WO2023166943A1 - 樹脂組成物ならびにその用途および成形方法 - Google Patents

樹脂組成物ならびにその用途および成形方法 Download PDF

Info

Publication number
WO2023166943A1
WO2023166943A1 PCT/JP2023/004472 JP2023004472W WO2023166943A1 WO 2023166943 A1 WO2023166943 A1 WO 2023166943A1 JP 2023004472 W JP2023004472 W JP 2023004472W WO 2023166943 A1 WO2023166943 A1 WO 2023166943A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar
resin composition
ester
mass
alkanoate
Prior art date
Application number
PCT/JP2023/004472
Other languages
English (en)
French (fr)
Inventor
真之 廣田
麻美 前田
Original Assignee
大阪ガスケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪ガスケミカル株式会社 filed Critical 大阪ガスケミカル株式会社
Publication of WO2023166943A1 publication Critical patent/WO2023166943A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/14Amylose derivatives; Amylopectin derivatives
    • C08L3/16Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a resin composition containing cellulose diacetate, its use and molding method.
  • Patent Document 1 discloses a cellulose acetate film produced by a solution casting method using a polyester oligomer and a sugar ester compound as additives.
  • Patent Document 2 a functional additive such as sucrose acetate isobutyrate is mixed with an acid and brought into contact with an aqueous precipitant such as water to co-precipitate cellulose ester and functional Methods of blending with additives are disclosed.
  • Patent Document 3 discloses that cellulose acetate containing cellulose nanofibers and a plasticizer such as ethyl acetate, butyl lactate, dioctyl phthalate, triethyl citrate, tributyl citrate, and trioctyl phosphate. is disclosed in an extruder.
  • a plasticizer such as ethyl acetate, butyl lactate, dioctyl phthalate, triethyl citrate, tributyl citrate, and trioctyl phosphate.
  • Patent Document 4 describes a cellulose ester such as cellulose acetate propionate or cellulose acetate butyrate, an acrylic polymer, glucose pentaacetate, sucrose octaacetate, sucrose octapropionate, and sucrose.
  • a method for producing a cellulose ester film by melt casting a composition containing a sugar ester compound such as octaisobutyrate, sucrose octabenzoate, maltose octaacetate, etc. is disclosed.
  • Patent Document 5 describes cellulose esters such as cellulose acetate propionate, sucrose hexaacetate, sucrose hexapropionate, sucrose heptapropionate, sucrose hexabenzoate, sucrose heptabenzoate and the like. and a fully esterified sugar such as glucose pentaacetate, glucose pentabutyrate, sucrose octaacetate, sucrose octapropionate and sucrose octabenzoate are melt-cast to form a cellulose ester film is disclosed.
  • JP 2016-164669 A Japanese Patent Publication No. 2003-526694 Japanese Patent Application Laid-Open No. 2021-109942 WO2008/062610 WO2009/011228
  • compositions of Patent Documents 2 to 5 Although molded articles with excellent transparency can be obtained, their melt fluidity is low. Therefore, the compositions of Patent Documents 2 to 5 have low melt moldability due to low fluidity, particularly melt fluidity, and are difficult to use for molding such as injection molded articles that require high melt fluidity. Met. Furthermore, in the conventional technology, when cellulose acetate is softened by blending a plasticizer, the mechanical properties are lowered, so there is a trade-off relationship between fluidity and mechanical properties, making it difficult to achieve both properties. .
  • an object of the present invention is to provide a resin composition excellent in melt moldability, transparency and mechanical properties, its use and molding method.
  • thermoplastic resin containing cellulose diacetate (A) [in particular, a thermoplastic resin composed of cellulose diacetate (A)] and a specific sugar alkanoic acid
  • a resin composition excellent in melt moldability, transparency and mechanical properties can be provided by combining with a sugar ester containing the esterified product (B), and completed the present invention.
  • the resin composition as aspect [1] of the present invention is a resin composition for melt molding containing a thermoplastic resin and a sugar ester, and for being subjected to melt molding, wherein the thermoplastic resin is cellulose dicellulose.
  • Aspect [2] of the present invention is an aspect of Aspect [1], wherein the sugar alkanoate (B) is a C 2-4 alkanoate of a monosaccharide or a disaccharide.
  • Aspect [3] of the present invention is an aspect in which the sugar alkanoate (B) is a complete ester of a disaccharide and a C 2-3 alkanoic acid in the aspect [1] or [2].
  • Aspect [4] of the present invention is an aspect in which the sugar alkanoate (B) is sucrose octaacetate in any one of the aspects [1] to [3].
  • Aspect [5] of the present invention is an aspect in which the proportion of the sucrose octaacetate in the sugar ester is 90% by mass or more in the aspect [4].
  • Aspect [6] of the present invention is any one of Aspects [1] to [5], wherein the ratio of the sugar alkanoate (B) is based on 100 parts by mass of the cellulose diacetate (A). In this embodiment, the content is 10 to 65 parts by mass.
  • Aspect [7] of the present invention is an aspect in which the resin composition of any one of the aspects [1] to [6] is a resin composition for injection molding.
  • the resin composition of any one of aspects [1] to [7] is at least one selected from the group consisting of cellulose triacetate, (meth)acrylic resin and polyester oligomer. It is an embodiment that does not include
  • the present invention also includes, as aspect [9], a molded article formed from the resin composition of any one of aspects [1] to [8].
  • the molded article of aspect [9] is selected from automotive parts, electric/electronic parts, building materials, civil engineering materials, agricultural materials, packaging materials, household materials and optical members. It is an aspect which is a material.
  • the present invention also includes, as aspect [11], a method of producing a molded article by melt-molding the resin composition of any one of aspects [1] to [8].
  • Aspect [12] of the present invention is an aspect in which, in the method of Aspect [11], the resin composition is injection-molded to produce a molded product.
  • fluidity improvers composed of sugar alkanoic acid esters (B) which are esters of one type with a C 2-6 alkanoic acid.
  • a sugar alkane which is an esterified product of cellulose diacetate (A) and at least one selected from the group consisting of monosaccharides, oligosaccharides and sugar alcohols with C 2-6 alkanoic acid
  • a method of adding an acid ester (B) to improve the melt fluidity and/or strength of the cellulose diacetate (A) is also included.
  • C 1 alkyl group means an alkyl group with 1 carbon number
  • C 6-10 aryl group means an aryl group with 6 to 10 carbon atoms.
  • thermoplastic resin containing cellulose diacetate (A) [in particular, a thermoplastic resin containing cellulose diacetate (A)] is combined with a sugar ester containing a specific sugar alkanoate (B). Therefore, the melt moldability, transparency and mechanical properties of the resin composition can be improved.
  • a specific sugar alkanoic acid ester (B) in a predetermined ratio, transparency, bending strength, bending elastic modulus and impact strength can be improved while maintaining melt moldability necessary for injection molding.
  • a specific sugar alkanoic acid ester (B) is used as the sugar ester, high biodegradability can be achieved in combination with the cellulose diacetate (A).
  • the resin composition of the present invention is a resin composition containing a thermoplastic resin and subjected to melt molding. Furthermore, since the thermoplastic resin contains cellulose diacetate (or cellulose diacetate resin) (A), it has excellent transparency and mechanical properties.
  • cellulose diacetate (A) For cellulose diacetate (A), general-purpose cellulose diacetate can be used.
  • Cellulose diacetate (A) has an acetylation degree of 52-59%.
  • the degree of acetylation is preferably 53-58%, more preferably 54-56%, more preferably 54.5-55.5%.
  • the average degree of substitution (total degree of acetyl group substitution) of cellulose diacetate (A) is 2.2 to 2.7.
  • the average degree of substitution is preferably 2.3-2.6, more preferably 2.3-2.5. If the degree of acetyl group substitution is too small, the intermolecular hydrogen bonds become strong, which may reduce the moldability of the resin composition. Thermal decomposition may occur during molding.
  • the degree of acetylation and average degree of substitution of cellulose diacetate (A) can be measured according to ASTM-D-817-91 (test method for cellulose acetate, etc.).
  • the 6% viscosity (25° C.) of cellulose diacetate (A) is, for example, 30 to 200 mPa ⁇ s, preferably 40 to 150 mPa ⁇ s, more preferably 50 to 100 mPa ⁇ s, more preferably 60 to 80 mPa ⁇ s. . If the 6% viscosity is too low, the mechanical properties of the molded product may deteriorate, and if it is too high, the moldability of the resin composition may deteriorate.
  • the 6% viscosity of cellulose diacetate (A) is obtained by a conventional method, for example, by dissolving cellulose diacetate in a 95% aqueous acetone solution at a concentration of 6% (mass/volume %). , can be determined by a method of measuring the flow time using an Ostwald viscometer.
  • thermoplastic resin may further contain other thermoplastic resins in addition to cellulose diacetate (A).
  • thermoplastic resins include, for example, polyolefin resins, styrene resins, (meth)acrylic resins, vinyl chloride resins, polyvinyl alcohol resins, polyacetal resins, polyester resins, polycarbonate resins, and polyamide resins. , polyimide resins, polyurethane resins, polysulfone resins, polyphenylene ether resins, polyphenylene sulfide resins, fluorine resins, and cellulose derivatives other than cellulose diacetate (A). These other thermoplastic resins can be used alone or in combination of two or more.
  • thermoplastic resins Of these other thermoplastic resins, cellulose derivatives are preferred because of their excellent compatibility with cellulose diacetate (A).
  • Cellulose derivatives include, for example, alkylcelluloses such as methylcellulose, ethylcellulose, ethylmethylcellulose, propylcellulose, isopropylcellulose and butylcellulose; aralkylcelluloses such as benzylcellulose; hydroxyalkylcelluloses such as hydroxyethylcellulose and hydroxypropylcellulose; carboxyalkyl cellulose; cellulose C 3-4 acylate such as cellulose propionate, cellulose butyrate; cellulose acetate C 3-4 acylate such as cellulose acetate propionate, cellulose acetate butyrate; nitrocellulose, cellulose sulfate, cellulose phosphate and cellulose inorganic acid esters such as Among these, cellulose acylate such as cellulose C 2-4 acylate and cellulose acetate C 3-4 acylate is preferable because of its excellent compatibility with cellulose diacetate.
  • alkylcelluloses such as methylcellulose, ethylcellulose, ethylmethyl
  • the ratio of the other thermoplastic resin may be 100 parts by mass or less (for example, 0.1 to 100 parts by mass), preferably 50 parts by mass or less (for example, 1 to 50 parts by mass), more preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and most preferably 1 part by mass or less. If the ratio of the other thermoplastic resin is too high, the effect of blending the sugar alkanoic acid ester (B), which will be described later, may be reduced, and the moldability and mechanical properties may be reduced.
  • the thermoplastic resin preferably contains cellulose diacetate (A) as a main component.
  • the proportion of cellulose diacetate (A) in the thermoplastic resin may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, more preferably 95% by mass or more, and most preferably is 99% by mass or more.
  • the thermoplastic resin may consist essentially of cellulose diacetate (A), and particularly preferably consists of cellulose diacetate (A) only.
  • thermoplastic resin preferably contains cellulose diacetate (A) as a main component, it preferably contains substantially no cellulose acetate other than cellulose diacetate, and preferably does not contain cellulose acetate other than cellulose diacetate. Especially preferred.
  • the thermoplastic resin preferably contains substantially no (meth)acrylic resin, and particularly preferably does not contain (meth)acrylic resin.
  • the resin composition of the present invention contains a sugar ester in addition to a thermoplastic resin containing cellulose diacetate (A).
  • a sugar ester is a compound also called an esterified sugar or a sugar ester compound, and is at least one selected from the group consisting of monosaccharides, oligosaccharides and sugar alcohols (low molecular weight sugar) and a carboxylic acid.
  • the sugar ester is a sugar alkanoic acid ester (B) which is an esterified product of at least one selected from the group consisting of monosaccharides, oligosaccharides and sugar alcohols and C 2-6 alkanoic acid (aliphatic monocarboxylic acid). Since it contains, the melt moldability of the resin composition can be improved. With conventional plasticizers, it is difficult to highly improve the fluidity of cellulose diacetate (A), and for example, it has been difficult to achieve the melt fluidity required for injection molding. In contrast, in the present invention, by using the sugar alkanoic acid ester (B), the melt fluidity necessary for injection molding can be achieved.
  • B sugar alkanoic acid ester
  • the sugar alkanoic acid ester (B) not only can improve the melt fluidity, but also has mechanical properties, especially bending strength and bending elastic modulus, which have been in a trade-off relationship with the fluidity in conventional plasticizer formulations. , the impact strength (especially strength) can also be improved. Furthermore, the combination of cellulose diacetate (A) and sugar alkanoic acid ester (B) has high melt fluidity and excellent kneadability, so that the transparency of cellulose diacetate (A) can be maintained, and the resin composition and The transparency of the molded article can also be improved.
  • Monosaccharides include, for example, pentoses such as arabinose, xylose, ribose and deoxyribose; glucose, fructose, galactose, mannose, sorbose, fucose, rhamnose, galacturonic acid, glucuronic acid, mannuronic acid, glucosamine and the like.
  • Oligosaccharides can be roughly divided into disaccharides and oligosaccharides of trisaccharides or higher.
  • disaccharides include heterodisaccharides such as sucrose (sucrose) and palatinose; homodisaccharides such as melibiose, sophorose and trehalose;
  • trisaccharide or higher oligosaccharides include melezitose, raffinose, stachyose, cyclodextrin and the like.
  • Sugar alcohols include, for example, xylitol, erythritol, sorbitol, mannitol, reduced maltose starch syrup (maltitol), reduced starch saccharification products, reduced palatinose, reduced lactose (lactitol), and pentaerythritol.
  • low-molecular-weight sugars can be used alone or in combination of two or more.
  • monosaccharides or disaccharides are preferred, disaccharides are more preferred, heterodisaccharides are more preferred, and sucrose is most preferred.
  • C 2-6 alkanoic acids examples include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid and caproic acid. These C 2-6 alkanoic acids can be used alone or in combination of two or more. Of these C 2-6 alkanoic acids, C 2-4 alkanoic acids are preferred, C 2-3 alkanoic acids are more preferred, and acetic acid is most preferred.
  • the sugar alkanoate (B) may be a partially esterified product obtained by esterification of some hydroxyl groups among the hydroxyl groups of the low-molecular-weight sugar.
  • a fully esterified product is particularly preferred.
  • the sugar alkanoate (B) is preferably a monosaccharide or disaccharide C 2-6 alkanoate, particularly a disaccharide C 2-6 alkanoate.
  • Monosaccharide C 2-6 alkanoic acid esters include, for example, glucose acetate, glucose propionate, glucose butyrate, glucose isobutyrate, glucose acetate propionate, glucose acetate isobutyrate, and the like.
  • C 2-6 alkanoic acid esters of disaccharides include, for example, sucrose acetate, sucrose propionate, sucrose butyrate, sucrose isobutyrate, sucrose acetate propionate, sucrose acetate isobutyrate and the like.
  • sugar alkanoates (B) include C 2-4 alkanoates of disaccharides, such as heterodisaccharides such as sucrose acetate, sucrose propionate and sucrose acetate isobutyrate, and C 2-4 alkanes. Esters with acids are preferred, and sucrose tetra- to octa-C 2-4 alkanoates such as sucrose tetraacetate, sucrose hexaacetate and sucrose octaacetate are more preferred. Among them, a complete ester of sucrose and C 2-3 alkanoic acid (octa-C 2-3 alkanoic acid ester) is more preferred, and sucrose octaacetate is most preferred. Since sugar alkanoate (B) such as sucrose octaacetate is biodegradable, it can be used in combination with cellulose diacetate (A) to provide an environmentally friendly material.
  • disaccharides such as heterodisaccharides such as sucrose acetate, sucrose propionat
  • the sugar ester may further contain other sugar esters in addition to the sugar alkanoate (B).
  • sugar esters include, for example, at least one selected from the group consisting of monosaccharides, oligosaccharides and sugar alcohols, and aliphatic carboxylic acids other than C2-6 alkanoic acids, alicyclic carboxylic acids and aromatic carboxylic acids. Esterified products with at least one selected from the group consisting of acids and the like can be mentioned.
  • Monosaccharides, oligosaccharides and sugar alcohols include the low-molecular-weight sugars exemplified as the low-molecular-weight sugars constituting the sugar alkanoate (B).
  • Aliphatic carboxylic acids include, for example, C 12-24 alkanoic acids such as stearic acid, oleic acid and palmitic acid.
  • Alicyclic carboxylic acids include, for example, cyclohexanecarboxylic acid, tetrahydrobenzoic acid, naphthenic acid and the like.
  • aromatic carboxylic acids include benzoic acid and methylbenzoic acid.
  • sucrose fatty acid esters esters of sucrose with C12-24 alkanoic acids such as stearic acid, oleic acid and palmitic acid
  • aromatic carboxylic acid esters of sucrose such as sucrose benzoate are widely used.
  • the ratio of the other sugar ester may be 100 parts by mass or less (for example, 0.1 to 100 parts by mass), preferably 50 parts by mass or less (for example, 1 to 50 parts by mass), more preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and most preferably 1 part by mass or less. If the ratio of the other sugar ester is too high, the effect of blending the sugar alkanoate (B) may be reduced, and the moldability and mechanical properties may be reduced.
  • the sugar ester preferably contains sugar alkanoic acid ester (B) as a main component.
  • the proportion of the sugar alkanoate (B) in the sugar ester may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably. is 99% by mass or more.
  • the sugar ester may consist essentially of the sugar alkanoic acid ester (B), and particularly preferably consists of the sugar alkanoic acid ester (B) only.
  • the sugar ester preferably contains sucrose octaacetate as a main component.
  • the proportion of sucrose octaacetate in the sugar ester may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, more preferably 95% by mass or more, and most preferably 99% by mass. That's it.
  • the sugar ester may consist essentially of sucrose octaacetate, particularly preferably sucrose octaacetate.
  • the sugar ester preferably contains the sugar alkanoic acid ester (B) as a main component, it preferably does not substantially contain other sugar esters, and particularly preferably does not contain other sugar esters.
  • the ratio of the sugar ester is, for example, 1 to 80 parts by mass, preferably 5 to 60 parts by mass, more preferably 100 parts by mass of the thermoplastic resin. 10 to 50 parts by mass. If the proportion of the sugar ester is too small, the moldability may deteriorate, and if it is too large, the transparency and mechanical properties may deteriorate.
  • the ratio of sugar alkanoic acid ester (B) (especially sucrose octaacetate) can be selected from the range of about 5 to 70 parts by mass, for example 10 to 65 parts by mass, preferably 100 parts by mass of cellulose diacetate (A). is 15 to 60 parts by mass, more preferably 20 to 50 parts by mass, more preferably 25 to 45 parts by mass, and most preferably 30 to 35 parts by mass. If the proportion of the sugar alkanoic acid ester (B) is too low, the melt fluidity and melt moldability may be deteriorated. There is
  • the sugar alkanoic acid ester (B) (especially sucrose octaacetate) can improve the melt fluidity of cellulose diacetate (A) (especially the melt fluidity required for injection molding). It can also be used as a fluidity improver (in particular, a fluidity improver for improving melt fluidity in injection molding).
  • the sugar alkanoic acid ester (B) (especially sucrose octaacetate) not only can improve the fluidity of the cellulose diacetate (A), but also can improve the strength of the molded article formed from the resin composition. Also acts as a strength improver. Therefore, the sugar alkanoate (B) can also be used as a strength improver for cellulose diacetate (A).
  • the resin composition of the present invention may further contain a plasticizer in addition to the thermoplastic resin and sugar ester.
  • the plasticizer may be a conventional plasticizer commonly used as a plasticizer for cellulose acetate.
  • plasticizers include, for example, hydroxy acid esters such as triethyl citrate, acetyl triethyl citrate, acetyl tributyl citrate and dibutyl tartrate; triacylglycerols such as triacetin and tripropionin; Polyethers such as ethylene-oxyphenyl)propane; dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di-2-methoxyethyl phthalate, diallyl phthalate, o-benzoylbenzoic acid
  • DMP dimethyl phthalate
  • DEP diethyl phthalate
  • DBP dibutyl phthalate
  • DBP di-2-methoxyethyl phthalate
  • diallyl phthalate o-benzoylbenzoic acid
  • Aromatic carboxylic acid esters such as ethyl, ethyl phthalyl ethy
  • plasticizers can be used alone or in combination of two or more.
  • hydroxy acid esters such as tributyl acetylcitrate and polyethers such as 2,2-bis(4-polyoxyethylene-oxyphenyl)propane are widely used.
  • the proportion of the plasticizer may be 50 parts by mass or less (eg, 0.1 to 50 parts by mass), preferably 30 parts by mass or less (eg, 1 to 30 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. , more preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and most preferably 1 part by mass or less. If the proportion of plasticizer is too high, the transparency and mechanical properties may deteriorate.
  • the resin composition of the present invention preferably does not substantially contain a plasticizer, and most preferably does not contain a plasticizer, because the melt fluidity can be improved by blending the sugar ester.
  • the resin composition of the present invention preferably does not substantially contain a polyester oligomer among the plasticizers, and particularly preferably does not contain a polyester oligomer.
  • the resin composition of the present invention may further contain conventional additives blended with cellulose acetate as other components.
  • additives include, for example, stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), acid scavengers, conductive agents, antistatic agents, flame retardants (phosphorus flame retardants , halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, impact modifiers, fluidity modifiers, leveling agents, defoaming agents, reinforcing materials (fibrous materials such as glass fiber, carbon fiber, cellulose fiber, etc.) fillers such as reinforcing materials, talc, and calcium carbonate), coloring agents, lubricants, releasing agents, hue modifiers, dispersing agents, antibacterial agents, preservatives, stress reducing agents, and nucleating agents. These additives can be used alone or in combination of two or more.
  • the total proportion of other components may be, for example, 100 parts by mass or less (for example, 0.1 to 100 parts by mass), preferably 50 parts by mass or less (for example, 1 to 50 parts by mass) with respect to 100 parts by mass of the thermoplastic resin. parts by mass), more preferably 30 parts by mass or less, more preferably 10 parts by mass or less, and most preferably 5 parts by mass or less.
  • the resin composition of the present invention has high melt fluidity and a melt flow rate of 2 to 100 g/10 minutes. If the melt flow rate is too low, the melt moldability will be lowered, and if it is too high, the mechanical properties (in particular, impact strength) will be lowered, making it impossible to achieve both melt moldability and mechanical properties.
  • Preferred ranges of the melt flow rate of the resin composition are 3 to 80 g/10 min, 5 to 50 g/10 min, 8 to 40 g/10 min, 10 to 35 g/10 min, 12 to 30 g/10 min, and 12 to 30 g/10 min. 10 minutes, most preferably 15-20 g/10 minutes.
  • melt flow rate (MFR or melt flow index MFI) of the resin composition is measured according to ISO 1133, with a holding time of 5 minutes, a temperature of 250 ° C., and a load of 5 kgf. can be measured.
  • the resin composition of the present invention also has excellent mechanical properties.
  • the bending strength of the resin composition of the present invention may be, for example, 100 MPa or more, for example, 100 to 1000 MPa, preferably 130 to 500 MPa, more preferably 135 to 300 MPa, more preferably 140 to 200 MPa, most preferably 145 MPa. ⁇ 160 MPa.
  • the flexural modulus of the resin composition of the present invention may be 1000 MPa or more, for example 1000 to 10000 MPa, preferably 2000 to 8000 MPa, more preferably 3000 to 6000 MPa, more preferably 4000 to 5000 MPa.
  • the flexural strength and flexural modulus of the resin composition can be measured according to ISO 178.
  • the IZOD impact strength (notched) of the resin composition of the present invention may be 1 kJ/m 2 or more, for example 1 to 30 kJ/m 2 , preferably 2 to 20 kJ/m 2 , more preferably 3. ⁇ 10 kJ/m 2 , more preferably 4-8 kJ/m 2 , most preferably 4.5-6 kJ/m 2 .
  • the Izod impact strength of the resin composition can be measured according to ISO 180.
  • the resin composition of the present invention can be prepared by mixing a thermoplastic resin, a sugar ester, and optionally other components by a conventional method such as dry mixing or melt-kneading.
  • a conventional method such as dry mixing or melt-kneading.
  • the kneading temperature is, for example, 200 to 280°C, preferably 220 to 260°C, more preferably 230 to 250°C.
  • a melt-kneading method a conventional method can be used, and for example, a twin-screw extruder kneader may be used.
  • the molded article of the present invention can be produced by molding the resin composition by a conventional molding method.
  • Conventional molding methods include compression molding, injection molding, injection compression molding, extrusion molding, transfer molding, blow molding, pressure molding, casting molding, and the like. Since the resin composition of the present invention has excellent melt fluidity, among these molding methods, molding methods that require high melt fluidity, such as injection molding, injection compression molding, and extrusion molding, are preferred. , the injection molding method is particularly preferred.
  • the cylinder temperature is, for example, 230-300°C, preferably 240-280°C, more preferably 245-275°C, more preferably 250-270°C, most preferably 255-265°C. If the cylinder temperature is too low, the moldability may deteriorate, and if it is too high, the mechanical properties and transparency of the molded product may deteriorate.
  • the injection pressure is, for example, 10-100 MPa, preferably 20-80 MPa, more preferably 40-60 MPa.
  • the mold temperature is, for example, 100 to 200°C, preferably 110 to 150°C, more preferably 115 to 145°C, more preferably 120 to 140°C, most preferably 125 to 135°C. If the mold temperature is too low, the productivity may decrease, and if it is too high, the mechanical properties and transparency of the molded product may decrease.
  • the shape of the molded article of the present invention is not particularly limited, and can be selected depending on the application.
  • One-dimensional structures such as linear or filamentous structures; two-dimensional structures such as film-like, sheet-like, and plate-like structures; three-dimensional structures such as shapes, rods, tubular or tubular shapes, hollow shapes, and the like.
  • the resin composition of the present invention can produce a molded article with high productivity by injection molding, even a three-dimensional structure that is difficult to mold with conventional cellulose diacetate can be produced with high productivity. can be manufactured.
  • each component having the mass ratio shown in Table 1 is kneaded at a temperature of 240 ° C., a screw rotation speed of 200 rpm, and a discharge amount of about 500 g / h, and pellets.
  • a resin composition having a shape was prepared. The kneaded material was stably formed into strands and cut into pellets, which was evaluated as "acceptable”. In addition, when the composition was visually transparent, it was evaluated as "transparent", and when it was opaque, it was evaluated as "opaque”.
  • the resulting resin composition is injection molded using a piston-type injection molding machine ("HAAKE MiniJet Pro" manufactured by Thermo Fisher Scientific) under the conditions of cylinder temperature: 260 ° C. and mold temperature: 130 ° C., Strip-shaped specimens were obtained. Moreover, MFR was evaluated with the obtained resin composition. Using the obtained test pieces, bending strength, bending elastic modulus, and Izod impact strength were evaluated. Table 1 shows the blending ratio and evaluation results.
  • the resin composition of the present invention is excellent in transparency, biodegradability and mechanical properties, it can be used in various fields of resin moldings [e.g., automobile parts, electric/electronic parts, building materials (wall materials, etc.), civil engineering materials]. , agricultural materials, packaging materials (containers, cushioning materials, etc.), household materials (daily necessities, etc.), etc.], and in particular, it has excellent mechanical strength, so it is suitable as a molded body for automobile parts and electric / electronic parts. In addition, since it has excellent transparency, it can be suitably used for packaging materials (transparent containers, etc.) and optical molded articles (optical molded articles or optical members).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

熱可塑性樹脂および糖エステルを含み、かつ溶融成形に供するための溶融成形用樹脂組成物を調製する。前記熱可塑性樹脂は、セルロースジアセテート(A)である。前記糖エステルは、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)を含む。前記糖アルカン酸エステル(B)はスクロースオクタアセテートであってもよい。前記糖アルカン酸エステル(B)の割合は、前記セルロースジアセテート100質量部に対して10~65質量部であってもよい。前記樹脂組成物は、射出成形に供するための樹脂組成物であってもよい。前記樹脂組成物は、溶融成形性、透明性および機械的特性に優れている。

Description

樹脂組成物ならびにその用途および成形方法
 本発明は、セルロースジアセテートを含む樹脂組成物ならびにその用途および成形方法に関する。
 セルロースアセテートは、透明性、耐熱性、機械的特性に優れる樹脂であるが、成形性が低いため、溶媒に溶解させてキャストすることにより成形する溶液流延法が汎用されている。例えば、特開2016-164669号公報(特許文献1)には、ポリエステルオリゴマーおよび糖エステル化合物を添加剤として溶液流延法で製造されたセルロースアセテートフィルムが開示されている。
 一方、溶媒に溶解させた溶液流延法では、成形体の形状が限定されるため、溶融成形による成形方法も知られている。しかし、セルロースアセテートは、樹脂単体では溶融成形が困難であるため、溶融成形に際しては可塑剤が使用される。
 特表2003-526694号公報(特許文献2)には、スクロースアセテートイソブチレートなどの機能性添加剤を酸と混合し、水などの水性沈殿剤と接触させて共沈させるセルロースエステルと機能性添加剤とのブレンド方法が開示されている。
 特開2021-109942号公報(特許文献3)には、セルロースナノファイバーを含む酢酸セルロースと、酢酸エチル、乳酸ブチル、フタル酸ジオクチル、クエン酸トリエチル、クエン酸トリブチル、リン酸トリオクチルなどの可塑剤とを押出機で混練して製造された複合材料が開示されている。
 国際公開第2008/062610号(特許文献4)には、セルロースアセテートプロピオネートやセルロースアセテートブチレートなどのセルロースエステルと、アクリルポリマーと、グルコースペンタアセテート、スクロースオクタアセテート、スクロースオクタプロピオネート、スクロースオクタイソブチレート、スクロースオクタベンゾエート、マルトースオクタアセテートなどの糖エステル化合物とを含有する組成物を溶融流延してセルロースエステルフィルムを製造する方法が開示されている。
 国際公開第2009/011228号(特許文献5)には、セルロースアセテートプロピオネートなどのセルロースエステルと、スクロースヘキサアセテート、スクロースヘキサプロピオネート、スクロースヘプタプロピオネート、スクロースヘキサベンゾエート、スクロースヘプタベンゾエートなどの部分エステル化糖と、グルコースペンタアセテート、グルコースペンタブチレート、スクロースオクタアセテート、スクロースオクタプロピオネート、スクロースオクタベンゾエートなどの完全エステル化糖とを含有する組成物を溶融流延してセルロースエステルフィルムを製造する方法が開示されている。
特開2016-164669号公報 特表2003-526694号公報 特開2021-109942号公報 国際公開第2008/062610号 国際公開第2009/011228号
 しかし、特許文献2~5の組成物では、透明性に優れた成形体が得られるものの、溶融流動性が低い。そのため、特許文献2~5の組成物では、流動性、特に、溶融流動性が低いため、溶融成形性が低く、射出成形体などの高い溶融流動性を要求される成形に利用するのは困難であった。さらに従来の技術では、セルロースアセテートに可塑剤を配合して軟化させると、機械的特性は低下するため、流動性と機械的特性とはトレードオフの関係にあり、両立が困難な特性であった。
 従って、本発明の目的は、溶融成形性、透明性および機械的特性に優れた樹脂組成物ならびにその用途および成形方法を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、セルロースジアセテート(A)を含む熱可塑性樹脂[特に、セルロースジアセテート(A)からなる熱可塑性樹脂]と、特定の糖アルカン酸エステル化物(B)を含む糖エステルとを組み合わせることにより、溶融成形性、透明性および機械的特性に優れた樹脂組成物を提供できることを見出し、本発明を完成した。
 すなわち、本発明の態様[1]としての樹脂組成物は、熱可塑性樹脂および糖エステルを含み、かつ溶融成形に供するための溶融成形用樹脂組成物であって、前記熱可塑性樹脂が、セルロースジアセテート(A)であり、前記糖エステルが、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)を含む。
 本発明の態様[2]は、前記態様[1]において、前記糖アルカン酸エステル(B)が、単糖または二糖のC2-4アルカン酸エステルである態様である。
 本発明の態様[3]は、前記態様[1]または[2]において、前記糖アルカン酸エステル(B)が、二糖とC2-3アルカン酸との完全エステル化物である態様である。
 本発明の態様[4]は、前記態様[1]~[3]のいずれかの態様において、前記糖アルカン酸エステル(B)が、スクロースオクタアセテートである態様である。
 本発明の態様[5]は、前記態様[4]において、前記スクロースオクタアセテートの割合が、前記糖エステル中90質量%以上である態様である。
 本発明の態様[6]は、前記態様[1]~[5]のいずれかの態様において、前記糖アルカン酸エステル(B)の割合が、前記セルロースジアセテート(A)100質量部に対して10~65質量部である態様である。
 本発明の態様[7]は、前記態様[1]~[6]のいずれかの態様の樹脂組成物が、射出成形に供するための樹脂組成物である態様である。
 本発明の態様[8]は、前記態様[1]~[7]のいずれかの態様の樹脂組成物が、セルローストリアセテート、(メタ)アクリル系樹脂およびポリエステルオリゴマーからなる群より選択された少なくとも一種を含まない態様である。
 本発明には、態様[9]として、前記態様[1]~[8]のいずれかの態様の樹脂組成物で形成された成形体も含まれる。
 本発明の態様[10]は、前記態様[9]の成形体が、自動車部品、電気・電子部品、建築資材、土木資材、農業資材、包装資材、生活資材および光学部材から選択される部品または資材である態様である。
 本発明には、態様[11]として、前記態様[1]~[8]のいずれかの態様の樹脂組成物を溶融成形して成形体を製造する方法も含まれる。
 本発明の態様[12]は、前記態様[11]の方法において、前記樹脂組成物を射出成形して成形体を製造する態様である。
 本発明には、態様[13]として、セルロースジアセテート(A)の強度を向上させるための強度向上剤であって、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)で構成されている強度向上剤も含まれる。
 本発明には、態様[14]として、セルロースジアセテート(A)の溶融流動性を向上させるための流動性向上剤であって、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)で構成されている流動性向上剤も含まれる。
 本発明には、態様[15]として、セルロースジアセテート(A)に単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)を配合し、前記セルロースジアセテート(A)の溶融流動性および/または強度を向上する方法も含まれる。
 なお、本明細書および請求の範囲において、置換基の炭素原子の数をC、C、C10などで示すことがある。例えば、「Cアルキル基」は炭素数が1のアルキル基を意味し、「C6-10アリール基」は炭素数が6~10のアリール基を意味する。
 本発明では、セルロースジアセテート(A)を含む熱可塑性樹脂[特に、セルロースジアセテート(A)からなる熱可塑性樹脂]と、特定の糖アルカン酸エステル(B)を含む糖エステルとを組み合わせているため、樹脂組成物の溶融成形性、透明性および機械的特性を向上できる。特に、特定の糖アルカン酸エステル(B)を所定の割合で配合することにより、射出成形に必要な溶融成形性を維持しながら、透明性、曲げ強さ、曲げ弾性率および衝撃強度を向上できる。また、糖エステルとして、特定の糖アルカン酸エステル(B)を用いると、セルロースジアセテート(A)との組み合わせにおいて、高い生分解性を実現できる。
 [熱可塑性樹脂]
 本発明の樹脂組成物は、熱可塑性樹脂を含み、溶融成形に供される樹脂組成物である。さらに、前記熱可塑性樹脂は、セルロースジアセテート(またはセルロースジアセテート樹脂)(A)を含むため、透明性および機械的特性に優れている。
 セルロースジアセテート(A)は、汎用のセルロースジアセテートを利用できる。セルロースジアセテート(A)の酢化度は52~59%である。酢化度は、好ましくは53~58%、さらに好ましくは54~56%、より好ましくは54.5~55.5%である。セルロースジアセテート(A)の平均置換度(アセチル基総置換度)は2.2~2.7である。平均置換度は、好ましくは2.3~2.6、さらに好ましくは2.3~2.5である。アセチル基の置換度が小さすぎると、分子間の水素結合が強くなるため、樹脂組成物の成形性が低下する虞があり、逆に大きすぎると、融点が上昇するため成形温度が高くなり、成形の際に熱分解が起こる虞がある。
 なお、本明細書および請求の範囲において、セルロースジアセテート(A)の酢化度および平均置換度は、ASTM-D-817-91(セルロースアセテート等の試験法)に準拠して測定できる。
 セルロースジアセテート(A)の6%粘度(25℃)は、例えば30~200mPa・s、好ましくは40~150mPa・s、さらに好ましくは50~100mPa・s、より好ましくは60~80mPa・sである。6%粘度が小さすぎると、成形体の機械的特性が低下する虞があり、逆に大きすぎると、樹脂組成物の成形性が低下する虞がある。
 なお、本明細書および請求の範囲において、セルロースジアセテート(A)の6%粘度は、慣用の方法、例えば、セルロースジアセテートを95%アセトン水溶液に濃度6%(質量/体積%)で溶解させ、オストワルド粘度計を用いて流下時間を測定する方法で求めることができる。
 熱可塑性樹脂は、セルロースジアセテート(A)に加えて、他の熱可塑性樹脂をさらに含んでいてもよい。
 他の熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、スチレン系樹脂、(メタ)アクリル系樹脂、塩化ビニル系樹脂、ポリビニルアルコール系樹脂、ポリアセタール系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、フッ素樹脂、セルロースジアセテート(A)以外のセルロース誘導体などが挙げられる。これら他の熱可塑性樹脂は、単独でまたは二種以上組み合わせて使用できる。
 これら他の熱可塑性樹脂のうち、セルロースジアセテート(A)との相溶性に優れる点から、セルロース誘導体が好ましい。
 セルロース誘導体としては、例えば、メチルセルロース、エチルセルロース、エチルメチルセルロース、プロピルセルロース、イソプロピルセルロース、ブチルセルロースなどのアルキルセルロース;ベンジルセルロースなどのアラルキルセルロース;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース;カルボキシメチルセルロースなどのカルボキシアルキルセルロース;セルロースプロピオネート、セルロースブチレートなどのセルロースC3-4アシレート;セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースアセテートC3-4アシレート;ニトロセルロース、硫酸セルロース、リン酸セルロースなどのセルロース無機酸エステルなどが挙げられる。これらのうち、セルロースジアセテートとの相溶性に優れる点から、セルロースC2-4アシレートやセルロースアセテートC3-4アシレートなどのセルロースアシレートが好ましい。
 他の熱可塑性樹脂の割合は、セルロースジアセテート(A)100質量部に対して、100質量部以下(例えば0.1~100質量部)であってもよく、好ましくは50質量部以下(例えば1~50質量部)、さらに好ましくは10質量部以下、より好ましくは5質量部以下、最も好ましくは1質量部以下である。他の熱可塑性樹脂の割合が多すぎると、後述する糖アルカン酸エステル(B)を配合する効果が低下することなどによって成形性や機械的特性が低下する虞がある。
 熱可塑性樹脂は、セルロースジアセテート(A)を主成分として含むのが好ましい。セルロースジアセテート(A)の割合は、熱可塑性樹脂中50質量%以上であってもよいが、好ましくは80質量%以上、さらに好ましくは90質量%以上、より好ましくは95質量%以上、最も好ましくは99質量%以上である。熱可塑性樹脂は、実質的にセルロースジアセテート(A)のみからなってもよく、セルロースジアセテート(A)のみからなるのが特に好ましい。
 熱可塑性樹脂は、セルロースジアセテート(A)を主成分として含むのが好ましいため、セルロースジアセテート以外のセルロースアセテートを実質的に含まないのが好ましく、セルロースジアセテート以外のセルロースアセテートを含まないのが特に好ましい。
 熱可塑性樹脂は、(メタ)アクリル系樹脂を実質的に含まないのが好ましく、(メタ)アクリル系樹脂を含まないのが特に好ましい。
 [糖エステル]
 本発明の樹脂組成物は、セルロースジアセテート(A)を含む熱可塑性樹脂に加えて、糖エステルを含む。なお、本明細書および請求の範囲において、糖エステルは、エステル化糖、糖エステル化合物とも称される化合物であり、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種(低分子糖)と、カルボン酸とのエステル化物を意味する。
 前記糖エステルは、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種と、C2-6アルカン酸(脂肪族モノカルボン酸)とのエステル化物である糖アルカン酸エステル(B)を含むため、樹脂組成物の溶融成形性を向上できる。従来の可塑剤では、セルロースジアセテート(A)の流動性を高度に向上させるのは困難であり、例えば、射出成形に必要な溶融流動性を実現するのは困難であった。これに対して、本発明では、糖アルカン酸エステル(B)を用いることにより、射出成形に必要な溶融流動性も実現できる。さらに、糖アルカン酸エステル(B)は溶融流動性を向上できるだけでなく、従来の可塑剤の配合では流動性に対してトレードオフの関係にあった機械的特性、特に、曲げ強度、曲げ弾性率、衝撃強度(特に、強度)も向上できる。さらに、セルロースジアセテート(A)と糖アルカン酸エステル(B)との組み合わせは、溶融流動性が高く、混練性に優れるため、セルロースジアセテート(A)の透明性も維持でき、樹脂組成物および成形体の透明性も向上できる。
 単糖としては、例えば、アラビノース、キシロース、リボース、デオキシリボースなどのペントース;ブドウ糖(グルコース)、果糖(フルクトース)、ガラクトース、マンノース、ソルボース、フコース、ラムノース、ガラクチュロン酸、グルクロン酸、マンヌロン酸、グルコサミンなどのヘキソースなどが挙げられる。
 オリゴ糖は、二糖と、三糖以上のオリゴ糖とに大別できる。二糖としては、例えば、スクロース(ショ糖)、パラチノースなどのヘテロ二糖;セロビオース、乳糖(ラクトース)、異性化乳糖(ラクチュロース)、麦芽糖(マルトース)、イソマルトース、ゲンチオビオース、コージビオース、ラミナリビオース、メリビオース、ソホロース、トレハロースなどのホモ二糖などが挙げられる。三糖以上のオリゴ糖としては、例えば、メレチトース、ラフィノース、スタキオーズ、シクロデキストリンなどが挙げられる。
 糖アルコールとしては、例えば、キシリトール、エリスリトール、ソルビトール、マンニトール、還元麦芽糖水飴(マルチトール)、還元澱粉糖化物、還元パラチノース、還元乳糖(ラクチトール)、ペンタエリスリトールなどが挙げられる。
 これらの低分子糖は、単独でまたは二種以上組み合わせて使用できる。これらの低分子糖のうち、単糖または二糖が好ましく、二糖がさらに好ましく、ヘテロ二糖がより好ましく、スクロースが最も好ましい。
 C2-6アルカン酸としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸などの脂肪族モノカルボン酸などが挙げられる。これらのC2-6アルカン酸は、単独でまたは二種以上組み合わせて使用できる。これらのC2-6アルカン酸のうち、C2-4アルカン酸が好ましく、C2-3アルカン酸がさらに好ましく、酢酸が最も好ましい。
 糖アルカン酸エステル(B)は、低分子糖の水酸基のうち、一部の水酸基がエステル化した部分エステル化物であってもよいが、エステル化度は高い方が好ましく、全ての水酸基がエステル化した完全エステル化物が特に好ましい。
 糖アルカン酸エステル(B)としては、単糖または二糖のC2-6アルカン酸エステル、特に、二糖のC2-6アルカン酸エステルが好ましい。
 単糖のC2-6アルカン酸エステルとしては、例えば、グルコースアセテート、グルコースプロピオネート、グルコースブチレート、グルコースイソブチレート、グルコースアセテートプロピオネート、グルコースアセテートイソブチレートなどが挙げられる。
 二糖のC2-6アルカン酸エステルとしては、例えば、スクロースアセテート、スクロースプロピオネート、スクロースブチレート、スクロースイソブチレート、スクロースアセテートプロピオネート、スクロースアセテートイソブチレートなどが挙げられる。
 なかでも、糖アルカン酸エステル(B)としては、二糖のC2-4アルカン酸エステル、例えば、スクロースアセテート、スクロースプロピオネート、スクロースアセテートイソブチレートなどのヘテロ二糖とC2-4アルカン酸とのエステル化物が好ましく、スクローステトラアセテート、スクロースヘキサアセテート、スクロースオクタアセテートなどのスクローステトラないしオクタC2-4アルカン酸エステルがさらに好ましい。なかでも、スクロースとC2-3アルカン酸との完全エステル化物(オクタC2-3アルカン酸エステル)がより好ましく、スクロースオクタアセテートが最も好ましい。スクロースオクタアセテートなどの糖アルカン酸エステル(B)は、生分解性を有しているため、セルロースジアセテート(A)との組み合わせにおいて、地球環境的に優れた材料を実現できる。
 糖エステルは、糖アルカン酸エステル(B)に加えて、他の糖エステルをさらに含んでいてもよい。
 他の糖エステルとしては、例えば、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種と、C2-6アルカン酸以外の脂肪族カルボン酸、脂環族カルボン酸および芳香族カルボン酸からなる群より選択された少なくとも一種とのエステル化物などが挙げられる。単糖、オリゴ糖および糖アルコールとしては、前記糖アルカン酸エステル(B)を構成する低分子糖として例示された低分子糖などが挙げられる。脂肪族カルボン酸としては、例えば、ステアリン酸、オレイン酸、パルミチン酸などのC12-24アルカン酸などが挙げられる。脂環族カルボン酸としては、例えば、シクロヘキサンカルボン酸、テトラヒドロ安息香酸、ナフテン酸などが挙げられる。芳香族カルボン酸としては、安息香酸、メチル安息香酸などが挙げられる。
 これら他の糖エステルは、単独でまたは二種以上組み合わせて使用できる。これらのうち、ショ糖脂肪酸エステル(スクロースと、ステアリン酸、オレイン酸、パルミチン酸などのC12-24アルカン酸とのエステル)、スクロースベンゾエートなどのスクロースの芳香族カルボン酸エステルなどが汎用される。
 他の糖エステルの割合は、糖アルカン酸エステル(B)100質量部に対して、100質量部以下(例えば0.1~100質量部)であってもよく、好ましくは50質量部以下(例えば1~50質量部)、さらに好ましくは10質量部以下、より好ましくは5質量部以下、最も好ましくは1質量部以下である。他の糖エステルの割合が多すぎると、糖アルカン酸エステル(B)を配合する効果が低下することなどによって成形性や機械的特性が低下する虞がある。
 糖エステルは、糖アルカン酸エステル(B)を主成分として含むのが好ましい。糖アルカン酸エステル(B)の割合は、糖エステル中50質量%以上であってもよいが、好ましくは80質量%以上、さらに好ましくは90質量%以上、より好ましくは95質量%以上、最も好ましくは99質量%以上である。糖エステルは、実質的に糖アルカン酸エステル(B)のみからなってもよく、糖アルカン酸エステル(B)のみからなるのが特に好ましい。
 糖エステルは、特に、スクロースオクタアセテートを主成分として含むのが好ましい。スクロースオクタアセテートの割合は、糖エステル中50質量%以上であってもよいが、好ましくは80質量%以上、さらに好ましくは90質量%以上、より好ましくは95質量%以上、最も好ましくは99質量%以上である。糖エステルは、実質的にスクロースオクタアセテートのみからなってもよく、スクロースオクタアセテートのみからなるのが特に好ましい。
 糖エステルは、糖アルカン酸エステル(B)を主成分として含むのが好ましいため、他の糖エステルを実質的に含まないのが好ましく、他の糖エステルを含まないのが特に好ましい。
 糖エステル[特に、スクロースオクタアセテートなどの糖アルカン酸エステル(B)]の割合は、熱可塑性樹脂100質量部に対して、例えば1~80質量部、好ましくは5~60質量部、さらに好ましくは10~50質量部である。糖エステルの割合が少なすぎると、成形性が低下する虞があり、逆に多すぎると、透明性および機械的特性が低下する虞がある。
 糖アルカン酸エステル(B)(特に、スクロースオクタアセテート)の割合は、セルロースジアセテート(A)100質量部に対して5~70質量部程度の範囲から選択でき、例えば10~65質量部、好ましくは15~60質量部、さらに好ましくは20~50質量部、より好ましくは25~45質量部、最も好ましくは30~35質量部である。糖アルカン酸エステル(B)の割合が少なすぎると、溶融流動性および溶融成形性が低下する虞があり、逆に多すぎると、透明性および機械的特性(特に、衝撃強度)が低下する虞がある。
 糖アルカン酸エステル(B)(特に、スクロースオクタアセテート)は、セルロースジアセテート(A)の溶融流動性(特に、射出成形に必要な溶融流動性)を向上できるため、セルロースジアセテート(A)の流動性向上剤(特に、射出成形の溶融流動性を向上させるための流動性向上剤)としても利用できる。
 さらに、糖アルカン酸エステル(B)(特に、スクロースオクタアセテート)は、セルロースジアセテート(A)の流動性を向上できるだけでなく、同時に樹脂組成物で形成された成形体の強度も向上できるため、強度向上剤としても作用する。そのため、糖アルカン酸エステル(B)は、セルロースジアセテート(A)の強度向上剤としても利用できる。
 [可塑剤]
 本発明の樹脂組成物は、熱可塑性樹脂および糖エステルに加えて、可塑剤をさらに含んでいてもよい。可塑剤は、セルロースアセテートの可塑剤として汎用されている慣用の可塑剤であってもよい。
 慣用の可塑剤としては、例えば、クエン酸トリエチル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル、酒石酸ジブチルなどのヒドロキシ酸エステル;トリアセチン、トリプロピオニンなどのトリアシルグリセロール;2,2-ビス(4-ポリオキシエチレン-オキシフェニル)プロパンなどのポリエーテル;フタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジブチル(DBP)、フタル酸ジ-2-メトキシエチル、フタル酸ジアリル、o-ベンゾイル安息香酸エチル、エチルフタリル・エチルグリコレート(EPEG)、メチルフタリル・エチルグリコレート(MPEG)などの芳香族カルボン酸エステル;p-トルエンスルホン酸o-クレジルなどの芳香族スルホン酸エステル;N-エチルトルエンスルホンアミドなどの芳香族スルホンアミド;リン酸トリエチル(TEP)、リン酸トリフェニル(TPP)などのリン酸エステル;ポリエステルオリゴマー、ポリアミドオリゴマーなどの樹脂オリゴマーなどが挙げられる。
 これら慣用の可塑剤は、単独でまたは二種以上組み合わせて使用できる。これらのうち、アセチルクエン酸トリブチルなどのヒドロキシ酸エステル、2,2-ビス(4-ポリオキシエチレン-オキシフェニル)プロパンなどのポリエーテルなどが汎用される。
 可塑剤の割合は、熱可塑性樹脂100質量部に対して、50質量部以下(例えば0.1~50質量部)であってもよく、好ましくは30質量部以下(例えば1~30質量部)、さらに好ましくは10質量部以下、より好ましくは5質量部以下、最も好ましくは1質量部以下である。可塑剤の割合が多すぎると、透明性および機械的特性が低下する虞がある。
 本発明の樹脂組成物は、前記糖エステルの配合によって溶融流動性を向上できるため、可塑剤を実質的に含まないのが好ましく、可塑剤を含まないのが最も好ましい。特に、本発明の樹脂組成物は、可塑剤の中でも、ポリエステルオリゴマーを実質的に含まないのが好ましく、ポリエステルオリゴマーを含まないのが特に好ましい。
 [他の成分]
 本発明の樹脂組成物は、熱可塑性樹脂および糖エステルに加えて、他の成分として、セルロースアセテートに配合される慣用の添加剤をさらに含んでいてもよい。慣用の添加剤としては、例えば、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など)、酸捕捉剤、導電剤、帯電防止剤、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、耐衝撃改良剤、流動性改良剤、レベリング剤、消泡剤、補強材(ガラス繊維、炭素繊維、セルロース繊維などの繊維状補強材、タルク、炭酸カルシウムなどの充填剤など)、着色剤、滑剤、離型剤、色相改良剤、分散剤、抗菌剤、防腐剤、低応力化剤、核剤などが挙げられる。これらの添加剤は、単独でまたは二種以上組み合わせて使用できる。
 他の成分の合計割合は、熱可塑性樹脂100質量部に対して、例えば100質量部以下(例えば0.1~100質量部)であってもよく、好ましくは50質量部以下(例えば1~50質量部)、さらに好ましくは30質量部以下、より好ましくは10質量部以下、最も好ましくは5質量部以下である。
 [樹脂組成物の特性]
 本発明の樹脂組成物は、高い溶融流動性を有しており、メルトフローレートが2~100g/10分である。メルトフローレートが小さすぎると、溶融成形性が低下し、逆に大きすぎると、機械的特性(特に、衝撃強度)が低下し、溶融成形性と機械的特性とを両立できない。樹脂組成物のメルトフローレートの好ましい範囲としては、以下段階的に、3~80g/10分、5~50g/10分、8~40g/10分、10~35g/10分、12~30g/10分であり、最も好ましくは15~20g/10分である。
 なお、本明細書および請求の範囲において、樹脂組成物のメルトフローレート(MFRまたはメルトフローインデックスMFI)は、ISO 1133に準じて、保持時間を5分として、温度250℃、荷重5kgfの条件で測定できる。
 本発明の樹脂組成物は、機械的特性にも優れている。本発明の樹脂組成物の曲げ強さは、例えば100MPa以上であってもよく、例えば100~1000MPa、好ましくは130~500MPa、さらに好ましくは135~300MPa、より好ましくは140~200MPa、最も好ましくは145~160MPaである。
 本発明の樹脂組成物の曲げ弾性率は、1000MPa以上であってもよく、例えば1000~10000MPa、好ましくは2000~8000MPa、さらに好ましくは3000~6000MPa、より好ましくは4000~5000MPaである。
 なお、本明細書および請求の範囲において、樹脂組成物の曲げ強さおよび曲げ弾性率は、ISO 178に準じて測定できる。
 本発明の樹脂組成物のアイゾット(IZOD)衝撃強度(ノッチ付き)は1kJ/m以上であってもよく、例えば1~30kJ/m、好ましくは2~20kJ/m、さらに好ましくは3~10kJ/m、より好ましくは4~8kJ/m、最も好ましくは4.5~6kJ/mである。
 なお、本明細書および請求の範囲において、樹脂組成物のアイゾット衝撃強度は、ISO 180に準じて測定できる。
 本発明の樹脂組成物は、熱可塑性樹脂と糖エステルと必要に応じて他の成分とを、乾式混合、溶融混練などの慣用の方法で混合することにより調製でき、樹脂組成物は、ペレットなどの形態であってもよい。溶融混練する場合、混練温度は、例えば200~280℃、好ましくは220~260℃、さらに好ましくは230~250℃である。溶融混練の方法としては、慣用の方法を利用でき、例えば、二軸押出混練機を利用してもよい。
 [成形体]
 本発明の成形体は、前記樹脂組成物を慣用の成形法で成形することにより製造できる。慣用の成形法としては、圧縮成形法、射出成形法、射出圧縮成形法、押出成形法、トランスファー成形法、ブロー成形法、加圧成形法、キャスティング成形法などが挙げられる。本発明の樹脂組成物は、溶融流動性に優れるため、これらの成形方法のうち、高度な溶融流動性が要求される成形方法、例えば、射出成形法、射出圧縮成形法、押出成形法が好ましく、射出成形法が特に好ましい。
 射出成形法において、シリンダー温度は、例えば230~300℃、好ましくは240~280℃、さらに好ましくは245~275℃、より好ましくは250~270℃、最も好ましくは255~265℃である。シリンダー温度が低すぎると、成形性が低下する虞があり、逆に高すぎると、成形体の機械的特性や透明性が低下する虞がある。
 射出圧力は、例えば10~100MPa、好ましくは20~80MPa、さらに好ましくは40~60MPaである。
 金型温度は、例えば100~200℃、好ましくは110~150℃、さらに好ましくは115~145℃、より好ましくは120~140℃、最も好ましくは125~135℃である。金型温度が低すぎると、生産性が低下する虞があり、逆に高すぎると、成形体の機械的特性や透明性が低下する虞がある。
 本発明の成形体の形状は、特に限定されず、用途に応じて選択でき、線状または糸状などの一次元的構造体;フィルム状、シート状、板状などの二次元的構造体;ブロック状、棒状、管状またはチューブ状、中空状などの三次元的構造体などが挙げられる。特に、本発明の樹脂組成物は、射出成形によって高い生産性で成形体を製造できるため、従来のセルロースジアセテートでは成形が困難であった三次元的構造体であっても、高い生産性で製造できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。また、各種評価方法および使用した原料の略号および詳細を下記に示す。
 [MFR]
 ISO 1133に準じて、保持時間を5分とし、温度250℃および試験荷重5kgfの条件で測定した。
 [曲げ強さおよび曲げ弾性率]
 ISO 178に準じて測定した。
 [アイゾット(IZOD)衝撃強度(ノッチ付き)]
 ISO 180に準じて測定した。
 [原料]
 (セルロースジアセテート)
 セルロースジアセテート(DAC):(株)ダイセル製「酢酸セルロース L-30」
 (エステル化糖類)
 スクロースオクタアセテート:東京化成工業(株)製
 (比較化合物)
 スクロース:東京化成工業(株)製
 スクロースベンゾエート:東京化成工業(株)製
 ショ糖脂肪酸エステル:東京化成工業(株)製(脂肪酸組成:パルミチン酸75.0%以上)
 2,2-ビス(4-ポリオキシエチレン-オキシフェニル)プロパン(BA-10):日本乳化剤(株)製「BA-10グリコール」
 アセチルクエン酸トリブチル(ATBC):東京化成工業(株)製。
 (実施例1~5および比較例1~5)
 表1に示す質量割合の各成分を二軸押出機(サーモフィッシャーサイエンティフィック社製「Process11」)を用いて、温度240℃、スクリュー回転数200rpm、吐出量約500g/hで混練し、ペレット状の樹脂組成物を調製した。なお、混練物のストランド化とカットが安定的に実施できたものをペレット化「可」、熱劣化し実施できなかったものをペレット化「不可」とした。また、組成物が目視で透明であったものを「透明」、不透明であったものを「不透明」とした。得られた樹脂組成物を、ピストン式射出成形機(サーモフィッシャーサイエンティフィック社製「HAAKE MiniJet Pro」)を用いて、シリンダー温度:260℃、金型温度:130℃の条件で射出成形し、短冊状試験片を得た。また、得られた樹脂組成物にてMFRを評価した。得られた試験片を用いて、曲げ強さ、曲げ弾性率、アイゾット衝撃強度を評価した。配合割合および評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例では、射出成形によって透明性および機械的特性に優れた成形体が得られた。
 本発明の樹脂組成物は、透明性、生分解性および機械的特性に優れるため、種々の分野の樹脂成形品[例えば、自動車部品、電気・電子部品、建築資材(壁材など)、土木資材、農業資材、包装資材(容器、緩衝材など)、生活資材(日用品など)など]に利用でき、特に、機械強度に優れるため、自動車部品、電気・電子部品の成形体として好適である。また、透明性に優れるため、包装資材(透明容器など)や光学用途の成形体(光学用成形体または光学部材)に好適に利用できる。

Claims (14)

  1.  熱可塑性樹脂および糖エステルを含み、かつ溶融成形に供するための溶融成形用樹脂組成物であって、
     前記熱可塑性樹脂が、セルロースジアセテート(A)であり、
     前記糖エステルが、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)を含む樹脂組成物。
  2.  前記糖アルカン酸エステル(B)が、単糖または二糖のC2-4アルカン酸エステルである請求項1記載の樹脂組成物。
  3.  前記糖アルカン酸エステル(B)が、二糖とC2-3アルカン酸との完全エステル化物である請求項1または2記載の樹脂組成物。
  4.  前記糖アルカン酸エステル(B)がスクロースオクタアセテートである請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記スクロースオクタアセテートの割合が前記糖エステル中90質量%以上である請求項4記載の樹脂組成物。
  6.  前記糖アルカン酸エステル(B)の割合が、前記セルロースジアセテート(A)100質量部に対して10~65質量部である請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  射出成形に供するための樹脂組成物である請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  請求項1~7のいずれか一項に記載の樹脂組成物で形成された成形体。
  9.  自動車部品、電気・電子部品、建築資材、土木資材、農業資材、包装資材、生活資材および光学部材から選択される部品または資材である請求項8記載の成形体。
  10.  請求項1~7のいずれか一項に記載の樹脂組成物を溶融成形して成形体を製造する方法。
  11.  前記樹脂組成物を射出成形して成形体を製造する請求項10記載の方法。
  12.  セルロースジアセテート(A)の強度を向上させるための強度向上剤であって、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)で構成されている強度向上剤。
  13.  セルロースジアセテート(A)の溶融流動性を向上させるための流動性向上剤であって、単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)で構成されている流動性向上剤。
  14.  セルロースジアセテート(A)に単糖、オリゴ糖および糖アルコールからなる群より選択された少なくとも一種とC2-6アルカン酸とのエステル化物である糖アルカン酸エステル(B)を配合し、前記セルロースジアセテート(A)の溶融流動性および/または強度を向上する方法。
PCT/JP2023/004472 2022-03-02 2023-02-10 樹脂組成物ならびにその用途および成形方法 WO2023166943A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022031858A JP7104258B1 (ja) 2022-03-02 2022-03-02 樹脂組成物ならびにその用途および成形方法
JP2022-031858 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023166943A1 true WO2023166943A1 (ja) 2023-09-07

Family

ID=82482457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004472 WO2023166943A1 (ja) 2022-03-02 2023-02-10 樹脂組成物ならびにその用途および成形方法

Country Status (3)

Country Link
JP (1) JP7104258B1 (ja)
TW (1) TW202342619A (ja)
WO (1) WO2023166943A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526694A (ja) * 1998-04-24 2003-09-09 イーストマン ケミカル カンパニー セルロースエステルと機能性添加剤との共沈及びそれによって得られる組成物
WO2008062610A1 (fr) * 2006-11-25 2008-05-29 Konica Minolta Opto, Inc. Procédé de fabrication de film optique, film d'ester de cellulose, polariseur et dispositif d'affichage à cristaux liquides
WO2009011228A1 (ja) * 2007-07-19 2009-01-22 Konica Minolta Opto, Inc. セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2013545905A (ja) * 2010-12-15 2013-12-26 スリーエム イノベイティブ プロパティズ カンパニー 分解制御繊維
JP2014149325A (ja) * 2013-01-31 2014-08-21 Konica Minolta Inc 光学フィルムの製造方法、偏光板の製造方法及び液晶表示装置の製造方法
JP2016164669A (ja) * 2016-03-30 2016-09-08 富士フイルム株式会社 セルロースアセテートフィルム、偏光板及び液晶表示装置
JP2017111189A (ja) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 光学フィルムの製造方法
WO2020175580A1 (ja) * 2019-02-27 2020-09-03 コニカミノルタ株式会社 光学フィルム用のドープおよびその製造方法、光学フィルム、偏光板、ならびに光学フィルムの製造方法
JP2021109942A (ja) * 2020-01-15 2021-08-02 Gsアライアンス株式会社 セルロースナノファイバー(cnf)を含む複合材料およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526694A (ja) * 1998-04-24 2003-09-09 イーストマン ケミカル カンパニー セルロースエステルと機能性添加剤との共沈及びそれによって得られる組成物
WO2008062610A1 (fr) * 2006-11-25 2008-05-29 Konica Minolta Opto, Inc. Procédé de fabrication de film optique, film d'ester de cellulose, polariseur et dispositif d'affichage à cristaux liquides
WO2009011228A1 (ja) * 2007-07-19 2009-01-22 Konica Minolta Opto, Inc. セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2013545905A (ja) * 2010-12-15 2013-12-26 スリーエム イノベイティブ プロパティズ カンパニー 分解制御繊維
JP2014149325A (ja) * 2013-01-31 2014-08-21 Konica Minolta Inc 光学フィルムの製造方法、偏光板の製造方法及び液晶表示装置の製造方法
JP2017111189A (ja) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 光学フィルムの製造方法
JP2016164669A (ja) * 2016-03-30 2016-09-08 富士フイルム株式会社 セルロースアセテートフィルム、偏光板及び液晶表示装置
WO2020175580A1 (ja) * 2019-02-27 2020-09-03 コニカミノルタ株式会社 光学フィルム用のドープおよびその製造方法、光学フィルム、偏光板、ならびに光学フィルムの製造方法
JP2021109942A (ja) * 2020-01-15 2021-08-02 Gsアライアンス株式会社 セルロースナノファイバー(cnf)を含む複合材料およびその製造方法

Also Published As

Publication number Publication date
TW202342619A (zh) 2023-11-01
JP2023127900A (ja) 2023-09-14
JP7104258B1 (ja) 2022-07-20

Similar Documents

Publication Publication Date Title
US11905394B2 (en) Cellulose ester and impact modifier compositions and articles made using these compositions
US9068063B2 (en) Cellulose ester/elastomer compositions
US11034820B2 (en) Cellulose ester and ethylene vinyl acetate compositions and articles made using these compositions
US9273195B2 (en) Tires comprising cellulose ester/elastomer compositions
US7276546B2 (en) Carbohydrate esters and polyol esters as plasticizers for polymers, compositions and articles including such plasticizers and methods of using the same
JP5514597B2 (ja) 熱可塑性セルロース組成物の製造方法及びその成形体の製造方法
JP2010126637A (ja) 成形材料、成形体、電子機器用筺体、及び成形体の製造方法
JP7104258B1 (ja) 樹脂組成物ならびにその用途および成形方法
US11174373B2 (en) Resin composition and resin molded body
JP2011132443A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP6369610B1 (ja) 樹脂組成物及び樹脂成形体
WO2011078279A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2023242076A1 (en) Cellulose ester polymer composition having low coefficient of friction
JP2022187088A (ja) セルロースエステル組成物
JP2024515242A (ja) 高い靱性及び寸法安定性を有するセルロースエステル組成物から作られる眼科用物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763205

Country of ref document: EP

Kind code of ref document: A1