WO2023165278A1 - 电芯成型设备、电芯成型工艺及电芯 - Google Patents

电芯成型设备、电芯成型工艺及电芯 Download PDF

Info

Publication number
WO2023165278A1
WO2023165278A1 PCT/CN2023/072042 CN2023072042W WO2023165278A1 WO 2023165278 A1 WO2023165278 A1 WO 2023165278A1 CN 2023072042 W CN2023072042 W CN 2023072042W WO 2023165278 A1 WO2023165278 A1 WO 2023165278A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
cathode
diaphragm
anode
composite
Prior art date
Application number
PCT/CN2023/072042
Other languages
English (en)
French (fr)
Inventor
赵留杰
王奉杰
Original Assignee
无锡先导智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡先导智能装备股份有限公司 filed Critical 无锡先导智能装备股份有限公司
Publication of WO2023165278A1 publication Critical patent/WO2023165278A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of lithium batteries, in particular to a cell forming equipment, a cell forming process and a cell.
  • lithium battery As a rechargeable secondary battery, lithium battery has the advantages of small size, high energy density, many cycles and high stability, and has been widely used in automotive power batteries.
  • the battery cell of a lithium battery includes a cathode pole piece, an anode pole piece, and a diaphragm separating the cathode pole piece and the anode pole piece.
  • the cathode electrode and the anode electrode are respectively connected with two The diaphragm material strips are compounded to obtain two composite material strips, and then the two composite material strips are sent to a winding device to be wound to form a battery core.
  • a cell forming equipment comprising a first diaphragm unwinding device, a cathode unwinding device, an anode unwinding device, a composite device, a second diaphragm unwinding device and a winding device;
  • the first diaphragm unwinding device is used for unwinding Roll the first diaphragm
  • the cathode unwinding device and the anode unwinding device can be respectively on the first diaphragm Unwinding the cathode pole piece and the anode pole piece on both sides
  • the composite device can receive the first diaphragm, the cathode pole piece and the anode pole piece and perform compounding to obtain the first composite strip
  • the The second diaphragm unwinding device is used to unwind the second diaphragm
  • the winding device includes a needle winding mechanism, and the needle winding mechanism can wind the first composite material strip and the second diaphragm into an electric core.
  • the composite device includes an upper pressing roller and a lower pressing roller, and the cathode electrode sheet, the anode electrode sheet and the first diaphragm can pass through the upper pressing roller and the lower pressing roller. between the rolls.
  • both the upper pressing roller and the lower pressing roller are hot pressing rollers.
  • the electric core can be pressed into a flat structure with a straight area and a bending area
  • the electric core forming equipment further includes a pole piece processing device, and the pole piece processing device can process the The cathode pole piece is processed to form a fracture seam on the cathode pole piece of the first composite strip, and the fracture seam is located in the bending area of the produced battery core.
  • the pole piece processing device includes a pinch mechanism and a cutting mechanism arranged between the cathode unwinding device and the composite device, and the pinch mechanism can clamp and transport the cathode The pole piece, the cutting mechanism can cut off the cathode pole piece between the pinch mechanism and the composite device, and the pinch mechanism can pull apart the cut part and form the fracture seam.
  • the pole piece processing device also includes a glue sticking mechanism, and the glue sticking mechanism can stick a first adhesive tape on one side of the cathode pole piece, so as to place the The cathode sheet on one side of the pinch mechanism is bonded to the first diaphragm.
  • the gluing mechanism can also bond a second adhesive tape on one side of the cathode sheet, so as to place the cathode on the side of the fracture away from the pinch mechanism.
  • a sheet is bonded to the first membrane.
  • the gluing mechanism is arranged between the cutting mechanism and the composite device.
  • the pole piece processing device includes:
  • At least two pinch mechanisms each of which is capable of clamping and transporting the cathode sheet
  • each of the cutting mechanisms can cut off the cathode pole piece to obtain at least two pole piece segments, and at least two of the pinching mechanisms Capable of clamping at least two pole piece segments respectively and pulling apart the distance between two adjacent pole piece segments to form the breaking seam;
  • the gluing mechanism is capable of adhering the connector on at least one side of the cathode pole piece and covering the fractured seam, so as to connect the at least two pole pieces in sections to form a whole.
  • the winding device further includes a turntable, and a plurality of the needle winding mechanisms are arranged on the turntable, and the rotation of the turntable can drive the plurality of the needle winding mechanisms to sequentially transfer to the position capable of obtaining the first A composite strip and the location of the second membrane.
  • a battery forming process comprising the steps of:
  • first diaphragm, the cathode pole piece and the anode pole piece Composite the first diaphragm, the cathode pole piece and the anode pole piece to obtain a first composite strip, the cathode pole piece and the anode pole piece in the first composite strip are respectively attached on both sides of the first diaphragm;
  • the method further includes the step of: processing the cathode pole piece to form a fracture seam on the cathode pole piece of the first composite strip, the fracture seam being located in the bending area.
  • the above-mentioned cell forming equipment and process before the anode pole piece and the cathode pole piece enter the winding device, the anode pole piece, the cathode pole piece and the first diaphragm are combined by the composite device in three-in-one, and the first composite material is obtained bring. Since the anode pole piece and the cathode pole piece are respectively located on both sides of the first diaphragm, the first diaphragm will Wrapped by the anode pole piece and the cathode pole piece. During recombination, the surfaces on both sides of the first membrane will not be in direct contact with the recombination device. Therefore, it is possible to prevent the adhesive on the surface of the first separator from sticking to the composite device, thereby improving the composite effect of the first separator, the anode electrode sheet and the cathode electrode sheet, and further improving the quality of the manufactured battery cell.
  • the present application also provides an electric core, which is made by the electric core molding equipment described in any one of the above preferred embodiments; or, made by the electric core described in any one of the above preferred embodiments Manufactured by a molding process, the cell includes a cathode pole piece, an anode pole piece, and a diaphragm located between the adjacent cathode pole piece and the anode pole piece, the cathode pole piece, the anode pole piece And the separator is rolled and pressed to form a flat structure, and the battery core has a flat area and bending areas located at two ends of the flat area.
  • At least part of the cathode sheet located in the bending region is formed with fractures extending along the width direction.
  • the fracture slit divides the cathode pole piece where it is located into at least two pole piece segments, and at least two pole piece segments are connected to form a whole through a connecting piece.
  • Fig. 1 is the schematic structural view of the electric core molding equipment in the preferred embodiment of the present application.
  • Fig. 2 is a schematic cross-sectional view of the cell along a direction perpendicular to the winding axis in a preferred embodiment of the present application;
  • Fig. 3 is a partial top view of the first composite strip involved in the present application.
  • Fig. 4 is a schematic structural view of the cell forming equipment in another embodiment of the present application.
  • Fig. 5 is a schematic structural view of the pole piece processing device in the cell forming equipment shown in Fig. 4;
  • Fig. 6 is a partial top view of the cathode pole piece processed by the pole piece processing device shown in Fig. 5;
  • FIG. 7 is a schematic flow chart of the cell forming process in a preferred embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the present application provides a battery cell 100 and a battery cell molding equipment 200 , and the battery cell 100 can be manufactured by the battery cell molding equipment 200 .
  • the battery cell 100 includes a cathode pole piece 110, an anode pole piece 120 and a diaphragm 130, and the diaphragm 130 is located between the adjacent cathode pole piece 110 and the anode pole piece 120, and is used to separate the cathode pole piece 110 from the anode pole piece 120. open to avoid short circuits.
  • the cathode electrode piece 110 , the anode electrode piece 120 and the diaphragm 130 are laminated to each other, and then rolled and pressed to form a flat structure.
  • the battery cell 100 has a flat area 101 and bending areas 102 located at two ends of the straight area 101 .
  • the flat area 101 refers to the area with a parallel structure in the flat structure of the cell 100, that is, the cathode electrode piece 110, the anode electrode piece 120 and the separator 130 in the flat area 101 are in a state of being substantially parallel to each other, and are located in the flat area.
  • the surface of each layer of cathode sheet 110 , anode sheet 120 and separator 130 in 101 is substantially planar.
  • the bending area 102 refers to the area with a bending structure in the flat structure of the cell 100, that is, the cathode electrode piece 110, the anode electrode piece 120 and the separator 130 in the bending area 102 are all bent, and each layer of the cathode electrode piece 110 , the surfaces of the anode pole piece 120 and the diaphragm 130 are all curved surfaces.
  • the cell molding equipment 200 in the preferred embodiment of the present application includes a first separator Rolling device 210 , cathode unwinding device 220 , anode unwinding device 230 , composite device 240 , second diaphragm unwinding device 250 and winding device 260 .
  • the first membrane unwinding device 210 is used to unwind the first membrane 131 .
  • the surface of the first diaphragm 131 is pre-coated with glue or other adhesives.
  • the second membrane unwinding device 250 is used for unwinding the second membrane 132 .
  • the first diaphragm 131 and the second diaphragm 132 both refer to the diaphragm 130 in the battery cell 100 .
  • the membranes unwound by the first membrane unwinding device 210 and the second membrane unwinding device 250 are respectively referred to as the first membrane 131 and the second membrane 132 .
  • Both the first diaphragm 131 and the second diaphragm 132 are insulating films, which can prevent short circuits.
  • the structures of the first diaphragm unwinding device 210 and the second diaphragm unwinding device 250 are generally identical, and may be in the form of an unwinding shaft.
  • the cathode unwinding device 220 and the anode unwinding device 230 can respectively unwind the cathode electrode sheet 110 and the anode electrode sheet 120 on both sides of the first separator 131 .
  • Both the cathode unwinding device 220 and the anode unwinding device 230 can be in the form of an unwinding shaft, and the cathode pole piece 110 and the anode pole piece 120 can be wound on the cathode unwinding device 220 and the anode unwinding device 230 respectively in the form of material strips And realize continuous unwinding.
  • the first separator 131 is sandwiched between the cathode electrode piece 110 and the anode electrode piece 120 .
  • the cathode electrode sheet 110 is located below the first diaphragm 131
  • the anode electrode sheet 120 is located above the first diaphragm 131 .
  • the positions of the cathode electrode piece 110 and the anode electrode piece 120 can also be reversed.
  • the compounding device 240 can receive the first diaphragm 131 , the cathode electrode sheet 110 and the anode electrode sheet 120 and perform compounding to obtain the first composite material strip 300 .
  • the first composite strip 300 includes a first diaphragm 131 and a cathode sheet 110 and an anode sheet 120 respectively attached to two sides of the first diaphragm 131 .
  • the composite device 240 includes an upper pressure roller (not marked in the figure) and a lower pressure roller (not marked in the figure), and the cathode electrode sheet 110, the anode electrode sheet 120 and the first separator 131 can pass through the upper pressure roller and the lower pressure roller. Between the lower pressure rollers.
  • Both the upper pressing roller and the lower pressing roller can rotate around their own axes, and one of them is connected with the drive assembly and can actively rotate.
  • the upper pressure roller and the The cooperation of the lower pressure roller can clamp the first diaphragm 131 , the cathode electrode piece 110 and the anode electrode piece 120 .
  • the first diaphragm 131, the cathode electrode sheet 110 and the anode electrode sheet 120 are press-molded to obtain the first composite strip 300, and the first composite strip 300 obtained can be Driven by the composite device 240, it is transported downstream.
  • both the upper pressing roller and the lower pressing roller can be hot pressing rollers, so that the first composite strip 300 can be formed by hot pressing.
  • the first composite strip 300 can also be formed by cold pressing.
  • the anode pole piece 120 and the cathode pole piece 110 are respectively located on both sides of the first diaphragm 131 , the surfaces on both sides of the first diaphragm 131 will not directly contact the recombination device 240 . Therefore, the adhesive on the surface of the first separator 131 can be prevented from adhering to the composite device 240 , thereby improving the composite effect of the first separator 131 and the anode electrode sheet 120 and the cathode electrode sheet 110 .
  • the winding device 260 includes a needle winding mechanism 261 .
  • the needle winding mechanism 261 can wind the first composite tape 300 and the second separator 132 to form the battery cell 100 .
  • the wound cell 100 is approximately cylindrical or elliptical, and can be flattened after pressing.
  • the flat cell 100 has a flat area 101 and a bent area 102 .
  • the winding device 260 also includes a turntable 262, and a plurality of needle winding mechanisms 261 are arranged on the turntable 262, and the rotation of the turntable 262 can drive a plurality of needle winding mechanisms 261 to be sequentially transferred to obtain the first composite strip 300 and the second composite strip 300.
  • the position of the second diaphragm 132 is also included in the winding device 260 .
  • the turntable 262 can be connected with a driving mechanism such as a motor, and can rotate at a certain angle each time driven by the driving mechanism. After the previous electric core 100 is wound, the turntable 262 rotates and the next needle winding mechanism 261 is rotated to the winding station (that is, the position where the first composite strip 300 and the second diaphragm 132 can be obtained); then, The next needle winding mechanism 261 stretches out and obtains the first composite material strip 300 and the second diaphragm 132; after the previous electric core 100 is cut off from the end of the material strip, the next needle winding mechanism 261 can be wound for the following Preparation of a battery cell 100 .
  • a driving mechanism such as a motor
  • the cathode sheet 110 is coated with a positive active material layer formed of lithium manganate, lithium cobaltate, lithium iron phosphate, etc., while the anode sheet 120 is coated with a negative active material layer formed of graphite, silicon, etc.
  • the applicant has found through research that the active materials of the cathode electrode sheet 110 and the anode electrode sheet 120 located in the bending area 102 tend to fall off during the bending process, which is called "powder falling".
  • the shedding of the negative active material on the anode pole piece 120 will cause the lithium intercalation position of the negative pole active material layer of the anode pole piece 120 to be less than the amount of lithium ions that can be provided by the positive pole active material layer of its adjacent cathode pole piece 110 , which in turn causes the lithium ions deintercalated from the positive electrode active material layer to be unable to intercalate in the same amount in the negative electrode active material layer. Therefore, when the battery is being charged, lithium deposition generally occurs in the bending region 102 of the battery cell 100 .
  • the cathode electrode sheet 110 and the anode electrode sheet 120 in the flat area 101 do not need to be bent during the forming process of the battery cell 100, there is almost no "powder dropping", so the anode electrode sheet 120 in the flat area 101
  • the lithium intercalation sites of the negative electrode active material layer can keep a good match with the amount of lithium ions that can be provided by the positive electrode active material layer of the adjacent cathode electrode sheet 110 . Therefore, generally the flat region 101 of the battery cell 100 will not experience lithium deposition.
  • the cell forming equipment 200 also includes a pole piece processing device 270, and the pole piece processing device 270 can process the cathode pole piece 110, so as to A fracture 103 is formed on the cathode sheet 110 of a composite strip 300 .
  • the fracture slit 103 extends along the width direction of the cathode tab 110 and can break the cathode tab 110 . It can be seen that there is no positive electrode active material in the region where the fracture crack 103 is located.
  • the fracture slit 103 of the cathode pole piece 110 is located in the bending area 102 of the fabricated battery cell 100 . Since there is no positive electrode active material in the area where the fracture crack 103 is located, the amount of lithium ions that can be intercalated and deintercalated on the cathode sheet 110 located in the bending area 102 will be significantly reduced.
  • the pole piece processing device 270 includes a pinch mechanism 271 and a cutting mechanism 272 , both of which are disposed between the cathode unwinding device 220 and the composite device 240 .
  • the pinch mechanism 271 can clamp and transport the cathode pole piece 110, the cutting mechanism 272 can cut off the cathode pole piece 110 between the pinch mechanism 271 and the composite device 240, and the pinch mechanism 271 can pull the cut part apart and form a fracture. Crack 103.
  • the pinching mechanism 271 can pull apart the cutting part by adjusting the conveying speed.
  • the continuous strip of cathode electrode sheet 110 passes through the pinching mechanism 271 and the cutting mechanism 272 before entering the composite device 240 .
  • the cutting mechanism 272 cuts off the cathode electrode sheet 110
  • the cathode electrode sheet 110 located downstream of the cutting point is composited with the first diaphragm 131 in the composite device 240, and the obtained first composite strip 300 can be driven by the composite device 240 Maintain a constant speed of conveying; at this time, the pinch mechanism 271 slows down or stops the conveying, so that the distance between the cathode pole pieces 110 can be extended until the fracture slit 103 is formed.
  • the speed of the pinch mechanism 271 is adjusted to be synchronized with the composite device 240. While the cathode electrode piece 110 located upstream of the cutting point is sent into the composite device 240, the auxiliary composite device 240 drives the first composite material belt 300 to continue to be transported downstream.
  • the pinch mechanism 271 includes a clamping plate, which can move back and forth along the conveying direction of the cathode electrode piece 110 .
  • the splint can clamp the cathode pole piece 110 located upstream of the cutting position and can move along with the cathode pole piece 110 . In this way, the severed cathode electrode piece 110 can be prevented from falling due to the excessive length of the end, ensuring that the cathode electrode piece 110 can smoothly enter the composite device 240 .
  • the cutting mechanism 272 can also use a punch and a die to match Die-cutting the cathode electrode piece 110 in a combined manner can cut off waste with a certain width on the cathode electrode piece 110 , so that the fracture crack 103 can be naturally formed when the cathode electrode piece 110 is cut off.
  • the pinch mechanism 271 can keep synchronously conveying with the composite device 240 , without the need to separate the distance between the cut points of the cathode electrode piece 110 by changing the speed of the pinch mechanism 271 to form the fracture crack 103 .
  • One or more fractures 103 may be formed on the cathode tab 110 .
  • the pinching mechanism 271 and the cutting mechanism 272 can repeat the above operations.
  • the pole piece processing device 270 also includes a glue-applying mechanism 273, and the glue-sticking mechanism 273 can bond the first adhesive tape 140 on one side of the cathode pole piece 110 so as to place the adhesive tape 140 on the side of the cathode pole piece 110 close to the pinch mechanism 271.
  • the cathode sheet 110 on one side is bonded to the first separator 131 .
  • the fracture slit 103 can divide the cathode pole piece 110 into two pole piece segments, and the cathode pole piece 110 on the side of the fracture slit 103 close to the pinch mechanism 271 refers to the upstream end of one of the pole piece segments.
  • the upstream end refers to the front end of the first composite material belt 300 in the conveying direction. For example, if the first composite material belt 300 is conveyed from left to right, the right end is the upstream end.
  • the upstream end of the pole piece segment Before the first composite material tape 300 enters the winding device 260, it generally needs to be wound around rollers to change direction. When winding around the roller, the upstream end of the pole piece segment is easy to lift and break away from the first diaphragm 131 . Since the first adhesive tape 140 can bond the upstream end of the pole piece segment behind the first diaphragm 131 , the cathode pole piece 110 will not be detached from the first diaphragm 131 when the first composite tape 300 passes through the
  • a part of the first adhesive tape 140 passes through the fracture slit 103 and is bonded to the first separator 131 , and the other part is bonded to the cathode sheet 110 .
  • the first adhesive tape 140 can be bonded before the cathode electrode sheet 110 and the first separator 131 are combined, or can be bonded after the combination.
  • the glue application mechanism 273 is arranged between the cutting mechanism 272 and the composite device 240 . That is to say, the gluing mechanism 273 completes the gluing before the cathode sheet 110 is combined with the first diaphragm 131 . Therefore, in the recombination device 240, the cathode pole piece 110, the anode pole piece 120 and the first diaphragm 131 are three During the combined process, the first adhesive tape 140 can also prevent the cathode electrode piece 110 from being misaligned with the first diaphragm 131 .
  • the gluing mechanism 273 can also bond a second adhesive tape (not shown) on one side of the cathode sheet 110, so as to place the cathode on the side of the fracture slit 103 away from the pinch mechanism 271.
  • the sheet 110 is bonded to the first diaphragm 131 .
  • the fracture slit 103 can divide the cathode pole piece 110 into two pole piece segments, and the cathode pole piece 110 located on the side of the fracture slit 103 away from the pinch mechanism 221 refers to one of the pole piece segments downstream end.
  • the downstream end refers to the rear end of the first composite material belt 300 in the conveying direction, for example, if the first composite material belt 300 is conveyed from left to right, the left end is the downstream end.
  • the second adhesive tape adheres the downstream end of the electrode piece segment to the first separator 131 , it can prevent the cathode electrode piece 110 from shifting relative to the first separator 131 during transportation, thereby improving the quality of the battery cell 100 .
  • the electrode sheet processing device 270 can also adopt other forms.
  • the pole piece processing device 270 includes a pinch mechanism 274 , a cutting mechanism 275 and a glue-applying mechanism 276 .
  • each pinching mechanism 274 can pinch and transport the cathode electrode piece 110 .
  • the cutting mechanism 275 is disposed between two adjacent pinching mechanisms 274 , and each cutting mechanism 275 can cut off the cathode pole piece 110 to obtain at least two pole piece segments.
  • At least two pole piece segments can be gripped by different pinch mechanisms 274 and conveyed along the conveying direction.
  • at least two pinching mechanisms 274 can drive the clamped pole piece segments to be transported for different distances along the conveying direction, so that the fracture crack 103 is formed between two adjacent pole piece segments.
  • different clamping mechanisms 274 can form a speed difference, so that the distances between the clamped pole piece segments can be separated, so as to form the breaking seam 103 .
  • the cutting mechanism 275 can also punch the cathode electrode piece 110 in the manner of the cooperation of the punch and the die, and can cut the cathode electrode piece 110 with a certain width. waste material, so that the fracture crack 103 can be naturally formed when the cathode sheet 110 is cut off. In this way, each pinching mechanism 274 can maintain a constant speed, and the distance between the pole piece segments does not need to be opened by the pinching mechanism 274 .
  • each pinch mechanism 274 includes pinch rollers, and the rotation speed of the pinch rollers of each pinch mechanism 274 can be adjusted individually. By adjusting the rotation speed of the pinch rollers, the conveying speed of each pinch mechanism 274 can be adjusted. In this way, a speed difference can be formed between the different clamping mechanisms 274 , so that the distances between the clamped pole piece segments can be separated to form the breaking seam 103 .
  • the speed adjustment of the nip roller is more convenient, and the space occupied by the nip roller is smaller, which is conducive to making the structure of the pinch mechanism 274 more compact.
  • the cathode pole piece 110 is processed by the pole piece processing device 200, two fractures 103 can be formed on the cathode pole piece 110 and three pole piece segments can be obtained, and each pole piece segment is clamped by a clamping mechanism 274 .
  • the glue sticking mechanism 276 can stick the connector 150 on at least one side of the cathode pole piece 110 and cover the fracture slit 103 , so as to connect at least two pole pieces into one piece.
  • the gluing mechanism 276 is also arranged between two adjacent pinching mechanisms 274 , and the gluing mechanism 276 and the cutting mechanism 275 exist in pairs. More specifically, the gluing mechanism 276 is located at the downstream end of the cutting mechanism 275 paired with it.
  • the connecting member 150 may be an adhesive tape
  • the adhesive applying mechanism 276 attaches an adhesive tape to both sides of the cathode electrode sheet 110 to improve reliability.
  • the three pinching mechanisms 274 from the upstream end to the downstream end (from right to left in FIG. 5 ) of the conveying direction of the cathode electrode sheet 110 are respectively referred to as the first, second, and third pinching mechanisms. 274; the two cutting mechanisms 275 are respectively called the first and the second cutting mechanism 275; the two gluing mechanisms 276 are respectively called the first and the second gluing mechanism 276; the obtained three pole piece segments referred to as the first, the The second and third pole piece segments;
  • the first cutting mechanism 275 in the pole piece conveying direction cuts off the cathode pole piece 110 between the first pinch mechanism 274 and the second pinch mechanism 274, And the second cutting mechanism 275 cuts off the cathode pole piece 100 between the second pinching mechanism 274 and the third pinching mechanism 274 to obtain three pole piece segments; the first pinching mechanism 274, the second The first pinch mechanism 274 and the third pinch mechanism 274 respectively pinch three pole piece segments and transport them downstream.
  • the conveying speed of the first pinch mechanism 274 is lower than the conveying speed of the second pinch mechanism 274
  • the conveying speed of the second pinch mechanism 274 is lower than the conveying speed of the third pinch mechanism 274 .
  • the first pole piece segment moves downstream less than the second pole piece segment, and the second pole piece segment moves downstream less than the third pole piece segment.
  • the distance to move downstream In this way, the distances between the three pole piece segments are pulled apart, forming two fracture cracks 103 .
  • the two gluing mechanisms 276 are respectively provided with connecting parts 150 on both sides of the two fracture slits 103 , such as adhesive tapes. Specifically, the first glue-applying mechanism 276 sticks tape to bond the first pole piece segment to the second pole piece segment, while the second glue-sticking mechanism 276 sticks tape to bond the second pole piece segment Bond with the third pole piece segment, thus connecting the three pole piece segments into one.
  • the continuity of the cathode pole piece 110 can be ensured by connecting the two sides of the fracture slit 103 by the connector 150, so that the cathode pole piece 110 can smoothly enter the composite device 240 and be connected with the The first separator 131 and the anode sheet 120 are combined.
  • the anode pole piece 120 and the cathode pole piece 110 enter the winding device 260, the anode pole piece 120, the cathode pole piece 110 and the first diaphragm 131 are combined by the composite device 240 in three-in-one, And obtain the first composite strip 300 . Since the anode pole piece 120 and the cathode pole piece 110 are respectively located on both sides of the first diaphragm 131 , the first diaphragm 131 will be wrapped by the anode pole piece 120 and the cathode pole piece 110 . When compounding, the surfaces on both sides of the first diaphragm 131 will not be in direct contact with the compounding device 240. touch.
  • the present application also provides a battery forming process, which can be completed by means of the above battery forming equipment 200 .
  • the cell forming process includes step S410 to step S430:
  • Step S410 providing the first diaphragm 131 , the second diaphragm 132 , the cathode electrode sheet 110 and the anode electrode sheet 120 .
  • the first diaphragm 131 , the second diaphragm 132 , the cathode electrode sheet 110 and the anode electrode sheet 120 can be continuously unwound in the form of an unwinding shaft.
  • step S420 the first diaphragm 131, the cathode electrode sheet 110 and the anode electrode sheet 120 are compounded to obtain the first composite strip 300, and the cathode electrode sheet 110 and the anode electrode sheet 120 in the first composite strip 300 are respectively attached to the first composite strip 300.
  • a diaphragm 131 on both sides.
  • the cathode electrode sheet 110 and the anode electrode sheet 120 are located on both sides of the first separator 131 respectively, and can wrap the first separator 131 . Therefore, the surfaces on both sides of the first diaphragm 131 will not be in direct contact with the recombination device, thereby preventing the adhesive on the surface of the first diaphragm 131 from sticking to the recombination device, thereby improving the connection between the first diaphragm 131 and the anode sheet 120 and the cathode electrode. Composite effect of sheet 110.
  • Step S430 winding the first composite material tape 300 and the second separator 132 into a cell, and pressing the cell into a flat structure with a straight area and a bent area.
  • step S410 to step S430 can be performed simultaneously.
  • the cell forming process further includes the step of: processing the cathode sheet 110 to A fractured seam 103 is formed on the cathode sheet 110 of the first composite strip 300 , and the fractured seam 103 is located at the bending area 102 of the manufactured battery cell 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电芯成型设备(200)及电芯成型工艺,在阳极极片(120)、阴极极片(110)进入卷绕装置(260)之前,先由复合装置(240)将阳极极片(120)及阴极极片(110)与第一隔膜(131)进行三合一复合,并得到第一复合料带(300)。由于阳极极片(120)及阴极极片(110)分别位于第一隔膜(131)的两侧,故第一隔膜(131)将会被阳极极片(120)及阴极极片(110)包裹住。在进行复合时,第一隔膜(131)两侧的表面不会与复合装置(240)直接接触。因此,能够避免第一隔膜(131)表面的粘接剂粘在复合装置(240)上,从而改善第一隔膜(131)与阳极极片(120)及阴极极片(110)的复合效果,进而提升所制得的电芯(100)的质量。此外,还提供一种电芯(100)。

Description

电芯成型设备、电芯成型工艺及电芯 技术领域
本申请涉及锂电池技术领域,特别涉及一种电芯成型设备、电芯成型工艺及电芯。
背景技术
锂电池作为一种可再充电的二次电池,具有体积小、能量密度高、可循环次数多及稳定性高等优点,已广泛应用于汽车动力电池。锂电池的电芯包括阴极极片、阳极极片及隔离阴极极片与阳极极片的隔膜。
目前,大多数电池厂家均采用卷绕成型的工艺制备电芯,为了保证所制得的电芯中各膜层具有较高的对齐度,一般先将阴极极片、阳极极片分别与两个隔膜料带进行复合并得到两个复合料带,再将两个复合料带送入卷绕装置卷绕形成电芯。
但是,在将阴极极片及阳极极片分别与隔膜料带进行复合时,发现隔膜与极片的复合效果较差,进而导致卷绕得到电芯的质量不佳。
申请内容
基于此,有必要针对上述问题,提供一种能够提升所制得的电芯的质量的电芯成型设备及电芯成型工艺。
一种电芯成型设备,包括第一隔膜放卷装置、阴极放卷装置、阳极放卷装置、复合装置、第二隔膜放卷装置及卷绕装置;所述第一隔膜放卷装置用于放卷第一隔膜,所述阴极放卷装置及所述阳极放卷装置能够分别在所述第一隔膜 的两侧放卷阴极极片及阳极极片;所述复合装置能够接收所述第一隔膜、所述阴极极片及所述阳极极片并进行复合,以得到第一复合料带;所述第二隔膜放卷装置用于放卷第二隔膜;所述卷绕装置包括卷针机构,所述卷针机构能够将所述第一复合料带及所述第二隔膜卷绕成电芯。
在其中一个实施例中,所述复合装置包括上压辊及下压辊,所述阴极极片、所述阳极极片及所述第一隔膜能够穿过所述上压辊与所述下压辊之间。
在其中一个实施例中,所述上压辊及所述下压辊均为热压辊。
在其中一个实施例中,所述电芯能够被压制成具有平直区及弯折区的扁平结构,所述电芯成型设备还包括极片处理装置,所述极片处理装置能够对所述阴极极片进行处理,以在所述第一复合料带的所述阴极极片上形成断裂缝,所述断裂缝位于所制得的电芯的所述弯折区。
在其中一个实施例中,所述极片处理装置包括设置于所述阴极放卷装置与所述复合装置之间的夹送机构及切割机构,所述夹送机构能够夹紧并输送所述阴极极片,所述切割机构能够将所述夹送机构与所述复合装置之间的所述阴极极片切断,且所述夹送机构能够将切断处拉开并形成所述断裂缝。
在其中一个实施例中,所述极片处理装置还包括贴胶机构,所述贴胶机构能够在所述阴极极片的一侧粘接第一胶带,以将位于所述断裂缝靠近所述夹送机构一侧的所述阴极极片粘接于所述第一隔膜。
在其中一个实施例中,,所述贴胶机构还能够在所述阴极极片的一侧粘接第二胶带,以将位于所述断裂缝远离所述夹送机构一侧的所述阴极极片粘接于所述第一隔膜。
在其中一个实施例中,所述贴胶机构设于所述切割机构与所述复合装置之间。
在其中一个实施例中,所述极片处理装置包括:
至少两个夹送机构,每个所述夹送机构均能够夹持并输送所述阴极极片;
设于相邻两个所述夹送机构之间的切割机构,每个所述切割机构能够将所述阴极极片切断,以得到至少两个极片分段,至少两个所述夹送机构能够分别夹持至少两个所述极片分段并拉开相邻两个所述极片分段之间的距离以形成所述断裂缝;
贴胶机构,能够将连接件粘贴于所述阴极极片的至少一侧并覆盖所述断裂缝,以将所述至少两个极片分段连接形成一体。
在其中一个实施例中,所述卷绕装置还包括转盘,多个所述卷针机构设置于所述转盘,所述转盘转动可带动多个所述卷针机构依次转移至能够获取所述第一复合料带及所述第二隔膜的位置。
一种电芯成型工艺,包括步骤:
提供第一隔膜、第二隔膜、阴极极片及阳极极片;
将所述第一隔膜、所述阴极极片及所述阳极极片进行复合,得到第一复合料带,所述第一复合料带中的所述阴极极片及所述阳极极片分别附着于所述第一隔膜的两侧;
将所述第一复合料带及所述第二隔膜卷绕成电芯,并将所述电芯压制成具有平直区及弯折区的扁平结构。
在其中一个实施例中,还包括步骤:对所述阴极极片进行处理,以在所述第一复合料带的所述阴极极片上形成断裂缝,所述断裂缝位于所述弯折区。
上述电芯成型设备及工艺,在阳极极片、阴极极片进入卷绕装置之前,先由复合装置将阳极极片及阴极极片与第一隔膜进行三合一复合,并得到第一复合料带。由于阳极极片及阴极极片分别位于第一隔膜的两侧,故第一隔膜将会 被阳极极片及阴极极片包裹住。在进行复合时,第一隔膜两侧的表面不会与复合装置直接接触。因此,能够避免第一隔膜表面的粘接剂粘在复合装置上,从而改善第一隔膜与阳极极片及阴极极片的复合效果,进而提升所制得的电芯的质量。
此外,本申请还提供一种电芯,该电芯由上述优选实施例中任一项所述的电芯成型设备所制得;或者,由上述优选实施例中任一项所述的电芯成型工艺所制得,所述电芯包括阴极极片、阳极极片及位于相邻的所述阴极极片与所述阳极极片之间的隔膜,所述阴极极片、所述阳极极片及所述隔膜经卷绕压制形成扁平结构,所述电芯具有平直区及位于所述平直区两端的弯折区。
在其中一个实施例中,至少部分位于所述弯折区的所述阴极极片形成有沿宽度方向延伸的断裂缝。
在其中一个实施例中,所述断裂缝将所在的所述阴极极片分割成至少两个极片分段,至少两个所述极片分段通过连接件连接形成一体。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请较佳实施例中电芯成型设备的结构示意图;
图2为本申请较佳实施例中电芯沿垂直于卷绕轴线的方向的截面示意图;
图3为本申请所涉及的第一复合料带的局部俯视图;
图4为本申请另一个实施例中电芯成型设备的结构示意图;
图5为图4所示电芯成型设备中极片处理装置的结构示意图;
图6为经图5所示的极片处理装置处理后的阴极极片的局部俯视图;
图7为本申请较佳实施例中电芯成型工艺的流程示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参阅图1及图2,本申请提供了一种电芯100及电芯成型设备200,电芯100能够由该电芯成型设备200制得。其中,电芯100包括阴极极片110、阳极极片120及隔膜130,隔膜130位于相邻的阴极极片110与阳极极片120之间,用于将阴极极片110与阳极极片120隔开以避免短路。阴极极片110、阳极极片120及隔膜130相互层叠,再经卷绕压制便可形成扁平结构。
进一步的,电芯100具有平直区101及位于平直区101两端的弯折区102。平直区101是指扁平结构的电芯100中具有平行结构的区域,即在平直区101内的阴极极片110、阳极极片120及隔膜130处于相互基本平行的状态,位于平直区101的每层阴极极片110、阳极极片120及隔膜130的表面均大致为平面。弯折区102是指扁平结构的电芯100中具有弯折结构的区域,即在该弯折区102内的阴极极片110、阳极极片120及隔膜130均弯折,每层阴极极片110、阳极极片120及隔膜130的表面均为曲面。
请再次参阅图1,本申请较佳实施例中的电芯成型设备200包括第一隔膜放 卷装置210、阴极放卷装置220、阳极放卷装置230、复合装置240、第二隔膜放卷装置250及卷绕装置260。
第一隔膜放卷装置210用于放卷第一隔膜131。为了便于后续的复合操作,第一隔膜131的表面预先涂布有胶水或其他粘接剂。第二隔膜放卷装置250用于放卷第二隔膜132。其中,第一隔膜131及第二隔膜132均是指电芯100中的隔膜130。为了便于区分,特将第一隔膜放卷装置210及第二隔膜放卷装置250放卷的隔膜分别称为第一隔膜131及第二隔膜132。第一隔膜131及第二隔膜132均为绝缘膜,能够起到防止短路的作用。第一隔膜放卷装置210及第二隔膜放卷装置250的结构一般完全相同,可采用放卷轴的形式。
阴极放卷装置220及阳极放卷装置230能够分别在第一隔膜131的两侧放卷阴极极片110及阳极极片120。阴极放卷装置220及阳极放卷装置230均可采用放卷轴的形式,阴极极片110及阳极极片120能够以料带的形式分别卷绕于阴极放卷装置220及阳极放卷装置230上并实现连续放卷。
放卷后,第一隔膜131夹在阴极极片110及阳极极片120之间。具体的,阴极极片110位于第一隔膜131的下方,而阳极极片120则位于第一隔膜131的上方。显然,阴极极片110与阳极极片120的位置也可对调。
复合装置240能够接收第一隔膜131、阴极极片110及阳极极片120并进行复合,以得到第一复合料带300。第一复合料带300包括第一隔膜131以及分别附着于第一隔膜131两侧的阴极极片110及阳极极片120。具体在本实施例中,复合装置240包括上压辊(图未标)及下压辊(图未标),阴极极片110、阳极极片120及第一隔膜131能够穿过上压辊与下压辊之间。
上压辊及下压辊均能够绕自身的轴线转动,且其中一个与驱动组件连接,能够主动旋转。第一隔膜131、阴极极片110及阳极极片120穿过时,上压辊与 下压辊配合能够将第一隔膜131、阴极极片110及阳极极片120夹紧。而且,随着上压辊及下压辊转动,第一隔膜131、阴极极片110及阳极极片120压合成型得到第一复合料带300,而得到的第一复合料带300则能够在复合装置240的驱动下向下游输送。
其中,上压辊及下压辊均可采用热压辊,从而使第一复合料带300热压成型。显然,在其他实施例中,第一复合料带300也可通过冷压的方式成型。
在进行复合时,由于阳极极片120及阴极极片110分别位于第一隔膜131的两侧,故第一隔膜131两侧的表面不会与复合装置240直接接触。因此,能够避免第一隔膜131表面的粘接剂粘在复合装置240上,从而改善第一隔膜131与阳极极片120及阴极极片110的复合效果。
卷绕装置260包括卷针机构261。其中,卷针机构261能够将第一复合料带300及第二隔膜132卷绕成电芯100。卷绕得到的电芯100大致呈圆柱形或椭圆形,经过压制后可得到扁平结构,该扁平结构的电芯100具有平直区101及弯折区102。
在本实施例中,卷绕装置260还包括转盘262,多个卷针机构261设置于转盘262,转盘262转动可带动多个卷针机构261依次转移至能够获取第一复合料带300及第二隔膜132的位置。
转盘262可以连接电机等驱动机构,并能够在驱动机构的驱使下每次转动一定角度。在前一个电芯100卷绕完毕后,转盘262旋转并将下一个卷针机构261旋转至卷绕工位(即,能够获取第一复合料带300及第二隔膜132的位置);接着,该下一个卷针机构261伸出并获得第一复合料带300及第二隔膜132;待前一个电芯100从料带末端切断后,下一个卷针机构261便可进行卷绕以进行下一个电芯100的制备。以此类推,多个卷针机构261能够交替进入卷绕工位 并进行电芯卷绕,从而能够提升生产节拍以减少等待时间,进而提升生产效率。
阴极极片110上涂覆有由锰酸锂、钴酸锂、磷酸铁锂等形成的正极活性物质层,而阳极极片120上则涂覆有由石墨、硅等形成的负极活性物质层。申请人经研究发现,位于弯折区102的阴极极片110、阳极极片120在弯折过程中容易导致各自的活性物质脱落,称之为“掉粉”。尤其是阳极极片120上的负极活性物质的脱落,将导致阳极极片120的负极活性物质层的嵌锂位少于其相邻的阴极极片110的正极活性物质层能够提供的锂离子数量,进而导致由正极活性物质层脱嵌的锂离子将无法等量的嵌入负极活性物质层。因此,电池在充电时,一般会在电芯100的弯折区102发生析锂现象。
对应的,由于平直区101的阴极极片110、阳极极片120在电芯100的成型过程中无需进行弯折,几乎不会产生“掉粉”,故平直区101内阳极极片120的负极活性物质层的嵌锂位,能够与其相邻的阴极极片110的正极活性物质层能够提供的锂离子数量保持较好的匹配。因此,电芯100的平直区101一般不会发生析锂现象。
为了解决析锂的问题,请一并参阅图3,在本实施例中,电芯成型设备200还包括极片处理装置270,极片处理装置270能够对阴极极片110进行处理,以在第一复合料带300的阴极极片110上形成断裂缝103。断裂缝103沿阴极极片110的宽度方向延伸,能够将阴极极片110断开。可见,断裂缝103所在的区域不存在正极活性物质。
进一步的,阴极极片110的断裂缝103位于所制得的电芯100的弯折区102。由于断裂缝103所在的区域不存在正极活性物质,故位于弯折区102的阴极极片110上能够脱嵌的锂离子的数量将显著减少。由此可见,即使相邻的阳极极片120在弯折过程中发生了“掉粉”,但由于阴极极片110可脱嵌的锂离子的数 量也同样减少,故也能避免阳极极片120的负极活性物质层的嵌锂位远少于相邻的阴极极片110的正极活性物质层能够提供的锂离子数量,从而能够降低或避免析锂现象的发生。
在本实施例中,极片处理装置270包括夹送机构271及切割机构272,夹送机构271及切割机构272均设置于阴极放卷装置220与复合装置240之间。
夹送机构271能够夹紧并输送阴极极片110,切割机构272能够将夹送机构271与复合装置240之间的阴极极片110切断,且夹送机构271能够将切断处拉开并形成断裂缝103。
具体的,夹送机构271可通过对输送速度进行调节,从而将切断处拉开。连续的阴极极片110料带在进入复合装置240前,先经过夹送机构271以及切割机构272。切割机构272将阴极极片110切断后,位于切断处下游的阴极极片110在复合装置240内与第一隔膜131进行复合,且得到的第一复合料带300能够在复合装置240的驱使下保持匀速输送;此时,夹送机构271则减速或停止输送,如此便可将阴极极片110切断处的距离拉开,直至形成断裂缝103。接着,夹送机构271调速至复合装置240同步,在将位于切断处上游的阴极极片110送入复合装置240的同时,辅助复合装置240驱使第一复合料带300继续向下游输送。
进一步的,在本实施例中,夹送机构271包括夹板,夹板能够沿阴极极片110的输送方向上往复移动。阴极极片110被切断后,夹板能够夹住位于切断处上游的阴极极片110并能够随着阴极极片110移动。如此,能够避免被切断后的阴极极片110因端部悬空过长而产生下坠,保证阴极极片110能够顺利进入复合装置240内。
需要指出的是,在其他实施例中,切割机构272还可以采用凸模与凹模配 合的方式对阴极极片110进行冲切,能够在阴极极片110上切除具有一定宽度的废料,从而在将阴极极片110切断的同时便可自然形成断裂缝103。如此,夹送机构271能够与复合装置240保持同步输送,无需通过夹送机构271的速度变化将阴极极片110切断处的距离拉开而形成断裂缝103。
阴极极片110上可以形成一个或多个断裂缝103。在需要形成多个断裂缝103时,夹送机构271及切割机构272重复上述操作即可。
具体在本实施例中,极片处理装置270还包括贴胶机构273,贴胶机构273能够在阴极极片110的一侧粘接第一胶带140,以将位于断裂缝103靠近夹送机构271一侧的阴极极片110粘接于第一隔膜131。
断裂缝103能够将阴极极片110分割成两个极片分段,而位于断裂缝103靠近夹送机构271一侧的阴极极片110则指的是其中一个极片分段的上游端。上游端指的是第一复合料带300的输送方向的前端,譬如,第一复合料带300从左到右输送,则右端为上游端。第一复合料带300在进入卷绕装置260之前,一般还需要绕经过辊以改变方向。在绕经过辊时,极片分段的上游端容易翘起并脱离第一隔膜131。由于第一胶带140能够将极片分段的上游端粘接于第一隔膜131后,故在第一复合料带300绕经过辊时,阴极极片110将不会与第一隔膜131脱离。
如图3所示,第一胶带140的部分穿过断裂缝103与第一隔膜131粘接,另一部分则粘接于阴极极片110。第一胶带140可以在阴极极片110与第一隔膜131复合前粘接,也可在复合后粘接。
进一步的,在本实施例中,贴胶机构273设于切割机构272与复合装置240之间。也就是说,贴胶机构273在阴极极片110与第一隔膜131复合前便完成贴胶。因此,在复合装置240对阴极极片110、阳极极片120及第一隔膜131三 合一复合的过程中,第一胶带140还能够起到避免阴极极片110与第一隔膜131发生错位的作用。
进一步的,在本实施例中,贴胶机构273还能够在阴极极片110的一侧粘接第二胶带(图未示),以将位于断裂缝103远离夹送机构271一侧的阴极极片110粘接于第一隔膜131。
如前所述,断裂缝103能够将阴极极片110分割成两个极片分段,而位于断裂缝103远离夹送机构221一侧的阴极极片110则指的是其中一个极片分段的下游端。下游端指的是第一复合料带300的输送方向的后端,譬如,第一复合料带300从左到右输送,则左端为下游端。第二胶带将极片分段的下游端粘接于第一隔膜131后,能够防止阴极极片110在输送过程中相对于第一隔膜131发生偏移,从而有利于提升电芯100的品质。
显然,为了在第一复合料带300的阴极极片110上形成断裂缝103,极片处理装置270还可采用其他形式。譬如,请一并参阅图4及图5,在另一个实施例中,极片处理装置270包括夹送机构274、切割机构275及贴胶机构276。
夹送机构274为至少两个,每个夹送机构274均能够夹持并输送阴极极片110。切割机构275设于相邻两个夹送机构274之间,每个切割机构275能够将阴极极片110切断,以得到至少两个极片分段。至少两个极片分段能够由不同的夹送机构274夹持并沿输送方向进行输送。而且,至少两个夹送机构274能够驱使所夹持的极片分段沿输送方向输送不同的距离,从而使相邻两个极片分段之间形成断裂缝103。具体的,不同的夹送机构274之间可以通过形成速度差,从而将各自所夹持的极片分段的距离拉开,以形成断裂缝103。
需要指出的是,在其他实施例中,切割机构275还可以采用凸模与凹模配合的方式对阴极极片110进行冲切,能够在阴极极片110上切除具有一定宽度 的废料,从而在将阴极极片110切断的同时便可自然形成断裂缝103。如此,每个夹送机构274均可保持匀速,无需通过夹送机构274将极片分段之间的距离拉开。
具体在本实施例中,每个夹送机构274均包括夹辊,且每个夹送机构274的夹辊的转速可单独调节。通过调节夹辊的转速,可对每个夹送机构274的输送速度进行调节。如此,可使不同的夹送机构274之间形成速度差,从而将各自所夹持的极片分段的距离拉开以形成断裂缝103。夹辊的速度调节更方便,且夹辊所占空间更小,有利于使夹送机构274的结构更紧凑。
具体在本实施例中,夹送机构274为三个,切割机构275为两个,每相邻两个夹送机构274之间均设置一个切割机构275。阴极极片110经过极片处理装置200的处理后,可在阴极极片110形成两个断裂缝103并得到三个极片分段,每个极片分段分别由一个夹送机构274夹持。
请一并参阅图6,贴胶机构276能够将连接件150粘贴于阴极极片110的至少一侧并覆盖断裂缝103,以将至少两个极片分段连接形成一体。贴胶机构276同样设置于相邻两个夹送机构274之间,贴胶机构276与切割机构275成对存在。更具体的,贴胶机构276位于与其成对的切割机构275的下游端。
具体在本实施例中,连接件150可以是胶带,贴胶机构276在阴极极片110的两侧均粘贴胶带,以提升可靠性。
下面结合附图对极片处理装置270的工作过程进行描述:
为了便于下面的描述,阴极极片110输送方向的上游端到下游端(图5从右到左)的三个夹送机构274分别称为第一个、第二个及第三个夹送机构274;两个切割机构275分别称为第一个及第二个切割机构275;两个贴胶机构276分别称为第一个及第二个贴胶机构276;得到的三个极片分段分别称为第一个、第 二个及第三个极片分段;
待阴极极片110进入极片处理装置270后,极片输送方向上的第一个切割机构275将第一个夹送机构274与第二个夹送机构274之间的阴极极片110切断,而第二个切割机构275将第二个夹送机构274与第三个夹送机构274之间的阴极极片100切断,得到三个极片分段;第一个夹送机构274、第二个夹送机构274及第三个夹送机构274分别夹持三个极片分段并朝向下游输送。其中,第一个夹送机构274的输送速度小于第二个夹送机构274的输送速度,而第二个夹送机构274的输送速度小于第三个夹送机构274的输送速度。因此,第一个极片分段向下游移动的距离小于第二个极片分段向下游移动的距离,而第二个极片分段向下游移动的距离小于第三个极片分段向下游移动的距离。如此,三个极片分段之间的距离被拉开,形成两个断裂缝103。
进一步的,断裂缝103形成后,两个贴胶机构276分别在两个断裂缝103的两侧设置连接件150,如粘贴胶带。具体的,第一个贴胶机构276贴胶带将第一个极片分段与第二个极片分段粘接,而第二个贴胶机构276则贴胶带将第二个极片分段与第三个极片分段粘接,从而将三个极片分段连接成一体。
如此,在阴极极片110上形成断裂缝103后,由连接件150将断裂缝103的两侧相连能够保证阴极极片110的连续性,从而使得阴极极片110能够顺利进入复合装置240并与第一隔膜131及阳极极片120进行复合。
上述电芯成型设备200,在阳极极片120、阴极极片110进入卷绕装置260之前,先由复合装置240将阳极极片120及阴极极片110与第一隔膜131进行三合一复合,并得到第一复合料带300。由于阳极极片120及阴极极片110分别位于第一隔膜131的两侧,故第一隔膜131将会被阳极极片120及阴极极片110包裹住。在进行复合时,第一隔膜131两侧的表面不会与复合装置240直接接 触。因此,能够避免第一隔膜131表面的粘接剂粘在复合装置240上,从而改善第一隔膜131与阳极极片120及阴极极片110的复合效果,进而提升所制得的电芯的质量。
请一并参阅图7,本申请还提供一种电芯成型工艺,该工艺可借助上述电芯成型设备200完成。其中,该电芯成型工艺包括步骤S410至步骤S430:
步骤S410,提供第一隔膜131、第二隔膜132、阴极极片110及阳极极片120。具体的,第一隔膜131、第二隔膜132、阴极极片110及阳极极片120均可采用放卷轴的形式进行连续放卷。
步骤S420,将第一隔膜131、阴极极片110及阳极极片120进行复合,得到第一复合料带300,第一复合料带300中的阴极极片110及阳极极片120分别附着于第一隔膜131的两侧。
在进行复合时,阴极极片110及阳极极片120分别位于第一隔膜131的两侧,能够将第一隔膜131包裹起来。因此,第一隔膜131两侧的表面不会与复合装置直接接触,从而能够避免第一隔膜131表面的粘接剂粘在复合装置上,进而改善第一隔膜131与阳极极片120及阴极极片110的复合效果。
步骤S430,将第一复合料带300及第二隔膜132卷绕成电芯,并将电芯压制成具有平直区及弯折区的扁平结构。
电芯100的具体构造及平直区101及弯折区102的定义已在前文进行详细描述,故在此不再赘述。
由于第一隔膜131与阳极极片120及阴极极片110的复合效果得到显著改善,故所制得的电芯100的质量也能够得到提升。需要指出的是,由于电芯100的制备过程是连续的,故步骤S410至步骤S430的动作可同时进行。
在本实施例中,电芯成型工艺还包括步骤:对阴极极片110进行处理,以 在第一复合料带300的阴极极片110上形成断裂缝103,断裂缝103位于所制得的电芯100的弯折区102。
如前所述,由于断裂缝103所在的区域不存在正极活性物质,故位于弯折区102的阴极极片110上能够脱嵌的锂离子的数量将显著减少,从而能够降低或避免析锂现象的发生。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种电芯成型设备,其特征在于,包括第一隔膜放卷装置、阴极放卷装置、阳极放卷装置、复合装置、第二隔膜放卷装置及卷绕装置;所述第一隔膜放卷装置用于放卷第一隔膜,所述阴极放卷装置及所述阳极放卷装置能够分别在所述第一隔膜的两侧放卷阴极极片及阳极极片;所述复合装置能够接收所述第一隔膜、所述阴极极片及所述阳极极片并进行复合,以得到第一复合料带;所述第二隔膜放卷装置用于放卷第二隔膜;所述卷绕装置包括卷针机构,所述卷针机构能够将所述第一复合料带及所述第二隔膜卷绕成电芯。
  2. 根据权利要求1所述的电芯成型设备,其特征在于,所述复合装置包括上压辊及下压辊,所述阴极极片、所述阳极极片及所述第一隔膜能够穿过所述上压辊与所述下压辊之间。
  3. 根据权利要求2所述的电芯成型设备,其特征在于,所述上压辊及所述下压辊均为热压辊。
  4. 根据权利要求1所述的电芯成型设备,其特征在于,所述电芯能够被压制成具有平直区及弯折区的扁平结构,所述电芯成型设备还包括极片处理装置,所述极片处理装置能够对所述阴极极片进行处理,以在所述第一复合料带的所述阴极极片上形成断裂缝,所述断裂缝位于所制得的电芯的所述弯折区。
  5. 根据权利要求4所述的电芯成型设备,其特征在于,所述极片处理装置包括设置于所述阴极放卷装置与所述复合装置之间的夹送机构及切割机构,所述夹送机构能够夹紧并输送所述阴极极片,所述切割机构能够将所述夹送机构与所述复合装置之间的所述阴极极片切断,且所述夹送机构能够将切断处拉开并形成所述断裂缝。
  6. 根据权利要求5所述的电芯成型设备,其特征在于,所述极片处理装置还包括贴胶机构,所述贴胶机构能够在所述阴极极片的一侧粘接第一胶带,以 将位于所述断裂缝靠近所述夹送机构一侧的所述阴极极片粘接于所述第一隔膜。
  7. 根据权利要求6所述的电芯成型设备,其特征在于,所述贴胶机构还能够在所述阴极极片的一侧粘接第二胶带,以将位于所述断裂缝远离所述夹送机构一侧的所述阴极极片粘接于所述第一隔膜。
  8. 根据权利要求6或7所述的电芯成型设备,其特征在于,所述贴胶机构设于所述切割机构与所述复合装置之间。
  9. 根据权利要求4所述的电芯成型设备,其特征在于,所述极片处理装置包括:
    至少两个夹送机构,每个所述夹送机构均能够夹持并输送所述阴极极片;
    设于相邻两个所述夹送机构之间的切割机构,每个所述切割机构能够将所述阴极极片切断,以得到至少两个极片分段,至少两个所述夹送机构能够分别夹持至少两个所述极片分段并拉开相邻两个所述极片分段之间的距离以形成所述断裂缝;
    贴胶机构,能够将连接件粘贴于所述阴极极片的至少一侧并覆盖所述断裂缝,以将所述至少两个极片分段连接形成一体。
  10. 根据权利要求1所述的电芯成型设备,其特征在于,所述卷绕装置还包括转盘,多个所述卷针机构设置于所述转盘,所述转盘转动可带动多个所述卷针机构依次转移至能够获取所述第一复合料带及所述第二隔膜的位置。
  11. 一种电芯成型工艺,其特征在于,包括步骤:
    提供第一隔膜、第二隔膜、阴极极片及阳极极片;
    将所述第一隔膜、所述阴极极片及所述阳极极片进行复合,得到第一复合 料带,所述第一复合料带中的所述阴极极片及所述阳极极片分别附着于所述第一隔膜的两侧;
    将所述第一复合料带及所述第二隔膜卷绕成电芯,并将所述电芯压制成具有平直区及弯折区的扁平结构。
  12. 根据权利要求11所述的电芯成型工艺,其特征在于,还包括步骤:对所述阴极极片进行处理,以在所述第一复合料带的所述阴极极片上形成断裂缝,所述断裂缝位于所述弯折区。
  13. 一种电芯,其特征在于,由上述权利要求1至10任一项所述的电芯成型设备所制得;或者,由上述权利要求11或12所述的电芯成型工艺所制得,所述电芯包括阴极极片、阳极极片及位于相邻的所述阴极极片与所述阳极极片之间的隔膜,所述阴极极片、所述阳极极片及所述隔膜经卷绕压制形成扁平结构,所述电芯具有平直区及位于所述平直区两端的弯折区。
  14. 根据权利要求13所述的电芯,其特征在于,至少部分位于所述弯折区的所述阴极极片形成有沿宽度方向延伸的断裂缝。
  15. 根据权利要求14所述的电芯,其特征在于,所述断裂缝将所在的所述阴极极片分割成至少两个极片分段,至少两个所述极片分段通过连接件连接形成一体。
PCT/CN2023/072042 2022-03-01 2023-01-13 电芯成型设备、电芯成型工艺及电芯 WO2023165278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210195515.6 2022-03-01
CN202210195515.6A CN114759270A (zh) 2022-03-01 2022-03-01 电芯成型设备、电芯成型工艺及电芯

Publications (1)

Publication Number Publication Date
WO2023165278A1 true WO2023165278A1 (zh) 2023-09-07

Family

ID=82324775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072042 WO2023165278A1 (zh) 2022-03-01 2023-01-13 电芯成型设备、电芯成型工艺及电芯

Country Status (2)

Country Link
CN (1) CN114759270A (zh)
WO (1) WO2023165278A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759270A (zh) * 2022-03-01 2022-07-15 无锡先导智能装备股份有限公司 电芯成型设备、电芯成型工艺及电芯
CN115159213B (zh) * 2022-08-23 2022-12-06 江苏时代新能源科技有限公司 电极组件的制造装置
CN116613369B (zh) * 2023-07-21 2024-03-01 深圳海辰储能控制技术有限公司 电极组件和电芯头部卷绕方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461759B1 (en) * 2000-06-09 2002-10-08 Wilson Greatbatch, Ltd. Cathode assembly with bare current collector regions to facilitate winding
CN207834493U (zh) * 2017-11-03 2018-09-07 深圳市诚捷智能装备股份有限公司 全自动锂电池电芯卷绕机
CN109830738A (zh) * 2019-03-29 2019-05-31 无锡先导智能装备股份有限公司 电芯卷绕装置
US20210020893A1 (en) * 2019-07-16 2021-01-21 Samsung Electronics Co., Ltd. Battery and electronic device including same
CN213692108U (zh) * 2020-10-27 2021-07-13 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN214254489U (zh) * 2020-12-18 2021-09-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置
CN114759270A (zh) * 2022-03-01 2022-07-15 无锡先导智能装备股份有限公司 电芯成型设备、电芯成型工艺及电芯

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461759B1 (en) * 2000-06-09 2002-10-08 Wilson Greatbatch, Ltd. Cathode assembly with bare current collector regions to facilitate winding
CN207834493U (zh) * 2017-11-03 2018-09-07 深圳市诚捷智能装备股份有限公司 全自动锂电池电芯卷绕机
CN109830738A (zh) * 2019-03-29 2019-05-31 无锡先导智能装备股份有限公司 电芯卷绕装置
US20210020893A1 (en) * 2019-07-16 2021-01-21 Samsung Electronics Co., Ltd. Battery and electronic device including same
CN213692108U (zh) * 2020-10-27 2021-07-13 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN214254489U (zh) * 2020-12-18 2021-09-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置
CN114759270A (zh) * 2022-03-01 2022-07-15 无锡先导智能装备股份有限公司 电芯成型设备、电芯成型工艺及电芯

Also Published As

Publication number Publication date
CN114759270A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023165278A1 (zh) 电芯成型设备、电芯成型工艺及电芯
CN115004428B (zh) 制备电极组件的设备及电极组件的制备方法
US8313606B2 (en) Method and apparatus for manufacturing wound electrode assembly for battery
CN216750029U (zh) 一种卷绕设备
WO2022170780A1 (zh) 叠片机
WO2023083177A1 (zh) 一种卷绕设备
US7163565B2 (en) Electrode plate for secondary battery, method of manufacturing the same, and secondary battery using the same
CN112310461A (zh) 制造二次电池的电极组件的方法以及设备
WO2023078217A1 (zh) 一种追切卷绕方法及多工位卷绕装置
WO2023083207A1 (zh) 电芯卷绕设备和方法
CN112201772A (zh) 电芯加工方法
CN217740729U (zh) 电芯成型设备及电芯
CN113363595B (zh) 动力锂离子电池和动力锂离子电池的制备方法
CN217740615U (zh) 电芯成型设备及电芯
CN114614066A (zh) 电池卷绕方法及装置
CN218333856U (zh) 电芯、电池及电芯制造设备
WO2024027564A1 (zh) 五合一成型设备及五合一成型方法
WO2023116405A1 (zh) 电极组件的制造设备以及制造方法
WO2023165279A1 (zh) 电芯、电池及电芯制造设备
CN111477836A (zh) 一种电池极片制备方法及装置
CN212392268U (zh) 一种电池极片制备装置
CN210668566U (zh) 电芯卷绕设备
CN111082130B (zh) 锂离子电池柔性集流极卷芯、集流极制造工艺及卷芯制造工艺
CN219106243U (zh) 制片复合装置、卷绕***
CN220526972U (zh) 热复合装置及叠片机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762679

Country of ref document: EP

Kind code of ref document: A1