とを両立し得る成形体を作製できる。
 さらに、該ポリイミド樹脂組成物及びこれを含む成形体は高耐熱性(高ガラス転移温度)及び低誘電特性を有するため、高い難燃性と、低誘電率及び低誘電正接が要求される用途、例えば、5G、又は70G~300GHzの周波数帯を使用する第6世代移動通信システム(6G)関連部材(スマートフォン、フレキシブルプリント基板、銅張積層板等の金属箔積層板、アンテナ、アンテナ基板等)、上記以外の、各種アンテナ(マイクロ波用アンテナ、ミリ波用アンテナ、導波管スロットアンテナ、ホーンアンテナ、レンズアンテナ、プリントアンテナ、トリプレートアンテナ、マイクロストリップアンテナ、パッチアンテナ等)、各種アンテナ基板(77GHz車載ミリ波レーダのアンテナ基板、テラヘルツ波レーダのアンテナ基板、航空機用レーダのアンテナ基板、キャタピラ式特殊車両用アンテナ基板、WiGigのアンテナ基板等)、電線被覆材(低誘電電線被覆材等)、ボンディングシート、絶縁フィルム、炭素繊維強化プラスチック(CFRP)用原料、高周波回路基板、プリント配線基板、チップオンフィルム(COF)フレキシブル基板、多層積層板、LED搭載基板、産業用ロボット基板、家庭用ロボットの通信用基板、半導体素子材料、高周波デバイス用ウエハ、Wi-fiチップ、無線通信デバイス、伝送線路(同軸線路、ストリップ線路、マイクロストリップ線路、コプレナー線路、平行線路等)、ベアリング用コート、断熱軸、トレー、各種ベルト(シームレスベルト等)、耐熱低誘電テープ、耐熱低誘電チューブ、各種センサ(タッチセンサ等)、各種レーダ(車載用レーダ、航空宇宙用レーダ等)、レドーム(レーダードーム)、光通信モジュール(TOSA/ROSA)、8k-TVのケーブルモバイル端末又はデジタル家電(タブレット端末、ノートPC、薄型TV、巻き取り式TV、デジカメ、スマートグラス、スマートウォッチ等)、基地局(マクロセル基地局、スモールセル基地局、C-RAN基地局等)、ドローン(商業用ドローン、長距離移動ドローン等)、監視カメラ、室内又は屋外サーバ、人工衛星、宇宙ステーション用通信機器等に適用できる。
 上記の中でも、本発明のポリイミド樹脂組成物及び成形体は、銅張積層板を主とした金属箔積層板に用いることがより好ましい。以下、金属箔積層板について説明する。
<Application>
According to the polyimide resin composition of the present invention, a molded article having both high flame retardancy and good appearance can be produced even when the thickness is thin (for example, 500 μm or less).
Furthermore, the polyimide resin composition and the molded article containing it have high heat resistance (high glass transition temperature) and low dielectric properties, so that high flame retardancy, low dielectric constant and low dielectric loss tangent are required. For example, 5G or 6th generation mobile communication system (6G) related parts using the frequency band of 70G to 300GHz (smartphones, flexible printed circuit boards, metal foil laminates such as copper clad laminates, antennas, antenna substrates, etc.), Other than the above, various antennas (microwave antennas, millimeter wave antennas, waveguide slot antennas, horn antennas, lens antennas, printed antennas, triplate antennas, microstrip antennas, patch antennas, etc.), various antenna substrates (77 GHz) Automotive millimeter wave radar antenna substrate, terahertz wave radar antenna substrate, aircraft radar antenna substrate, caterpillar type special vehicle antenna substrate, WiGig antenna substrate, etc.), wire coating materials (low dielectric wire coating materials, etc.), bonding Sheets, insulating films, raw materials for carbon fiber reinforced plastics (CFRP), high-frequency circuit boards, printed wiring boards, chip-on-film (COF) flexible boards, multi-layer laminates, LED mounting boards, industrial robot boards, communications for home robots substrates, semiconductor element materials, high-frequency device wafers, Wi-fi chips, wireless communication devices, transmission lines (coaxial lines, strip lines, microstrip lines, coplanar lines, parallel lines, etc.), bearing coats, heat insulating shafts, trays , various belts (seamless belts, etc.), heat-resistant low-dielectric tapes, heat-resistant low-dielectric tubes, various sensors (touch sensors, etc.), various radars (vehicle radars, aerospace radars, etc.), radomes (radomes), optical communication modules (TOSA/ROSA), 8k-TV cable mobile terminals or digital home appliances (tablet terminals, notebook PCs, flat-screen TVs, roll-up TVs, digital cameras, smart glasses, smart watches, etc.), base stations (macrocell base stations, small cells) base stations, C-RAN base stations, etc.), drones (commercial drones, long-distance mobile drones, etc.), surveillance cameras, indoor or outdoor servers, artificial satellites, communication equipment for space stations, etc.
Among the above, the polyimide resin composition and molded article of the present invention are more preferably used for metal foil laminates, mainly copper-clad laminates. The metal foil laminate will be described below.
[金属箔積層板]
 本発明は、前記ポリイミド樹脂組成物を含む成形体からなる層と、金属箔からなる層とを有する、金属箔積層板を提供する。
 金属箔積層板としては、主として銅張積層板が挙げられ、該銅張積層板は、前記ポリイミド樹脂組成物を含むフィルム形状の成形体からなる層(以下、単に「樹脂フィルム層」ともいう)と、少なくとも1層の銅箔層とを有するものであればよい。例えば、前記ポリイミド樹脂組成物を含む樹脂フィルムの少なくとも一方の面、好ましくは両面に銅箔を積層した構成の積層板が挙げられる。
[Metal foil laminate]
The present invention provides a metal foil laminate having a layer made of a molded body containing the polyimide resin composition and a layer made of a metal foil.
The metal foil laminate mainly includes a copper-clad laminate, and the copper-clad laminate is a layer (hereinafter also simply referred to as "resin film layer") made of a film-shaped molded body containing the polyimide resin composition. and at least one copper foil layer. For example, a laminate having a configuration in which a copper foil is laminated on at least one surface, preferably both surfaces of a resin film containing the polyimide resin composition can be mentioned.
 銅張積層板の製造に用いる樹脂フィルムは、前記成形体の製造方法と同様の方法で製造することができる。該樹脂フィルム、及び銅張積層板における樹脂フィルム層の厚さは、銅張積層板の強度を確保する観点、樹脂フィルム層と銅箔層との接着性向上の観点から、好ましくは5~500μm、より好ましくは10~300μm、更に好ましくは12.5~200μmである。 The resin film used for manufacturing the copper-clad laminate can be manufactured by the same method as the method for manufacturing the molded product. The thickness of the resin film and the resin film layer in the copper-clad laminate is preferably 5 to 500 μm from the viewpoint of ensuring the strength of the copper-clad laminate and improving the adhesion between the resin film layer and the copper foil layer. , more preferably 10 to 300 μm, still more preferably 12.5 to 200 μm.
 銅張積層板の製造に用いる銅箔は特に制限されず、市販の圧延銅箔、電解銅箔等を用いることができるが、フレキシブル性の観点からは圧延銅箔が好ましい。銅箔層及びその形成に用いる銅箔の厚さは、十分な導電性を確保する観点、及び樹脂フィルム層との接着性向上の観点から、好ましくは2~50μm、より好ましくは3~30μm、更に好ましくは5~20μmである。該厚さは、銅箔層1層あたり、又は銅箔1枚あたりの厚さである。
 また、銅張積層板の製造に用いる銅箔の表面粗さは特に制限されないが、該銅箔の表面粗さは樹脂フィルムを貼り合わせた後に得られる積層板自体の電気特性に直結し、一般的には低粗度であるほど誘電特性として優れた積層板と成り得る。そのため、銅箔表面の最大高さRzの値は、好ましくは0.1~1μm、より好ましくは0.2~0.8μmの範囲である。銅箔表面の最大高さRzは、例えば表面粗さ計により測定することができる。
The copper foil used for producing the copper-clad laminate is not particularly limited, and commercially available rolled copper foil, electrolytic copper foil, etc. can be used, but rolled copper foil is preferable from the viewpoint of flexibility. The thickness of the copper foil layer and the copper foil used for its formation is preferably 2 to 50 μm, more preferably 3 to 30 μm, from the viewpoint of ensuring sufficient conductivity and improving adhesion with the resin film layer. More preferably, it is 5 to 20 μm. The thickness is the thickness per copper foil layer or per copper foil.
In addition, the surface roughness of the copper foil used in the production of the copper-clad laminate is not particularly limited, but the surface roughness of the copper foil is directly linked to the electrical properties of the laminate itself obtained after laminating the resin film, and generally In theory, the lower the roughness, the better the dielectric properties of the laminate. Therefore, the maximum height Rz of the copper foil surface is preferably in the range of 0.1 to 1 μm, more preferably in the range of 0.2 to 0.8 μm. The maximum height Rz of the copper foil surface can be measured, for example, with a surface roughness meter.
 銅張積層板の厚さは、銅張積層板の強度及び導電性向上の観点から、好ましくは15~600μm、より好ましくは25~500μm、更に好ましくは50~300μmである。なお銅張積層板は、本発明の効果を損なわない限り、前記樹脂フィルム層及び銅箔層以外の任意の層を有していてもよい。 The thickness of the copper-clad laminate is preferably 15-600 μm, more preferably 25-500 μm, still more preferably 50-300 μm, from the viewpoint of improving the strength and conductivity of the copper-clad laminate. The copper-clad laminate may have any layer other than the resin film layer and the copper foil layer as long as the effects of the present invention are not impaired.
 銅張積層板の製造方法は特に制限されず、公知の方法を用いることができる。例えば、前記樹脂フィルムと銅箔とを重ね合わせ、次いで加熱加圧条件下で貼り合わせることにより積層する方法が挙げられる。該樹脂フィルムは熱可塑性のポリイミド樹脂(A)を含むため、表面を熱溶融させた状態で圧着し、銅箔と貼り合わせることが可能である。
 銅張積層板の製造に用いられる装置としては、樹脂フィルムと銅箔とを加熱加圧条件下で貼り合わせることが可能な装置であればよく、例えば、ロールラミネーター、平板ラミネーター、真空プレス装置、ダブルベルトプレス装置等が挙げられる。これらの中でも、銅張積層板の生産性の観点、及び、外観良好な銅張積層板を得る観点からは、真空プレス装置、又はダブルベルトプレス装置を用いることが好ましい。ダブルベルトプレス装置とは、上下一対に配置されたエンドレスベルトを備え、該ベルト間に、各層を形成するフィルム形状の材料(樹脂フィルム及び銅箔)を連続的に送り込み、エンドレスベルトを介して加熱加圧機構により前記材料を加熱加圧成形し、積層体を製造できる装置である。
 ダブルベルトプレス装置としては、特開2010-221694号公報に記載の装置、(株)ディムコ製のダブルベルトプレス装置等を例示できる。
The method for producing the copper-clad laminate is not particularly limited, and known methods can be used. For example, there is a method of stacking the resin film and the copper foil on top of each other, and then laminating them under heating and pressurizing conditions. Since the resin film contains the thermoplastic polyimide resin (A), it can be bonded to the copper foil by pressure bonding with the surface melted by heat.
The apparatus used for manufacturing the copper-clad laminate may be any apparatus as long as it can bond the resin film and the copper foil together under heat and pressure conditions. Examples include a roll laminator, flat plate laminator, vacuum press apparatus, A double belt press device and the like can be mentioned. Among these, it is preferable to use a vacuum press or a double belt press from the viewpoint of productivity of the copper-clad laminate and from the viewpoint of obtaining a copper-clad laminate having a good appearance. A double belt press device is equipped with endless belts arranged in a pair of upper and lower parts, and between the belts, film-shaped materials (resin film and copper foil) forming each layer are continuously fed and heated through the endless belts. It is an apparatus capable of producing a laminate by heating and pressurizing the above materials using a pressurizing mechanism.
Examples of the double belt press device include the device described in JP-A-2010-221694 and the double belt press device manufactured by DIMCO Co., Ltd.
 前記方法で銅張積層板を製造する際の加熱温度は、樹脂フィルムを軟化又は溶融させることができる温度であれば特に制限されないが、装置上及び製造上の負担を軽減する観点から、好ましくは250~400℃、より好ましくは280~350℃の範囲である。また銅張積層板を製造する際の加圧条件は、樹脂フィルムと銅箔との接着性向上の観点、装置上及び製造上の負担を軽減する観点から、圧力としては好ましくは0.1~20MPa、より好ましくは0.15~15MPa、さらに好ましくは0.2~12MPaである。また、生産効率を向上させる観点から、加圧時間は、好ましくは1~600秒、より好ましくは5~400秒、さらに好ましくは10~300秒の範囲である。 The heating temperature for producing a copper-clad laminate by the above method is not particularly limited as long as it is a temperature at which the resin film can be softened or melted. It is in the range of 250-400°C, more preferably 280-350°C. In addition, the pressure conditions for producing the copper-clad laminate are preferably from 0.1 to 0.1, from the viewpoint of improving the adhesion between the resin film and the copper foil, and from the viewpoint of reducing the burden on the apparatus and manufacturing. 20 MPa, more preferably 0.15 to 15 MPa, still more preferably 0.2 to 12 MPa. Also, from the viewpoint of improving production efficiency, the pressurization time is preferably in the range of 1 to 600 seconds, more preferably 5 to 400 seconds, and even more preferably 10 to 300 seconds.
 なお、前記樹脂フィルムは、熱溶着できることが特徴ではあるが、銅張積層板の製造において、樹脂フィルムと銅箔とを接着剤を用いて貼り合わせることも可能である。接着剤としては、ワニス状の接着剤、シート状の接着剤、粉末状の接着剤等任意に選択できる。一方、低誘電特性を担保する観点からは、接着剤としても低誘電特性を有するものが好適である。低誘電特性の接着剤としては、例えば荒川化学工業(株)製のポリイミド接着剤「PIAD」シリーズが挙げられる。 The resin film is characterized in that it can be heat-sealed, but it is also possible to bond the resin film and the copper foil together using an adhesive in the production of the copper-clad laminate. As the adhesive, a varnish-like adhesive, a sheet-like adhesive, a powder-like adhesive, or the like can be arbitrarily selected. On the other hand, from the viewpoint of securing low dielectric properties, it is preferable that the adhesive also have low dielectric properties. Examples of adhesives with low dielectric properties include the "PIAD" series of polyimide adhesives manufactured by Arakawa Chemical Industries, Ltd.
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各製造例、実施例における各種測定及び評価は以下のように行った。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these. Various measurements and evaluations in each production example and working example were carried out as follows.
<赤外線分光分析(IR測定)>
 ポリイミド樹脂のIR測定は日本電子(株)製「JIR-WINSPEC50」を用いて行った。
<Infrared spectroscopic analysis (IR measurement)>
The IR measurement of the polyimide resin was performed using "JIR-WINSPEC50" manufactured by JEOL Ltd.
<対数粘度μ>
 ポリイミド樹脂を190~200℃で2時間乾燥した後、該ポリイミド樹脂0.100gを濃硫酸(96%、関東化学(株)製)20mLに溶解したポリイミド樹脂溶液を測定試料とし、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln(ts/t)/C
:濃硫酸の流れる時間
ts:ポリイミド樹脂溶液の流れる時間
C:0.5g/dL
<Logarithmic Viscosity μ>
After drying the polyimide resin at 190 to 200 ° C. for 2 hours, 0.100 g of the polyimide resin was dissolved in 20 mL of concentrated sulfuric acid (96%, manufactured by Kanto Chemical Co., Ltd.). Measurements were made at 30°C using a meter. The logarithmic viscosity μ was determined by the following formula.
μ=ln(ts/ t0 )/C
t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 g/dL
<融点、ガラス転移温度、結晶化温度、結晶化発熱量>
 ポリイミド樹脂又はポリイミド樹脂組成物の融点Tm、ガラス転移温度Tg、結晶化温度Tc、及び結晶化発熱量ΔHmは、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、ポリイミド樹脂又はポリイミド樹脂組成物に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(昇温速度10℃/分)、その後冷却(降温速度20℃/分)、その後昇温2度目(昇温速度10℃/分)である。
 融点Tmは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定した。ガラス転移温度Tgは昇温2度目で観測された値を読み取り決定した。結晶化温度Tcは冷却時に観測された発熱ピークのピークトップ値を読み取り決定した。
 また結晶化発熱量ΔHm(mJ/mg)は冷却時に観測された発熱ピークの面積から算出した。
<Melting point, glass transition temperature, crystallization temperature, crystallization heat value>
The melting point Tm, glass transition temperature Tg, crystallization temperature Tc, and crystallization heat value ΔHm of the polyimide resin or polyimide resin composition were measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.). was measured using
In a nitrogen atmosphere, the polyimide resin or polyimide resin composition was subjected to thermal history under the following conditions. The thermal history conditions were a first temperature increase (temperature increase rate of 10° C./min), then cooling (temperature decrease rate of 20° C./min), and then a second temperature increase (temperature increase rate of 10° C./min).
The melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised. The glass transition temperature Tg was determined by reading the value observed at the second heating. The crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling.
The crystallization heat value ΔHm (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
<半結晶化時間>
 ポリイミド樹脂の半結晶化時間は、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 半結晶化時間が20秒以下のポリイミド樹脂の測定条件は窒素雰囲気下、420℃で10分保持し、ポリイミド樹脂を完全に溶融させたのち、冷却速度70℃/分の急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップに達するまでにかかった時間を計算し、決定した。
<Semi-crystallization time>
The semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.).
The measurement conditions for the polyimide resin having a semi-crystallization time of 20 seconds or less were held at 420° C. for 10 minutes in a nitrogen atmosphere to melt the polyimide resin completely, and then perform a rapid cooling operation at a cooling rate of 70° C./min. Second, the time taken from the appearance of the observed crystallization peak to the peak top was calculated and determined.
<重量平均分子量>
 ポリイミド樹脂の重量平均分子量(Mw)は、昭和電工(株)製のゲルろ過クロマトグラフィー(GPC)測定装置「Shodex GPC-101」を用いて下記条件にて測定した。
 カラム:Shodex HFIP-806M
 移動相溶媒:トリフルオロ酢酸ナトリウム2mM含有HFIP
 カラム温度:40℃
 移動相流速:1.0mL/min
 試料濃度:約0.1質量%
 検出器:IR検出器
 注入量:100μm
 検量線:標準PMMA
<Weight average molecular weight>
The weight average molecular weight (Mw) of the polyimide resin was measured under the following conditions using a gel permeation chromatography (GPC) measuring device "Shodex GPC-101" manufactured by Showa Denko KK.
Column: Shodex HFIP-806M
Mobile phase solvent: HFIP containing 2 mM sodium trifluoroacetate
Column temperature: 40°C
Mobile phase flow rate: 1.0 mL/min
Sample concentration: about 0.1% by mass
Detector: IR detector Injection volume: 100 μm
Calibration curve: standard PMMA
<難燃性>
 実施例1~8、比較例1~3に関しては、ポリイミド樹脂又は各例で得られたポリイミド樹脂組成物を用いて、後述する方法により200mm×50mm×厚さ0.05±0.01mmの成形体(フィルム)を作製した。該フィルムを23±2℃、50±5%R.H.で48時間状態調節を行った後、25±10℃、75%R.H.以下の試験環境下で、UL94VTM試験(薄手材料垂直燃焼試験;ASTM D4804)に使用した。
 具体的には、前記フィルムを円筒状に巻き、クランプに垂直に取付け、メタンガスを使用した20mm炎による3秒間接炎を2回行い、その燃焼挙動により難燃性を評価した。
 実施例9に関しては、後述する方法により80mm×10mm×厚さ4mmの平板状の成形体を作製し、該平板を23±2℃、50±5%R.H.で48時間状態調節を行った後、25±10℃、75%R.H.以下の試験環境下で、UL94V試験(20mm垂直燃焼試験;ASTM D3801)に使用した。具体的には、前記平板をクランプに垂直に取付け、メタンガスを使用した20mm炎による10秒間接炎を2回行い、その燃焼挙動により難燃性を評価した。
<Flame Retardant>
For Examples 1 to 8 and Comparative Examples 1 to 3, the polyimide resin or the polyimide resin composition obtained in each example was used to mold 200 mm × 50 mm × thickness 0.05 ± 0.01 mm by the method described later. A body (film) was produced. The film was dried at 23±2° C., 50±5% R.I. H. after conditioning for 48 hours at 25±10° C., 75% R.I. H. It was used for the UL94 VTM test (thin material vertical burning test; ASTM D4804) under the following test environment.
Specifically, the film was wound in a cylindrical shape, attached vertically to a clamp, and subjected to two 3-second indirect flames with a 20 mm flame using methane gas, and the flame retardancy was evaluated from the combustion behavior.
As for Example 9, a flat plate-like molded body of 80 mm×10 mm×4 mm in thickness was produced by the method described later, and the flat plate was heated at 23±2° C. and 50±5% RI. H. after conditioning for 48 hours at 25±10° C., 75% R.I. H. It was used for the UL94V test (20 mm vertical burn test; ASTM D3801) under the following test environment. Specifically, the flat plate was vertically attached to a clamp, and 20-mm flame using methane gas was applied twice for 10 seconds, and the flame retardancy was evaluated from the combustion behavior.
(1回目及び2回目の接炎後の最大有炎燃焼時間)
 前記接炎を2回行ったうちの、接炎後の最大有炎燃焼時間(秒)を表2及び表5に示した(n=5)。燃焼時間が短い方が難燃性良好であることを意味する。
(Maximum flaming combustion time after first and second flaming)
Tables 2 and 5 show the maximum flaming combustion time (seconds) after the flame contact was performed twice (n=5). A shorter burning time means better flame retardancy.
(有炎燃焼時間の合計)
 有炎燃焼時間の合計(秒)を表2及び表5に示した(n=5)。合計時間が短い方が難燃性良好であることを意味する。
(Total flaming combustion time)
The total flaming combustion time (seconds) is shown in Tables 2 and 5 (n=5). A shorter total time means better flame retardancy.
(2回目の接炎後の有炎・無炎燃焼時間の合計)
 前記2回目の接炎後の有炎・無炎燃焼時間の合計を表2及び表5に示した(n=5)。合計時間が短い方が難燃性良好であることを意味する。
(Total flame/flameless combustion time after second flame contact)
Tables 2 and 5 show the total flame/flameless combustion time after the second flame application (n=5). A shorter total time means better flame retardancy.
(125mm標線までの燃焼到達の有無)
 実施例1~8、比較例1~3において、前記フィルムの下端から125mmの標線までの燃焼到達の有無を観察し、5回の試験のうち125mm標線に炎が到達した回数を表3に示した。到達回数が少ない方が難燃性良好であることを意味する。
(Presence or absence of combustion reaching the 125 mm mark)
In Examples 1 to 8 and Comparative Examples 1 to 3, the presence or absence of combustion reaching the 125 mm mark from the lower end of the film was observed. It was shown to. A smaller number of arrivals means better flame retardancy.
(綿着火の有無)
 上記燃焼試験において、フィルム又は平板の300mm下方に設置した綿への、滴下物による着火の有無を観察した。5回の試験のうち、綿に着火した回数を表3及び表5に示した。一度も着火しなかった場合は「0/5」と表記した。着火回数が少ない方がドリップ防止効果が高いことを意味する。
(Presence or absence of cotton ignition)
In the above combustion test, the presence or absence of ignition due to drippings on the cotton placed 300 mm below the film or flat plate was observed. Tables 3 and 5 show the number of times the cotton was ignited out of five tests. When it never ignited, it was described as "0/5". It means that the smaller the number of times of ignition, the higher the anti-drip effect.
(難燃性の判定)
 表3においては、UL94VTMの判定基準に基づき、難燃性のランクを判定した。UL94VTMの判定基準にてVTM-0相当の難燃性を有する場合は「VTM-0」、VTM-1相当の難燃性を有する場合は「VTM-1」、VTM-2相当の難燃性を有する場合は「VTM-2」と表記した。難燃性はVTM-0>1>2の順に高く、VTM-2相当の難燃性に達しない場合は「VTM不適合」とした。
 表5においてはUL94Vの判定基準に基づき、難燃性のランクを判定した。UL94Vの判定基準にてV-0相当の難燃性を有する場合は「V-0」、V-1相当の難燃性を有する場合は「V-1」、V-2相当の難燃性を有する場合は「V-2」と表記した。難燃性はV-0>1>2の順に高く、V-2相当の難燃性に達しない場合は「V不適合」とした。
(Determination of flame retardancy)
In Table 3, the rank of flame retardancy was determined based on the criteria of UL94VTM. "VTM-0" if it has flame retardancy equivalent to VTM-0 according to the criteria of UL94VTM, "VTM-1" if it has flame retardancy equivalent to VTM-1, flame retardancy equivalent to VTM-2 was written as "VTM-2". The flame retardance is higher in the order of VTM-0>1>2, and when the flame retardance equivalent to VTM-2 is not achieved, it is judged as "not compatible with VTM".
In Table 5, the rank of flame retardancy was determined based on the criteria of UL94V. "V-0" if it has flame retardancy equivalent to V-0 according to the criteria of UL94V, "V-1" if it has flame retardancy equivalent to V-1, flame retardancy equivalent to V-2 If it has, it is written as "V-2". The flame retardance is higher in the order of V-0>1>2, and when the flame retardance equivalent to V-2 is not achieved, it is judged as "V unsuitable".
<誘電率及び誘電正接>
 ポリイミド樹脂又は各例で得られたポリイミド樹脂組成物を用いて、後述する方法により押出成形してフィルム状の成形体を作製し、次いで裁断を行って、62mm×75mm×厚さ0.05±0.01mmの評価用フィルムを得た。該フィルムを熱風乾燥機で100℃、24時間乾燥後、23±2℃、50±5%R.H.で48時間状態調節を行った。その後、速やかに測定に使用した。
 測定装置として、キーサイト・テクノロジー(株)製「P5008A Keysight Streamline USB Vector Network Analyzer,53GHz」を用い、IEC 62631-2-1に準拠して、23℃、50%R.H.、測定周波数10GHzにおいて、誘電率及び誘電正接を測定し、表4に示した。測定値はn=3の平均値とした。
<Dielectric constant and dielectric loss tangent>
Using the polyimide resin or the polyimide resin composition obtained in each example, a film-shaped molded body is produced by extrusion molding by the method described later, and then cut to 62 mm × 75 mm × thickness 0.05 ± A 0.01 mm evaluation film was obtained. After drying the film in a hot air dryer at 100°C for 24 hours, it was dried at 23±2°C and 50±5% RH. H. was conditioned for 48 hours at . After that, it was immediately used for measurement.
As a measuring device, "P5008A Keysight Streamline USB Vector Network Analyzer, 53 GHz" manufactured by Keysight Technologies, Inc. was used, and the temperature was measured at 23°C and 50% RH in compliance with IEC 62631-2-1. H. , the dielectric constant and dielectric loss tangent were measured at a measurement frequency of 10 GHz, and are shown in Table 4. The measured value was the average value of n=3.
<外観>
 ポリイミド樹脂又は各例で得られたポリイミド樹脂組成物を用いて、後述する方法により200mm×50mm×厚さ0.05±0.01mmの成形体を作製し、その外観を目視観察して下記基準で評価し、表4に示した。
 A:フィルム表面が平滑であり、外観良好。
 B:フィルム表面に細かな凹凸や皺が見られる。
 C:フィルムの湾曲や厚みムラが見られる。
<Appearance>
Using the polyimide resin or the polyimide resin composition obtained in each example, a molded body of 200 mm × 50 mm × thickness 0.05 ± 0.01 mm is produced by the method described later, and the appearance is visually observed and evaluated according to the following criteria. and shown in Table 4.
A: The film surface is smooth and the appearance is good.
B: Fine irregularities and wrinkles are observed on the film surface.
C: Curvature and thickness unevenness of the film are observed.
<ストランド押出性>
 ポリイミド樹脂又はポリイミド樹脂組成物のストランド押出性は、下記基準で評価し、表4に示した。
 AA:一定のストランド径を保ち、千切れることなく連続して押出し可能。また、押出後、ストランドが不透明化するまで3秒以上かかる。
 A:一定のストランド径を保ち、千切れることなく連続して押出し可能。また、押出後、ストランドが3秒以内に不透明化する。
 B:ストランドの脈動が見られ径が不安定となる、又は弱い発煙が見られるが千切れることなく連続して押出し可能。
 C:ストランドの千切れや強い発煙、ベントアップが発生し、連続して押出しすることが困難。
<Strand extrudability>
The strand extrudability of the polyimide resin or polyimide resin composition was evaluated according to the following criteria and shown in Table 4.
AA: Maintains a constant strand diameter and can be continuously extruded without breaking. Also, after extrusion, it takes 3 seconds or longer for the strands to become opaque.
A: Maintains a constant strand diameter and can be continuously extruded without breaking. Also, after extrusion, the strands become opaque within 3 seconds.
B: Pulsation of the strand is observed and the diameter becomes unstable, or weak smoke is observed, but the strand can be extruded continuously without breaking.
C: Strand breakage, strong smoke emission, and vent-up occurred, making it difficult to continuously extrude.
製造例1(ポリイミド樹脂1の製造)
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤(株)製)500gとピロメリット酸二無水物(三菱ガス化学(株)製)218.12g(1.00mol)を導入し、窒素フローした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、シス/トランス比=7/3)49.79g(0.35mol)、1,8-オクタメチレンジアミン(関東化学(株)製)93.77g(0.65mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して徐々に加えた。滴下により発熱が起こるが、内温は40~80℃に収まるよう調整した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール130gと、末端封止剤であるn-オクチルアミン(関東化学(株)製)1.284g(0.0100mol)を加えさらに撹拌した。この段階で、淡黄色のポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が120~140℃の間にポリイミド樹脂粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド樹脂粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で180℃、10時間乾燥を行い、317gのポリイミド樹脂1の粉末を得た。
 ポリイミド樹脂1のIRスペクトルを測定したところ、ν(C=O)1768、1697(cm-1)にイミド環の特性吸収が認められた。対数粘度は1.30dL/g、Tmは323℃、Tgは184℃、Tcは266℃、結晶化発熱量は21.0mJ/mg、半結晶化時間は20秒以下、Mwは55,000であった。
Production Example 1 (Production of Polyimide Resin 1)
In a 2 L separable flask equipped with a Dean-Stark apparatus, a Liebig condenser, a thermocouple, and four paddle blades, 500 g of 2-(2-methoxyethoxy) ethanol (manufactured by Nippon Nyukazai Co., Ltd.) and pyromellitic dianhydride ( 218.12 g (1.00 mol) of Mitsubishi Gas Chemical Co., Ltd.) was introduced, and after nitrogen flow, the mixture was stirred at 150 rpm to form a uniform suspension. On the other hand, using a 500 mL beaker, 49.79 g (0.35 mol) of 1,3-bis(aminomethyl)cyclohexane (Mitsubishi Gas Chemical Co., Ltd., cis/trans ratio = 7/3), 1,8- A mixed diamine solution was prepared by dissolving 93.77 g (0.65 mol) of octamethylenediamine (manufactured by Kanto Chemical Co., Ltd.) in 250 g of 2-(2-methoxyethoxy)ethanol. The mixed diamine solution was added slowly using a plunger pump. Heat was generated by the dropwise addition, but the internal temperature was adjusted to be within the range of 40 to 80°C. During the dropwise addition of the mixed diamine solution, nitrogen flow was maintained and the rotation speed of the stirring blade was 250 rpm. After the dropping was completed, 130 g of 2-(2-methoxyethoxy)ethanol and 1.284 g (0.0100 mol) of n-octylamine (manufactured by Kanto Kagaku Co., Ltd.) as a terminal blocking agent were added and further stirred. . At this stage, a pale yellow polyamic acid solution was obtained. Next, after setting the stirring speed to 200 rpm, the polyamic acid solution in the 2-L separable flask was heated to 190°C. In the process of increasing the temperature, deposition of polyimide resin powder and dehydration due to imidization were confirmed when the liquid temperature was 120 to 140°C. After holding at 190° C. for 30 minutes, the mixture was allowed to cool to room temperature and filtered. The obtained polyimide resin powder was washed with 300 g of 2-(2-methoxyethoxy)ethanol and 300 g of methanol, filtered, and then dried in a dryer at 180° C. for 10 hours to obtain 317 g of polyimide resin 1 powder. Ta.
When the IR spectrum of polyimide resin 1 was measured, characteristic absorption of the imide ring was observed at ν(C═O) 1768, 1697 (cm −1 ). Logarithmic viscosity was 1.30 dL/g, Tm was 323°C, Tg was 184°C, Tc was 266°C, crystallization exotherm was 21.0 mJ/mg, semi-crystallization time was 20 seconds or less, and Mw was 55,000. there were.
 製造例1におけるポリイミド樹脂の組成及び評価結果を表1に示す。なお、表1中のテトラカルボン酸成分及びジアミン成分のモル%は、ポリイミド樹脂製造時の各成分の仕込み量から算出した値である。 Table 1 shows the composition and evaluation results of the polyimide resin in Production Example 1. The mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1中の略号は下記の通りである。
・PMDA;ピロメリット酸二無水物
・1,3-BAC;1,3-ビス(アミノメチル)シクロヘキサン
・OMDA;1,8-オクタメチレンジアミン
Abbreviations in Table 1 are as follows.
・PMDA; pyromellitic dianhydride ・1,3-BAC; 1,3-bis(aminomethyl)cyclohexane ・OMDA; 1,8-octamethylenediamine
実施例1~8、比較例1~3(ポリイミド樹脂組成物及び成形体(樹脂フィルム)の製造、評価)
 製造例1で得られたポリイミド樹脂1と、表2~4に示す化合物と、その他の成分とをドライブレンドにより十分混合した。得られた混合粉末を同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D-41D」)を用いてバレル温度350℃、スクリュー回転数120rpmで、直径2~3mmのストランドを押し出した。この際のストランド押出性を前記基準により評価した。
 押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレット(ポリイミド樹脂組成物)は190℃、10時間乾燥を行った後、押出成形に使用した。
 ペレットを幅150mmのTダイスを備えたΦ20mm単軸押出成形機に投入して樹脂温度340~360℃で溶融混練し、単軸押出成形機のTダイスから連続的に押し出した。その後、140℃の冷却ロールである金属ロールで冷却することにより、厚さ0.05±0.01mmの樹脂フィルムを得た。
 ここで、Φ20mm単軸押出成形機の温度は340~355℃、Tダイスの温度は350℃にそれぞれ調整した。
 得られたペレット(ポリイミド樹脂組成物)又は作製した樹脂フィルムを用いて、前述の方法で各種評価を行った。結果を表2~4に示す。
Examples 1 to 8, Comparative Examples 1 to 3 (manufacture and evaluation of polyimide resin composition and molded article (resin film))
The polyimide resin 1 obtained in Production Example 1, the compounds shown in Tables 2 to 4, and other components were thoroughly mixed by dry blending. The resulting mixed powder was extruded in a co-rotating twin-screw kneading extruder (“HK-25D-41D” manufactured by Parker Corporation) at a barrel temperature of 350° C. and a screw rotation speed of 120 rpm to form strands having a diameter of 2 to 3 mm. pushed out. The strand extrudability at this time was evaluated according to the above criteria.
After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets (polyimide resin composition) were dried at 190° C. for 10 hours and then used for extrusion molding.
The pellets were put into a Φ20 mm single-screw extruder equipped with a T-die with a width of 150 mm, melt-kneaded at a resin temperature of 340 to 360° C., and continuously extruded through the T-die of the single-screw extruder. After that, by cooling with a metal roll, which is a cooling roll at 140° C., a resin film having a thickness of 0.05±0.01 mm was obtained.
Here, the temperature of the Φ20 mm single-screw extruder was adjusted to 340 to 355°C, and the temperature of the T-die was adjusted to 350°C.
Using the obtained pellets (polyimide resin composition) or the produced resin film, various evaluations were performed by the methods described above. The results are shown in Tables 2-4.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表2~4に示した各成分の詳細は下記の通りである。
<ポリイミド樹脂(A)>
(A)製造例1で得られたポリイミド樹脂1、Mw:55,000
<化合物(B)>
(B)SR-3000:下記構造式(B3)で示される化合物、大八化学工業(株)製
Figure JPOXMLDOC01-appb-C000029

<成分(C)>
(C1)EXOLIT OP945:下記構造式(ii)で示されるホスフィン酸金属塩系難燃剤(ジエチルホスフィン酸アルミニウム)、クラリアントケミカルズ(株)製、粒子径(D50):1.3μm、リン含有量:23質量%
Figure JPOXMLDOC01-appb-C000030

(C2)KTL-450:ポリテトラフルオロエチレン(PTFE)、(株)喜多村製
Details of each component shown in Tables 2 to 4 are as follows.
<Polyimide resin (A)>
(A) Polyimide resin 1 obtained in Production Example 1, Mw: 55,000
<Compound (B)>
(B) SR-3000: a compound represented by the following structural formula (B3), manufactured by Daihachi Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-C000029

<Component (C)>
(C1) EXOLIT OP945: Metal phosphinate flame retardant (aluminum diethylphosphinate) represented by the following structural formula (ii), manufactured by Clariant Chemicals Co., Ltd., particle size (D50): 1.3 μm, phosphorus content: 23% by mass
Figure JPOXMLDOC01-appb-C000030

(C2) KTL-450: Polytetrafluoroethylene (PTFE), manufactured by Kitamura Co., Ltd.
 表2~3には難燃性の評価結果を示した。表2より、本発明のポリイミド樹脂組成物を含む成形体は、比較例の成形体よりも燃焼時間が短く、難燃性が良好であることがわかる。また表3より、特に実施例2~8においては、厚さ0.05mm±0.01mmという非常に薄い成形体であるにも関わらず、UL94VTMの判定基準でVTM-0相当の難燃性を達成することができた。 Tables 2 and 3 show the evaluation results of flame retardancy. Table 2 shows that the molded articles containing the polyimide resin composition of the present invention have a shorter burning time and better flame retardancy than the molded articles of the comparative examples. Also, from Table 3, in particular, in Examples 2 to 8, despite the very thin molded body with a thickness of 0.05 mm ± 0.01 mm, it has flame retardancy equivalent to VTM-0 according to the UL94 VTM criteria. I was able to achieve it.
 表4には熱物性、誘電特性、外観、及びストランド押出性の評価結果を示した。表4より、本発明のポリイミド樹脂組成物を含む成形体はいずれも外観良好である。ストランド押出性に関しては、難燃剤として化合物(B)のみを含有する実施例1~5のポリイミド樹脂組成物が特に良好な結果を示した。これは、他の難燃剤(成分(C1))とは異なり、化合物(B)が結晶核剤として作用せず、ポリイミド樹脂(A)の結晶化を遅延させる効果があるためと考えられる。
 さらに、本発明のポリイミド樹脂組成物を含む成形体は誘電率が3以下で且つ誘電正接が0.005以下であり、樹脂成形体としては極めて低い誘電率及び誘電正接を示した。
Table 4 shows evaluation results of thermophysical properties, dielectric properties, appearance, and strand extrudability. From Table 4, all the molded articles containing the polyimide resin composition of the present invention have good appearance. Regarding the strand extrudability, the polyimide resin compositions of Examples 1 to 5 containing only the compound (B) as the flame retardant showed particularly good results. This is probably because, unlike other flame retardants (component (C1)), the compound (B) does not act as a crystal nucleating agent and has the effect of delaying the crystallization of the polyimide resin (A).
Furthermore, the molded article containing the polyimide resin composition of the present invention had a dielectric constant of 3 or less and a dielectric loss tangent of 0.005 or less, showing extremely low dielectric constant and dielectric loss tangent as a resin molded article.
実施例9(ポリイミド樹脂組成物及び成形体(厚さ4mm平板)の製造、評価)
 実施例2と同様の方法でポリイミド樹脂組成物のペレットを作製した。該ペレットは190℃、10時間乾燥を行った後、射出成形に使用した。
 射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度350℃、金型温度200℃、成形サイクル50秒として射出成形を行い、JIS K7161-2:2014で規定される1A型試験片を作製した。
 得られた1A型試験片を80mm×10mm×厚さ4mmの平板に加工した後に、前述した方法で難燃性評価を行った。結果を表5に示す。なお、難燃性以外の評価結果については実施例2と同じである。
Example 9 (manufacture and evaluation of polyimide resin composition and molded article (4 mm thick flat plate))
Pellets of the polyimide resin composition were produced in the same manner as in Example 2. The pellets were dried at 190° C. for 10 hours and then used for injection molding.
Using an injection molding machine (“ROBOSHOT α-S30iA” manufactured by FANUC CORPORATION), injection molding is performed with a barrel temperature of 350 ° C, a mold temperature of 200 ° C, and a molding cycle of 50 seconds. A type 1A test piece was prepared.
After processing the obtained type 1A test piece into a flat plate of 80 mm×10 mm×4 mm in thickness, flame retardancy was evaluated by the method described above. Table 5 shows the results. The evaluation results other than flame retardancy are the same as in Example 2.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表5より、本発明のポリイミド樹脂組成物を含む成形体は、厚さが500μmを超える場合においても良好な難燃性を示した。 From Table 5, the molded article containing the polyimide resin composition of the present invention exhibited good flame retardancy even when the thickness exceeded 500 μm.
 本発明のポリイミド樹脂組成物によれば、厚さが薄い(例えば500μm以下)場合であっても高い難燃性と良好な外観とを両立し得る成形体を作製できる。さらに、該ポリイミド樹脂組成物及びこれを含む成形体は高耐熱性(高ガラス転移温度)及び低誘電特性を有する。そのため本発明のポリイミド樹脂組成物及び成形体は、高い難燃性と、低誘電率及び低誘電正接とが要求される用途、例えば、5G、又は70G~300GHzの周波数帯を使用する第6世代移動通信システム(6G)関連部材、各種アンテナ、各種アンテナ基板、電線被覆材、ボンディングシート、絶縁フィルム、炭素繊維強化プラスチック(CFRP)用原料、高周波回路基板、プリント配線基板、チップオンフィルム(COF)フレキシブル基板、多層積層板、LED搭載基板、産業用ロボット基板、家庭用ロボットの通信用基板、半導体素子材料、高周波デバイス用ウエハ、Wi-fiチップ、無線通信デバイス、伝送線路、ベアリング用コート、断熱軸、トレー、各種ベルト、耐熱低誘電テープ、耐熱低誘電チューブ、各種センサ、各種レーダ、レドーム(レーダードーム)、光通信モジュール(TOSA/ROSA)、8k-TVのケーブルモバイル端末又はデジタル家電、基地局、ドローン、監視カメラ、室内又は屋外サーバ、人工衛星、宇宙ステーション用通信機器等に適用できる。 According to the polyimide resin composition of the present invention, it is possible to produce a molded article that achieves both high flame retardancy and good appearance even when the thickness is thin (for example, 500 μm or less). Furthermore, the polyimide resin composition and molded articles containing the same have high heat resistance (high glass transition temperature) and low dielectric properties. Therefore, the polyimide resin composition and molded article of the present invention are used for applications requiring high flame retardancy, low dielectric constant and low dielectric loss tangent, for example, 5G, or 70G to 300GHz frequency band 6th generation Mobile communication system (6G) related parts, various antennas, various antenna substrates, wire coating materials, bonding sheets, insulating films, raw materials for carbon fiber reinforced plastics (CFRP), high frequency circuit boards, printed wiring boards, chip-on-films (COF) Flexible substrates, multilayer laminates, LED mounting substrates, industrial robot substrates, home robot communication substrates, semiconductor element materials, high frequency device wafers, Wi-fi chips, wireless communication devices, transmission lines, bearing coatings, heat insulation Shafts, trays, various belts, heat-resistant low-dielectric tape, heat-resistant low-dielectric tubes, various sensors, various radars, radomes (radomes), optical communication modules (TOSA/ROSA), 8k-TV cable mobile terminals or digital home appliances, bases Stations, drones, surveillance cameras, indoor or outdoor servers, artificial satellites, communication equipment for space stations, etc.

Claims (6)

  1.  下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(5)で示される化合物(B)とを含有する、ポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
    Figure JPOXMLDOC01-appb-C000002

    (R51は炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基である。R52~R53、及びR61~R66はそれぞれ独立に炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。p51は0~6の整数、p52及びp53はそれぞれ独立に0~4の整数であり、p63及びp66はそれぞれ独立に0~3の整数である。p51~p53、p63、又はp66が2以上である場合、複数のR51~R53、R63又はR66は、互いに同一でも異なっていてもよい。nは1~10の整数である。)
    Including a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), the formula for the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) A polyimide resin composition comprising a polyimide resin (A) having a content ratio of repeating units of (1) of 20 to 70 mol % and a compound (B) represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000001

    (R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
    Figure JPOXMLDOC01-appb-C000002

    (R 51 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms; R 52 to R 53 and R 61 to R 66 are each independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, p 51 is an integer of 0 to 6, p 52 and p 53 are each independently an integer of 0 to 4, p 63 and p 66 are each independently an integer of 0 to 3 an integer, when p 51 to p 53 , p 63 or p 66 is 2 or more, a plurality of R 51 to R 53 , R 63 or R 66 may be the same or different, n is 1; is an integer of ~10.)
  2.  前記ポリイミド樹脂組成物中の前記化合物(B)の含有量が、前記ポリイミド樹脂(A)100質量部に対し0.1~30質量部である、請求項1に記載のポリイミド樹脂組成物。 The polyimide resin composition according to claim 1, wherein the content of the compound (B) in the polyimide resin composition is 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyimide resin (A).
  3.  前記化合物(B)が下記構造式(B1)~(B3)で示される化合物からなる群から選ばれる少なくとも1種である、請求項1又は2に記載のポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005
    The polyimide resin composition according to claim 1 or 2, wherein the compound (B) is at least one selected from the group consisting of compounds represented by the following structural formulas (B1) to (B3).
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005
  4.  請求項1~3のいずれか1項に記載のポリイミド樹脂組成物を含む成形体。 A molded article containing the polyimide resin composition according to any one of claims 1 to 3.
  5.  前記成形体が厚さ500μm以下のフィルム形状である、請求項4に記載の成形体。 The molded article according to claim 4, wherein the molded article has a film shape with a thickness of 500 µm or less.
  6.  請求項4又は5に記載の成形体からなる層と、金属箔からなる層とを有する、金属箔積層板。 A metal foil laminate having a layer made of the molded article according to claim 4 or 5 and a layer made of metal foil.
PCT/JP2023/004918 2022-03-01 2023-02-14 Polyimide resin composition and molded body WO2023166971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-031098 2022-03-01
JP2022031098 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023166971A1 true WO2023166971A1 (en) 2023-09-07

Family

ID=87883399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004918 WO2023166971A1 (en) 2022-03-01 2023-02-14 Polyimide resin composition and molded body

Country Status (2)

Country Link
TW (1) TW202346419A (en)
WO (1) WO2023166971A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020020A1 (en) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin composition, and (polyimide resin)-fiber composite material
WO2019220968A1 (en) * 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 Polyimide resin composition
WO2020031495A1 (en) * 2018-08-06 2020-02-13 大八化学工業株式会社 Flame retardant for thermosetting resin including aromatic phosphoric acid ester, thermosetting resin composition including same, and cured material and application of same
JP2020189944A (en) * 2019-05-23 2020-11-26 帝人株式会社 Flame-retardant polycarbonate resin composition
JP2020200419A (en) * 2019-06-12 2020-12-17 帝人株式会社 Flame-retardant polycarbonate resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020020A1 (en) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin composition, and (polyimide resin)-fiber composite material
WO2019220968A1 (en) * 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 Polyimide resin composition
WO2020031495A1 (en) * 2018-08-06 2020-02-13 大八化学工業株式会社 Flame retardant for thermosetting resin including aromatic phosphoric acid ester, thermosetting resin composition including same, and cured material and application of same
JP2020189944A (en) * 2019-05-23 2020-11-26 帝人株式会社 Flame-retardant polycarbonate resin composition
JP2020200419A (en) * 2019-06-12 2020-12-17 帝人株式会社 Flame-retardant polycarbonate resin composition

Also Published As

Publication number Publication date
TW202346419A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR101744009B1 (en) Polyimide resin
WO2021024624A1 (en) Flame-retardant polyimide shaping material and shaped body
TWI790649B (en) Resin composition, support body with resin layer, prepreg, laminate, multilayer printed wiring board and its application, printed wiring board for millimeter wave radar
WO2020179391A1 (en) Polyimide resin composition
TWI794491B (en) Polyimide resin composition
WO2023166971A1 (en) Polyimide resin composition and molded body
JP6879438B1 (en) Polyimide resin composition and molded product
JP6856173B2 (en) Flame-retardant polyimide molding material and molded product
JP6766986B1 (en) Polyimide resin composition
JP7156580B1 (en) Method for producing polyimide resin powder
CN114207042B (en) Flame-retardant polyimide molding material and molded article
WO2024014123A1 (en) Thermoplastic resin composition, molded product, metal foil laminated board, bonding sheet, filament, and material for three-dimensional fabrication
WO2023120303A1 (en) Light-emitting molded body and wavelength conversion member
CN117043232A (en) Method for producing polyimide resin powder
WO2022220007A1 (en) Thermoplastic polyimide resin composition and molded product
TW202411350A (en) Thermoplastic resin composition, molded product, metal foil laminate, bonding sheet, filament, and three-dimensional modeling material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763233

Country of ref document: EP

Kind code of ref document: A1