WO2023166824A1 - Method for manufacturing electrochemical cell and electrochemical cell - Google Patents

Method for manufacturing electrochemical cell and electrochemical cell Download PDF

Info

Publication number
WO2023166824A1
WO2023166824A1 PCT/JP2022/047130 JP2022047130W WO2023166824A1 WO 2023166824 A1 WO2023166824 A1 WO 2023166824A1 JP 2022047130 W JP2022047130 W JP 2022047130W WO 2023166824 A1 WO2023166824 A1 WO 2023166824A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
positive electrode
negative electrode
electrolyte layer
layer
Prior art date
Application number
PCT/JP2022/047130
Other languages
French (fr)
Japanese (ja)
Inventor
竜 鈴木
Original Assignee
セイコーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーグループ株式会社 filed Critical セイコーグループ株式会社
Publication of WO2023166824A1 publication Critical patent/WO2023166824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical cell manufacturing method and an electrochemical cell.
  • This application claims priority based on Japanese Patent Application No. 2022-32672 filed in Japan on March 3, 2022, the content of which is incorporated herein.
  • An all-solid-state battery (electrochemical cell) is known that uses a solid electrolyte made of an inorganic material instead of the electrolyte of a lithium-ion secondary battery or a gel electrolyte in which the electrolyte is held in a polymer.
  • the internal resistance inside the solid electrolyte increases due to contact resistance between inorganic materials.
  • Patent Document 1 proposes an all-solid-state battery in which an uneven surface is formed on the surface of a solid electrolyte layer containing a solid electrolyte to reduce internal resistance.
  • the electrode body 100 used in the all-solid-state battery (lithium-ion secondary battery) of Patent Document 1 includes a positive electrode layer 120, a negative electrode layer 130, and between the positive electrode layer 120 and the negative electrode layer 130. and a solid electrolyte layer 110 positioned thereon.
  • Solid electrolyte layer 110 is formed with positive electrode recess 111 that opens toward positive electrode layer 120 .
  • positive electrode concave portions 111 and positive electrode convex portions 112 are alternately formed on the positive electrode layer 120 side of the solid electrolyte layer 110 in a cross-sectional view.
  • Solid electrolyte layer 110 is formed with negative electrode recess 115 that opens toward negative electrode layer 130 .
  • negative electrode recesses 115 and negative electrode protrusions 116 are alternately formed on the solid electrolyte layer 110 on the side of the negative electrode layer 130 .
  • the distance D8 between the positive electrode concave portion 111 and the negative electrode concave portion 115 and the distance D9 between the positive electrode convex portion 112 and the negative electrode convex portion 116 are different. That is, the distance between the positive electrode layer 120 and the negative electrode layer 130 is uneven. As a result, the solid electrolyte layer 110 has low internal resistance and high internal resistance, resulting in a difference in current density and non-uniform battery reaction. As a result, the electrode utilization rate (electrical capacity) of the all-solid-state battery decreases, and the battery life decreases due to accelerated deterioration of specific parts.
  • an object of the present invention is to provide an electrochemical cell and a method for manufacturing an electrochemical cell that can further increase the electric capacity and the battery life.
  • An electrochemical cell according to the present invention has a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, wherein the solid electrolyte layer is the positive electrode layer and The solid electrolyte layer is positioned between the negative electrode layer and has a positive electrode recess that opens toward the positive electrode layer and into which the positive electrode layer is inserted; the solid electrolyte layer opens toward the negative electrode layer; It has a negative electrode recess into which the negative electrode layer is inserted, and the positive electrode recess and the negative electrode recess are shifted in the plane direction of the solid electrolyte layer.
  • the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
  • the solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the plane direction of the solid electrolyte layer in plan view. may be This configuration can further improve the uniformity of the current density.
  • the depth of the positive electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer. . According to this configuration, the electrical capacity can be further increased.
  • the difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the positive electrode in a cross-sectional view in the thickness direction of the solid electrolyte layer may be equal to each other. This configuration can further improve the uniformity of the current density.
  • the method for manufacturing an electrochemical cell of the present invention has a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, and the solid electrolyte layer is the positive electrode
  • a method for manufacturing an electrochemical cell located between a layer and the negative electrode layer comprising: a positive electrode recess that opens to the positive electrode layer side of the solid electrolyte layer and into which the positive electrode layer enters; and the negative electrode of the solid electrolyte layer.
  • a negative electrode recess, which is open on the layer side and into which the negative electrode layer is inserted, is shifted in the plane direction of the solid electrolyte layer.
  • the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
  • the solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the plane direction of the solid electrolyte layer in plan view. may This configuration can further improve the uniformity of the current density.
  • the depth of the positive electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer. . According to this configuration, the electrical capacity can be further increased.
  • the difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the positive electrode in a cross-sectional view in the thickness direction of the solid electrolyte layer may be equal to each other. This configuration can further improve the uniformity of the current density.
  • the solid electrolyte layer has a positive electrode recess that opens toward the positive electrode layer and into which the positive electrode layer enters
  • the solid electrolyte layer has a negative electrode recess that opens toward the negative electrode layer and into which the negative electrode layer enters.
  • the positive electrode recess and the negative electrode recess are shifted in the plane direction of the solid electrolyte layer.
  • the solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the planar direction of the solid electrolyte layer in plan view.
  • the depth of the positive electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer, [ 1] or the electrochemical cell according to [2].
  • a method for manufacturing an electrochemical cell wherein a negative electrode recess into which a layer is inserted is shifted in the surface direction of the solid electrolyte layer.
  • the solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the plane direction of the solid electrolyte layer in plan view.
  • the depth of the positive electrode recess is set to be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is set to be deeper than 1/2 of the thickness of the solid electrolyte layer, [ 5] or the method for producing an electrochemical cell according to [6].
  • the electric capacity can be further increased and the battery life can be further increased.
  • FIG. 1 is a perspective view showing the appearance of an electrochemical cell according to one embodiment of the present invention
  • FIG. FIG. 3 is a cross-sectional view showing an example of an electrode assembly housed in the same electrochemical cell; It is a top view which shows an example of the positional relationship of a positive electrode recessed part and a negative electrode recessed part. It is a top view which shows an example of the positional relationship of a positive electrode recessed part and a negative electrode recessed part.
  • FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2;
  • FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2;
  • FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG.
  • FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2;
  • FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2;
  • FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2;
  • FIG. 4 is a cross-sectional view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention;
  • FIG. 4 is a perspective view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention;
  • FIG. 4 is a perspective view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention;
  • FIG. 4 is a perspective view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention;
  • FIG. 2 is a cross-sectional view showing an example of an electrode body used in a conventional all solid state battery;
  • the battery (electrochemical cell) 1 of this embodiment is a button-shaped battery that is circular in plan view.
  • This battery 1 includes a container-shaped exterior body 2 and an electrode body housed inside the exterior body 2 .
  • the exterior body 2 is made of a laminate film.
  • the laminate film has a metal foil, an adhesive layer provided on the inner surface and covering the metal foil, and a protective layer provided on the outer surface and covering the metal foil.
  • the metal foil is made of, for example, a metal such as aluminum or stainless steel that blocks outside air and water vapor.
  • the fusion layer is made of, for example, a polyolefin such as polyethylene or polypropylene, or a copolymer containing two or more resins.
  • the protective layer is made of, for example, the above-described polyolefin, polyester such as polyethylene terephthalate, or polyamide such as nylon.
  • the electrode body has a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte layer contains a solid electrolyte.
  • the electrode body 3A of the present embodiment has a positive electrode layer 20, a negative electrode layer 30, and a solid electrolyte layer 10 positioned between the positive electrode layer 20 and the negative electrode layer 30, as shown in FIG.
  • the solid electrolyte layer 10 has a positive electrode recessed portion 11 that opens toward the positive electrode layer 20 side.
  • a positive electrode layer 20 is inserted into the positive electrode concave portion 11 .
  • the solid electrolyte layer 10 has a negative electrode concave portion 15 that opens toward the negative electrode layer 30 side.
  • a negative electrode layer 30 is inserted into the negative electrode concave portion 15 .
  • the positive electrode recessed portion 11 and the negative electrode recessed portion 15 are shifted in the plane direction (X direction) of the solid electrolyte layer 10 .
  • the thickness T3A of the electrode body 3A is, for example, preferably 500-4000 ⁇ m, more preferably 800-3500 ⁇ m, even more preferably 1000-3000 ⁇ m.
  • the electric capacity of the battery 1 can be further increased.
  • Battery 1 can be made more compact as thickness T3A is below the said upper limit.
  • the thickness T3A can be obtained, for example, by observing a cross section obtained by cutting the electrode body 3A in the thickness direction (Z direction) with a microscope or the like.
  • Solid electrolyte layer 10 includes a solid electrolyte.
  • Solid electrolytes include oxide-based solid electrolytes. Examples of oxide solid electrolytes include Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (LAGP), Li 7 La 3 Zr 2 O 12 (LLZ), Li 1.3 Al 0.3 Ti1.7 ( PO4 ) 3 ( LATP ), Li0GeP2S12 ( LGPS ) , Li3.5Ge0.5V0.5O4 ( LGVO ) , LiTa2PO8 ( LTPO ), La 0.57Li0.29TiO3 ( LLTO ) , Li6.2Ga0.3La2.95Rb0.05Zr2O12 ( LGLRZO ) , Li10GeO2P12 ( LGPO ) , Li6 . 25La3Zr2Al0.25O12 and the like . These solid electrolytes may be used individually by 1 type, and
  • the thickness T10 of the solid electrolyte layer 10 is, for example, preferably 300-3800 ⁇ m, more preferably 500-3300 ⁇ m, even more preferably 800-2800 ⁇ m.
  • the strength of the battery 1 can be further increased when the thickness T10 is equal to or greater than the above lower limit.
  • the internal resistance of the battery 1 can be reduced more as thickness T10 is below the said upper limit.
  • the thickness T10 is obtained by the same method as the thickness T3A.
  • the ratio of the thickness T10 to the thickness T3A (also referred to as "T10/T3A ratio") is, for example, preferably 0.6 to 0.96, more preferably 0.7 to 0.94, and 0.8 to 0. .92 is more preferred.
  • T10/T3A ratio is equal to or higher than the above lower limit, the electric capacity of the battery 1 can be further increased.
  • T10/T3A ratio is equal to or less than the upper limit value, the internal resistance of the battery 1 can be further reduced.
  • the depth D11 of the positive electrode concave portion 11 is, for example, preferably 200 to 3700 ⁇ m, more preferably 400 to 3200 ⁇ m, even more preferably 700 to 2700 ⁇ m.
  • the internal resistance of the battery 1 can be reduced more as the depth D11 is more than the said lower limit.
  • strength of the solid electrolyte layer 10 can be improved more as the depth D11 is below the said upper limit.
  • the depth D11 is obtained by the same method as the thickness T3A.
  • the width W11 of the positive electrode concave portion 11 is, for example, preferably 1 to 100 ⁇ m, more preferably 2 to 80 ⁇ m, even more preferably 3 to 60 ⁇ m.
  • the width W ⁇ b>11 is equal to or greater than the above lower limit value, the positive electrode layer 20 easily enters the positive electrode concave portion 11 .
  • the width W11 is equal to or less than the upper limit, the strength of the solid electrolyte layer 10 can be further increased.
  • the width W11 is obtained by the same method as the thickness T3A.
  • a positive electrode convex portion 12 is formed between the two positive electrode concave portions 11 .
  • the height H12 of the positive electrode protrusion 12 is the same as the depth D11 of the positive electrode recess 11 .
  • the width W12 of the positive electrode convex portion 12 is, for example, preferably 1 to 300 ⁇ m, more preferably 2 to 240 ⁇ m, even more preferably 3 to 180 ⁇ m. When the width W12 is equal to or greater than the above lower limit, the strength of the solid electrolyte layer 10 can be further increased. When the width W12 is equal to or less than the upper limit value, the internal resistance of the battery 1 can be further reduced.
  • the width W12 is obtained by the same method as the thickness T3A.
  • the depth D15 of the negative electrode concave portion 15 is, for example, preferably 200 to 3700 ⁇ m, more preferably 400 to 3200 ⁇ m, even more preferably 700 to 2700 ⁇ m.
  • the internal resistance of the battery 1 can be reduced more as the depth D15 is more than the said lower limit.
  • strength of the solid electrolyte layer 10 can be improved more as the depth D15 is below the said upper limit.
  • the depth D15 is obtained by the same method as the thickness T3A.
  • the width W15 of the negative electrode concave portion 15 is, for example, preferably 1 to 100 ⁇ m, more preferably 2 to 80 ⁇ m, even more preferably 3 to 60 ⁇ m.
  • the width W15 is equal to or greater than the lower limit value, the negative electrode layer 30 easily enters the negative electrode concave portion 15 .
  • the width W15 is equal to or less than the upper limit, the strength of the solid electrolyte layer 10 can be further increased.
  • the width W15 is obtained by the same method as the thickness T3A.
  • a negative electrode protrusion 16 is formed between the two negative electrode recesses 15 .
  • the height H16 of the negative electrode protrusion 16 is the same as the depth D15 of the negative electrode recess 15 .
  • the width W16 of the negative electrode convex portion 16 is, for example, preferably 1 to 300 ⁇ m, more preferably 2 to 240 ⁇ m, even more preferably 3 to 180 ⁇ m. When the width W16 is equal to or greater than the above lower limit, the strength of the solid electrolyte layer 10 can be further increased. When the width W16 is equal to or less than the upper limit value, the internal resistance of the battery 1 can be further reduced.
  • the width W16 is obtained by the same method as the thickness T3A.
  • the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D11 of the positive electrode recess 11 (the distance from the deepest part of the positive electrode recess 11 to the negative electrode layer 30) is defined as D1.
  • the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D15 of the negative electrode recess 15 (the distance from the deepest part of the negative electrode recess 15 to the positive electrode layer 20) is defined as D2.
  • D3 be the distance in the plane direction (X direction) of the solid electrolyte layer 10 between the positive electrode recess 11 and the negative electrode recess 15 in a cross-sectional view in the thickness direction (Z direction) of the solid electrolyte layer 10 .
  • the distance D1, the distance D2, and the distance D3 are equal to each other.
  • the uniformity of the current density inside the solid electrolyte layer 10 can be further improved.
  • “equal” means that the distance ratio (D1/D2, D1/D3, etc.) is within ⁇ 5%.
  • the ratio of the distance D3 to the width W15 (also referred to as "D3/W15 ratio”) is, for example, preferably 0.2 to 0.8, more preferably 0.3 to 0.7, and 0.4 to 0.6. is more preferred.
  • D3/W15 ratio is equal to or higher than the lower limit, it is possible to suppress an excessive increase in current density.
  • the D3/W15 ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
  • the solid electrolyte layer 10 has two or more positive electrode recesses 11 and two or more negative electrode recesses 15 .
  • positive electrode recesses 11 and negative electrode recesses 15 are preferably alternately positioned in the plane direction of solid electrolyte layer 10 . Since the positive electrode recesses 11 and the negative electrode recesses 15 are alternately positioned, the uniformity of the current density inside the solid electrolyte layer 10 can be further enhanced.
  • “the positive electrode recesses 11 and the negative electrode recesses 15 are alternately positioned in the planar direction of the solid electrolyte layer 10" means that, as shown in FIG.
  • positive electrode recessed portions 11 and the negative electrode recessed portions 15 are alternately positioned in the direction shown in FIG. including cases.
  • the positive electrode recesses 11 and the negative electrode recesses 15 may be alternately positioned in any direction in plan view.
  • Depth D11 of positive electrode concave portion 11 is preferably deeper than 1/2 thickness T10 of solid electrolyte layer 10 .
  • the depth D ⁇ b>11 is greater than half the thickness T ⁇ b>10 , the deepest part of the positive electrode concave portion 11 is positioned inside the negative electrode convex portion 16 . Therefore, the current density inside the solid electrolyte layer 10 can be further increased, and the electric characteristics of the battery 1 can be further improved.
  • the upper limit of the depth D11 is not particularly limited as long as it is smaller than the thickness T10.
  • the ratio of depth D11 to thickness T10 (also referred to as “D11/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred.
  • D11/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D11/T10 ratio is below the said upper limit.
  • Depth D15 of negative electrode concave portion 15 is preferably deeper than 1/2 thickness T10 of solid electrolyte layer 10 .
  • the depth D15 is deeper than 1/2 of the thickness T10, the deepest part of the negative electrode concave portion 15 is positioned inside the positive electrode convex portion 12 . Therefore, the current density inside the solid electrolyte layer 10 can be further increased, and the electric characteristics of the battery 1 can be further improved.
  • the upper limit of the depth D15 is not particularly limited as long as it is smaller than the thickness T10.
  • the ratio of depth D15 to thickness T10 (also referred to as “D15/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred.
  • D15/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D15/T10 ratio is below the said upper limit.
  • the positive electrode layer 20 contains a positive electrode active material.
  • the positive electrode active material known materials used for all-solid-state batteries can be used.
  • the positive electrode active material include monocomponent positive electrode materials, binary positive electrode materials, and ternary positive electrode materials.
  • single-component positive electrode materials include LiMO 2 (M represents a metal element such as Co, Ni, Mn, Al, and Fe).
  • binary cathode materials include Li 1-x CoMnO 4 (x is a number satisfying 0 ⁇ x ⁇ 1), Li x FePO 4 (x is a number satisfying 0 ⁇ x ⁇ 1), Li x V 6 O 13 (x is a number satisfying 0 ⁇ x ⁇ 1), Li 1-x Mn 2 O 4 (x is a number satisfying 0 ⁇ x ⁇ 1), Li 1-x Ni 0.5 Mn 1 .5 O 4 (x is a number that satisfies 0 ⁇ x ⁇ 1).
  • the ternary positive electrode material include LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the like. One of these positive electrode active materials may be used alone, or two or more thereof may be used in combination.
  • the thickness T20 of the positive electrode layer 20 is, for example, preferably 10-500 ⁇ m, more preferably 30-400 ⁇ m, even more preferably 80-300 ⁇ m.
  • the electric capacity of the battery 1 can be further increased as the thickness T20 is equal to or greater than the lower limit value.
  • the internal resistance of the battery 1 can be reduced more as thickness T20 is below the said upper limit.
  • the thickness T20 is obtained by the same method as the thickness T3A.
  • the ratio of the thickness T20 to the thickness T3A (also referred to as “T20/T3A ratio”) is, for example, preferably 0.02 to 0.2, more preferably 0.03 to 0.15, and 0.04 to 0. .1 is more preferred.
  • T20/T3A ratio is equal to or higher than the lower limit, the electric capacity of the battery 1 can be further increased.
  • T20/T3A ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
  • the negative electrode layer 30 contains a negative electrode active material.
  • the negative electrode active material known materials used for all-solid-state batteries can be used. Examples of negative electrode active materials include metallic lithium and alloys of metallic lithium and metals other than lithium. Other negative electrode active materials include carbon materials such as carbon and graphite, silicon materials such as Si and SiO, and lithium transition metal composite oxides such as Li 4 Ti 5 O 12 (LTO). One type of negative electrode active material may be used alone, or two or more types may be used in combination.
  • the thickness T30 of the negative electrode layer 30 is, for example, preferably 10 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, even more preferably 80 to 300 ⁇ m.
  • the thickness T30 is equal to or greater than the lower limit value, the electric capacity of the battery 1 can be further increased.
  • the internal resistance of the battery 1 can be reduced more as thickness T30 is below the said upper limit.
  • the thickness T30 is obtained by the same method as the thickness T3A.
  • the ratio of the thickness T30 to the thickness T3A (also referred to as “T30/T3A ratio”) is, for example, preferably 0.02 to 0.2, more preferably 0.03 to 0.15, and 0.04 to 0. .1 is more preferred.
  • T30/T3A ratio is equal to or higher than the lower limit, the electric capacity of the battery 1 can be further increased.
  • T30/T3A ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
  • the method for producing an electrochemical cell of the present invention comprises: a positive electrode recess opening on the positive electrode layer side of the solid electrolyte layer into which the positive electrode layer enters; and a negative electrode recess opening on the negative electrode layer side of the solid electrolyte layer into which the negative electrode layer enters. a step of displacing in the plane direction of the solid electrolyte layer.
  • a solid electrolyte layer 10 is prepared.
  • solid electrolyte powder is compacted and fired in an electric furnace or the like to form the solid electrolyte layer 10 .
  • the solid electrolyte powder includes the solid electrolyte powder contained in the solid electrolyte layer 10 described above.
  • the firing atmosphere is preferably an atmosphere containing oxygen in order to suppress oxygen deficiency, and more preferably a dry atmosphere if the influence of moisture is a concern.
  • an atmosphere containing oxygen in order to suppress oxygen deficiency, and more preferably a dry atmosphere if the influence of moisture is a concern.
  • a sheet made of the same material as the solid electrolyte or an oxide containing Li may be inserted between the ceramic plate.
  • a negative electrode recess 15 into which the negative electrode layer 30 is inserted is formed on one surface of the solid electrolyte layer 10 .
  • a method for forming the negative electrode concave portion 15 is not particularly limited, and examples thereof include a method using a laser, a method using photolithography, and a method using a mold.
  • the solid electrolyte layer 10 having the negative electrode concave portions 15 is obtained by filling the above-described solid electrolyte powder into a mold, compacting and firing.
  • the negative electrode recessed part 15 may be formed in advance.
  • the portion where the negative electrode concave portion 15 is not formed remains as the negative electrode convex portion 16.
  • two or more negative electrode concave portions 15 are formed.
  • the number of negative electrode recesses 15 to be formed is not particularly limited, but can be appropriately set in consideration of the ease of forming the negative electrode recesses 15 by each of the forming methods described above and the viewpoint of maintaining the strength of the solid electrolyte layer 10. .
  • the depth D15 of the negative electrode concave portion 15 is preferably formed deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. By forming the depth D15 of the negative electrode concave portion 15 deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further increased. be done.
  • the ratio of depth D15 to thickness T10 (also referred to as “D15/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred.
  • D15/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D15/T10 ratio is below the said upper limit.
  • the negative electrode layer 30 is formed.
  • the method of forming the negative electrode layer 30 is not particularly limited. For example, a negative electrode slurry containing a negative electrode active material is prepared, and the solid electrolyte layer 10 is dipped in the negative electrode slurry. The method of coating, etc. are mentioned.
  • the negative electrode layer 30 formed on the other surface of the solid electrolyte layer 10 (the surface on which the negative electrode recesses 15 are not formed) is polished or polished with a solvent or the like. Remove.
  • the positive electrode recess 11 into which the positive electrode layer 20 is inserted is formed on the other surface of the solid electrolyte layer 10 .
  • a method for forming the positive electrode concave portion 11 is not particularly limited, and examples thereof include a method using a laser and a method using photolithography.
  • the positive electrode recessed part 11 may be formed in advance. By forming the positive electrode concave portion 11 , the portion where the positive electrode concave portion 11 is not formed remains as the positive electrode convex portion 12 .
  • the positive electrode recess 11 is shifted in the planar direction of the solid electrolyte layer 10 with respect to the negative electrode recess 15 .
  • the internal resistance of the solid electrolyte layer 10 can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity of the battery 1 can be further increased, and the battery life of the battery 1 can be further increased.
  • the position of the positive electrode concave portion 11 can be adjusted by the position of the irradiated laser, the shape of the mask for photolithography, the shape of the mold, and the like.
  • the number of positive electrode recesses 11 to be formed is not particularly limited, but can be appropriately set in consideration of the ease of forming the positive electrode recesses 11 by each of the forming methods described above and the viewpoint of maintaining the strength of the solid electrolyte layer 10. .
  • the number of positive electrode recesses 11 to be formed is preferably the same as the number of negative electrode recesses 15 to be formed, since the uniformity of the current density can be further enhanced.
  • the positive electrode recesses 11 are preferably positioned alternately with the negative electrode recesses 15 in the plane direction of the solid electrolyte layer 10 in plan view. By alternately locating the positive electrode recesses 11 and the negative electrode recesses 15, the uniformity of the current density can be further improved.
  • the depth D11 of the positive electrode concave portion 11 is preferably formed deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. By forming the depth D11 of the positive electrode concave portion 11 deeper than half the thickness T10 of the solid electrolyte layer 10, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further increased. be done.
  • the ratio of depth D11 to thickness T10 (also referred to as “D11/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred.
  • D11/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D11/T10 ratio is below the said upper limit.
  • the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D11 of the positive electrode recess 11 (the distance from the deepest part of the positive electrode recess 11 to the negative electrode layer 30) is defined as D1.
  • the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D15 of the negative electrode recess 15 (the distance from the deepest part of the negative electrode recess 15 to the positive electrode layer 20) is defined as D2.
  • D3 be the distance in the plane direction (X direction) of the solid electrolyte layer 10 between the positive electrode recess 11 and the negative electrode recess 15 in a cross-sectional view in the thickness direction (Z direction) of the solid electrolyte layer 10 .
  • the positive electrode concave portion 11 it is preferable to position the positive electrode concave portion 11 so that the distance D1, the distance D2, and the distance D3 are equal to each other.
  • the uniformity of the current density inside the solid electrolyte layer 10 can be further improved.
  • “equal” means that the distance ratio (D1/D2, D1/D3, etc.) is within ⁇ 5%.
  • the ratio of the distance D3 to the width W15 (also referred to as "D3/W15 ratio”) is, for example, preferably 0.2 to 0.8, more preferably 0.3 to 0.7, and 0.4 to 0.6. is more preferred.
  • D3/W15 ratio is equal to or higher than the lower limit, it is possible to suppress an excessive increase in current density.
  • the D3/W15 ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
  • the positive electrode layer 20 is formed.
  • the method for forming the positive electrode layer 20 is not particularly limited. For example, a method of applying the positive electrode slurry to the solid electrolyte layer 10 formed by screen printing or the like can be used.
  • the positive electrode layer 20 formed on the solid electrolyte layer 10 other than the other surface is removed by polishing or using a solvent or the like.
  • the electrode body 3A as shown in FIG. 2 is obtained.
  • the positive electrode layer 20 is formed after the negative electrode layer 30 is formed on the solid electrolyte layer 10, but the method for manufacturing an electrochemical cell of the present invention is not limited to the above-described embodiments.
  • the positive electrode recessed portion 11 may be formed using a mold. In this case, a mold in which the negative electrode recessed portion 15 and the positive electrode recessed portion 11 are formed is used, and the solid electrolyte powder is filled in this mold, compacted, and fired to form the negative electrode recessed portion 15 and the positive electrode recessed portion 11.
  • a solid electrolyte layer 10 having 3 A of electrode bodies are obtained by forming the negative electrode layer 30 and the positive electrode layer 20 in this solid electrolyte layer 10 one by one.
  • the order of forming the negative electrode layer 30 and the positive electrode layer 20 is not particularly limited, and the positive electrode layer 20 may be formed after the negative electrode layer 30 is formed. may be formed.
  • the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of current density can be improved. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
  • the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. be done. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
  • the electrode body 3B may have a shallower depth D13 of the positive electrode recess 13 and a shallower depth D17 of the negative electrode recess 17 than the electrode body 3A. Since the depth D13 of the positive electrode recessed portion 13 is shallower than the depth D11, the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D13 of the positive electrode recessed portion 13 (the distance from the deepest portion of the positive electrode recessed portion 13 to the negative electrode layer 30 distance) D4 can be greater than distance D1.
  • the depth D17 of the negative electrode recess 17 is shallower than the depth D15, the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D17 of the negative electrode recess 17 (the distance from the deepest part of the negative electrode recess 17 to the positive electrode layer 20 distance) D5 can be greater than distance D2. Therefore, deterioration of specific parts can be suppressed, and the battery life can be further increased.
  • the distance D4 and the distance D5 are equal. Therefore, the current density inside the solid electrolyte layer 10 can be made uniform.
  • "equal" means that the distance ratio (D4/D5) is within ⁇ 5%.
  • the width W13 of the positive electrode recessed portion 13 is the same as the width W11 of the positive electrode recessed portion 11 .
  • the width W13 of the positive electrode recess 13 may be the same as or different from the width W11 of the positive electrode recess 11 .
  • the height H14 of the positive electrode convex portion 14 is the same as the depth D13 of the positive electrode concave portion 13 .
  • the width W14 of the positive electrode convex portion 14 is the same as the width W12 of the positive electrode convex portion 12 .
  • the width W14 of the positive electrode protrusion 14 may be the same as or different from the width W12 of the positive electrode protrusion 12 .
  • the width W17 of the negative electrode recess 17 is the same as the width W15 of the negative electrode recess 15 .
  • the width W17 of the negative electrode recess 17 may be the same as or different from the width W15 of the negative electrode recess 15 .
  • the height H18 of the negative electrode protrusion 18 is the same as the depth D17 of the negative electrode recess 17 .
  • the width W18 of the negative electrode protrusion 18 is the same as the width W16 of the negative electrode protrusion 16 .
  • the width W18 of the negative electrode protrusion 18 may be the same as or different from the width W16 of the negative electrode protrusion 16 .
  • the electrode body 3C may have a linear positive electrode recess 11 and a linear negative electrode recess 15 .
  • the electrode body 3D may have a cylindrical positive electrode recess and a cylindrical negative electrode recess.
  • the electrode body 3E may have a via-processed positive electrode recess and a via-processed negative electrode recess.
  • the shape of the solid electrolyte layer may be polygonal in plan view instead of circular in plan view.
  • two or more electrode bodies may be laminated instead of one.
  • Electrode body 10... Solid electrolyte layer, 11, 13... Positive electrode recessed part, 12, 14... Positive electrode convex part, 15, 17... Negative electrode Concave portion 16, 18 negative electrode convex portion 20 positive electrode layer 30 negative electrode layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides an electrochemical cell comprising a positive electrode layer (20) including a positive electrode active material, a negative electrode layer (30) including a negative electrode active material, and a solid electrolyte layer (10) including a solid electrolyte. The solid electrolyte layer (10) is positioned between the positive electrode layer (20) and the negative electrode layer (30), the solid electrolyte layer (10) has a positive electrode recess (11) that opens to the positive electrode layer (10) side and the positive electrode layer (20) enters thereinto, and the solid electrolyte layer (10) has a negative electrode recess (15) that opens to the negative electrode layer (30) side and the negative electrode layer (30) enters thereinto. The positive electrode recess (11) and the negative electrode recess (15) are skewed in the surface direction of the solid electrolyte layer (10).

Description

電気化学セルの製造方法及び電気化学セルElectrochemical cell manufacturing method and electrochemical cell
 本発明は、電気化学セルの製造方法及び電気化学セルに関する。
 本願は、2022年3月3日に日本に出願された特願2022-32672号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electrochemical cell manufacturing method and an electrochemical cell.
This application claims priority based on Japanese Patent Application No. 2022-32672 filed in Japan on March 3, 2022, the content of which is incorporated herein.
 リチウムイオン二次電池の電解液や、電解液を高分子ポリマーに保持させたゲル電解質に代えて、無機材料からなる固体電解質を用いる全固体電池(電気化学セル)が知られている。
 全固体電池においては、無機材料間の接触抵抗に起因して、固体電解質内部の内部抵抗が高くなる。
An all-solid-state battery (electrochemical cell) is known that uses a solid electrolyte made of an inorganic material instead of the electrolyte of a lithium-ion secondary battery or a gel electrolyte in which the electrolyte is held in a polymer.
In all-solid-state batteries, the internal resistance inside the solid electrolyte increases due to contact resistance between inorganic materials.
 こうした問題に対して、例えば、特許文献1には、固体電解質を含む固体電解質層の表面に凹凸を形成して内部抵抗を低減した全固体電池が提案されている。 To address these problems, for example, Patent Document 1 proposes an all-solid-state battery in which an uneven surface is formed on the surface of a solid electrolyte layer containing a solid electrolyte to reduce internal resistance.
日本国特開2008-243735号公報Japanese Patent Application Laid-Open No. 2008-243735
 特許文献1の全固体電池(リチウムイオン二次電池)に用いられる電極体100は、図15に示すように、正極層120と、負極層130と、正極層120と負極層130との間に位置する固体電解質層110とを有する。固体電解質層110には、正極層120に向いて開口する正極凹部111が形成されている。これにより、断面視において、固体電解質層110の正極層120側には、正極凹部111と正極凸部112とが交互に形成されている。固体電解質層110には、負極層130に向いて開口する負極凹部115が形成されている。これにより、断面視において、固体電解質層110の負極層130側には、負極凹部115と負極凸部116とが交互に形成されている。 As shown in FIG. 15, the electrode body 100 used in the all-solid-state battery (lithium-ion secondary battery) of Patent Document 1 includes a positive electrode layer 120, a negative electrode layer 130, and between the positive electrode layer 120 and the negative electrode layer 130. and a solid electrolyte layer 110 positioned thereon. Solid electrolyte layer 110 is formed with positive electrode recess 111 that opens toward positive electrode layer 120 . As a result, positive electrode concave portions 111 and positive electrode convex portions 112 are alternately formed on the positive electrode layer 120 side of the solid electrolyte layer 110 in a cross-sectional view. Solid electrolyte layer 110 is formed with negative electrode recess 115 that opens toward negative electrode layer 130 . As a result, in a cross-sectional view, negative electrode recesses 115 and negative electrode protrusions 116 are alternately formed on the solid electrolyte layer 110 on the side of the negative electrode layer 130 .
 特許文献1の発明は、正極凹部111と負極凹部115との距離D8と、正極凸部112と負極凸部116との距離D9とが異なる。すなわち、正極層120と負極層130との距離が不均一となっている。このため、固体電解質層110の内部抵抗が低いところと高いところとができ、電流密度に差ができ、電池反応が不均一になる。その結果、全固体電池の電極利用率(電気容量)の低下や、特定部位の劣化が促進されることによる電池寿命の低下が起きる。 In the invention of Patent Document 1, the distance D8 between the positive electrode concave portion 111 and the negative electrode concave portion 115 and the distance D9 between the positive electrode convex portion 112 and the negative electrode convex portion 116 are different. That is, the distance between the positive electrode layer 120 and the negative electrode layer 130 is uneven. As a result, the solid electrolyte layer 110 has low internal resistance and high internal resistance, resulting in a difference in current density and non-uniform battery reaction. As a result, the electrode utilization rate (electrical capacity) of the all-solid-state battery decreases, and the battery life decreases due to accelerated deterioration of specific parts.
 そこで、本発明は、電気容量をより高められ、電池寿命をより高められる電気化学セル及び電気化学セルの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an electrochemical cell and a method for manufacturing an electrochemical cell that can further increase the electric capacity and the battery life.
 上記課題を解決するために、本発明は以下の態様を有する。
 本発明に係る電気化学セルは、正極活物質を含む正極層と、負極活物質を含む負極層と、固体電解質を含む固体電解質層と、を有し、前記固体電解質層は、前記正極層と前記負極層との間に位置し、前記固体電解質層は、前記正極層側に開口し、前記正極層が入り込む正極凹部を有し、前記固体電解質層は、前記負極層側に開口し、前記負極層が入り込む負極凹部を有し、前記正極凹部と、前記負極凹部とが、前記固体電解質層の面方向にずれている。
In order to solve the above problems, the present invention has the following aspects.
An electrochemical cell according to the present invention has a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, wherein the solid electrolyte layer is the positive electrode layer and The solid electrolyte layer is positioned between the negative electrode layer and has a positive electrode recess that opens toward the positive electrode layer and into which the positive electrode layer is inserted; the solid electrolyte layer opens toward the negative electrode layer; It has a negative electrode recess into which the negative electrode layer is inserted, and the positive electrode recess and the negative electrode recess are shifted in the plane direction of the solid electrolyte layer.
 この構成によれば、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。 According to this configuration, the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
 また、前記固体電解質層は、前記正極凹部及び前記負極凹部を各々2個以上有し、平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とが交互に位置していてもよい。
 この構成によれば、電流密度の均一性をさらに高められる。
Further, the solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the plane direction of the solid electrolyte layer in plan view. may be
This configuration can further improve the uniformity of the current density.
 また、前記正極凹部の深さが、前記固体電解質層の厚さの1/2よりも深く、前記負極凹部の深さが、前記固体電解質層の厚さの1/2よりも深くてもよい。
 この構成によれば、電気容量をさらに高められる。
Further, the depth of the positive electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer. .
According to this configuration, the electrical capacity can be further increased.
 また、前記固体電解質層の厚さと前記正極凹部の深さとの差と、前記固体電解質層の厚さと前記負極凹部の深さとの差と、前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、が互いに等しくてもよい。
 この構成によれば、電流密度の均一性をさらに高められる。
Further, the difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the positive electrode in a cross-sectional view in the thickness direction of the solid electrolyte layer The distance between the concave portion and the negative electrode concave portion may be equal to each other.
This configuration can further improve the uniformity of the current density.
 本発明の電気化学セルの製造方法は、正極活物質を含む正極層と、負極活物質を含む負極層と、固体電解質を含む固体電解質層と、を有し、前記固体電解質層が、前記正極層と前記負極層との間に位置する電気化学セルの製造方法であって、前記固体電解質層の前記正極層側に開口し、前記正極層が入り込む正極凹部と、前記固体電解質層の前記負極層側に開口し、前記負極層が入り込む負極凹部とを、前記固体電解質層の面方向にずらして位置させる。 The method for manufacturing an electrochemical cell of the present invention has a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, and the solid electrolyte layer is the positive electrode A method for manufacturing an electrochemical cell located between a layer and the negative electrode layer, comprising: a positive electrode recess that opens to the positive electrode layer side of the solid electrolyte layer and into which the positive electrode layer enters; and the negative electrode of the solid electrolyte layer. A negative electrode recess, which is open on the layer side and into which the negative electrode layer is inserted, is shifted in the plane direction of the solid electrolyte layer.
 この構成によれば、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。 According to this configuration, the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
 また、前記固体電解質層に、前記正極凹部及び前記負極凹部を各々2個以上とし、平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とを、交互に位置させてもよい。
 この構成によれば、電流密度の均一性をさらに高められる。
Further, the solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the plane direction of the solid electrolyte layer in plan view. may
This configuration can further improve the uniformity of the current density.
 また、前記正極凹部の深さを前記固体電解質層の厚さの1/2よりも深くし、前記負極凹部の深さを前記固体電解質層の厚さの1/2よりも深くしてもよい。
 この構成によれば、電気容量をさらに高められる。
Further, the depth of the positive electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer. .
According to this configuration, the electrical capacity can be further increased.
 また、前記固体電解質層の厚さと前記正極凹部の深さとの差と、前記固体電解質層の厚さと前記負極凹部の深さとの差と、前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、を互いに等しくなるようにしてもよい。
 この構成によれば、電流密度の均一性をさらに高められる。
Further, the difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the positive electrode in a cross-sectional view in the thickness direction of the solid electrolyte layer The distance between the concave portion and the negative electrode concave portion may be equal to each other.
This configuration can further improve the uniformity of the current density.
 以下に、上記課題を解決するために本発明が提案する手段を列挙する。
[1]正極活物質を含む正極層と、負極活物質を含む負極層と、固体電解質を含む固体電解質層と、を有し、前記固体電解質層は、前記正極層と前記負極層との間に位置し、前記固体電解質層は、前記正極層側に開口し、前記正極層が入り込む正極凹部を有し、前記固体電解質層は、前記負極層側に開口し、前記負極層が入り込む負極凹部を有し、前記正極凹部と、前記負極凹部とが、前記固体電解質層の面方向にずれている、電気化学セル。
[2]前記固体電解質層は、前記正極凹部及び前記負極凹部を各々2個以上有し、平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とが交互に位置している、[1]に記載の電気化学セル。
[3]前記正極凹部の深さが、前記固体電解質層の厚さの1/2よりも深く、前記負極凹部の深さが、前記固体電解質層の厚さの1/2よりも深い、[1]又は[2]に記載の電気化学セル。
[4]前記固体電解質層の厚さと前記正極凹部の深さとの差と、前記固体電解質層の厚さと前記負極凹部の深さとの差と、前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、が互いに等しい、[1]~[3]のいずれかに記載の電気化学セル。
Means proposed by the present invention to solve the above problems are listed below.
[1] A positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, wherein the solid electrolyte layer is between the positive electrode layer and the negative electrode layer The solid electrolyte layer has a positive electrode recess that opens toward the positive electrode layer and into which the positive electrode layer enters, and the solid electrolyte layer has a negative electrode recess that opens toward the negative electrode layer and into which the negative electrode layer enters. , wherein the positive electrode recess and the negative electrode recess are shifted in the plane direction of the solid electrolyte layer.
[2] The solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the planar direction of the solid electrolyte layer in plan view. The electrochemical cell according to [1].
[3] The depth of the positive electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer, [ 1] or the electrochemical cell according to [2].
[4] The difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the thickness of the solid electrolyte layer in a cross-sectional view in the thickness direction. The electrochemical cell according to any one of [1] to [3], wherein the distance between the positive electrode recess and the negative electrode recess is equal to each other.
[5]正極活物質を含む正極層と、負極活物質を含む負極層と、固体電解質を含む固体電解質層と、を有し、前記固体電解質層が、前記正極層と前記負極層との間に位置する電気化学セルの製造方法であって、前記固体電解質層の前記正極層側に開口し、前記正極層が入り込む正極凹部と、前記固体電解質層の前記負極層側に開口し、前記負極層が入り込む負極凹部とを、前記固体電解質層の面方向にずらして位置させる、電気化学セルの製造方法。
[6]前記固体電解質層に、前記正極凹部及び前記負極凹部を各々2個以上とし、平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とを、交互に位置させる、[5]に記載の電気化学セルの製造方法。
[7]前記正極凹部の深さを前記固体電解質層の厚さの1/2よりも深くし、前記負極凹部の深さを前記固体電解質層の厚さの1/2よりも深くする、[5]又は[6]に記載の電気化学セルの製造方法。
[8]前記固体電解質層の厚さと前記正極凹部の深さとの差と、前記固体電解質層の厚さと前記負極凹部の深さとの差と、前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、を互いに等しくなるようにする、[5]~[7]のいずれかに記載の電気化学セルの製造方法。
[5] A positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, wherein the solid electrolyte layer is between the positive electrode layer and the negative electrode layer a positive electrode recess into which the positive electrode layer enters, and a positive electrode recess that opens to the positive electrode layer side of the solid electrolyte layer and the negative electrode layer that opens to the negative electrode layer side of the solid electrolyte layer. A method for manufacturing an electrochemical cell, wherein a negative electrode recess into which a layer is inserted is shifted in the surface direction of the solid electrolyte layer.
[6] The solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately positioned in the plane direction of the solid electrolyte layer in plan view. The method for manufacturing an electrochemical cell according to [5].
[7] The depth of the positive electrode recess is set to be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is set to be deeper than 1/2 of the thickness of the solid electrolyte layer, [ 5] or the method for producing an electrochemical cell according to [6].
[8] The difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the The method for producing an electrochemical cell according to any one of [5] to [7], wherein the distance between the positive electrode recess and the negative electrode recess is equal to each other.
 本発明の電気化学セルの製造方法及び電気化学セルによれば、電気容量をより高められ、電池寿命をより高められる。 According to the method for manufacturing an electrochemical cell and the electrochemical cell of the present invention, the electric capacity can be further increased and the battery life can be further increased.
本発明の一実施形態に係る電気化学セルの外観を示す斜視図である。1 is a perspective view showing the appearance of an electrochemical cell according to one embodiment of the present invention; FIG. 同電気化学セルに収容する電極体の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of an electrode assembly housed in the same electrochemical cell; 正極凹部と負極凹部との位置関係の一例を示す平面図である。It is a top view which shows an example of the positional relationship of a positive electrode recessed part and a negative electrode recessed part. 正極凹部と負極凹部との位置関係の一例を示す平面図である。It is a top view which shows an example of the positional relationship of a positive electrode recessed part and a negative electrode recessed part. 図2の電極体の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2; 図2の電極体の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2; 図2の電極体の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2; 図2の電極体の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2; 図2の電極体の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2; 図2の電極体の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2; 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention; 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す斜視図である。FIG. 4 is a perspective view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention; 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す斜視図である。FIG. 4 is a perspective view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention; 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す斜視図である。FIG. 4 is a perspective view showing another example of an electrode assembly housed in an electrochemical cell according to one embodiment of the present invention; 従来の全固体電池に用いられる電極体の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of an electrode body used in a conventional all solid state battery;
 以下、本発明に係る電気化学セルの実施形態について図面を参照して説明する。以下の実施形態では、電気化学セルの一例として、コイン型の全固体電池(以下、単に「電池」ともいう。)を挙げ、この電池の構成について説明する。
 なお、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更し、表示している。
Hereinafter, embodiments of an electrochemical cell according to the present invention will be described with reference to the drawings. In the following embodiments, as an example of an electrochemical cell, a coin-type all-solid-state battery (hereinafter also simply referred to as "battery") will be cited, and the configuration of this battery will be described.
It should be noted that in the drawings used for the following description, the scale of each member is appropriately changed and displayed in order to make each member recognizable in size.
≪電気化学セル≫
 図1に示すように、本実施形態の電池(電気化学セル)1は、平面視円形状のボタン型の電池である。この電池1は、容器状の外装体2と外装体2の内部に収容された電極体とを備えている。
≪Electrochemical cell≫
As shown in FIG. 1, the battery (electrochemical cell) 1 of this embodiment is a button-shaped battery that is circular in plan view. This battery 1 includes a container-shaped exterior body 2 and an electrode body housed inside the exterior body 2 .
 外装体2は、ラミネートフィルムにより形成されている。ラミネートフィルムは、金属箔と内側面に設けられ金属箔を被覆する融着層と、外側面に設けられ金属箔を被覆する保護層とを有する。
 金属箔は、例えば、アルミニウムやステンレス鋼等の外気や水蒸気を遮断する金属により形成されている。
 融着層は、例えば、ポリエチレンやポリプロピレン等のポリオレフィンや、2種類以上の樹脂を含むコポリマーから形成されている。
 保護層は、例えば、上述のポリオレフィンや、ポリエチレンテレフタレート等のポリエステル、ナイロン等のポリアミドから形成されている。
The exterior body 2 is made of a laminate film. The laminate film has a metal foil, an adhesive layer provided on the inner surface and covering the metal foil, and a protective layer provided on the outer surface and covering the metal foil.
The metal foil is made of, for example, a metal such as aluminum or stainless steel that blocks outside air and water vapor.
The fusion layer is made of, for example, a polyolefin such as polyethylene or polypropylene, or a copolymer containing two or more resins.
The protective layer is made of, for example, the above-described polyolefin, polyester such as polyethylene terephthalate, or polyamide such as nylon.
 電極体は、正極活物質を含む正極層と負極活物質を含む負極層と、正極層と負極層との間に位置する固体電解質層とを有する。固体電解質層は、固体電解質を含む。
 本実施形態の電極体3Aは、図2に示すように、正極層20と、負極層30と、正極層20と負極層30との間に位置する固体電解質層10とを有する。
 固体電解質層10は、正極層20側に開口する正極凹部11を有する。正極凹部11には、正極層20が入り込んでいる。
 固体電解質層10は、負極層30側に開口する負極凹部15を有する。負極凹部15には、負極層30が入り込んでいる。
 正極凹部11と負極凹部15とは、固体電解質層10の面方向(X方向)にずれて位置している。
The electrode body has a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer. The solid electrolyte layer contains a solid electrolyte.
The electrode body 3A of the present embodiment has a positive electrode layer 20, a negative electrode layer 30, and a solid electrolyte layer 10 positioned between the positive electrode layer 20 and the negative electrode layer 30, as shown in FIG.
The solid electrolyte layer 10 has a positive electrode recessed portion 11 that opens toward the positive electrode layer 20 side. A positive electrode layer 20 is inserted into the positive electrode concave portion 11 .
The solid electrolyte layer 10 has a negative electrode concave portion 15 that opens toward the negative electrode layer 30 side. A negative electrode layer 30 is inserted into the negative electrode concave portion 15 .
The positive electrode recessed portion 11 and the negative electrode recessed portion 15 are shifted in the plane direction (X direction) of the solid electrolyte layer 10 .
 電極体3Aの厚さT3Aは、例えば、500~4000μmが好ましく、800~3500μmがより好ましく、1000~3000μmがさらに好ましい。厚さT3Aが上記下限値以上であると、電池1の電気容量をより高められる。厚さT3Aが上記上限値以下であると、電池1をよりコンパクトにできる。
 厚さT3Aは、例えば、電極体3Aを厚さ方向(Z方向)に切断した断面を顕微鏡等で観察することにより求められる。
The thickness T3A of the electrode body 3A is, for example, preferably 500-4000 μm, more preferably 800-3500 μm, even more preferably 1000-3000 μm. When the thickness T3A is equal to or greater than the lower limit value, the electric capacity of the battery 1 can be further increased. Battery 1 can be made more compact as thickness T3A is below the said upper limit.
The thickness T3A can be obtained, for example, by observing a cross section obtained by cutting the electrode body 3A in the thickness direction (Z direction) with a microscope or the like.
<固体電解質層>
 固体電解質層10は、固体電解質を含む。
 固体電解質としては、全固体電池に用いられる公知のものを利用できる。固体電解質としては、酸化物系固体電解質が挙げられる。
 酸化物系固体電解質としては、例えば、Li1.5Al0.5Ge1.512(LAGP)、LiLaZr12(LLZ)、Li1.3Al0.3Ti1.7(PO(LATP)、Li10GeP12(LGPS)、Li3.5Ge0.50.5(LGVO)、LiTaPO(LTPO)、La0.57Li0.29TiO(LLTO)、Li6.2Ga0.3La2.95Rb0.05Zr12(LGLRZO)、Li10GeO12(LGPO)、Li6.25LaZrAl0.2512等が挙げられる。
 これらの固体電解質は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Solid electrolyte layer>
Solid electrolyte layer 10 includes a solid electrolyte.
As the solid electrolyte, a known one used for all-solid-state batteries can be used. Solid electrolytes include oxide-based solid electrolytes.
Examples of oxide solid electrolytes include Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (LAGP), Li 7 La 3 Zr 2 O 12 (LLZ), Li 1.3 Al 0.3 Ti1.7 ( PO4 ) 3 ( LATP ), Li0GeP2S12 ( LGPS ) , Li3.5Ge0.5V0.5O4 ( LGVO ) , LiTa2PO8 ( LTPO ), La 0.57Li0.29TiO3 ( LLTO ) , Li6.2Ga0.3La2.95Rb0.05Zr2O12 ( LGLRZO ) , Li10GeO2P12 ( LGPO ) , Li6 . 25La3Zr2Al0.25O12 and the like .
These solid electrolytes may be used individually by 1 type, and may use 2 or more types together.
 固体電解質層10の厚さT10は、例えば、300~3800μmが好ましく、500~3300μmがより好ましく、800~2800μmがさらに好ましい。厚さT10が上記下限値以上であると、電池1の強度をより高められる。厚さT10が上記上限値以下であると、電池1の内部抵抗をより低減できる。
 厚さT10は、厚さT3Aと同様の方法により求められる。
The thickness T10 of the solid electrolyte layer 10 is, for example, preferably 300-3800 μm, more preferably 500-3300 μm, even more preferably 800-2800 μm. The strength of the battery 1 can be further increased when the thickness T10 is equal to or greater than the above lower limit. The internal resistance of the battery 1 can be reduced more as thickness T10 is below the said upper limit.
The thickness T10 is obtained by the same method as the thickness T3A.
 厚さT3Aに対する厚さT10の比(「T10/T3A比」ともいう。)は、例えば、0.6~0.96が好ましく、0.7~0.94がより好ましく、0.8~0.92がさらに好ましい。T10/T3A比が上記下限値以上であると、電池1の電気容量をより高められる。T10/T3A比が上記上限値以下であると、電池1の内部抵抗をより低減できる。 The ratio of the thickness T10 to the thickness T3A (also referred to as "T10/T3A ratio") is, for example, preferably 0.6 to 0.96, more preferably 0.7 to 0.94, and 0.8 to 0. .92 is more preferred. When the T10/T3A ratio is equal to or higher than the above lower limit, the electric capacity of the battery 1 can be further increased. When the T10/T3A ratio is equal to or less than the upper limit value, the internal resistance of the battery 1 can be further reduced.
 正極凹部11の深さD11は、例えば、200~3700μmが好ましく、400~3200μmがより好ましく、700~2700μmがさらに好ましい。深さD11が上記下限値以上であると、電池1の内部抵抗をより低減できる。深さD11が上記上限値以下であると、固体電解質層10の強度をより高められる。
 深さD11は、厚さT3Aと同様の方法により求められる。
The depth D11 of the positive electrode concave portion 11 is, for example, preferably 200 to 3700 μm, more preferably 400 to 3200 μm, even more preferably 700 to 2700 μm. The internal resistance of the battery 1 can be reduced more as the depth D11 is more than the said lower limit. The intensity|strength of the solid electrolyte layer 10 can be improved more as the depth D11 is below the said upper limit.
The depth D11 is obtained by the same method as the thickness T3A.
 正極凹部11の幅W11は、例えば、1~100μmが好ましく、2~80μmがより好ましく、3~60μmがさらに好ましい。幅W11が上記下限値以上であると、正極凹部11に正極層20が入り込みやすい。幅W11が上記上限値以下であると、固体電解質層10の強度をより高められる。
 幅W11は、厚さT3Aと同様の方法により求められる。
The width W11 of the positive electrode concave portion 11 is, for example, preferably 1 to 100 μm, more preferably 2 to 80 μm, even more preferably 3 to 60 μm. When the width W<b>11 is equal to or greater than the above lower limit value, the positive electrode layer 20 easily enters the positive electrode concave portion 11 . When the width W11 is equal to or less than the upper limit, the strength of the solid electrolyte layer 10 can be further increased.
The width W11 is obtained by the same method as the thickness T3A.
 2つの正極凹部11の間には、正極凸部12が形成されている。
 正極凸部12の高さH12は、正極凹部11の深さD11と同様である。
 正極凸部12の幅W12は、例えば、1~300μmが好ましく、2~240μmがより好ましく、3~180μmがさらに好ましい。幅W12が上記下限値以上であると、固体電解質層10の強度をより高められる。幅W12が上記上限値以下であると、電池1の内部抵抗をより低減できる。
 幅W12は、厚さT3Aと同様の方法により求められる。
A positive electrode convex portion 12 is formed between the two positive electrode concave portions 11 .
The height H12 of the positive electrode protrusion 12 is the same as the depth D11 of the positive electrode recess 11 .
The width W12 of the positive electrode convex portion 12 is, for example, preferably 1 to 300 μm, more preferably 2 to 240 μm, even more preferably 3 to 180 μm. When the width W12 is equal to or greater than the above lower limit, the strength of the solid electrolyte layer 10 can be further increased. When the width W12 is equal to or less than the upper limit value, the internal resistance of the battery 1 can be further reduced.
The width W12 is obtained by the same method as the thickness T3A.
 負極凹部15の深さD15は、例えば、200~3700μmが好ましく、400~3200μmがより好ましく、700~2700μmがさらに好ましい。深さD15が上記下限値以上であると、電池1の内部抵抗をより低減できる。深さD15が上記上限値以下であると、固体電解質層10の強度をより高められる。
 深さD15は、厚さT3Aと同様の方法により求められる。
The depth D15 of the negative electrode concave portion 15 is, for example, preferably 200 to 3700 μm, more preferably 400 to 3200 μm, even more preferably 700 to 2700 μm. The internal resistance of the battery 1 can be reduced more as the depth D15 is more than the said lower limit. The intensity|strength of the solid electrolyte layer 10 can be improved more as the depth D15 is below the said upper limit.
The depth D15 is obtained by the same method as the thickness T3A.
 負極凹部15の幅W15は、例えば、1~100μmが好ましく、2~80μmがより好ましく、3~60μmがさらに好ましい。幅W15が上記下限値以上であると、負極凹部15に負極層30が入り込みやすい。幅W15が上記上限値以下であると、固体電解質層10の強度をより高められる。
 幅W15は、厚さT3Aと同様の方法により求められる。
The width W15 of the negative electrode concave portion 15 is, for example, preferably 1 to 100 μm, more preferably 2 to 80 μm, even more preferably 3 to 60 μm. When the width W15 is equal to or greater than the lower limit value, the negative electrode layer 30 easily enters the negative electrode concave portion 15 . When the width W15 is equal to or less than the upper limit, the strength of the solid electrolyte layer 10 can be further increased.
The width W15 is obtained by the same method as the thickness T3A.
 2つの負極凹部15の間には、負極凸部16が形成されている。
 負極凸部16の高さH16は、負極凹部15の深さD15と同様である。
 負極凸部16の幅W16は、例えば、1~300μmが好ましく、2~240μmがより好ましく、3~180μmがさらに好ましい。幅W16が上記下限値以上であると、固体電解質層10の強度をより高められる。幅W16が上記上限値以下であると、電池1の内部抵抗をより低減できる。
 幅W16は、厚さT3Aと同様の方法により求められる。
A negative electrode protrusion 16 is formed between the two negative electrode recesses 15 .
The height H16 of the negative electrode protrusion 16 is the same as the depth D15 of the negative electrode recess 15 .
The width W16 of the negative electrode convex portion 16 is, for example, preferably 1 to 300 μm, more preferably 2 to 240 μm, even more preferably 3 to 180 μm. When the width W16 is equal to or greater than the above lower limit, the strength of the solid electrolyte layer 10 can be further increased. When the width W16 is equal to or less than the upper limit value, the internal resistance of the battery 1 can be further reduced.
The width W16 is obtained by the same method as the thickness T3A.
 固体電解質層10の厚さT10と正極凹部11の深さD11との差(正極凹部11の最深部から負極層30までの距離)をD1とする。
 固体電解質層10の厚さT10と負極凹部15の深さD15との差(負極凹部15の最深部から正極層20までの距離)をD2とする。
 固体電解質層10の厚さ方向(Z方向)の断面視における、正極凹部11と負極凹部15との固体電解質層10の面方向(X方向)の距離をD3とする。
 このとき、距離D1と距離D2と距離D3とは、互いに等しいことが好ましい。距離D1と距離D2と距離D3とが互いに等しいことで、固体電解質層10の内部の電流密度の均一性をさらに高められる。
 ここで、「等しい」とは、距離の比(D1/D2、D1/D3等)が±5%以内であることをいうものとする。
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D11 of the positive electrode recess 11 (the distance from the deepest part of the positive electrode recess 11 to the negative electrode layer 30) is defined as D1.
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D15 of the negative electrode recess 15 (the distance from the deepest part of the negative electrode recess 15 to the positive electrode layer 20) is defined as D2.
Let D3 be the distance in the plane direction (X direction) of the solid electrolyte layer 10 between the positive electrode recess 11 and the negative electrode recess 15 in a cross-sectional view in the thickness direction (Z direction) of the solid electrolyte layer 10 .
At this time, it is preferable that the distance D1, the distance D2, and the distance D3 are equal to each other. By making the distance D1, the distance D2, and the distance D3 equal to each other, the uniformity of the current density inside the solid electrolyte layer 10 can be further improved.
Here, "equal" means that the distance ratio (D1/D2, D1/D3, etc.) is within ±5%.
 幅W15に対する距離D3の比(「D3/W15比」ともいう。)は、例えば、0.2~0.8が好ましく、0.3~0.7がより好ましく、0.4~0.6がさらに好ましい。D3/W15比が上記下限値以上であると、電流密度が過度に上昇することを抑制できる。D3/W15比が上記上限値以下であると、電池1の内部抵抗をより低減できる。 The ratio of the distance D3 to the width W15 (also referred to as "D3/W15 ratio") is, for example, preferably 0.2 to 0.8, more preferably 0.3 to 0.7, and 0.4 to 0.6. is more preferred. When the D3/W15 ratio is equal to or higher than the lower limit, it is possible to suppress an excessive increase in current density. When the D3/W15 ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
 固体電解質層10は、正極凹部11及び負極凹部15を各々2個以上有する。固体電解質層10において、固体電解質層10の面方向で、正極凹部11と負極凹部15とは、交互に位置していることが好ましい。正極凹部11と負極凹部15とが交互に位置していることで、固体電解質層10の内部の電流密度の均一性をさらに高められる。
 ここで、「固体電解質層10の面方向で、正極凹部11と負極凹部15とが交互に位置している」とは、図3に示すように、平面視で、X方向及びY方向の双方に正極凹部11と負極凹部15とが交互に位置している場合のほか、図4に示すように、平面視で、X方向にのみ正極凹部11と負極凹部15とが交互に位置している場合を含むものとする。
 なお、正極凹部11と負極凹部15とが交互に位置しているのは、平面視で、任意の方向に位置していればよい。
The solid electrolyte layer 10 has two or more positive electrode recesses 11 and two or more negative electrode recesses 15 . In solid electrolyte layer 10 , positive electrode recesses 11 and negative electrode recesses 15 are preferably alternately positioned in the plane direction of solid electrolyte layer 10 . Since the positive electrode recesses 11 and the negative electrode recesses 15 are alternately positioned, the uniformity of the current density inside the solid electrolyte layer 10 can be further enhanced.
Here, "the positive electrode recesses 11 and the negative electrode recesses 15 are alternately positioned in the planar direction of the solid electrolyte layer 10" means that, as shown in FIG. In addition to the case where the positive electrode recessed portions 11 and the negative electrode recessed portions 15 are alternately positioned in the direction shown in FIG. including cases.
The positive electrode recesses 11 and the negative electrode recesses 15 may be alternately positioned in any direction in plan view.
 正極凹部11の深さD11は、固体電解質層10の厚さT10の1/2よりも深いことが好ましい。深さD11が厚さT10の1/2よりも深いと、正極凹部11の最深部が負極凸部16の内部に位置する。このため、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。
 深さD11の上限値は特に限定されず、厚さT10よりも小さければよい。
Depth D11 of positive electrode concave portion 11 is preferably deeper than 1/2 thickness T10 of solid electrolyte layer 10 . When the depth D<b>11 is greater than half the thickness T<b>10 , the deepest part of the positive electrode concave portion 11 is positioned inside the negative electrode convex portion 16 . Therefore, the current density inside the solid electrolyte layer 10 can be further increased, and the electric characteristics of the battery 1 can be further improved.
The upper limit of the depth D11 is not particularly limited as long as it is smaller than the thickness T10.
 厚さT10に対する深さD11の比(「D11/T10比」ともいう。)は、例えば、0.5~0.95が好ましく、0.6~0.9がより好ましく、0.7~0.85がさらに好ましい。D11/T10比が上記下限値以上であると、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。D11/T10比が上記上限値以下であると、短絡をより確実に防止できる。 The ratio of depth D11 to thickness T10 (also referred to as “D11/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred. When the D11/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D11/T10 ratio is below the said upper limit.
 負極凹部15の深さD15は、固体電解質層10の厚さT10の1/2よりも深いことが好ましい。深さD15が厚さT10の1/2よりも深いと、負極凹部15の最深部が正極凸部12の内部に位置する。このため、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。
 深さD15の上限値は特に限定されず、厚さT10よりも小さければよい。
Depth D15 of negative electrode concave portion 15 is preferably deeper than 1/2 thickness T10 of solid electrolyte layer 10 . When the depth D15 is deeper than 1/2 of the thickness T10, the deepest part of the negative electrode concave portion 15 is positioned inside the positive electrode convex portion 12 . Therefore, the current density inside the solid electrolyte layer 10 can be further increased, and the electric characteristics of the battery 1 can be further improved.
The upper limit of the depth D15 is not particularly limited as long as it is smaller than the thickness T10.
 厚さT10に対する深さD15の比(「D15/T10比」ともいう。)は、例えば、0.5~0.95が好ましく、0.6~0.9がより好ましく、0.7~0.85がさらに好ましい。D15/T10比が上記下限値以上であると、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。D15/T10比が上記上限値以下であると、短絡をより確実に防止できる。 The ratio of depth D15 to thickness T10 (also referred to as “D15/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred. When the D15/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D15/T10 ratio is below the said upper limit.
<正極層>
 正極層20は、正極活物質を含む。
 正極活物質としては、全固体電池に用いられる公知のものを利用できる。正極活物質としては、例えば、一元系正極材、二元系正極材、三元系正極材等が挙げられる。
 一元系正極材としては、例えば、LiMO(Mは、Co、Ni、Mn、Al、Fe等の金属元素を表す)が挙げられる。
 二元系正極材としては、例えば、Li1-xCoMnO(xは、0<x<1を満たす数)、LiFePO(xは、0<x≦1を満たす数)、Li13(xは、0<x≦1を満たす数)、Li1-xMn(xは、0<x<1を満たす数)、Li1-xNi0.5Mn1.5(xは、0<x<1を満たす数)等が挙げられる。
 三元系正極材としては、例えば、LiNi1/3Mn1/3Co1/3等が挙げられる。
 これらの正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Positive electrode layer>
The positive electrode layer 20 contains a positive electrode active material.
As the positive electrode active material, known materials used for all-solid-state batteries can be used. Examples of the positive electrode active material include monocomponent positive electrode materials, binary positive electrode materials, and ternary positive electrode materials.
Examples of single-component positive electrode materials include LiMO 2 (M represents a metal element such as Co, Ni, Mn, Al, and Fe).
Examples of binary cathode materials include Li 1-x CoMnO 4 (x is a number satisfying 0<x<1), Li x FePO 4 (x is a number satisfying 0<x≦1), Li x V 6 O 13 (x is a number satisfying 0<x≦1), Li 1-x Mn 2 O 4 (x is a number satisfying 0<x<1), Li 1-x Ni 0.5 Mn 1 .5 O 4 (x is a number that satisfies 0<x<1).
Examples of the ternary positive electrode material include LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the like.
One of these positive electrode active materials may be used alone, or two or more thereof may be used in combination.
 正極層20の厚さT20は、例えば、10~500μmが好ましく、30~400μmがより好ましく、80~300μmがさらに好ましい。厚さT20が上記下限値以上であると、電池1の電気容量をより高められる。厚さT20が上記上限値以下であると、電池1の内部抵抗をより低減できる。
 厚さT20は、厚さT3Aと同様の方法により求められる。
The thickness T20 of the positive electrode layer 20 is, for example, preferably 10-500 μm, more preferably 30-400 μm, even more preferably 80-300 μm. The electric capacity of the battery 1 can be further increased as the thickness T20 is equal to or greater than the lower limit value. The internal resistance of the battery 1 can be reduced more as thickness T20 is below the said upper limit.
The thickness T20 is obtained by the same method as the thickness T3A.
 厚さT3Aに対する厚さT20の比(「T20/T3A比」ともいう。)は、例えば、0.02~0.2が好ましく、0.03~0.15がより好ましく、0.04~0.1がさらに好ましい。T20/T3A比が上記下限値以上であると、電池1の電気容量をより高められる。T20/T3A比が上記上限値以下であると、電池1の内部抵抗をより低減できる。 The ratio of the thickness T20 to the thickness T3A (also referred to as “T20/T3A ratio”) is, for example, preferably 0.02 to 0.2, more preferably 0.03 to 0.15, and 0.04 to 0. .1 is more preferred. When the T20/T3A ratio is equal to or higher than the lower limit, the electric capacity of the battery 1 can be further increased. When the T20/T3A ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
<負極層>
 負極層30は、負極活物質を含む。負極活物質としては、全固体電池に用いられる公知のものを利用できる。
 負極活物質としては、例えば、金属リチウム、金属リチウムとリチウム以外の金属との合金等が挙げられる。負極活物質としては、この他、カーボンやグラファイト等の炭素材料系、SiやSiO等のシリコン材料系、LiTi12(LTO)等のリチウム遷移金属複合酸化物等が挙げられる。
 負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Negative electrode layer>
The negative electrode layer 30 contains a negative electrode active material. As the negative electrode active material, known materials used for all-solid-state batteries can be used.
Examples of negative electrode active materials include metallic lithium and alloys of metallic lithium and metals other than lithium. Other negative electrode active materials include carbon materials such as carbon and graphite, silicon materials such as Si and SiO, and lithium transition metal composite oxides such as Li 4 Ti 5 O 12 (LTO).
One type of negative electrode active material may be used alone, or two or more types may be used in combination.
 負極層30の厚さT30は、例えば、10~500μmが好ましく、30~400μmがより好ましく、80~300μmがさらに好ましい。厚さT30が上記下限値以上であると、電池1の電気容量をより高められる。厚さT30が上記上限値以下であると、電池1の内部抵抗をより低減できる。
 厚さT30は、厚さT3Aと同様の方法により求められる。
The thickness T30 of the negative electrode layer 30 is, for example, preferably 10 to 500 μm, more preferably 30 to 400 μm, even more preferably 80 to 300 μm. When the thickness T30 is equal to or greater than the lower limit value, the electric capacity of the battery 1 can be further increased. The internal resistance of the battery 1 can be reduced more as thickness T30 is below the said upper limit.
The thickness T30 is obtained by the same method as the thickness T3A.
 厚さT3Aに対する厚さT30の比(「T30/T3A比」ともいう。)は、例えば、0.02~0.2が好ましく、0.03~0.15がより好ましく、0.04~0.1がさらに好ましい。T30/T3A比が上記下限値以上であると、電池1の電気容量をより高められる。T30/T3A比が上記上限値以下であると、電池1の内部抵抗をより低減できる。 The ratio of the thickness T30 to the thickness T3A (also referred to as “T30/T3A ratio”) is, for example, preferably 0.02 to 0.2, more preferably 0.03 to 0.15, and 0.04 to 0. .1 is more preferred. When the T30/T3A ratio is equal to or higher than the lower limit, the electric capacity of the battery 1 can be further increased. When the T30/T3A ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
≪電気化学セルの製造方法≫
 本発明の電気化学セルの製造方法は、固体電解質層の正極層側に開口し、正極層が入り込む正極凹部と、固体電解質層の負極層側に開口し、負極層が入り込む負極凹部とを、固体電解質層の面方向にずらして位置させる工程、を有する。
 以下に、本実施形態の電気化学セルの製造方法について、図面を参照して、詳細に説明する。
<<Manufacturing method of electrochemical cell>>
The method for producing an electrochemical cell of the present invention comprises: a positive electrode recess opening on the positive electrode layer side of the solid electrolyte layer into which the positive electrode layer enters; and a negative electrode recess opening on the negative electrode layer side of the solid electrolyte layer into which the negative electrode layer enters. a step of displacing in the plane direction of the solid electrolyte layer.
The method for manufacturing the electrochemical cell of this embodiment will be described in detail below with reference to the drawings.
 図5に示すように、固体電解質層10を用意する。
 固体電解質層10を製造するには、固体電解質の粉末を圧粉成形し、電気炉等で焼成して固体電解質層10とする。
 固体電解質の粉末としては、上述した固体電解質層10に含まれる固体電解質の粉末が挙げられる。
As shown in FIG. 5, a solid electrolyte layer 10 is prepared.
In order to manufacture the solid electrolyte layer 10 , solid electrolyte powder is compacted and fired in an electric furnace or the like to form the solid electrolyte layer 10 .
The solid electrolyte powder includes the solid electrolyte powder contained in the solid electrolyte layer 10 described above.
 焼成の雰囲気は、酸素欠損を抑える為、酸素を含む雰囲気が好ましく、水分の影響が懸念される場合は、ドライ雰囲気を選択することがさらに好ましい。焼成の際、固体電解質シートのゆがみを抑える為、セラミック板(AlやMgO等からなる)やグラファイト板等で挟むことが好ましい。セラミック板との反応や、Liの揮発を抑える為に、固体電解質と同じ材料や、Liを含有する酸化物等をシート化したものをセラミック板との間に挿入してもよい。 The firing atmosphere is preferably an atmosphere containing oxygen in order to suppress oxygen deficiency, and more preferably a dry atmosphere if the influence of moisture is a concern. In order to prevent distortion of the solid electrolyte sheet during firing, it is preferable to sandwich the solid electrolyte sheet between ceramic plates (made of Al 2 O 3 , MgO, etc.), graphite plates, or the like. In order to suppress the reaction with the ceramic plate and the volatilization of Li, a sheet made of the same material as the solid electrolyte or an oxide containing Li may be inserted between the ceramic plate.
 次に、図6に示すように、固体電解質層10の一方の面に、負極層30が入り込む負極凹部15を形成する。負極凹部15を形成する方法は特に限定されず、例えば、レーザーを用いる方法、フォトリソグラフィを用いる方法、金型を用いる方法等が挙げられる。
 金型を用いる方法の場合、上述した固体電解質の粉末を金型に充填し、圧粉成形し、焼成することで、負極凹部15を有する固体電解質層10が得られる。
 なお、負極凹部15は、あらかじめ形成されたものであってもよい。
Next, as shown in FIG. 6 , a negative electrode recess 15 into which the negative electrode layer 30 is inserted is formed on one surface of the solid electrolyte layer 10 . A method for forming the negative electrode concave portion 15 is not particularly limited, and examples thereof include a method using a laser, a method using photolithography, and a method using a mold.
In the case of the method using a mold, the solid electrolyte layer 10 having the negative electrode concave portions 15 is obtained by filling the above-described solid electrolyte powder into a mold, compacting and firing.
In addition, the negative electrode recessed part 15 may be formed in advance.
 負極凹部15を形成することで、負極凹部15が形成されていない部分が、負極凸部16として残る。 By forming the negative electrode concave portion 15, the portion where the negative electrode concave portion 15 is not formed remains as the negative electrode convex portion 16.
 負極凹部15は、2個以上形成されることが好ましい。負極凹部15を2個以上形成することで、電池1の内部抵抗をより低減できる。負極凹部15を形成する数は、特に限定されないが、上述した各形成方法による負極凹部15の形成のしやすさや、固体電解質層10の強度を維持する観点を考慮して適宜設定することができる。 It is preferable that two or more negative electrode concave portions 15 are formed. By forming two or more negative electrode recesses 15, the internal resistance of the battery 1 can be further reduced. The number of negative electrode recesses 15 to be formed is not particularly limited, but can be appropriately set in consideration of the ease of forming the negative electrode recesses 15 by each of the forming methods described above and the viewpoint of maintaining the strength of the solid electrolyte layer 10. .
 負極凹部15の深さD15は、固体電解質層10の厚さT10の1/2よりも深く形成されることが好ましい。負極凹部15の深さD15を固体電解質層10の厚さT10の1/2よりも深く形成することで、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。 The depth D15 of the negative electrode concave portion 15 is preferably formed deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. By forming the depth D15 of the negative electrode concave portion 15 deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further increased. be done.
 厚さT10に対する深さD15の比(「D15/T10比」ともいう。)は、例えば、0.5~0.95が好ましく、0.6~0.9がより好ましく、0.7~0.85がさらに好ましい。D15/T10比が上記下限値以上であると、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。D15/T10比が上記上限値以下であると、短絡をより確実に防止できる。 The ratio of depth D15 to thickness T10 (also referred to as “D15/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred. When the D15/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D15/T10 ratio is below the said upper limit.
 次に、図7に示すように、負極層30を形成する。負極層30を形成する方法は特に限定されず、例えば、負極活物質を含む負極スラリーを用意し、負極スラリーに固体電解質層10をディッピングする方法、固体電解質層10にスクリーン印刷等により負極スラリーを塗工する方法等が挙げられる。 Next, as shown in FIG. 7, the negative electrode layer 30 is formed. The method of forming the negative electrode layer 30 is not particularly limited. For example, a negative electrode slurry containing a negative electrode active material is prepared, and the solid electrolyte layer 10 is dipped in the negative electrode slurry. The method of coating, etc. are mentioned.
 負極層30を形成した後、図8に示すように、固体電解質層10の他方の面(負極凹部15が形成されていない方の面)に形成された負極層30を研磨、あるいは溶剤等により除去する。 After the negative electrode layer 30 is formed, as shown in FIG. 8, the negative electrode layer 30 formed on the other surface of the solid electrolyte layer 10 (the surface on which the negative electrode recesses 15 are not formed) is polished or polished with a solvent or the like. Remove.
 次に、図9に示すように、固体電解質層10の他方の面に、正極層20が入り込む正極凹部11を形成する。正極凹部11を形成する方法は特に限定されず、例えば、レーザーを用いる方法、フォトリソグラフィを用いる方法等が挙げられる。
 なお、正極凹部11は、あらかじめ形成されたものであってもよい。
 正極凹部11を形成することで、正極凹部11が形成されていない部分が、正極凸部12として残る。
Next, as shown in FIG. 9 , the positive electrode recess 11 into which the positive electrode layer 20 is inserted is formed on the other surface of the solid electrolyte layer 10 . A method for forming the positive electrode concave portion 11 is not particularly limited, and examples thereof include a method using a laser and a method using photolithography.
In addition, the positive electrode recessed part 11 may be formed in advance.
By forming the positive electrode concave portion 11 , the portion where the positive electrode concave portion 11 is not formed remains as the positive electrode convex portion 12 .
 正極凹部11は、負極凹部15に対して、固体電解質層10の面方向にずらして位置させる。正極凹部11と負極凹部15とを固体電解質層10の面方向にずらして位置させることで、固体電解質層10の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電池1の電気容量をより高められ、電池1の電池寿命をより高められる。
 正極凹部11の位置は、照射するレーザーの位置、フォトリソグラフィのマスクの形状、金型の形状等により調節できる。
The positive electrode recess 11 is shifted in the planar direction of the solid electrolyte layer 10 with respect to the negative electrode recess 15 . By displacing the positive electrode recess 11 and the negative electrode recess 15 in the plane direction of the solid electrolyte layer 10, the internal resistance of the solid electrolyte layer 10 can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity of the battery 1 can be further increased, and the battery life of the battery 1 can be further increased.
The position of the positive electrode concave portion 11 can be adjusted by the position of the irradiated laser, the shape of the mask for photolithography, the shape of the mold, and the like.
 正極凹部11は、2個以上形成されることが好ましい。正極凹部11を2個以上形成することで、電池1の内部抵抗をより低減できる。正極凹部11を形成する数は、特に限定されないが、上述した各形成方法による正極凹部11の形成のしやすさや、固体電解質層10の強度を維持する観点を考慮して適宜設定することができる。
 電流密度の均一性をより高められることから、正極凹部11を形成する数は、負極凹部15を形成する数と同じであることが好ましい。
It is preferable that two or more positive electrode concave portions 11 are formed. By forming two or more positive electrode concave portions 11, the internal resistance of the battery 1 can be further reduced. The number of positive electrode recesses 11 to be formed is not particularly limited, but can be appropriately set in consideration of the ease of forming the positive electrode recesses 11 by each of the forming methods described above and the viewpoint of maintaining the strength of the solid electrolyte layer 10. .
The number of positive electrode recesses 11 to be formed is preferably the same as the number of negative electrode recesses 15 to be formed, since the uniformity of the current density can be further enhanced.
 正極凹部11は、平面視において、固体電解質層10の面方向で、負極凹部15と交互に位置することが好ましい。正極凹部11と負極凹部15とを、交互に位置させることで、電流密度の均一性をさらに高められる。 The positive electrode recesses 11 are preferably positioned alternately with the negative electrode recesses 15 in the plane direction of the solid electrolyte layer 10 in plan view. By alternately locating the positive electrode recesses 11 and the negative electrode recesses 15, the uniformity of the current density can be further improved.
 正極凹部11の深さD11は、固体電解質層10の厚さT10の1/2よりも深く形成されることが好ましい。正極凹部11の深さD11を固体電解質層10の厚さT10の1/2よりも深く形成することで、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。 The depth D11 of the positive electrode concave portion 11 is preferably formed deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. By forming the depth D11 of the positive electrode concave portion 11 deeper than half the thickness T10 of the solid electrolyte layer 10, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further increased. be done.
 厚さT10に対する深さD11の比(「D11/T10比」ともいう。)は、例えば、0.5~0.95が好ましく、0.6~0.9がより好ましく、0.7~0.85がさらに好ましい。D11/T10比が上記下限値以上であると、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。D11/T10比が上記上限値以下であると、短絡をより確実に防止できる。 The ratio of depth D11 to thickness T10 (also referred to as “D11/T10 ratio”) is, for example, preferably 0.5 to 0.95, more preferably 0.6 to 0.9, and 0.7 to 0. 0.85 is more preferred. When the D11/T10 ratio is at least the above lower limit, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. A short circuit can be prevented more reliably as D11/T10 ratio is below the said upper limit.
 固体電解質層10の厚さT10と正極凹部11の深さD11との差(正極凹部11の最深部から負極層30までの距離)をD1とする。
 固体電解質層10の厚さT10と負極凹部15の深さD15との差(負極凹部15の最深部から正極層20までの距離)をD2とする。
 固体電解質層10の厚さ方向(Z方向)の断面視における、正極凹部11と負極凹部15との固体電解質層10の面方向(X方向)の距離をD3とする。
 このとき、距離D1と距離D2と距離D3とが、互いに等しくなるように、正極凹部11を位置させることが好ましい。距離D1と距離D2と距離D3とが互いに等しくなるように、正極凹部11を位置させることで、固体電解質層10の内部の電流密度の均一性をさらに高められる。
 ここで、「等しい」とは、距離の比(D1/D2、D1/D3等)が±5%以内であることをいうものとする。
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D11 of the positive electrode recess 11 (the distance from the deepest part of the positive electrode recess 11 to the negative electrode layer 30) is defined as D1.
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D15 of the negative electrode recess 15 (the distance from the deepest part of the negative electrode recess 15 to the positive electrode layer 20) is defined as D2.
Let D3 be the distance in the plane direction (X direction) of the solid electrolyte layer 10 between the positive electrode recess 11 and the negative electrode recess 15 in a cross-sectional view in the thickness direction (Z direction) of the solid electrolyte layer 10 .
At this time, it is preferable to position the positive electrode concave portion 11 so that the distance D1, the distance D2, and the distance D3 are equal to each other. By locating the positive electrode recesses 11 so that the distances D1, D2, and D3 are equal to each other, the uniformity of the current density inside the solid electrolyte layer 10 can be further improved.
Here, "equal" means that the distance ratio (D1/D2, D1/D3, etc.) is within ±5%.
 幅W15に対する距離D3の比(「D3/W15比」ともいう。)は、例えば、0.2~0.8が好ましく、0.3~0.7がより好ましく、0.4~0.6がさらに好ましい。D3/W15比が上記下限値以上であると、電流密度が過度に上昇することを抑制できる。D3/W15比が上記上限値以下であると、電池1の内部抵抗をより低減できる。 The ratio of the distance D3 to the width W15 (also referred to as "D3/W15 ratio") is, for example, preferably 0.2 to 0.8, more preferably 0.3 to 0.7, and 0.4 to 0.6. is more preferred. When the D3/W15 ratio is equal to or higher than the lower limit, it is possible to suppress an excessive increase in current density. When the D3/W15 ratio is equal to or less than the upper limit, the internal resistance of the battery 1 can be further reduced.
 次に、図10に示すように、正極層20を形成する。正極層20を形成する方法は特に限定されず、例えば、正極活物質を含む正極スラリーを用意し、正極スラリーに負極層30が形成された固体電解質層10をディッピングする方法、負極層30が形成された固体電解質層10にスクリーン印刷等により正極スラリーを塗工する方法等が挙げられる。 Next, as shown in FIG. 10, the positive electrode layer 20 is formed. The method for forming the positive electrode layer 20 is not particularly limited. For example, a method of applying the positive electrode slurry to the solid electrolyte layer 10 formed by screen printing or the like can be used.
 正極層20を形成した後、固体電解質層10の他方の面(負極凹部15が形成されていない方の面)以外に形成された正極層20を研磨、あるいは溶剤等により除去する。
 以上の工程により、図2に示すような、電極体3Aが得られる。
After forming the positive electrode layer 20, the positive electrode layer 20 formed on the solid electrolyte layer 10 other than the other surface (the surface on which the negative electrode recesses 15 are not formed) is removed by polishing or using a solvent or the like.
Through the above steps, the electrode body 3A as shown in FIG. 2 is obtained.
 以上の説明では、固体電解質層10に負極層30を形成してから、正極層20を形成したが、本発明の電気化学セルの製造方法は、上述した実施形態に限定されない。
 例えば、正極凹部11を形成する際、金型を用いて正極凹部11を形成してもよい。
 この場合、負極凹部15と正極凹部11とが形成された金型を用い、この金型に固体電解質の粉末を充填し、圧粉成形し、焼成することで、負極凹部15と正極凹部11とを有する固体電解質層10が得られる。この固体電解質層10に負極層30と正極層20とを順次形成することで、電極体3Aが得られる。
 なお、負極層30と正極層20とを形成する順序は特に限定されず、負極層30を形成してから正極層20を形成してもよく、正極層20を形成してから負極層30を形成してもよい。
In the above description, the positive electrode layer 20 is formed after the negative electrode layer 30 is formed on the solid electrolyte layer 10, but the method for manufacturing an electrochemical cell of the present invention is not limited to the above-described embodiments.
For example, when forming the positive electrode recessed portion 11, the positive electrode recessed portion 11 may be formed using a mold.
In this case, a mold in which the negative electrode recessed portion 15 and the positive electrode recessed portion 11 are formed is used, and the solid electrolyte powder is filled in this mold, compacted, and fired to form the negative electrode recessed portion 15 and the positive electrode recessed portion 11. A solid electrolyte layer 10 having 3 A of electrode bodies are obtained by forming the negative electrode layer 30 and the positive electrode layer 20 in this solid electrolyte layer 10 one by one.
The order of forming the negative electrode layer 30 and the positive electrode layer 20 is not particularly limited, and the positive electrode layer 20 may be formed after the negative electrode layer 30 is formed. may be formed.
 本発明の電気化学セルは、正極凹部と負極凹部とが、固体電解質層の面方向にずれているため、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。
 本発明の電気化学セルの製造方法は、正極凹部と負極凹部とを、固体電解質層の面方向にずらして位置させるため、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。
In the electrochemical cell of the present invention, since the recessed positive electrode and the recessed negative electrode are shifted in the plane direction of the solid electrolyte layer, the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of current density can be improved. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
In the method for manufacturing an electrochemical cell of the present invention, since the positive electrode concave portion and the negative electrode concave portion are shifted in the plane direction of the solid electrolyte layer, the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. be done. Therefore, the electric capacity can be further increased, and the battery life can be further increased.
 以上、本発明の電気化学セル及び電気化学セルの製造方法について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、図11に示すように、電極体3Bは、電極体3Aに比べて、正極凹部13の深さD13が浅く、負極凹部17の深さD17が浅くてもよい。
 正極凹部13の深さD13が、深さD11よりも浅いことで、固体電解質層10の厚さT10と正極凹部13の深さD13との差(正極凹部13の最深部から負極層30までの距離)D4を、距離D1よりも大きくできる。このため、特定部位の劣化を抑制でき、電池寿命をより高められる。
 負極凹部17の深さD17が、深さD15よりも浅いことで、固体電解質層10の厚さT10と負極凹部17の深さD17との差(負極凹部17の最深部から正極層20までの距離)D5を、距離D2よりも大きくできる。このため、特定部位の劣化を抑制でき、電池寿命をより高められる。
 図11において、距離D4と距離D5とは等しい。このため、固体電解質層10の内部の電流密度を均一にできる。
 ここで、「等しい」とは、距離の比(D4/D5)が±5%以内であることをいうものとする。
Although the electrochemical cell and the method of manufacturing the electrochemical cell of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be modified as appropriate without departing from the scope of the invention.
For example, as shown in FIG. 11, the electrode body 3B may have a shallower depth D13 of the positive electrode recess 13 and a shallower depth D17 of the negative electrode recess 17 than the electrode body 3A.
Since the depth D13 of the positive electrode recessed portion 13 is shallower than the depth D11, the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D13 of the positive electrode recessed portion 13 (the distance from the deepest portion of the positive electrode recessed portion 13 to the negative electrode layer 30 distance) D4 can be greater than distance D1. Therefore, deterioration of specific parts can be suppressed, and the battery life can be further increased.
Since the depth D17 of the negative electrode recess 17 is shallower than the depth D15, the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D17 of the negative electrode recess 17 (the distance from the deepest part of the negative electrode recess 17 to the positive electrode layer 20 distance) D5 can be greater than distance D2. Therefore, deterioration of specific parts can be suppressed, and the battery life can be further increased.
In FIG. 11, the distance D4 and the distance D5 are equal. Therefore, the current density inside the solid electrolyte layer 10 can be made uniform.
Here, "equal" means that the distance ratio (D4/D5) is within ±5%.
 正極凹部13の幅W13は、正極凹部11の幅W11と同様である。正極凹部13の幅W13は、正極凹部11の幅W11と同じでもよく、異なっていてもよい。
 正極凸部14の高さH14は、正極凹部13の深さD13と同様である。
 正極凸部14の幅W14は、正極凸部12の幅W12と同様である。正極凸部14の幅W14は、正極凸部12の幅W12と同じでもよく、異なっていてもよい。
The width W13 of the positive electrode recessed portion 13 is the same as the width W11 of the positive electrode recessed portion 11 . The width W13 of the positive electrode recess 13 may be the same as or different from the width W11 of the positive electrode recess 11 .
The height H14 of the positive electrode convex portion 14 is the same as the depth D13 of the positive electrode concave portion 13 .
The width W14 of the positive electrode convex portion 14 is the same as the width W12 of the positive electrode convex portion 12 . The width W14 of the positive electrode protrusion 14 may be the same as or different from the width W12 of the positive electrode protrusion 12 .
 負極凹部17の幅W17は、負極凹部15の幅W15と同様である。負極凹部17の幅W17は、負極凹部15の幅W15と同じでもよく、異なっていてもよい。
 負極凸部18の高さH18は、負極凹部17の深さD17と同様である。
 負極凸部18の幅W18は、負極凸部16の幅W16と同様である。負極凸部18の幅W18は、負極凸部16の幅W16と同じでもよく、異なっていてもよい。
The width W17 of the negative electrode recess 17 is the same as the width W15 of the negative electrode recess 15 . The width W17 of the negative electrode recess 17 may be the same as or different from the width W15 of the negative electrode recess 15 .
The height H18 of the negative electrode protrusion 18 is the same as the depth D17 of the negative electrode recess 17 .
The width W18 of the negative electrode protrusion 18 is the same as the width W16 of the negative electrode protrusion 16 . The width W18 of the negative electrode protrusion 18 may be the same as or different from the width W16 of the negative electrode protrusion 16 .
 図12に示すように、電極体3Cは、直線状の正極凹部11と、直線状の負極凹部15とを有していてもよい。 As shown in FIG. 12 , the electrode body 3C may have a linear positive electrode recess 11 and a linear negative electrode recess 15 .
 図13に示すように、電極体3Dは、円柱状の正極凹部と、円柱状の負極凹部とを有していてもよい。 As shown in FIG. 13, the electrode body 3D may have a cylindrical positive electrode recess and a cylindrical negative electrode recess.
 図14に示すように、電極体3Eは、ビア加工された正極凹部と、ビア加工された負極凹部とを有していてもよい。 As shown in FIG. 14, the electrode body 3E may have a via-processed positive electrode recess and a via-processed negative electrode recess.
 例えば、固体電解質層の形状は、平面視円形状ではなく、平面視多角形状であってもよい。
 例えば、電極体は、1つではなく、2つ以上積層されていてもよい。
For example, the shape of the solid electrolyte layer may be polygonal in plan view instead of circular in plan view.
For example, two or more electrode bodies may be laminated instead of one.
1…電気化学セル、2…外装体、3A,3B,3C,3D,3E…電極体、10…固体電解質層、11,13…正極凹部、12,14…正極凸部、15,17…負極凹部、16,18…負極凸部、20…正極層、30…負極層 DESCRIPTION OF SYMBOLS 1... Electrochemical cell, 2... Exterior body, 3A, 3B, 3C, 3D, 3E... Electrode body, 10... Solid electrolyte layer, 11, 13... Positive electrode recessed part, 12, 14... Positive electrode convex part, 15, 17... Negative electrode Concave portion 16, 18 negative electrode convex portion 20 positive electrode layer 30 negative electrode layer

Claims (8)

  1.  正極活物質を含む正極層と、
     負極活物質を含む負極層と、
     固体電解質を含む固体電解質層と、を有し、
     前記固体電解質層は、前記正極層と前記負極層との間に位置し、
     前記固体電解質層は、前記正極層側に開口し、前記正極層が入り込む正極凹部を有し、
     前記固体電解質層は、前記負極層側に開口し、前記負極層が入り込む負極凹部を有し、
     前記正極凹部と、前記負極凹部とが、前記固体電解質層の面方向にずれている、電気化学セル。
    a positive electrode layer containing a positive electrode active material;
    a negative electrode layer containing a negative electrode active material;
    a solid electrolyte layer containing a solid electrolyte,
    The solid electrolyte layer is located between the positive electrode layer and the negative electrode layer,
    The solid electrolyte layer has a positive electrode recess that is open to the positive electrode layer side and into which the positive electrode layer enters,
    The solid electrolyte layer has an opening on the negative electrode layer side and has a negative electrode concave portion into which the negative electrode layer enters,
    The electrochemical cell, wherein the positive electrode recess and the negative electrode recess are displaced in the plane direction of the solid electrolyte layer.
  2.  前記固体電解質層は、前記正極凹部及び前記負極凹部を各々2個以上有し、
     平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とが交互に位置している、請求項1に記載の電気化学セル。
    The solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses,
    2. The electrochemical cell according to claim 1, wherein said positive electrode recesses and said negative electrode recesses are alternately positioned in the surface direction of said solid electrolyte layer in plan view.
  3.  前記正極凹部の深さが、前記固体電解質層の厚さの1/2よりも深く、前記負極凹部の深さが、前記固体電解質層の厚さの1/2よりも深い、請求項1又は2に記載の電気化学セル。 2. The depth of the positive electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer. 2. The electrochemical cell according to 2.
  4.  前記固体電解質層の厚さと前記正極凹部の深さとの差と、
     前記固体電解質層の厚さと前記負極凹部の深さとの差と、
     前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、が互いに等しい、請求項1~3のいずれか一項に記載の電気化学セル。
    a difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess;
    a difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess;
    4. The electrochemical cell according to claim 1, wherein distances between said positive electrode recess and said negative electrode recess are equal to each other in a cross-sectional view in the thickness direction of said solid electrolyte layer.
  5.  正極活物質を含む正極層と、
     負極活物質を含む負極層と、
     固体電解質を含む固体電解質層と、を有し、
     前記固体電解質層が、前記正極層と前記負極層との間に位置する電気化学セルの製造方法であって、
     前記固体電解質層の前記正極層側に開口し、前記正極層が入り込む正極凹部と、
     前記固体電解質層の前記負極層側に開口し、前記負極層が入り込む負極凹部とを、前記固体電解質層の面方向にずらして位置させる、電気化学セルの製造方法。
    a positive electrode layer containing a positive electrode active material;
    a negative electrode layer containing a negative electrode active material;
    a solid electrolyte layer containing a solid electrolyte,
    A method for manufacturing an electrochemical cell in which the solid electrolyte layer is positioned between the positive electrode layer and the negative electrode layer,
    a positive electrode recess that opens to the positive electrode layer side of the solid electrolyte layer and into which the positive electrode layer enters;
    A method of manufacturing an electrochemical cell, wherein a negative electrode concave portion, which is open on the negative electrode layer side of the solid electrolyte layer and into which the negative electrode layer is inserted, is shifted in the plane direction of the solid electrolyte layer.
  6.  前記固体電解質層に、前記正極凹部及び前記負極凹部を各々2個以上とし、
     平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とを、交互に位置させる、請求項5に記載の電気化学セルの製造方法。
    The solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses,
    6. The method of manufacturing an electrochemical cell according to claim 5, wherein the positive electrode recesses and the negative electrode recesses are alternately positioned in the plane direction of the solid electrolyte layer in plan view.
  7.  前記正極凹部の深さを前記固体電解質層の厚さの1/2よりも深くし、前記負極凹部の深さを前記固体電解質層の厚さの1/2よりも深くする、請求項5又は6に記載の電気化学セルの製造方法。 6. The depth of the positive electrode recess is set to be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is set to be deeper than 1/2 of the thickness of the solid electrolyte layer. 7. The method for manufacturing the electrochemical cell according to 6.
  8.  前記固体電解質層の厚さと前記正極凹部の深さとの差と、
     前記固体電解質層の厚さと前記負極凹部の深さとの差と、
     前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、を互いに等しくなるようにする、請求項5~7のいずれか一項に記載の電気化学セルの製造方法。
    a difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess;
    a difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess;
    The manufacturing of the electrochemical cell according to any one of claims 5 to 7, wherein the distance between the positive electrode recess and the negative electrode recess in a cross-sectional view in the thickness direction of the solid electrolyte layer is made equal to each other. Method.
PCT/JP2022/047130 2022-03-03 2022-12-21 Method for manufacturing electrochemical cell and electrochemical cell WO2023166824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032672A JP2023128368A (en) 2022-03-03 2022-03-03 Electrochemical cell and method for manufacturing the same
JP2022-032672 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023166824A1 true WO2023166824A1 (en) 2023-09-07

Family

ID=87883672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047130 WO2023166824A1 (en) 2022-03-03 2022-12-21 Method for manufacturing electrochemical cell and electrochemical cell

Country Status (2)

Country Link
JP (1) JP2023128368A (en)
WO (1) WO2023166824A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116248A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Battery and vehicle mounting battery
US20070172735A1 (en) * 2006-01-26 2007-07-26 David R. Hall Thin-film Battery
JP2008078119A (en) * 2006-08-25 2008-04-03 Ngk Insulators Ltd Totally solid storage element
JP2010225432A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Solid secondary battery, and manufacturing method of solid secondary battery
JP2019164957A (en) * 2018-03-20 2019-09-26 株式会社ミマキエンジニアリング Power-storage component, secondary battery, electric double layer capacitor, ink jet printer and manufacturing method
JP2021012840A (en) * 2019-07-09 2021-02-04 ローム株式会社 Thin-film all-solid-state battery, electronic device, and manufacturing method of thin-film all-solid-state battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116248A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Battery and vehicle mounting battery
US20070172735A1 (en) * 2006-01-26 2007-07-26 David R. Hall Thin-film Battery
JP2008078119A (en) * 2006-08-25 2008-04-03 Ngk Insulators Ltd Totally solid storage element
JP2010225432A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Solid secondary battery, and manufacturing method of solid secondary battery
JP2019164957A (en) * 2018-03-20 2019-09-26 株式会社ミマキエンジニアリング Power-storage component, secondary battery, electric double layer capacitor, ink jet printer and manufacturing method
JP2021012840A (en) * 2019-07-09 2021-02-04 ローム株式会社 Thin-film all-solid-state battery, electronic device, and manufacturing method of thin-film all-solid-state battery

Also Published As

Publication number Publication date
JP2023128368A (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US11362366B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP4927609B2 (en) Method for producing solid electrolyte structure for all solid state battery and method for producing all solid state battery
CN109565028B (en) Method for producing an electrochemical cell having a lithium electrode, and electrochemical cell
WO2007013375A1 (en) Electrode for lithium ion rechargeable battery
US11329316B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
WO2012060350A1 (en) All-solid-state battery and method for manufacturing same
CN216563208U (en) Negative plate and battery cell
US20240128450A1 (en) Battery
JPWO2020017467A1 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
JP3403678B2 (en) Method for producing lithium secondary battery and wound electrode body
EP3451435A1 (en) All-solid-state secondary battery
WO2023166824A1 (en) Method for manufacturing electrochemical cell and electrochemical cell
JPWO2020129881A1 (en) Square secondary battery
WO2012060349A1 (en) All-solid-state battery
KR101811834B1 (en) Battery Cell Comprising Current Collector Having Convexo-Concave Structure
CN111725475B (en) Method for manufacturing all-solid-state battery and all-solid-state battery
JP2004207253A (en) Non-aqueous electrolyte rechargeable battery
US20210273235A1 (en) Positive electrode for solid-state battery, manufacturing method of positive electrode for solid-state battery, and solid-state battery
EP4181303A1 (en) Separator and nonaqueous electrolyte secondary battery including the same
US20220246989A1 (en) Stacked electrode body, resin-fixed stacked electrode body, and all-solid-state battery
US20220328864A1 (en) Method of manufacturing lithium metal unit cell for all-solid-state batteries and unit cell manufactured using the same
KR102442344B1 (en) Composite electrolyte laminated film for lithium secondary battery and method of manufacturing the same
JP7168473B2 (en) Negative electrode for all-solid-state battery
JP3511489B2 (en) Method for producing wound electrode body for lithium secondary battery
US20230207980A1 (en) Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929966

Country of ref document: EP

Kind code of ref document: A1