WO2023163041A1 - 二酸化炭素還元触媒用添加剤、触媒層、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置 - Google Patents

二酸化炭素還元触媒用添加剤、触媒層、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置 Download PDF

Info

Publication number
WO2023163041A1
WO2023163041A1 PCT/JP2023/006460 JP2023006460W WO2023163041A1 WO 2023163041 A1 WO2023163041 A1 WO 2023163041A1 JP 2023006460 W JP2023006460 W JP 2023006460W WO 2023163041 A1 WO2023163041 A1 WO 2023163041A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
additive
catalyst layer
carbon dioxide
water vapor
Prior art date
Application number
PCT/JP2023/006460
Other languages
English (en)
French (fr)
Inventor
寛之 兼古
チンシン ジア
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2023163041A1 publication Critical patent/WO2023163041A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/085Organic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the technology of the present disclosure relates to additives for carbon dioxide reduction catalysts, catalyst layers, cathodes, ion exchange membrane-electrode assemblies, and solid electrolyte electrolysis devices.
  • Carbon dioxide is emitted when energy is extracted from fossil fuels.
  • An increase in the concentration of carbon dioxide in the atmosphere is said to be one of the causes of global warming. Since carbon dioxide is an extremely stable substance, there have been few ways to utilize it. However, due to the demands of the times that global warming is becoming more serious, there is a demand for a new technology for converting carbon dioxide into other substances and recycling it as a resource. For example, the development of a carbon dioxide reduction device capable of directly reducing gaseous carbon dioxide is underway.
  • Patent Document 1 in order to obtain a carbon dioxide reduction electrode catalyst layer that exhibits a high partial current density by controlling wettability and can withstand long-term operation, a catalyst layer is supported by a carbon material.
  • the ratio of the BET specific surface area (A N2 ) determined by nitrogen adsorption to the BET specific surface area (A H2O ) determined by water vapor adsorption (A H2O /A N2 ) is set to 0.08 or less.
  • Patent Document 2 in the reduction reaction of the carbon compound, at least one of suppressing the production ratio of hydrogen by side reaction and improving the production ratio of the reduction product by the reduction reaction of the carbon compound is possible.
  • Non-Patent Document 1 discloses a method for controlling the wettability of the electrode and preventing functional deterioration by adding polytetrafluoroethylene (PTFE) fine particles to the carbon dioxide reduction electrode catalyst layer.
  • PTFE polytetrafluoroethylene
  • JP 2021-147677 A Japanese Patent Application Laid-Open No. 2021-21095 Japanese Patent Application Laid-Open No. 2021-2528
  • Patent Documents 1 and 2 and Non-Patent Document 1 attempt to make the catalyst layer hydrophobic by adding a hydrophobic polymer to the catalyst layer. increased. Further, in Patent Document 3, a hydrophobic compound is supported on the gas diffusion layer or the intermediate layer between the gas diffusion layer and the catalyst layer to increase the hydrophobicity, but the catalyst layer itself has not been improved in hydrophobicity. The effect of hydrophobization was limited.
  • An object of the present invention is to provide an additive for a carbon dioxide reduction catalyst, an electrode, an ion-exchange membrane-electrode assembly, and a solid electrolyte type electrolysis device that are excellent in electrolysis efficiency.
  • a carbon dioxide reduction catalyst having a carrier containing carbon and having a ratio of the water vapor adsorption amount at 25°C and water vapor pressure of 2.2 kPa to the water vapor adsorption amount at the same temperature and water vapor pressure of 3.1 kPa being less than 0.5.
  • aryl group contains one or more selected from the group consisting of a phenyl group and a condensed ring group having 2 to 6 benzene rings.
  • the aryl group has one or more substituents selected from the group consisting of an alkyl group, a fluorinated alkyl group, a phenyl group, a fluorinated phenyl group and a fluorine atom ⁇ 1>, ⁇ 3> and ⁇ 4>
  • * represents a binding site to the surface of the carrier.
  • an additive having an aryl group on its surface and a carrier containing carbon; and a catalyst comprising a support containing carbon and having inorganic fine particles or a metal complex supported thereon.
  • an additive having a carrier containing carbon and having a ratio of less than 0.5 of the water vapor adsorption amount at 25° C. and water vapor pressure of 2.2 kPa to the water vapor adsorption amount at the same temperature and water vapor pressure of 3.1 kPa; and a catalyst comprising a support containing carbon and having inorganic fine particles or a metal complex supported thereon.
  • the inorganic fine particles are fine particles selected from the group consisting of gold, silver, copper, nickel, iron, cobalt, zinc, chromium, palladium, tin, manganese, aluminum, indium, bismuth, molybdenum, and carbon nitride.
  • the metal complex is a metal selected from the group consisting of copper, nickel, iron, cobalt, zinc, manganese, molybdenum, and aluminum, or a metal complex in which a ligand is coordinated to an ion of the metal or
  • the catalyst layer according to ⁇ 8> is a metal selected from the group consisting of copper, nickel, iron, cobalt, zinc, manganese, molybdenum, and aluminum, or a metal complex in which a ligand is coordinated to an ion of the metal or
  • aryl group contains one or more selected from the group consisting of a phenyl group and a condensed ring group having 2 to 6 benzene rings.
  • aryl group has one or more substituents selected from the group consisting of an alkyl group, a fluorinated alkyl group, a phenyl group, a fluorinated phenyl group, and a fluorine atom.
  • * represents a binding site to the surface of the carrier.
  • An ion-exchange membrane-electrode assembly comprising the cathode according to ⁇ 14>, a solid electrolyte, and an anode.
  • ⁇ 17> The cathode according to ⁇ 14>; an anode that forms a pair of electrodes with the cathode; a solid electrolyte interposed in contact between the cathode and the anode; A solid electrolyte type electrolysis device having a voltage applying section for applying a voltage between the cathode and the anode.
  • a catalyst layer capable of suppressing deterioration in function an additive for a carbon dioxide reduction catalyst that has excellent electrical conductivity of the electrode catalyst layer, and an excellent electrolysis efficiency of the carbon dioxide electroreduction reaction, a cathode, An ion-exchange membrane-electrode assembly and a solid electrolyte type electrolytic device can be provided.
  • FIG. 1 is a schematic diagram of an ion-exchange membrane-electrode assembly suitably used in the present embodiment.
  • FIG. 1 is a schematic diagram of a solid electrolyte type electrolytic device that is preferably used in the present embodiment;
  • FIG. 4 is a graph showing relative water vapor adsorption amounts of Examples and Comparative Examples.
  • the carbon dioxide reduction catalyst additive according to the first embodiment has an aryl group on its surface and a carrier containing carbon.
  • the carbon dioxide reduction catalyst additive according to the second embodiment has a carrier containing carbon, and has a water vapor adsorption amount at 25 ° C. and a water vapor pressure of 2.2 kPa at the same temperature and a water vapor pressure of 3.1 kPa.
  • the ratio to volume is less than 0.5.
  • the carbon dioxide reduction catalyst additive according to the first embodiment and the carbon dioxide reduction catalyst additive according to the second embodiment of the technology of the present disclosure are collectively referred to simply as "carbon dioxide according to the present embodiment It is sometimes referred to as "reduction catalyst additive".
  • a carbon dioxide reduction electrolyzer generally has a cathode having a gas diffusion layer and a catalyst layer that promotes a carbon dioxide reduction reaction, an ion exchange membrane, an anode, and an electrolytic solution (electrolyte) supplied to the anode. Due to its structure, the ion exchange membrane has the property of permeating not only ions but also an electrolytic solution. A small amount of the electrolyte supplied to the anode permeates through the ion exchange membrane, resulting in excessive moisture inside the catalyst layer. A phenomenon such as clogging of the flow path was often found. These phenomena had adverse effects such as obstruction of the supply of carbon dioxide to the catalyst layer, resulting in deterioration of electrolysis performance such as current density and selectivity. In particular, this effect is more pronounced as the reaction temperature is higher.
  • Patent Document 1 As a method of controlling the water content of the catalyst layer, there is a method of controlling the hydrophobicity of the catalyst layer.
  • the hydrophobicity is controlled by the addition amount of polyvinyl alcohol, polyvinylpyrrolidone, etc.
  • Patent Document 2 polystyrene is added, and in Non-Patent Document 1, PTFE is added to control the hydrophobicity.
  • these hydrophobic polymers are insulators, and the addition of the hydrophobic polymers increases the electrical resistance of the catalyst layer, causing a problem of heat generation, deterioration of electrolysis efficiency, and the like.
  • Patent Document 3 although a hydrophobic polymer is not used, a hydrophobic compound is supported in the gas diffusion layer or in the intermediate layer between the gas diffusion layer and the catalyst layer to increase the hydrophobicity.
  • the hydrophobization of the catalyst layer has not yet been enhanced, and therefore the effect of the hydrophobization has been limited.
  • the carbon dioxide reduction catalyst additive according to the present embodiment is used as a constituent component of the catalyst layer of the electrode provided with the catalyst layer, so that the surface of the catalyst layer can be In addition, the entire catalyst layer can be made hydrophobic. This is presumed to be due to the following reasons.
  • the additive for carbon dioxide reduction catalyst according to the first embodiment brings hydrophobicity to the catalyst layer by having a carrier containing carbon with excellent electrical conductivity and having an aryl group on the surface. be able to. Since the aryl group is fixed to the carrier surface by chemical bonding, the catalyst layer can be reliably hydrophobized, and not only the surface of the catalyst layer but also the interior of the catalyst layer can be hydrophobized.
  • the additive for a carbon dioxide reduction catalyst according to the second embodiment has a specific water vapor adsorption ratio of less than 0.5 while having a carrier containing carbon with excellent electrical conductivity, and the additive is electrically conductive. Excellent hydrophobicity while possessing properties. Therefore, by adding the additive to the catalyst layer, not only the surface of the catalyst layer but also the inside of the catalyst layer can be made hydrophobic without impairing the electrical conductivity of the catalyst layer.
  • the carbon dioxide reduction catalyst additive according to the first embodiment has an aryl group on its surface and a carrier containing carbon. As described above, having aryl groups on the surface of the carbon-containing support provides the additive with electrical conductivity and hydrophobicity, and by being contained in the catalyst layer, it provides electrical conductivity and conductivity throughout the catalyst layer. Hydrophobicity can be provided.
  • aryl group examples include a phenyl group and a group obtained by removing one hydrogen atom from a condensed ring containing two or more benzene rings (condensed ring group).
  • the aryl group consists of a phenyl group and a condensed ring group having 2 to 6 benzene rings. It preferably includes one or more selected from the group.
  • condensed ring groups having 2 to 6 benzene rings include groups obtained by removing one hydrogen atom from condensed rings such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, chrysene, perylene, pentacene, and pentaphene.
  • the condensed ring group having 2 to 6 benzene rings includes a group obtained by removing one hydrogen atom from one or more condensed rings selected from the group consisting of naphthalene, anthracene, phenanthrene, and pyrene. is preferred.
  • the condensed ring group having 2 to 6 benzene rings preferably contains one or more selected from the group consisting of naphthyl group, anthracenyl group, phenanthrenyl group and pyrenyl group.
  • the condensed ring group having 2 to 6 benzene rings is more preferably a pyrenyl group as a substituent.
  • the aryl group bonded to the surface of the carrier according to this embodiment may be unsubstituted or may have one or more substituents.
  • substituents include alkyl groups, alkenyl groups, fluorinated alkyl groups, aryl groups, fluorinated aryl groups, and fluorine atoms, and the substituents may further have a substituent.
  • Alkyl groups include alkyl groups having 1 to 30 carbon atoms, and may be linear, branched, or cyclic. Specifically, for example, methyl group, benzyl group (phenylmethyl group), trityl group (triphenylmethyl group), ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n- Examples include hexyl group, cyclohexyl group, n-octyl group, n-dodecyl group and the like.
  • the alkyl group may further have a substituent.
  • the upper limit of 30 carbon atoms of the alkyl group includes carbon atoms of substituents that may be further included.
  • the number of carbon atoms in the alkyl group is preferably 1-25, more preferably 2-20.
  • the alkyl group is linear, it preferably has 10 to 14 carbon atoms.
  • the alkyl group is branched, it preferably has 1 to 3 carbon atoms and 1 to 5 unsubstituted phenyl groups.
  • alkenyl groups examples include alkenyl groups having 2 to 30 carbon atoms, which may be linear, branched or cyclic. Specifically, a vinyl group etc. are mentioned, for example.
  • the alkenyl group preferably has 2 to 25 carbon atoms, more preferably 2 to 20 carbon atoms.
  • the fluorinated alkyl group includes a fluorinated alkyl group having 1 to 30 carbon atoms, and may be linear, branched, or cyclic. Specific examples include groups in which one or more hydrogen atoms in the aforementioned alkyl group are substituted with fluorine atoms, such as a methyl fluoride group and an ethyl fluoride group.
  • the number of carbon atoms in the fluorinated alkyl group is preferably 1-25, more preferably 2-20. When the fluorinated alkyl group is linear, it preferably has 1 to 4 carbon atoms.
  • the aryl group as a substituent includes the same aryl group as the aryl group bonded to the surface of the carrier according to the present embodiment, but preferably has 6 to 12 carbon atoms. Specific examples include a phenyl group and a naphthyl group.
  • the fluorinated aryl group include groups in which one or more hydrogen atoms in the aryl group as a substituent are substituted with a fluorine atom. Examples include a fluorinated naphthyl group having 1 to 7 atoms.
  • the substituent is an alkyl group, a fluorinated alkyl group, a phenyl group, a fluorinated phenyl group, and a group consisting of a fluorine atom. It is preferable to include one or more more selected. Further, the substituents may be one kind and two or more, or two or more kinds and two or more.
  • the aryl group bonded to the surface of the carrier according to the present embodiment is a phenyl group
  • the phenyl group may have a structure having two fluorinated methyl groups, or the five hydrogen atoms of the phenyl group may be A structure in which four of them are substituted with fluorine atoms and the remaining one is substituted with a fluorinated phenyl group may be employed.
  • the aryl group bonded to the surface of the carrier according to the present embodiment is preferably a condensed ring group having 2 to 6 substituted phenyl groups and unsubstituted benzene rings; triphenylmethyl group, carbon
  • It is more preferably a condensed ring group having 4 to 5 benzene rings; consisting of a linear unsubstituted alkyl group having 11 to 13 carbon atoms and a linear fluorinated alkyl group having 2 to 3 carbon atoms
  • a condensed ring group having four unsubstituted benzene rings and a phenyl group having any one substituent selected from the group is even more preferable.
  • the aryl group that binds to the surface of the carrier according to this embodiment is preferably one or more of the groups represented by (1) to (8) below.
  • * represents a binding portion to the surface of the carrier according to this embodiment.
  • the aryl group is more preferably one or more of the groups represented by (1) to (3) and (5) below, and represented by (2), (3) and (5) below. more preferably any one or more of the groups.
  • the aryl group possessed by the carrier according to this embodiment may be of one type, or may be of two or more types.
  • the carrier according to this embodiment may have one aryl group, or may have two or more aryl groups. The presence of an aryl group possessed by the carrier can be confirmed and quantified by infrared spectroscopy.
  • the method of introducing an aryl group onto the surface of the carrier is not particularly limited.
  • using carbon black as a carrier according to the present embodiment using an aromatic compound having one primary amino group as a precursor, via a diazotization reaction, to an aromatic ring or the like on the surface of the carbon black through a nucleophilic reaction. can form a chemical bond.
  • Aromatic compounds include benzene and condensed ring compounds containing two or more benzene rings, and condensed ring compounds containing two or more benzene rings are condensed ring compounds having 2 to 6 benzene rings. is preferred. Specific examples include aniline, aminonaphthalene, aminoanthracene, aminophenanthrene, aminopyrene and the like.
  • the aromatic compound having one primary amino group may further have a substituent other than the primary amino group.
  • substituents include alkyl groups, alkenyl groups, fluorinated alkyl groups, aryl groups, fluorinated aryl groups, and fluorine atoms, and the substituents may further have a substituent.
  • the details of the substituents that the aromatic compound having one primary amino group can have are as follows: It is the same as the substituent to be obtained, and the preferred embodiments are also the same.
  • aromatic compound having one primary amino group is preferably any one or more of the compounds represented by (11) to (18) below.
  • the carrier according to this embodiment contains carbon. Since carbon usually has conductivity, the carrier according to the present embodiment is a conductive carrier. Carbon is not limited as long as it is a conductive material that can be used as a gas diffusion layer in an electrode provided in an apparatus for reducing carbon dioxide, and carbon black (furnace black, acetylene black, ketjen black, medium thermal carbon black, etc.), activated carbon, graphite, carbon nanotube, carbon nanofiber, carbon nanohorn, graphene nanoplatelet, nanoporous carbon, etc. Among them, carbon black is preferred. Furthermore, the structure is preferably a porous structure. Carbon with a porous structure includes porous carbon materials typified by graphene.
  • the shape, size, grade, etc. of the carbon black are not limited, but the DBP oil absorption (dibutyl phthalate oil absorption) is preferably 50 to 500 ml/100 g, more preferably 100 to 300 ml/100 g. , 100 to 200 ml/100 g. Also, the primary particle size is preferably 5 to 200 nm, more preferably 10 to 100 nm, even more preferably 10 to 50 nm.
  • the DBP oil absorption of carbon black can be determined according to JIS K 6217-4:2001 (Determination of oil absorption), and the primary particle size can be determined, for example, by laser diffraction particle size distribution measurement.
  • Carbon black may be a commercial product, for example, Vulcan (registered trademark) XC-72 (manufactured by Cabot), Denka Black HS-100 (manufactured by Denka), Ketjen Black EC-600JD (manufactured by Lion Specialty Chemicals). , Conductex-7055 Ultra (manufactured by Birla Carbon) and the like.
  • Vulcan registered trademark
  • XC-72 manufactured by Cabot
  • Denka Black HS-100 manufactured by Denka
  • Ketjen Black EC-600JD manufactured by Lion Specialty Chemicals
  • Conductex-7055 Ultra manufactured by Birla Carbon
  • the carbon dioxide reduction catalyst additive according to the first embodiment preferably has an aryl group on its surface and is composed of a carrier containing carbon.
  • the carbon dioxide reduction catalyst additive according to the second embodiment has a carrier containing carbon, and has a water vapor adsorption amount at 25 ° C. and a water vapor pressure of 2.2 kPa at the same temperature and a water vapor pressure of 3.1 kPa.
  • the ratio to volume is less than 0.5.
  • the water vapor adsorption amount at 25° C. and water vapor pressure of 2.2 kPa (unit: cm 3 (STP)/g) is a, and the water vapor adsorption amount at 25° C.
  • a/b is less than 0.5.
  • the water vapor adsorption amount a at 25°C and a water vapor pressure of 2.2 kPa is strongly affected by the number of adsorbed molecules in the monomolecular layer, which corresponds to the interaction force between the outermost surface of the additive and the adsorbed water molecules. means adsorption capacity.
  • the water vapor adsorption amount b at 25° C. and water vapor pressure of 3.1 kPa is strongly affected by the number of adsorbed molecules corresponding to the adsorption capacity of the additive, and therefore corresponds to the surface area per unit mass of the additive.
  • the ratio (a/b) of the water vapor adsorption amount a to the adsorption amount b represents the surface hydrophilicity of the additive.
  • a/b ⁇ 0.5 means that the additive for carbon dioxide reduction catalyst exhibits high hydrophobicity and high electrical conductivity.
  • A/b is preferably as small as possible and may be 0, but is usually greater than 0.01.
  • a/b is preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.35 or less, still more preferably 0.3 or less, and 0.4 or less. It is more preferably 2 or less, and even more preferably 0.15 or less.
  • the ratio (a/b) of the water vapor adsorption amount a of the carbon dioxide reduction catalyst additive at 25° C. and water vapor pressure of 2.2 kPa to the water vapor adsorption amount b at the same temperature and water vapor pressure of 3.1 kPa is less than 0.5.
  • the method is not particularly limited. For example, a/b ⁇ 0.5 can be achieved by chemically modifying the surface of a carbon-containing carrier with aryl groups.
  • the carbon dioxide reduction catalyst additive according to the first embodiment has a ratio of the water vapor adsorption amount at 25 ° C. and a water vapor pressure of 2.2 kPa to the water vapor adsorption amount at the same temperature and water vapor pressure of 3.1 kPa. is preferably less than 0.5.
  • the carrier containing carbon preferably has an aryl group on the surface of the carrier.
  • the carbon dioxide reduction catalyst additive in the technology of the present disclosure is preferably coated with an ionomer, which will be described later.
  • an ionomer which will be described later.
  • the catalyst layer according to the first embodiment includes an additive having an aryl group on the surface and a carrier containing carbon, and a catalyst comprising a carrier containing carbon and supporting inorganic fine particles or a metal complex.
  • the catalyst layer according to the second embodiment has a carrier containing carbon, and the ratio of the water vapor adsorption amount at 25° C. and water vapor pressure of 2.2 kPa to the water vapor adsorption amount at the same temperature and water vapor pressure of 3.1 kPa is 0. less than 0.5, and a catalyst comprising a carrier containing carbon and supporting inorganic fine particles or a metal complex.
  • the catalyst layer according to the first embodiment and the catalyst layer according to the second embodiment may be collectively referred to simply as “the catalyst layer according to this embodiment".
  • the "additive having an aryl group on the surface and a carrier containing carbon” contained in the catalyst layer according to the first embodiment may be referred to as the additive according to the first embodiment.
  • the ratio of the water vapor adsorption amount at 25°C and water vapor pressure of 2.2 kPa to the water vapor adsorption amount at the same temperature and water vapor pressure of 3.1 kPa is less than 0.5, which is contained in the catalyst layer according to the second embodiment.
  • agent may be referred to as an additive according to the second embodiment.
  • the additive according to the first embodiment and the additive according to the second embodiment may be collectively referred to simply as "the additive according to this embodiment”.
  • the catalyst species contained in the catalyst layer is not particularly limited.
  • the catalyst layer according to the present embodiment is preferably used as a catalyst layer containing a carbon dioxide reduction catalyst, it is also suitable for various catalyst layers where it is desired to avoid adverse effects caused by the catalyst layer being submerged in water, coming into contact with water vapor, depositing salts, and the like. can be used for
  • the additive according to the first embodiment is the same as the additive for the carbon dioxide reduction catalyst according to the first embodiment, and preferred aspects are also the same.
  • the additive having an aryl group on the surface and a carrier containing carbon can spread not only on the surface but also from the inside of the catalyst layer to the entire catalyst layer without impairing the electrical conductivity of the catalyst layer containing the additive, Since the catalyst layer can be hydrophobized, it is possible to suppress functional deterioration of the catalyst contained in the catalyst layer.
  • the ratio of the water vapor adsorption amount at 25°C and water vapor pressure of 2.2 kPa to the water vapor adsorption amount at the same temperature and water vapor pressure of 3.1 kPa is the second embodiment. It is the same as “ratio (a/b) of water vapor adsorption amount a at 25 ° C. and water vapor pressure 2.2 kPa to water vapor adsorption amount b at the same temperature and water vapor pressure 3.1 kPa" in the carbon dioxide reduction catalyst additive according to be. Also in the additive according to the second embodiment, the smaller the a/b, the higher the hydrophobicity and the higher the electrical conductivity.
  • A/b is preferably as small as possible and may be 0, but is usually greater than 0.01.
  • a/b is preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.35 or less, still more preferably 0.3 or less, and 0.4 or less. It is more preferably 2 or less, and even more preferably 0.15 or less.
  • the additive according to the first embodiment and the additive according to the second embodiment can make the catalyst layer containing these additives hydrophobic not only on the surface but also from the inside to the whole. and maintain electrical conductivity. Therefore, it can be suitably used as an additive for various catalyst layers in which it is desired to avoid the harmful effects of the catalyst layer being inundated with water, contact with water vapor, salt deposition, and the like.
  • the catalyst layer according to the present embodiment contains a catalyst that contains carbon and is made of a carrier on which inorganic fine particles or a metal complex is supported.
  • the component that exhibits catalytic action is an inorganic fine particle or a metal complex supported on a carrier.
  • a carrier on which a catalyst source is supported is referred to as a "catalyst".
  • the carrier according to the present embodiment contained in the additive for carbon dioxide reduction catalyst according to the first embodiment can be used, and carbon black is preferably included.
  • Preferred aspects of carbon black are the same as the preferred aspects of carbon black described in the description of the carbon dioxide reduction catalyst additive according to the first embodiment.
  • the carrier according to this embodiment supports inorganic fine particles or a metal complex as a catalyst source.
  • the inorganic fine particles and the metal complex are not particularly limited as long as they are components exhibiting catalytic activity.
  • inorganic fine particles mean metals and inorganic compounds having an average particle size of 1 to 100 nm as measured by photographic observation using a scanning electron microscope or the like.
  • the catalyst source is used in the fuel cell catalyst layer, platinum, gold, nickel, ruthenium, rhodium, etc.
  • the metal complexes include nickel complexes, cobalt complexes, iron complexes, Manganese complexes, zinc complexes, and the like can be used.
  • the metal complexes include nickel complexes, Cobalt complexes, iron complexes, manganese complexes, zinc complexes, and the like can be used.
  • the inorganic fine particles and the metal complex preferably use a catalyst source that has the action of generating at least carbon monoxide through a reduction reaction.
  • the inorganic fine particles for carbon dioxide reduction are the group consisting of gold, silver, copper, nickel, iron, cobalt, zinc, chromium, palladium, tin, manganese, aluminum, indium, bismuth, molybdenum, and carbon nitride. It is preferable that the fine particles are more selected. Only one inorganic fine particle may be used, or two or more may be used in combination.
  • the material of the inorganic fine particles is preferably silver, gold, zinc, tin, copper and bismuth, more preferably silver, gold, copper and tin. Copper is more preferred.
  • the average particle size of the inorganic fine particles as a catalyst source for carbon dioxide reduction is preferably 65 nm or less, preferably 60 nm or less, and preferably 50 nm or less from the viewpoint of the reaction rate of the carbon dioxide reduction reaction. It is preferably 40 nm or less, preferably 30 nm or less.
  • the lower limit of the average particle diameter is not limited, but it is preferably 1 nm or more, more preferably 5 nm or more, from the standpoint of ease of production.
  • the average particle diameter can be measured by photographic observation using a scanning electron microscope or the like.
  • a metal complex as a catalyst source for carbon dioxide reduction is a metal complex in which a ligand is coordinated to a metal or an ion of the metal, and the metal ions include copper, nickel, iron, cobalt, zinc, manganese, molybdenum, and aluminum.
  • the metal is preferably nickel, cobalt, iron, copper, zinc and manganese, more preferably nickel, cobalt, iron and copper, and further nickel, cobalt and iron. preferable.
  • the metal complex may contain only one kind of metal or ions of the metal, or may contain two or more kinds thereof.
  • the type of ligand is not particularly limited, and examples thereof include phthalocyanine complexes, porphyrin complexes, pyridine complexes, metal-supporting covalent triazine structures, and metal organic structures. Among them, preferred are phthalocyanine complexes, porphyrin complexes, pyridine complexes and metal-supported covalent triazine structures, more preferred are phthalocyanine complexes, porphyrin complexes and metal-supported covalent triazine structures, and porphyrin complexes and metal-supported covalent triazine structures. Body is more preferred.
  • the metal complex may contain only one ligand, or may contain two or more ligands.
  • the catalyst layer for carbon dioxide reduction according to the present embodiment is an additive according to the present embodiment (additive for a carbon dioxide reduction catalyst according to the present embodiment);
  • a catalyst containing carbon and made of a carrier on which inorganic fine particles or a metal complex is supported The inorganic fine particles are fine particles selected from the group consisting of gold, silver, copper, nickel, iron, cobalt, zinc, chromium, palladium, tin, manganese, aluminum, indium, bismuth, molybdenum, and carbon nitride;
  • the metal complex is preferably a catalyst layer composed of a metal selected from the group consisting of copper, nickel, iron, cobalt, zinc, manganese, molybdenum, and aluminum, or a metal complex in which ions of the metal are coordinated.
  • the inorganic fine particles and metal complexes are supported on the carrier according to the present embodiment by carrying out known methods such as vapor deposition, deposition, adsorption, deposition, adhesion, welding, physical mixing, and spraying.
  • the catalyst in the technology of the present disclosure is preferably coated with an ionomer, which will be described later.
  • an ionomer By coating the catalyst with an ionomer, an ion-conducting channel is easily formed between the coated catalyst and the solid electrolyte described later, ions generated by the reaction are easily transferred, and the electrolysis efficiency can be improved.
  • the catalyst layer may further contain an ionomer.
  • the ionomer functions as a binder resin in the catalyst layer, is a matrix resin (continuous phase) capable of dispersing and immobilizing the additive and the catalyst according to the present embodiment, and transfers ions generated by electrolysis to transfer CO 2 It also has the function of improving electrolysis efficiency.
  • the ionomer is preferably a polymer electrolyte from the viewpoint of improving conductivity. More preferably, the polymer electrolyte is an ion exchange resin.
  • the ion exchange resin may be a cation exchange resin or an anion exchange resin, but is preferably an anion exchange resin. In particular, when an anion exchange resin is used, the anion exchange resin itself has a carbon dioxide adsorption capacity, and the electrolysis efficiency of carbon dioxide can be greatly improved together with the ease of ion transfer of the ion exchange resin. It becomes possible.
  • Examples of the cation exchange resin include a fluororesin having a sulfone group and a styrene-divinylbenzene copolymer having a sulfone group.
  • Commercially available products can also be used, and examples thereof include Nafion (manufactured by Chemours), Aquivion (manufactured by Solvay Specialty Polymers), DIAION (manufactured by Mitsubishi Chemical), Fumasep (manufactured by FUMATECH) and the like.
  • Anion exchange resins include, for example, resins having one or more ion exchange groups selected from the group consisting of quaternary ammonium groups, primary amino groups, secondary amino groups, and tertiary amino groups. Commercially available products can also be used. made) and the like.
  • the anion exchange resin preferably has a base point density of 2.0 to 5.0 mmol/cm 3 in a dry state, preferably 2.5 mmol/cm 3 or more, 4.5 mmol/cm 3 or more. /cm 3 , more preferably 2.9 mmol/cm 3 or more and less than 4.5 mmol/cm 3 .
  • the base point density of the anion exchange resin can be obtained from the integrated value of the signal when performing 1 H NMR measurement on the anion exchange resin.
  • the dry state means that the content of free water in the anion exchange resin is 0.01 g or less per 1 g of the resin.
  • the ion exchange resin can be brought to a dry state.
  • the cathode (cathode) according to the present embodiment is used in an ion-exchange membrane-electrode assembly and a solid electrolyte type electrolytic device described later, from the viewpoint of improving conductivity, the ionomer is the same as the solid electrolyte (ion-exchange membrane). It is preferable to use a resin.
  • the content of the additive according to the present embodiment in the catalyst layer is preferably 1 to 90% by mass, more preferably 5 to 70% by mass, from the viewpoint of improving the hydrophobicity of the catalyst layer and suppressing deterioration of the catalytic function. %, more preferably 10 to 50% by mass.
  • the content of the catalyst according to the present embodiment in the catalyst layer is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, from the viewpoint of further improving the production efficiency of synthesis gas containing CO. More preferably, 15 to 60% by mass is even more preferable.
  • the cathode (cathode) according to this embodiment has the catalyst layer for carbon dioxide reduction according to this embodiment described above and a gas diffusion layer.
  • the cathode (cathode) according to the present embodiment is provided with a catalyst layer containing the additive according to the present embodiment, so that the carbon dioxide reduction reaction in the catalyst layer is not hindered, and the synthesis gas containing CO is stably produced. be able to. Therefore, the electrolysis efficiency of the carbon dioxide electrolytic reduction reaction is excellent.
  • Gas diffusion layers include, for example, carbon paper or non-woven fabrics, or metal mesh. Examples thereof include graphite carbon, vitreous carbon, titanium, and SUS steel.
  • the ion exchange membrane-electrode assembly according to this embodiment has the cathode according to this embodiment, a solid electrolyte, and an anode. Since the ion exchange membrane-electrode assembly according to the present embodiment includes a cathode having a catalyst layer containing the additive according to the present embodiment, the carbon dioxide reduction reaction in the catalyst layer is not hindered, and CO can be stably can produce synthesis gas containing Therefore, the electrolysis efficiency of the carbon dioxide electrolytic reduction reaction is excellent.
  • FIG. 1 is a schematic diagram of an ion-exchange membrane-electrode assembly preferably used in this embodiment.
  • FIG. 1 shows an ion exchange membrane-electrode assembly 50 having a gas diffusion layer 10, a catalyst layer 20, a solid electrolyte 30, and an anode 40.
  • FIG. The catalyst layer 20 includes an ionomer 22, a plurality of catalysts 24 according to the present embodiment, and a plurality of additives (additives for a carbon dioxide reduction catalyst according to the present embodiment) 26 according to the present embodiment.
  • the combination of the gas diffusion layer 10 and the catalyst layer 20 constitutes the cathode according to this embodiment.
  • carbon dioxide (CO 2 ) is supplied to the catalyst layer 20 through the gas diffusion layer 10, and carbon monoxide (CO) is produced by a reduction reaction.
  • CO 2 carbon dioxide
  • CO carbon monoxide
  • the ion exchange membrane-electrode assembly according to this embodiment has a solid electrolyte.
  • a polymer membrane can be used as the solid electrolyte.
  • Various ionomers can be used as the polymer, and it may be a cation exchange resin or an anion exchange resin, but an anion exchange resin is preferred. That is, the solid electrolyte is preferably an anion exchange membrane. Further, it is more preferable to use the same anion exchange resin as the ionomer used in the catalyst layer described above.
  • a product commercially available as a cation exchange membrane or an anion exchange membrane may be used as the solid electrolyte.
  • the base point density in a dry state is preferably 0.5 to 5.0 mmol/cm 3 , 2.5 mmol/cm 3 or more, 4 It is more preferably less than 0.5 mmol/cm 3 , and even more preferably 2.9 mmol/cm 3 or more and less than 4.5 mmol/cm 3 .
  • cation exchange membrane examples include strongly acidic cation exchange membranes in which sulfone groups are introduced into a fluororesin matrix, Nafion 117, Nafion 115, Nafion 212, Nafion 350 (manufactured by Chemrous), and styrene-divinylbenzene copolymer matrix with sulfone groups.
  • the introduced strongly acidic cation exchange membrane, Neosepta CSE (manufactured by Astom) and the like can be used.
  • anion-exchange membranes having one or more ion-exchange groups selected from the group consisting of quaternary ammonium groups, primary amino groups, secondary amino groups, and tertiary amino groups. mentioned. Specific examples include Neocepta (registered trademark) ASE, AHA, ACS, AFX (manufactured by Astom), Celemion (registered trademark) AMVN, DSVN, AAV, ASVN, and AHO (manufactured by Asahi Glass Co., Ltd.).
  • the reduction reaction of carbon dioxide at the cathode (cathode) differs depending on the type of solid electrolyte.
  • a cation exchange membrane is used as the solid electrolyte
  • reduction reactions of the following reaction formulas (1) and (2) occur
  • an anion exchange membrane is used as the solid electrolyte, the following reaction formula (3) and the reduction reaction of (4) occurs.
  • the oxidation reaction at the anode differs depending on the type of solid electrolyte.
  • the oxidation reaction of the following reaction formula (5) occurs
  • the anion exchange membrane is used as the solid electrolyte
  • the oxidation reaction of the following reaction formula (6) occurs. get up.
  • An anode is a gas diffusion electrode that includes a gas diffusion layer.
  • the gas diffusion layer includes, for example, metal mesh.
  • Electrode materials for the anode include, for example, Ir, IrO 2 , Ru, RuO 2 , Co, CoOx, Cu, CuOx, Fe, FeOx, FeOOH, FeMn, Ni, NiOx, NiOOH, NiCo, NiCe, NiC, NiFe, NiCeCoCe , NiLa, NiMoFe, NiSn, NiZn, SUS, Au, Pt.
  • the solid electrolyte type electrolysis device includes the cathode according to the above-described embodiment, an anode forming a pair of electrodes with the cathode, and a solid electrolyte interposed between the cathode and the anode in a contact state. , and a voltage application unit that applies a voltage between the cathode and the anode. Since the solid electrolyte type electrolysis device according to the present embodiment includes a cathode (cathode) having a catalyst layer containing the additive according to the present embodiment, the carbon dioxide reduction reaction in the catalyst layer is not hindered and is stable. Syngas containing CO can be produced. Therefore, the electrolysis efficiency of the carbon dioxide electrolytic reduction reaction is excellent.
  • FIG. 2 is a schematic diagram of a solid electrolyte type electrolytic device that is preferably used in this embodiment.
  • FIG. 2 shows a cathode (cathode) 200 constituting an electrode according to this embodiment, an anode (anode) 400 constituting a pair of electrodes with the cathode 200, and a contact state between the cathode 200 and the anode 400.
  • a solid electrolyte electrolyzer 800 is shown having an intervening solid electrolyte 300 and a voltage application section 700 that applies a voltage between cathode 200 and anode 400 .
  • the solid electrolyte type electrolytic device 800 shown in FIG. 2 further has a cathode collector plate 100 , an anode collector plate 500 and an electrolytic solution 600 .
  • the electrode according to the present embodiment described above is used as the cathode 200 .
  • the solid electrolyte 300 is the same as the solid electrolyte 30 in FIG. 1, and the solid electrolyte 300 is preferably an anion exchange membrane.
  • Anode 400 is the same as anode 40 in FIG.
  • the details of the cathode 200, the solid electrolyte 300, and the anode 400 are as described above.
  • each element other than the cathode 200, the solid electrolyte 300, and the anode 400 will be described without reference numerals.
  • cathode current collectors examples include metal materials such as copper (Cu), nickel (Ni), stainless steel (SUS), nickel-plated steel, and brass. Copper is preferred from the viewpoint of As for the shape of the cathode current collector plate, when the material is a metal material, for example, metal foil, metal plate, metal thin film, expanded metal, punched metal, foamed metal, and the like can be mentioned.
  • the cathode current collector plate may be provided with a gas supply hole for supplying a raw material gas containing carbon dioxide to the cathode and a gas recovery hole for collecting a produced gas containing carbon monoxide.
  • a gas supply hole for supplying a raw material gas containing carbon dioxide to the cathode
  • a gas recovery hole for collecting a produced gas containing carbon monoxide.
  • the anode current collector (anode current collector) is preferably electrically conductive to receive electrons from the anode and rigid to support the anode. From this point of view, metal materials such as titanium (Ti), copper (Cu), nickel (Ni), stainless steel (SUS), nickel-plated steel, and brass can be suitably used for the anode current collector plate.
  • the anode current collector plate may be provided with a gas flow path for sending a raw material gas (such as H 2 O) to the anode. Since the anode current collector plate has the gas flow path, the raw material gas can be fed to the anode uniformly and efficiently. Note that the number, shape, location, size, etc. of the gas flow paths are not limited and can be set as appropriate.
  • the voltage applying unit applies voltage between the cathode and the anode by applying voltage to the cathode current collector and the anode current collector.
  • both current collector plates are conductors, they supply electrons to the cathode and receive electrons from the anode.
  • a control section (not shown) may be electrically connected to the voltage application section in order to apply an appropriate voltage.
  • the electrolytic solution is preferably an aqueous solution having a pH of 5 or higher.
  • aqueous solution having a pH of 5 or higher.
  • carbonate aqueous solution bicarbonate aqueous solution (e.g., KHCO3 aqueous solution), sulfate aqueous solution, borate aqueous solution, sodium hydroxide, potassium hydroxide aqueous solution, sodium chloride aqueous solution, and the like.
  • the solid electrolyte type electrolytic device may be provided with a reaction gas supply section (not shown) outside the solid electrolyte type electrolytic device. That is, the reaction gas CO 2 may be supplied to the catalyst layer provided in the cathode, or the reaction gas may be supplied to the gas supply hole from the reaction gas supply unit through a pipe (not shown) or the like, or the cathode current collector may be supplied.
  • the plate may be provided so that the reaction gas is sprayed onto the surface opposite to the contact surface with the cathode.
  • CO generation method Next, a CO production method using the solid electrolyte type electrolysis device according to this embodiment will be described.
  • CO 2 which is a reaction gas as a raw material, is supplied in a gaseous state to the solid electrolyte type electrolysis device by a reaction gas supply unit (not shown).
  • CO 2 is supplied to the cathode through, for example, gas supply holes provided in the cathode current collector plate.
  • the CO 2 supplied to the cathode comes into contact with the catalyst layer of the cathode, and when a cation exchange membrane is used as the solid electrolyte, the above reaction formula (1) and reaction formula (2) ) occurs, and when an anion exchange membrane is used as the solid electrolyte, the reduction reactions of the above-described reaction formulas (3) and (4) occur, so that at least CO and H 2 are included. Only syngas is produced.
  • the generated synthesis gas containing CO and H 2 is sent to a gas recovery device (not shown) through, for example, a gas recovery hole provided in the cathode current collector plate, and recovered for each predetermined gas. It will happen.
  • Example 1 An ethanol dispersion containing 0.5 g of carbon black having an average particle size of 30 nm was irradiated with ultrasonic waves for 10 minutes, and then the dispersion was allowed to stand in a vacuum chamber under a reduced pressure environment of 10 kPa (absolute pressure) for 10 minutes. Subsequently, 8.3 mL of 0.5 mol/L sodium nitrite aqueous solution was added to the dispersion. After adding 4 mmol of 4-tritylaniline [compound represented by formula (11)] to the dispersion, 2 mL of hydrochloric acid was further added and the mixture was stirred at 15° C. for 5 hours or more.
  • 4-tritylaniline compound represented by formula (11)
  • Example 1 After neutralizing the dispersion by adding a sodium hydroxide solution, the resulting slurry was washed with distilled water, the solid matter was recovered by a centrifuge, and the solid matter was vacuum-dried at 60°C overnight. The additive of Example 1 was used. The average particle size of carbon black was determined by laser diffraction particle size distribution measurement.
  • Example 2 to 8 Additives of Examples 2 to 8 were produced in the same manner, except that the basic organic compounds shown in Tables 1 and 2 were used instead of 4-tritylaniline in the production of the additive of Example 1. .
  • the basic organic compounds used in the production of the additives of Examples 2 to 8 are the compounds represented by formulas (12) to (18) described above.
  • Comparative Example 1 carbon black with an average particle size of 30 nm was used as an additive.
  • Comparative Example 2 polytetrafluoroethylene (PTFE, manufactured by Nanoshel, trade name “Polytetrafluoroethylene Nanopowder”) having an aerodynamic particle size of 30 to 50 nm was used as an additive.
  • PTFE polytetrafluoroethylene
  • Examples 1 to 7 and Comparative Examples 1 to 3 The catalyst used in Examples 1-7 and Comparative Examples 1-3 is the same. It was manufactured as follows. In a beaker, 0.1 g of carbon black carrier (carrier according to the present embodiment) was mixed with 100 mL of ethanol, and the obtained ethanol dispersion was irradiated with ultrasonic waves for 10 minutes. After that, the dispersion was allowed to stand in a vacuum chamber under a reduced pressure environment of 10 kPa (absolute pressure) for 10 minutes. Thereafter, 11.7 mL of 0.1 mol/L AgNO 3 solution and 1 mL of 2.3 mol/L sodium phosphinate solution were mixed and stirred at 15° C.
  • carrier carrier according to the present embodiment
  • the catalysts of Examples 1 to 7 and Comparative Examples 1 to 3 A powder was obtained.
  • the obtained catalyst was carbon black carrying Ag particles as a catalyst source, and the mass of Ag particles carried was 40 parts by mass with respect to 100 parts by mass of carbon black not carrying Ag particles.
  • Example 8 and Comparative Example 4 The catalyst used in Example 8 and Comparative Example 4 is the same. It was manufactured as follows. In a beaker, 0.4 g of carbon black support (support according to the present embodiment), 1.1 mmol of pentaethylenehexamine and 0.7 mmol of nickel (II) chloride hexahydrate were mixed in 15 mL of ethanol, and the resulting ethanol The dispersion was irradiated with ultrasonic waves for 10 minutes. Thereafter, the ethanol dispersion was dried by heating to evaporate the ethanol, and the obtained mixture was heated at 900° C. for 30 seconds or more in an inert gas using an electric furnace to bake it.
  • the product was washed with an aqueous solution of sulfuric acid, the solid matter was recovered by a suction filter, and the solid matter was vacuum-dried at 60° C. overnight to obtain a catalyst powder supporting a Ni complex.
  • This catalyst powder was used as the catalyst powder of Example 8 and Comparative Example 4.
  • the mass of Ni supported was 1 part by mass with respect to 100 parts by mass of carbon black on which no Ni complex was supported.
  • Example 1 43 mg of the obtained catalyst powder was dispersed in ethanol, and 12 mg of an ionomer as an ionomer containing 5 mg of the additive of Example 1 was added to the dispersion.
  • the anion exchange resin was subjected to 1 H NMR measurement in a dry state, the base point density was calculated to be 2.8 mmol/cm 3 from the integral value of the signal.
  • the anion exchange resin is a fluorine-based resin having an aromatic ring as a base material and a quaternary ammonium group (quaternary alkylamine group) as a side chain attached to the main chain. .
  • the dispersion was irradiated with ultrasonic waves for 10 minutes, and left standing in a vacuum chamber under a reduced pressure environment of 10 kPa (absolute pressure) for 10 minutes.
  • a carbon paper was coated with the dispersion using a spray coater to form a cathode.
  • the cathode has a coating film of the dispersion liquid as a catalyst layer and carbon paper as a gas diffusion layer.
  • the anode (positive electrode) was structured to be in contact with the electrolytic solution (0.5 mol/L KHCO 3 aqueous solution) bath.
  • Examples 2 to 7 and Comparative Examples 1 to 2 In the production of the solid electrolyte type electrolytic device of Example 1, the additive was changed from the additive of Example 1 to one of the additives of Examples 2 to 7 and Comparative Examples 1 and 2 in the same manner. , Examples 2 to 7 and Comparative Examples 1 to 2 were manufactured.
  • Example 8 In the production of the solid electrolyte type electrolytic device of Example 1, the additive was changed from the additive of Example 1 to the additive of Example 8, and the ionomer was changed from the ionomer of Example 1 to Nafion (manufactured by Chemours ), a solid electrolyte type electrolytic device of Example 8 was manufactured in the same manner as above.
  • Comparative Example 3 A solid electrolyte type electrolytic device of Comparative Example 3 was manufactured in the same manner as in the manufacturing of the solid electrolyte type electrolytic device of Example 1, except that no additive was added.
  • Comparative Example 4 A solid electrolyte type electrolytic device of Comparative Example 4 was manufactured in the same manner as in the manufacturing of the solid electrolyte type electrolytic device of Example 8, except that no additive was added.
  • Example 8 and Comparative Example 4 Using each of the solid electrolyte electrolysis devices of Example 8 and Comparative Example 4, pure CO 2 was supplied to the cathode, and the potential applied to the cathode was ⁇ 1.8 V with respect to the silver/silver chloride reference electrode under room temperature conditions. , CO 2 was electrolyzed to measure the CO generation current density [mA/cm 2 ] when generating CO. Table 2 shows the results.
  • Water vapor adsorption amount of additive For the additives of Examples 1 to 4, 6, 7 and Comparative Example 1, water vapor adsorption amount (a) at 25 ° C. and water vapor pressure of 2.2 kPa, and water vapor adsorption amount (b) at 25 ° C. and water vapor pressure of 3.1 kPa. was measured by BELSORP-max (manufactured by Bell Japan Co., Ltd.), and the ratio (a/b) of the two is shown in Table 3. In the measurement, 0.2 to 0.3 g of the additive sample was heated at 120° C. for 5 hours or more under vacuum conditions to remove the adsorbed gas on the surface in advance, and then water vapor was introduced under the conditions of 25° C. to obtain each water vapor. The amount of adsorption at pressure was determined.
  • FIG. 3 shows a graph in which the relative water vapor adsorption amount is plotted against the relative pressure.
  • the relative pressure on the vertical axis means the value obtained by dividing each water vapor pressure by the saturated water vapor pressure (3.1 kPa) at 25.degree.
  • the relative water vapor adsorption amount on the horizontal axis means the value (a/b) obtained by dividing the water vapor adsorption amount (a) at each relative pressure by the water vapor adsorption amount (b) at the saturated water vapor pressure at 25°C. Expressed as a formula, it is as follows.
  • Relative water vapor adsorption amount (water vapor adsorption amount at each measurement point) / (water vapor adsorption amount at saturated water vapor pressure)
  • the relative pressure on the horizontal axis is 0.7
  • the relative pressure 2.2/3.1
  • the corresponding relative water vapor adsorption amount on the vertical axis is the ratio (a/b)
  • ratio (a/b) shown in Table 3 is the relative water vapor adsorption amount on the vertical axis when the relative pressure on the horizontal axis is 0.7.
  • Example 1 (4-tritylaniline) - ⁇ - (Ex. 2): Example 2 (1-aminopyrene) - ⁇ - (Ex.3): Example 3 (3,5-bis(trifluoromethyl)aniline) - ⁇ - (Ex.4): Example 4 (4-aminononafluorobiphenyl) - ⁇ - (Ex.6): Example 6 (2-aminoanthracene) - ⁇ - (Ex.7): Example 7 (4-ethylaniline) - ⁇ -(Co-Ex.1): Comparative Example 1 (unmodified carbon black)
  • the ratio (a/b) of the water vapor adsorption amount (a) at 25° C. and water vapor pressure of 2.2 kPa to the water vapor adsorption amount (b) at 25° C. and water vapor pressure of 3.1 kPa is was less than 0.5. This means that the additives of the examples exhibit high hydrophobicity and high electrical conductivity.
  • CO 2 gas discharged from a factory is used as a raw material, and renewable energy such as a solar battery is applied to the voltage application unit, so that the desired generation can be achieved.
  • Syngas can be produced containing at least CO and H 2 in proportion.
  • the synthesis gas thus produced can be used to produce fuel base materials, raw materials for chemical products, and the like by methods such as FT synthesis (Fischer-Tropsch synthesis) and methanation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Abstract

機能低下を抑制することができる触媒層、並びに、電極触媒層の電気伝導性と、二酸化炭素電解還元反応の電解効率に優れる二酸化炭素還元触媒用添加剤、電極、イオン交換膜-電極接合体及び固体電解質形電解装置を提供する。前記二酸化炭素還元触媒用添加剤は、アリール基を表面に有し、炭素を含む担体を有する。

Description

二酸化炭素還元触媒用添加剤、触媒層、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置
 本開示の技術は、二酸化炭素還元触媒用添加剤、触媒層、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置に関する。
 二酸化炭素は化石燃料などからエネルギーを取り出した際に排出される。大気中の二酸化炭素濃度の上昇は地球温暖化の原因の一つと言われる。二酸化炭素は極めて安定な物質であるため、従来は利用する道がほとんどなかった。しかしながら地球温暖化が深刻になりつつあるという時代の要請もあり、二酸化炭素を他の物質に変換し再び資源化するための、新たな技術が求められている。例えば、気相の二酸化炭素を直接還元することができる二酸化炭素還元型装置の開発が進められている。
 例えば、特許文献1には、濡れ性を制御することで高い部分電流密度を示し、長時間の運転に耐える二酸化炭素還元電極用触媒層を得るために、触媒層に、炭素材料に担持された金属触媒、イオン伝導性物質、及び親水性ポリマーを含み、窒素吸着により求められたBET比表面積(AN2)と水蒸気吸着により求められたBET比表面積(AH2O)の比(AH2O/AN2)を0.08以下とすることが開示されている。
 特許文献2には、炭素化合物の還元反応において、副反応による水素の生成割合を抑えること、及び炭素化合物の還元反応による還元生成物の生成割合を向上させることのうちの少なくともいずれか一方を可能とするために、炭素化合物の還元反応に用いられる還元反応用電極に、疎水性高分子によって修飾された電極体を備えることが開示されている。
 特許文献3には、炭素上に、疎水性及び/又は親水性を有する分子をグラフトさせることによって技術的問題を解決することを可能にする方法が開示されている。
 更に、非特許文献1には、二酸化炭素還元電極用触媒層にポリテトラフルオロエチレン(PTFE)微粒子を添加することで、電極の濡れ性を制御し機能低下を防止する方法が開示されている。
特開2021-147677号公報 特開2021-21095号公報 特開2021-2528号公報
Z. Xing, L. Hu, D. S. Ripatti, X. Hu, X. Feng, Nature Communications, 2021, 12, 136.
 二酸化炭素還元反応を進める触媒層と、イオン交換膜を有する電解装置において、電解液が、イオン交換膜を透過し、触媒層に浸み出すと触媒層の機能を低下させてしまう。
 特許文献1、2及び非特許文献1では、触媒層に疎水性高分子を添加することにより触媒層の疎水化を試みているものの、疎水性高分子は絶縁性であり、触媒層の電気抵抗が増大した。また、特許文献3では、ガス拡散層またはガス拡散層と触媒層の中間層に疎水性化合物を担持し、疎水性を高めているものの、触媒層自体の疎水性を高めるには至っておらず、疎水化の効果は限定的であった。
 本開示は、以上の事情に鑑みてなされたものであり、本開示技術の課題は、機能低下を抑制することができる触媒層、並びに、電極触媒層の電気伝導性と、二酸化炭素電解還元反応の電解効率に優れる二酸化炭素還元触媒用添加剤、電極、イオン交換膜-電極接合体及び固体電解質形電解装置を提供することを目的とする。
<1> アリール基を表面に有し、炭素を含む担体を有する二酸化炭素還元触媒用添加剤。
<2> 炭素を含む担体を有し、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である二酸化炭素還元触媒用添加剤。
<3> 前記アリール基は、フェニル基及びベンゼン環を2~6つ有する縮合環基からなる群より選択される1つ以上を含む<1>に記載の二酸化炭素還元触媒用添加剤。
<4> 前記ベンゼン環を2~6つ有する縮合環基が、ナフチル基、アントラセニル基、フェナントレニル基及びピレニル基からなる群より選択される1つ以上を含む<3>に記載の二酸化炭素還元触媒用添加剤。
<5> 前記アリール基が、アルキル基、フッ化アルキル基、フェニル基、フッ化フェニル基及びフッ素原子からなる群より選択される1つ以上の置換基を有する<1>、<3>及び<4>のいずれか1つに記載の二酸化炭素還元触媒用添加剤。
<6> 前記アリール基が、(1)~(8)で表される基のいずれか1つ以上である<1>及び<3>~<5>のいずれか1つに記載の二酸化炭素還元触媒用添加剤。
Figure JPOXMLDOC01-appb-C000003
 (1)~(8)中、*は前記担体の表面への結合部を表す。
<7> アリール基を表面に有し、炭素を含む担体を有する添加剤と、
 炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒と
を含む触媒層。
<8> 炭素を含む担体を有し、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である添加剤と、
 炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒と
を含む触媒層。
<9> 前記無機微粒子が、金、銀、銅、ニッケル、鉄、コバルト、亜鉛、クロム、パラジウム、スズ、マンガン、アルミニウム、インジウム、ビスマス、モリブデン、及び窒化炭素からなる群より選ばれる微粒子であり;前記金属錯体が、銅、ニッケル、鉄、コバル、亜鉛、マンガン、モリブデン、及びアルミニウムからなる群より選ばれる金属若しくは該金属のイオンに配位子が配位した金属錯体である<7>又は<8>に記載の触媒層。
<10> 前記アリール基は、フェニル基及びベンゼン環を2~6つ有する縮合環基からなる群より選択される1つ以上を含む<7>に記載の触媒層。
<11> 前記ベンゼン環を2~6つ有する縮合環基が、ナフチル基、アントラセニル基、フェナントレニル基及びピレニル基からなる群より選択される1つ以上を含む<10>に記載の触媒層。
<12> 前記アリール基が、アルキル基、フッ化アルキル基、フェニル基、フッ化フェニル基及びフッ素原子からなる群より選択される1つ以上の置換基を有する<7>に記載の触媒層。
<13> 前記アリール基が、(1)~(8)で表される基のいずれか1つ以上である<7>に記載の触媒層。
Figure JPOXMLDOC01-appb-C000004
 (1)~(7)中、*は前記担体の表面への結合部を表す。
<14> <9>に記載の触媒層と、ガス拡散層とを有するカソード。
<15> <14>に記載のカソードと、固体電解質と、アノードとを有するイオン交換膜-電極接合体。
<16> 前記固体電解質が、陰イオン交換膜である<15>に記載のイオン交換膜-電極接合体。
<17> <14>に記載のカソードと、
 前記カソードと一対の電極を構成するアノードと、
 前記カソードと前記アノードとの間に接触状態にて介在する固体電解質と、
前記カソードと前記アノードとの間に電圧を印加する電圧印加部と
を有する固体電解質形電解装置。
<18> 前記固体電解質が、陰イオン交換膜である<17>に記載の固体電解質形電解装置。
 本開示の技術によれば、機能低下を抑制することができる触媒層、並びに、電極触媒層の電気伝導性と、二酸化炭素電解還元反応の電解効率に優れる二酸化炭素還元触媒用添加剤、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置を提供することができる。
本実施形態で好適に用いられるイオン交換膜-電極接合体の模式図である。 本実施形態で好適に用いられる固体電解質形電解装置の模式図である。 実施例及び比較例の相対水蒸気吸着量を示したグラフである。
 本明細書に記載された数値範囲の上限値及び下限値は任意に組み合わせることができる。例えば、数値範囲として「A~B」及び「C~D」が記載されている場合、「A~D」及び「C~B」の数値範囲も、本開示の技術の範囲に含まれる。
 また、本明細書に記載された数値範囲「下限値~上限値」は、特に断りのない限り、下限値以上、上限値以下であることを意味する。
<二酸化炭素還元触媒用添加剤>
 第一の本実施形態に係る二酸化炭素還元触媒用添加剤は、アリール基を表面に有し、炭素を含む担体を有する。
 第二の本実施形態に係る二酸化炭素還元触媒用添加剤は、炭素を含む担体を有し、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である。
 第一の本実施形態に係る二酸化炭素還元触媒用添加剤と、本開示の技術の第二の実施形態に係る二酸化炭素還元触媒用添加剤を総称して、単に「本実施形態に係る二酸化炭素還元触媒用添加剤」と称することがある。
 二酸化炭素還元電解装置は、一般に、ガス拡散層及び二酸化炭素還元反応を進める触媒層を有する陰極と、イオン交換膜と、陽極と、陽極へ供給する電解液(電解質)とを有する。
 イオン交換膜は、その構造上、イオン以外に電解液も透過する性質を有する。陽極に供給している電解液が、イオン交換膜を微量ながら透過し、触媒層内部の水分が過剰となる現象、電解液に溶解している電解質が陰極近傍に塩として析出し、二酸化炭素の流路を閉塞する現象等がしばしば見出された。これらの現象により、触媒層への二酸化炭素供給の妨害等の悪影響を及ぼし、電流密度、選択性等の電解性能の低下を引き起こした。特にこの影響は、反応温度が高いほど顕著に生じる。
 触媒層の水分量を制御する方法として、触媒層の疎水性を制御する方法がある。既述の特許文献1では、ポリビニルアルコール、ポリビニルピロリドン等の添加量によって、疎水性を制御し、特許文献2ではポリスチレンを、非特許文献1ではPTFEをそれぞれ添加し、疎水性を制御している。
 しかしながら、これらの疎水性高分子は絶縁体であり、疎水性高分子の添加によって触媒層の電気抵抗が増大し、発熱、電解効率等の低下を引き起こす課題があった。
 また、特許文献3においては、疎水性高分子を用いていないものの、ガス拡散層またはガス拡散層と触媒層の中間層に疎水性化合物を担持し、疎水性を高めている。しかしながら、触媒層の疎水性を高めるには至っておらず、したがって疎水化による効果は限られていた。
 これに対し、本実施形態に係る二酸化炭素還元触媒用添加剤は、触媒層を備える電極の触媒層の構成成分として用いられることで、触媒層の電気伝導性を損ねずに、触媒層の表面のみならず、触媒層全体を疎水化することができる。これは、次の理由によるものと推察される。
 第一の本実施形態に係る二酸化炭素還元触媒用添加剤においては、電気伝導性に優れる炭素を含む担体を備えつつ、その表面にアリール基を有することで添加剤が触媒層に疎水性をもたらすことができる。アリール基は担体表面に化学結合により固定されているため、触媒層を確実に疎水化することができると共に、触媒層の表面のみならず、触媒層の内部に渡り、疎水化することができる。
 第二の本実施形態に係る二酸化炭素還元触媒用添加剤は、電気伝導性に優れる炭素を含む担体を備えつつ、特定の水蒸気吸着量の比が0.5未満であり、添加剤が電気伝導性を備えながら、疎水性に優れる。そのため、当該添加剤が触媒層に添加されることで、触媒層の電気伝導性を損ねずに、触媒層の表面のみならず、触媒層の内部に渡り、疎水化することができる。
 その結果、電解液がイオン交換膜を透過したとしても、本実施形態に係る二酸化炭素還元触媒用添加剤を含む触媒層への電解質の付着を抑制することができ、触媒層への二酸化炭素供給が阻害されにくくなる。よって、電流密度、選択性等の電解性能が損なわれないため、二酸化炭素電解還元反応の電解効率に優れる。
 以下、本実施形態に係る二酸化炭素還元触媒用添加剤について、第一の実施形態と第二の実施形態を順次説明する。
〔第一の実施形態に係る二酸化炭素還元触媒用添加剤〕
 第一の本実施形態に係る二酸化炭素還元触媒用添加剤は、アリール基を表面に有し、炭素を含む担体を有する。
 既述のように、炭素を含む担体の表面にアリール基を有することで、添加剤が電気伝導性と疎水性を備え、触媒層に含まれることによって、触媒層全体に渡って電気伝導性と疎水性をもたらすことができる。
(アリール基)
 アリール基は、フェニル基、2つ以上のベンゼン環を含む縮合環から水素原子を1つ取り除いた基(縮合環基)等が挙げられる。
 中でも、担体の表面におけるアリール基同士の立体障害を抑制する観点、及び添加剤の電気伝導性を確保する観点から、アリール基は、フェニル基及びベンゼン環を2~6つ有する縮合環基からなる群より選択される1つ以上を含むことが好ましい。アリール基が有するベンゼン環の数が6つ以下であることで、担体間の電荷移動を阻害しにくく、電気伝導性に優れる。
 ベンゼン環を2~6つ有する縮合環基としては、ナフタレン、アントラセン、フェナントレン、ピレン、トリフェニレン、クリセン、ペリレン、ペンタセン、ペンタフェン等の縮合環から水素原子を1つ取り除いた基が挙げられる。
 ベンゼン環を2~6つ有する縮合環基は、上記の中でも、ナフタレン、アントラセン、フェナントレン、及びピレンからなる群より選択される1つ以上の縮合環から水素原子を1つ取り除いた基を含むことが好ましい。換言すると、ベンゼン環を2~6つ有する縮合環基は、ナフチル基、アントラセニル基、フェナントレニル基及びピレニル基からなる群より選択される1つ以上を含むことが好ましい。
 ベンゼン環を2~6つ有する縮合環基は、置換基のピレニル基がより好ましい。
 本実施形態に係る担体の表面に結合するアリール基は、無置換であってもよいし、更に、1種又は2種以上の置換基を有していてもよい。
 置換基としては、アルキル基、アルケニル基、フッ化アルキル基、アリール基、フッ化アリール基、フッ素原子等が挙げられ、置換基は更に置換基を有していてもよい。
 アルキル基は、炭素数1~30のアルキル基が挙げられ、直鎖状であっても、分岐状であっても、環状であってもよい。具体的には、例えば、メチル基、ベンジル基(フェニルメチル基)、トリチル基(トリフェニルメチル基)、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキリス基、n-オクチル基、n-ドデシル基等が挙げられる。アルキル基は更に置換基を有していてもよい。
 なお、アルキル基の炭素数の上限30は、更に有し得る置換基の炭素数を含む。以下、アルケニル基、フッ化アルキル基、アリール基、及びフッ化アリール基において同じである。
 アルキル基の炭素数は、1~25であることが好ましく、2~20であることがより好ましい。
 アルキル基は、直鎖状である場合、炭素数10~14であることが好ましい。アルキル基が分岐状である場合、炭素数が1~3で、更に無置換のフェニル基を1~5つ有することが好ましい。
 アルケニル基は、炭素数2~30のアルケニル基が挙げられ、直鎖状であっても、分岐状であっても、環状であってもよい。具体的には、例えば、ビニル基等が挙げられる。
 アルケニル基の炭素数は、2~25であることが好ましく、2~20であることがより好ましい。
 フッ化アルキル基は、炭素数1~30のフッ化アルキル基が挙げられ、直鎖状であっても、分岐状であっても、環状であってもよい。具体的には、既述のアルキル基中の水素原子の1つ以上がフッ素原子に置換された基を挙げることができ、例えば、フッ化メチル基、フッ化エチル基等が挙げられる。
 フッ化アルキル基の炭素数は、1~25であることが好ましく、2~20であることがより好ましい。
 フッ化アルキル基は、直鎖状である場合、炭素数1~4であることが好ましい。
 置換基としてのアリール基は、本実施形態に係る担体の表面に結合するアリール基と同じ基を挙げることができるが、炭素数6~12であることが好ましい。具体的には、フェニル基、ナフチル基等が挙げられる。
 フッ化アリール基は、置換基としてのアリール基中の水素原子の1つ以上がフッ素原子に置換された基を挙げることができ、例えば、フッ素原子数が1~4のフッ化フェニル基、フッ素原子数が1~7のフッ化ナフチル基等が挙げられる。
 以上の中でも、本実施形態に係る担体の表面に結合するアリール基が置換値を有する場合、当該置換基は、アルキル基、フッ化アルキル基、フェニル基、フッ化フェニル基及びフッ素原子からなる群より選択される1つ以上を含むことが好ましい。
 また、前記置換基は1種で2つ以上であってもよいし、2種以上で2つ以上であってもよい。
 例えば、本実施形態に係る担体の表面に結合するアリール基がフェニル基の場合、当該フェニル基は2つのフッ化メチル基を有する構造であってもよいし、当該フェニル基の5つの水素原子のうち4つがフッ素原子に置換され、残りの1つがフッ化フェニル基に置換された構造であってもよい。
 更に、本実施形態に係る担体の表面に結合するアリール基は、置換基を有するフェニル基及び無置換のベンゼン環を2~6つ有する縮合環基であることが好ましく;トリフェニルメチル基、炭素数10~14の直鎖状の無置換アルキル基、及び炭素数1~4の直鎖状のフッ化アルキル基からなる群より選択されるいずれか1つの置換基を有するフェニル基及び無置換のベンゼン環を4~5つ有する縮合環基であることが更に好ましく;炭素数11~13の直鎖状の無置換アルキル基、及び炭素数2~3の直鎖状のフッ化アルキル基からなる群より選択されるいずれか1つの置換基を有するフェニル基及び無置換のベンゼン環を4つ有する縮合環基であることがより更に好ましい。
 本実施形態に係る担体の表面に結合するアリール基は、より具体的には、下記(1)~(8)で表される基のいずれか1つ以上であることが好ましい。(1)~(8)中、*は本実施形態に係る担体の表面への結合部を表す。当該アリール基は、下記(1)~(3)及び(5)で表される基のいずれか1つ以上であることがより好ましく、下記(2)、(3)及び(5)で表される基のいずれか1つ以上であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000005
 本実施形態に係る担体が有するアリール基は、1種であってもよいし、2種以上であってもよい。
 また、本実施形態に係る担体は、アリール基を1つ有していてもよいし、2つ以上有していてもよい。担体が有するアリール基の存在は、赤外分光法により確認、定量することができる。
(担体表面へのアリール基の導入方法)
 本実施形態に係る担体表面にアリール基を導入する方法(化学修飾する方法)は、特に限定されない。
 例えば、本実施形態に係る担体としてカーボンブラックを用い、第1級アミノ基を1つ有する芳香族化合物を前駆体として、ジアゾ化反応を経由して、カーボンブラック表面の芳香環等に求核反応を起こさせることで、化学結合を形成することができる。
 芳香族化合物は、ベンゼンの他、2つ以上のベンゼン環を含む縮合環化合物が挙げられ、2つ以上のベンゼン環を含む縮合環化合物は、ベンゼン環を2~6つ有する縮合環化合物であることが好ましい。
 具体的には、アニリン、アミノナフタレン、アミノアントラセン、アミノフェナントレン、アミノピレン等が挙げられる。
 第1級アミノ基を1つ有する芳香族化合物は、第1級アミノ基以外の置換基を更に有していてもよい。置換基としては、アルキル基、アルケニル基、フッ化アルキル基、アリール基、フッ化アリール基、フッ素原子等が挙げられ、置換基は更に置換基を有していてもよい。第1級アミノ基を1つ有する芳香族化合物が有し得る置換基の詳細は、第一の本実施形態に係る二酸化炭素還元触媒用添加剤が有する担体の表面に結合するアリール基が有し得る置換基と同じであり、好ましい態様も同様である。
 第1級アミノ基を1つ有する芳香族化合物は、より具体的には、下記(11)~(18)で表される化合物のいずれか1つ以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(担体)
 本実施形態に係る担体は、炭素を含む。
 炭素は、通常、導電性を有することから、本実施形態に係る担体は導電性担体である。
 炭素は、二酸化炭素を還元するための装置に備えられる電極におけるガス拡散層として用いることができる導電性材料であれば、制限はなく、カーボンブラック(ファーネスブラック、アセチレンブラック、ケッチェンブラック、ミディアムサーマルカーボンブラック等)、活性炭、黒鉛、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、グラフェンナノプレートレット、ナノポーラスカーボン等の炭素が挙げられ、中でも、カーボンブラックが好ましい。さらに構造としては多孔質構造であることが好ましい。多孔質構造の炭素としては、グラフェンに代表される多孔質炭素材料が挙げられる。
 カーボンブラックの形状、大きさ、グレード等には制限はないが、DBP吸油量(ジブチルフタレート吸油量)は、50~500ml/100gであることが好ましく、100~300ml/100gであることがより好ましく、100~200ml/100gであることが更に好ましい。また、一次粒子径は、5~200nmであることが好ましく、10~100nmであることがより好ましく、10~50nmであることが更に好ましい。
 カーボンブラックのDBP吸油量は、JIS K 6217-4:2001(オイル吸収量の求め方)によって求められ、一次粒子径は、例えばレーザー回折式粒度分布測定によって求められる。
 カーボンブラックは市販品でもよく、例えば、Vulcan(登録商標) XC-72(キャボット社製)、デンカブラック HSー100(デンカ社製)、ケッチェンブラックEC-600JD(ライオン・スペシャリティ・ケミカルズ社製)、Conductex-7055 Ultra(Birla Carbon社製)等が挙げられる。
 第一の実施形態に係る二酸化炭素還元触媒用添加剤は、アリール基を表面に有し、炭素を含む担体からなることが好ましい。
〔第二の実施形態に係る二酸化炭素還元触媒用添加剤〕
 第二の本実施形態に係る二酸化炭素還元触媒用添加剤は、炭素を含む担体を有し、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である。
 換言すると、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量(単位:cm(STP)/g)をa、25℃、水蒸気圧3.1kPaにおける水蒸気吸着量(単位:cm(STP)/g)をbとしたとき、a/bが0.5未満である。
 25℃、水蒸気圧2.2kPaにおける水蒸気吸着量aは、添加剤最表面と吸着水分子間の相互作用力に応じた単分子層吸着分子数の影響を強く受けているので、添加剤の水分吸着能力を意味する。25℃、水蒸気圧3.1kPaにおける水蒸気吸着量bは、添加剤の吸着容量に応じた吸着分子数の影響を強く受けていることから、添加剤の単位質量あたりの表面積と対応するので、水蒸気吸着量bに対する水蒸気吸着量aの比(a/b)は、添加剤の表面親水性を表すこととなる。
 a/b<0.5は、二酸化炭素還元触媒用添加剤が高い疎水性と高い電気伝導度を示すことを意味する。a/bは小さければ小さいほど好ましく、0であってもよいが、通常、0.01より大きい。
 a/bは0.5以下であることが好ましく、0.4以下であることがより好ましく、0.35以下であることが更に好ましく、0.3以下であることがより更に好ましく、0.2以下であることがより更に好ましく、0.15以下であることがより更に好ましい。
 二酸化炭素還元触媒用添加剤の25℃、水蒸気圧2.2kPaにおける水蒸気吸着量aの、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量bに対する比(a/b)を0.5未満とする手法は特に制限されない。例えば、炭素を含む担体の表面をアリール基で化学修飾することでa/b<0.5を達成することができる。
 以上のことから、第一の本実施形態に係る二酸化炭素還元触媒用添加剤は、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満であることが好ましい。
 また、第二の本実施形態に係る二酸化炭素還元触媒用添加剤は、炭素を含む担体が、担体表面にアリール基を有することが好ましい。
 また、本開示の技術における二酸化炭素還元触媒用添加剤は、後述するアイオノマーに被覆されていることが好ましい。二酸化炭素還元触媒用添加剤をアイオノマーで被覆することによって、同じくアイオノマー中に存在する触媒に対して、疎水化作用をより効果的に発揮できるようになり、電解効率を向上させることができる。
<触媒層>
 第一の本実施形態に係る触媒層は、アリール基を表面に有し、炭素を含む担体を有する添加剤と、炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒とを含む。
 第二の本実施形態に係る触媒層は、炭素を含む担体を有し、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である添加剤と、炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒とを含む。
 第一の本実施形態に係る触媒層と、第二の本実施形態に係る触媒層を総称して、単に「本実施形態に係る触媒層」と称することがある。
 また、第一の本実施形態に係る触媒層に含まれる「アリール基を表面に有し、炭素を含む担体を有する添加剤」を、第一の本実施形態に係る添加剤と称することがある。第二の本実施形態に係る触媒層に含まれる「25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である添加剤」を、第二の本実施形態に係る添加剤と称することがある。
 更に、第一の本実施形態に係る添加剤と、第二の本実施形態に係る添加剤を総称して、単に「本実施形態に係る添加剤」と称することがある。
 本実施形態に係る触媒層において、触媒層に含まれる触媒種は特に制限されない。本実施形態に係る触媒層は、二酸化炭素還元触媒を含む触媒層として用いることが好適であるものの、触媒層の浸水、水蒸気の接触、塩の析出等による弊害を回避したい各種触媒層にも好適に用いることができる。
(添加剤)
 第一の本実施形態に係る添加剤は、第一の本実施形態に係る二酸化炭素還元触媒用添加剤と同一であり、好ましい態様も同様である。
 アリール基を表面に有し、炭素を含む担体を有する添加剤は、当該添加剤が含まれる触媒層の電気伝導度を損ねずに、表面のみならず触媒層の内部から触媒層全体に渡り、触媒層を疎水化することができるため、触媒層に含まれる触媒の機能低下を抑制することができる。
 第二の本実施形態に係る添加剤において、「25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比」は、第二の本実施形態に係る二酸化炭素還元触媒用添加剤における「25℃、水蒸気圧2.2kPaにおける水蒸気吸着量aの、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量bに対する比(a/b)」と同一である。
 第二の本実施形態に係る添加剤においても、a/bが小さいほど高い疎水性と高い電気伝導度を示す。a/bは小さければ小さいほど好ましく、0であってもよいが、通常、0.01より大きい。
 a/bは0.5以下であることが好ましく、0.4以下であることがより好ましく、0.35以下であることが更に好ましく、0.3以下であることがより更に好ましく、0.2以下であることがより更に好ましく、0.15以下であることがより更に好ましい。
 触媒層が第二の本実施形態に係る添加剤を含むことで、触媒層の電気伝導度を損ねずに、表面のみならず触媒層の内部から触媒層全体に渡り、触媒層を疎水化することができるため、触媒層に含まれる触媒の機能低下を抑制することができる。
 第一の本実施形態に係る添加剤及び第二の本実施形態に係る添加剤は、これらの添加剤が含まれる触媒層を、表面のみならず、内部から全体に渡って疎水化することができ、電気伝導性を維持することができる。そのため、触媒層の浸水、水蒸気の接触、塩の析出等による弊害を回避したい各種触媒層の添加剤として好適に用いることができる。
(触媒)
 本実施形態に係る触媒層は、炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒を含む。
 本開示の技術における触媒において、触媒作用を示す成分は、担体に担持される無機微粒子又は金属錯体であるが、本開示の技術においては、当該無機微粒子及び金属錯体を「触媒源」と称し、触媒源が担持された担体を「触媒」と称する。
[担体]
 担体は、第一の本実施形態に係る二酸化炭素還元触媒用添加剤が含む本実施形態に係る担体を用いることができ、カーボンブラックを含むことが好ましい。
 カーボンブラックの好ましい態様は、第一の本実施形態に係る二酸化炭素還元触媒用添加剤の説明において記載したカーボンブラックの好ましい態様と同じである。
[無機微粒子、金属錯体]
 本実施形態に係る担体は、触媒源として、無機微粒子又は金属錯体を担持する。
 無機微粒子及び金属錯体は、触媒作用を示す成分であれば、特に制限されない。なお、本開示の技術において、無機微粒子とは、走査型電子顕微鏡等の写真観察等によって測定される平均粒径が1~100nmである金属及び無機化合物を意味する。
 例えば、触媒源が燃料電池用触媒層に用いられる場合、無機微粒子として、白金、金、ニッケル、ルテニウム、ロジウム等を用いることができ、また、金属錯体として、ニッケル錯体、コバルト錯体、鉄錯体、マンガン錯体、亜鉛錯体等を用いることができる。
 また、例えば、触媒源が二次電池電極用触媒層に用いられる場合、無機微粒子として、白金、金、ニッケル、イリジウム、金属酸化物等を用いることができ、また、金属錯体として、ニッケル錯体、コバルト錯体、鉄錯体、マンガン錯体、亜鉛錯体等を用いることができる。
 触媒層を、二酸化炭素還元用の触媒層として用いる場合、無機微粒子及び金属錯体は、還元反応により少なくとも一酸化炭素を生成する作用を有する触媒源を用いることが好ましい。
 具体的には、二酸化炭素還元用の無機微粒子は、金、銀、銅、ニッケル、鉄、コバルト、亜鉛、クロム、パラジウム、スズ、マンガン、アルミニウム、インジウム、ビスマス、モリブデン、及び窒化炭素からなる群より選ばれる微粒子であることが好ましい。無機微粒子は、1つのみ用いてもよいし、2つ以上を組み合わせて用いてもよい。
 以上の中でも、二酸化炭素還元反応の反応効率の観点から、無機微粒子の材質は、銀、金、亜鉛、スズ、銅及びビスマスが好ましく、銀、金、銅及びスズがより好ましく、銀、金及び銅が更に好ましい。
 二酸化炭素還元用の触媒源としての無機微粒子の平均粒径は、二酸化炭素還元反応の反応速度の観点から、65nm以下であることが好ましく、60nm以下であることが好ましく、50nm以下であることが好ましく、40nm以下であることが好ましく、30nm以下であることが好ましい。また、平均粒径の下限値に制限はないが、製造容易性の面から、1nm以上であることが好ましく、5nm以上であることがより好ましい。
 前記平均粒径は、走査型電子顕微鏡等の写真観察等によって測定することができる。
 二酸化炭素還元用の触媒源としての金属錯体は、金属若しくは該金属のイオンに配位子が配位した金属錯体であり、金属イオンは、銅、ニッケル、鉄、コバル、亜鉛、マンガン、モリブデン、及びアルミニウムからなる群より選ばれることが好ましい。
 以上の中でも、二酸化炭素還元反応の反応効率の観点から、金属は、ニッケル、コバルト、鉄、銅、亜鉛及びマンガンが好ましく、ニッケル、コバルト、鉄及び銅がより好ましく、ニッケル、コバルト及び鉄が更に好ましい。金属錯体は金属または該金属のイオンを1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 配位子の種類は特に制限されず、例えば、フタロシアニン錯体、ポルフィリン錯体、ピリジン錯体、金属担持共有結合性トリアジン構造体、金属有機構造体等が挙げられる。中でも、フタロシアニン錯体、ポルフィリン錯体、ピリジン錯体及び金属担持共有結合性トリアジン構造体が好ましく、フタロシアニン錯体、ポルフィリン錯体及び金属担持共有結合性トリアジン構造体がより好ましく、ポルフィリン錯体及び金属担持共有結合性トリアジン構造体が更に好ましい。金属錯体は配位子を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 以上のように、本実施形態に係る二酸化炭素還元用の触媒層は、
 本実施形態に係る添加剤(本実施形態に係る二酸化炭素還元触媒用添加剤)と、
 炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒と
を含み、
 無機微粒子が、金、銀、銅、ニッケル、鉄、コバルト、亜鉛、クロム、パラジウム、スズ、マンガン、アルミニウム、インジウム、ビスマス、モリブデン、及び窒化炭素からなる群より選ばれる微粒子であり;前記金属錯体が、銅、ニッケル、鉄、コバル、亜鉛、マンガン、モリブデン、及びアルミニウムからなる群より選ばれる金属若しくは該金属のイオンが配位した金属錯体である触媒層であることが好ましい。
 無機微粒子及び金属錯体は、蒸着、析出、吸着、堆積、接着、溶接、物理混合、噴霧等の公知の方法を実施することで、本実施形態に係る担体に担持される。
 また、本開示の技術における触媒は、後述するアイオノマーに被覆されていることが好ましい。触媒をアイオノマーで被覆することによって、被覆された触媒と後述する固体電解質とのイオン電導チャネルが形成されやすくなり、反応によって生成したイオン移動が容易となり、電解効率を向上させることが可能となる。
[アイオノマー]
 触媒層は、更に、アイオノマーを含んでいてもよい。
 アイオノマーは、触媒層中において結着樹脂として機能し、本実施形態に係る添加剤及び触媒を分散し、固定化し得るマトリックス樹脂(連続相)であると共に、電解によって生じたイオンを伝達させ、CO電解効率を向上させる機能も有する。また、アイオノマーは、導電性を向上する観点から、高分子電解質であることが好ましい。高分子電解質はイオン交換樹脂であることがより好ましい。イオン交換樹脂は、陽イオン交換樹脂であってもよいし、陰イオン交換樹脂であってもよいが、陰イオン交換樹脂であることが好ましい。
 特に陰イオン交換樹脂を用いた場合には、陰イオン交換樹脂自体が二酸化炭素吸着能を有することとなり、イオン交換樹脂のイオン伝達のし易さと併せて二酸化炭素の電解効率を大きく向上させることが可能となる。
 陽イオン交換樹脂としては、例えば、スルホン基を有するフッ素樹脂、スルホン基を有するスチレン-ジビニルベンゼン共重合が挙げられる。また、市販品も用いることができ、例えば、Nafion(Chemours社製)、Aquivion(Solvay Specialty Polymers社製)、DIAION(三菱ケミカル社製)、Fumasep(FUMATECH社製)等が挙げられる。
 陰イオン交換樹脂としては、例えば、4級アンモニウム基、1級アミノ基、2級アミノ基、及び3級アミノ基からなる群より選択される1つ以上のイオン交換基を有する樹脂が挙げられる。市販品も用いることができ、例えば、Sustainion(Dioxide Materials社製)、Fumasep(FUMATECH社製)、PENTION(Xergy社製)、DURION(Xergy社製)、NEOSEPTA(アストム社製)、TOYOPEARL(東ソー社製)等が挙げられる。
 陰イオン交換樹脂は、導電性を向上する観点から、塩基点密度が、乾燥状態で、2.0~5.0mmol/cmであることが好ましく、2.5mmol/cm以上、4.5mmol/cm未満であることがより好ましく、2.9mmol/cm以上、4.5mmol/cm未満であることが更に好ましい。
 陰イオン交換樹脂の塩基点密度は、陰イオン交換樹脂についてH NMR測定を行った際のシグナルの積分値から得ることができる。
 また、陰イオン交換樹脂について、乾燥状態とは、陰イオン交換樹脂中の自由水の含有量が、樹脂1gあたり0.01g以下であることを意味し、例えば、真空中において加熱することにより陰イオン交換樹脂を乾燥状態にすることができる。
 本実施形態に係るカソード(陰極)を、後述するイオン交換膜-電極接合体及び固体電解質形電解装置で用いる場合は、導電性向上の観点から、アイオノマーは、固体電解質(イオン交換膜)と同じ樹脂を用いることが好ましい。
 触媒層中の本実施形態に係る添加剤の含有量は、触媒層の疎水性を向上し、触媒機能の低減を抑制する観点から、1~90質量%であることが好ましく、5~70質量%であることがより好ましく、10~50質量%であることが更に好ましい。
 触媒層中の本実施形態に係る触媒の含有量は、COを含む合成ガスの生産効率をより向上する観点から、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、15~60質量%であることが更に好ましい。
<カソード>
 本実施形態に係るカソード(陰極)は、既述の本実施形態に係る二酸化炭素還元用の触媒層と、ガス拡散層とを有する。
 本実施形態に係るカソード(陰極)は、本実施形態に係る添加剤を含む触媒層を備えることで、触媒層における二酸化炭素還元反応を妨げられず、安定してCOを含む合成ガスを生産することができる。そのため、二酸化炭素電解還元反応の電解効率に優れる。
〔ガス拡散層〕
 ガス拡散層は、例えば、カーボン紙若しくは不織布、又は金属メッシュを含む。例えば、グラファイトカーボン、ガラス状カーボン、チタン、SUS鋼等が挙られる。
<イオン交換膜-電極接合体>
 本実施形態に係るイオン交換膜-電極接合体は、既述の本実施形態に係るカソードと、固体電解質と、アノードを有する。
 本実施形態に係るイオン交換膜-電極接合体は、本実施形態に係る添加剤を含む触媒層を有するカソードを備えているため、触媒層における二酸化炭素還元反応を妨げられず、安定してCOを含む合成ガスを生産することができる。そのため、二酸化炭素電解還元反応の電解効率に優れる。
 図1は、本実施形態で好適に用いられるイオン交換膜-電極接合体の模式図である。図1には、ガス拡散層10と、触媒層20と、固体電解質30と、アノード40とを有するイオン交換膜-電極接合体50が示されている。触媒層20は、アイオノマー22と、複数の本実施形態に係る触媒24と、複数の本実施形態に係る添加剤(本実施形態に係る二酸化炭素還元触媒用添加剤)26と、を含む。ガス拡散層10と触媒層20との組み合わせにより、本実施形態に係るカソード(陰極)が構成される。
 図1に示されるように、ガス拡散層10を通じて二酸化炭素(CO)が触媒層20に供給され、還元反応により一酸化炭素(CO)が生成する。
 以下、図1において符号を省略して説明する。
〔固体電解質〕
 本実施形態に係るイオン交換膜-電極接合体は、固体電解質を有する。
 固体電解質は、高分子膜を用いることができる。高分子は、種々のアイオノマーを用いることができ、陽イオン交換樹脂であってもよいし、陰イオン交換樹脂であってもよいが、陰イオン交換樹脂であることが好ましい。すなわち、固体電解質は、陰イオン交換膜であることが好ましい。また、上述した触媒層に用いられるアイオノマーと同一の陰イオン交換樹脂を用いることがより好ましい。
 固体電解質は、陽イオン交換膜、又は陰イオン交換膜として市販されている製品を用いてもよい。
 また、固体電解質に陰イオン交換膜を用いた場合には、塩基点密度が、乾燥状態で、0.5~5.0mmol/cmであることが好ましく、2.5mmol/cm以上、4.5mmol/cm未満であることがより好ましく、2.9mmol/cm以上、4.5mmol/cm未満であることが更に好ましい。
 陽イオン交換膜としては、例えば、フッ素樹脂母体にスルホン基を導入した強酸性陽イオン交換膜、Nafion117、Nafion115、Nafion212、Nafion350(Chemrous社製)、スチレン-ジビニルベンゼン共重合体母体にスルホン基を導入した強酸性陽イオン交換膜、ネオセプタCSE(アストム社製)等を用いることができる。
 陰イオン交換膜としては、例えば、4級アンモニウム基、1級アミノ基、2級アミノ基、及び3級アミノ基からなる群より選択される1つ以上のイオン交換基を有する陰イオン交換膜が挙げられる。具体的には、例えば、ネオセプタ(登録商標)ASE、AHA、ACS、AFX(アストム社製)、セレミオン(登録商標)AMVN、DSVN、AAV、ASVN、AHO(旭硝子社製)等が挙げられる。
 二酸化炭素の還元反応は、本実施形態に係るカソード(陰極)での還元反応は、固体電解質の種類に応じて異なる。固体電解質として陽イオン交換膜を使用した場合には、下記反応式(1)と(2)の還元反応が起き、固体電解質として陰イオン交換膜を使用した場合には、下記反応式(3)と(4)の還元反応が起きる。
CO+2H+2e→CO+HO     (1)
2H+2e→H             (2)
O+CO+2e→CO+2OH    (3)
2HO+2e→H+2OH       (4)
〔アノード〕
 アノードでの酸化反応は、固体電解質の種類に応じて異なる。固体電解質として陽イオン交換膜を使用した場合には、下記反応式(5)の酸化反応が起き、固体電解質として陰イオン交換膜を使用した場合には、下記反応式(6)の酸化反応が起きる。
2HO→O+4H+4e     (5)
4OH→O+2HO+4e    (6)
 アノードは、ガス拡散層を含むガス拡散電極である。
 ガス拡散層は、例えば、金属メッシュを含む。アノードの電極材料には、例えば、Ir、IrO、Ru、RuO、Co、CoOx、Cu、CuOx、Fe、FeOx、FeOOH、FeMn、Ni、NiOx、NiOOH、NiCo、NiCe、NiC、NiFe、NiCeCoCe、NiLa、NiMoFe、NiSn、NiZn、SUS、Au、Ptを挙げることができる。
<固体電解質形電解装置>
 本実施形態に係る固体電解質形電解装置は、既述の本実施形態に係るカソードと、カソードと一対の電極を構成するアノードと、カソードとアノードとの間に接触状態にて介在する固体電解質と、カソードとアノードとの間に電圧を印加する電圧印加部とを有する。
 本実施形態に係る固体電解質形電解装置は、本実施形態に係る添加剤を含む触媒層を有するカソード(陰極)を備えているため、触媒層における二酸化炭素還元反応を妨げられず、安定してCOを含む合成ガスを生産することができる。そのため、二酸化炭素電解還元反応の電解効率に優れる。
 図2は、本実施形態で好適に用いられる固体電解質形電解装置の模式図である。
 図2には、本実施形態に係る電極を構成するカソード(陰極)200と、カソード200と一対の電極を構成するアノード(陽極)400と、カソード200とアノード400との間に接触状態にて介在する固体電解質300と、カソード200とアノード400との間に電圧を印加する電圧印加部700とを有する固体電解質形電解装置800が示されている。
 図2に示す固体電解質形電解装置800は、更に、カソード集電板100と、アノード集電板500と、電解液600を有する。
 既述の本実施形態に係る電極が、カソード200として用いられる。また、固体電解質300は、図1における固体電解質30と同じであり、固体電解質300は陰イオン交換膜であることが好ましい。アノード400は、図1におけるアノード40と同じである。
 カソード200と、固体電解質300と、アノード400の詳細は既述のとおりである。
 以下、カソード200、固体電解質300及びアノード400以外の各要素について、符号を省略して説明する。
〔カソード集電板〕
 カソード集電板(陰極集電板)としては、例えば、銅(Cu)、ニッケル(Ni)、ステンレス鋼(SUS)、ニッケルメッキ鋼、真鍮等の金属材料が挙げられ、中でも加工し易さとコストの点から銅が好ましい。カソード集電板の形状は、材質が金属材料の場合は、例えば、金属箔、金属板、金属薄膜、エキスパンドメタル、パンチングメタル、発泡メタル等が挙げられる。
 カソード集電板には、カソードに二酸化炭素を含む原料ガスを供給するためのガス供給孔及び一酸化炭素を含む生成ガスを回収するためのガス回収孔が設けられていてもよい。ガス供給孔及びガス回収孔を有することにより、カソードに均一且つ効率よく原料ガスを送り込み生成ガス(未反応原料ガスを含む)を排出することができる。ガス供給孔及びガス回収孔は、各々独立に1つのみ又は2つ以上備えられていてもよい。また、ガス供給孔及びガス回収孔の形状、場所、大きさ等は限定されず、適宜設定される。加えて、カソード集電板が通気性のあるものである場合には、ガス供給孔及びガス回収孔は必ずしも必要無い。
 なお、カソードが電子を伝達する役割を備えている場合には、カソード集電板は必ずしも必要でない。
〔アノード集電板〕
 アノード集電板(陽極集電板)は、アノードからの電子を受け取るべく、電気伝導性を有すると共に、アノードを支持する剛性を備えていることが好ましい。かかる観点から、アノード集電板は、例えば、チタン(Ti)、銅(Cu)、ニッケル(Ni)、ステンレス鋼(SUS)、ニッケルメッキ鋼、真鍮等の金属材料を好適に用いることができる。
 アノード集電板には、アノードに原料ガス(HO等)を送り込むためのガス流路が設けられていてもよい。アノード集電板がガス流路を有することにより、アノードに均一且つ効率よく原料ガスを送り込むことができる。なお、ガス流路の数、形状、場所、大きさ等は限定されず、適宜設定される。
〔電圧印加部〕
 電圧印加部は、カソード集電板とアノード集電板に電圧を印加することを通じ、カソードとアノードとの間に電圧を印加する役割を担う。ここで、両集電板は導電体であるため、カソードに電子を供給する一方、アノードからの電子を受け取ることになる。また、電圧印加部には、適切な電圧を印加するために、図示しない制御部が電気的に接続されていてもよい。
〔電解液〕
 電解液は、pH5以上の水溶液が好ましい。
 例えば、炭酸塩水溶液、炭酸水素塩水溶液(例えば、KHCO水溶液)、硫酸塩水溶液、ホウ酸塩水溶液、水酸化ナトリウム、水酸化カリウム水溶液、塩化ナトリウム水溶液などが挙げられる。
(反応ガス供給部)
 本実施形態に係る固体電解質形電解装置には、図示しない反応ガス供給部が、固体電解質形電解装置の外側に備えられていてもよい。すなわち、カソードが備える触媒層に反応ガスであるCOが供給されればよく、図示しない配管などを介して反応ガス供給部からガス供給孔に反応ガスが供給されてもよいし、カソード集電板の、カソードとの接触面とは反対側の面に反応ガスが吹付けられるように設けられていてもよい。また、この反応ガスは、工場から排出される工場排出ガスを用いることが、環境面から好適である。
〔CO生成方法〕
 次に、本実施形態に係る固体電解質形電解装置を用いたCO生成方法について説明する。
 まず、図示しない反応ガス供給部によって、原料としての反応ガスであるCOが気相状態にて固体電解質形電解装置へ供給される。このとき、COは、例えば、カソード集電板に設けられたガス供給孔を介してカソードに供給される。
 次に、カソードに供給されたCOは、カソードが有する触媒層に接触することにより、固体電解質として陽イオン交換膜を使用した場合には、既述の反応式(1)及び反応式(2)の還元反応が起き、固体電解質として陰イオン交換膜を使用した場合には、既述の反応式(3)及び反応式(4)の還元反応が起きることで、COとHを少なくとも含んだ合成ガスが生成される。
 次に、生成されたCOとHを含んだ合成ガスは、例えば、カソード集電板に設けられたガス回収孔を介して図示しないガス回収装置に送られ、所定のガス毎に回収されることとなる。
 次に実施例により本開示の技術を具体的に説明するが、本開示の技術はこれらの例によって何ら制限されるものではない。
<添加剤の製造>
〔実施例1〕
 平均粒子径30nmのカーボンブラック0.5gを含むエタノール分散液に超音波を10分間照射した後、10kPa(絶対圧)の減圧環境の真空室内に分散液を10分間静置した。続いて、0.5mol/Lの亜硝酸ナトリウム水溶液8.3mLを分散液に加えた。分散液に、4mmolの4-トリチルアニリン〔式(11)で表される化合物〕を加えた後に、更に塩酸2mLを加えて15℃5時間以上撹拌した。分散液に水酸化ナトリウム溶液を加えて中性化した後に、得られたスラリーを蒸留水で洗浄し、遠心分離機により固形物を回収し、固形物を60℃で一晩真空乾燥し、実施例1の添加剤とした。
 なお、カーボンブラックの平均粒子径は、レーザー回折式粒度分布測定によって求めた。
〔実施例2~8〕
 実施例1の添加剤の製造において、4-トリチルアニリンに代えて、表1及び表2に示す塩基性有機化合物を用いた他は、同様にして、実施例2~8の添加剤を製造した。
 なお、実施例2~8の添加剤の製造において用いた塩基性有機化合物は、既述の式(12)~(18)で表される化合物である。
〔比較例1〕
 比較例1では、平均粒子径30nmのカーボンブラックを添加剤として用いた。
〔比較例2〕
 比較例2では、空気動力学的粒子径(Aerodynamic Particle Size)が30~50nmのポリテトラフルオロエチレン(PTFE、Nanoshel社製、商品名「Polytetrafluoroethylene Nanopowder」)を添加剤として用いた。
〔比較例3、4〕
 比較例3及び4では、添加剤は用いなかった。
<触媒の製造>
〔実施例1~7及び比較例1~3〕
 実施例1~7及び比較例1~3で用いた触媒は同じである。下記のようにして製造した。
 ビーカー内において、100mLのエタノールにカーボンブラック担体(本実施形態に係る担体)0.1gを混合し、得られたエタノール分散液に超音波超音波を10分間照射した。その後、10kPa(絶対圧)の減圧環境の真空室内に分散液を10分間静置した。その後、0.1mol/LのAgNO溶液11.7mLと2.3mol/Lのホスフィン酸ナトリウム溶液1mLを混合し、15℃で16時間の攪拌を行うことで硝酸銀を還元した。反応終了後、得られたスラリーを蒸留水で洗浄し、遠心分離機により固形物を回収し、固形物を60℃で一晩真空乾燥し、実施例1~7及び比較例1~3の触媒粉末を得た。得られた触媒は、Ag粒子を触媒源として担持するカーボンブラックであり、Ag粒子が担持されていないカーボンブラック100質量部に対し、担持されるAg粒子の質量が40質量部である。
〔実施例8及び比較例4〕
 実施例8及び比較例4で用いた触媒は同じである。下記のようにして製造した。
 ビーカー内において、15mLのエタノールにカーボンブラック担体(本実施形態に係る担体)0.4g、ペンタエチレンヘキサミン1.1mmolと塩化ニッケル(II)六水和物0.7mmolを混合し、得られたエタノール分散液に超音波を10分間照射した。その後、エタノール分散液を加熱乾燥することによってエタノールを蒸発させ、得られた混合物を、電気炉を用いて不活性ガス中で、900℃で30秒以上加熱し、焼成した。その後、生成物を硫酸水溶液で洗浄し、吸引濾過器により固形物を回収し、固形物を60℃で一晩真空乾燥し、Ni錯体が担持された触媒粉末を得た。この触媒粉末を実施例8及び比較例4の触媒粉末とした。
 得られた触媒は、Ni錯体が担持されていないカーボンブラック100質量部に対し、担持されるNiの質量が1質量部である。
<固体電解質形電解装置>
〔実施例1〕
 得られた触媒粉末43mgをエタノールに分散し、分散液に対して、実施例1の添加剤を5mg加えた陰イオン交換樹脂をアイオノマーとして12mg混合した。陰イオン交換樹脂について、乾燥状態で、H NMR測定をしたところ、シグナルの積分値から、塩基点密度は2.8mmol/cmと算出された。なお、陰イオン交換樹脂は、基材として、芳香環を主鎖に有し、側鎖として第四級アンモニウム基(第四級アルキルアミン基)が主鎖に結合しているフッ素系樹脂である。
 混合後、分散液に超音波を10分間照射し、10kPa(絶対圧)の減圧環境の真空室内に10分間静置した。スプレーコーターを用いてカーボンペーパー上に分散液を塗布し、カソード(陰極)とした。カソードは、分散液の塗布膜を触媒層、カーボンペーパーをガス拡散層として有する。
 膜厚約30μmの陰イオン交換膜(塩基点密度2.8mmol/cm)と、酸化イリジウムを担持したカーボン陽極(DioxideMaterials社製)と、上記陰極とを貼り合わせ、イオン交換膜-電極接合体とした。
 アノード(陽極)は電解液(0.5mol/LのKHCO水溶液)槽に接する構造とした。
〔実施例2~7及び比較例1~2〕
 実施例1の固体電解質形電解装置の製造において、添加剤を、実施例1の添加剤から、実施例2~7及び比較例1~2のいずれかの添加剤に変更した他は同様にして、実施例2~7及び比較例1~2の固体電解質形電解装置を製造した。
〔実施例8〕
 実施例1の固体電解質形電解装置の製造において、添加剤を、実施例1の添加剤から、実施例8の添加剤に変更し、アイオノマーを、実施例1のアイオノマーから、Nafion(Chemours社製)に変更した他は同様にして、実施例8の固体電解質形電解装置を製造した。
〔比較例3〕
 実施例1の固体電解質形電解装置の製造において、添加剤を添加しなかった他は同様にして、比較例3の固体電解質形電解装置を製造した。
〔比較例4〕
 実施例8の固体電解質形電解装置の製造において、添加剤を添加しなかった他は同様にして、比較例4の固体電解質形電解装置を製造した。
<固体電解質形電解装置の評価>
〔実施例1~7及び比較例1~3〕
 実施例1~7及び比較例1~3の各固体電解質形電解装置を用いて、純COを陰極に供給し、固体電解質形電解装置を50℃に加温した条件下、陰極の印加電位を陽極に対して-2.6Vとするか、あるいは-1A/cmの定電流を印加して、COを電気分解し、COを生成する際のCO生成電流密度[mA/cm]及びCO選択率[%]を測定した。定電流印加時には、電流の代わりに電圧[V]を測定した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
<固体電解質形電解装置の評価>
〔実施例8及び比較例4〕
 実施例8及び比較例4の各固体電解質形電解装置を用いて、純COを陰極に供給し、室温条件下、陰極の印加電位は銀/塩化銀参照電極に対して-1.8Vとして、COを電気分解し、COを生成する際のCO生成電流密度[mA/cm]を測定した。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表1及び表2からわかるように、各種芳香族アミン化合物を原料にして、担体表面をアリール基で化学修飾して得られる添加剤を用いた場合(実施例1~7)では、-1A/cmの高い電流印加時、比較的低い必要電圧と、高いCO選択率を示した。また実施例8では、比較的高い電流密度を示した。
 一方、担体表面がアリール基で化学修飾されていない添加剤を用いた比較例1、絶縁性のある疎水性高分子を添加剤として用いた比較例2及び、添加剤を用いなかった比較例3においては、必要電圧が高くなり、またCO選択率が低下した。添加剤を用いなかった比較例4では比較的低い電流密度を示した。
<添加剤の水蒸気吸着量>
 実施例1~4、6、7及び比較例1の添加剤について、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量(a)と、25℃、水蒸気圧3.1kPaにおける水蒸気吸着量(b)を、BELSORP-max(日本ベル社製)により測定し、両者の比(a/b)を表3に示した。測定においては、添加剤試料0.2-0.3gを真空条件下120℃で5時間以上加熱してあらかじめ表面の吸着ガスを除去した後に、25℃の条件下で水蒸気を導入し、各水蒸気圧における吸着量を求めた。
 また、相対圧に対する相対水蒸気吸着量をプロットしたグラフを、図3に示した。ここで、図3中、縦軸の相対圧は、各水蒸気圧を25℃における飽和水蒸気圧(3.1kPa)で除した値を意味する。また、横軸の相対水蒸気吸着量は、各相対圧における水蒸気吸着量(a)を、25℃における飽和水蒸気圧における水蒸気吸着量(b)で除した値(a/b)を意味する。式で表すと次のようになる。
 相対圧=(各測定点の水蒸気圧)/(飽和水蒸気圧[=3.1kPa])
 相対水蒸気吸着量=(各測定点の水蒸気吸着量)/(飽和水蒸気圧での水蒸気吸着量)
 図3において、横軸の相対圧が0.7のとき、相対圧=2.2/3.1であることを意味し、対応する縦軸の相対水蒸気吸着量が比(a/b)であることを意味する。
 表3に示す「比(a/b)」は、横軸の相対圧が0.7のときの、縦軸の相対水蒸気吸着量である。
 なお、図3中の各曲線の詳細は次のとおりである。
-▲-(Ex.1):実施例1(4-トリチルアニリン)
-■-(Ex.2):実施例2(1-アミノピレン)
-△-(Ex.3):実施例3(3,5-ビス(トリフルオロメチル)アニリン)
-□-(Ex.4):実施例4(4-アミノノナフルオロビフェニル)
-×-(Ex.6):実施例6(2-アミノアントラセン)
-○-(Ex.7):実施例7(4-エチルアニリン)
-●-(Co-Ex.1):比較例1(無修飾カーボンブラック)
Figure JPOXMLDOC01-appb-T000009
 表3及び図3からわかるように、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量(a)の、25℃、水蒸気圧3.1kPaにおける水蒸気吸着量(b)に対する比(a/b)が0.5未満であった。これは、実施例の添加剤が高い疎水性と高い電気伝導度を示すこと意味する。
 以上のように、本実施形態に係る導電性の添加剤を用いることで、高い電気伝導を妨げることなく疎水化効果が発揮されたものと推測される。
 本実施形態によれば、固体電解質形電解装置に対して、例えば工場より排出されたCOガスを原料として、電圧印加部への太陽電池等の再生可能エネルギーを利用することで、所望の生成割合による少なくともCOとHを含有した合成ガスを生成することができる。このようにして生成された合成ガスは、FT合成(Fischer-Tropsch合成)、メタネーション等の手法により燃料基材、化学品原料等を生成することができる。
 10 ガス拡散層
 20 触媒層
 22 アイオノマー
 24 触媒
 26 添加剤(二酸化炭素還元触媒用添加剤)
 30 固体電解質(イオン交換膜)
 40 アノード(陽極)
 50 イオン交換膜-電極接合体
100 カソード集電板
200 カソード(陰極)
300 固体電解質(イオン交換膜)
400 アノード(陽極)
500 アノード集電板
600 電解液
700 電圧印加部
800 固体電解質形電解装置

Claims (18)

  1.  アリール基を表面に有し、炭素を含む担体を有する二酸化炭素還元触媒用添加剤。
  2.  炭素を含む担体を有し、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である二酸化炭素還元触媒用添加剤。
  3.  前記アリール基は、フェニル基及びベンゼン環を2~6つ有する縮合環基からなる群より選択される1つ以上を含む請求項1に記載の二酸化炭素還元触媒用添加剤。
  4.  前記ベンゼン環を2~6つ有する縮合環基が、ナフチル基、アントラセニル基、フェナントレニル基及びピレニル基からなる群より選択される1つ以上を含む請求項3に記載の二酸化炭素還元触媒用添加剤。
  5.  前記アリール基が、アルキル基、フッ化アルキル基、フェニル基、フッ化フェニル基及びフッ素原子からなる群より選択される1つ以上の置換基を有する請求項1、3及び4のいずれか1項に記載の二酸化炭素還元触媒用添加剤。
  6.  前記アリール基が、(1)~(8)で表される基のいずれか1つ以上である請求項1及び3~5のいずれか1項に記載の二酸化炭素還元触媒用添加剤。
    Figure JPOXMLDOC01-appb-C000001

    〔(1)~(8)中、*は前記担体の表面への結合部を表す。〕
  7.  アリール基を表面に有し、炭素を含む担体を有する添加剤と、
     炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒と
    を含む触媒層。
  8.  炭素を含む担体を有し、25℃、水蒸気圧2.2kPaにおける水蒸気吸着量の、同温度、水蒸気圧3.1kPaにおける水蒸気吸着量に対する比が0.5未満である添加剤と、
     炭素を含み、無機微粒子または金属錯体が担持された担体からなる触媒と
    を含む触媒層。
  9.  前記無機微粒子が、金、銀、銅、ニッケル、鉄、コバルト、亜鉛、クロム、パラジウム、スズ、マンガン、アルミニウム、インジウム、ビスマス、モリブデン、及び窒化炭素からなる群より選ばれる微粒子であり;前記金属錯体が、銅、ニッケル、鉄、コバルト、亜鉛、マンガン、モリブデン、及びアルミニウムからなる群より選ばれる金属若しくは該金属のイオンに配位子が配位した金属錯体である請求項7又は8に記載の触媒層。
  10.  前記アリール基は、フェニル基及びベンゼン環を2~6つ有する縮合環基からなる群より選択される1つ以上を含む請求項7に記載の触媒層。
  11.  前記ベンゼン環を2~6つ有する縮合環基が、ナフチル基、アントラセニル基、フェナントレニル基及びピレニル基からなる群より選択される1つ以上を含む請求項10に記載の触媒層。
  12.  前記アリール基が、アルキル基、フッ化アルキル基、フェニル基、フッ化フェニル基及びフッ素原子からなる群より選択される1つ以上の置換基を有する請求項7に記載の触媒層。
  13.  前記アリール基が、(1)~(8)で表される基のいずれか1つ以上である請求項7に記載の触媒層。
    Figure JPOXMLDOC01-appb-C000002

    〔(1)~(8)中、*は前記の表面への結合部を表す。〕
  14.  請求項9に記載の触媒層と、ガス拡散層とを有するカソード。
  15.  請求項14に記載のカソードと、固体電解質と、アノードとを有するイオン交換膜-電極接合体。
  16.  前記固体電解質が、陰イオン交換膜である請求項15に記載のイオン交換膜-電極接合体。
  17.  請求項14に記載のカソードと、
     前記カソードと一対の電極を構成するアノードと、
     前記カソードと前記アノードとの間に接触状態にて介在する固体電解質と、
    前記カソードと前記アノードとの間に電圧を印加する電圧印加部と
    を有する固体電解質形電解装置。
  18.  前記固体電解質が、陰イオン交換膜である請求項17に記載の固体電解質形電解装置。
PCT/JP2023/006460 2022-02-28 2023-02-22 二酸化炭素還元触媒用添加剤、触媒層、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置 WO2023163041A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029894 2022-02-28
JP2022029894 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163041A1 true WO2023163041A1 (ja) 2023-08-31

Family

ID=87766044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006460 WO2023163041A1 (ja) 2022-02-28 2023-02-22 二酸化炭素還元触媒用添加剤、触媒層、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置

Country Status (2)

Country Link
TW (1) TW202340540A (ja)
WO (1) WO2023163041A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510861A (ja) * 1994-12-15 1998-10-20 キャボット コーポレイション ジアゾニウム塩と反応したカーボンブラックおよび生成物
JP2003515872A (ja) * 1999-10-12 2003-05-07 キャボット コーポレイション ガス拡散電極に有用な修飾炭素製品
JP2007314407A (ja) * 2006-04-25 2007-12-06 Tetsuo Hino カーボン材料とフェニレン誘導体との反応生成物およびそれを用いた導電性組成物、ならびに反応生成物の製法
JP2009037902A (ja) * 2007-08-02 2009-02-19 Toyota Motor Corp 燃料電池用電極形成用の触媒担持担体とその製造方法および固体高分子型燃料電池
JP2013073766A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 導電性粒子、触媒インク、燃料電池、導電性粒子の製造方法
WO2021149433A1 (ja) * 2020-01-22 2021-07-29 積水化学工業株式会社 触媒、触媒の製造方法、二酸化炭素還元電極、積層体、及び二酸化炭素還元装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510861A (ja) * 1994-12-15 1998-10-20 キャボット コーポレイション ジアゾニウム塩と反応したカーボンブラックおよび生成物
JP2003515872A (ja) * 1999-10-12 2003-05-07 キャボット コーポレイション ガス拡散電極に有用な修飾炭素製品
JP2007314407A (ja) * 2006-04-25 2007-12-06 Tetsuo Hino カーボン材料とフェニレン誘導体との反応生成物およびそれを用いた導電性組成物、ならびに反応生成物の製法
JP2009037902A (ja) * 2007-08-02 2009-02-19 Toyota Motor Corp 燃料電池用電極形成用の触媒担持担体とその製造方法および固体高分子型燃料電池
JP2013073766A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 導電性粒子、触媒インク、燃料電池、導電性粒子の製造方法
WO2021149433A1 (ja) * 2020-01-22 2021-07-29 積水化学工業株式会社 触媒、触媒の製造方法、二酸化炭素還元電極、積層体、及び二酸化炭素還元装置

Also Published As

Publication number Publication date
TW202340540A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
Zhao et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction
Liu et al. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode
Luo et al. Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction
Perivoliotis et al. Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction
Zhang et al. Polarized few-layer gC 3 N 4 as metal-free electrocatalyst for highly efficient reduction of CO 2
Wang et al. A Comparative Study of Composition and Morphology Effect of Ni x Co1–x (OH) 2 on Oxygen Evolution/Reduction Reaction
JP5587797B2 (ja) 選択透過性膜のない直接燃料電池及びその構成要素
Li et al. Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO
CN113493917B (zh) 二氧化碳电解池用电极催化剂层、及具备其的电解池和二氧化碳电解用电解装置
US7857953B2 (en) Oxygen-reducing gas diffusion cathode and method of sodium chloride electrolysis
JP6758628B2 (ja) 有機ハイドライド製造装置及び有機ハイドライドの製造方法
WO2016096806A1 (en) Method for hydrogen production and electrolytic cell thereof
WO2021216713A1 (en) Electrochemical co2 reduction to methane
WO2018037774A1 (ja) カソード、有機ハイドライド製造用電解セル及び有機ハイドライドの製造方法
Hsieh et al. Methanol electro-oxidation on Pt nanocatalysts prepared by atomic layer deposition
US20230203682A1 (en) An anion exchange electrolyzer having a platinum-group-metal free self-supported oxygen evolution electrode
Yang et al. Modulable Cu (0)/Cu (I)/Cu (II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons
Ruck et al. Carbon supported NiRu nanoparticles as effective hydrogen evolution catalysts for anion exchange membrane water electrolyzers
Caglar et al. Characterization and electrooxidation activity of ternary metal catalysts containing Au, Ga, and Ir for enhanced direct borohydride fuel cells
WO2023163041A1 (ja) 二酸化炭素還元触媒用添加剤、触媒層、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置
Guo et al. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis
JP7462261B2 (ja) Co2還元用電極触媒、co2還元用電極触媒の製造方法、co2還元電極、およびco2還元システム
WO2023163042A1 (ja) 触媒、カソード、イオン交換膜-電極接合体及び固体電解質形電解装置
WO2023163052A1 (ja) 触媒及びその製造方法、カソード、イオン交換膜-電極接合体並びに固体電解質形電解装置
Sinha et al. Recent trends in development of metal nitride nanocatalysts for water electrolysis application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760040

Country of ref document: EP

Kind code of ref document: A1