WO2023162666A1 - Connection structure manufacturing method, film structure, and film structure manufacturing method - Google Patents

Connection structure manufacturing method, film structure, and film structure manufacturing method Download PDF

Info

Publication number
WO2023162666A1
WO2023162666A1 PCT/JP2023/003912 JP2023003912W WO2023162666A1 WO 2023162666 A1 WO2023162666 A1 WO 2023162666A1 JP 2023003912 W JP2023003912 W JP 2023003912W WO 2023162666 A1 WO2023162666 A1 WO 2023162666A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
singulated
substrate
singulated adhesive
solder particles
Prior art date
Application number
PCT/JP2023/003912
Other languages
French (fr)
Japanese (ja)
Inventor
秀昭 奥宮
直樹 林
和久 青木
充宏 柄木田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2023162666A1 publication Critical patent/WO2023162666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present technology relates to a method for manufacturing a connection structure on which electronic components are mounted, a film structure, and a method for manufacturing a film structure.
  • solder paste is printed on the board and components are mounted on it. It is common to mount by a reflow process after mounting by .
  • Solder paste printing requires the creation of a mold (plate, stencil) according to the layout of the board to be mounted, and the post-printing process (drying), so there is a limit to how much time can be reduced.
  • the present technology has been proposed in view of such conventional circumstances, and provides a method for manufacturing a connection structure, a film structure, and a method for manufacturing a film structure that can shorten the process tact. .
  • a method for manufacturing a connected structure includes steps of preparing a substrate on which a plurality of electronic components are mounted, and applying solder particles to predetermined positions on a base material corresponding to the substrate on which the plurality of electronic components are mounted.
  • a method for manufacturing a connected structure includes a step of preparing a substrate on which a plurality of electronic components are mounted, and a film structure in which singulated adhesive films corresponding to the plurality of electronic components are provided on a base material.
  • a step of preparing a body using a mounter to press an electronic component against a singulated adhesive film corresponding to the electronic component, sticking the singulated adhesive film to the electronic component, and making the singulated adhesive film and a step of reflowing the substrate provided with the singulated adhesive film and the electronic component.
  • a method for manufacturing a connected structure includes a step of preparing a substrate on which a plurality of electronic components are mounted, and a film structure in which singulated adhesive films corresponding to the plurality of electronic components are provided on a base material.
  • a film structure according to the present technology includes a substrate and a plurality of singulated adhesive films provided at predetermined positions on the substrate corresponding to a plurality of parts, and the plurality of singulated adhesive films One or more may contain solder particles.
  • a film structure according to the present technology includes a substrate and a plurality of singulated adhesive films provided at predetermined positions on the substrate corresponding to a plurality of parts, and the plurality of singulated adhesive films One or more may have regions that contain solder particles and regions that do not contain solder particles.
  • a film structure according to the present technology includes a substrate and a plurality of singulated adhesive films provided at predetermined positions on the substrate corresponding to a plurality of parts, and the plurality of singulated adhesive films One or more may differ from the thickness of other singulated adhesive films.
  • a film structure according to the present technology includes a substrate, and a region containing solder particles and a region not containing solder particles provided at predetermined positions on the substrate corresponding to a plurality of components.
  • a singulated adhesive film having a thickness and a singulated adhesive film having a second thickness having regions containing solder particles and regions not containing solder particles may be provided.
  • a method for manufacturing a film structure according to the present technology provides a first singulated adhesive film on a first base material, provides a second singulated adhesive film on a second base material, and provides a plurality of Arrange the first singulated adhesive film and the second singulated adhesive film at predetermined positions of the first base material, the second base material, or the third base material corresponding to the electronic component. At least one of the first singulated adhesive film and the second singulated adhesive film contains solder particles.
  • a singulated adhesive film containing no solder particles is provided on a first substrate, and a singulated adhesive film containing solder particles is provided on a second substrate.
  • a singulated adhesive film having a region containing no solder particles and a region containing solder particles is placed in close proximity.
  • a method for manufacturing a film structure according to the present technology provides a singulated adhesive film having a first thickness on a first substrate, and a singulated adhesive film having a second thickness on a second substrate.
  • a method for manufacturing a film structure according to the present technology provides a singulated adhesive film having a first thickness that does not contain solder particles on a first substrate, and a second substrate that does not contain solder particles.
  • a singulated adhesive film having a second thickness is provided, a singulated adhesive film having the first thickness containing solder particles is provided on a third substrate, and solder particles are provided on a fourth substrate.
  • the singulated adhesive film having the first thickness not containing the solder particles and the singulated adhesive film having the first thickness containing the solder particles are brought close to each other at predetermined positions on the substrate, and the singulated adhesive film does not contain the solder particles.
  • a singulated adhesive film having a first thickness having a region and a region containing solder particles is arranged, and the singulated adhesive film having a second thickness not containing the solder particles and the solder particles are included.
  • a singulated adhesive film having a second thickness is placed adjacent to the singulated adhesive film having a second thickness and having a region containing no solder particles and a region containing solder particles.
  • the process takt time can be shortened compared to preparing multiple types of adhesive films and temporarily attaching them individually.
  • FIG. 1 is a top view showing an example of a substrate.
  • FIG. 2 is a top view showing an example of a film structure.
  • FIG. 3 is a diagram showing a state in which the singulated adhesive film is temporarily stuck on the substrate.
  • FIG. 4 is a top view showing a modification of the film structure.
  • FIG. 5 is a diagram showing a state in which the singulated adhesive films of the modification are collectively temporarily stuck on a substrate.
  • FIG. 6 is a diagram showing a temporary sticking step of temporarily sticking the singulated adhesive film onto a substrate.
  • FIG. 7 is a diagram showing a printing process for printing solder paste.
  • FIG. 8 is a diagram showing a mounting process for mounting electronic components.
  • FIG. 9A is a diagram showing the reflow process, and FIG.
  • FIG. 9B is a diagram showing an example of the connection structure after the reflow process.
  • FIG. 10 is a graph showing an example of temperature conditions of the reflow furnace.
  • FIG. 11 is a plan view showing the singulated adhesive film pulled out from the reel.
  • FIG. 12 is a diagram showing a state in which the singulated adhesive film is attached to the electronic component.
  • FIG. 13 is a diagram showing a state in which the singulated adhesive film adhered to the electronic component is mounted on the substrate.
  • FIG. 14 is a diagram showing a state in which the electronic component is mounted on the substrate via the singulated adhesive film.
  • FIG. 15A is a plan view showing the suction surface of the suction head
  • FIG. 15B is a side view showing the side surface of the suction head.
  • FIG. 16A is a plan view showing the film structure before processing
  • FIG. 16B is a plan view showing the film structure after processing.
  • FIG. 17A is a plan view showing the first film structure
  • FIG. 17B is a plan view showing the second film structure
  • FIG. FIG. 3 is a plan view showing a film structure
  • FIG. 18A is a plan view showing the first film structure
  • FIG. 18B is a plan view showing the second film structure
  • FIG. FIG. 18D is a plan view showing the film structure
  • FIG. 18D is a cross-sectional view showing the film structure after processing.
  • 19A is a plan view showing the first film structure
  • FIG. 19B is a plan view showing the second film structure
  • FIG. 19C is a third film structure.
  • FIG. 19D is a plan view showing a film structure
  • FIG. 19D is a plan view showing a fourth film structure
  • FIG. 19E is a plan view showing the film structure after processing
  • FIG. 19(F) is a cross-sectional view showing the film structure after processing.
  • FIG. 20 is a plan view showing an example of a receptacle connector.
  • FIG. 21 is a plan view showing the dimensions of the film structure 1.
  • FIG. FIG. 22 is a plan view showing the dimensions of the film structure 2.
  • FIG. FIG. 23 is a plan view showing the dimensions of the film structure 3.
  • FIG. FIG. 24 is a plan view showing the dimensions of the film structure 4.
  • FIG. 21 is a plan view showing the dimensions of the film structure 1.
  • FIG. 22 is a plan view showing the dimensions of the film structure 2.
  • FIG. 23 is a plan view showing the dimensions of the film structure 3.
  • FIG. FIG. 24 is a plan view showing the dimensions of the film structure 4.
  • FIG. 21 is a
  • the manufacturing method of the connection structure according to the first embodiment comprises a step (A1) of preparing a substrate on which a plurality of electronic components are mounted, and Step (B1) of preparing a film structure in which a plurality of singulated adhesive films including a singulated adhesive film containing solder particles are arranged at predetermined positions; A step (C1) of temporarily sticking together, a step (D1) of placing electronic components on the singulated adhesive film, and a step of reflowing the substrate provided with the singulated adhesive film and electronic components (E1 ) and According to the method for manufacturing a connected structure according to the first embodiment, the process tact time can be shortened because a plurality of singulated adhesive films are temporarily attached to the substrate at once. Moreover, as compared with temporarily attaching an adhesive film to the entire surface of the substrate, it is not necessary to temporarily attach the adhesive film to an unnecessary portion, so that the cost can be reduced.
  • At least one of the singulated adhesive films preferably contains solder particles. Thereby, an electronic component can be mounted using a reflow furnace. Moreover, at least one of the singulated adhesive films preferably has a region containing solder particles and a region not containing solder particles. As a result, for example, it is possible to prevent the solder from wet-spreading onto bare metal other than the terminal portions, such as a receptacle connector, and prevent the solder from wet-spreading onto unnecessary portions other than the terminal portions. Moreover, at least one of the singulated adhesive films preferably has a thickness different from that of the other singulated adhesive films. As a result, even if the necessary amount of binder varies depending on the terminal height and terminal area of the electronic component, the size and weight of the electronic component, and the control of binder wetting around the connector, the bonding strength can be increased. can be improved.
  • the singulated adhesive film is preferably formed on the substrate by half-cutting, screen printing, or inkjet printing.
  • the adhesive is passed through the mesh of the screen mask with pressure from a squeegee or the like, and printed (applied) on the base material to produce, for example, a singulated adhesive film having a predetermined thickness according to the thickness of the screen mask.
  • a screen mask is a plate using a screen mesh woven from synthetic fibers such as polyester, stainless steel, or various metal fibers. If the adhesive contains solder particles, the mesh should be larger than the maximum diameter of the solder particles.
  • Inkjet printing can eject a predetermined amount of resin from a nozzle. Since the resin can be patterned onto the object (adhesive film) from the nozzle, a plate is not required.
  • tackiness can be provided on the surface of the singulated adhesive film by stippling or drawing a resin on a part of the surface of the singulated adhesive film.
  • a layer can also be formed by injecting more than half of the entire surface. The thickness can be measured in the same manner as for the singulated adhesive film, which will be described later.
  • a resin may be applied to the singulated adhesive film by inkjet printing to improve adhesive strength and reliability. There is an advantage that it can be used properly from the viewpoint of man-hours and functionality).
  • FIG. 1 to 3 are diagrams for explaining a method for manufacturing a connection structure according to the first embodiment
  • FIG. 1 is a top view showing an example of a substrate
  • FIG. 2 is a film structure
  • FIG. 3 is a top view showing an example
  • FIG. 3 is a diagram showing a state in which a singulated adhesive film is temporarily attached on a substrate.
  • Step (A1) As shown in FIG. 1, in step (A1), a substrate 10 on which a plurality of electronic components are mounted is prepared.
  • the substrate 10 includes a first connector mounting area 11, a second connector mounting area 12, a first chip mounting area 13, a second chip mounting area 14, a third chip mounting area 15, and a third chip mounting area 15.
  • a terminal corresponding to each electronic component is formed in each of the mounting regions 11 to 18 .
  • the substrate 10 is not particularly limited as long as it is a rigid substrate or flexible substrate (FPC: Flexible Printed Circuits) having heat resistance to reflow heat. etc. can be used.
  • the terminals of the mounting regions 11 to 18 are preferably plated with gold, nickel, palladium, silver, copper, tin, or the like.
  • Electronic parts are not particularly limited as long as they can be joined by reflow.
  • Examples include connectors, IC (Integrated Circuit) and LSI (Large Scale Integration) packages, LEDs (Light Emitting Diodes), switches, etc. mentioned.
  • Examples of the connector include a receptacle connector or a plug connector, and a specification in which the receptacle connector covers and fits the plug connector can be used.
  • the receptacle connector may be designed so that the terminal length of the receptacle connector is shorter than that of the plug connector, in order to avoid an excessively large overall outer shape and to reduce the outer shape after mating.
  • the thickness of the conductive adhesive film is made larger than the thickness of the conductive adhesive film used for soldering the plug connector, and The area of the conductive adhesive film may also be widened.
  • Such adjustment of the size of the component and the thickness and area of the adhesive film is not limited to the receptacle connector. With this technology, other components can also be adjusted appropriately according to the size, weight, and solder joint area. can do.
  • Step (B1) As shown in FIG. 2, in step (B1), a plurality of individual pieces including a singulated adhesive film containing solder particles are placed at predetermined positions on a substrate 20 corresponding to a substrate 10 on which a plurality of electronic components are mounted. A film structure in which the modified adhesive films 21 to 28 are arranged is prepared.
  • the singulated adhesive films 21 to 28 are not particularly limited, and include a film-shaped conductive film, a solder particle-containing resin film in which solder particles melt, an anisotropic conductive film (ACF: Anisotropic Conductive Film), and a film-shaped conductive film.
  • An adhesive film (NCF: Non Conductive Film) and the like are included. These may be a single layer or may have a layer structure of two or more layers. The combination is not particularly limited, but by laminating at least one of a conductive film (containing solder particles) and a resin film containing solder particles on an adhesive film (containing no solder particles), one singulated adhesive film can be obtained. The thickness of the film and the content of solder particles can be adjusted. In this case, which surface should be the substrate side may be selected according to the purpose.
  • the film structure may be a sheet in which the singulated adhesive films 21 to 28 are arranged on the substrate 20 so as to correspond to one substrate, and the singulated adhesive film 21 is arranged on the tape-shaped substrate. 28 are arranged continuously in the longitudinal direction for each unit area, and the reel may be wound.
  • the “unit region” refers to a rectangular region, for example, having a predetermined length in the longitudinal direction of the substrate.
  • all of the first singulated adhesive film 21 to the eighth singulated adhesive film 28 contain solder particles.
  • One or more of the singulated adhesive film 21 to the eighth singulated adhesive film 28 may contain solder particles.
  • the first singulated adhesive films 21a and 21b respectively correspond to the terminal rows of the first connector mounting area 11, and the second singulated adhesive films 22a and 22b Each corresponds to the terminal row of the second connector mounting area 12 .
  • the third adhesive film 23 to eighth adhesive film 28 are formed in the first chip mounting region 13, the second chip mounting region 14, the third chip mounting region 15, and the fourth chip mounting region 15, respectively. corresponds to the chip mounting area 16, the fifth chip mounting area 17, and the sixth chip mounting area 18 of FIG.
  • the film structure has regions on the substrate 20 where the singulated connecting films 21 to 28 are not present.
  • Step (C1) As shown in FIG. 3, in step (C1), a plurality of singulated adhesive films 21 to 28 are collectively temporarily attached to predetermined locations on the substrate 10, and the plurality of singulated adhesive films 21 to 28 are attached to the substrate 20. are collectively transferred to the substrate 10. By collectively temporarily sticking (sticking) on the substrate 10 while aligning the substrate 20 on which the plurality of singulated adhesive films 21 to 28 are arranged, the plurality of singulated adhesive films 21 to 28 are individually temporarily stuck. The process takt can be shortened compared to when In addition, by providing alignment marks on the substrate 20, the alignment accuracy can be further improved.
  • First singulated adhesive films 21 a and 21 b are temporarily attached to the first connector mounting region 11
  • second singulated adhesive films 22 a and 22 b are temporarily attached to the second connector mounting region 12 .
  • the third singulated adhesive film 23 to the eighth singulated adhesive film 28 are temporarily attached to the first chip mounting region 13 to the sixth chip mounting region 18, respectively.
  • step (D1) electronic components are placed on the singulated adhesive films 21-28.
  • step (D1) it is preferable to pick up the electronic components using a mounter and mount the electronic components on the singulated adhesive films 21-28.
  • a first connector component is mounted on the first singulated adhesive films 21a and 21b, and a second connector component is mounted on the second singulated adhesive films 22a and 22b.
  • the first to sixth chip components are mounted on the third to eighth singulated adhesive films 23 to 28, respectively.
  • two individual pieces are used for one connector component and one individual piece is used for one chip component.
  • One piece may be used for one connector component, and a plurality of pieces may be used for one chip component.
  • the required amount of resin differs. may differ from
  • step (E1) the substrate 10 provided with the singulated adhesive films 21 to 28 and electronic components is reflowed.
  • the reflow furnace has, for example, a preheating zone, a main heating zone, and a cooling zone, and solders the electronic component and the substrate 10 by flowing the substrate 10 in this order.
  • the conductive adhesive melts by heating, and the solder particles sandwiched between the electrodes by the main heating above the melting point of the solder move, aggregate and melt due to the flow of the binder, and the solder wets and spreads on the electrodes.
  • the terminal row of the electronic component and the terminal row of the substrate 10 are joined by cooling. Since the reflow furnace can perform heat bonding without mechanical pressure and no load, damage to the surface electronic components and the substrate 10 can be suppressed.
  • Reflow furnaces include atmospheric pressure reflow, vacuum reflow, atmospheric pressure oven, autoclave (pressure oven), etc. Among these, vacuum reflow, autoclave, etc. that can eliminate air bubbles contained in the joint are used. is preferred. Alternatively, a reflow furnace using an inert gas such as nitrogen gas may be used.
  • one singulated adhesive film is arranged for one electronic component, but it is not limited to this, and one individual for two or more electronic components. You may make it arrange
  • FIG. 4 is a top view showing a modification of the film structure.
  • a first singulated adhesive film 30A to a fourth singulated adhesive film 30D are arranged on a base material 30.
  • a base material 30 As shown in FIG. 4
  • the first singulated adhesive film 30A corresponds to the first connector mounting region 11 and has containing portions 31a and 31b containing solder particles and a non-containing portion 31c not containing solder particles.
  • the containing portions 31a and 31b correspond to the first singulated adhesive films 21a and 21b of the film structure shown in FIG.
  • the second singulated adhesive film 30B corresponds to the second connector mounting region 12 and has containing portions 32a and 32b containing solder particles and a non-containing portion 32c not containing solder particles.
  • the containing portions 32a, 32b correspond to the second singulated adhesive films 22a, 22b of the film structure shown in FIG.
  • the third singulated adhesive film 30 ⁇ /b>C includes a first containing portion 33 containing solder particles corresponding to the first chip mounting region 13 and a second containing portion 33 containing solder particles corresponding to the second chip mounting region 14 . a third containing portion 35 containing solder particles corresponding to the third chip mounting region 15; and a fourth containing portion containing solder particles corresponding to the fourth chip mounting region 16. and a non-containing portion that does not contain solder particles for integrating the first containing portion 33 to the fourth containing portion 36 .
  • the first containing portion 33 to fourth containing portion 36 correspond to the third singulated adhesive film 23 to sixth singulated adhesive film 26 of the film structure shown in FIG.
  • the fourth singulated adhesive film 30 ⁇ /b>D includes a first containing portion 37 containing solder particles corresponding to the fifth chip mounting region 15 and a first containing portion 37 containing solder particles corresponding to the sixth chip mounting region 16 . 2 containing portion 38 and a non-containing portion that does not contain solder particles for integrating the first containing portion 37 to the second containing portion 38 .
  • the first containing portion 37 to second containing portion 38 correspond to the seventh singulated adhesive film 27 to eighth singulated adhesive film 28 of the film structure shown in FIG.
  • FIG. 5 is a diagram showing a state in which the singulated adhesive films of the modification are collectively temporarily adhered onto a substrate.
  • step (C1) the first singulated adhesive film 30A to the fourth singulated adhesive film 30D are collectively temporarily attached, and the first singulated adhesive film 30A to the fourth singulated adhesive film 4 is collectively transferred from the base material 30 to the substrate 10 .
  • a first singulated adhesive film 30A is temporarily attached to the first connector mounting area 11, and a second singulated adhesive film 30B is temporarily attached to the second connector mounting area 12.
  • the third chip-separating adhesive film 30C is temporarily attached to the first chip mounting region 13 to the fourth chip mounting region 16, and the fifth chip mounting region 17 to the sixth chip mounting region 18.
  • the fourth singulated adhesive film 30D is temporarily attached.
  • the amount of resin required differs.
  • the thickness of the containing portion containing solder particles and the thickness of the non-containing portion not containing solder particles may be individually different.
  • a step of applying solder paste to predetermined locations on the substrate is further provided, and a step of placing the components (D1 ), by placing the components on the solder paste, the singulated adhesive film and the solder paste can be used in common, and it is possible to cope with the case where the solder amount of the solder connection portion is desired to be increased.
  • FIGS. 6 to 9 are diagrams for explaining a modification of the manufacturing method of the connection structure according to the first embodiment.
  • one singulated adhesive film is temporarily attached, but it is desirable to temporarily attach a plurality of singulated adhesive films at once.
  • a temporary attachment step of temporarily attaching the singulated adhesive film, a printing step of printing solder paste, a placement step of placing electronic components, and a reflow step of reflowing will be described below.
  • FIG. 6A and 6B are diagrams showing a temporary attachment step of temporarily attaching the singulated adhesive film onto a substrate, FIG. 6A being a cross-sectional view and FIG. 6B being a plan view.
  • the substrate 40 has a singulated adhesive film mounting area 41 and a solder paste mounting area 42 .
  • the solder paste mounting area 42 has a first electrode 43 to a fourth electrode 46 .
  • the singulated adhesive film 51 is temporarily attached to the singulated adhesive film mounting region 41 on the substrate 40 .
  • the step of temporary attachment is the same as the step (C1) shown in FIG.
  • FIG. 7A and 7B are diagrams showing a process of printing a solder paste, FIG. 7A being a cross-sectional view, and FIG. 7B being a plan view.
  • a metal mask 60 and a squeegee 61 are used to apply the solder paste 63 to the first electrode 43 to the fourth electrode 46 to form the first solder paste layer 63. to form a fourth solder paste layer 66; It is preferable to provide recesses corresponding to the singulated adhesive film mounting regions 41 on the bottom surface of the metal mask 60 .
  • the singulated adhesive film 51 is prevented from being crushed, and the singulated adhesive film 51 is attached to the metal mask 60 . You can prevent it from being worn.
  • FIG. 8A and 8B are diagrams showing a process of placing a component, FIG. 8A being a cross-sectional view, and FIG. 8B being a plan view.
  • the first chip component 71 is mounted on the singulated adhesive film 51, and the first solder paste layer 63 and the second solder paste layer 62 are coated with the first chip component 71.
  • a second chip component 72 is mounted, and a third chip component 73 is mounted on the third solder paste layer 63 and the fourth solder paste layer 62 .
  • FIG. 9A is a diagram showing the reflow process
  • FIG. 9B is a diagram showing an example of the connection structure after the reflow process
  • FIG. 10 is a graph showing an example of the temperature conditions of the reflow furnace.
  • the reflow process is the same as the process (E1), and in the reflow furnace, for example, as shown in FIG.
  • the first chip component 71 and the substrate 40 are solder-bonded
  • the second chip components 72 and 73 and the substrate 40 are solder-bonded.
  • a method for manufacturing a connected structure according to the second embodiment includes a step (A2) of preparing a substrate on which a plurality of electronic components are mounted, and a step of forming singulated adhesive films corresponding to the plurality of electronic components on a base material. a step (B2) of preparing a film structure provided in the step (B2); , a step (D2) of mounting the electronic parts to which the singulated adhesive film is adhered, and a step (E2) of reflowing the substrate provided with the singulated adhesive film and the electronic parts.
  • the mounter is used to press the electronic component against the singulated adhesive film corresponding to the electronic component, and the singulated adhesive film is attached to the electronic component.
  • the process takt time can be shortened because the electronic parts to which the singulated adhesive film is adhered are mounted.
  • the film structure to be prepared does not necessarily have to match the layout of the substrate, the individual pieces can be densely packed, and an effect of saving space for the film structure can be expected.
  • the step of preparing a substrate (A2), the step of preparing a film structure (B2), the step of mounting electronic components (D2), and the step of reflowing the substrate (E2) will be described below.
  • the same reference numerals are given to the same configurations as in the first embodiment, and the description thereof is omitted here.
  • step (A2) substrate 10 on which a plurality of electronic components are to be mounted is prepared as in step (A1) of the first embodiment.
  • step (B2) a film structure is prepared in which singulated adhesive films corresponding to a plurality of electronic components are provided on a substrate.
  • the film structure is preferably a reel in which the singulated adhesive film is continuously arranged in each predetermined range in the longitudinal direction on a tape-shaped base material and wound.
  • FIG. 11 is a plan view showing the singulated adhesive film pulled out from the reel. As shown in FIG. 11, it is preferable to prepare first to eighth reels on which the first to eighth singulated adhesive films 21 to 28 are respectively wound. As in the step (B1) shown in FIG. 2, a plurality of individual pieces including the singulated adhesive film containing solder particles are placed at predetermined positions on the substrate 20 corresponding to the substrate 10 on which a plurality of electronic components are mounted. A film structure in which the modified adhesive films 21-28 are arranged may be prepared.
  • step (D2) the electronic component is pressed against the singulated adhesive film corresponding to the component using a mounter, the singulated adhesive film is adhered to the electronic component, and the singulated adhesive film is adhered. equipped with electronic components.
  • the same substrate has unevenness or steps, or when combining electronic components and substrates with different electrode heights and positions, the amount of resin required will differ. It may differ from part to part.
  • FIG. 12 to 14 are diagrams showing the steps of mounting the components
  • FIG. 12 is a diagram showing a state in which the singulated adhesive film is attached to the electronic components
  • FIG. FIG. 14 is a diagram showing a state in which the singulated adhesive film is mounted on a substrate
  • FIG. 14 is a diagram showing a state in which an electronic component is mounted on the substrate via the singulated adhesive film.
  • the electronic component 81 picked up by the suction head 80 of the mounter is pressed against the singulated adhesive film 82 to adhere the singulated adhesive film 82 to the electronic component 81 , and the singulated adhesive film 82 is adhered to the electronic component 81 . is transferred from the base material 83 to the electronic component 81 .
  • the electronic component 81 to which the singulated adhesive film 82 is adhered is picked up by the suction head 80 and mounted on the substrate 84 via the singulated adhesive film 82 .
  • the first connector component is mounted on the first connector mounting area 11 via the first singulated adhesive films 21a and 21b, and the second connector mounting is performed.
  • a second connector component is mounted on the region 12 via second singulated adhesive films 22a and 22b.
  • the first chip component to the first chip component are mounted on the first chip mounting region 13 to the sixth chip mounting region 18 via the third singulated adhesive film 23 to the eighth singulated adhesive film 28, respectively. 6 chip components are mounted.
  • Step (E2) In the step (E2), the substrate 10 provided with the singulated adhesive films 21 to 28 and the electronic components is reflowed as in the step (E1) of the first embodiment.
  • a step of applying solder paste to a predetermined portion of the substrate before the step (D2) of mounting the electronic components to which the singulated adhesive film is adhered, a step of applying solder paste to a predetermined portion of the substrate, and a step of providing the electronic components on the solder paste.
  • a step of placing the individualized adhesive film and the solder paste can be used in common.
  • a method for manufacturing a connected structure according to the third embodiment includes a step (A3) of preparing a substrate on which a plurality of electronic components are mounted, and a step of forming singulated adhesive films corresponding to the plurality of electronic components on a base material.
  • connection structure According to the manufacturing method of the connection structure according to the third embodiment, by using the mounter head to mount the singulated adhesive film on the predetermined position of the substrate, the temporary attachment process itself is eliminated, and the process tact time is shortened. can be shortened.
  • the film structure to be prepared does not necessarily have to match the layout of the substrate, the individual pieces can be densely packed, and an effect of saving space for the film structure can be expected.
  • step (A3) the step of preparing a substrate (A3), the step of preparing a film structure (B3), the step of mounting a singulated adhesive film (C3), the step of mounting electronic components (D3), and reflowing the substrate
  • step (E3) to do so will be described.
  • the same reference numerals are given to the same configurations as those of the first embodiment and the second embodiment, and the description thereof is omitted here.
  • step (A3) substrate 10 on which a plurality of electronic components are to be mounted is prepared as in step (A1) of the first embodiment.
  • step (B3) similarly to step (B2) in the second embodiment, a film structure is prepared in which singulated adhesive films corresponding to a plurality of parts are provided on a substrate.
  • the film structure is preferably a reel in which the singulated adhesive film is continuously arranged in each predetermined range in the longitudinal direction on a tape-shaped base material and wound.
  • step (C3) a mounter is used to mount the singulated adhesive film on predetermined locations on the substrate.
  • the mounter has a suction head that suctions the singulated adhesive film.
  • FIG. 15A and 15B are diagrams showing a configuration example of a suction head
  • FIG. 15A is a plan view showing a suction surface of the suction head
  • FIG. 15B is a side view showing a side surface of the suction head.
  • the suction head 90 has an elastomer layer 91 at the tip and suction holes 92 on the surface of the elastomer.
  • the upper limits of the lateral width x1 and the longitudinal width y1 of the adsorption surface of the elastomer layer 91 are preferably 30 mm or less, more preferably 20 mm or less, and even more preferably 15 mm or less. Also, the lower limits of the width x2 and the length y2 of the formation area of the suction holes 92 on the suction surface are preferably 0.5 mm or more, more preferably 1.0 mm or more, and even more preferably 2.0 mm or more.
  • the lower limit of the diameter of the suction holes 92 is preferably 0.05 mm or more, more preferably 0.1 mm or more, and still more preferably 0.2 mm or more, and the upper limit of the diameter of the suction holes 92 is preferably 3 mm or less. It is more preferably 1 mm or less, still more preferably 0.5 mm or less.
  • a single suction head may be provided with a plurality of suction hole areas to suck a plurality of singulated adhesive films so that the plurality of singulated adhesive films can be mounted together.
  • the elastomer layer 91 is made of, for example, a thermosetting elastomer such as silicone rubber, fluororubber, or urethane rubber.
  • the lower limit of the thickness of the elastomer layer 91 is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, still more preferably 150 ⁇ m or more, and the upper limit of the thickness is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and further preferably 250 ⁇ m or less. be.
  • the first singulated adhesive films 21a and 21b are mounted on the first connector mounting area 11, and the second connector mounting area is mounted. 12, second singulated adhesive films 22a and 22b are mounted. Further, the third singulated adhesive film 23 to the eighth singulated adhesive film 28 are mounted on the first chip mounting region 13 to the sixth chip mounting region 18, respectively.
  • Step (D3) In the step (D3), electronic components are placed on the singulated adhesive films 21 to 28 as in the step (D3) of the first embodiment.
  • the first connector components are mounted on the first singulated adhesive films 21a and 21b, and the second singulated adhesive films 22a and 22b have the , a second connector part is mounted.
  • the first to sixth chip components are mounted on the third to eighth singulated adhesive films 23 to 28, respectively.
  • Step (E2) In the step (E2), the substrate 10 provided with the singulated adhesive films 21 to 28 and the electronic components is reflowed as in the step (E1) of the first embodiment.
  • the step of providing a solder paste on a predetermined portion of the substrate and the step of placing the electronic component on the solder paste are combined. Further, by having it, the singulated adhesive film and the solder paste can be used in common.
  • the method for manufacturing a connection structure includes, for example, semiconductor devices (including driver ICs as well as optical elements, thermoelectric conversion elements, photoelectric conversion elements, and other devices using semiconductors), display devices (monitors, TVs, head-mounted displays, etc.), mobile devices (tablets, smartphones, wearable devices, etc.), game consoles, audio equipment, imaging devices (using image sensors such as camera modules), electrical mounting for vehicles (moving devices), It can be used in manufacturing methods for all electronic devices that use electrical connections, such as medical devices, sensor devices (touch sensors, fingerprint authentication, iris authentication, etc.), and home appliances.
  • semiconductor devices including driver ICs as well as optical elements, thermoelectric conversion elements, photoelectric conversion elements, and other devices using semiconductors
  • display devices monitors, TVs, head-mounted displays, etc.
  • mobile devices tablets, smartphones, wearable devices, etc.
  • game consoles audio equipment
  • imaging devices using image sensors such as camera modules
  • electrical mounting for vehicles moving devices
  • a film structure according to a first embodiment includes a substrate, and a plurality of singulated adhesive films arranged at predetermined positions on the substrate corresponding to a plurality of electronic components, One or more of the stripped adhesive films contain solder particles. According to the film structure according to the first embodiment, since the singulated adhesive films are arranged at predetermined positions on the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them on the substrate. electronic components can be mounted using a reflow oven.
  • the first singulated adhesive film is provided on the first base material, and the second singulated adhesive film is provided on the second base material.
  • a film is provided, and a first singulated adhesive film and a second singulated adhesive film are provided at predetermined positions on a first base material, a second base material, or a third base material corresponding to a plurality of electronic components. and one or more of the first singulated adhesive film and the second singulated adhesive film contain solder particles.
  • the base material is a support film that supports multiple singulated adhesive films.
  • base materials include PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), and PTFE (Polytetrafluoroethylene).
  • PET Poly Ethylene Terephthalate
  • OPP Oriented Polypropylene
  • PMP Poly-4-methylpentene-1
  • PTFE Polytetrafluoroethylene
  • at least the surface on the side of the singulated adhesive film can be suitably used that has been subjected to release treatment with, for example, a silicone resin.
  • the thickness of the base material is not particularly limited.
  • the lower limit of the thickness of the substrate is preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, and still more preferably 38 ⁇ m or more, from the viewpoint of peeling.
  • the upper limit of the thickness of the substrate is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 75 ⁇ m or less, because there is concern that excessive pressure will be applied to the adhesive film if it is too thick. good.
  • the width of the base material is not particularly limited. From the viewpoint of winding, the lower limit of the width of the substrate is preferably 1 mm or more, more preferably 2 mm or more, and even more preferably 4 mm or more.
  • the upper limit of the width of the substrate is preferably 500 mm or less, more preferably 250 mm or less, and even more preferably 120 mm or less, because there is concern that if it is too large, it may become difficult to carry and handle.
  • the film structure may be a sheet in which a plurality of singulated adhesive films are arranged on a substrate so as to correspond to one substrate, and the plurality of singulated adhesive films are arranged on a tape-shaped substrate. It may be a reel in which unit areas are continuously arranged in the longitudinal direction and wound. In the case of a reel, the width of the base material may be the short side or the long side of the electronic component layout area (rectangular area) to be connected.
  • the “unit region” refers to a rectangular region, for example, having a predetermined length in the longitudinal direction of the substrate.
  • the singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing. In the half-cut process, only the adhesive film is cut without cutting the base material with a Viku blade, and unnecessary parts are removed by punching or the like.
  • screen printing the adhesive is passed through the mesh of the screen mask with pressure from a squeegee or the like, and printed (applied) on the base material to produce, for example, a singulated adhesive film having a predetermined thickness according to the thickness of the screen mask.
  • a screen mask is a plate using a screen mesh woven from synthetic fibers such as polyester, stainless steel, or various metal fibers. If the adhesive contains solder particles, the mesh should be larger than the maximum diameter of the solder particles.
  • Inkjet printing involves direct patterning from data without the need for a plate.
  • the coating amount is controlled by the nozzle diameter to produce individualized adhesive films of a predetermined thickness. If the adhesive contains solder particles, the nozzle diameter should be larger than the maximum diameter of the solder particles.
  • the singulated adhesive film may have a structure of two or more layers, or may have a structure of two or more layers of a layer containing solder particles and a layer not containing solder particles, or two layers of layers containing solder particles.
  • the above structure may be used, or a structure of two or more layers that do not contain solder particles may be used.
  • the singulated adhesive film When the singulated adhesive film is composed of two or more layers, it is preferable to half-cut after forming a raw fabric of two or more layers by coating or lamination. Moreover, after producing the singulated adhesive film by screen printing, it may be laminated and molded. Moreover, after producing a singulated adhesive film by nozzle jet printing (inkjet printing), it may be laminated and molded.
  • the lower limit of the ratio of the thickness of the adhesive film to the average particle diameter of the solder particles is preferably 0.6 or more, more preferably 0.8 or more, More preferably, it is 0.9 or more.
  • the thickness of the singulated adhesive film may be uneven or stepped on the same substrate, or may be a combination of an electronic component and a substrate having different electrode heights or positions. In such a case, the required resin amount is different, so there is no particular limitation, but it is generally preferable to set the thickness to 200 ⁇ m or less, which is suitable for film formation.
  • the thickness of the singulated adhesive film may be different for each piece, and when a plurality of singulated adhesive films are provided on the same substrate, the maximum thickness of the singulated adhesive film is 200 ⁇ m or less. Preferably.
  • the thickness of the singulated adhesive film is 1 ⁇ m or less, preferably 0.1 ⁇ m or less. can be measured.
  • the film thickness may be obtained by measuring 10 or more points and averaging them. However, if the film thickness is thinner than the particle diameter, a contact-type thickness measuring device is not suitable, so it is preferable to use a laser displacement meter (eg, Keyence Corporation, spectral interference displacement type SI-T series, etc.). .
  • the film thickness is the thickness of the binder resin layer only, and does not include the particle diameter of the exposed layer.
  • the film thickness refers to the thickness of the multiple layers.
  • the binder of the singulated adhesive film may be thermosetting or thermoplastic, but it is preferably thermosetting that can be melted and cured by temperature control in the reflow process.
  • the thermosetting binder (insulating binder) will be described below.
  • the thermosetting binder preferably has an exothermic peak temperature higher than the melting point of the solder particles, and preferably has a melting temperature lower than the melting point of the solder particles.
  • the exothermic peak temperature was measured using a rotary rheometer (manufactured by Thermo Fisher Co.) under the conditions of a measurement pressure of 1 N temperature range of 30 to 200° C., a heating rate of 10° C./min, a measurement frequency of 1 Hz, and a measurement plate diameter of 8 mm. can be measured.
  • the thermosetting binder is melted by heating, and the solder is melted while the solder particles are sandwiched between the terminals, so that electronic components having fine-pitch electrodes can be joined.
  • thermosetting binder a thermal radical polymerization resin composition containing a (meth)acrylate compound and a thermal radical polymerization initiator, a thermal cationic polymerization resin composition containing an epoxy compound and a thermal cationic polymerization initiator, and an epoxy compound. and a thermal anion polymerization type resin composition containing a thermal anion polymerization initiator.
  • the (meth)acrylic monomer is meant to include both acrylic monomers and methacrylic monomers.
  • thermal anionic polymerizable resin composition containing a solid epoxy resin, a liquid epoxy resin, and an epoxy resin curing agent will be described.
  • the solid epoxy resin is not particularly limited as long as it is solid at room temperature and has one or more epoxy groups in the molecule. Examples thereof include bisphenol A type epoxy resin and biphenyl type epoxy resin. There may be. Thereby, the film shape can be maintained.
  • the room temperature is the range of 20°C ⁇ 15°C (5°C to 35°C) defined by JIS Z 8703.
  • the liquid epoxy resin is not particularly limited as long as it is liquid at room temperature. do not have.
  • the amount of the liquid epoxy resin to be blended is preferably 160 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 70 parts by mass or less with respect to 100 parts by mass of the solid epoxy resin.
  • the amount of the liquid epoxy resin added is large, it becomes difficult to maintain the film shape.
  • the amount of the liquid epoxy resin added is large, the cured physical properties after heat curing generally become highly elastic due to the high crosslink density, resulting in a decrease in the ability to relax stress.
  • the epoxy resin curing agent is not particularly limited as long as it is a thermosetting agent that initiates curing by heat. Examples thereof include anionic curing agents such as amines and imidazoles, and cationic curing agents such as sulfonium salts. .
  • the curing agent may be microencapsulated so as to obtain resistance to the solvent used when forming the film.
  • Solder particles are defined, for example, in JIS Z 3282-1999, Sn—Pb system, Pb—Sn—Sb system, Sn—Sb system, Sn—Pb—Bi system, Bi—Sn system, Sn—Cu system, It can be appropriately selected from Sn--Pb--Cu, Sn--In, Sn--Ag, Sn--Pb--Ag, Pb--Ag, etc., depending on the electrode material and connection conditions. Bi-based solder can alleviate stress, suppress cracks in the metal joints of the solder, and suppress an increase in connection resistance.
  • the lower limit of the melting point of the solder particles is preferably 110°C or higher, more preferably 120°C or higher, and even more preferably 130°C or higher.
  • the upper limit of the melting point of the solder particles may be 200° C. or lower, preferably 180° C. or lower, more preferably 160° C. or lower, and even more preferably 150° C. or lower.
  • the solder particles may have a flux compound bonded directly to the surface for the purpose of activating the surface. By activating the surface, metal bonding with the electrode can be promoted.
  • the average particle diameter of the solder particles is preferably 0.5 times or less, more preferably 0.3 times or less, the minimum value of the inter-terminal distance (inter-space distance) in the terminal row of the electronic component. .2 times or less is more preferable. Based on the relationship between the distance between the spaces and the average particle size of the solder particles, it is possible to join the terminal rows of the electronic component and the terminal rows of the substrate using a reflow furnace. If the average particle size of the solder particles is larger than 0.5 times the minimum distance between terminals in the terminal row of the electronic component and the terminal row of the board, the possibility of short-circuiting increases.
  • the lower limit of the average particle size of the solder particles is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. Thereby, the coating thickness of the film can be made constant. If the average particle size of the solder particles is less than 0.5 ⁇ m, a good solder joint state with the electrode portion cannot be obtained, and the reliability tends to deteriorate. Also, the upper limit of the average particle size of the solder particles may be 50 ⁇ m or less, 30 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the average particle size obtained from the observed image or the image-type particle size distribution analyzer can be the average value of the maximum length of the particles.
  • the particle size (D50) at which the cumulative frequency in the particle size distribution obtained by a simple laser diffraction/scattering method becomes 50%, the arithmetic mean diameter is preferred) can be used.
  • the maximum diameter of the solder particles can be 200% or less of the average particle diameter, preferably 150% or less of the average particle diameter, and more preferably 120% or less of the average particle diameter.
  • the solder particles can be sandwiched between the electrodes, and the electrodes can be joined by melting the solder particles.
  • the size of the agglomerate may be the same as the average particle diameter and maximum diameter of the solder particles described above, and the average particle diameter and maximum diameter of the solder particles may be the same as those described above. may be smaller than the value of The size of each solder particle can be determined by the image observation described above.
  • solder particles are preferably dispersed in the binder, and the solder particles may be arranged randomly or according to a certain rule. Also, the solder particles may be aggregates in which a plurality of particles are aggregated.
  • the lower limit of the mass ratio range of the amount of solder particles is preferably 10 wt% or more, more preferably 20 wt% or more, and still more preferably 30 wt% or more, and the upper limit of the mass ratio range is preferably 60 wt% or less, more preferably. is 50 wt % or less, more preferably 40 wt % or less.
  • the lower limit of the volume ratio range of the amount of solder particles is preferably 2 vol% or more, more preferably 4 vol% or more, and still more preferably 6 vol% or more, and the upper limit of the volume ratio range is preferably 90 wt% or less. It is more preferably 85 wt % or less, still more preferably 80 wt % or less.
  • volume ratios may be used when the solder particles are in the binder, and weight ratios may be used when making the conductive adhesive (before the solder particles are in the binder).
  • the mass ratio can be converted into a volume ratio based on the specific gravity and compounding ratio of the compound. If the amount of the solder particles is too small, excellent conductivity, heat dissipation, and adhesion cannot be obtained, and if the amount is too large, anisotropy tends to be impaired, making it difficult to obtain excellent conduction reliability .
  • the flux compound removes foreign substances and oxide films on the electrode surfaces, prevents oxidation of the electrode surfaces, removes oxide films on the surfaces of the solder particles, and lowers the surface tension of molten solder.
  • Examples of flux compounds include carboxylic acids such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid. Among these, it is preferable to use glutaric acid, which is excellent in removing oxide films.
  • the singulated adhesive film can contain various additives conventionally used as adhesives within a range that does not impair the effects of the present invention.
  • the particle size of the additive is desirably smaller than the average particle size of the solder particles, but is not particularly limited as long as it does not interfere with the bonding between the electrodes.
  • an insulating binder, solder particles, and a flux compound are mixed in a solvent, and the mixture is applied to a release treated film to a predetermined thickness using a bar coater, and then dried. It can be obtained by evaporating the solvent with a squeegee and performing a half-cut process.
  • the mixture may be coated on a release-treated film with a bar coater, and then pressurized to a predetermined thickness, and then half-cut.
  • a high shear while containing the solvent for example, a known batch-type planetary stirrer can be used.
  • the residual solvent content of the conductive adhesive is preferably 2% or less, more preferably 1% or less.
  • FIG. 16A and 16B are diagrams showing an example of a method for manufacturing a film structure according to the first embodiment, FIG. 16A is a plan view showing the film structure before processing, and FIG. ) is a plan view showing the film structure after processing.
  • the adhesive film 101 on the first base material 100 is processed into a predetermined shape. For example, by half-cutting with a Viku blade, cutting only the adhesive film without cutting the first base material 100, and excluding unnecessary portions, a predetermined shape is formed on the first base material 100. First singulated adhesive films 102 and 103 can be obtained.
  • a second singulated adhesive film is produced on a second base material in the same manner as the method for producing the film structure shown in FIGS. 16(A) and 16(B). Then, the first singulated adhesive film and the second singulated adhesive film are arranged at predetermined positions of the substrate corresponding to the plurality of electronic components.
  • the substrate on which the singulated film is arranged may be the first substrate 100 or the second substrate, or may be a new third substrate. When using the third substrate, a mounter can be used.
  • a film structure according to a second embodiment includes a base material and a plurality of singulated adhesive films arranged at predetermined positions on the base material corresponding to a plurality of electronic components.
  • One or more of the adhesive films have areas that contain solder particles and areas that do not contain solder particles.
  • the singulated adhesive films are arranged at predetermined positions of the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them onto the substrate. It is possible to prevent solder wetting and spreading to unnecessary locations.
  • the singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing, as in the first embodiment. Further, the description of the same configuration as that of the first embodiment is omitted here.
  • the singulated adhesive film containing no solder particles is provided on the first base material, and the solder particles are contained on the second base material.
  • a singulated adhesive film is provided, and a singulated adhesive film containing no solder particles and a singulated adhesion containing solder particles are provided at predetermined positions of a first base material, a second base material, or a third base material.
  • a singulated adhesive film having regions containing no solder particles and regions containing solder particles is placed in close proximity to the film.
  • FIG. 17A and 17B are diagrams showing an example of a method for manufacturing a film structure according to the second embodiment
  • FIG. 17A is a plan view showing the first film structure
  • FIG. ) is a plan view showing the second film structure
  • FIG. 17C is a plan view showing the film structure after processing.
  • the first film structure shown in FIG. 17(A) and the second film structure shown in FIG. 17(B) are manufactured in the same manner as the film structure shown in FIGS. 16(A) and 16(B). Then, the first singulated adhesive films 111 and 112 are produced on the first substrate 110, and the second singulated adhesive films 121a, 121b, 122a and 122b are formed on the second substrate 120. make.
  • the first singulated adhesive films 111 and 112 do not contain solder particles, and the second singulated adhesive films 121a, 121b, 122a, and 122b are fitted to the terminal row portions of the electronic components. It has parts 111a, 111b, 112a and 112b.
  • the fitting portions 111a, 111b, 112a, and 112b can be formed, for example, by punching by half-cutting with a sharp blade.
  • first singulated adhesive films 111 and 112 and second singulated adhesive films 121a, 121b, 122a and 122b are placed on predetermined positions of a substrate corresponding to a plurality of electronic components. are placed in close proximity to each other. Thereby, a composite singulated adhesive film having a region containing no solder particles and a region containing solder particles can be produced.
  • the substrate on which the singulated film is arranged may be the first substrate 110 or the second substrate 120, or may be a new third substrate. When using the third substrate, a mounter can be used.
  • a film structure according to a third embodiment includes a base material and a plurality of singulated adhesive films arranged at predetermined positions on the base material corresponding to a plurality of electronic components. One or more of the adhesive films differ in thickness from the other singulated adhesive films. According to the film structure according to the third embodiment, since the singulated adhesive films are arranged at predetermined positions on the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them on the substrate. It is possible to improve the bonding strength.
  • the singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing, as in the first embodiment. Further, descriptions of the same configurations as in the first embodiment and the second embodiment are omitted here.
  • a singulated adhesive film having a first thickness is provided on a first base material, and a singulated adhesive film having a second thickness is provided on a second base material. and a singulated adhesive film having a first thickness at predetermined positions on a first base material, a second base material, or a third base material corresponding to a plurality of parts; and A singulated adhesive film having a second thickness is placed.
  • FIG. 18A and 18B are diagrams showing an example of a method for manufacturing a film structure according to the third embodiment
  • FIG. 18A is a plan view showing the first film structure
  • FIG. ) is a plan view showing a second film structure
  • FIG. 18(C) is a plan view showing the film structure after processing
  • FIG. 18(D) is a plan view showing the film structure after processing. It is a sectional view showing.
  • the first film structure shown in FIG. 18(A) and the second film structure shown in FIG. 18(B) are manufactured in the same manner as the film structure shown in FIGS. 16(A) and 16(B). Then, the first singulated adhesive film 131 is produced on the first substrate 130 , and the second singulated adhesive film 141 is produced on the second substrate 140 .
  • the first singulated adhesive film 131 has a first thickness
  • the second singulated adhesive film 131 has a second thickness different from the first thickness.
  • a first singulated adhesive film 131 and a second singulated adhesive film 141 are arranged at predetermined positions on the substrate corresponding to the plurality of electronic components. do.
  • the substrate on which the singulated film is arranged may be the first substrate 130 or the second substrate 140, or may be a new third substrate.
  • a mounter can be used.
  • a film structure according to a fourth embodiment has a substrate, and regions containing solder particles and regions not containing solder particles provided at predetermined positions on the substrate corresponding to a plurality of parts.
  • a singulated adhesive film having a first thickness and a singulated adhesive film having a second thickness having regions containing solder particles and regions not containing solder particles are provided. According to the film structure according to the fourth embodiment, since the singulated adhesive films are arranged at predetermined positions on the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them on the substrate. It is possible to prevent solder wetting and spreading to unnecessary locations, and improve the bonding strength.
  • the singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing, as in the first embodiment. Further, descriptions of the same configurations as those of the first to third embodiments are omitted here.
  • a singulated adhesive film having a first thickness that does not contain solder particles is provided on a first base material, and A singulated adhesive film having a second thickness containing no solder particles is provided on the third substrate, a singulated adhesive film having a first thickness containing solder particles is provided on the third substrate, and a fourth substrate A singulated adhesive film having a second thickness containing solder particles is provided on the material, and the first substrate, the second substrate, the third substrate, the fourth substrate, or the fifth substrate.
  • a singulated adhesive film having a first thickness that does not contain solder particles and a singulated adhesive film that contains solder particles and having a first thickness are brought close to each other at predetermined positions on a base material, and a region that does not contain solder particles is formed. a region containing solder particles; and a singulated adhesive film having a second thickness not containing solder particles and a second thickness containing solder particles.
  • a singulated adhesive film having a thickness is brought into proximity, and a singulated adhesive film having a second thickness having a region containing no solder particles and a region containing solder particles is disposed.
  • FIG. 19A and 19B are diagrams showing an example of a method for manufacturing a film structure according to the fourth embodiment
  • FIG. 19A is a plan view showing the first film structure
  • FIG. ) is a plan view showing the second film structure
  • FIG. 19C is a plan view showing the third film structure
  • FIG. 19D is a plan view showing the fourth film structure.
  • 19(E) is a plan view showing the film structure after processing
  • FIG. 19(F) is a cross-sectional view showing the film structure after processing.
  • the first to fourth film structures shown in FIGS. 19(A) to 19(D) are the same as the method for producing the film structures shown in FIGS. 16(A) and 16(B). Then, a first singulated adhesive film 151 is produced on a first substrate 150, a second singulated adhesive film 161 is produced on a second substrate 160, and a third substrate Third singulated adhesive films 171 a and 171 b are produced on 170 , and fourth singulated adhesive films 181 a and 181 b are produced on a fourth substrate 180 .
  • the first singulated adhesive film 151 does not contain solder particles, and has fitting portions 151a and 151b in which the third singulated adhesive films 171a and 171b are fitted to the terminal row portions of the electronic component.
  • the second singulated adhesive film 161 does not contain solder particles, and has fitting portions 161a and 161b in which the fourth singulated adhesive films 181a and 181b are fitted to the terminal row portions of the electronic component.
  • the first singulated adhesive film 151 and the third singulated adhesive film 171 have a first thickness
  • the second singulated adhesive film 161 and the fourth singulated adhesive film 181 have a first thickness. has a second thickness greater than the first thickness.
  • a first singulated adhesive film 151 and second singulated adhesive films 171a and 171b are placed on predetermined positions of a substrate corresponding to a plurality of electronic components. are placed close to each other, and the third singulated adhesive film 161 and the fourth singulated adhesive films 181a and 181b are placed close to each other.
  • a singulated adhesive film having a composite first thickness and a composite second thickness having a solder particle-free region and a solder particle-containing region on the same base material. It is possible to produce a singulated adhesive film having.
  • any one of the first base material 150, the second base material 160, the third base material 170, and the fourth base material 180 may be used as the base material on which the singulated film is arranged.
  • a fifth base material may be used. When using the fifth substrate, a mounter can be used.
  • one or more of the plurality of singulated adhesive films may have a region having a first thickness and a region having a second thickness. That is, the fitting portions 151a and 151b of the first singulated adhesive film 151 having the first thickness are fitted with the fourth singulated adhesive films 181a and 181b to form the second thickness. The fitting portions 161a and 161b of the second singulated adhesive film 161 having the thickness may be fitted with the third singulated adhesive films 171a and 171b having the first thickness.
  • the concave or convex portion when there is a concave or convex portion on the surface of the substrate or the bottom surface of the electronic component, the concave or convex portion follows the concave portion or convex portion to prevent the solder from spreading to unnecessary locations.
  • the bonding strength can be improved.
  • Example> Examples using the present technology will be described below.
  • a film structure provided with a plurality of singulated adhesive films is prepared, the plurality of singulated adhesive films are temporarily attached to a substrate at once, and electronic components (plug connectors, receptacle connectors) are individually separated. It was mounted on an adhesive film, and electronic components were mounted by reflow. Then, the conduction performance and bonding strength after mounting the electronic component were evaluated. In mounting the receptacle connector, solder adhesion to wiring other than the terminals of the receptacle connector was evaluated. Note that the present technology is not limited to these examples.
  • Conductive adhesive film A The following conductive adhesive film A, conductive adhesive film B, adhesive film A, adhesive film B, electronic component A, electronic component B, and substrate were prepared. Further, reflow was performed under the following reflow conditions.
  • Conductive adhesive film B A conductive adhesive film B was produced in the same manner as the conductive adhesive film A, except that the thickness was 35 ⁇ m.
  • Adhesive film A An adhesive film B having a thickness of 25 ⁇ m was produced in the same manner as the conductive adhesive film A, except that the solder particles were not blended.
  • Adhesive film B Adhesive film B with a thickness of 35 ⁇ m was produced in the same manner as conductive adhesive film B, except that solder particles were not blended.
  • Electronic component A 10 pins on one side (20 pins on both sides), 0.35mm pitch plug connector, Hirose Electric Co., Ltd., BM23FR0.6-20DP-0.35V (895), mounting size 1.5mm x 5.2mm
  • Electronic component B 10 pins on one side (20 pins on both sides), 0.35mm pitch receptacle connector, Hirose Electric Co., Ltd., BM23FR0.6-20DS-0.35V (895), mounting dimensions 2.0mm x 6.0mm substrate: Rigid board (Glass epoxy board for Dexerials evaluation, Ni-Au plating) that can be mounted with one plug connector and one receptacle connector. Reflow conditions: 150°C ⁇ 260°C-100sec, peak top 260°C
  • connection structure after connector mounting With respect to the connection structure after connector mounting, the resistance value when a current of 1 mA was passed by the 4-terminal method was measured using a digital multimeter, and the resistance value was evaluated according to the following evaluation criteria. It is desired that the resistance value of the connection structure after electronic component mounting is less than 100 m ⁇ .
  • the die shear strength of the connection structure after mounting the connector was measured using a die shear tester under conditions of a shear rate of 20 ⁇ m/sec and a temperature of 25° C. of a tool for moving the connector, and the die shear strength was evaluated according to the following evaluation criteria. It is desired that the die shear strength of the connection structure after mounting the connector is 3N or more.
  • FIG. 20 is a plan view showing an example of a receptacle connector.
  • the receptacle connector includes a first pin portion 191a and a second pin portion 191b for connecting with the board, and a first fitting portion 192a and a second fitting portion 192b for fitting with the plug.
  • One pin portion 191a and a first fitting portion 192a are electrically connected, and a second pin portion 191b and a second fitting portion 192b are electrically connected.
  • the receptacle connector is designed to cover and fit the plug connector.
  • This receptacle connector is designed to have terminals shorter than those of a plug connector in order to avoid an excessively large overall outer shape and to reduce the outer shape after mating.
  • the area for solder connection also becomes smaller, so the strength of the solder connection between the receptacle connector and the substrate tends to decrease.
  • the thickness of the conductive adhesive film is made larger than the thickness of the conductive adhesive film used for soldering the plug connector, and By increasing the area of the conductive adhesive film, the amount of resin was adjusted so that sufficient adhesive strength could be obtained. Note that the relationship between the receptacle connector and the plug connector of the present technology is not limited to the above example.
  • solder adhesion due to solder wetting and spreading to the first fitting portion 192a and the second fitting portion 192b was visually confirmed and evaluated according to the following evaluation criteria.
  • the first fitting portion 192a and the second fitting portion 192b of the connection structure are desired to have no solder wetting and spreading.
  • FIG. 21 is a plan view showing the dimensions of the film structure 1.
  • FIG. A conductive adhesive film A having a thickness of 25 ⁇ m was half-cut with a Viku blade in the same manner as in the method of manufacturing the film structure shown in FIGS. 16A and 16B.
  • the base PET film was not cut, only the conductive adhesive film A was cut, unnecessary portions were removed, and a film structure 1 in which the singulated adhesive films were arranged as shown in FIG. 21 was produced.
  • FIG. 22 is a plan view showing the dimensions of the film structure 2.
  • FIG. 17(A) an adhesive film A having a thickness of 25 ⁇ m was used to prepare a singulated adhesive film containing no solder particles, and as shown in FIG. 17(B), Using the conductive adhesive film A having a thickness of 25 ⁇ m, a solder particle-containing singulated adhesive film containing solder particles was produced. Then, by bonding the singulated adhesive film containing no solder particles and the singulated adhesive film containing solder particles, the singulated adhesive film containing solder particles is fitted to the terminal row portion of the electronic component, and the solder particle containing singulated adhesive film is shown in FIG. A film structure 2 was produced, in which the singulated adhesive film was arranged so that there were portions containing no solder particles and portions containing solder particles as shown in the dimensions.
  • FIG. 23 is a plan view showing the dimensions of the film structure 3.
  • FIG. 18(A) a 25 ⁇ m-thick conductive adhesive film A is used to prepare a 25 ⁇ m-thick individualized adhesive film, and as shown in FIG. 18(B), a 35 ⁇ m-thick conductive adhesive Using the film B, a singulated adhesive film with a thickness of 35 ⁇ m was produced. Then, as shown in FIGS. 18(C) and 18(D), by laminating a singulated adhesive film with a thickness of 25 ⁇ m and a singulated adhesive film with a thickness of 35 ⁇ m, the dimensions shown in FIG. 23 are achieved.
  • a film structure 3 was produced in which a singulated adhesive film with a thickness of 25 ⁇ m and a singulated adhesive film with a thickness of 35 ⁇ m were arranged.
  • FIG. 24 is a plan view showing the dimensions of the film structure 4.
  • FIG. 19(A) an adhesive film A having a thickness of 25 ⁇ m was used to prepare a singulated adhesive film containing no solder particles, and as shown in FIG. 19(C), Using the conductive adhesive film A having a thickness of 25 ⁇ m, a solder particle-containing singulated adhesive film containing solder particles was produced. Further, as shown in FIG. 19(B), an adhesive film B having a thickness of 35 ⁇ m was used to prepare a solder particle-free singulated adhesive film containing no solder particles, and as shown in FIG. Then, using the conductive adhesive film A having a thickness of 35 ⁇ m, a solder particle-containing singulated adhesive film containing solder particles was produced.
  • a film structure 4 in which a 35 ⁇ m-thick singulated adhesive film was arranged was produced.
  • a film structure 5 shown in FIG. 24 was produced by the following method.
  • a film structure 5 in which a 35 ⁇ m-thick individualized adhesive film was arranged was produced.
  • Film structure 6 The film structure shown in FIG. 24 was produced by the following method to obtain film structure 6. As shown in FIGS. It was made by jet printing. In addition, nozzles with different nozzle diameters were used to control the coating amount, and individual pieces with a thickness of 25 ⁇ m where there were portions containing no solder particles and portions containing solder particles as shown in the dimensions shown in FIG. A film structure 6 was prepared in which a singulated adhesive film and a singulated adhesive film having a thickness of 35 ⁇ m were arranged.
  • Table 1 shows the evaluation results of conduction performance, bonding strength, and solder adhesion of film structures 1 to 6.
  • the film structures 1 to 6 can temporarily attach a plurality of singulated adhesive films to the substrate at once, and can shorten the process takt time. From the comparison between the case of using the film structure 1 and the case of using the film structure 2, it is possible to dispose the singulated adhesive film in which there are portions containing no solder particles and portions containing solder particles. Therefore, it was found that solder wetting and spreading to unnecessary locations can be prevented. From a comparison between the case of using the film structure 1 and the case of using the film structure 3, the thickness of the singulated adhesive film arranged on the receptacle connector is made larger than the thickness of the singulated adhesive film arranged on the plug connector. Therefore, it was found that the joint strength of the receptacle connector can be improved.
  • any processing method of Viku blade processing, screen printing processing, or nozzle printing processing was used.
  • the singulated adhesive film in which there are portions that do not contain solder particles and portions that contain solder particles, and the thickness of the singulated adhesive film to be arranged in the receptacle connector can be set as a plug. It was found that the thickness can be made larger than the thickness of the singulated adhesive film arranged on the connector, and excellent joint strength and solder joint of the plug connector and the receptacle connector can be obtained.
  • a head tool with suction holes as shown in FIG. 15 was produced to simulate mounting of the singulated adhesive film by a mounter.
  • silicone rubber having a thickness of 200 ⁇ m is used as the elastomer layer 91, the vertical width x1 of the suction surface is 10 mm and the horizontal width y1 is 10 mm, and the vertical width x2 of the forming region of the suction holes 92 is 2.5 mm and the horizontal width. y2 is 6 mm, and the diameter of the suction hole 92 is 0.35 mm.
  • the singulated adhesive film could be mounted on the substrate. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

Provided are a connection structure manufacturing method, a film structure, and a film structure manufacturing method that enable the shortening of processing takt time. Included are: a step (A1) for preparing a substrate on which a plurality of electronic components are mounted; a step (B1) for preparing a film structure in which a plurality of singulated adhesive films, which include singulated adhesive films containing solder particles, are arranged at prescribed positions on a substrate corresponding to the substrate on which the plurality of electronic components are mounted; a step (C1) for temporarily attaching, at once, the plurality of singulated adhesive films to prescribed locations on the substrate; a step (D1) for placing electronic components on the singulated adhesive films; and a step (E1) for reflowing the substrate provided with the singulated adhesive films and the electronic components. The processing takt time can be shortened because the plurality of singulated adhesive films is temporarily attached to the substrate at once.

Description

接続構造体の製造方法、フィルム構造体、及びフィルム構造体の製造方法Method for manufacturing connected structure, film structure, and method for manufacturing film structure
 本技術は、電子部品を実装した接続構造体の製造方法、フィルム構造体、及びフィルム構造体の製造方法に関する。本出願は、日本国において2022年2月28日に出願された日本特許出願番号特願2022-030239を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present technology relates to a method for manufacturing a connection structure on which electronic components are mounted, a film structure, and a method for manufacturing a film structure. This application claims priority based on Japanese Patent Application No. 2022-030239 filed on February 28, 2022 in Japan, and this application is hereby incorporated by reference. Incorporated.
 リジッド基板やフレキシブル基板へのSMT(Surface Mount Technology)部品実装、LGA(Land Grid Array)/BGA(Ball Grid Array)実装、コネクタ実装等は、半田ペーストを基板に印刷し、その上に部品をマウンターで搭載した後、リフロー工程によって実装するのが一般的である。 For SMT (Surface Mount Technology) component mounting, LGA (Land Grid Array)/BGA (Ball Grid Array) mounting, connector mounting, etc. on rigid or flexible boards, solder paste is printed on the board and components are mounted on it. It is common to mount by a reflow process after mounting by .
 半田ペーストの印刷は、実装される基板のレイアウトに合わせて型(版型、ステンシル)を作成する必要があること、印刷後の後工程(乾燥)などから、時間的な短縮に限界がある。 Solder paste printing requires the creation of a mold (plate, stencil) according to the layout of the board to be mounted, and the post-printing process (drying), so there is a limit to how much time can be reduced.
 そこで、半田ペーストに替えて接着フィルムを用いる場合、半田ペーストを設ける工程がフィルムの仮貼り工程と置き換わることになり、時間的な短縮の効果は期待できる(例えば、特許文献1参照。)。 Therefore, when an adhesive film is used instead of solder paste, the process of applying the solder paste is replaced with the process of temporarily attaching the film, and the effect of shortening the time can be expected (see Patent Document 1, for example).
 しかしながら、リフロー工程を要する実装の場合、一つの基板に種類の異なる多数の部品を同時に実装することになるため、接着フィルムもそれに合わせて複数種類を用意し、個別に仮貼りすることになり、プロセスタクトが長くなってしまう。 However, in the case of mounting that requires a reflow process, many different types of parts are mounted on a single substrate at the same time, so multiple types of adhesive films are prepared and temporarily attached individually. Process takt becomes long.
特開2019-194479号公報JP 2019-194479 A
 本技術は、このような従来の実情に鑑みて提案されたものであり、プロセスタクトを短縮化することができる接続構造体の製造方法、フィルム構造体、及びフィルム構造体の製造方法を提供する。 The present technology has been proposed in view of such conventional circumstances, and provides a method for manufacturing a connection structure, a film structure, and a method for manufacturing a film structure that can shorten the process tact. .
 本技術に係る接続構造体の製造方法は、複数の電子部品が実装される基板を準備する工程と、前記複数の電子部品が実装される基板に対応する基材上の所定位置に半田粒子を含有する個片化接着フィルムを含む複数の個片化接着フィルムが配置されたフィルム構造体を準備する工程と、前記複数の個片化接着フィルムを前記基板の所定箇所に一括で仮貼りする工程と、前記個片化接着フィルム上に電子部品を載置する工程と、前記個片化接着フィルム及び前記電子部品が設けられた基板をリフローする工程とを有する。 A method for manufacturing a connected structure according to the present technology includes steps of preparing a substrate on which a plurality of electronic components are mounted, and applying solder particles to predetermined positions on a base material corresponding to the substrate on which the plurality of electronic components are mounted. A step of preparing a film structure in which a plurality of singulated adhesive films containing the singulated adhesive film are arranged; and a step of collectively temporarily attaching the plurality of singulated adhesive films to predetermined locations on the substrate. and placing an electronic component on the singulated adhesive film; and reflowing the substrate provided with the singulated adhesive film and the electronic component.
 本技術に係る接続構造体の製造方法は、複数の電子部品が実装される基板を準備する工程と、前記複数の電子部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する工程と、マウンターを用いて電子部品を当該電子部品に対応する個片化接着フィルムに押圧し、前記電子部品に前記個片化接着フィルムを貼着させ、前記個片化接着フィルムが貼着された電子部品を搭載する工程と、前記個片化接着フィルム及び前記電子部品が設けられた基板をリフローする工程とを有する。 A method for manufacturing a connected structure according to the present technology includes a step of preparing a substrate on which a plurality of electronic components are mounted, and a film structure in which singulated adhesive films corresponding to the plurality of electronic components are provided on a base material. A step of preparing a body, using a mounter to press an electronic component against a singulated adhesive film corresponding to the electronic component, sticking the singulated adhesive film to the electronic component, and making the singulated adhesive film and a step of reflowing the substrate provided with the singulated adhesive film and the electronic component.
 本技術に係る接続構造体の製造方法は、複数の電子部品が実装される基板を準備する工程と、前記複数の電子部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する工程と、マウンターを用いて前記個片化接着フィルムを前記基板の所定箇所に搭載する工程と、前記個片化接着フィルム上に電子部品を載置する工程と、前記個片化接着フィルム及び前記電子部品が設けられた基板をリフローする工程とを有する。 A method for manufacturing a connected structure according to the present technology includes a step of preparing a substrate on which a plurality of electronic components are mounted, and a film structure in which singulated adhesive films corresponding to the plurality of electronic components are provided on a base material. A step of preparing a body, a step of mounting the singulated adhesive film on a predetermined location of the substrate using a mounter, a step of placing electronic components on the singulated adhesive film, and the singulation and reflowing the substrate provided with the adhesive film and the electronic component.
 本技術に係るフィルム構造体は、基材と、複数の部品に対応する前記基材上の所定位置に設けられた複数の個片化接着フィルムとを備え、前記複数の個片化接着フィルムの1以上が、半田粒子を含有してもよい。 A film structure according to the present technology includes a substrate and a plurality of singulated adhesive films provided at predetermined positions on the substrate corresponding to a plurality of parts, and the plurality of singulated adhesive films One or more may contain solder particles.
 本技術に係るフィルム構造体は、基材と、複数の部品に対応する前記基材上の所定位置に設けられた複数の個片化接着フィルムとを備え、前記複数の個片化接着フィルムの1以上が、半田粒子を含有する領域と半田粒子を含有しない領域とを有してもよい。 A film structure according to the present technology includes a substrate and a plurality of singulated adhesive films provided at predetermined positions on the substrate corresponding to a plurality of parts, and the plurality of singulated adhesive films One or more may have regions that contain solder particles and regions that do not contain solder particles.
 本技術に係るフィルム構造体は、基材と、複数の部品に対応する前記基材上の所定位置に設けられた複数の個片化接着フィルムとを備え、前記複数の個片化接着フィルムの1以上が、他の個片化接着フィルムの厚みと異なってもよい。 A film structure according to the present technology includes a substrate and a plurality of singulated adhesive films provided at predetermined positions on the substrate corresponding to a plurality of parts, and the plurality of singulated adhesive films One or more may differ from the thickness of other singulated adhesive films.
 本技術に係るフィルム構造体は、基材と、複数の部品に対応する前記基材上の所定位置に設けられた、半田粒子を含有する領域と半田粒子を含有しない領域とを有する第1の厚みを有する個片化接着フィルムと、半田粒子を含有する領域と半田粒子を含有しない領域とを有する第2の厚みを有する個片化接着フィルムとを備えてもよい。 A film structure according to the present technology includes a substrate, and a region containing solder particles and a region not containing solder particles provided at predetermined positions on the substrate corresponding to a plurality of components. A singulated adhesive film having a thickness and a singulated adhesive film having a second thickness having regions containing solder particles and regions not containing solder particles may be provided.
 本技術に係るフィルム構造体の製造方法は、第1の基材上に第1の個片化接着フィルムを設け、第2の基材上に第2の個片化接着フィルムを設け、複数の電子部品に対応する前記第1の基材、前記第2の基材、又は第3の基材の所定位置に前記第1の個片化接着フィルム及び前記第2の個片化接着フィルムを配置し、前記第1の個片化接着フィルム及び前記第2の個片化接着フィルムの1以上が、半田粒子を含有する。 A method for manufacturing a film structure according to the present technology provides a first singulated adhesive film on a first base material, provides a second singulated adhesive film on a second base material, and provides a plurality of Arrange the first singulated adhesive film and the second singulated adhesive film at predetermined positions of the first base material, the second base material, or the third base material corresponding to the electronic component. At least one of the first singulated adhesive film and the second singulated adhesive film contains solder particles.
 本技術に係るフィルム構造体の製造方法は、第1の基材上に半田粒子を含有しない個片化接着フィルムを設け、第2の基材上に半田粒子を含有する個片化接着フィルムを設け、前記第1の基材、前記第2の基材、又は第3の基材の所定位置に前記半田粒子を含有しない個片化接着フィルム及び前記半田粒子を含有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する個片化接着フィルムを配置する。 In the method for manufacturing a film structure according to the present technology, a singulated adhesive film containing no solder particles is provided on a first substrate, and a singulated adhesive film containing solder particles is provided on a second substrate. providing a singulated adhesive film not containing the solder particles and a singulated adhesive film containing the solder particles at predetermined positions of the first base material, the second base material, or the third base material; A singulated adhesive film having a region containing no solder particles and a region containing solder particles is placed in close proximity.
 本技術に係るフィルム構造体の製造方法は、第1の基材上に第1の厚みを有する個片化接着フィルムを設け、第2の基材上に第2の厚みを有する個片化接着フィルムを設け、複数の部品に対応する前記第1の基材、前記第2の基材、又は第3の基材の所定位置に前記第1の厚みを有する個片化接着フィルム及び前記第2の厚みを有する個片化接着フィルムを配置する。 A method for manufacturing a film structure according to the present technology provides a singulated adhesive film having a first thickness on a first substrate, and a singulated adhesive film having a second thickness on a second substrate. A singulated adhesive film having a film and having the first thickness at predetermined positions on the first base material, the second base material, or the third base material corresponding to a plurality of parts, and the second base material. A singulated adhesive film having a thickness of .
 本技術に係るフィルム構造体の製造方法は、第1の基材上に半田粒子を含有しない第1の厚みを有する個片化接着フィルムを設け、第2の基材上に半田粒子を含有しない第2の厚みを有する個片化接着フィルムを設け、第3の基材上に半田粒子を含有する前記第1の厚みを有する個片化接着フィルムを設け、第4の基材上に半田粒子を含有する前記第2の厚みを有する個片化接着フィルムを設け、前記第1の基材、前記第2の基材、前記第3の基材、前記第4の基材、又は第5の基材の所定位置に前記半田粒子を含有しない第1の厚みを有する個片化接着フィルム及び前記半田粒子を含有する第1の厚みを有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する第1の厚みを有する個片化接着フィルムを配置すると共に、前記半田粒子を含有しない第2の厚みを有する個片化接着フィルム及び前記半田粒子を含有する第2の厚みを有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する第2の厚みを有する個片化接着フィルムを配置する。 A method for manufacturing a film structure according to the present technology provides a singulated adhesive film having a first thickness that does not contain solder particles on a first substrate, and a second substrate that does not contain solder particles. A singulated adhesive film having a second thickness is provided, a singulated adhesive film having the first thickness containing solder particles is provided on a third substrate, and solder particles are provided on a fourth substrate. and providing the singulated adhesive film having the second thickness containing the first substrate, the second substrate, the third substrate, the fourth substrate, or the fifth substrate The singulated adhesive film having the first thickness not containing the solder particles and the singulated adhesive film having the first thickness containing the solder particles are brought close to each other at predetermined positions on the substrate, and the singulated adhesive film does not contain the solder particles. A singulated adhesive film having a first thickness having a region and a region containing solder particles is arranged, and the singulated adhesive film having a second thickness not containing the solder particles and the solder particles are included. A singulated adhesive film having a second thickness is placed adjacent to the singulated adhesive film having a second thickness and having a region containing no solder particles and a region containing solder particles.
 本技術によれば、接着フィルムを複数種類用意し、個別に仮貼りするのに比べて、プロセスタクトを短縮化することができる。 According to this technology, the process takt time can be shortened compared to preparing multiple types of adhesive films and temporarily attaching them individually.
図1は、基板の一例示す上面図である。FIG. 1 is a top view showing an example of a substrate. 図2は、フィルム構造体の一例を示す上面図である。FIG. 2 is a top view showing an example of a film structure. 図3は、基板上に個片化接着フィルムを仮貼した状態を示す図である。FIG. 3 is a diagram showing a state in which the singulated adhesive film is temporarily stuck on the substrate. 図4は、フィルム構造体の変形例を示す上面図である。FIG. 4 is a top view showing a modification of the film structure. 図5は、基板上に変形例の個片化接着フィルムを一括で仮貼した状態を示す図である。FIG. 5 is a diagram showing a state in which the singulated adhesive films of the modification are collectively temporarily stuck on a substrate. 図6は、基板上に個片化接着フィルムを仮貼りする仮貼工程を示す図である。FIG. 6 is a diagram showing a temporary sticking step of temporarily sticking the singulated adhesive film onto a substrate. 図7は、半田ペーストを印刷する印刷工程を示す図である。FIG. 7 is a diagram showing a printing process for printing solder paste. 図8は、電子部品を載置する載置工程を示す図である。FIG. 8 is a diagram showing a mounting process for mounting electronic components. 図9(A)は、リフロー工程を示す図であり、図9(B)は、リフロー工程後の接続構造体の一例を示す図である。FIG. 9A is a diagram showing the reflow process, and FIG. 9B is a diagram showing an example of the connection structure after the reflow process. 図10は、リフロー炉の温度条件の一例を示すグラフである。FIG. 10 is a graph showing an example of temperature conditions of the reflow furnace. 図11は、リールから引き出した個片化接着フィルムを示す平面図である。FIG. 11 is a plan view showing the singulated adhesive film pulled out from the reel. 図12は、電子部品に個片化接着フィルムを貼着させる状態を示す図である。FIG. 12 is a diagram showing a state in which the singulated adhesive film is attached to the electronic component. 図13は、電子部品に貼着させた個片化接着フィルムを基板に搭載する状態を示す図である。FIG. 13 is a diagram showing a state in which the singulated adhesive film adhered to the electronic component is mounted on the substrate. 図14は、個片化接着フィルムを介して電子部品を基板に搭載させた状態を示す図である。FIG. 14 is a diagram showing a state in which the electronic component is mounted on the substrate via the singulated adhesive film. 図15(A)は、吸着ヘッドの吸着面を示す平面図であり、図15(B)は、吸着ヘッドの側面を示す側面図である。FIG. 15A is a plan view showing the suction surface of the suction head, and FIG. 15B is a side view showing the side surface of the suction head. 図16(A)は、加工前のフィルム構造体を示す平面図であり、図16(B)は、加工後のフィルム構造体を示す平面図である。FIG. 16A is a plan view showing the film structure before processing, and FIG. 16B is a plan view showing the film structure after processing. 図17(A)は、第1のフィルム構造体を示す平面図であり、図17(B)は、第2のフィルム構造体を示す平面図であり、図17(C)は、加工後のフィルム構造体を示す平面図である。FIG. 17A is a plan view showing the first film structure, FIG. 17B is a plan view showing the second film structure, and FIG. FIG. 3 is a plan view showing a film structure; 図18(A)は、第1のフィルム構造体を示す平面図であり、図18(B)は、第2のフィルム構造体を示す平面図であり、図18(C)は、加工後のフィルム構造体を示す平面図であり、図18(D)は、加工後のフィルム構造体を示す断面図である。FIG. 18A is a plan view showing the first film structure, FIG. 18B is a plan view showing the second film structure, and FIG. FIG. 18D is a plan view showing the film structure, and FIG. 18D is a cross-sectional view showing the film structure after processing. 図19(A)は、第1のフィルム構造体を示す平面図であり、図19(B)は、第2のフィルム構造体を示す平面図であり、図19(C)は、第3のフィルム構造体を示す平面図であり、図19(D)は、第4のフィルム構造体を示す平面図であり、図19(E)は、加工後のフィルム構造体を示す平面図であり、図19(F)は、加工後のフィルム構造体を示す断面図である。19A is a plan view showing the first film structure, FIG. 19B is a plan view showing the second film structure, and FIG. 19C is a third film structure. 19D is a plan view showing a film structure, FIG. 19D is a plan view showing a fourth film structure, FIG. 19E is a plan view showing the film structure after processing, FIG. 19(F) is a cross-sectional view showing the film structure after processing. 図20は、レセプタクルコネクタの一例を示す平面図である。FIG. 20 is a plan view showing an example of a receptacle connector. 図21は、フィルム構造体1の寸法を示す平面図である。FIG. 21 is a plan view showing the dimensions of the film structure 1. FIG. 図22は、フィルム構造体2の寸法を示す平面図である。FIG. 22 is a plan view showing the dimensions of the film structure 2. FIG. 図23は、フィルム構造体3の寸法を示す平面図である。FIG. 23 is a plan view showing the dimensions of the film structure 3. FIG. 図24は、フィルム構造体4の寸法を示す平面図である。FIG. 24 is a plan view showing the dimensions of the film structure 4. FIG.
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接続構造体の製造方法
2.フィルム構造体、及びフィルム構造体の製造方法
3.実施例
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 2. Manufacturing method of connection structure. Film structure and method for manufacturing film structure3. Example
 <1.接続構造体の製造方法>
 <1-1.第1の実施の形態>
 第1の実施の形態に係る接続構造体の製造方法は、複数の電子部品が実装される基板を準備する工程(A1)と、複数の電子部品が実装される基板に対応する基材上の所定位置に半田粒子を含有する個片化接着フィルムを含む複数の個片化接着フィルムが配置されたフィルム構造体を準備する工程(B1)と、複数の個片化接着フィルムを基板の所定箇所に一括で仮貼りする工程(C1)と、個片化接着フィルム上に電子部品を載置する工程(D1)と、個片化接着フィルム及び電子部品が設けられた基板をリフローする工程(E1)とを有する。第1の実施の形態に係る接続構造体の製造方法によれば、複数の個片化接着フィルムを基板に一括で仮貼りするため、プロセスタクトを短縮化することができる。また、基板全面に接着フィルムを仮貼りするのに比べて、必要のない箇所に接着フィルムを仮貼りすることがなくなるため、コストを下げることができる。
<1. Method for manufacturing connection structure>
<1-1. First Embodiment>
The manufacturing method of the connection structure according to the first embodiment comprises a step (A1) of preparing a substrate on which a plurality of electronic components are mounted, and Step (B1) of preparing a film structure in which a plurality of singulated adhesive films including a singulated adhesive film containing solder particles are arranged at predetermined positions; A step (C1) of temporarily sticking together, a step (D1) of placing electronic components on the singulated adhesive film, and a step of reflowing the substrate provided with the singulated adhesive film and electronic components (E1 ) and According to the method for manufacturing a connected structure according to the first embodiment, the process tact time can be shortened because a plurality of singulated adhesive films are temporarily attached to the substrate at once. Moreover, as compared with temporarily attaching an adhesive film to the entire surface of the substrate, it is not necessary to temporarily attach the adhesive film to an unnecessary portion, so that the cost can be reduced.
 個片化接着フィルムの1以上は、半田粒子を含有することが好ましい。これにより、リフロー炉を用いて、電子部品を実装することができる。また、個片化接着フィルムの1以上は、半田粒子を含有する領域と半田粒子を含有しない領域とを有することが好ましい。これにより、例えば、レセプタクルコネクタのように端子部以外のむき出しの金属に半田が濡れ広がるのを防ぎ、端子部以外の不要な箇所への半田の濡れ広がりを防ぐことができる。また、個片化接着フィルムの1以上は、他の個片化接着フィルムの厚みと異なることが好ましい。これにより、電子部品の端子高さや端子面積が異なる場合、電子部品の大きさや重さが異なる場合、コネクタ周囲のバインダー濡れを制御する場合などによって、必要なバインダー量が異なる場合でも、接合強度を向上させることができる。 At least one of the singulated adhesive films preferably contains solder particles. Thereby, an electronic component can be mounted using a reflow furnace. Moreover, at least one of the singulated adhesive films preferably has a region containing solder particles and a region not containing solder particles. As a result, for example, it is possible to prevent the solder from wet-spreading onto bare metal other than the terminal portions, such as a receptacle connector, and prevent the solder from wet-spreading onto unnecessary portions other than the terminal portions. Moreover, at least one of the singulated adhesive films preferably has a thickness different from that of the other singulated adhesive films. As a result, even if the necessary amount of binder varies depending on the terminal height and terminal area of the electronic component, the size and weight of the electronic component, and the control of binder wetting around the connector, the bonding strength can be increased. can be improved.
 個片化接着フィルムは、ハーフカット加工、スクリーン印刷、又はインクジェット印刷により基材上に形成されることが好ましい。ハーフカット加工は、ビク刃により基材をカットせずに接着フィルムのみをカットし、不必要なところは抜き加工などにより除去する。スクリーン印刷は、スクリーンマスクの網目に対し、スキージなどによる圧力で接着剤を通過させ、基材上に印刷(塗布)し、例えばスクリーンマスクの厚みにより所定厚みの個片化接着フィルムを作製する。スクリーンマスクは、ポリエステルなどの合成繊維又はステンレスや各種金属繊維で織ったスクリーンメッシュを用いた版である。接着剤が半田粒子を含む場合は、半田粒子の最大径よりもメッシュを大きくすればよい。インクジェット印刷は、ノズルから所定の樹脂量を射出できる。ノズルから樹脂を対象(接着フィルム)にパターニングできるため、版は不要となる。例えば、個片化接着フィルムの表面の一部に樹脂を点描もしくは線描することでタック性を個片化接着フィルムの表面に設けることができる。全面の過半以上に射出して層とすることもできる。厚みは、後述する個片化接着フィルムと同様に測定することができる。タック性の付与以外に、個片化接着フィルムに接着強度や信頼性向上のためにインクジェット印刷で樹脂を設けてもよい(通常の層形成や配合物の添加と同様の働きを期待でき、作業工数や機能性付与の観点から使い分けができる利点がある)。 The singulated adhesive film is preferably formed on the substrate by half-cutting, screen printing, or inkjet printing. In the half-cut process, only the adhesive film is cut without cutting the base material with a Viku blade, and unnecessary parts are removed by punching or the like. In screen printing, the adhesive is passed through the mesh of the screen mask with pressure from a squeegee or the like, and printed (applied) on the base material to produce, for example, a singulated adhesive film having a predetermined thickness according to the thickness of the screen mask. A screen mask is a plate using a screen mesh woven from synthetic fibers such as polyester, stainless steel, or various metal fibers. If the adhesive contains solder particles, the mesh should be larger than the maximum diameter of the solder particles. Inkjet printing can eject a predetermined amount of resin from a nozzle. Since the resin can be patterned onto the object (adhesive film) from the nozzle, a plate is not required. For example, tackiness can be provided on the surface of the singulated adhesive film by stippling or drawing a resin on a part of the surface of the singulated adhesive film. A layer can also be formed by injecting more than half of the entire surface. The thickness can be measured in the same manner as for the singulated adhesive film, which will be described later. In addition to imparting tackiness, a resin may be applied to the singulated adhesive film by inkjet printing to improve adhesive strength and reliability. There is an advantage that it can be used properly from the viewpoint of man-hours and functionality).
 図1~図3は、第1の実施の形態に係る接続構造体の製造方法を説明するための図であり、図1は、基板の一例示す上面図であり、図2は、フィルム構造体の一例を示す上面図であり、図3は、基板上に個片化接着フィルムを仮貼した状態を示す図である。 1 to 3 are diagrams for explaining a method for manufacturing a connection structure according to the first embodiment, FIG. 1 is a top view showing an example of a substrate, and FIG. 2 is a film structure. FIG. 3 is a top view showing an example, and FIG. 3 is a diagram showing a state in which a singulated adhesive film is temporarily attached on a substrate.
 [工程(A1)]
 図1に示すように、工程(A1)では、複数の電子部品が実装される基板10を準備する。基板10は、第1のコネクタ実装領域11と、第2のコネクタ実装領域12と、第1のチップ実装領域13と、第2のチップ実装領域14と、第3のチップ実装領域15と、第4のチップ実装領域16と、第5のチップ実装領域17と、第6のチップ実装領域18とを備える。各実装領域11~18には、各電子部品に対応した端子が形成されている。
[Step (A1)]
As shown in FIG. 1, in step (A1), a substrate 10 on which a plurality of electronic components are mounted is prepared. The substrate 10 includes a first connector mounting area 11, a second connector mounting area 12, a first chip mounting area 13, a second chip mounting area 14, a third chip mounting area 15, and a third chip mounting area 15. 4 chip mounting areas 16 , a fifth chip mounting area 17 and a sixth chip mounting area 18 . A terminal corresponding to each electronic component is formed in each of the mounting regions 11 to 18 .
 基板10は、リフロー熱に耐熱性を有するリジット基板やフレキシブル基板(FPC:Flexible Printed Circuits)であれば、特に限定されるものではなく、例えば、ガラスエポキシ基板、セラミック基板、プラスチック基板、樹脂多層基板などを用いることができる。また、各実装領域11~18の端子には、金、ニッケル、パラジウム、銀、銅、錫などのめっきが施されることが好ましい。 The substrate 10 is not particularly limited as long as it is a rigid substrate or flexible substrate (FPC: Flexible Printed Circuits) having heat resistance to reflow heat. etc. can be used. Also, the terminals of the mounting regions 11 to 18 are preferably plated with gold, nickel, palladium, silver, copper, tin, or the like.
 電子部品は、リフローにより接合可能なものであれば特に限定されるものではなく、例えば、コネクタ、IC(Integrated Circuit)やLSI(Large Scale Integration)のパッケージ、LED(Light Emitting Diode)、スイッチなどが挙げられる。コネクタとしては、例えばレセプタクルコネクタ又はプラグコネクタが挙げられ、レセプタクルコネクタがプラグコネクタを覆って嵌合する仕様のものが挙げられる。また、レセプタクルコネクタは、全体の外形が過度に大きくなるのを避け、嵌合後の外形を小さくするため、プラグコネクタに比べてレセプタクルコネクタの端子長さが短い仕様としてもよい。端子長さが短くなるとこれに応じて半田接続される面積も小さくなるため、レセプタクルコネクタと基板との間における半田接続の強度が小さくなる傾向がある。このような理由から、レセプタクルコネクタが比較的小さい半田接合面積で十分な強度を得るために、導電接着フィルムの厚みをプラグコネクタの半田接続で使用される導電接着フィルムの厚みよりも大きくし、且つ導電接着フィルムの面積も広くとるようにしてもよい。このような部品の大きさと接着フィルムの厚みや面積の調整は、レセプタクルコネクタに限定されるものではなく、本技術では、他の部品であっても大きさや重さ、半田接合面積によって、適宜調整することができる。 Electronic parts are not particularly limited as long as they can be joined by reflow. Examples include connectors, IC (Integrated Circuit) and LSI (Large Scale Integration) packages, LEDs (Light Emitting Diodes), switches, etc. mentioned. Examples of the connector include a receptacle connector or a plug connector, and a specification in which the receptacle connector covers and fits the plug connector can be used. In addition, the receptacle connector may be designed so that the terminal length of the receptacle connector is shorter than that of the plug connector, in order to avoid an excessively large overall outer shape and to reduce the outer shape after mating. As the length of the terminal becomes shorter, the area for solder connection also becomes smaller, so the strength of the solder connection between the receptacle connector and the substrate tends to decrease. For this reason, in order for the receptacle connector to obtain sufficient strength with a relatively small solder joint area, the thickness of the conductive adhesive film is made larger than the thickness of the conductive adhesive film used for soldering the plug connector, and The area of the conductive adhesive film may also be widened. Such adjustment of the size of the component and the thickness and area of the adhesive film is not limited to the receptacle connector. With this technology, other components can also be adjusted appropriately according to the size, weight, and solder joint area. can do.
 [工程(B1)]
 図2に示すように、工程(B1)では、複数の電子部品が実装される基板10に対応する基材20上の所定位置に半田粒子を含有する個片化接着フィルムを含む複数の個片化接着フィルム21~28が配置されたフィルム構造体を準備する。
[Step (B1)]
As shown in FIG. 2, in step (B1), a plurality of individual pieces including a singulated adhesive film containing solder particles are placed at predetermined positions on a substrate 20 corresponding to a substrate 10 on which a plurality of electronic components are mounted. A film structure in which the modified adhesive films 21 to 28 are arranged is prepared.
 個片化接着フィルム21~28としては、特に制限はなく、フィルム状の導電性フィルム、半田粒子が溶融する半田粒子含有樹脂フィルム、異方性導電フィルム(ACF:Anisotropic Conductive Film)、フィルム状の接着フィルム(NCF:Non Conductive Film)などが挙げられる。これらは単層でもよく、2層以上の層構成であってもよい。組み合わせに特に制限はないが、接着フィルム(半田粒子非含有)に、導電性フィルム(半田粒子含有)又は半田粒子含有樹脂フィルムの少なくも一方が積層されることで、一つの個片化接着フィルムにおけるフィルムの厚みと半田粒子の含有量を調整することができる。この場合、どちらの面を基板側にするかは、目的に合わせて選択すればよい。 The singulated adhesive films 21 to 28 are not particularly limited, and include a film-shaped conductive film, a solder particle-containing resin film in which solder particles melt, an anisotropic conductive film (ACF: Anisotropic Conductive Film), and a film-shaped conductive film. An adhesive film (NCF: Non Conductive Film) and the like are included. These may be a single layer or may have a layer structure of two or more layers. The combination is not particularly limited, but by laminating at least one of a conductive film (containing solder particles) and a resin film containing solder particles on an adhesive film (containing no solder particles), one singulated adhesive film can be obtained. The thickness of the film and the content of solder particles can be adjusted. In this case, which surface should be the substrate side may be selected according to the purpose.
 フィルム構造体は、1つの基板に対応するように基材20上に個片化接着フィルム21~28が配置されたシートであってもよく、テープ状の基材上に個片化接着フィルム21~28が長手方向に単位領域毎に連続して配置され、巻き回されたリールであってもよい。ここで、「単位領域」とは、基材の長さ方向に所定長さを有し、例えば矩形状の領域を示す。 The film structure may be a sheet in which the singulated adhesive films 21 to 28 are arranged on the substrate 20 so as to correspond to one substrate, and the singulated adhesive film 21 is arranged on the tape-shaped substrate. 28 are arranged continuously in the longitudinal direction for each unit area, and the reel may be wound. Here, the “unit region” refers to a rectangular region, for example, having a predetermined length in the longitudinal direction of the substrate.
 図2に示すフィルム構造体は、第1の個片化接着フィルム21~第8の個片化接着フィルム28のすべてが半田粒子を含有しているが、これに限られるものではなく、第1の個片化接着フィルム21~第8の個片化接着フィルム28の1以上が、半田粒子を含有していればよい。図2に示すフィルム構造体において、第1の個片化接着フィルム21a、21bは、それぞれ第1のコネクタ実装領域11の端子列に対応し、第2の個片化接着フィルム22a、22bは、それぞれ第2のコネクタ実装領域12の端子列に対応する。また、第3の個片化接着フィルム23~第8の個片化接着フィルム28は、それぞれ第1のチップ実装領域13、第2のチップ実装領域14、第3のチップ実装領域15、第4のチップ実装領域16、第5のチップ実装領域17、第6のチップ実装領域18に対応する。また、フィルム構造体は、基材20上に個片化接続フィルム21~28が存在しない領域を有する。 In the film structure shown in FIG. 2, all of the first singulated adhesive film 21 to the eighth singulated adhesive film 28 contain solder particles. One or more of the singulated adhesive film 21 to the eighth singulated adhesive film 28 may contain solder particles. In the film structure shown in FIG. 2, the first singulated adhesive films 21a and 21b respectively correspond to the terminal rows of the first connector mounting area 11, and the second singulated adhesive films 22a and 22b Each corresponds to the terminal row of the second connector mounting area 12 . In addition, the third adhesive film 23 to eighth adhesive film 28 are formed in the first chip mounting region 13, the second chip mounting region 14, the third chip mounting region 15, and the fourth chip mounting region 15, respectively. corresponds to the chip mounting area 16, the fifth chip mounting area 17, and the sixth chip mounting area 18 of FIG. In addition, the film structure has regions on the substrate 20 where the singulated connecting films 21 to 28 are not present.
 [工程(C1)]
 図3に示すように、工程(C1)では、複数の個片化接着フィルム21~28を基板10の所定箇所に一括で仮貼し、複数の個片化接着フィルム21~28を基材20から基板10に一括転着させる。複数の個片化接着フィルム21~28が配置された基材20をアライメントしながら基板10上に一括仮貼り(貼付)することにより、複数の個片化接着フィルム21~28を個別に仮貼りするのに比べて、プロセスタクトを短縮化することができる。また、基材20にアライメントマークを設けることにより、位置合わせの精度をより向上させることができる。
[Step (C1)]
As shown in FIG. 3, in step (C1), a plurality of singulated adhesive films 21 to 28 are collectively temporarily attached to predetermined locations on the substrate 10, and the plurality of singulated adhesive films 21 to 28 are attached to the substrate 20. are collectively transferred to the substrate 10. By collectively temporarily sticking (sticking) on the substrate 10 while aligning the substrate 20 on which the plurality of singulated adhesive films 21 to 28 are arranged, the plurality of singulated adhesive films 21 to 28 are individually temporarily stuck. The process takt can be shortened compared to when In addition, by providing alignment marks on the substrate 20, the alignment accuracy can be further improved.
 第1のコネクタ実装領域11には、第1の個片化接着フィルム21a、21bが仮貼りされ、第2のコネクタ実装領域12には、第2の個片化接着フィルム22a、22bが仮貼りされる。また、第1のチップ実装領域13~第6のチップ実装領域18には、それぞれ第3の個片化接着フィルム23~第8の個片化接着フィルム28が仮貼りされる。 First singulated adhesive films 21 a and 21 b are temporarily attached to the first connector mounting region 11 , and second singulated adhesive films 22 a and 22 b are temporarily attached to the second connector mounting region 12 . be done. Further, the third singulated adhesive film 23 to the eighth singulated adhesive film 28 are temporarily attached to the first chip mounting region 13 to the sixth chip mounting region 18, respectively.
 [工程(D1)]
 工程(D1)では、個片化接着フィルム21~28上に電子部品を載置する。工程(D1)では、マウンターを用いて電子部品をピックアップし、個片化接着フィルム21~28上に電子部品を搭載することが好ましい。
[Step (D1)]
In step (D1), electronic components are placed on the singulated adhesive films 21-28. In the step (D1), it is preferable to pick up the electronic components using a mounter and mount the electronic components on the singulated adhesive films 21-28.
 第1の個片化接着フィルム21a、21b上には、第1のコネクタ部品が搭載され、第2の個片化接着フィルム22a、22b上には、第2のコネクタ部品が搭載される。また、第3の個片化接着フィルム23~第8の個片化接着フィルム28上には、それぞれ第1のチップ部品~第6のチップ部品が搭載される。なお、図3に示す例では、1つのコネクタ部品に対して2つの個片、及び1つのチップ部品に対して1つの個片を使用することとしたが、これに限られるものではなく、1つのコネクタ部品に対して1つの個片を使用することとしてもよく、1つのチップ部品に対して複数の個片を使用することとしてもよい。また、同一基板において凹凸や段差を有している場合や、電極の高さや位置が異なる電子部品と基板とを組み合わせる場合、必要な樹脂量が異なるため、個片化接着フィルムの厚みは、個々に異なっていてもよい。 A first connector component is mounted on the first singulated adhesive films 21a and 21b, and a second connector component is mounted on the second singulated adhesive films 22a and 22b. Also, the first to sixth chip components are mounted on the third to eighth singulated adhesive films 23 to 28, respectively. In the example shown in FIG. 3, two individual pieces are used for one connector component and one individual piece is used for one chip component. One piece may be used for one connector component, and a plurality of pieces may be used for one chip component. In addition, when the same substrate has unevenness or steps, or when combining electronic components and substrates with different electrode heights and positions, the required amount of resin differs. may differ from
 [工程(E1)]
 工程(E1)では、個片化接着フィルム21~28及び電子部品が設けられた基板10をリフローする。リフロー炉は、例えば、予備加熱ゾーン、本加熱ゾーン及び冷却ゾーンを備え、この順に基板10を流すことにより、電子部品と基板10とを半田接合させる。
[Step (E1)]
In step (E1), the substrate 10 provided with the singulated adhesive films 21 to 28 and electronic components is reflowed. The reflow furnace has, for example, a preheating zone, a main heating zone, and a cooling zone, and solders the electronic component and the substrate 10 by flowing the substrate 10 in this order.
 リフロー炉では、加熱により導電性接着剤が溶融し、半田融点以上である本加熱により電極間に挟持された半田粒子がバインダー流動などで移動・凝集して溶融し、半田が電極に濡れ広がり、冷却により電子部品の端子列と基板10の端子列とが接合される。リフロー炉は、機械的な加圧をせずに無荷重で加熱接合させることができるため、表面電子部品及び基板10のダメージを抑制することができる。リフロー炉としては、大気圧リフロー、真空リフロー、大気圧オーブン、オートクレーブ(加圧オーブン)などが挙げられ、これらの中でも、接合部に内包する気泡を排除することができる真空リフロー、オートクレーブなどを用いることが好ましい。また、窒素ガス等の不活性ガスを使用したリフロー炉を用いてもよい。 In the reflow furnace, the conductive adhesive melts by heating, and the solder particles sandwiched between the electrodes by the main heating above the melting point of the solder move, aggregate and melt due to the flow of the binder, and the solder wets and spreads on the electrodes. The terminal row of the electronic component and the terminal row of the substrate 10 are joined by cooling. Since the reflow furnace can perform heat bonding without mechanical pressure and no load, damage to the surface electronic components and the substrate 10 can be suppressed. Reflow furnaces include atmospheric pressure reflow, vacuum reflow, atmospheric pressure oven, autoclave (pressure oven), etc. Among these, vacuum reflow, autoclave, etc. that can eliminate air bubbles contained in the joint are used. is preferred. Alternatively, a reflow furnace using an inert gas such as nitrogen gas may be used.
 <1-1-1.第1の実施の形態の変形例1>
 図2に示すフィルム構造体では、1つの電子部品に対して1つの個片化接着フィルムを配置するようにしたが、これに限れられるものではなく、2以上の電子部品に対して1つの個片化接着フィルムを配置するようにしてもよい。この場合、個片化接着フィルムは、基板と電子部品との端子間の接続箇所に半田粒子を含有し、接続箇所以外は、半田粒子を含有しないことが好ましい。
<1-1-1. Modification 1 of First Embodiment>
In the film structure shown in FIG. 2, one singulated adhesive film is arranged for one electronic component, but it is not limited to this, and one individual for two or more electronic components. You may make it arrange|position a separating adhesive film. In this case, it is preferable that the singulated adhesive film contains solder particles in the connecting portions between the terminals of the substrate and the electronic component, and does not contain solder particles in portions other than the connecting portions.
 図4は、フィルム構造体の変形例を示す上面図である。図4に示すフィルム構造体は、基材上30に第1の個片化接着フィルム30A~第4の個片化接着フィルム30Dを配置している。 FIG. 4 is a top view showing a modification of the film structure. In the film structure shown in FIG. 4, a first singulated adhesive film 30A to a fourth singulated adhesive film 30D are arranged on a base material 30. As shown in FIG.
 第1の個片化接着フィルム30Aは、第1のコネクタ実装領域11に対応し、半田粒子を含有する含有部31a、31bと半田粒子を含有しない非含有部31cとを有する。含有部31a、31bは、図2に示すフィルム構造体の第1の個片化接着フィルム21a、21bに相当する。 The first singulated adhesive film 30A corresponds to the first connector mounting region 11 and has containing portions 31a and 31b containing solder particles and a non-containing portion 31c not containing solder particles. The containing portions 31a and 31b correspond to the first singulated adhesive films 21a and 21b of the film structure shown in FIG.
 第2の個片化接着フィルム30Bは、第2のコネクタ実装領域12に対応し、半田粒子を含有する含有部32a、32bと半田粒子を含有しない非含有部32cとを有する。含有部32a、32bは、図2に示すフィルム構造体の第2の個片化接着フィルム22a、22bに相当する。 The second singulated adhesive film 30B corresponds to the second connector mounting region 12 and has containing portions 32a and 32b containing solder particles and a non-containing portion 32c not containing solder particles. The containing portions 32a, 32b correspond to the second singulated adhesive films 22a, 22b of the film structure shown in FIG.
 第3の個片化接着フィルム30Cは、第1のチップ実装領域13に対応する半田粒子を含有する第1の含有部33と、第2のチップ実装領域14に対応する半田粒子を含有する第2の含有部34と、第3のチップ実装領域15に対応する半田粒子を含有する第3の含有部35と、第4のチップ実装領域16に対応する半田粒子を含有する第4の含有部36と、第1の含有部33~第4の含有部36を一体化させる半田粒子を含有しない非含有部とを有する。第1の含有部33~第4の含有部36は、図2に示すフィルム構造体の第3の個片化接着フィルム23~第6の個片化接着フィルム26に相当する。 The third singulated adhesive film 30</b>C includes a first containing portion 33 containing solder particles corresponding to the first chip mounting region 13 and a second containing portion 33 containing solder particles corresponding to the second chip mounting region 14 . a third containing portion 35 containing solder particles corresponding to the third chip mounting region 15; and a fourth containing portion containing solder particles corresponding to the fourth chip mounting region 16. and a non-containing portion that does not contain solder particles for integrating the first containing portion 33 to the fourth containing portion 36 . The first containing portion 33 to fourth containing portion 36 correspond to the third singulated adhesive film 23 to sixth singulated adhesive film 26 of the film structure shown in FIG.
 第4の個片化接着フィルム30Dは、第5のチップ実装領域15に対応する半田粒子を含有する第1の含有部37と、第6のチップ実装領域16に対応する半田粒子を含有する第2の含有部38と、第1の含有部37~第2の含有部38を一体化させる半田粒子を含有しない非含有部とを有する。第1の含有部37~第2の含有部38は、図2に示すフィルム構造体の第7の個片化接着フィルム27~第8の個片化接着フィルム28に相当する。 The fourth singulated adhesive film 30</b>D includes a first containing portion 37 containing solder particles corresponding to the fifth chip mounting region 15 and a first containing portion 37 containing solder particles corresponding to the sixth chip mounting region 16 . 2 containing portion 38 and a non-containing portion that does not contain solder particles for integrating the first containing portion 37 to the second containing portion 38 . The first containing portion 37 to second containing portion 38 correspond to the seventh singulated adhesive film 27 to eighth singulated adhesive film 28 of the film structure shown in FIG.
 図5は、基板上に変形例の個片化接着フィルムを一括で仮貼した状態を示す図である。図5に示すように、工程(C1)において、第1の個片化接着フィルム30A~第4の個片化接着フィルム30Dを一括で仮貼し、第1の個片化接着フィルム30A~第4の個片化接着フィルム30Dを基材30から基板10に一括転写する。 FIG. 5 is a diagram showing a state in which the singulated adhesive films of the modification are collectively temporarily adhered onto a substrate. As shown in FIG. 5, in step (C1), the first singulated adhesive film 30A to the fourth singulated adhesive film 30D are collectively temporarily attached, and the first singulated adhesive film 30A to the fourth singulated adhesive film 4 is collectively transferred from the base material 30 to the substrate 10 .
 第1のコネクタ実装領域11には、第1の個片化接着フィルム30Aが仮貼りされ、第2のコネクタ実装領域12には、第2の個片化接着フィルム30Bが仮貼りされる。また、第1のチップ実装領域13~第4のチップ実装領域16には、第3の個片化接着フィルム30Cが仮貼りされ、第5のチップ実装領域17~第6のチップ実装領域18には、第4の個片化接着フィルム30Dが仮貼りされる。なお、図5に示す例において、同一基板において凹凸や段差を有している場合や、電極の高さや位置が異なる電子部品と基板とを組み合わせる場合、必要な樹脂量が異なるため、半田粒子を含有する含有部や半田粒子を含有しない非含有部の厚みは、個々に異なっていてもよい。 A first singulated adhesive film 30A is temporarily attached to the first connector mounting area 11, and a second singulated adhesive film 30B is temporarily attached to the second connector mounting area 12. In addition, the third chip-separating adhesive film 30C is temporarily attached to the first chip mounting region 13 to the fourth chip mounting region 16, and the fifth chip mounting region 17 to the sixth chip mounting region 18. , the fourth singulated adhesive film 30D is temporarily attached. In the example shown in FIG. 5, when the same substrate has unevenness or steps, or when combining an electronic component and a substrate with different electrode heights or positions, the amount of resin required differs. The thickness of the containing portion containing solder particles and the thickness of the non-containing portion not containing solder particles may be individually different.
 <1-1-2.第1の実施の形態の変形例2>
 半田ペーストと共用する場合には、個片化接着フィルムを仮貼り後に半田ペーストを印刷し、その後マウンターとリフローを行うことにより、半田ペーストとの共用も可能となる。
<1-1-2. Modified example 2 of the first embodiment>
When jointly used with solder paste, it is possible to jointly use the solder paste by printing the solder paste after temporarily sticking the singulated adhesive film, and then performing reflow with a mounter.
 すなわち、第1の実施の形態において、基板上に個片化接着フィルムを仮貼りする工程(C1)後に、基板の所定箇所に半田ペーストを設ける工程をさらに設け、部品を載置する工程(D1)では、半田ペースト上に部品を載置することにより、個片化接着フィルムと半田ペーストとを共用することができ、半田接続部の半田量を増やしたい場合などにも対応することができる。 That is, in the first embodiment, after the step (C1) of temporarily sticking the singulated adhesive film on the substrate, a step of applying solder paste to predetermined locations on the substrate is further provided, and a step of placing the components (D1 ), by placing the components on the solder paste, the singulated adhesive film and the solder paste can be used in common, and it is possible to cope with the case where the solder amount of the solder connection portion is desired to be increased.
 図6~図9は、第1の実施の形態に係る接続構造体の製造方法の変形例を説明するための図である。なお、図6~図9では、説明を簡単にするため、1つの個片化接着フィルムを仮貼りすることとするが、複数の個片化接着フィルムを一括で仮貼りすることが望ましい。以下、個片化接着フィルムを仮貼りする仮貼工程、半田ペーストを印刷する印刷工程、電子部品を載置する載置工程、及び、リフローするリフロー工程について説明する。 6 to 9 are diagrams for explaining a modification of the manufacturing method of the connection structure according to the first embodiment. In FIGS. 6 to 9, to simplify the explanation, one singulated adhesive film is temporarily attached, but it is desirable to temporarily attach a plurality of singulated adhesive films at once. A temporary attachment step of temporarily attaching the singulated adhesive film, a printing step of printing solder paste, a placement step of placing electronic components, and a reflow step of reflowing will be described below.
 [仮貼工程]
 図6は、基板上に個片化接着フィルムを仮貼りする仮貼工程を示す図であり、図6(A)は、断面図であり、図6(B)は、平面図である。基板40は、個片化接着フィルム実装領域41と、半田ペースト実装領域42とを有する。半田ペースト実装領域42には、第1の電極43~第4の電極46を有する。
[Temporary sticking process]
6A and 6B are diagrams showing a temporary attachment step of temporarily attaching the singulated adhesive film onto a substrate, FIG. 6A being a cross-sectional view and FIG. 6B being a plan view. The substrate 40 has a singulated adhesive film mounting area 41 and a solder paste mounting area 42 . The solder paste mounting area 42 has a first electrode 43 to a fourth electrode 46 .
 図6に示すように、個片化接着フィルムを仮貼りする工程では、基板40上の個片化接着フィルム実装領域41に個片化接着フィルム51を仮貼りする。仮貼りする工程は、図3に示す工程(C1)と同様である。なお、同一基板において凹凸や段差を有している場合や、電極の高さや位置が異なる電子部品と基板とを組み合わせる場合、必要な樹脂量が異なるため、個片化接着フィルムの厚みは、個々に異なっていてもよい。 As shown in FIG. 6 , in the step of temporarily attaching the singulated adhesive film, the singulated adhesive film 51 is temporarily attached to the singulated adhesive film mounting region 41 on the substrate 40 . The step of temporary attachment is the same as the step (C1) shown in FIG. When the same substrate has unevenness or steps, or when combining electronic components and substrates with different electrode heights and positions, the required amount of resin differs. may differ from
 [印刷工程]
 図7は、半田ペーストを印刷する工程を示す図であり、図7(A)は、断面図であり、図7(B)は、平面図である。図7に示すように、半田ペーストを印刷する工程では、メタルマスク60とスキージ61を用い、半田ペースト63を第1の電極43~第4の電極46に塗布し、第1の半田ペースト層63~第4の半田ペースト層66を形成する。メタルマスク60の底面には、個片化接着フィルム実装領域41に対応して凹部を設けることが好ましい。メタルマスク60の個片化接着フィルム実装領域41に対応する底面に凹部を設けることにより、個片化接着フィルム51が押し潰されるのを防ぐと共に、個片化接着フィルム51がメタルマスク60に貼着されるのを防ぐことができる。
[Printing process]
7A and 7B are diagrams showing a process of printing a solder paste, FIG. 7A being a cross-sectional view, and FIG. 7B being a plan view. As shown in FIG. 7, in the step of printing the solder paste, a metal mask 60 and a squeegee 61 are used to apply the solder paste 63 to the first electrode 43 to the fourth electrode 46 to form the first solder paste layer 63. to form a fourth solder paste layer 66; It is preferable to provide recesses corresponding to the singulated adhesive film mounting regions 41 on the bottom surface of the metal mask 60 . By providing a concave portion on the bottom surface corresponding to the singulated adhesive film mounting region 41 of the metal mask 60 , the singulated adhesive film 51 is prevented from being crushed, and the singulated adhesive film 51 is attached to the metal mask 60 . You can prevent it from being worn.
 [載置工程]
 図8は、部品を載置する工程を示す図であり、図8(A)は、断面図であり、図8(B)は、平面図である。図8に示すように、部品を載置する工程では、個片化接着フィルム51上に第1のチップ部品71を搭載し、第1の半田ペースト層63及び第2の半田ペースト層62上に第2のチップ部品72を搭載し、第3の半田ペースト層63及び第4の半田ペースト層62上に第3のチップ部品73を搭載する。部品を載置する工程では、工程(D1)同様、マウンターを用いて第1のチップ部品71~第3のチップ部品73を搭載することが好ましい。
[Placement process]
8A and 8B are diagrams showing a process of placing a component, FIG. 8A being a cross-sectional view, and FIG. 8B being a plan view. As shown in FIG. 8, in the step of placing the components, the first chip component 71 is mounted on the singulated adhesive film 51, and the first solder paste layer 63 and the second solder paste layer 62 are coated with the first chip component 71. A second chip component 72 is mounted, and a third chip component 73 is mounted on the third solder paste layer 63 and the fourth solder paste layer 62 . In the step of mounting the components, it is preferable to mount the first chip component 71 to the third chip component 73 using a mounter, as in the step (D1).
 [リフロー工程]
 図9(A)は、リフロー工程を示す図であり、図9(B)は、リフロー工程後の接続構造体の一例を示す図である。また、図10は、リフロー炉の温度条件の一例を示すグラフである。
[Reflow process]
FIG. 9A is a diagram showing the reflow process, and FIG. 9B is a diagram showing an example of the connection structure after the reflow process. Moreover, FIG. 10 is a graph showing an example of the temperature conditions of the reflow furnace.
 リフロー工程は、工程(E1)と同様であり、リフロー炉では、例えば、図10に示すように、昇温して180℃で1分30秒間予備加熱し、さらに昇温して260℃で30秒間本加熱し、冷却することにより、第1のチップ部品71と基板40とを半田接合させ、第2のチップ部品72、73と基板40とを半田接合させる。 The reflow process is the same as the process (E1), and in the reflow furnace, for example, as shown in FIG. By performing main heating for seconds and cooling, the first chip component 71 and the substrate 40 are solder-bonded, and the second chip components 72 and 73 and the substrate 40 are solder-bonded.
 <1-2 第2の実施の形態>
 第2の実施の形態に係る接続構造体の製造方法は、複数の電子部品が実装される基板を準備する工程(A2)と、複数の電子部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する工程(B2)と、マウンターを用いて電子部品を当該電子部品に対応する個片化接着フィルムに押圧し、電子部品に個片化接着フィルムを貼着させ、個片化接着フィルムが貼着された電子部品を搭載する工程(D2)と、個片化接着フィルム及び電子部品が設けられた基板をリフローする工程(E2)とを有する。第2の実施の形態に係る接続構造体の製造方法によれば、マウンターを用いて電子部品を当該電子部品に対応する個片化接着フィルムに押圧し、電子部品に個片化接着フィルムを貼着させ、個片化接着フィルムが貼着された電子部品を搭載するため、プロセスタクトを短縮化することができる。また、準備するフィルム構造体は、基板のレイアウトに必ずしも一致する必要がないため、個片を密に詰めることができ、フィルム構造体としてはスペースを省略できる効果が期待できる。
<1-2 Second Embodiment>
A method for manufacturing a connected structure according to the second embodiment includes a step (A2) of preparing a substrate on which a plurality of electronic components are mounted, and a step of forming singulated adhesive films corresponding to the plurality of electronic components on a base material. a step (B2) of preparing a film structure provided in the step (B2); , a step (D2) of mounting the electronic parts to which the singulated adhesive film is adhered, and a step (E2) of reflowing the substrate provided with the singulated adhesive film and the electronic parts. According to the manufacturing method of the connection structure according to the second embodiment, the mounter is used to press the electronic component against the singulated adhesive film corresponding to the electronic component, and the singulated adhesive film is attached to the electronic component. The process takt time can be shortened because the electronic parts to which the singulated adhesive film is adhered are mounted. In addition, since the film structure to be prepared does not necessarily have to match the layout of the substrate, the individual pieces can be densely packed, and an effect of saving space for the film structure can be expected.
 以下、基板を準備する工程(A2)、フィルム構造体を準備する工程(B2)、電子部品を搭載する工程(D2)、及び、基板をリフローする工程(E2)について説明する。なお、第1の実施の形態と同じ構成には、同じ符号を付し、ここでは説明を省略する。 The step of preparing a substrate (A2), the step of preparing a film structure (B2), the step of mounting electronic components (D2), and the step of reflowing the substrate (E2) will be described below. In addition, the same reference numerals are given to the same configurations as in the first embodiment, and the description thereof is omitted here.
 [工程(A2)]
 工程(A2)では、第1の実施の形態の工程(A1)と同様、複数の電子部品が実装される基板10を準備する。
[Step (A2)]
In step (A2), substrate 10 on which a plurality of electronic components are to be mounted is prepared as in step (A1) of the first embodiment.
 [工程(B2)]
 工程(B2)では、複数の電子部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する。フィルム構造体は、テープ状の基材上に個片化接着フィルムが長手方向に所定範囲毎に連続して配置され、巻き回されたリールであることが好ましい。
[Step (B2)]
In step (B2), a film structure is prepared in which singulated adhesive films corresponding to a plurality of electronic components are provided on a substrate. The film structure is preferably a reel in which the singulated adhesive film is continuously arranged in each predetermined range in the longitudinal direction on a tape-shaped base material and wound.
 図11は、リールから引き出した個片化接着フィルムを示す平面図である。図11に示すように、第1の個片化接着フィルム21~第8の個片化接着フィルム28をそれぞれ巻き回した第1のリール~第8のリールを準備することが好ましい。なお、図2に示す工程(B1)と同様、複数の電子部品が実装される基板10に対応する基材20上の所定位置に半田粒子を含有する個片化接着フィルムを含む複数の個片化接着フィルム21~28が配置されたフィルム構造体を準備してもよい。 FIG. 11 is a plan view showing the singulated adhesive film pulled out from the reel. As shown in FIG. 11, it is preferable to prepare first to eighth reels on which the first to eighth singulated adhesive films 21 to 28 are respectively wound. As in the step (B1) shown in FIG. 2, a plurality of individual pieces including the singulated adhesive film containing solder particles are placed at predetermined positions on the substrate 20 corresponding to the substrate 10 on which a plurality of electronic components are mounted. A film structure in which the modified adhesive films 21-28 are arranged may be prepared.
 [工程(D2)]
 工程(D2)では、マウンターを用いて電子部品を当該部品に対応する個片化接着フィルムに押圧し、電子部品に個片化接着フィルムを貼着させ、個片化接着フィルムが貼着さられた電子部品を搭載する。なお、同一基板において凹凸や段差を有している場合や、電極の高さや位置が異なる電子部品と基板とを組み合わせる場合、必要な樹脂量が異なるため、個片化接着フィルムの厚みは、電子部品毎に個々に異なっていてもよい。
[Step (D2)]
In step (D2), the electronic component is pressed against the singulated adhesive film corresponding to the component using a mounter, the singulated adhesive film is adhered to the electronic component, and the singulated adhesive film is adhered. equipped with electronic components. When the same substrate has unevenness or steps, or when combining electronic components and substrates with different electrode heights and positions, the amount of resin required will differ. It may differ from part to part.
 図12~図14は、部品を搭載する工程を示す図であり、図12は、電子部品に個片化接着フィルムを貼着させる状態を示す図であり、図13は、電子部品に貼着させた個片化接着フィルムを基板に搭載する状態を示す図であり、図14は、個片化接着フィルムを介して電子部品を基板に搭載させた状態を示す図である。 12 to 14 are diagrams showing the steps of mounting the components, FIG. 12 is a diagram showing a state in which the singulated adhesive film is attached to the electronic components, and FIG. FIG. 14 is a diagram showing a state in which the singulated adhesive film is mounted on a substrate, and FIG. 14 is a diagram showing a state in which an electronic component is mounted on the substrate via the singulated adhesive film.
 図12に示すように、マウンターの吸着ヘッド80でピックアップした電子部品81を個片化接着フィルム82に押圧し、電子部品81に個片化接着フィルム82を貼着させ、個片化接着フィルム82を基材83から電子部品81に転着させる。次に、図13及び図14に示すように、個片化接着フィルム82が貼着された電子部品81を吸着ヘッド80でピックアップし、個片化接着フィルム82を介して基板84に搭載する。 As shown in FIG. 12, the electronic component 81 picked up by the suction head 80 of the mounter is pressed against the singulated adhesive film 82 to adhere the singulated adhesive film 82 to the electronic component 81 , and the singulated adhesive film 82 is adhered to the electronic component 81 . is transferred from the base material 83 to the electronic component 81 . Next, as shown in FIGS. 13 and 14 , the electronic component 81 to which the singulated adhesive film 82 is adhered is picked up by the suction head 80 and mounted on the substrate 84 via the singulated adhesive film 82 .
 これにより、第1の実施の形態と同様、第1のコネクタ実装領域11には、第1の個片化接着フィルム21a、21bを介して第1のコネクタ部品が搭載され、第2のコネクタ実装領域12には、第2の個片化接着フィルム22a、22bを介して第2のコネクタ部品が搭載される。また、第1のチップ実装領域13~第6のチップ実装領域18には、それぞれ第3の個片化接着フィルム23~第8の個片化接着フィルム28を介して第1のチップ部品~第6のチップ部品が搭載される。 Thus, as in the first embodiment, the first connector component is mounted on the first connector mounting area 11 via the first singulated adhesive films 21a and 21b, and the second connector mounting is performed. A second connector component is mounted on the region 12 via second singulated adhesive films 22a and 22b. In the first chip mounting region 13 to the sixth chip mounting region 18, the first chip component to the first chip component are mounted on the first chip mounting region 13 to the sixth chip mounting region 18 via the third singulated adhesive film 23 to the eighth singulated adhesive film 28, respectively. 6 chip components are mounted.
 [工程(E2)]
 工程(E2)では、第1の実施の形態の工程(E1)と同様、個片化接着フィルム21~28及び電子部品が設けられた基板10をリフローする。
[Step (E2)]
In the step (E2), the substrate 10 provided with the singulated adhesive films 21 to 28 and the electronic components is reflowed as in the step (E1) of the first embodiment.
 <1-2-1.第2の実施の形態の変形例1>
 半田ペーストと共用する場合には、半田ペーストの印刷後、マウンターを用いて個片化接着フィルムが貼着された電子部品を搭載し、リフローを行うことにより、半田ペーストとの共用も可能となる。
<1-2-1. Modification 1 of Second Embodiment>
When jointly used with solder paste, after printing the solder paste, the electronic components to which the singulated adhesive film is adhered are mounted using a mounter, and reflow is performed to enable joint use with the solder paste. .
 すなわち、第2の実施の形態において、個片化接着フィルムが貼着された電子部品を搭載する工程(D2)前に、基板の所定箇所に半田ペーストを設ける工程と、半田ペースト上に電子部品を載置する工程とをさらに有することにより、個片化接着フィルムと半田ペーストとを共用することができる。 That is, in the second embodiment, before the step (D2) of mounting the electronic components to which the singulated adhesive film is adhered, a step of applying solder paste to a predetermined portion of the substrate, and a step of providing the electronic components on the solder paste. By further including the step of placing the individualized adhesive film and the solder paste can be used in common.
 <1-3 第3の実施の形態>
 第3の実施の形態に係る接続構造体の製造方法は、複数の電子部品が実装される基板を準備する工程(A3)と、複数の電子部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する工程(B3)と、マウンターを用いて個片化接着フィルムを基板の所定箇所に搭載する工程(C3)と、個片化接着フィルム上に電子部品を載置する工程(D3)と、個片化接着フィルム及び電子部品が設けられた基板をリフローする工程(E3)とを有する。第3の実施の形態に係る接続構造体の製造方法によれば、マウンタヘッドを用いて個片化接着フィルムを基板の所定箇所に搭載することにより、仮貼りプロセス自体がなくなるため、プロセスタクトを短縮化することができる。また、準備するフィルム構造体は、基板のレイアウトに必ずしも一致する必要がないため、個片を密に詰めることができ、フィルム構造体としてはスペースを省略できる効果が期待できる。
<1-3 Third Embodiment>
A method for manufacturing a connected structure according to the third embodiment includes a step (A3) of preparing a substrate on which a plurality of electronic components are mounted, and a step of forming singulated adhesive films corresponding to the plurality of electronic components on a base material. step (B3) of preparing the film structure provided in the step (C3) of mounting the singulated adhesive film on a predetermined location of the substrate using a mounter (C3); and a step (E3) of reflowing the substrate provided with the singulated adhesive film and the electronic component. According to the manufacturing method of the connection structure according to the third embodiment, by using the mounter head to mount the singulated adhesive film on the predetermined position of the substrate, the temporary attachment process itself is eliminated, and the process tact time is shortened. can be shortened. In addition, since the film structure to be prepared does not necessarily have to match the layout of the substrate, the individual pieces can be densely packed, and an effect of saving space for the film structure can be expected.
 以下、基板を準備する工程(A3)、フィルム構造体を準備する工程(B3)、個片化接着フィルムを搭載する工程(C3)、電子部品を搭載する工程(D3)、及び、基板をリフローする工程(E3)について説明する。なお、第1の実施の形態及び、第2の実施の形態と同じ構成には、同じ符号を付し、ここでは説明を省略する。 Hereinafter, the step of preparing a substrate (A3), the step of preparing a film structure (B3), the step of mounting a singulated adhesive film (C3), the step of mounting electronic components (D3), and reflowing the substrate The step (E3) to do so will be described. The same reference numerals are given to the same configurations as those of the first embodiment and the second embodiment, and the description thereof is omitted here.
 [工程(A3)]
 工程(A3)では、第1の実施の形態の工程(A1)と同様、複数の電子部品が実装される基板10を準備する。
[Step (A3)]
In step (A3), substrate 10 on which a plurality of electronic components are to be mounted is prepared as in step (A1) of the first embodiment.
 [工程(B3)]
 工程(B3)では、第2の実施の形態の工程(B2)と同様、複数の部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する。フィルム構造体は、テープ状の基材上に個片化接着フィルムが長手方向に所定範囲毎に連続して配置され、巻き回されたリールであることが好ましい。
[Step (B3)]
In step (B3), similarly to step (B2) in the second embodiment, a film structure is prepared in which singulated adhesive films corresponding to a plurality of parts are provided on a substrate. The film structure is preferably a reel in which the singulated adhesive film is continuously arranged in each predetermined range in the longitudinal direction on a tape-shaped base material and wound.
 [工程(C3))]
 工程(C3)では、マウンターを用いて個片化接着フィルムを基板の所定箇所に搭載する。マウンターは、個片化接着フィルムを吸着する吸着ヘッドを備える。
[Step (C3))]
In step (C3), a mounter is used to mount the singulated adhesive film on predetermined locations on the substrate. The mounter has a suction head that suctions the singulated adhesive film.
 図15は、吸着ヘッドの構成例を示す図であり、図15(A)は、吸着ヘッドの吸着面を示す平面図であり、図15(B)は、吸着ヘッドの側面を示す側面図である。図15に示すように、吸着ヘッド90は、先端にエラストマー層91を備え、エラストマー表面に吸着穴92を有する。 15A and 15B are diagrams showing a configuration example of a suction head, FIG. 15A is a plan view showing a suction surface of the suction head, and FIG. 15B is a side view showing a side surface of the suction head. be. As shown in FIG. 15, the suction head 90 has an elastomer layer 91 at the tip and suction holes 92 on the surface of the elastomer.
 エラストマー層91における吸着面の横幅x1及び縦幅y1の上限は、好ましくは30mm以下、より好ましくは20mm以下、さらに好ましくは15mm以下である。また、吸着面における吸着穴92の形成領域の横幅x2及び縦幅y2の下限は、好ましくは0.5mm以上、より好ましくは1.0mm以上、さらに好ましくは2.0mm以上である。また、吸着穴92の直径の下限は、好ましくは0.05mm以上、より好ましくは0.1mm以上、さらに好ましくは0.2mm以上であり、吸着穴92の直径の上限は、好ましくは3mm以下、より好ましくは1mm以下、さらに好ましくは0.5mm以下である。また、一つの吸着ヘッドに複数個所の吸着穴エリアを設けて、複数の個片化接着フィルムを吸着し、複数の個片化接着フィルムを一緒にマウントできるようにしてもよい。 The upper limits of the lateral width x1 and the longitudinal width y1 of the adsorption surface of the elastomer layer 91 are preferably 30 mm or less, more preferably 20 mm or less, and even more preferably 15 mm or less. Also, the lower limits of the width x2 and the length y2 of the formation area of the suction holes 92 on the suction surface are preferably 0.5 mm or more, more preferably 1.0 mm or more, and even more preferably 2.0 mm or more. The lower limit of the diameter of the suction holes 92 is preferably 0.05 mm or more, more preferably 0.1 mm or more, and still more preferably 0.2 mm or more, and the upper limit of the diameter of the suction holes 92 is preferably 3 mm or less. It is more preferably 1 mm or less, still more preferably 0.5 mm or less. Also, a single suction head may be provided with a plurality of suction hole areas to suck a plurality of singulated adhesive films so that the plurality of singulated adhesive films can be mounted together.
 エラストマー層91は、例えば、シリコーンゴム、フッ素ゴム、ウレタンゴムなどの熱硬化性エラストマーから構成される。エラストマー層91の厚みの下限は、好ましくは50μm以上、より好ましくは100μm以上、さらに好ましくは150μm以上であり、厚みの上限は、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは250μm以下である。これにより、基板に凹凸や段差があっても、個片化接着フィルムを所定の場所に貼り付けることができる。 The elastomer layer 91 is made of, for example, a thermosetting elastomer such as silicone rubber, fluororubber, or urethane rubber. The lower limit of the thickness of the elastomer layer 91 is preferably 50 μm or more, more preferably 100 μm or more, still more preferably 150 μm or more, and the upper limit of the thickness is preferably 500 μm or less, more preferably 300 μm or less, and further preferably 250 μm or less. be. As a result, even if the substrate has irregularities or steps, the singulated adhesive film can be attached to a predetermined location.
 このような吸着ヘッドを用いることにより、第1の実施の形態と同様、第1のコネクタ実装領域11には、第1の個片化接着フィルム21a、21bが搭載され、第2のコネクタ実装領域12には、第2の個片化接着フィルム22a、22bが搭載される。また、第1のチップ実装領域13~第6のチップ実装領域18には、それぞれ第3の個片化接着フィルム23~第8の個片化接着フィルム28が搭載される。なお、同一基板において凹凸や段差を有している場合や、電極の高さや位置が異なる電子部品と基板とを組み合わせる場合、必要な樹脂量が異なるため、個片化接着フィルムの厚みは、個々に異なっていてもよい。 By using such a suction head, as in the first embodiment, the first singulated adhesive films 21a and 21b are mounted on the first connector mounting area 11, and the second connector mounting area is mounted. 12, second singulated adhesive films 22a and 22b are mounted. Further, the third singulated adhesive film 23 to the eighth singulated adhesive film 28 are mounted on the first chip mounting region 13 to the sixth chip mounting region 18, respectively. When the same substrate has unevenness or steps, or when combining electronic components and substrates with different electrode heights and positions, the required amount of resin differs. may differ from
 [工程(D3)]
 工程(D3)では、第1の実施の形態の工程(D3)と同様、個片化接着フィルム21~28上に電子部品を載置する。これにより、第1の実施の形態と同様、第1の個片化接着フィルム21a、21b上には、第1のコネクタ部品が搭載され、第2の個片化接着フィルム22a、22b上には、第2のコネクタ部品が搭載される。また、第3の個片化接着フィルム23~第8の個片化接着フィルム28上には、それぞれ第1のチップ部品~第6のチップ部品が搭載される。
[Step (D3)]
In the step (D3), electronic components are placed on the singulated adhesive films 21 to 28 as in the step (D3) of the first embodiment. Thus, as in the first embodiment, the first connector components are mounted on the first singulated adhesive films 21a and 21b, and the second singulated adhesive films 22a and 22b have the , a second connector part is mounted. Also, the first to sixth chip components are mounted on the third to eighth singulated adhesive films 23 to 28, respectively.
 [工程(E2)]
 工程(E2)では、第1の実施の形態の工程(E1)と同様、個片化接着フィルム21~28及び電子部品が設けられた基板10をリフローする。
[Step (E2)]
In the step (E2), the substrate 10 provided with the singulated adhesive films 21 to 28 and the electronic components is reflowed as in the step (E1) of the first embodiment.
 <1-3-1.第3の実施の形態の変形例1>
 半田ペーストと共用する場合には、半田ペーストの印刷後、マウンターを用いて個片化接着フィルム及び電子部品を搭載し、リフローを行うことにより、半田ペーストとの共用も可能となる。
<1-3-1. Modified example 1 of the third embodiment>
When jointly used with solder paste, after printing the solder paste, the singulated adhesive film and electronic components are mounted using a mounter, and reflowing is performed, whereby joint use with the solder paste is also possible.
 すなわち、第3の実施の形態において、個片化接着フィルムを搭載する工程(C3)前に、基板の所定箇所に半田ペーストを設ける工程と、半田ペースト上に電子部品を載置する工程とをさらに有することにより、個片化接着フィルムと半田ペーストとを共用することができる。 That is, in the third embodiment, before the step (C3) of mounting the singulated adhesive film, the step of providing a solder paste on a predetermined portion of the substrate and the step of placing the electronic component on the solder paste are combined. Further, by having it, the singulated adhesive film and the solder paste can be used in common.
 なお、本技術に係る接続構造体の製造方法は、例えば、半導体装置(ドライバICの他、光学素子や熱電変換素子、光電変換素子など半導体を利用したものは全て含む)、表示装置(モニター、テレビ、ヘッドマウントディスプレイなど)、携帯機器(タブレット端末、スマートフォン、ウェアラブル端末など)、ゲーム機、オーディオ機器、撮像装置(カメラモジュールなどのイメージセンサを用いるもの)、車両(移動装置)用電装実装、医療機器、センサーデバイス(タッチセンサー、指紋認証、虹彩認証など)、家電製品などの電気的接続を用いるあらゆる電子機器の製造方法に用いることができる。 Note that the method for manufacturing a connection structure according to the present technology includes, for example, semiconductor devices (including driver ICs as well as optical elements, thermoelectric conversion elements, photoelectric conversion elements, and other devices using semiconductors), display devices (monitors, TVs, head-mounted displays, etc.), mobile devices (tablets, smartphones, wearable devices, etc.), game consoles, audio equipment, imaging devices (using image sensors such as camera modules), electrical mounting for vehicles (moving devices), It can be used in manufacturing methods for all electronic devices that use electrical connections, such as medical devices, sensor devices (touch sensors, fingerprint authentication, iris authentication, etc.), and home appliances.
 <2.フィルム構造体、及びフォルム構造体の製造方法>
 <2-1.第1の実施の形態>
 第1の実施の形態に係るフィルム構造体は、基材と、複数の電子部品に対応する前記基材上の所定位置に配置された複数の個片化接着フィルムとを備え、前記複数の個片化接着フィルムの1以上が、半田粒子を含有する。第1の実施の形態に係るフィルム構造体によれば、複数の電子部品に対応する基材の所定位置に個片化接着フィルムが配置されているため、基板上に一括で仮貼りすることができ、リフロー炉を用いて、電子部品を実装することができる。
<2. Method for producing film structure and form structure>
<2-1. First Embodiment>
A film structure according to a first embodiment includes a substrate, and a plurality of singulated adhesive films arranged at predetermined positions on the substrate corresponding to a plurality of electronic components, One or more of the stripped adhesive films contain solder particles. According to the film structure according to the first embodiment, since the singulated adhesive films are arranged at predetermined positions on the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them on the substrate. electronic components can be mounted using a reflow oven.
 また、第1の実施の形態に係るフィルム構造体の製造方法は、第1の基材上に第1の個片化接着フィルムを設け、第2の基材上に第2の個片化接着フィルムを設け、複数の電子部品に対応する第1の基材、第2の基材、又は第3の基材の所定位置に第1の個片化接着フィルム及び第2の個片化接着フィルムを配置し、第1の個片化接着フィルム及び第2の個片化接着フィルムの1以上が、半田粒子を含有する。 Further, in the method for manufacturing a film structure according to the first embodiment, the first singulated adhesive film is provided on the first base material, and the second singulated adhesive film is provided on the second base material. A film is provided, and a first singulated adhesive film and a second singulated adhesive film are provided at predetermined positions on a first base material, a second base material, or a third base material corresponding to a plurality of electronic components. and one or more of the first singulated adhesive film and the second singulated adhesive film contain solder particles.
 基材は、複数の個片化接着フィルムを支持する支持フィルムである。基材としては、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)などが挙げられる。また、基材は、少なくとも個片化接着フィルム側の面が例えばシリコーン樹脂により剥離処理されたものを好適に用いることができる。 The base material is a support film that supports multiple singulated adhesive films. Examples of base materials include PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), and PTFE (Polytetrafluoroethylene). Moreover, as the base material, at least the surface on the side of the singulated adhesive film can be suitably used that has been subjected to release treatment with, for example, a silicone resin.
 基材の厚みは、特に限定されるものではない。基材の厚みの下限は、剥離の観点からは、好ましくは10μm以上、より好ましくは25μm以上、さらに好ましくは38μm以上である。基材の厚みの上限は、厚すぎると過度に接着フィルムに圧力がかかりすぎることが懸念されるため、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは75μm以下であり、50μm以下としてもよい。 The thickness of the base material is not particularly limited. The lower limit of the thickness of the substrate is preferably 10 µm or more, more preferably 25 µm or more, and still more preferably 38 µm or more, from the viewpoint of peeling. The upper limit of the thickness of the substrate is preferably 200 μm or less, more preferably 100 μm or less, still more preferably 75 μm or less, because there is concern that excessive pressure will be applied to the adhesive film if it is too thick. good.
 また、基材の幅も、特に限定されるものではない。基材の幅の下限は、巻き回す観点からは、好ましくは1mm以上、より好ましくは2mm以上、さらに好ましくは4mm以上である。基材の幅の上限は、大きすぎると持ち運びや取り扱いが困難となることが懸念されるため、好ましくは500mm以下、より好ましくは250mm以下、さらに好ましくは120mm以下である。 Also, the width of the base material is not particularly limited. From the viewpoint of winding, the lower limit of the width of the substrate is preferably 1 mm or more, more preferably 2 mm or more, and even more preferably 4 mm or more. The upper limit of the width of the substrate is preferably 500 mm or less, more preferably 250 mm or less, and even more preferably 120 mm or less, because there is concern that if it is too large, it may become difficult to carry and handle.
 フィルム構造体は、1つの基板に対応するように基材上に複数の個片化接着フィルムが配置されたシートであってもよく、テープ状の基材上に複数の個片化接着フィルムが長手方向に単位領域毎に連続して配置され、巻き回されたリールであってもよい。リールである場合、基材の幅は接続対象の電子部品レイアウト領域(矩形領域)の短手側であっても長手側であってもよい。ここで、「単位領域」とは、基材の長さ方向に所定長さを有し、例えば矩形状の領域を示す。 The film structure may be a sheet in which a plurality of singulated adhesive films are arranged on a substrate so as to correspond to one substrate, and the plurality of singulated adhesive films are arranged on a tape-shaped substrate. It may be a reel in which unit areas are continuously arranged in the longitudinal direction and wound. In the case of a reel, the width of the base material may be the short side or the long side of the electronic component layout area (rectangular area) to be connected. Here, the “unit region” refers to a rectangular region, for example, having a predetermined length in the longitudinal direction of the substrate.
 個片化接着フィルムは、ハーフカット加工、スクリーン印刷、又はインクジェット印刷により基材上に形成することができる。ハーフカット加工は、ビク刃により基材をカットせずに接着フィルムのみをカットし、不必要なところは抜き加工などにより除去する。スクリーン印刷は、スクリーンマスクの網目に対し、スキージなどによる圧力で接着剤を通過させ、基材上に印刷(塗布)し、例えばスクリーンマスクの厚みにより所定厚みの個片化接着フィルムを作製する。スクリーンマスクは、ポリエステルなどの合成繊維又はステンレスや各種金属繊維で織ったスクリーンメッシュを用いた版である。接着剤が半田粒子を含む場合は、半田粒子の最大径よりもメッシュを大きくすればよい。インクジェット印刷は、版不要でデータから直接パターニングし、例えばノズル径により塗布量をコントロールして所定厚みの個片化接着フィルムを作製する。接着剤が半田粒子を含む場合は、半田粒子の最大径よりもノズル径を大きくすればよい。 The singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing. In the half-cut process, only the adhesive film is cut without cutting the base material with a Viku blade, and unnecessary parts are removed by punching or the like. In screen printing, the adhesive is passed through the mesh of the screen mask with pressure from a squeegee or the like, and printed (applied) on the base material to produce, for example, a singulated adhesive film having a predetermined thickness according to the thickness of the screen mask. A screen mask is a plate using a screen mesh woven from synthetic fibers such as polyester, stainless steel, or various metal fibers. If the adhesive contains solder particles, the mesh should be larger than the maximum diameter of the solder particles. Inkjet printing involves direct patterning from data without the need for a plate. For example, the coating amount is controlled by the nozzle diameter to produce individualized adhesive films of a predetermined thickness. If the adhesive contains solder particles, the nozzle diameter should be larger than the maximum diameter of the solder particles.
 また、個片化接着フィルムは、2層以上の構成であってもよく、半田粒子を含む層と含まない層の2層以上の構成であってもよく、半田粒子を含む層同士の2層以上の構成であってもよく、半田粒子を含まない層同士の2層以上の構成であってもよい。 In addition, the singulated adhesive film may have a structure of two or more layers, or may have a structure of two or more layers of a layer containing solder particles and a layer not containing solder particles, or two layers of layers containing solder particles. The above structure may be used, or a structure of two or more layers that do not contain solder particles may be used.
 個片化接着フィルムを2層以上で構成する場合、塗布や積層などにより2層以上の原反を形成してからハーフカット加工することが好ましい。また、スクリーン印刷により個片化接着フィルムを作製した後に、積層して成形してもよい。また、ノズルジェット印刷(インクジェット印刷)で、個片化接着フィルムを作製した後に、積層して成形してもよい。 When the singulated adhesive film is composed of two or more layers, it is preferable to half-cut after forming a raw fabric of two or more layers by coating or lamination. Moreover, after producing the singulated adhesive film by screen printing, it may be laminated and molded. Moreover, after producing a singulated adhesive film by nozzle jet printing (inkjet printing), it may be laminated and molded.
 個片化接着フィルムが半田粒子を含有する導電性フィルムである場合、半田粒子の平均粒径に対する接着フィルムの厚みの比の下限は、好ましくは0.6以上、より好ましくは0.8以上、さらに好ましくは0.9以上である。また、個片化接着フィルムの厚みは、同一基板において凹凸や段差を有している場合や、電極の高さや位置が異なる電子部品と基板とを組み合わせる場合がある。このような場合、必要な樹脂量が異なるため、特に制限はないが、一般的にフィルム形成するのに適した200μm以下とすることが好ましい。なお、個片化接着フィルムの厚みは、個々に異なっていてもよく、同一基板上に複数の個片化接着フィルムが設けられた場合、最大厚みの個片化接着フィルムの厚みが200μm以下であることが好ましい。 When the singulated adhesive film is a conductive film containing solder particles, the lower limit of the ratio of the thickness of the adhesive film to the average particle diameter of the solder particles is preferably 0.6 or more, more preferably 0.8 or more, More preferably, it is 0.9 or more. In addition, the thickness of the singulated adhesive film may be uneven or stepped on the same substrate, or may be a combination of an electronic component and a substrate having different electrode heights or positions. In such a case, the required resin amount is different, so there is no particular limitation, but it is generally preferable to set the thickness to 200 μm or less, which is suitable for film formation. The thickness of the singulated adhesive film may be different for each piece, and when a plurality of singulated adhesive films are provided on the same substrate, the maximum thickness of the singulated adhesive film is 200 μm or less. Preferably.
 個片化接着フィルムの厚みは、1μm以下、好ましくは0.1μm以下を測定できる公知のマイクロメータやデジタルシックネスゲージ(例えば、株式会社ミツトヨ:MDE-25M、最小表示量0.0001mm)を用いて測定することができる。フィルム厚みは、10箇所以上を測定し、平均して求めればよい。但し、粒子径よりもフィルム厚みが薄い場合には、接触式の厚み測定器は適さないので、レーザー変位計(例えば、株式会社キーエンス、分光干渉変位タイプSI-Tシリーズなど)を用いることが好ましい。ここで、フィルム厚みとは、バインダー樹脂層のみの厚みであり、露出している場合の粒子径は含まない。また、個片化接着フィルムが複数層である場合、フィルム厚みは、複数層の厚みを指す。 The thickness of the singulated adhesive film is 1 μm or less, preferably 0.1 μm or less. can be measured. The film thickness may be obtained by measuring 10 or more points and averaging them. However, if the film thickness is thinner than the particle diameter, a contact-type thickness measuring device is not suitable, so it is preferable to use a laser displacement meter (eg, Keyence Corporation, spectral interference displacement type SI-T series, etc.). . Here, the film thickness is the thickness of the binder resin layer only, and does not include the particle diameter of the exposed layer. Moreover, when the singulated adhesive film has multiple layers, the film thickness refers to the thickness of the multiple layers.
 個片化接着フィルムのバインダーは、熱硬化性であっても、熱可塑性であってもよいが、リフロー工程による温度制御により溶融・硬化可能な熱硬化性であることが好ましい。以下では、熱硬化性バインダー(絶縁性バインダー)について説明する。 The binder of the singulated adhesive film may be thermosetting or thermoplastic, but it is preferably thermosetting that can be melted and cured by temperature control in the reflow process. The thermosetting binder (insulating binder) will be described below.
 [熱硬化型バインダー]
 熱硬化性バインダーは、発熱ピーク温度が、半田粒子の融点よりも高いことが好ましく、半田粒子の融点よりも低い溶融温度を有するものであることが好ましい。ここで、発熱ピーク温度は、回転式レオメーター(サーモフィッシャー社製)を用い、測定圧力1N温度範囲30~200℃、昇温速度10℃/分、測定周波数1Hz、測定プレート直径8mmの条件で測定することができる。これにより、加熱により熱硬化性バインダーが溶融し、半田粒子が端子間に挟持された状態で半田が溶融するため、ファインピッチの電極を備える電子部品を接合させることができる。
[Thermosetting binder]
The thermosetting binder preferably has an exothermic peak temperature higher than the melting point of the solder particles, and preferably has a melting temperature lower than the melting point of the solder particles. Here, the exothermic peak temperature was measured using a rotary rheometer (manufactured by Thermo Fisher Co.) under the conditions of a measurement pressure of 1 N temperature range of 30 to 200° C., a heating rate of 10° C./min, a measurement frequency of 1 Hz, and a measurement plate diameter of 8 mm. can be measured. As a result, the thermosetting binder is melted by heating, and the solder is melted while the solder particles are sandwiched between the terminals, so that electronic components having fine-pitch electrodes can be joined.
 熱硬化型バインダーとしては、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合型樹脂組成物、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合型樹脂組成物などが挙げられる。また、公知の粘着剤組成物を用いてもよい。なお、(メタ)アクリルモノマーとは、アクリルモノマー、及びメタクリルモノマーのいずれも含む意味である。 As the thermosetting binder, a thermal radical polymerization resin composition containing a (meth)acrylate compound and a thermal radical polymerization initiator, a thermal cationic polymerization resin composition containing an epoxy compound and a thermal cationic polymerization initiator, and an epoxy compound. and a thermal anion polymerization type resin composition containing a thermal anion polymerization initiator. Moreover, you may use a well-known adhesive composition. The (meth)acrylic monomer is meant to include both acrylic monomers and methacrylic monomers.
 以下では、具体例として、固形エポキシ樹脂と、液状エポキシ樹脂と、エポキシ樹脂硬化剤とを含有する熱アニオン重合型樹脂組成物を例に挙げて説明する。 In the following, as a specific example, a thermal anionic polymerizable resin composition containing a solid epoxy resin, a liquid epoxy resin, and an epoxy resin curing agent will be described.
 固形エポキシ樹脂は、常温で固形であり、分子内に1つ以上のエポキシ基を有するエポキシ樹脂であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂等であってもよい。これにより、フィルム形状を維持することができる。なお、常温とは、JIS Z 8703で規定する20℃±15℃(5℃~35℃)の範囲である。 The solid epoxy resin is not particularly limited as long as it is solid at room temperature and has one or more epoxy groups in the molecule. Examples thereof include bisphenol A type epoxy resin and biphenyl type epoxy resin. There may be. Thereby, the film shape can be maintained. The room temperature is the range of 20°C ± 15°C (5°C to 35°C) defined by JIS Z 8703.
 液状エポキシ樹脂は、常温で液状であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等であってもよく、ウレタン変性のエポキシ樹脂であっても構わない。 The liquid epoxy resin is not particularly limited as long as it is liquid at room temperature. do not have.
 液状エポキシ樹脂の配合量は、固形エポキシ樹脂100質量部に対し、好ましくは160質量部以下、より好ましくは100質量部以下、さらに好ましくは70質量部以下である。液状エポキシ樹脂の配合量が多くなると、フィルム形状を維持することが困難となる。また、液状エポキシ樹脂の配合量が多くなると、熱硬化後の硬化物性が一般的に高架橋密度による高弾性となるため、ストレス緩和能力が小さくなる。 The amount of the liquid epoxy resin to be blended is preferably 160 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 70 parts by mass or less with respect to 100 parts by mass of the solid epoxy resin. When the amount of the liquid epoxy resin added is large, it becomes difficult to maintain the film shape. In addition, when the amount of the liquid epoxy resin added is large, the cured physical properties after heat curing generally become highly elastic due to the high crosslink density, resulting in a decrease in the ability to relax stress.
 エポキシ樹脂硬化剤は、熱で硬化が開始する熱硬化剤であれば、特に限定されるものではなく、例えば、アミン、イミダゾール等のアニオン系硬化剤、スルホニウム塩等のカチオン系硬化剤が挙げられる。また、硬化剤は、フィルム化させる際に使用される溶剤に対して耐性が得られるようにマイクロカプセル化されていてもよい。 The epoxy resin curing agent is not particularly limited as long as it is a thermosetting agent that initiates curing by heat. Examples thereof include anionic curing agents such as amines and imidazoles, and cationic curing agents such as sulfonium salts. . In addition, the curing agent may be microencapsulated so as to obtain resistance to the solvent used when forming the film.
 [半田粒子]
 半田粒子は、例えばJIS Z 3282-1999に規定されている、Sn-Pb系、Pb-Sn-Sb系、Sn-Sb系、Sn-Pb-Bi系、Bi-Sn系、Sn-Cu系、Sn-Pb-Cu系、Sn-In系、Sn-Ag系、Sn-Pb-Ag系、Pb-Ag系などから、電極材料や接続条件などに応じて適宜選択することができる。Bi系の半田は、ストレスを緩和し、半田の金属結合部におけるクラック発生を抑制し、接続抵抗値の上昇を抑えることができる。
[solder particles]
Solder particles are defined, for example, in JIS Z 3282-1999, Sn—Pb system, Pb—Sn—Sb system, Sn—Sb system, Sn—Pb—Bi system, Bi—Sn system, Sn—Cu system, It can be appropriately selected from Sn--Pb--Cu, Sn--In, Sn--Ag, Sn--Pb--Ag, Pb--Ag, etc., depending on the electrode material and connection conditions. Bi-based solder can alleviate stress, suppress cracks in the metal joints of the solder, and suppress an increase in connection resistance.
 半田粒子の融点の下限は、好ましくは110℃以上、より好ましくは120℃以上、さらに好ましくは130℃以上。半田粒子の融点の上限は、200℃以下でもよく、好ましくは180℃以下、より好ましくは160℃以下、さらに好ましくは150℃以下である。また、半田粒子は、表面を活性化させる目的でフラックス化合物が直接表面に結合されていても構わない。表面を活性化させることで電極部との金属結合を促進することができる。 The lower limit of the melting point of the solder particles is preferably 110°C or higher, more preferably 120°C or higher, and even more preferably 130°C or higher. The upper limit of the melting point of the solder particles may be 200° C. or lower, preferably 180° C. or lower, more preferably 160° C. or lower, and even more preferably 150° C. or lower. Also, the solder particles may have a flux compound bonded directly to the surface for the purpose of activating the surface. By activating the surface, metal bonding with the electrode can be promoted.
 半田粒子の平均粒径は、電子部品の端子列における端子間距離(スペース間距離)の最小値の0.5倍以下であることが好ましく、0.3倍以下であることがより好ましく、0.2倍以下であることがさらに好ましい。このようなスペース間距離及び半田粒子の平均粒径との関係より、リフロー炉を用いて、電子部品の端子列と基板の端子列とを接合させることができる。半田粒子の平均粒径が電子部品の端子列及び基板の端子列における端子間距離の最小値の0.5倍より大きくなると、ショートが発生する可能性が高くなる。 The average particle diameter of the solder particles is preferably 0.5 times or less, more preferably 0.3 times or less, the minimum value of the inter-terminal distance (inter-space distance) in the terminal row of the electronic component. .2 times or less is more preferable. Based on the relationship between the distance between the spaces and the average particle size of the solder particles, it is possible to join the terminal rows of the electronic component and the terminal rows of the substrate using a reflow furnace. If the average particle size of the solder particles is larger than 0.5 times the minimum distance between terminals in the terminal row of the electronic component and the terminal row of the board, the possibility of short-circuiting increases.
 半田粒子の平均粒径の下限は、好ましくは0.5μm以上、より好ましくは3μm以上、より好ましくは5μm以上である。これにより、フィルムの塗布厚みを一定にすることができる。半田粒子の平均粒径が0.5μmより小さいと電極部と良好な半田接合状態を得ることができず、信頼性が悪化する傾向にある。また、半田粒子の平均粒径の上限は、50μm以下であってもよく、30μm以下、好ましくは20μm以下、さらに好ましくは10μm以下である。 The lower limit of the average particle size of the solder particles is preferably 0.5 µm or more, more preferably 3 µm or more, and more preferably 5 µm or more. Thereby, the coating thickness of the film can be made constant. If the average particle size of the solder particles is less than 0.5 μm, a good solder joint state with the electrode portion cannot be obtained, and the reliability tends to deteriorate. Also, the upper limit of the average particle size of the solder particles may be 50 μm or less, 30 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
 平均粒径は、金属顕微鏡、光学顕微鏡、SEM(Scanning Electron Microscope)等の電子顕微鏡などを用いた観察画像において、例えばN=20以上、好ましくはN=50以上、さらに好ましくはN=200以上で測定した粒子の長軸径の平均値であり、粒子が球形の場合は、粒子の直径の平均値である。また、観察画像を公知の画像解析ソフト(「WinROOF」:三谷商事(株)、「A像くん(登録商標)」:旭化成エンジニアリング株式会社など)を用いて計測された測定値、画像型粒度分布測定装置(例として、FPIA-3000(マルバーン社))を用いて測定した測定値(N=1000以上)であってもよい。観察画像や画像型粒度分布測定装置から求めた平均粒径は、粒子の最大長の平均値とすることができる。なお、導電性接着剤を作製する際には、簡易的にレーザー回折・散乱法によって求めた粒度分布における頻度の累積が50%になる粒径(D50)、算術平均径(体積基準であることが好ましい)などのメーカー値を用いることができる。 The average particle diameter is, for example, N = 20 or more, preferably N = 50 or more, more preferably N = 200 or more in an observation image using an electron microscope such as a metallurgical microscope, an optical microscope, or a SEM (Scanning Electron Microscope). It is the average value of the major axis diameters of the measured particles, and in the case of spherical particles, the average value of the diameter of the particles. In addition, the observation image is measured using known image analysis software (“WinROOF”: Mitani Shoji Co., Ltd., “Azo-kun (registered trademark)”: Asahi Kasei Engineering Co., Ltd., etc.), image-type particle size distribution It may be a measured value (N=1000 or more) measured using a measuring device (for example, FPIA-3000 (Malvern)). The average particle size obtained from the observed image or the image-type particle size distribution analyzer can be the average value of the maximum length of the particles. In addition, when producing a conductive adhesive, the particle size (D50) at which the cumulative frequency in the particle size distribution obtained by a simple laser diffraction/scattering method becomes 50%, the arithmetic mean diameter is preferred) can be used.
 また、半田粒子の最大径は、平均粒径の200%以下、好ましくは平均粒径の150%以下、より好ましくは平均粒径の120%以下とすることができる。半田粒子の最大径が、上記範囲であることにより、半田粒子を電極間に挟持させ、半田粒子の溶融により電極間を接合させることができる。 Also, the maximum diameter of the solder particles can be 200% or less of the average particle diameter, preferably 150% or less of the average particle diameter, and more preferably 120% or less of the average particle diameter. When the maximum diameter of the solder particles is within the above range, the solder particles can be sandwiched between the electrodes, and the electrodes can be joined by melting the solder particles.
 また、複数の半田粒子が凝集した凝集体である場合、凝集体の大きさを前述の半田粒子の平均粒径や最大径と同等にしてもよく、半田粒子の平均粒径や最大径を上述の値より小さくしてもよい。個々の半田粒子の大きさは、前述した画像観察により求めることができる。 In addition, when a plurality of solder particles are agglomerates, the size of the agglomerate may be the same as the average particle diameter and maximum diameter of the solder particles described above, and the average particle diameter and maximum diameter of the solder particles may be the same as those described above. may be smaller than the value of The size of each solder particle can be determined by the image observation described above.
 半田粒子は、バインダー中に分散されていることが好ましく、半田粒子はランダム配置であっても、一定の規則で配置されていても良い。また、半田粒子は、複数個が凝集した凝集体であってもよい。 The solder particles are preferably dispersed in the binder, and the solder particles may be arranged randomly or according to a certain rule. Also, the solder particles may be aggregates in which a plurality of particles are aggregated.
 半田粒子の配合量の質量比範囲の下限は、好ましくは10wt%以上、より好ましくは20wt%以上、さらに好ましくは30wt%以上であり、質量比範囲の上限は、好ましくは60wt%以下、より好ましくは50wt%以下、さらに好ましくは40wt%以下である。また、半田粒子の配合量の体積比範囲の下限は、好ましくは2vol%以上、より好ましくは4vol%以上、さらに好ましくは6vol%以上であり、体積比範囲の上限は、好ましくは90wt%以下、より好ましくは85wt%以下、さらに好ましくは80wt%以下である。半田粒子の配合量は、前述の質量比範囲又は体積比範囲を満たすことにより、優れた導通性、放熱性、及び接着性を得ることができる。半田粒子がバインダー中に存在する場合には、体積比を用いてもよく、導電性接着剤を製造する場合(半田粒子がバインダーに存在する前)には、質量比を用いてもよい。質量比は、配合物の比重や配合比などから体積比に変換することができる。半田粒子の配合量が少なすぎると優れた導通性、放熱性、及び接着性が得られなくなり、配合量が多すぎると異方性が損なわれ易くなり、優れた導通信頼性が得られ難くなる。 The lower limit of the mass ratio range of the amount of solder particles is preferably 10 wt% or more, more preferably 20 wt% or more, and still more preferably 30 wt% or more, and the upper limit of the mass ratio range is preferably 60 wt% or less, more preferably. is 50 wt % or less, more preferably 40 wt % or less. The lower limit of the volume ratio range of the amount of solder particles is preferably 2 vol% or more, more preferably 4 vol% or more, and still more preferably 6 vol% or more, and the upper limit of the volume ratio range is preferably 90 wt% or less. It is more preferably 85 wt % or less, still more preferably 80 wt % or less. By satisfying the mass ratio range or volume ratio range described above, excellent conductivity, heat dissipation, and adhesiveness can be obtained. Volume ratios may be used when the solder particles are in the binder, and weight ratios may be used when making the conductive adhesive (before the solder particles are in the binder). The mass ratio can be converted into a volume ratio based on the specific gravity and compounding ratio of the compound. If the amount of the solder particles is too small, excellent conductivity, heat dissipation, and adhesion cannot be obtained, and if the amount is too large, anisotropy tends to be impaired, making it difficult to obtain excellent conduction reliability .
 [フラックス化合物]
 フラックス化合物は、電極表面の異物や酸化膜を取り除いたり、電極表面の酸化を防止したり、半田粒子表面の酸化膜を除去したり、溶融半田の表面張力を低下させたりする。フラックス化合物としては、例えば、レブリン酸、マレイン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸等のカルボン酸が挙げられる。これらの中でも、酸化膜の除去に優れるグルタル酸を用いることが好ましい。
[Flux compound]
The flux compound removes foreign substances and oxide films on the electrode surfaces, prevents oxidation of the electrode surfaces, removes oxide films on the surfaces of the solder particles, and lowers the surface tension of molten solder. Examples of flux compounds include carboxylic acids such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid. Among these, it is preferable to use glutaric acid, which is excellent in removing oxide films.
 [他の添加剤]
 個片化接着フィルムには、上述したバインダー、半田粒子及びフラックス化合物に加えて、本発明の効果を損なわない範囲で、従来、接着剤として使われている種々の添加剤を配合することができる。添加剤の粒子径は、半田粒子の平均粒子径よりも小さいことが望ましいが、電極間接合を阻害しない大きさであれば特に限定はない。
[Other additives]
In addition to the binder, solder particles, and flux compound described above, the singulated adhesive film can contain various additives conventionally used as adhesives within a range that does not impair the effects of the present invention. . The particle size of the additive is desirably smaller than the average particle size of the solder particles, but is not particularly limited as long as it does not interfere with the bonding between the electrodes.
 個片化接着フィルムは、例えば、絶縁性バインダー、半田粒子及びフラックス化合物を溶剤中で混合し、この混合物を、バーコーターにより、剥離処理フィルム上に所定厚みとなるように塗布した後、乾燥させて溶媒を揮発させ、ハーフカット加工することにより得ることができる。また、例えば、混合物をバーコーターにより剥離処理フィルム上に塗布した後、加圧により所定厚みとした後、ハーフカット加工してもよい。また、半田粒子の分散性を高くするために、溶媒を含んだ状態で高シェアをかけることが好ましい。例えば、公知のバッチ式遊星攪拌装置を用いることができる。また、導電性接着剤の残溶剤量は、好ましくは2%以下、より好ましくは1%以下である。 For the singulated adhesive film, for example, an insulating binder, solder particles, and a flux compound are mixed in a solvent, and the mixture is applied to a release treated film to a predetermined thickness using a bar coater, and then dried. It can be obtained by evaporating the solvent with a squeegee and performing a half-cut process. Alternatively, for example, the mixture may be coated on a release-treated film with a bar coater, and then pressurized to a predetermined thickness, and then half-cut. Further, in order to increase the dispersibility of the solder particles, it is preferable to apply a high shear while containing the solvent. For example, a known batch-type planetary stirrer can be used. Further, the residual solvent content of the conductive adhesive is preferably 2% or less, more preferably 1% or less.
 図16は、第1の実施の形態に係るフィルム構造体の製造方法の一例を示す図であり、図16(A)は、加工前のフィルム構造体を示す平面図であり、図16(B)は、加工後のフィルム構造体を示す平面図である。 16A and 16B are diagrams showing an example of a method for manufacturing a film structure according to the first embodiment, FIG. 16A is a plan view showing the film structure before processing, and FIG. ) is a plan view showing the film structure after processing.
 図16(A)及び図16(B)に示すように、第1の基材100上の接着フィルム101を所定の形状となるように加工する。例えば、ビク刃によるハーフカット加工を行い、第1の基材100はカットせず、接着フィルムのみをカットし、不必要なところは除外することにより、第1の基材100上に所定形状の第1の個片化接着フィルム102、103を得ることができる。 As shown in FIGS. 16(A) and 16(B), the adhesive film 101 on the first base material 100 is processed into a predetermined shape. For example, by half-cutting with a Viku blade, cutting only the adhesive film without cutting the first base material 100, and excluding unnecessary portions, a predetermined shape is formed on the first base material 100. First singulated adhesive films 102 and 103 can be obtained.
 また、図16(A)及び図16(B)に示すフィルム構造体の製造方法と同様にして、第2の基材上に第2の個片化接着フィルムを作製する。そして、複数の電子部品に対応する基材の所定位置に第1の個片化接着フィルム及び第2の個片化接着フィルムを配置する。個片化フィルムを配置する基材は、第1の基材100又は第2の基材を用いてもよく、新たな第3の基材を用いてもよい。第3の基材を用いる場合、マウンターを用いることができる。 Also, a second singulated adhesive film is produced on a second base material in the same manner as the method for producing the film structure shown in FIGS. 16(A) and 16(B). Then, the first singulated adhesive film and the second singulated adhesive film are arranged at predetermined positions of the substrate corresponding to the plurality of electronic components. The substrate on which the singulated film is arranged may be the first substrate 100 or the second substrate, or may be a new third substrate. When using the third substrate, a mounter can be used.
 <2-2.第2の実施の形態>
 第2の実施の形態に係るフィルム構造体は、基材と、複数の電子部品に対応する基材上の所定位置に配置された複数の個片化接着フィルムとを備え、複数の個片化接着フィルムの1以上が、半田粒子を含有する領域と半田粒子を含有しない領域とを有する。第2の実施の形態に係るフィルム構造体によれば、複数の電子部品に対応する基材の所定位置に個片化接着フィルムが配置されているため、基板上に一括で仮貼りすることができ、不要な箇所への半田濡れ広がりを防ぐことができる。
<2-2. Second Embodiment>
A film structure according to a second embodiment includes a base material and a plurality of singulated adhesive films arranged at predetermined positions on the base material corresponding to a plurality of electronic components. One or more of the adhesive films have areas that contain solder particles and areas that do not contain solder particles. According to the film structure according to the second embodiment, since the singulated adhesive films are arranged at predetermined positions of the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them onto the substrate. It is possible to prevent solder wetting and spreading to unnecessary locations.
 個片化接着フィルムは、第1の実施の形態同様、ハーフカット加工、スクリーン印刷、又はインクジェット印刷により基材上に形成することができる。また、第1の実施の形態と同じ構成については、ここでは説明を省略する。 The singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing, as in the first embodiment. Further, the description of the same configuration as that of the first embodiment is omitted here.
 また、第2の実施の形態に係るフィルム構造体の製造方法は、第1の基材上に半田粒子を含有しない個片化接着フィルムを設け、第2の基材上に半田粒子を含有する個片化接着フィルムを設け、第1の基材、第2の基材、又は第3の基材の所定位置に半田粒子を含有しない個片化接着フィルム及び半田粒子を含有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する個片化接着フィルムを配置する。 In addition, in the method for manufacturing a film structure according to the second embodiment, the singulated adhesive film containing no solder particles is provided on the first base material, and the solder particles are contained on the second base material. A singulated adhesive film is provided, and a singulated adhesive film containing no solder particles and a singulated adhesion containing solder particles are provided at predetermined positions of a first base material, a second base material, or a third base material. A singulated adhesive film having regions containing no solder particles and regions containing solder particles is placed in close proximity to the film.
 図17は、第2の実施の形態に係るフィルム構造体の製造方法の一例を示す図であり、図17(A)は、第1のフィルム構造体を示す平面図であり、図17(B)は、第2のフィルム構造体を示す平面図であり、図17(C)は、加工後のフィルム構造体を示す平面図である。 17A and 17B are diagrams showing an example of a method for manufacturing a film structure according to the second embodiment, FIG. 17A is a plan view showing the first film structure, and FIG. ) is a plan view showing the second film structure, and FIG. 17C is a plan view showing the film structure after processing.
 図17(A)に示す第1のフィルム構造体及び図17(B)に示す第2のフィルム構造体は、図16(A)及び図16(B)に示すフィルム構造体の製造方法と同様にして、第1の基材上110に第1の個片化接着フィルム111、112を作製し、第2の基材120上に第2の個片化接着フィルム121a、121b、122a、122bを作製する。 The first film structure shown in FIG. 17(A) and the second film structure shown in FIG. 17(B) are manufactured in the same manner as the film structure shown in FIGS. 16(A) and 16(B). Then, the first singulated adhesive films 111 and 112 are produced on the first substrate 110, and the second singulated adhesive films 121a, 121b, 122a and 122b are formed on the second substrate 120. make.
 第1の個片化接着フィルム111、112は、半田粒子を含有しておらず、電子部品の端子列部分に第2の個片化接着フィルム121a、121b、122a、122bが嵌合する嵌合部111a、111b、112a、112bを有する。嵌合部111a、111b、112a、112bは、例えば、ビク刃によるハーフカットにより抜き加工により形成することができる。 The first singulated adhesive films 111 and 112 do not contain solder particles, and the second singulated adhesive films 121a, 121b, 122a, and 122b are fitted to the terminal row portions of the electronic components. It has parts 111a, 111b, 112a and 112b. The fitting portions 111a, 111b, 112a, and 112b can be formed, for example, by punching by half-cutting with a sharp blade.
 図17(C)に示すように、複数の電子部品に対応する基材の所定位置に第1の個片化接着フィルム111、112と第2の個片化接着フィルム121a、121b、122a、122bとを近接させて配置する。これにより、半田粒子を含有しない領域と半田粒子を含有する領域とを有する複合化された個片化接着フィルムを作製することができる。個片化フィルムを配置する基材は、第1の基材110又は第2の基材120を用いてもよく、新たな第3の基材を用いてもよい。第3の基材を用いる場合、マウンターを用いることができる。 As shown in FIG. 17(C), first singulated adhesive films 111 and 112 and second singulated adhesive films 121a, 121b, 122a and 122b are placed on predetermined positions of a substrate corresponding to a plurality of electronic components. are placed in close proximity to each other. Thereby, a composite singulated adhesive film having a region containing no solder particles and a region containing solder particles can be produced. The substrate on which the singulated film is arranged may be the first substrate 110 or the second substrate 120, or may be a new third substrate. When using the third substrate, a mounter can be used.
 <2-3.第3の実施の形態>
 第3の実施の形態に係るフィルム構造体は、基材と、複数の電子部品に対応する基材上の所定位置に配置された複数の個片化接着フィルムとを備え、複数の個片化接着フィルムの1以上が、他の個片化接着フィルムの厚みと異なる。第3の実施の形態に係るフィルム構造体によれば、複数の電子部品に対応する基材の所定位置に個片化接着フィルムが配置されているため、基板上に一括で仮貼りすることができ、接合強度を向上させることができる。
<2-3. Third Embodiment>
A film structure according to a third embodiment includes a base material and a plurality of singulated adhesive films arranged at predetermined positions on the base material corresponding to a plurality of electronic components. One or more of the adhesive films differ in thickness from the other singulated adhesive films. According to the film structure according to the third embodiment, since the singulated adhesive films are arranged at predetermined positions on the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them on the substrate. It is possible to improve the bonding strength.
 個片化接着フィルムは、第1の実施の形態同様、ハーフカット加工、スクリーン印刷、又はインクジェット印刷により基材上に形成することができる。また、第1の実施の形態及び第2の実施の形態と同じ構成については、ここでは説明を省略する。 The singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing, as in the first embodiment. Further, descriptions of the same configurations as in the first embodiment and the second embodiment are omitted here.
 また、第3の実施の形態に係るフィルム構造体の製造方法は、第1の基材上に第1の厚みを有する個片化接着フィルムを設け、第2の基材上に第2の厚みを有する個片化接着フィルムを設け、複数の部品に対応する第1の基材、第2の基材、又は第3の基材の所定位置に第1の厚みを有する個片化接着フィルム及び第2の厚みを有する個片化接着フィルムを配置する。 Further, in the method for manufacturing a film structure according to the third embodiment, a singulated adhesive film having a first thickness is provided on a first base material, and a singulated adhesive film having a second thickness is provided on a second base material. and a singulated adhesive film having a first thickness at predetermined positions on a first base material, a second base material, or a third base material corresponding to a plurality of parts; and A singulated adhesive film having a second thickness is placed.
 図18は、第3の実施の形態に係るフィルム構造体の製造方法の一例を示す図であり、図18(A)は、第1のフィルム構造体を示す平面図であり、図18(B)は、第2のフィルム構造体を示す平面図であり、図18(C)は、加工後のフィルム構造体を示す平面図であり、図18(D)は、加工後のフィルム構造体を示す断面図である。 18A and 18B are diagrams showing an example of a method for manufacturing a film structure according to the third embodiment, FIG. 18A is a plan view showing the first film structure, and FIG. ) is a plan view showing a second film structure, FIG. 18(C) is a plan view showing the film structure after processing, and FIG. 18(D) is a plan view showing the film structure after processing. It is a sectional view showing.
 図18(A)に示す第1のフィルム構造体及び図18(B)に示す第2のフィルム構造体は、図16(A)及び図16(B)に示すフィルム構造体の製造方法と同様にして、第1の基材上130に第1の個片化接着フィルム131を作製し、第2の基材140上に第2の個片化接着フィルム141を作製する。第1の個片化接着フィルム131は、第1の厚みを有し、第2の個片化接着フィルム131は、第1の厚みと異なる第2の厚みを有する。 The first film structure shown in FIG. 18(A) and the second film structure shown in FIG. 18(B) are manufactured in the same manner as the film structure shown in FIGS. 16(A) and 16(B). Then, the first singulated adhesive film 131 is produced on the first substrate 130 , and the second singulated adhesive film 141 is produced on the second substrate 140 . The first singulated adhesive film 131 has a first thickness, and the second singulated adhesive film 131 has a second thickness different from the first thickness.
 図18(C)及び図18(D)に示すように、複数の電子部品に対応する基材の所定位置に第1の個片化接着フィルム131及び第2の個片化接着フィルム141を配置する。個片化フィルムを配置する基材は、第1の基材130又は第2の基材140を用いてもよく、新たな第3の基材を用いてもよい。第3の基材を用いる場合、マウンターを用いることができる。 As shown in FIGS. 18(C) and 18(D), a first singulated adhesive film 131 and a second singulated adhesive film 141 are arranged at predetermined positions on the substrate corresponding to the plurality of electronic components. do. The substrate on which the singulated film is arranged may be the first substrate 130 or the second substrate 140, or may be a new third substrate. When using the third substrate, a mounter can be used.
 <2-4.第4の実施の形態>
 第4の実施の形態に係るフィルム構造体は、基材と、複数の部品に対応する基材上の所定位置に設けられた、半田粒子を含有する領域と半田粒子を含有しない領域とを有する第1の厚みを有する個片化接着フィルムと、半田粒子を含有する領域と半田粒子を含有しない領域とを有する第2の厚みを有する個片化接着フィルムとを備える。第4の実施の形態に係るフィルム構造体によれば、複数の電子部品に対応する基材の所定位置に個片化接着フィルムが配置されているため、基板上に一括で仮貼りすることができ、不要な箇所への半田濡れ広がりを防ぐことができると共に、接合強度を向上させることができる。
<2-4. Fourth Embodiment>
A film structure according to a fourth embodiment has a substrate, and regions containing solder particles and regions not containing solder particles provided at predetermined positions on the substrate corresponding to a plurality of parts. A singulated adhesive film having a first thickness and a singulated adhesive film having a second thickness having regions containing solder particles and regions not containing solder particles are provided. According to the film structure according to the fourth embodiment, since the singulated adhesive films are arranged at predetermined positions on the base material corresponding to the plurality of electronic components, it is possible to collectively temporarily stick them on the substrate. It is possible to prevent solder wetting and spreading to unnecessary locations, and improve the bonding strength.
 個片化接着フィルムは、第1の実施の形態同様、ハーフカット加工、スクリーン印刷、又はインクジェット印刷により基材上に形成することができる。また、第1の実施の形態~第3の実施の形態と同じ構成については、ここでは説明を省略する。 The singulated adhesive film can be formed on the substrate by half-cutting, screen printing, or inkjet printing, as in the first embodiment. Further, descriptions of the same configurations as those of the first to third embodiments are omitted here.
 また、第4の実施の形態に係るフィルム構造体の製造方法は、第1の基材上に半田粒子を含有しない第1の厚みを有する個片化接着フィルムを設け、第2の基材上に半田粒子を含有しない第2の厚みを有する個片化接着フィルムを設け、第3の基材上に半田粒子を含有する第1の厚みを有する個片化接着フィルムを設け、第4の基材上に半田粒子を含有する第2の厚みを有する個片化接着フィルムを設け、第1の基材、第2の基材、第3の基材、第4の基材、又は第5の基材の所定位置に半田粒子を含有しない第1の厚みを有する個片化接着フィルム及び半田粒子を含有する第1の厚みを有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する第1の厚みを有する個片化接着フィルムを配置すると共に、半田粒子を含有しない第2の厚みを有する個片化接着フィルム及び半田粒子を含有する第2の厚みを有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する第2の厚みを有する個片化接着フィルムを配置する。 Further, in the method for manufacturing a film structure according to the fourth embodiment, a singulated adhesive film having a first thickness that does not contain solder particles is provided on a first base material, and A singulated adhesive film having a second thickness containing no solder particles is provided on the third substrate, a singulated adhesive film having a first thickness containing solder particles is provided on the third substrate, and a fourth substrate A singulated adhesive film having a second thickness containing solder particles is provided on the material, and the first substrate, the second substrate, the third substrate, the fourth substrate, or the fifth substrate. A singulated adhesive film having a first thickness that does not contain solder particles and a singulated adhesive film that contains solder particles and having a first thickness are brought close to each other at predetermined positions on a base material, and a region that does not contain solder particles is formed. a region containing solder particles; and a singulated adhesive film having a second thickness not containing solder particles and a second thickness containing solder particles. A singulated adhesive film having a thickness is brought into proximity, and a singulated adhesive film having a second thickness having a region containing no solder particles and a region containing solder particles is disposed.
 図19は、第4の実施の形態に係るフィルム構造体の製造方法の一例を示す図であり、図19(A)は、第1のフィルム構造体を示す平面図であり、図19(B)は、第2のフィルム構造体を示す平面図であり、図19(C)は、第3のフィルム構造体を示す平面図であり、図19(D)は、第4のフィルム構造体を示す平面図であり、図19(E)は、加工後のフィルム構造体を示す平面図であり、図19(F)は、加工後のフィルム構造体を示す断面図である。 19A and 19B are diagrams showing an example of a method for manufacturing a film structure according to the fourth embodiment, FIG. 19A is a plan view showing the first film structure, and FIG. ) is a plan view showing the second film structure, FIG. 19C is a plan view showing the third film structure, and FIG. 19D is a plan view showing the fourth film structure. 19(E) is a plan view showing the film structure after processing, and FIG. 19(F) is a cross-sectional view showing the film structure after processing.
 図19(A)~図19(D)にそれぞれ示す第1のフィルム構造体~第4のフィルム構造体は、図16(A)及び図16(B)に示すフィルム構造体の製造方法と同様にして、第1の基材150上に第1の個片化接着フィルム151を作製し、第2の基材160上に第2の個片化接着フィルム161を作製し、第3の基材170上に第3の個片化接着フィルム171a、171bを作製し、第4の基材180上に第4の個片化接着フィルム181a、181bを作製する。 The first to fourth film structures shown in FIGS. 19(A) to 19(D) are the same as the method for producing the film structures shown in FIGS. 16(A) and 16(B). Then, a first singulated adhesive film 151 is produced on a first substrate 150, a second singulated adhesive film 161 is produced on a second substrate 160, and a third substrate Third singulated adhesive films 171 a and 171 b are produced on 170 , and fourth singulated adhesive films 181 a and 181 b are produced on a fourth substrate 180 .
 第1の個片化接着フィルム151は、半田粒子を含有しておらず、電子部品の端子列部分に第3の個片化接着フィルム171a、171bが嵌合する嵌合部151a、151bを有する。第2の個片化接着フィルム161は、半田粒子を含有しておらず、電子部品の端子列部分に第4の個片化接着フィルム181a、181bが嵌合する嵌合部161a、161bを有する。また、第1の個片化接着フィルム151及び第3の個片化接着フィルム171は、第1の厚みを有し、第2の個片化接着フィルム161及び第4の個片化接着フィルム181は、第1の厚みより大きい第2の厚みを有する。 The first singulated adhesive film 151 does not contain solder particles, and has fitting portions 151a and 151b in which the third singulated adhesive films 171a and 171b are fitted to the terminal row portions of the electronic component. . The second singulated adhesive film 161 does not contain solder particles, and has fitting portions 161a and 161b in which the fourth singulated adhesive films 181a and 181b are fitted to the terminal row portions of the electronic component. . Also, the first singulated adhesive film 151 and the third singulated adhesive film 171 have a first thickness, and the second singulated adhesive film 161 and the fourth singulated adhesive film 181 have a first thickness. has a second thickness greater than the first thickness.
 図19(E)及び図19(F)に示すように、複数の電子部品に対応する基材の所定位置に第1の個片化接着フィルム151と第2の個片化接着フィルム171a、171bとを近接させて配置すると共に、第3の個片化接着フィルム161と第4の個片化接着フィルム181a、181bとを近接させて配置する。これにより、同一基材上に半田粒子を含有しない領域と半田粒子を含有する領域とを有する複合化された第1の厚みを有する個片化接着フィルム、及び複合化された第2の厚みを有する個片化接着フィルムとを作製することができる。個片化フィルムを配置する基材は、第1の基材150、第2の基材160、第3の基材170、第4の基材180のいずれか1つを用いてもよく、新たな第5の基材を用いてもよい。第5の基材を用いる場合、マウンターを用いることができる。 As shown in FIGS. 19(E) and 19(F), a first singulated adhesive film 151 and second singulated adhesive films 171a and 171b are placed on predetermined positions of a substrate corresponding to a plurality of electronic components. are placed close to each other, and the third singulated adhesive film 161 and the fourth singulated adhesive films 181a and 181b are placed close to each other. Thereby, a singulated adhesive film having a composite first thickness and a composite second thickness having a solder particle-free region and a solder particle-containing region on the same base material. It is possible to produce a singulated adhesive film having. Any one of the first base material 150, the second base material 160, the third base material 170, and the fourth base material 180 may be used as the base material on which the singulated film is arranged. A fifth base material may be used. When using the fifth substrate, a mounter can be used.
 また、フィルム構造体は、複数の個片化接着フィルムの1以上が、第1の厚みを有する領域と第2の厚みを有する領域とを有していてもよい。すなわち、第1の厚みを有する第1の個片化接着フィルム151の嵌合部151a、151bに、第2の厚みを第4の個片化接着フィルム181a、181bを嵌合させ第2の厚みを有する第2の個片化接着フィルム161の嵌合部161a、161bに、第1の厚みを有する第3の個片化接着フィルム171a、171bを嵌合させてもよい。このような構成の個片化接着フィルムによれば、基板の表面や電子部品の底面に凹部又は凸部がある場合、その凹部又は凸部に追従し、不要な箇所への半田濡れ広がりを防ぐことができると共に、接合強度を向上させることができる。 In addition, in the film structure, one or more of the plurality of singulated adhesive films may have a region having a first thickness and a region having a second thickness. That is, the fitting portions 151a and 151b of the first singulated adhesive film 151 having the first thickness are fitted with the fourth singulated adhesive films 181a and 181b to form the second thickness. The fitting portions 161a and 161b of the second singulated adhesive film 161 having the thickness may be fitted with the third singulated adhesive films 171a and 171b having the first thickness. According to the singulated adhesive film having such a configuration, when there is a concave or convex portion on the surface of the substrate or the bottom surface of the electronic component, the concave or convex portion follows the concave portion or convex portion to prevent the solder from spreading to unnecessary locations. In addition, the bonding strength can be improved.
 <3.実施例>
 以下、本技術を用いた実施例について説明する。実施例では、複数の個片化接着フィルムが設けられたフィルム構造体を作製し、複数の個片化接着フィルムを基板に一括で仮貼りし、電子部品(プラグコネクタ、レセプタクルコネクタ)を個片化接着フィルム上に搭載し、リフローによって電子部品を実装した。そして、電子部品実装後の導通性能及び接合強度について評価した。また、レセプタクルコネクタの実装では、レセプタクルコネクタの端子以外の配線への半田付着について評価した。なお、本技術は、これらの実施例に限定されるものではない。
<3. Example>
Examples using the present technology will be described below. In the examples, a film structure provided with a plurality of singulated adhesive films is prepared, the plurality of singulated adhesive films are temporarily attached to a substrate at once, and electronic components (plug connectors, receptacle connectors) are individually separated. It was mounted on an adhesive film, and electronic components were mounted by reflow. Then, the conduction performance and bonding strength after mounting the electronic component were evaluated. In mounting the receptacle connector, solder adhesion to wiring other than the terminals of the receptacle connector was evaluated. Note that the present technology is not limited to these examples.
 下記導電性接着フィルムA、導電性接着フィルムB、接着フィルムA、接着フィルムB、電子部品A、電子部品B、基板を準備した。また、下記リフロー条件にてリフローを行った。
 導電性接着フィルムA:
The following conductive adhesive film A, conductive adhesive film B, adhesive film A, adhesive film B, electronic component A, electronic component B, and substrate were prepared. Further, reflow was performed under the following reflow conditions.
Conductive adhesive film A:
 固形エポキシ樹脂(ビスフェノールF型エポキシ樹脂、三菱ケミカル(株)、JER4007P)を80質量部、液状エポキシ樹脂(ジシクロペンタジエン骨格エポキシ樹脂、ADEKA(株)、EP4088L)を20質量部、エポキシ樹脂硬化剤(イミダゾール系硬化剤、四国化成工業(株)、キュアゾール2P4MHZ-PW)を5質量部、フラックス化合物(グルタル酸(1,3-プロパンジカルボン酸)、東京化成(株))を3質量部、及び平均粒子径20μmの半田粒子(MCP-137、5N Plus inc、Sn-58Bi合金、固相線温度138℃)を300質量部配合し、50μmのベースPETフィルム(剥離処理加工有)上に厚み25μmの異方性を有する導電性接着フィルムAを作製した。 80 parts by mass of solid epoxy resin (bisphenol F type epoxy resin, Mitsubishi Chemical Corporation, JER4007P), 20 parts by mass of liquid epoxy resin (dicyclopentadiene skeleton epoxy resin, ADEKA Corporation, EP4088L), epoxy resin curing agent (Imidazole-based curing agent, Shikoku Kasei Kogyo Co., Ltd., Cursol 2P4MHZ-PW) 5 parts by mass, a flux compound (glutaric acid (1,3-propanedicarboxylic acid), Tokyo Kasei Co., Ltd.) 3 parts by mass, and 300 parts by mass of solder particles (MCP-137, 5N Plus inc, Sn-58Bi alloy, solidus temperature 138 ° C.) with an average particle diameter of 20 μm are blended, and a thickness of 25 μm is placed on a 50 μm base PET film (with peeling treatment). A conductive adhesive film A having the anisotropy of was produced.
 導電性接着フィルムB:
 厚みを35μmとした以外は、導電性接着フィルムAと同様にして導電性接着フィルムBを作製した。
 接着フィルムA:
 半田粒子を配合しなかった以外は、導電性接着フィルムAと同様にして厚み25μmの接着フィルムBを作製した。
 接着フィルムB:
 半田粒子を配合しなかった以外は、導電性接着フィルムBと同様にして厚み35μmの接着フィルムBを作製した。
 電子部品A:
 片側10ピン(両側20ピン)、0.35mmピッチプラグコネクタ、ヒロセ電機(株)、BM23FR0.6-20DP-0.35V(895)、実装寸法1.5mm×5.2mm
 電子部品B:
 片側10ピン(両側20ピン)、0.35mmピッチレセプタクルコネクタ、ヒロセ電機(株)、BM23FR0.6-20DS-0.35V(895)、実装寸法2.0mm×6.0mm
 基板:
 プラグコネクタ及びレセプタクルコネクタをそれぞれ1つ実装できるように対応させたリジッド基板(デクセリアルズ評価用ガラスエポキシ基板、Ni-Auメッキ)
 リフロー条件:
 150℃~260℃-100sec、ピークトップ260℃
Conductive adhesive film B:
A conductive adhesive film B was produced in the same manner as the conductive adhesive film A, except that the thickness was 35 μm.
Adhesive film A:
An adhesive film B having a thickness of 25 μm was produced in the same manner as the conductive adhesive film A, except that the solder particles were not blended.
Adhesive film B:
Adhesive film B with a thickness of 35 μm was produced in the same manner as conductive adhesive film B, except that solder particles were not blended.
Electronic component A:
10 pins on one side (20 pins on both sides), 0.35mm pitch plug connector, Hirose Electric Co., Ltd., BM23FR0.6-20DP-0.35V (895), mounting size 1.5mm x 5.2mm
Electronic component B:
10 pins on one side (20 pins on both sides), 0.35mm pitch receptacle connector, Hirose Electric Co., Ltd., BM23FR0.6-20DS-0.35V (895), mounting dimensions 2.0mm x 6.0mm
substrate:
Rigid board (Glass epoxy board for Dexerials evaluation, Ni-Au plating) that can be mounted with one plug connector and one receptacle connector.
Reflow conditions:
150℃~260℃-100sec, peak top 260℃
 [導通性能の評価]
 コネクタ実装後の接続構造体について、デジタルマルチメーターを用いて、4端子法にて電流1mAを流した時の抵抗値を測定し、抵抗値を以下の評価基準で評価した。電子部品実装後の接続構造体の抵抗値は、100mΩ未満であることが望まれる。
 A:抵抗値が100mΩ未満
 NG:抵抗値が100mΩ以上
[Evaluation of conduction performance]
With respect to the connection structure after connector mounting, the resistance value when a current of 1 mA was passed by the 4-terminal method was measured using a digital multimeter, and the resistance value was evaluated according to the following evaluation criteria. It is desired that the resistance value of the connection structure after electronic component mounting is less than 100 mΩ.
A: Resistance value less than 100 mΩ NG: Resistance value 100 mΩ or more
 [接合強度の評価]
 コネクタ実装後の接続構造体について、ダイシェアテスターを用いて、コネクタを動かすツールのせん断速度20μm/sec、温度25℃の条件でダイシェア強度を測定し、ダイシェア強度を以下の評価基準で評価した。コネクタ実装後の接続構造体のダイシェア強度は、3N以上であることが望まれる。
 A:ダイシェア強度が5N以上
 B:ダイシェア強度が3N以上、5N未満
 NG:ダイシェア強度が3N未満
[Evaluation of bonding strength]
The die shear strength of the connection structure after mounting the connector was measured using a die shear tester under conditions of a shear rate of 20 μm/sec and a temperature of 25° C. of a tool for moving the connector, and the die shear strength was evaluated according to the following evaluation criteria. It is desired that the die shear strength of the connection structure after mounting the connector is 3N or more.
A: Die shear strength is 5N or more B: Die shear strength is 3N or more and less than 5N NG: Die shear strength is less than 3N
 [半田付着の評価]
 図20は、レセプタクルコネクタの一例を示す平面図である。レセプタクルコネクタは、基板と接続するための第1のピン部191a及び第2のピン部191bと、プラグと嵌合する第1の嵌合部192a及び第2の嵌合部192bとを備え、第1のピン部191aと第1の嵌合部192aとが電気的に接続され、第2のピン部191bと第2の嵌合部192bとが電気的に接続されている。なお、本実施例において、このレセプタクルコネクタは、プラグコネクタを覆って嵌合するという仕様とした。このレセプタクルコネクタは、全体の外形が過度に大きくなるのを避け、嵌合後の外形を小さくするため、プラグコネクタに比べてレセプタクルコネクタの端子長さが短い仕様とした。端子長さが短くなるとこれに応じて半田接続される面積も小さくなるため、レセプタクルコネクタと基板との間における半田接続の強度が小さくなる傾向がある。このような理由から、レセプタクルコネクタが比較的小さい半田接合面積で十分な強度を得るために、導電接着フィルムの厚みをプラグコネクタの半田接続で使用される導電接着フィルムの厚みよりも大きくし、且つ導電接着フィルムの面積も広くとることで、十分な接着強度が得られる樹脂量になるよう調整した。なお、本技術のレセプタクルコネクタとプラグコネクタの関係は、上記実施例に限定されるものではない。
[Evaluation of solder adhesion]
FIG. 20 is a plan view showing an example of a receptacle connector. The receptacle connector includes a first pin portion 191a and a second pin portion 191b for connecting with the board, and a first fitting portion 192a and a second fitting portion 192b for fitting with the plug. One pin portion 191a and a first fitting portion 192a are electrically connected, and a second pin portion 191b and a second fitting portion 192b are electrically connected. In this embodiment, the receptacle connector is designed to cover and fit the plug connector. This receptacle connector is designed to have terminals shorter than those of a plug connector in order to avoid an excessively large overall outer shape and to reduce the outer shape after mating. As the length of the terminal becomes shorter, the area for solder connection also becomes smaller, so the strength of the solder connection between the receptacle connector and the substrate tends to decrease. For this reason, in order for the receptacle connector to obtain sufficient strength with a relatively small solder joint area, the thickness of the conductive adhesive film is made larger than the thickness of the conductive adhesive film used for soldering the plug connector, and By increasing the area of the conductive adhesive film, the amount of resin was adjusted so that sufficient adhesive strength could be obtained. Note that the relationship between the receptacle connector and the plug connector of the present technology is not limited to the above example.
 レセプタクルコネクタ実装後の接続構造体について、第1の嵌合部192a及び第2の嵌合部192bへの半田濡れ広がりによる半田付着を目視で確認し、以下の評価基準で評価した。レセプタクルコネクタ実装後の接続構造体の第1の嵌合部192a及び第2の嵌合部192bには、半田濡れ広がりがないことが望まれる。
 OK:第1の嵌合部及び第2の嵌合部に半田濡れ広がりがない。
 NG:第1の嵌合部又は第2の嵌合部に半田濡れ広がりがある。
Regarding the connection structure after the receptacle connector was mounted, solder adhesion due to solder wetting and spreading to the first fitting portion 192a and the second fitting portion 192b was visually confirmed and evaluated according to the following evaluation criteria. After the receptacle connector is mounted, the first fitting portion 192a and the second fitting portion 192b of the connection structure are desired to have no solder wetting and spreading.
OK: There is no solder wetting spread in the first fitting portion and the second fitting portion.
NG: There is solder wet spread in the first fitting portion or the second fitting portion.
 [フィルム構造体1]
 図21は、フィルム構造体1の寸法を示す平面図である。図16(A)及び図16(B)に示すフィルム構造体の製造方法と同様、厚み25μmの導電性接着フィルムAをビク刃によりハーフカット加工した。ベースPETフィルムはカットせず、導電性接着フィルムAのみカットし、不必要なところは除外し、図21に示す寸法のように個片化接着フィルムが配置されたフィルム構造体1を作製した。
[Film structure 1]
FIG. 21 is a plan view showing the dimensions of the film structure 1. FIG. A conductive adhesive film A having a thickness of 25 μm was half-cut with a Viku blade in the same manner as in the method of manufacturing the film structure shown in FIGS. 16A and 16B. The base PET film was not cut, only the conductive adhesive film A was cut, unnecessary portions were removed, and a film structure 1 in which the singulated adhesive films were arranged as shown in FIG. 21 was produced.
 [フィルム構造体2]
 図22は、フィルム構造体2の寸法を示す平面図である。図17(A)に示すように、厚み25μmの接着フィルムAを用い、半田粒子を含有していない半田粒子非含有個片化接着フィルムを作製するとともに、図17(B)に示すように、厚み25μmの導電性接着フィルムAを用いて、半田粒子を含有した半田粒子含有個片化接着フィルムを作製した。そして、半田粒子非含有個片化接着フィルムと半田粒子含有個片化接着フィルムとを貼り合わせることにより、電子部品の端子列部分に半田粒子含有個片化接着フィルムを嵌合させ、図22に示す寸法のように半田粒子を含有していない箇所と半田粒子を含有している箇所が存在する個片化接着フィルムが配置されたフィルム構造体2を作製した。
[Film structure 2]
FIG. 22 is a plan view showing the dimensions of the film structure 2. FIG. As shown in FIG. 17(A), an adhesive film A having a thickness of 25 μm was used to prepare a singulated adhesive film containing no solder particles, and as shown in FIG. 17(B), Using the conductive adhesive film A having a thickness of 25 μm, a solder particle-containing singulated adhesive film containing solder particles was produced. Then, by bonding the singulated adhesive film containing no solder particles and the singulated adhesive film containing solder particles, the singulated adhesive film containing solder particles is fitted to the terminal row portion of the electronic component, and the solder particle containing singulated adhesive film is shown in FIG. A film structure 2 was produced, in which the singulated adhesive film was arranged so that there were portions containing no solder particles and portions containing solder particles as shown in the dimensions.
 [フィルム構造体3]
 図23は、フィルム構造体3の寸法を示す平面図である。図18(A)に示すように、厚み25μmの導電性接着フィルムAを用い、厚み25μmの個片化接着フィルムを作製するとともに、図18(B)に示すように、厚み35μmの導電性接着フィルムBを用いて、厚み35μmの個片化接着フィルムを作製した。そして、図18(C)及び図18(D)に示すように、厚み25μmの個片化接着フィルムと厚み35μmの個片化接着フィルムとを貼り合わせることにより、図23に示す寸法のように厚み25μmの個片化接着フィルムと厚み35μmの個片化接着フィルムとが配置されたフィルム構造体3を作製した。
[Film structure 3]
FIG. 23 is a plan view showing the dimensions of the film structure 3. FIG. As shown in FIG. 18(A), a 25 μm-thick conductive adhesive film A is used to prepare a 25 μm-thick individualized adhesive film, and as shown in FIG. 18(B), a 35 μm-thick conductive adhesive Using the film B, a singulated adhesive film with a thickness of 35 μm was produced. Then, as shown in FIGS. 18(C) and 18(D), by laminating a singulated adhesive film with a thickness of 25 μm and a singulated adhesive film with a thickness of 35 μm, the dimensions shown in FIG. 23 are achieved. A film structure 3 was produced in which a singulated adhesive film with a thickness of 25 μm and a singulated adhesive film with a thickness of 35 μm were arranged.
 [フィルム構造体4]
 図24は、フィルム構造体4の寸法を示す平面図である。図19(A)に示すように、厚み25μmの接着フィルムAを用い、半田粒子を含有していない半田粒子非含有個片化接着フィルムを作製するとともに、図19(C)に示すように、厚み25μmの導電性接着フィルムAを用いて、半田粒子を含有した半田粒子含有個片化接着フィルムを作製した。また、図19(B)に示すように、厚み35μmの接着フィルムBを用い、半田粒子を含有していない半田粒子非含有個片化接着フィルムを作製するとともに、図19(D)に示すように、厚み35μmの導電性接着フィルムAを用いて、半田粒子を含有した半田粒子含有個片化接着フィルムを作製した。
[Film structure 4]
FIG. 24 is a plan view showing the dimensions of the film structure 4. FIG. As shown in FIG. 19(A), an adhesive film A having a thickness of 25 μm was used to prepare a singulated adhesive film containing no solder particles, and as shown in FIG. 19(C), Using the conductive adhesive film A having a thickness of 25 μm, a solder particle-containing singulated adhesive film containing solder particles was produced. Further, as shown in FIG. 19(B), an adhesive film B having a thickness of 35 μm was used to prepare a solder particle-free singulated adhesive film containing no solder particles, and as shown in FIG. Then, using the conductive adhesive film A having a thickness of 35 μm, a solder particle-containing singulated adhesive film containing solder particles was produced.
 そして、図19(E)及び図19(F)に示すように、半田粒子非含有個片化接着フィルムと半田粒子含有個片化接着フィルムとを貼り合わせることにより、電子部品の端子列部分に半田粒子含有個片化接着フィルムを嵌合させ、図24に示す寸法のように半田粒子を含有していない箇所と半田粒子を含有している箇所が存在する厚み25μmの個片化接着フィルムと厚み35μmの個片化接着フィルムとが配置されたフィルム構造体4を作製した。 Then, as shown in FIGS. 19(E) and 19(F), by laminating the singulated adhesive film not containing solder particles and the singulated adhesive film containing solder particles, the terminal row portion of the electronic component can be obtained. A singulated adhesive film with a thickness of 25 μm, in which the solder particle-containing singulated adhesive film is fitted and where there are portions that do not contain solder particles and portions that contain solder particles as shown in FIG. A film structure 4 in which a 35 μm-thick singulated adhesive film was arranged was produced.
 [フィルム構造体5]
 図24に示すフィルム構造体を次の方法により作製し、フィルム構造体5とした。図19(A)に示す厚み25μmの半田粒子非含有個片化接着フィルム、図19(C)に示す厚み25μmの半田粒子を含有した半田粒子含有個片化接着フィルム、図19(B)に示す厚み35μmの半田粒子非含有個片化接着フィルム、及び図19(D)に示す厚み35μmの半田粒子を含有した半田粒子含有個片化接着フィルムを、接着フィルムAをPMA(プロピレングリコールモノメチルエーテルアセテート)で溶解させたペーストを用いたスクリーン版印刷により作製した。スクリーン版を用いて所定の形状にペーストを印刷後、80℃、5分の条件のオーブン乾燥によって個片化接着フィルムを作製した。また、異なる厚みを有するスクリーン版を用いて所定厚みの個片化接着フィルムを作製した。
[Film structure 5]
A film structure 5 shown in FIG. 24 was produced by the following method. A solder particle-free singulated adhesive film with a thickness of 25 μm shown in FIG. 19 (A), a solder particle-containing singulated adhesive film containing solder particles with a thickness of 25 μm shown in FIG. The solder particle-free singulated adhesive film with a thickness of 35 μm shown and the solder particle-containing singulated adhesive film with a thickness of 35 μm containing solder particles shown in FIG. It was produced by screen printing using a paste dissolved in acetate). After printing the paste in a predetermined shape using a screen plate, the singulated adhesive film was produced by oven drying at 80° C. for 5 minutes. Separated adhesive films having a predetermined thickness were produced using screen plates having different thicknesses.
 そして、図19(E)及び図19(F)に示すように、半田粒子非含有個片化接着フィルムと半田粒子含有個片化接着フィルムとを貼り合わせることにより、電子部品の端子列部分に半田粒子含有個片化接着フィルムを嵌合させ、図24に示す寸法のように半田粒子を含有していない箇所と半田粒子を含有している箇所が存在する厚み25μmの個片化接着フィルムと厚み35μmの個片化接着フィルムとが配置されたフィルム構造体5を作製した。 Then, as shown in FIGS. 19(E) and 19(F), by laminating the singulated adhesive film not containing solder particles and the singulated adhesive film containing solder particles, the terminal row portion of the electronic component can be obtained. A singulated adhesive film with a thickness of 25 μm, in which the solder particle-containing singulated adhesive film is fitted and where there are portions that do not contain solder particles and portions that contain solder particles as shown in FIG. A film structure 5 in which a 35 μm-thick individualized adhesive film was arranged was produced.
 [フィルム構造体6]
 図24に示すフィルム構造体を下記方法により作製し、フィルム構造体6とした図19(E)及び図19(F)に示すように、接着フィルムAをPMAで溶解させたペーストを用いたノズルジェット印刷により作製した。また、異なるノズル径を有するノズルを用い、塗布量をコントロールし、図24に示す寸法のように半田粒子を含有していない箇所と半田粒子を含有している箇所が存在する厚み25μmの個片化接着フィルムと厚み35μmの個片化接着フィルムとが配置されたフィルム構造体6を作製した。
[Film structure 6]
The film structure shown in FIG. 24 was produced by the following method to obtain film structure 6. As shown in FIGS. It was made by jet printing. In addition, nozzles with different nozzle diameters were used to control the coating amount, and individual pieces with a thickness of 25 μm where there were portions containing no solder particles and portions containing solder particles as shown in the dimensions shown in FIG. A film structure 6 was prepared in which a singulated adhesive film and a singulated adhesive film having a thickness of 35 μm were arranged.
 表1に、フィルム構造体1~6の導通性能、接合強度、及び半田付着の評価結果を示す。 Table 1 shows the evaluation results of conduction performance, bonding strength, and solder adhesion of film structures 1 to 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、フィルム構造体1~6は、複数の個片化接着フィルムを基板に一括で仮貼りすることができ、プロセスタクトの短縮化が可能であることが分かった。フィルム構造体1を用いた場合及びフィルム構造体2を用いた場合の比較から、半田粒子を含有していない箇所と半田粒子を含有している箇所が存在する個片化接着フィルムを配置することにより、不要な箇所への半田濡れ広がりを防ぐことができることが分かった。フィルム構造体1を用いた場合及びフィルム構造体3を用いた場合の比較から、レセプタクルコネクタに配置する個片化接着フィルムの厚みをプラグコネクタに配置する個片化接着フィルムの厚みよりも大きくすることにより、レセプタクルコネクタの接合強度を向上させることができることが分かった。 As shown in Table 1, it was found that the film structures 1 to 6 can temporarily attach a plurality of singulated adhesive films to the substrate at once, and can shorten the process takt time. From the comparison between the case of using the film structure 1 and the case of using the film structure 2, it is possible to dispose the singulated adhesive film in which there are portions containing no solder particles and portions containing solder particles. Therefore, it was found that solder wetting and spreading to unnecessary locations can be prevented. From a comparison between the case of using the film structure 1 and the case of using the film structure 3, the thickness of the singulated adhesive film arranged on the receptacle connector is made larger than the thickness of the singulated adhesive film arranged on the plug connector. Therefore, it was found that the joint strength of the receptacle connector can be improved.
 また、フィルム構造体1を用いた場合、フィルム構造体2を用いた場合、フィルム構造体3を用いた場合及びフィルム構造体4を用いた場合の比較から、半田粒子を含有していない箇所と半田粒子を含有している箇所が存在する個片化接着フィルムを配置すると共に、レセプタクルコネクタに配置する個片化接着フィルムの厚みをプラグコネクタに配置する個片化接着フィルムの厚みよりも大きくすることにより、プラグコネクタ及びレセプタクルコネクタの優れた接合強度及び半田接合を得るできることが分かった。 In addition, when the film structure 1 was used, when the film structure 2 was used, when the film structure 3 was used, and when the film structure 4 was used, a comparison was made between a portion containing no solder particles and a portion where the film structure 4 was used. A singulated adhesive film having a portion containing solder particles is arranged, and the thickness of the singulated adhesive film arranged on the receptacle connector is made larger than the thickness of the singulated adhesive film arranged on the plug connector. Therefore, it was found that excellent joint strength and solder joint of the plug connector and the receptacle connector can be obtained.
 また、フィルム構造体4を用いた場合、フィルム構造体5を用いた場合及びフィルム構造体6を用いた場合の比較から、ビク刃加工、スクリーン印刷加工、ノズル印刷加工のいずれの加工方法を用いても、半田粒子を含有していない箇所と半田粒子を含有している箇所が存在する個片化接着フィルムを配置することができると共に、レセプタクルコネクタに配置する個片化接着フィルムの厚みをプラグコネクタに配置する個片化接着フィルムの厚みよりも大きくすることができ、プラグコネクタ及びレセプタクルコネクタの優れた接合強度及び半田接合を得るできることが分かった。 In addition, from the comparison between the case of using the film structure 4, the case of using the film structure 5, and the case of using the film structure 6, any processing method of Viku blade processing, screen printing processing, or nozzle printing processing was used. However, it is possible to arrange the singulated adhesive film in which there are portions that do not contain solder particles and portions that contain solder particles, and the thickness of the singulated adhesive film to be arranged in the receptacle connector can be set as a plug. It was found that the thickness can be made larger than the thickness of the singulated adhesive film arranged on the connector, and excellent joint strength and solder joint of the plug connector and the receptacle connector can be obtained.
 [マウンターによる電子部品への個片化接着フィルムの貼着と電子部品の搭載]
 マウンターの吸着ヘッドでプラグコネクタを掴んだ後、プラグコネクタに対応する導電性接着フィルムAからなる個片化接着フィルム上に落とし、それを引き上げることにより、ベースPETフィルムから個片化接着フィルムを剥離させることができ、そのまま直接、基板へ搭載することができた。レセプタクルコネクタについても同様であった。
[Attachment of Singulated Adhesive Film to Electronic Components by Mounter and Mounting of Electronic Components]
After grasping the plug connector with the suction head of the mounter, drop it on the singulated adhesive film made of the conductive adhesive film A corresponding to the plug connector, and pull it up to peel the singulated adhesive film from the base PET film. It was possible to directly mount it on the board as it was. The same was true for receptacle connectors.
 [マウンターによる個片化接着フィルムの搭載]
 マウンターによる個片化接着フィルムの搭載を模擬して、図15に示すような吸着穴のついたヘッドツールを作製した。図15に示す吸着ヘッドにおいて、エラストマー層91として厚み200μmのシリコーンゴムを用い、吸着面の縦幅x1を10mm及び横幅y1を10mm、吸着穴92の形成領域の縦幅x2を2.5mm及び横幅y2を6mm、吸着穴92の直径を0.35mmとした。この吸着ヘッドを備えるマウンターを用いてプラグコネクタに対応する導電性接着フィルムAからなる個片化接着フィルムの基板へのマウントを検討したところ、個片化接着フィルムを基板に搭載することができた。レセプタクルコネクタに対応する個片化接着フィルムについても同様であった。
[Mounting of singulated adhesive film by mounter]
A head tool with suction holes as shown in FIG. 15 was produced to simulate mounting of the singulated adhesive film by a mounter. In the suction head shown in FIG. 15, silicone rubber having a thickness of 200 μm is used as the elastomer layer 91, the vertical width x1 of the suction surface is 10 mm and the horizontal width y1 is 10 mm, and the vertical width x2 of the forming region of the suction holes 92 is 2.5 mm and the horizontal width. y2 is 6 mm, and the diameter of the suction hole 92 is 0.35 mm. When a mounter equipped with this suction head was used to study the mounting of the singulated adhesive film made of the conductive adhesive film A corresponding to the plug connector on the substrate, the singulated adhesive film could be mounted on the substrate. . The same applies to the singulated adhesive film corresponding to the receptacle connector.
 10 基板、11 第1のコネクタ実装領域、12 第2のコネクタ実装領域12、13 第1のチップ実装領域、14 第2のチップ実装領域、15 第3のチップ実装領域、16 第4のチップ実装領域、17 第5のチップ実装領域、18 第6のチップ実装領域、21 第1の個片化接着フィルム、22 第1の個片化接着フィルム、23 第3の個片化接着フィルム、24 第4の個片化接着フィルム、25 第5の個片化接着フィルム、26 第6の個片化接着フィルム、27 第7の個片化接着フィルム、28 第8の個片化接着フィルム、基材 30、30A 第1の個片化接着フィルム、30B 第2の個片化接着フィルム、30C 第3の個片化接着フィルム、30D 第4の個片化接着フィルム、31a、31b 含有部、31c 非含有部、32a、32b 含有部、32c 非含有部、33 第1の含有部、34 第2の含有部、35 第3の含有部、36 第4の含有部、37 第1の含有部、38 第2の含有部、40 基板、41 個片化接着フィルム実装領域、42 半田ペースト実装領域42、43 第1の電極、44 第2の電極、45 第3の電極、46 第4の電極、51 個片化接着フィルム、60 メタルマスク、61 スキージ、63 半田ペースト、63 第1の半田ペースト層、64 第2の半田ペースト層、65 第3の半田ペースト層、66 第4の半田ペースト層、71 第1のチップ部品、72 第2のチップ部品、80 吸着ヘッド、81 電子部品、82 個片化接着フィルム、83 基材、84 基板、90 吸着ヘッド、91 エラストマー層、92 吸着穴、100 第1の基材、101 接着フィルム、102,103 第1の個片化接着フィルム、110 第1の基材、111,112 第1の個片化接着フィルム、111a,111b,112a,112b 嵌合部、120 第2の基材、121a,121b,122a,122b 第2の個片化接着フィルム、130 第1の基材、131 第1の個片化接着フィルム、140 第2の基材、141 第2の個片化接着フィルム、150 第1の基材、151 第1の個片化接着フィルム、151a,151b 嵌合部、160 第2の基材、161 第2の個片化接着フィルム、161a,161b 嵌合部、170 第3の基材、171a、171b 第3の個片化接着フィルム、180 第4の基材、181a、181b 第4の個片化接着フィルム
 
10 substrate 11 first connector mounting area 12 second connector mounting area 12 13 first chip mounting area 14 second chip mounting area 15 third chip mounting area 16 fourth chip mounting region 17 fifth chip mounting region 18 sixth chip mounting region 21 first singulated adhesive film 22 first singulated adhesive film 23 third singulated adhesive film 24 second 4 Singulated Adhesive Film 25 Fifth Singulated Adhesive Film 26 Sixth Singulated Adhesive Film 27 Seventh Singulated Adhesive Film 28 Eighth Singulated Adhesive Film Substrate 30, 30A first singulated adhesive film, 30B second singulated adhesive film, 30C third singulated adhesive film, 30D fourth singulated adhesive film, 31a, 31b containing part, 31c non containing portion 32a, 32b containing portion 32c non-containing portion 33 first containing portion 34 second containing portion 35 third containing portion 36 fourth containing portion 37 first containing portion 38 second containing portion 40 substrate 41 singulated adhesive film mounting area 42 solder paste mounting area 42 43 first electrode 44 second electrode 45 third electrode 46 fourth electrode 51 Singulated adhesive film 60 Metal mask 61 Squeegee 63 Solder paste 63 First solder paste layer 64 Second solder paste layer 65 Third solder paste layer 66 Fourth solder paste layer 71 First chip component 72 Second chip component 80 Suction head 81 Electronic component 82 Singulated adhesive film 83 Base material 84 Substrate 90 Suction head 91 Elastomer layer 92 Suction hole 100 First 101 adhesive film 102, 103 first singulated adhesive film 110 first substrate 111, 112 first singulated adhesive film 111a, 111b, 112a, 112b fitting portion, 120 second substrate 121a, 121b, 122a, 122b second singulated adhesive film 130 first substrate 131 first singulated adhesive film 140 second substrate 141 second 150 first base material 151 first singulated adhesive film 151a, 151b fitting portion 160 second base material 161 second singulated adhesive film 161a, 161b fitting part 170 third base material 171a, 171b third singulated adhesive film 180 fourth base material 181a, 181b fourth singulated adhesive film

Claims (19)

  1.  複数の電子部品が実装される基板を準備する工程と、
     前記複数の電子部品が実装される基板に対応する基材上の所定位置に半田粒子を含有する個片化接着フィルムを含む複数の個片化接着フィルムが配置されたフィルム構造体を準備する工程と、
     前記複数の個片化接着フィルムを前記基板の所定箇所に一括で仮貼りする工程と、
     前記個片化接着フィルム上に電子部品を載置する工程と、
     前記個片化接着フィルム及び前記電子部品が設けられた基板をリフローする工程と
     を有する接続構造体の製造方法。
    preparing a board on which a plurality of electronic components are mounted;
    A step of preparing a film structure in which a plurality of singulated adhesive films, including a singulated adhesive film containing solder particles, are arranged at predetermined positions on a base material corresponding to the substrate on which the plurality of electronic components are mounted. and,
    a step of collectively temporarily attaching the plurality of singulated adhesive films to predetermined locations of the substrate;
    placing electronic components on the singulated adhesive film;
    and reflowing the substrate on which the singulated adhesive film and the electronic component are provided.
  2.  複数の電子部品が実装される基板を準備する工程と、
     前記複数の電子部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する工程と、
     マウンターを用いて電子部品を当該電子部品に対応する個片化接着フィルムに押圧し、前記電子部品に前記個片化接着フィルムを貼着させ、前記個片化接着フィルムが貼着された電子部品を搭載する工程と、
     前記個片化接着フィルム及び前記電子部品が設けられた基板をリフローする工程と
     を有する接続構造体の製造方法。
    preparing a board on which a plurality of electronic components are mounted;
    preparing a film structure in which singulated adhesive films corresponding to the plurality of electronic components are provided on a substrate;
    Using a mounter, an electronic component is pressed against a singulated adhesive film corresponding to the electronic component, the singulated adhesive film is attached to the electronic component, and the electronic component to which the singulated adhesive film is attached a step of mounting the
    and reflowing the substrate on which the singulated adhesive film and the electronic component are provided.
  3.  複数の電子部品が実装される基板を準備する工程と、
     前記複数の電子部品に対応する個片化接着フィルムが基材上に設けられたフィルム構造体を準備する工程と、
     マウンターを用いて前記個片化接着フィルムを前記基板の所定箇所に搭載する工程と、
     前記個片化接着フィルム上に電子部品を載置する工程と、
     前記個片化接着フィルム及び前記電子部品が設けられた基板をリフローする工程と
     を有する接続構造体の製造方法。
    preparing a board on which a plurality of electronic components are mounted;
    preparing a film structure in which singulated adhesive films corresponding to the plurality of electronic components are provided on a substrate;
    a step of mounting the singulated adhesive film on a predetermined location of the substrate using a mounter;
    placing electronic components on the singulated adhesive film;
    and reflowing the substrate on which the singulated adhesive film and the electronic component are provided.
  4.  前記仮貼りする工程後に、前記基板の所定箇所に半田ペーストを設ける工程をさらに有し、
     前記部品を載置する工程では、前記半田ペースト上に部品を載置する請求項1記載の接続構造体の製造方法。
    After the step of temporarily attaching, the step of applying a solder paste to a predetermined portion of the substrate is further provided,
    2. The method of manufacturing a connection structure according to claim 1, wherein in the step of placing the component, the component is placed on the solder paste.
  5.  前記個片化接着フィルムが貼着された電子部品を搭載する工程前に、前記基板の所定箇所に半田ペーストを設ける工程と、
     前記半田ペースト上に電子部品を載置する工程と
     をさらに有する請求項2記載の接続構造体の製造方法。
    a step of applying solder paste to a predetermined portion of the substrate before the step of mounting the electronic component to which the singulated adhesive film is adhered;
    3. The method of manufacturing a connection structure according to claim 2, further comprising the step of placing an electronic component on said solder paste.
  6.  前記個片化接着フィルムを搭載する工程前に、前記基板の所定箇所に半田ペーストを設ける工程をさらに有し、
     前記部品を載置する工程では、前記半田ペースト上に部品を載置する請求項3記載の接続構造体の製造方法。
    Before the step of mounting the singulated adhesive film, the step of applying a solder paste to a predetermined portion of the substrate;
    4. The method of manufacturing a connection structure according to claim 3, wherein in the step of placing the component, the component is placed on the solder paste.
  7.  前記個片化接着フィルムの1以上が、半田粒子を含有する請求項1乃至6のいずれか1項に記載の接続構造体の製造方法。 The method for manufacturing a connected structure according to any one of claims 1 to 6, wherein one or more of the singulated adhesive films contain solder particles.
  8.  前記個片化接着フィルムの1以上が、半田粒子を含有する領域と半田粒子を含有しない領域とを有する請求項1乃至7のいずれか1項に記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to any one of claims 1 to 7, wherein at least one of the singulated adhesive films has a region containing solder particles and a region not containing solder particles.
  9.  前記個片化接着フィルムの1以上が、他の個片化接着フィルムの厚みと異なる請求項1乃至8のいずれか1項に記載の接続構造体の製造方法。 The method for manufacturing a connected structure according to any one of claims 1 to 8, wherein one or more of the singulated adhesive films has a thickness different from that of the other singulated adhesive films.
  10.  前記個片化接着フィルムが、ハーフカット加工、スクリーン印刷、又はインクジェット印刷により基材上に形成される請求項1乃至9のいずれか1項に記載の接続構造体の製造方法。 The method for manufacturing a connected structure according to any one of claims 1 to 9, wherein the singulated adhesive film is formed on the substrate by half-cutting, screen printing, or inkjet printing.
  11.  基材と、
     複数の部品に対応する前記基材上の所定位置に設けられた複数の個片化接着フィルムとを備え、
     前記複数の個片化接着フィルムの1以上が、半田粒子を含有するフィルム構造体。
    a substrate;
    A plurality of singulated adhesive films provided at predetermined positions on the base material corresponding to a plurality of parts,
    A film structure in which at least one of the plurality of singulated adhesive films contains solder particles.
  12.  基材と、
     複数の部品に対応する前記基材上の所定位置に設けられた複数の個片化接着フィルムとを備え、
     前記複数の個片化接着フィルムの1以上が、半田粒子を含有する領域と半田粒子を含有しない領域とを有するフィルム構造体。
    a substrate;
    A plurality of singulated adhesive films provided at predetermined positions on the base material corresponding to a plurality of parts,
    A film structure in which at least one of the plurality of singulated adhesive films has a region containing solder particles and a region not containing solder particles.
  13.  基材と、
     複数の部品に対応する前記基材上の所定位置に設けられた複数の個片化接着フィルムとを備え、
     前記複数の個片化接着フィルムの1以上が、他の個片化接着フィルムの厚みと異なるフィルム構造体。
    a substrate;
    A plurality of singulated adhesive films provided at predetermined positions on the base material corresponding to a plurality of parts,
    A film structure in which at least one of the plurality of singulated adhesive films has a thickness different from that of the other singulated adhesive films.
  14.  基材と、
     複数の部品に対応する前記基材上の所定位置に設けられた、半田粒子を含有する領域と半田粒子を含有しない領域とを有する第1の厚みを有する個片化接着フィルムと、半田粒子を含有する領域と半田粒子を含有しない領域とを有する第2の厚みを有する個片化接着フィルムと
     を備えるフィルム構造体。
    a substrate;
    a singulated adhesive film having a first thickness and having a region containing solder particles and a region not containing solder particles, provided at predetermined positions on the base material corresponding to a plurality of parts; A singulated adhesive film having a second thickness having regions containing solder particles and regions not containing solder particles.
  15.  前記個片化接着フィルムが、ハーフカット加工、スクリーン印刷、又はインクジェット印刷により基材上に形成される請求項11乃至15のいずれか1項に記載のフィルム構造体。 The film structure according to any one of claims 11 to 15, wherein the singulated adhesive film is formed on the substrate by half-cutting, screen printing, or inkjet printing.
  16.  第1の基材上に第1の個片化接着フィルムを設け、
     第2の基材上に第2の個片化接着フィルムを設け、
     複数の電子部品に対応する前記第1の基材、前記第2の基材、又は第3の基材の所定位置に前記第1の個片化接着フィルム及び前記第2の個片化接着フィルムを配置し、
     前記第1の個片化接着フィルム及び前記第2の個片化接着フィルムの1以上が、半田粒子を含有するフィルム構造体の製造方法。
    providing a first singulated adhesive film on the first substrate;
    providing a second singulated adhesive film on the second substrate;
    The first singulated adhesive film and the second singulated adhesive film are placed at predetermined positions on the first substrate, the second substrate, or the third substrate corresponding to a plurality of electronic components. and
    A method for producing a film structure, wherein at least one of the first singulated adhesive film and the second singulated adhesive film contains solder particles.
  17.  第1の基材上に半田粒子を含有しない個片化接着フィルムを設け、
     第2の基材上に半田粒子を含有する個片化接着フィルムを設け、
     前記第1の基材、前記第2の基材、又は第3の基材の所定位置に前記半田粒子を含有しない個片化接着フィルム及び前記半田粒子を含有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する個片化接着フィルムを配置するフィルム構造体の製造方法。
    A singulated adhesive film containing no solder particles is provided on the first base material,
    providing a singulated adhesive film containing solder particles on a second substrate;
    The singulated adhesive film not containing the solder particles and the singulated adhesive film containing the solder particles are brought close to predetermined positions of the first base material, the second base material, or the third base material. A method for producing a film structure in which a singulated adhesive film having regions containing no solder particles and regions containing solder particles is arranged.
  18.  第1の基材上に第1の厚みを有する個片化接着フィルムを設け、
     第2の基材上に第2の厚みを有する個片化接着フィルムを設け、
     複数の部品に対応する前記第1の基材、前記第2の基材、又は第3の基材の所定位置に前記第1の厚みを有する個片化接着フィルム及び前記第2の厚みを有する個片化接着フィルムを配置するフィルム構造体の製造方法。
    A singulated adhesive film having a first thickness is provided on the first base material,
    providing a singulated adhesive film having a second thickness on a second substrate;
    The singulated adhesive film having the first thickness and the second thickness are provided at predetermined positions on the first base material, the second base material, or the third base material corresponding to a plurality of parts. A method for manufacturing a film structure in which singulated adhesive films are arranged.
  19.  第1の基材上に半田粒子を含有しない第1の厚みを有する個片化接着フィルムを設け、
     第2の基材上に半田粒子を含有しない第2の厚みを有する個片化接着フィルムを設け、
     第3の基材上に半田粒子を含有する前記第1の厚みを有する個片化接着フィルムを設け、
     第4の基材上に半田粒子を含有する前記第2の厚みを有する個片化接着フィルムを設け、
     前記第1の基材、前記第2の基材、前記第3の基材、前記第4の基材、又は第5の基材の所定位置に前記半田粒子を含有しない第1の厚みを有する個片化接着フィルム及び前記半田粒子を含有する第1の厚みを有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する第1の厚みを有する個片化接着フィルムを配置すると共に、前記半田粒子を含有しない第2の厚みを有する個片化接着フィルム及び前記半田粒子を含有する第2の厚みを有する個片化接着フィルムを近接させ、半田粒子を含有しない領域と半田粒子を含有する領域とを有する第2の厚みを有する個片化接着フィルムを配置するフィルム構造体の製造方法。
     
    providing a singulated adhesive film having a first thickness containing no solder particles on a first substrate;
    providing a singulated adhesive film having a second thickness that does not contain solder particles on a second substrate;
    providing a singulated adhesive film having the first thickness containing solder particles on a third substrate;
    providing a singulated adhesive film having the second thickness containing solder particles on a fourth substrate;
    The first base material, the second base material, the third base material, the fourth base material, or the fifth base material has a first thickness not containing the solder particles at a predetermined position. The singulated adhesive film and the singulated adhesive film having the first thickness containing the solder particles are brought close to each other, and the individual pieces having the first thickness having a region containing no solder particles and a region containing solder particles are formed. While disposing the singulated adhesive film, the singulated adhesive film having the second thickness not containing the solder particles and the singulated adhesive film having the second thickness containing the solder particles are brought close to each other, and the solder particles A method for producing a film structure in which a singulated adhesive film having a second thickness having a region containing no solder particles and a region containing solder particles is disposed.
PCT/JP2023/003912 2022-02-28 2023-02-07 Connection structure manufacturing method, film structure, and film structure manufacturing method WO2023162666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-030239 2022-02-28
JP2022030239A JP2023125888A (en) 2022-02-28 2022-02-28 Manufacturing method of connection structure, film structure, and manufacturing method of film structure

Publications (1)

Publication Number Publication Date
WO2023162666A1 true WO2023162666A1 (en) 2023-08-31

Family

ID=87765606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003912 WO2023162666A1 (en) 2022-02-28 2023-02-07 Connection structure manufacturing method, film structure, and film structure manufacturing method

Country Status (3)

Country Link
JP (1) JP2023125888A (en)
TW (1) TW202349802A (en)
WO (1) WO2023162666A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135567A (en) * 1997-10-30 1999-05-21 Toshiba Corp Anisotropic conductive film and manufacture of semiconductor device
JP2004006793A (en) * 2003-04-07 2004-01-08 Sony Chem Corp Anisotropic conductive adhesive
JP2019210416A (en) * 2018-06-07 2019-12-12 日立化成株式会社 Adhesive sheet
JP2020198422A (en) * 2019-03-08 2020-12-10 デクセリアルズ株式会社 Method for producing connecting structure, connecting structure, film structure, and method for producing film structure
JP2021125692A (en) * 2020-02-07 2021-08-30 デクセリアルズ株式会社 Manufacturing method of connection body and connection body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135567A (en) * 1997-10-30 1999-05-21 Toshiba Corp Anisotropic conductive film and manufacture of semiconductor device
JP2004006793A (en) * 2003-04-07 2004-01-08 Sony Chem Corp Anisotropic conductive adhesive
JP2019210416A (en) * 2018-06-07 2019-12-12 日立化成株式会社 Adhesive sheet
JP2020198422A (en) * 2019-03-08 2020-12-10 デクセリアルズ株式会社 Method for producing connecting structure, connecting structure, film structure, and method for producing film structure
JP2021125692A (en) * 2020-02-07 2021-08-30 デクセリアルズ株式会社 Manufacturing method of connection body and connection body

Also Published As

Publication number Publication date
JP2023125888A (en) 2023-09-07
TW202349802A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
WO2013133015A1 (en) Method and apparatus for manufacturing semiconductor device
JP6898413B2 (en) Manufacturing method of connecting body, anisotropic bonded film, connecting body
US20160064320A1 (en) Coupling of an interposer to a package substrate
WO2023162666A1 (en) Connection structure manufacturing method, film structure, and film structure manufacturing method
JP6949258B2 (en) Manufacturing method of connecting body and connecting body
WO2021131620A1 (en) Connection structure and manufucturing method therefor
CN116438269A (en) Conductive adhesive, anisotropic conductive film, connection structure, and method for producing connection structure
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
CN114502685B (en) Method for producing connector, anisotropic conductive bonding material, and connector
WO2021157490A1 (en) Method for producing connected body, and connected body
JP2004006793A (en) Anisotropic conductive adhesive
JP2007214559A (en) Inter-wiring method of connection
WO2020090684A1 (en) Method for manufacturing connected body, anisotropic bonding film, and connected body
JP2012160765A (en) Flexible printed wiring board and manufacturing method thereof
JP2023079630A (en) Manufacturing method for connection structure and connection structure
WO2022092047A1 (en) Electrically conductive adhesive, anisotropic electrically conductive film, connection structure, and method for producing connection structure
WO2023189416A1 (en) Electroconductive film, connection structure and manufacturing method for same
JP2009188063A (en) Method for connection between terminals and method for mounting semiconductor element
JP2007258421A (en) Flexible printed-wiring board and its manufacturing method
JP2023079632A (en) Connection structure and method for manufacturing connection structure
TW202412970A (en) Metal particle aggregate, conductive film, connection structure body and method for manufacturing thereof
TW202349521A (en) Method for producing circuit connection structure, and circuit connection device
Lu et al. Electrically conductive adhesives–a lead-free alternative
KR20210001630A (en) Electrode - Micro device bonding method using self-assembled and aligned solder paste
JP2009130072A (en) Semiconductor device and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759670

Country of ref document: EP

Kind code of ref document: A1