WO2023162068A1 - Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine - Google Patents

Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine Download PDF

Info

Publication number
WO2023162068A1
WO2023162068A1 PCT/JP2022/007498 JP2022007498W WO2023162068A1 WO 2023162068 A1 WO2023162068 A1 WO 2023162068A1 JP 2022007498 W JP2022007498 W JP 2022007498W WO 2023162068 A1 WO2023162068 A1 WO 2023162068A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
type insulating
thermosetting resin
insulating varnish
gap
Prior art date
Application number
PCT/JP2022/007498
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 保田
詩織 名取
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/007498 priority Critical patent/WO2023162068A1/en
Priority to JP2024502317A priority patent/JPWO2023162068A1/ja
Publication of WO2023162068A1 publication Critical patent/WO2023162068A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings

Definitions

  • This application relates to a sheet-type insulating varnish and its manufacturing method, an electric device, and a rotating electric machine.
  • an insulating material placed in a gap between a substrate and a heat-generating component such as a semiconductor chip, diode, or transformer coil, or in a gap between the substrate and a housing.
  • a rotating electric machine also includes a rotor, a stator core, and a stator having a stator coil.
  • Rotating electric machines are equipped with an insulating member inside, and along with the miniaturization and higher output of rotating electric machines, the insulating materials used for the insulating members are required to have excellent insulation, heat resistance, and heat dissipation properties. ing.
  • an insulating member is placed between members to be insulated in a rotating electric machine, for example, in a gap between a stator core and a stator coil, if an air layer partially remains in the gap, insulation, heat dissipation, and vibration resistance are improved.
  • stator coil When the stator coil is housed in the slot of the stator core, insulating paper is inserted into the gap between the inner wall of the slot and the stator coil, and the stator coil is impregnated with liquid insulating varnish.
  • the space factor of the stator coil increases, the gaps between the inner walls of the slots, the stator coils, and the insulating paper, and the gaps within the stator coils are becoming narrower.
  • the insulating varnish does not sufficiently permeate the stator coils, causing a problem of partial adhesion.
  • a low-viscosity varnish is used as the insulating varnish to increase permeability, much of the varnish that drips onto the coil end leaks out onto the end surface of the iron core, resulting in an insufficient amount of varnish adhering to the inside of the stator coil. is occurring.
  • NVH characteristics noise, vibration, and harshness
  • thermosetting resin composition for the sheet-type insulating varnish of Patent Document 1 it is compressed to a predetermined thickness by pressurization at room temperature, and it flows by heating during curing and penetrates into the details between the members, so that the insulation object The gaps between the members can be reliably filled, and the two can be insulated and fixed together.
  • the unevenness is large and when the heat flowability of the varnish layer is high, there is a problem that voids are generated partially and the cooling performance and the insulating properties are deteriorated.
  • Patent Document 2 an adhesive sheet is attached to one of the base materials and expanded by heating to fill the gap, but it does not flow into the gap between the coils and cannot be fixed. Due to the formation of voids, partial discharge may occur when a voltage is applied, or the sheet layer may be fragile and cracks may occur due to vibration. That is, there is a problem that the insulating properties, mechanical strength, and heat dissipation properties of the sheet layer are deteriorated.
  • the present application discloses a technique for solving the above problems, in which the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, thereby filling the gaps reliably. , a sheet-type insulating varnish having excellent properties of insulation, mechanical strength, and heat dissipation after curing, a method for producing the same, and an electric device and a rotating electric machine to which this sheet-type insulating varnish is applied.
  • the sheet-type insulating varnish disclosed in the present application is a sheet-type insulating varnish that is arranged in a gap between members to be insulated, and is composed of a first thermosetting resin that is solid at room temperature and a second thermosetting resin that is liquid at room temperature. and a latent curing agent that is reactively inactive at 60°C or lower, and the maximum particle size is smaller than the gap dimension and the average particle size is smaller than 0.5 times the gap dimension.
  • the curable resin composition is formed into a sheet in an uncured or semi-cured state.
  • a method for producing a sheet-type insulating varnish disclosed in the present application is a method for producing a sheet-type insulating varnish that is arranged in a gap between members to be insulated, and comprises a first thermosetting resin that is solid at room temperature and a first thermosetting resin that is solid at room temperature.
  • thermosetting resin composition or higher 90 parts by mass of the thermosetting resin composition, and the thermally expandable microcapsules are 1 to 100% by mass with respect to the total 100 parts by mass of the first thermosetting resin and the second thermosetting resin; a first step of stirring and mixing an organic solvent for the thermosetting resin composition to prepare a slurry of the thermosetting resin composition; Slurry is applied to a release film or release paper to a thickness of 1.1 to 2.0 times the size of the gap, and when a pressure of 25 MPa is applied at room temperature, the thickness has a compressibility of 10% or more. and a second step of drying.
  • the electrical equipment disclosed in the present application includes a substrate on which electronic components are mounted and a housing to which the substrate is fixed, and either a gap between the electronic component and the substrate or a gap between the substrate and the housing It is provided with the sheet-type insulating varnish described above arranged in one or both gaps.
  • a rotating electric machine disclosed in the present application includes a stator coil housed in a slot of a stator core, and includes the sheet-type insulating varnish arranged in a gap between the inner wall of the slot and the stator coil.
  • the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, reliably filling the gaps, and providing insulation and mechanical strength after curing. , it is possible to provide a sheet-type insulating varnish having excellent heat dissipation properties.
  • the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, reliably filling the gaps, and providing insulation after curing. , a sheet-type insulating varnish having excellent mechanical strength and heat dissipation properties can be obtained.
  • thermosetting resin flows when heated and penetrates into the details of the gap between the members to be insulated, reliably filling the gap, and after curing, the insulation, mechanical strength, and heat dissipation. It is possible to provide an electric device to which the sheet-type insulating varnish having excellent properties is applied.
  • thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, reliably filling the gaps, and after curing, insulation, mechanical strength, and heat dissipation. It is possible to provide a rotating electric machine to which a sheet-type insulating varnish having excellent properties is applied.
  • FIG. 1A is a cross-sectional view showing a schematic configuration of a sheet-type insulating varnish according to Embodiment 1.
  • FIG. 1B is a cross-sectional view showing a schematic configuration of the sheet-type insulating varnish according to Embodiment 1.
  • FIG. 5 is a cross-sectional view for explaining shape change when the sheet-type insulating varnish according to Embodiment 1 is applied to a rotating electric machine; 6 is a flow chart of a method for manufacturing a sheet-type insulating varnish according to Embodiment 2.
  • FIG. FIG. 11 is an explanatory diagram of a case where a sheet-type insulating varnish is applied to the power supply device according to the fourth embodiment;
  • FIG. 11 is a perspective view of a stator of a rotating electric machine according to Embodiment 5;
  • FIG. 11 is a cross-sectional view of a stator of a rotating electric machine according to Embodiment 5;
  • FIG. 14 is an explanatory diagram of a case where a sheet-type insulating varnish is applied to a stator of a rotary electric machine according to Embodiment 5;
  • FIG. 14 is an explanatory diagram of a case where a sheet-type insulating varnish is applied to a stator of a rotary electric machine according to Embodiment 5;
  • Embodiment 1 comprises a first thermosetting resin that is solid at normal temperature, a second thermosetting resin that is liquid at normal temperature, a thermally expandable microcapsule having a foaming start temperature of 60° C. or higher, and It relates to a sheet-type insulating varnish containing a reaction-inert latent curing agent and optionally a filler.
  • FIG. 1A and 1B are cross-sectional views showing a schematic configuration of the sheet-type insulating varnish according to the first embodiment, and a change in shape when the sheet-type insulating varnish is applied to a rotating electrical machine. Description will be made based on FIG. 2 which is a cross-sectional view.
  • FIGS. 1A, 1B, and 2 are cross-sectional views showing a schematic configuration of a sheet-type insulating varnish according to Embodiment 1.
  • the resin component 2 is a first thermosetting resin that is solid at normal temperature and a second thermosetting resin that is liquid at normal temperature, with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin. , Contains 10 parts by mass to 90 parts by mass of the first thermosetting resin, a latent curing agent that is inactive at 60 ° C.
  • thermally expandable microcapsules 3 have a maximum particle size smaller than the size of the gap to which they are applied, an average particle size smaller than 0.5 times the size of the gap, and an expansion initiation temperature of 60° C. or higher.
  • a sheet-type insulating varnish 1a having a basic configuration is obtained by dispersing thermally expandable microcapsules 3 in a resin component 2. As shown in FIG. 1B, inorganic and resin-based fillers 4 are dispersed in the basic structure of FIG. It is good also as a structure which made it.
  • a sheet-type insulating varnish 1b is obtained by dispersing the filler 4 therein.
  • the sheet-type insulating varnish 1a of the basic configuration and the sheet-type insulating varnish 1b in which the filler 4 is dispersed are collectively described without distinction, they are described as a sheet-type insulating varnish 1.
  • FIG. 2 explains the shape change of the sheet-type insulating varnish 1b when the sheet-type insulating varnish 1b is applied to a rotating electric machine.
  • the sheet-type insulating varnish 1b is applied to the stator coil 21 and the stator iron core 22 as components of the rotating electric machine.
  • F2a represents a state in which the sheet-type insulating varnish 1b is inserted between the stator coil 21 and the stator core 22 and fixed to the stator core 22.
  • FIG. F2b represents a state in which the stator coil 21 is pressure-bonded to the sheet-type insulating varnish 1b.
  • An air layer 7 is formed.
  • F2c represents the penetration and thickening of the varnish layer by heating.
  • F2c the thermally expandable microcapsules 3 after foaming are described as foamed thermally expandable microcapsules 8 .
  • HT indicates “heating”
  • VP indicates “varnish penetration”
  • FM indicates “foaming”
  • HD indicates “curing”.
  • the sheet-type insulating varnish 1 is efficiently compressed to a predetermined thickness by pressurization at room temperature.
  • the varnish layer becomes thicker due to the expansion of the heat-expandable microcapsules 3 after the heat-curing causes the varnish to flow and permeate into the details between the members.
  • the air layer can be eliminated, the gap between the members to be applied, that is, the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
  • thermosetting resin composition which is the material of the sheet-type insulating varnish 1, will be described.
  • a thermosetting resin composition is a resin composition for a sheet-type insulating varnish that is arranged in a gap between members to be insulated. At least some of the gaps between the members to which it is applied have substantially constant dimensions (hereafter referred to as gap dimensions).
  • the thermosetting resin composition includes a first thermosetting resin that is solid at room temperature, a second thermosetting resin that is liquid at room temperature, and a latent curing agent that is reaction-inactive at 60° C. or lower.
  • thermosetting resin composition includes thermally expandable microcapsules 3 having a maximum particle diameter smaller than the gap dimension and an average particle diameter smaller than 0.5 times the gap dimension and having a foaming start temperature of 60° C. or higher. , containing 10 to 90 parts by mass of the first thermosetting resin with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin.
  • inorganic and resinous fillers, curing accelerators, thermoplastic resins, film-forming agents, tackifiers, adhesion promoters and the like are included as necessary.
  • thermally expandable microcapsules 3 having a maximum particle diameter smaller than the gap dimension and an average particle diameter smaller than 0.5 times the gap dimension and having a foaming start temperature of 60° C. or higher.
  • inorganic and resinous fillers, curing accelerators, thermoplastic resins, film-forming agents, tackifiers, adhesion promoters and the like are included as necessary.
  • thermally expandable microcapsules 3 having a maximum particle diameter
  • the sheet-type insulating varnish 1 produced using the thermosetting resin composition that combines the above raw materials has the flexibility to be compressed to a predetermined thickness by pressurization at room temperature, and furthermore, heat during curing.
  • the varnish layer has a characteristic that the thickness of the varnish layer increases due to the foaming of the thermally expandable microcapsules 3 after the varnish flows and penetrates into the details between the members. Therefore, the thermosetting resin composition according to Embodiment 1 is suitable for producing the sheet-type insulating varnish 1 that reliably fills the gaps between the members to be insulated and insulates and adheres them.
  • thermosetting resins known epoxy resins, phenolic resins, unsaturated polyester resins, polyurethane resins, diallyl phthalate resins, and silicone resins are used.
  • it preferably contains at least one of epoxy resin, phenol resin, and unsaturated polyester resin such as vinyl ester resin, which are commonly used as insulating varnish.
  • thermosetting resins include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, brominated bisphenol A epoxy resin, brominated bisphenol F epoxy resin, and brominated bisphenol AD epoxy resin.
  • the first thermosetting resin is solid at room temperature, and has a softening temperature of 160°C or less, more preferably 125°C or less, at the melting point or glass transition point. If the softening temperature is higher than 160°C, the polymerization reaction with the second thermosetting resin is difficult to progress during heating, and the heating temperature in the curing treatment step needs to be higher than 200°C. Unfavorable because it is provocative.
  • the first thermosetting resin must be dissolved in at least one of the liquid second thermosetting resin and the diluent organic solvent (hereinafter referred to as diluent). If the varnish does not dissolve, a state in which the resin component is evenly dissolved cannot be obtained during preparation of the slurry, and a homogeneous sheet-type insulating varnish 1 cannot be formed.
  • diluent diluent organic solvent
  • the first thermosetting resin is an epoxy resin
  • the epoxy equivalent is 200 or more and the softening temperature is in the range of 50°C to 160°C (hereinafter referred to as this When indicating the lower and upper limits of such numerical values or ratios, it is described as "50° C. to 160° C.") is more preferable.
  • the first thermosetting resin is an unsaturated polyester resin such as a vinyl ester resin
  • the softening temperature is preferably 50°C to 160°C.
  • the second thermosetting resin is preferably an epoxy resin that is liquid at room temperature in order to increase the adhesive strength with the member to be insulated.
  • Bisphenol A type epoxy resins and bisphenol F type epoxy resins are more preferably used to increase the dissolving power of .
  • the second thermosetting resin should be a low-viscosity unsaturated polyester resin oligomer or monomer in order to increase the dissolving power of the first thermosetting resin. Low molecular weights are preferred.
  • the first thermosetting resin is 10 parts by mass to 90 parts by mass, more preferably 15 parts by mass to 85 parts by mass with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin. be.
  • the mass ratio (A/B) between the first thermosetting resin and the second thermosetting resin is preferably in the range of 10/90 to 90/10. If the mass ratio (A/B) is less than 10/90, the amount of liquid resin is large, so that the sheet-type insulating varnish 1 cannot be obtained stably after drying and cannot be peeled off from the release substrate. If the mass ratio (A/B) exceeds 90/10, the toughness (tenacity of the material) of the sheet-type insulating varnish 1 becomes low because of the large amount of solid resin. For this reason, cracks and chips are likely to occur during drying or during peeling from the release substrate, resulting in poor workability.
  • the mass ratio (A/B) is preferably in the range of 15/85 to 85/15 in order to produce a sheet-type insulating varnish 1 with high toughness and stability. Also, in order to ensure adhesiveness that facilitates attachment to a member to be insulated, the mass ratio (A/B) is preferably in the range of 15/85 to 50/50. On the other hand, when the adhesiveness of the surface of the sheet-type insulating varnish 1 is unnecessary (for example, when the adhesiveness deteriorates workability), the mass ratio (A / B) is 50/50 in order to reduce the surface adhesiveness. A range of ⁇ 85/15 is preferred.
  • thermosetting resin composition can contain a curing agent that cures the thermosetting resin.
  • the curing agent is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin. Amines, phenols, acid anhydrides, imidazoles, polymercaptan curing agents, polyamide resins and the like are used as curing agents.
  • curing agents include alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and himic acid anhydride, aliphatic acid anhydrides such as dodecenyl succinic anhydride, phthalic anhydride and anhydride.
  • Aromatic acid anhydrides such as trimellitic acid, aromatic diamines such as dicyandiamide and 4,4′-diaminodiphenylsulfone, organic dihydrazides such as adipic acid dihydrazide, boron trifluoride, boron trichloride and boron tribromide Boron halide amine complex, tris(dimethylaminomethyl)phenol, dimethylbenzylamine, 1,8-diazabicyclo(5,4,0)undecene and its derivatives, 2-methylimidazole, 2-ethyl-4-methylimidazole and 2 -Imidazoles such as phenylimidazole and 1-cyanoethyl-2-methylimidazole, polyhydric phenol compounds such as bisphenol A, bisphenol F, bisphenol S, phenol novolac resin, cresol novolak resin, and p-hydroxystyrene resin, organic peroxides is mentioned.
  • boron trifluoride amine complexes include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, boron trifluoride- triallylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, N-dimethyloctylamine complex, boron trichloride N,N-dimethyldodecylamine complex, boron trichloride N,N-diethyldioctylamine complex and the like.
  • These curing agents may be
  • the amount of the curing agent may be appropriately adjusted according to the type of the thermosetting resin and the curing agent to be used. It is preferably less than or equal to parts.
  • the curing agent has a latent reaction inactive at 60 ° C. or less from the viewpoint of the storage stability of the sheet-type insulating varnish 1, curability, physical properties of the cured resin, etc.
  • Curing agents are preferred.
  • Specific examples of the latent curing agent include halogenated boron amine complexes such as boron trifluoride-amine complexes, dicyandiamide, organic acid hydrazides, and aromatic diamines such as 4,4'-diaminodiphenylsulfone. These latent curing agents may be used alone or in combination of two or more.
  • the amount of the latent curing agent is such that the equivalent ratio of the thermosetting resin to the epoxy resin is 0.3 to 2.0, and from the viewpoint of the stability of the properties of the cured product, it is 0.5 to 1.5. is more preferred.
  • the organic peroxide is used as a reaction initiator that initiates the polymerization reaction.
  • the organic peroxide is not particularly limited as long as it has a 10-hour half-life temperature of 40° C. or higher, and those known in the art can be used.
  • Specific examples of organic peroxides include ketone peroxide-based, peroxyketal-based, hydroperoxide-based, dialkyl peroxide-based, diacyl peroxide-based, peroxyester-based, and peroxydicarbonate-based peroxides. is mentioned. These organic peroxides may be used alone or in combination of two or more.
  • the 10-hour half-life temperature of the organic peroxide is preferably 80° C. or higher.
  • the 10-hour half-life temperature of the organic peroxide is preferably equal to or lower than the setting temperature of the curing furnace when the sheet-type insulating varnish 1 is cured.
  • organic peroxides having such a 10-hour half-life temperature include 1,1-di(t-butylperoxy)cyclohexane, 1,1-di(t-hexylperoxy)cyclohexane, 1, 1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 2,2-di(4,4-di- (Butylperoxy)cyclohexyl)propane, n-butyl 4,4-di-(t-butylperoxy)valerate, 2,2-di-(t-butylperoxy)butane, t-hexylperoxyisopropyl monocarbonate , t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoic acid, t-butylperoxylauric acid, t-
  • the amount of the organic peroxide to be blended is not particularly limited, but it is usually 0.1 to 10 parts by mass, more preferably 0.5 parts by mass, with respect to the total 100 parts by mass of the polyester resin, which is a thermosetting resin. parts to 5 parts by mass. If the amount of the organic peroxide is less than 0.1 parts by mass, the crosslink density may be low, resulting in insufficient curing. On the other hand, if the amount of the organic peroxide is more than 10 parts by mass, the pot life of the sheet-type insulating varnish 1 tends to be significantly shortened.
  • thermosetting resin composition can contain a curing accelerator as necessary.
  • the curing accelerator is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin.
  • Specific examples of curing accelerators include tertiary amines, imidazoles, amine adducts and the like. From the viewpoint of the storage stability, curability, physical properties of the cured resin, etc. of the sheet-type insulating varnish 1, a curing accelerator that is reaction-inactive at 60° C. or lower is more preferable.
  • the blending amount of the curing accelerator is usually 0.01 to 10 parts by mass, more preferably 0.02 to 5.0 parts by mass, with respect to 100 parts by mass of the total thermosetting resin. If the curing accelerator is less than 0.01 parts by mass, the effect of accelerating the curing reaction is poor, and if it is more than 10 parts by mass, the pot life tends to be shortened.
  • thermosetting resin composition may contain a film-forming agent as necessary in order to improve film-forming properties such as film thickness uniformity and surface smoothness.
  • a thermoplastic resin having a weight average molecular weight of 10,000 to 100,000 is used as the film-forming agent.
  • the thermoplastic resin is 1 part by mass to 50 parts by mass with respect to 100 parts by mass in total of the first thermosetting resin and the second thermosetting resin.
  • the thermoplastic resin is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin. Specific examples of thermoplastic resins include phenoxy resins and saturated polyester resins. These film-forming agents may be used alone or in combination of two or more.
  • the weight-average molecular weight of the thermoplastic resin is less than 10,000, film-forming properties are not improved, and if it is greater than 100,000, dissolution and dispersibility in the liquid second thermosetting resin is poor. , the slurry cannot be prepared.
  • the amount of the film-forming agent to be added is usually 1 part by mass to 50 parts by mass, more preferably 5 parts by mass, with respect to the total 100 parts by mass of the thermosetting resin, from the viewpoint of curing acceleration and physical properties of the cured resin. parts to 45 parts by mass.
  • the film-forming agent is less than 1 part by mass, the effect of improving the film-forming property is inferior, and if it is more than 50 parts by mass, the dissolution and dispersibility in the liquid second thermosetting resin is poor, and a slurry cannot be prepared.
  • thermosetting resin composition can contain a tackifier as necessary in order to improve the surface adhesiveness of the sheet-type insulating varnish 1.
  • the tackifier is not particularly limited as long as it has a weight average molecular weight of 10,000 to 200,000, and a known one can be appropriately selected according to the type of thermosetting resin.
  • Specific examples of tackifiers include terpene-based resins, rosin-based resins, natural rubbers, styrene-based elastomers, polyvinyl acetal-based resins, polyvinyl formal-based resins, polyvinyl butyral-based resins, and the like. These tackifiers may be used alone or in combination of two or more.
  • the weight-average molecular weight of the tackifier is less than 10,000, the adhesion is not improved, and if it is more than 200,000, the dissolution and dispersibility in the liquid second thermosetting resin is poor, and a slurry is prepared. Can not.
  • the amount of the tackifier is usually 1 part by mass to 20 parts by mass, more preferably 2 parts by mass to 10 parts by mass with respect to 100 parts by mass of the total thermosetting resin, from the viewpoint of curing acceleration and physical properties of the cured resin. part by mass.
  • the amount of the tackifier is less than 1 part by mass, the effect of improving the surface tackiness is poor, and if it is more than 20 parts by mass, the dissolution and dispersibility in the liquid second thermosetting resin is poor, and a slurry cannot be prepared.
  • thermosetting resin composition contains an adhesion imparting agent from the viewpoint of improving the adhesive strength of the interface between the thermosetting resin and the inorganic filler or the interface between the sheet-type insulating varnish 1 and the member to be insulated.
  • adhesion imparting agent from the viewpoint of improving the adhesive strength of the interface between the thermosetting resin and the inorganic filler or the interface between the sheet-type insulating varnish 1 and the member to be insulated.
  • the tackifier is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin or inorganic filler.
  • adhesion promoters include ⁇ -glycidoxypropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyl.
  • Examples include silane coupling agents such as trimethoxysilane.
  • These tackifiers may be used alone or in combination of two or more. The amount of the tackifier may be appropriately set according to the type of the thermosetting resin or tackifier, and is usually 0.01 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin. Preferably.
  • the thermosetting resin composition cannot fill the gaps between the members to be insulated, and voids are partially generated. Even in this case, by expanding the thermally expandable microcapsules 3 by heating, the thickness of the varnish layer is increased, the voids can be eliminated, and the gaps between the members can be reliably filled.
  • the varnish layer is pressure-bonded to the varnish layer, the varnish flows during heating and permeates into the coil due to capillary action, so that the coils can be fixed to each other. By fixing (bonding) and eliminating voids, it is possible to provide an electronic device and a rotating electric machine with high mechanical strength, cooling performance, and insulation performance.
  • the thermally expandable microcapsules 3 are not particularly limited, and a thermoplastic polymer shell ( A microcapsule having a structure surrounded by a shell) may be used as long as the capsule expands when the thermoplastic resin of the shell is softened by heating and the volume of the thermal expansion agent increases.
  • the surface of the thermally expandable microcapsules 3 may be coated with an inert inorganic powder such as calcium carbonate, talc, titanium oxide, or the like. For example, as long as the fine particles expand when heated, commercially available microspheres may be used.
  • These thermally expandable microcapsules 3 may be used alone or in combination of two or more.
  • the sheet-type insulating varnish 1 is placed in a gap between members to be insulated (for example, between a coil and an iron core) by pasting or inserting, and is used as phase-to-phase insulation. Therefore, it is preferable that the maximum particle diameter of the thermally expandable microcapsules 3 is smaller than the dimension of the gap and the average particle diameter is smaller than 0.5 times the dimension of the gap. For example, when the actual measurement size of the gap is 10 ⁇ m to 100 ⁇ m including tolerance, thermally expandable microcapsules 3 having a maximum particle size of 10 ⁇ m or less and an average particle size of 5 ⁇ m or less are selected.
  • the sheet-type insulating varnish 1 since the sheet-type insulating varnish 1 is semi-cured or uncured, it flows when heated and permeates recesses on the surfaces of members to be insulated and gaps between members to be insulated.
  • a latent curing agent that is reaction inactive at 60° C. or less is used in order to allow efficient penetration and to minimize curing during flow. If the thermally expandable microcapsules 3 foam during the flow of the varnish, it inhibits penetration into recesses and gaps. It is more preferable that the temperature is lower than the reaction initiation temperature of the latent curing agent +20° C. in order to promote foaming of the curable microcapsules 3 and prevent the foam size after curing from becoming excessively large.
  • the reaction initiation temperature is preferably +20° C. or lower.
  • the heating conditions such as increasing the temperature or increasing the temperature step by step so that the thermally expandable microcapsules 3 do not foam when flowing, but foam after the completion of flowing and start curing after foaming.
  • the amount of the thermally expandable microcapsules 3 is not particularly limited, but if the expansion ratio is excessively increased, the strength and heat resistance of the sheet-type insulating varnish 1 after curing will be greatly reduced. It is desirable to adjust the amount so as to reliably fill the irregularities on the surface of the member to be insulated and the gaps between the members. Since the expansion ratio of the thermally expandable microcapsules 3 varies depending on the type and heating temperature, it is difficult to limit the amount to be blended. On the other hand, it is 1 part by mass or more and 100 parts by mass or less, and more preferably 90 parts by mass or less from the viewpoint of ensuring the heat fluidity of the varnish layer.
  • organic foaming agents include inorganic foaming agents such as ammonium carbonate, ammonium borohydride, ammonium hydrogencarbonate, ammonium nitrite, azides, azo compounds such as azobisisobutyronitrile, and fluorides such as trichloromonofluoromethane.
  • alkanes such as p-toluenesulfonyl semicarbazide, hydrazine compounds such as paratoluenesulfonyl hydrazide, triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole, N,N'-di and N-nitroso compounds such as nitrosoterephthalamide.
  • thermosetting resin composition can contain a filler from the viewpoint of improving thermal conductivity and mechanical strength, thickening the sheet-type insulating varnish 1, and the like.
  • the filler is not particularly limited, and known fillers can be appropriately selected according to the purpose.
  • the filler may be surface-treated with a silane-based coupling agent, a titanate-based coupling agent, or the like, or may not be surface-treated.
  • inorganic fillers include crystalline silica, fused silica, alumina, talc, clay, calcium carbonate, calcium silicate, titanium dioxide, silicon nitride, aluminum hydroxide, aluminum nitride, boron nitride, glass, barium sulfate, magnesia. , beryllium oxide, mica, and magnesium oxide.
  • the shape of the filler is preferably crushed or spherical, but may be subspherical, scaly, fibrous, milled fiber, whisker, or the like. These fillers may be used alone or in combination of two or more.
  • thermoplastic resins include butyral resin, polyvinyl acetal resin, polyamide resin, aromatic polyester resin, phenoxy resin, MBS resin (methyl methacrylate-butadiene-styrene copolymer), ABS resin (acrylonitrile-butadiene-styrene copolymer). polymer), acrylic resin, etc., and can be modified with silicone oil, silicone resin, silicone rubber, fluororubber, or the like.
  • various plastic powders, various engineering plastic powders, and the like may be added.
  • the amount of the filler to be blended may be an amount that allows the thermosetting resin composition to be uniformly mixed, and is usually 70% by volume or less with respect to the total amount of the thermosetting resin composition, and improves the workability of mixing. Taking this into account, it is more preferably 65% by volume or less. If the blending amount of the filler is more than 70% by volume, it becomes impossible to mix uniformly with the resin composition, and the reproducibility of the properties of the sheet-type insulating varnish 1 tends to be unobtainable. Further, when the sheet-type insulating varnish 1 is used by being folded, it is necessary to increase the flexibility, so the content is more preferably 50% by volume or less. Furthermore, if there is no need to increase the thermal conductivity of the sheet-type insulating varnish 1 or form a thick varnish layer, it is possible to omit the filler from the thermosetting resin composition.
  • the sheet-type insulating varnish 1 is arranged by pasting or inserting in a gap between members to be insulated (for example, between a coil and an iron core) and used as phase-to-phase insulation. Therefore, it is preferable that the maximum particle size of the filler is smaller than the size of the gap, and the average particle size of the filler is smaller than 0.5 times the size of the gap. For example, when the actual measurement size of the gap is 10 ⁇ m to 100 ⁇ m including the tolerance, a filler having a maximum particle size of 10 ⁇ m or less and an average particle size of 5 ⁇ m or less is selected.
  • thermosetting resin composition contains an anti-settling agent or dispersant that suppresses the sedimentation of solid powder such as a filler in the resin, an anti-foaming agent that prevents the generation of voids, and a block between the sheet-type insulating varnishes 1.
  • Anti-blocking agents such as polymer beads or slipperiness improvers, paint fixing agents, antioxidants, flame retardants, colorants, thickeners, viscosity reducers, surfactants, etc. can also be added. .
  • the sheet-type insulating varnish of Embodiment 1 includes a first thermosetting resin that is solid at normal temperature, a second thermosetting resin that is liquid at normal temperature, and a foaming start temperature of 60° C. or higher. It contains a thermally expandable microcapsule, a latent curing agent that is reaction-inactive at 60° C. or less, and, if necessary, a filler. Therefore, in the sheet-type insulating varnish of Embodiment 1, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, and reliably fills the gaps. , has excellent heat dissipation properties.
  • Embodiment 2 describes a method for producing a sheet-type insulating varnish using the thermosetting resin composition according to Embodiment 1, also referring to the flow chart of FIG.
  • the sheet-type insulating varnish produced by this method for producing a sheet-type insulating varnish is obtained by forming the thermosetting resin composition described in Embodiment 1 into a sheet having a thickness of 1 ⁇ m to 500 ⁇ m in an uncured or semi-cured state. It is what I did.
  • the method for producing a sheet-type insulating varnish includes a first step of preparing a slurry of a thermosetting resin composition (slurry preparation step) and a second step of applying the slurry to a release film or release paper and drying it (coating, drying step).
  • slurry preparation step a diluent is added to the thermosetting resin composition according to Embodiment 1 to obtain a predetermined mixture viscosity, and the thermally expandable microcapsules 3 and filler 4 are uniformly dispersed without sedimentation. Stir and mix with a stirrer until
  • the slurry contains at least a first thermosetting resin that is solid at room temperature, a second thermosetting resin that is liquid at room temperature, a latent curing agent that is reactively inactive at 60° C. or less, and a maximum particle size of the gap. It contains thermally expandable microcapsules 3 having an average particle diameter smaller than 0.5 times the size of the gap and an expansion start temperature of 60° C. or higher, and a diluent. Further, the first thermosetting resin is contained in 10 parts by mass to 90 parts by mass with respect to the total 100 parts by mass of the thermosetting resin, and the thermally expandable microcapsules 3 are included in the total 100 parts by mass of the thermosetting resin. It is blended so as to be 1 part by mass or more and 100 parts by mass or less.
  • the diluent that dissolves the thermosetting resin evaporates or evaporates almost completely after coating.
  • the diluent is not particularly limited, and known diluents can be appropriately selected according to the type of thermosetting resin, thermally expandable microcapsules, filler, and the like to be used. Specific examples of diluents include toluene and methyl ethyl ketone. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be blended is not particularly limited as long as the mixture has a viscosity that allows kneading.
  • the slurry is applied to the release film or release paper with a sheet coating machine so that the film thickness is 1.1 to 2.0 times the size of the gap. It is applied and dried in a drying oven to produce a sheet-type insulating varnish 1.
  • the coating method is not particularly limited, and may be performed using a coating machine known in the technical field.
  • the thermosetting resin composition of the produced sheet-type insulating varnish 1 is in an uncured or semi-cured state, and therefore adhesion (blocking) occurs when the sheets come into contact with each other. For this reason, a release film or release paper base material is laminated on one surface, and the base material is released before use.
  • the diluent is volatilized under temperature conditions of 80°C to 160°C.
  • the non-volatile content after drying is 97 parts by mass or more, more preferably 99 parts by mass or more, relative to 100 parts by weight of the total mass of the sheet-type insulating varnish 1 . If it is less than 97 parts by mass, the remaining diluent will make it difficult to release the mold from the substrate such as release paper or release film.
  • the sheet-type insulating varnish 1 may be in an uncured state (A stage state) in which only the diluent is volatilized, or may be further heated to advance the curing reaction after volatilization of the diluent, and is in a semi-cured state (B stage state).
  • the adhesiveness is high in the uncured state, It may become difficult to release from a substrate such as a release film. In that case, the reaction can be advanced a little by heating to lower the adhesiveness and make it semi-cured, so that it can be released from the mold.
  • the sheet-type insulating varnish 1 is mounted, if the heating fluidity of the sheet-type insulating varnish 1 is desired to be lowered, the fluidity can be controlled by setting it to a semi-cured state.
  • a method for manufacturing a sheet-type insulating varnish to be placed in a gap between members to be insulated includes a first step (slurry preparation step) (S01) and a second step (application and drying step) (S02).
  • a first thermosetting resin that is solid at normal temperature a first thermosetting resin that is solid at normal temperature
  • a second thermosetting resin that is liquid at normal temperature a latent curing agent that is reaction inactive at 60 ° C. or less
  • thermosetting resin or higher, comprising a first thermosetting resin and a second heat
  • the first thermosetting resin is 10 parts by mass to 90 parts by mass with respect to the total 100 parts by mass of the curable resin
  • thermally expandable microcapsules 3 are the first thermosetting resin and the second thermosetting resin. 1 to 100% by mass of the thermosetting resin composition and an organic solvent for dilution are stirred and mixed to prepare a slurry of the thermosetting resin composition.
  • the slurry is applied to a release film or release paper to a thickness of 1.1 to 2.0 times the size of the gap, and when a pressure of 25 MPa is applied at room temperature, the thickness is 10. Dry to have a compressibility that decreases by more than %.
  • the diluent is volatilized by drying under a temperature condition of 80 ° C. to 160 ° C., and the non-volatile content is 97 parts by mass or more with respect to 100 parts by weight of the total mass of the sheet-type insulating varnish 1 after drying.
  • heating is further performed to advance the curing reaction, and the sheet-type insulating varnish 1 can be brought into a semi-cured state.
  • thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated. , which reliably fills this gap and has excellent insulating properties, mechanical strength, and heat dissipation properties after curing.
  • Embodiment 3 characteristics of the sheet-type insulating varnish will be described.
  • the sheet-type insulating varnish 1 preferably has high surface smoothness and flexibility.
  • the film thickness of the sheet-type insulating varnish 1 must be The in-plane distribution shall be within ⁇ 30% of the average value.
  • the sheet-type insulating varnish 1 has such flexibility that cracks do not occur even when it is bent to 180 degrees at room temperature. If the drying progresses due to excessive heating, the hardening reaction of the resin proceeds in addition to volatilization of the diluent, and flexibility may be lost. In this case, since there is no flexibility to follow the surface shape of the members, cracks may occur when the members are arranged in the gaps between them. Alternatively, it may not be adhered or fixed to the member even after heat curing.
  • the film thickness of the sheet-type insulating varnish 1 is preferably 1 ⁇ m to 500 ⁇ m, and more preferably 5 ⁇ m to 300 ⁇ m in order to completely fill the gaps between members to be insulated. When the film thickness is less than 1 ⁇ m, it is difficult to form a pinhole-free sheet-type insulating varnish.
  • the film thickness of the sheet-type insulating varnish 1 is 1.1 times or more the dimension of the gap between the members to be insulated, usually 1.1 to 2.0 times, more preferably 1.3 to 1 .7 times. Specifically, when the dimension obtained by subtracting the thickness of the substrate from the dimension of the gap is 100 ⁇ m, the film thickness of the sheet-type insulating varnish 1 is preferably 110 ⁇ m to 200 ⁇ m, more preferably 130 ⁇ m to 170 ⁇ m. If the film thickness is less than 110 ⁇ m, the heated sheet-type insulating varnish 1 is not sufficiently filled in the details of the gaps, and if it exceeds 200 ⁇ m, the members of electronic devices cannot be fixed with fixing screws, or the rotating electric machine cannot be fixed. When the child is molded, gaps may occur between the slots, making it impossible to form a circular ring, and the assembly may be deteriorated.
  • the sheet-type insulating varnish 1 has a compressibility such that the film thickness (total thickness) is reduced by 10% or more at room temperature and a pressure of 25 MPa. Considering the dimensional tolerance of the gaps between members, it is more preferable to compress by 20% or more. Since the sheet-type insulating varnish 1 has a nonvolatile content of 97 parts by mass (%) or more, it shrinks in volume by 3% to 10% when completely cured. In addition, since the base material of the sheet-type insulating varnish 1 is hardly compressed at a pressure of 25 MPa depending on the type, the film thickness of the sheet-type insulating varnish 1 is 10% larger than the dimension obtained by subtracting the thickness of the base material from the dimension of the gap. need to be larger.
  • the sheet-type insulating varnish 1 when used by being attached to a member in advance, it is preferable that the sheet-type insulating varnish 1 has surface adhesiveness (tackiness) at room temperature.
  • the surface tackiness can be eliminated while the flexibility and film thickness compressibility are maintained by the compounding ratio and drying conditions described above.
  • As an index of lack of surface tackiness it is assumed that there is no tackiness even when pressed against a member to be insulated at 40° C. with a pressure of 2 MPa. When sticking under these conditions, the surface stickiness may become strong depending on the work environment temperature (25 to 35° C.), resulting in poor workability.
  • the sheet-type insulating varnish 1 must have the flexibility to be compressed at room temperature, must flow when heated, and permeate into details between members (for example, uneven shapes of coils and iron cores, etc.). In order to obtain such properties, the dry state of the sheet-type insulating varnish 1 is important. Flexibility can be easily determined by checking that no cracks occur even when bent at 180°C. Elastic modulus evaluation by viscoelasticity measurement is a method for more quantitatively determining these characteristics of flexibility and fluidity.
  • the storage shear modulus (G') of the sheet-type insulating varnish 1 is 1.0 ⁇ 10 Pa to 5.0 ⁇ 10 Pa at normal temperature, decreases with increasing temperature, and the lowest value is 80. °C to 150 °C and 10 Pa to 2.0 x 103 Pa.
  • a sheet-type insulating varnish 1 that does not satisfy the above values cannot obtain a required compressibility when pressurized, and cannot obtain penetration into fine details between members.
  • the minimum value of the storage shear modulus is less than 80°C, the reaction proceeds when left at room temperature, and the flexibility tends to decrease.
  • the minimum value is 150° C. or higher, the heating temperature required for complete curing increases, possibly deteriorating the substrate.
  • the storage shear elastic modulus at room temperature is 3.0 ⁇ 10 Pa to 3.0 ⁇ 10 Pa, and 80 ° C. ⁇
  • the minimum value of the storage shear modulus at 150° C. is 1.0 ⁇ 10 2 Pa to 5.0 ⁇ 10 2 Pa, and more preferably 1/10 or less of the value at room temperature.
  • the storage shear modulus at 180° C. or higher saturates at 1.0 ⁇ 10 5 Pa or higher due to the effect of curing.
  • the loss elastic modulus (G′′) of the sheet-type insulating varnish 1 is 1.0 ⁇ 103 Pa to 5.0 ⁇ 104 Pa at normal temperature, decreases as the temperature rises, and its lowest value is 80° C. to 150° C. 10 Pa to 2.0 ⁇ 10 Pa. Furthermore, the maximum value of the loss tangent (tan ⁇ ) is 1.0 to 3.5 at 80 ° C to 150 ° C.
  • the loss elastic modulus and loss tangent are the above values.
  • a sheet-type insulating varnish 1 that does not satisfy the above cannot obtain a required compressibility when pressurized, and cannot obtain penetration into details between members.
  • the loss elastic modulus at room temperature is 3.0 ⁇ 10 Pa to 3.0 ⁇ 10 Pa
  • 80 ° C. to 150 ° C. is 1.0 ⁇ 10 2 Pa to 1.0 ⁇ 10 3 Pa, and more preferably 1/5 or less of the value at room temperature.
  • the loss elastic modulus at 180° C. or higher saturates at 5.0 ⁇ 10 3 Pa or higher and the loss tangent saturates at 0.2 or lower due to the influence of curing.
  • the characteristics of flexibility and fluidity of the sheet-type insulating varnish 1 can also be evaluated by complex viscosity.
  • the complex viscosity at room temperature is 6.0 ⁇ 102 Pa s to 1.0 ⁇ 104 Pa s, which decreases as the temperature rises, and has a minimum value of 5.0 ⁇ 102 Pa s or less at 80 ° C to 150 ° C. is.
  • the complex viscosity at room temperature is 1.0 ⁇ 10 Pa s to 5.0 ⁇ 10 Pa s
  • the minimum value of the complex viscosity at 80° C. to 150° C. is 1 Pa ⁇ s to 5.0 ⁇ 10 2 Pa ⁇ s, and more preferably 1/10 or less of the value at room temperature.
  • the complex viscosity at 180° C. or higher saturates at 1.0 ⁇ 10 4 Pa ⁇ s or higher due to the effect of curing.
  • the sheet-type insulating varnish 1 is heat-hardened in a hardening treatment step after being placed in the gap between the members to be insulated. Specifically, the sheet-type insulating varnish 1 is placed in advance on one member (heat-generating component, substrate, housing, coil, insulating paper, insulating film, iron core, etc.) and crimped and fixed by the other member (same as above). . If the sheet-type insulating varnish 1 does not have surface adhesiveness, it may be attached with a double-sided tape or the like to prevent it from coming off.
  • the sheet-type insulating varnish 1 is efficiently compressed to a predetermined thickness by pressurization at normal temperature, and is flowed by heating during hardening to permeate into the details between members, and then is heated.
  • the temperature may be increased stepwise from the foaming start temperature of the microcapsules 3 to the reaction start temperature of the latent curing agent+20° C.).
  • the curing temperature is equal to or higher than the reaction initiation temperature of the latent curing agent.
  • the thermally expandable microcapsules 3 are foamed by heating to form voids inside. Since pores reduce the insulating properties and mechanical strength of the cured product, the pore size should be 30 ⁇ m or less on average to maintain insulation, and 20 ⁇ m on average to obtain uniform insulation and stable mechanical strength. The following are more preferred. If the pore size exceeds 30 ⁇ m on average, insulation characteristics such as a decrease in dielectric breakdown voltage and occurrence of partial discharge are deteriorated after curing of the varnish, and vibration resistance of the product is deteriorated due to a decrease in mechanical strength.
  • the heat-expandable microcapsules 3 can change the internal gas pressure by changing the heating temperature and heating time to control the volume increase (expansion) and obtain hollow fine particles. It is necessary to set the heating temperature and heating time so that the pore size of the hollow fine particles is 30 ⁇ m or less on average. It is essential that the reaction initiation temperature of the agent is +20° C. or less. When the curing accelerator lowers the reaction initiation temperature of the latent curing agent, the reaction initiation temperature is preferably +20° C. or lower. A temperature of 80° C. to 180° C. is more preferable in order to suppress uneven foaming.
  • the heating time is not particularly limited as long as the pore size can be controlled to an average of 30 ⁇ m or less, and is preferably 30 seconds to 1 hour from the viewpoint of suppressing uneven foaming.
  • the thickness increase of the sheet-type insulating varnish 1 after curing is not particularly limited as long as the pore size of the hollow fine particles of the thermally expandable microcapsules 3 is 30 ⁇ m or less on average and the gaps between the members to be insulated can be reliably filled. It is preferable that the film thickness after curing increases by 10% or more with respect to the initial film thickness. If the increase is less than 10%, the gap cannot be filled in detail and an air layer remains.
  • the sheet-type insulating varnish 1 is heat-hardened in a hardening process after it is placed in the gaps of the members to be insulated (for example, coils, iron cores, etc.).
  • the heating temperature in the curing treatment step varies depending on the type of curing agent and curing accelerator, but is set to a heating temperature and time that do not degrade the member to be insulated. Specifically, the heating temperature is preferably 100°C to 200°C, more preferably 130°C to 190°C.
  • the heating time is preferably 1 minute to 6 hours, more preferably 3 minutes to 2 hours.
  • the heating temperature is less than 100°C or the heating time is less than 1 minute, the curing will be insufficient and it will not be possible to bond and adhere to the member.
  • the member is rarely deteriorated even if it exceeds 6 hours. be. Since the sheet-type insulating varnish 1 contains almost no solvent, it can be cured by induction heating or electrical heating, thereby simplifying the curing process.
  • the sheet-type insulating varnish 1 preferably has an adhesive strength of 10 N / m or more to the member after curing in order to integrate the members to be insulated and improve the vibration resistance. is more preferably 20 N/m or more. If the adhesive force is less than 10 N/m, sufficient vibration resistance cannot be obtained, and the long-term reliability of the device is lowered.
  • the sheet-type insulating varnish 1 having the above characteristics, it is efficiently compressed to a predetermined thickness by pressurization at room temperature, and it flows by heating during curing and penetrates into the details between members, and then expands.
  • the air layer can be eliminated, the gap between the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
  • Embodiment 4 an example in which the sheet-type insulating varnish of Embodiment 1 is applied to electrical equipment will be described with reference to FIG.
  • a description will be given assuming a power supply device as an example of electrical equipment. Examples of power supply devices include switching type DC-DC converters and AC-DC converters.
  • an electronic device is taken as an application example of the sheet-type insulating varnish, but the present invention is not limited to this, and can be applied to electrical devices in general.
  • a power supply device 15 shown in FIG. 4 includes a substrate 10 on which electronic components 9 are mounted, and a housing 11 to which the substrate 10 is fixed.
  • the electronic component 9 includes heat-generating components such as a field effect transistor (MOSFET (Metal Oxide Semiconductor Field Effect Transistor)), a diode, and a capacitor.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the electronic component 9 is fixed to the substrate 10 by fixing screws 12
  • the substrate 10 is fixed to the housing 11 by fixing screws 13 .
  • a filling through hole 14 is formed in the substrate 10, a sheet-type insulating varnish 1C is arranged in the gap between the electronic component 9 and the substrate 10, and a sheet-type insulating varnish 1D is arranged in the gap between the substrate 10 and the housing 11. That is, in the case of the power supply device 15, the gaps between the members on which the sheet-type insulating varnishes 1C and 1D are arranged are the gaps between the electronic component 9 (heat-generating component) and the substrate 10, and the gaps between the substrate 10 and the housing 11. .
  • the sheet-type insulating varnishes are referred to as 1C and 1D.
  • the sheet-type insulating varnish 1C having a thickness of 1.2 times the size of the gap is pasted on the substrate 10 side. and heated at 130° C. to 200° C. to flow, foam and harden the sheet type insulating varnish 1C.
  • the substrate 10 is fixed to the housing 11 with the fixing screws 13 and heated at 130° C. to 200° C. to flow, foam and harden the sheet-type insulating varnish 1D.
  • the sheet-type insulating varnishes 1C and 1D are efficiently compressed to a predetermined thickness by pressurization at room temperature, and are flowed by heating during curing to permeate the details between members, and then foam the expandable microcapsules.
  • the air layer can be eliminated, the gap between the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
  • the heating temperature is set to the flowing temperature ( The temperature may be increased stepwise from the foaming start temperature of the thermally expandable microcapsules 3 or lower) to the foaming temperature (from the foaming start temperature of the expandable microcapsules to the reaction start temperature of the latent curing agent+20° C.).
  • the curing temperature is equal to or higher than the reaction initiation temperature of the latent curing agent.
  • the sheet-type insulating varnishes 1C and 1D have the flexibility to be compressed at room temperature before curing treatment, flow when heated and penetrate into the details between members, and then foam the expandable microcapsules to form a varnish layer. By increasing the thickness, it is manufactured so that the air layer can be eliminated and the gap can be reliably filled.
  • the sheet-type insulating varnishes 1C and 1D have flexibility that does not break even when bent 180 degrees, and the storage shear elastic modulus, loss elastic modulus, loss tangent, and complex viscosity are By being within the predetermined range described, it has permeability to details between members.
  • the sheet-type insulating varnishes 1C and 1D permeate into the details of the gap between the electronic component 9 and the substrate 10 and the details of the gap between the substrate 10 and the housing 11 by heating during the curing treatment, and then, after they have permeated into the details of the gap between the substrate 10 and the housing 11,
  • the power supply device 15 using the sheet-type insulating varnishes 1C and 1D is less susceptible to insulation deterioration, and the heat generated from the electronic components 9 during operation is efficiently discharged to the substrate 10 .
  • the sheet-type insulating varnishes 1C and 1D do not contain a solvent, they can be cured not only by a general-purpose heating furnace, but also by induction heating and electric heating. Furthermore, since the energy loss during the curing process is small, the curing time is short, and the manufacturing process of the power supply device can be simplified.
  • the insulating material when a liquid insulating material such as an insulating coating agent or potting agent is used, the insulating material flows through the gaps between the members, making it difficult to reliably fill the gaps.
  • the liquid insulating material contains a solvent, a large amount of the organic component volatilizes during the curing process after coating, which poses hygiene and odor problems.
  • volatilization of organic components that do not participate in the curing reaction progresses, resulting in increased energy loss in the heating furnace and longer curing time. As a result, the amount of CO2 emitted increases, which poses an environmental problem.
  • the sheet-type insulating varnishes 1C and 1D are placed in the gap between the electronic component 9 and the substrate 10 and in the gap between the substrate 10 and the housing 11, respectively.
  • the insulation reliability, heat dissipation, and vibration resistance are improved.
  • the power supply device 15 can be made smaller and have a higher output.
  • the sheet-type insulating varnishes 1C and 1D are placed in the gap between the electronic component 9 and the substrate 10 and in the gap between the substrate 10 and the housing 11. Varnish 1C (1D) may also be placed.
  • the sheet-type insulating varnish of the first embodiment is applied to electrical equipment. Therefore, according to the fourth embodiment, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, and reliably fills the gaps. It is possible to provide an electrical device to which the sheet-type insulating varnish having excellent properties is applied.
  • Embodiment 5 an example in which the sheet-type insulating varnish of Embodiment 1 is applied to a rotating electrical machine will be described with reference to FIGS. 5 to 8.
  • FIG. 5 an example in which the sheet-type insulating varnish of Embodiment 1 is applied to a rotating electrical machine will be described with reference to FIGS. 5 to 8.
  • FIG. 5 an example in which the sheet-type insulating varnish of Embodiment 1 is applied to a rotating electrical machine will be described with reference to FIGS. 5 to 8.
  • FIG. 5 is a perspective view of the stator of the rotary electric machine
  • FIG. 6 is a cross-sectional view.
  • the rotary electric machine includes a stator 20 including a stator coil 21 and an annular stator core 22, as shown in FIGS.
  • a predetermined number of slots 24 are provided in the circumferential direction between the teeth portions 23 of the stator core 22 , and the stator coils 21 are accommodated in the slots 24 .
  • FIG. 7 in order to distinguish from the sheet-type insulating varnish 1 of Embodiment 1, it is referred to as a sheet-type insulating varnish 1E.
  • the sheet-type insulating varnish 1E is arranged in the gap between the stator core 5 (the inner wall of the slot 24) and the stator coil 21.
  • an insulating paper 25 or an insulating film is arranged in the gap between the inner wall of the slot 24 and the stator coil 21 . In this case, as shown in FIG.
  • the sheet-type insulating varnish 1E is arranged on the surface of the insulating paper 25 on the coil side.
  • the sheet-type insulating varnish 1E may be arranged on both sides of the insulating paper 25.
  • the paper 25 may be arranged so as to be sandwiched between the sheet-type insulating varnishes 1E.
  • the gap between the members to be insulated is the gap between the stator core 22 and the stator coil 21, the gap between the insulating paper 25 and the stator coil 21, or the gap between the stator core 22 and the insulating paper 25.
  • an insulating tape may be attached to the stator coil 21 .
  • the maximum particle size of the thermally expandable microcapsules 3 and the filler 4 is 30 ⁇ m or less and the average particle diameter is 15 ⁇ m or less.
  • the maximum particle size of the thermally expandable microcapsules and the filler is It is 10 ⁇ m or less, and those having an average particle size of 5 ⁇ m or less are selected.
  • the sheet-type insulating varnish 1E is placed on the stator core 22 or the insulating paper 25, and after the stator coils 21 are further placed, the stator core 22 is formed into an annular shape to obtain the sheet-type insulating varnish 1E.
  • the insulating varnish 1E is compressed and fixed. At this time, if the film thickness of the sheet-type insulating varnish 1E is too large, gaps are generated between the slots 24 during molding, and the ring cannot be molded.
  • the film thickness of the sheet-type insulating varnish 1E is set to be larger than the dimension of the gap between the stator core 22 and the stator coil 21, the film thickness is reduced by the pressure applied when the stator core 22 is formed into an annular shape. must decrease. If the film thickness is compressed by less than 10% with a pressure of 25 MPa at room temperature, gaps will occur between the slots 24 during molding, making it impossible to form an annular shape. Therefore, the film thickness of the sheet-type insulating varnish 1E is 1.1 to 2.0 times, more preferably 1.3 to 1.7 times, the dimension of the gap between the stator core 22 and the stator coil 21. , at room temperature and a pressure of 25 MPa, the compression is 10% or more, preferably 20% or more.
  • the sheet-type insulating varnish 1E having surface adhesiveness is previously applied to the stator core 22 or the insulating paper 25, the workability when inserting the stator coil 21 is reduced. Deteriorate. For this reason, the sheet-type insulating varnish 1E is selected to have no surface tackiness at room temperature while maintaining flexibility and compressibility.
  • the sheet-type insulating varnish 1E penetrates into the details of the gap between the stator core 22 or the insulating paper 25 and the stator coil 21 and the gap between the stator coil 21 by heating during the curing treatment, and then forms the thermally expandable microcapsules 3.
  • the air layer can be eliminated and the gap can be reliably filled.
  • the sheet-type insulating varnish 1E is efficiently compressed to a predetermined thickness by pressurization at room temperature, and is fluidized by heating during curing to penetrate into details between members, and then foams the thermally expandable microcapsules 3.
  • the air layer can be eliminated, the gap between the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
  • the heating temperature is set to the flowing temperature ( The temperature may be increased stepwise from the foaming start temperature of the thermally expandable microcapsules 3 or lower to the foaming temperature (from the foaming start temperature of the thermally expandable microcapsules 3 to the reaction start temperature of the latent curing agent+20° C.).
  • the curing temperature is equal to or higher than the reaction initiation temperature of the latent curing agent. Due to this hardening treatment, the rotating electrical machine using the sheet-type insulating varnish 1E has high insulation performance of the stator coil 21, and insulation deterioration is less likely to occur. Moreover, the heat generated from the windings of the stator coil 21 can be efficiently discharged to the stator core 22 .
  • the stator coil 21 can be securely fixed, the mechanical strength is maintained and the NVH characteristics are improved.
  • the sheet-type insulating varnish 1E does not contain a solvent, it can be cured not only by a general-purpose heating furnace, but also by induction heating and electric heating. Furthermore, since the energy loss during the curing treatment process is small, the curing time is short, and the manufacturing process of the rotary electric machine can be simplified.
  • the insulation reliability is improved by arranging the sheet-type insulating varnish 1E in the gap between the stator core 22 or the insulating paper 25 and the stator coil 21, or in the gap between the stator core 22 and the insulating paper 25. performance, heat dissipation, and vibration resistance can be improved, and miniaturization and high output of the rotating electric machine can be realized.
  • the fifth embodiment applies the sheet-type insulating varnish of the first embodiment to a rotating electric machine. Therefore, according to Embodiment 5, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, and reliably fills the gaps. It is possible to provide a rotating electrical device to which a sheet-type insulating varnish having excellent properties is applied.
  • Embodiment 6 examples and comparative examples of the sheet-type insulating varnish will be described. Although the details of the sheet-type insulating varnish of the present application will be described with reference to Examples and Comparative Examples, the present application is not limited to these. In Examples and Comparative Examples, the following materials were mixed according to the formulations shown in Tables 1 and 2 to prepare thermosetting resin compositions. These thermosetting resin compositions were blended with a diluent and applied to a release film, and the diluent was volatilized and dried so that the non-volatile content was 99% or more to prepare a sheet-type insulating varnish.
  • ⁇ Solid first thermosetting resin> (1-1) Bisphenol A type epoxy resin (epoxy equivalent 1500, softening point 100°C) (1-2) Bisphenol A type vinyl ester resin (polymerization average molecular weight 2000, softening point 80°C)
  • ⁇ Curing agent> (3-1) Dicyandiamide (reaction initiation temperature 160° C.) (3-2) 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (10-hour half-life temperature 117.9° C.) (3-3) Propyleneamine (reactive at room temperature)
  • ⁇ Curing accelerator> (4-1) 1-cyanoethyl-2-methylimidazole (reaction initiation temperature 100° C.) (4-2) 1,8-diazabicyclo[5.4.0]undecene-7 (reaction initiation temperature 100° C.)
  • ⁇ Thermal expandable microcapsules> (6-1) Maximum particle size 15 ⁇ m, average particle size 10 ⁇ m, foaming start temperature 65°C (6-2) Maximum particle size 30 ⁇ m, average particle size 20 ⁇ m, foaming start temperature 120°C (6-3) Maximum particle size 100 ⁇ m, average particle size 50 ⁇ m, foaming start temperature 180°C (6-4) Maximum particle size 45 ⁇ m, average particle size 25 ⁇ m, foaming start temperature 125°C (6-5) Maximum particle size 60 ⁇ m, average particle size 35 ⁇ m, foaming start temperature 185°C (6-6) Maximum particle size 95 ⁇ m, average particle size 45 ⁇ m, foaming start temperature 50°C (6-7) Maximum particle size 105 ⁇ m, average particle size 55 ⁇ m, foaming start temperature 120°C
  • ⁇ Inorganic filler> 7-1) Fused silica (maximum particle size 7 ⁇ m, average particle size 2 ⁇ m) (7-2) Alumina (maximum particle size 18 ⁇ m, average particle size 5 ⁇ m) (7-3) Crystalline silica (maximum particle size 130 ⁇ m, average particle size 60 ⁇ m)
  • the sheet-type insulating varnishes of Examples 1-5 are produced according to the raw materials and their blends described in Embodiments 1 and 2 above.
  • the sheet-type insulating varnishes according to Comparative Examples 1-7 did not conform to the raw materials and their formulations described in Embodiments 1 and 2 above, and were not suitable for the sheet-type insulating varnish of the present application. not
  • the surface smoothness was judged by whether or not the in-plane distribution of the thickness of the sheet-type insulating varnish was within ⁇ 30% of the average value ( ⁇ : within ⁇ 30%, ⁇ : more than ⁇ 30%).
  • the flexibility and compressibility were measured twice immediately after the sheet-type insulating varnish was produced and after storage at 40° C. for 30 days. Flexibility was determined by the presence or absence of cracks or chips that occurred when the sheet-type insulating varnish was bent at 180 degrees at 25° C. ( ⁇ : no occurrence, ⁇ : occurrence).
  • the compressibility of the sheet-type insulating varnish was calculated from the reduction in the thickness of the sheet-type insulating varnish when the sheet-type insulating varnish was placed on a rolled steel plate and a pressure of 25 MPa was applied at 25°C.
  • the evaluation of the compression rate was judged by whether or not the compression rate was 10% or more (O: 10% or more, x: less than 10%).
  • the adhesiveness was evaluated by placing a sheet-type insulating varnish on a rolled steel plate and pressing it with a pressure of 2 MPa at 40°C to determine whether it adhered immediately after production and after storage at 40°C for 30 days.
  • adhesiveness depending on the application of the sheet-type insulating varnish, it may be preferable to have adhesiveness or not to have it, so it cannot be said which one is better. However, since it is not preferable for the adhesiveness to change between immediately after production and after 30 days have passed, this point was evaluated.
  • the pinhole test conforms to JISC3003, immersing a test piece of a specified length (approximately 5 m) in salt water, and applying a DC voltage of 12 V for 1 minute with the liquid as the positive electrode and the test piece as the negative electrode. I checked the number of pinholes. Furthermore, the test pieces cured under the conditions of 150° C. for 1 hour after application were also observed with an optical microscope for the presence or absence of cracks or pinholes on the film surface. As a result, if there are no cracks or pinholes and there is no decrease in dielectric breakdown voltage, it is determined that there is no crazing. It was determined ( ⁇ : no crazing, ⁇ : crazing).
  • thermosetting resin composition of the sheet-type insulating varnish was sampled and the gelling time was measured at 150°C by the hot plate method.
  • the softening point was measured according to JISC2161 "Electrical Insulating Powder Coating Test Method" by taking a sheet of the thermosetting resin composition.
  • the storage shear modulus, loss modulus, loss tangent, complex viscosity, and minimum complex viscosity were measured using a sheet-type insulating varnish with a film thickness of 100 ⁇ m to 300 ⁇ m, using a parallel plate jig from room temperature at a heating rate of 5 ° C./min. It was measured by dynamic viscoelasticity evaluation when the temperature was raised.
  • test piece for measuring the properties of the cured product of the sheet-type insulating varnish was heated from room temperature to 150°C in 10 minutes in a heating furnace to advance the flow, foaming, and curing of the varnish in sequence, and then heated to 150°C. It was prepared by curing in 1 hour.
  • Adhesive strength was evaluated by preparing an adhesive test piece and using a tensile tester. Adhesive strength was evaluated by preparing an adhesive test piece and using a tensile tester. An adhesion test piece was prepared by press-bonding a sheet-type insulating varnish to an electrical steel sheet having a surface treated with acetone degreasing and curing the varnish. The tensile test was performed at 25° C. under the conditions of a peel angle of 180 degrees and a tensile speed of 10 mm/min, and evaluated according to the following criteria ( ⁇ : adhesive strength of 10 N/m or more, x: adhesive strength of less than 10 N/m).
  • Dielectric strength is measured by attaching a sheet-type insulating varnish to one side of a steel plate, raising the temperature from room temperature to 150 ° C. in 10 minutes, and curing the test piece at 150 ° C. for 1 hour.
  • the dielectric breakdown voltage was measured by applying a constant boosted voltage of 0.5 kV/sec, and evaluated according to the following criteria ( ⁇ : dielectric breakdown voltage 8 kV or more, ⁇ : dielectric breakdown voltage 8 kV or less).
  • the film thickness increase rate was calculated by dividing the film thickness after curing by the film thickness before curing, and the presence or absence of an increase in thickness after curing was confirmed.
  • the pore size of the thermally expandable microcapsules after curing was measured and judged by cross-sectional observation ( ⁇ : average particle size of 30 ⁇ m or less, ⁇ : more than 30 ⁇ m).
  • the coil was changed from a rectangular wire to a round wire with a diameter of 1.5mm so that the gap between the coil and the iron core was increased. was made.
  • a sheet-type insulating varnish having a film thickness of 120 ⁇ m was inserted into a gap of 100 ⁇ m between the coil and the iron core and crimped. After curing, the cross section was observed to confirm whether an air layer existed between the iron core and the coil ( ⁇ : no air layer, ⁇ : air layer present). Furthermore, the coils were pulled out and the state of adhesion between the coils was checked ( ⁇ : completely adhered, ⁇ : not adhered).
  • Table 3 shows the evaluation results of the sheet-type insulating varnishes according to Examples 1-5
  • Table 4 shows the evaluation results of the sheet-type insulating varnishes according to Comparative Examples 1-7.
  • the sheet-type insulating varnishes of Examples 1-5 have excellent flexibility and releasability immediately after production and after 30 days have passed, and have a compressibility of 20% or more. Does not cause crazing on enameled wire.
  • the storage shear modulus at 25 ° C. is within the range of 1.0 ⁇ 10 Pa to 5.0 ⁇ 10 Pa, and the minimum value is within the range of 10 Pa to 2.0 ⁇ 10 Pa at 80 ° C. to 150 ° C. is.
  • the loss elastic modulus at 25 ° C. is within the range of 1.0 ⁇ 10 Pa to 5.0 ⁇ 10 Pa, and the minimum value is 80 ° C. to 150 ° C. and within the range of 10 Pa to 2.0 ⁇ 10 Pa be.
  • the maximum value of the loss tangent is in the range of 1.0 to 3.5 at 80°C to 150°C.
  • the complex viscosity at 25°C is in the range of 6.0 x 102 Pa ⁇ s to 1.0 x 104 Pa ⁇ s, and the minimum value is 500 Pa ⁇ s or less at 80°C to 150°C.
  • the sheet-type insulating varnishes of Examples 1-5 all have an adhesive strength of 20 MPa or more at 25° C., and can strongly adhere and fix the members to be insulated. Furthermore, the insulation voltage after curing is high and the insulation reliability is excellent. In addition, since there is no change in flexibility and compressibility after storage at 40° C. for 30 days, the reaction progresses slowly at room temperature and the pot life is long. The thermally expandable microcapsules are foamed after curing, the pore size is 30 ⁇ m or less, and the varnish film thickness is increased. Also, in the verification using the stator, there is no gap between the coil and the core, and the coil is completely fixed.
  • Comparative Example 1 is similar to the formulation of Example 1 and does not contain thermally expandable microcapsules, so the varnish layer does not increase in thickness after curing, so the gap between the coil and the core cannot be filled, and an air layer is formed. remains.
  • Comparative Example 2 is similar to the formulation of Example 2, and contains 105 parts by weight of the thermally expandable microcapsules (6-1) with respect to 100 parts by weight of the thermosetting resin, so that the sheet has a smooth surface. A mold insulating varnish cannot be obtained, and since the varnish layer is highly viscous when heated, it does not flow into the gaps between the coils and the coils cannot be fixed.
  • Comparative Example 3 contains a curing agent (3-3) that is reactively active at room temperature and has a foaming initiation temperature of 180° C. for the thermally expandable microcapsules (6-3). is significantly higher than the reaction start temperature of For this reason, the reaction progresses in the standing state at room temperature, and the physical properties change over time, so there is a problem with the pot life. After 30 days, the pliability and stickiness are lost and the compressibility is 0%. In addition, since the fluidity at the time of heat curing is low, the penetration into minute gaps cannot be obtained, and the adhesion to members is inferior.
  • Comparative Example 4 is similar to the composition of Example 4, and contains thermally expandable microcapsules (6-4) having an average particle size of 25 ⁇ m and an expansion start temperature of 125°C. Since there is no problem with the constituent raw materials of the composition, the characteristics of the sheet-type insulating varnish and the stator are good, but the pore size of the thermally expandable microcapsules foamed after curing is as large as 35 ⁇ m on average. In addition to the deterioration of insulation, the adhesion of the coil was reduced due to insufficient strength of the cured product. In some cases, these problems can be improved by reducing the pore size by reviewing the curing conditions such as the heating rate and curing temperature.
  • Comparative Example 5 is similar to the formulation of Example 5, and the thermally expandable microcapsules (6-5) having a foaming initiation temperature 25° C. higher than the reaction initiation temperature of the latent curing agent (3-1) and the inorganic filler , crystalline silica (7-3) with a maximum particle size of 130 ⁇ m and an average particle size of 60 ⁇ m. Since the inorganic filler having a large particle size was included, the surface smoothness deteriorated when a sheet-type insulating varnish having a film thickness of 120 ⁇ m was produced.
  • the varnish flows into the gaps between the coils and can fix the coils, but because the curing reaction proceeds first, the thermally expandable microcapsules do not foam and the film thickness of the sheet-type insulating varnish does not increase at all. Therefore, the air layer existing in the gap between the coil and the iron core could not be filled. Also, in the verification of the stator with a gap of 100 ⁇ m between the coil and the iron core, the maximum particle size of the inorganic filler (130 ⁇ m) was larger than the gap (100 ⁇ m), so gaps were generated between the teeth and the stator could not be manufactured. Ta.
  • Comparative Example 6 is similar to the formulation of Example 5, and contains thermally expandable microcapsules (6-6) having an average particle diameter of 60 ⁇ m at a foaming initiation temperature of 50° C. and fused silica (7-1) as an inorganic filler. Contains 73% by volume. Since it contains a large amount of inorganic filler, the sheet-type insulating varnish has poor smoothness, low toughness, lacks flexibility and adhesiveness, and has a compressibility of 0%. In addition, since the varnish has a low foaming start temperature (50° C.) and contains thermally expandable microcapsules, foaming progresses at the start of heating and hinders the fluidity of the varnish, making it impossible to fix the coil.
  • thermally expandable microcapsules (6-6) having an average particle diameter of 60 ⁇ m at a foaming initiation temperature of 50° C. and fused silica (7-1) as an inorganic filler. Contains 73% by volume. Since it contains a large amount of inorganic filler, the
  • Comparative Example 7 uses thermally expandable microcapsules (6-7) having a maximum particle size of 105 ⁇ m, an average particle size of 55 ⁇ m, and a foaming start temperature of 120° C., similar to the formulation of Example 2. Since the varnish contains thermally expandable microcapsules having a large maximum particle size, the surface smoothness was lowered when a sheet-type insulating varnish having a film thickness of 120 ⁇ m was produced. Due to the large particle size of the thermally expandable microcapsules, the pore size increased to an average of 50 ⁇ m in the foaming after curing, and in addition to the deterioration of insulation, the adhesion of the coil decreased due to the lack of strength of the cured product. .
  • the coil At the time of hardening after being inserted into the gap between the coil and the iron core and crimped, the thermally expandable microcapsules foamed insufficiently and could not fill the air layer existing in the gap between the coil and the iron core.
  • thermosetting resin flows when heated and penetrates into the details of the gaps in the members to be insulated, filling the gaps reliably, and after curing, it has excellent insulation, mechanical strength, and heat dissipation. Since it has such characteristics, it can be widely applied to electrical equipment and rotating electric machines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A sheet-type insulating varnish (1) to be arranged in a gap between members to be insulated is obtained by forming a thermosetting resin composition into a sheet shape in an uncured or semi-cured state, the thermosetting resin composition comprising: a first thermosetting resin that is a solid at normal temperature; a second thermosetting resin that is a liquid at normal temperature; a latent curing agent that is reactively inactive at 60ºC or lower; and thermally expandable microcapsules (3) that have a maximum particle size that is smaller than the dimensions of the gap, have an average particle size that is smaller than 0.5 times the dimensions of the gap, and have a foaming start temperature of 60ºC or higher, with the thermosetting resin composition containing 10-90 parts by mass of the first thermosetting resin per 100 parts by mass of the total of the first thermosetting resin and the second thermosetting resin.

Description

シート型絶縁ワニス及びその製造方法、電気機器、並びに回転電機Sheet-type insulation varnish and manufacturing method thereof, electrical equipment, and rotary electric machine
 本願は、シート型絶縁ワニス及びその製造方法、電気機器、並びに回転電機に関するものである。 This application relates to a sheet-type insulating varnish and its manufacturing method, an electric device, and a rotating electric machine.
 半導体モジュール、パワーモジュール、電源デバイス等を備えた電子機器を含む電気機器の分野、及び電動機、発電機、圧縮機等を含む回転電機の分野においては、小型化及び高出力化に伴い、絶縁と排熱に対する要求が高まっている。このため、電気機器、回転電機を構成する部材同士の隙間に配置される絶縁材料には、高い絶縁性と排熱性が求められている。
 電気機器においては、半導体チップ、ダイオード、またはトランスコイル等の発熱部品と基板との隙間、または基板と筐体との隙間に絶縁材料が配置される。このような部材同士の隙間に絶縁材料を配置する場合、部分的に空気層が残存すると、絶縁性、排熱性、及び耐振性が低下する原因となる。特に熱伝導率が0の真空下で使用される宇宙用機器においては、排熱の問題は深刻である。
In the field of electric equipment, including electronic equipment equipped with semiconductor modules, power modules, power supply devices, etc., and in the field of rotating electric machines, including electric motors, generators, compressors, etc., along with miniaturization and higher output, insulation and Demand for waste heat is increasing. For this reason, insulating materials placed in gaps between members constituting electric devices and rotating electric machines are required to have high insulating properties and heat exhausting properties.
2. Description of the Related Art In electrical equipment, an insulating material is placed in a gap between a substrate and a heat-generating component such as a semiconductor chip, diode, or transformer coil, or in a gap between the substrate and a housing. When an insulating material is arranged in such a gap between members, if an air layer remains partially, it causes deterioration of insulation, heat dissipation, and vibration resistance. In particular, the problem of waste heat is serious in space equipment that is used in a vacuum with zero thermal conductivity.
 また、回転電機は回転子と、固定子鉄心、及び固定子コイルを有する固定子とを備える。回転電機において、小型化及び高出力化が進められている。回転電機は内部に絶縁部材を備えており、回転電機の小型化及び高出力化に伴い、絶縁部材に用いる絶縁材料には、絶縁性、耐熱性、及び排熱性に優れていることが求められている。回転電機の絶縁の対象となる部材間、例えば固定子鉄心と固定子コイルとの隙間に絶縁部材を配置する場合、隙間内に部分的に空気層が残存すると絶縁性、排熱性、及び耐振性が低下する原因となる。固定子鉄心のスロット内に固定子コイルを収納する際には、スロットの内壁と固定子コイルの隙間には絶縁紙が挿入され、また、固定子コイルは、液状の絶縁ワニスで含浸処理されている。 A rotating electric machine also includes a rotor, a stator core, and a stator having a stator coil. 2. Description of the Related Art In rotary electric machines, miniaturization and higher output are being promoted. Rotating electric machines are equipped with an insulating member inside, and along with the miniaturization and higher output of rotating electric machines, the insulating materials used for the insulating members are required to have excellent insulation, heat resistance, and heat dissipation properties. ing. When an insulating member is placed between members to be insulated in a rotating electric machine, for example, in a gap between a stator core and a stator coil, if an air layer partially remains in the gap, insulation, heat dissipation, and vibration resistance are improved. cause a decrease in When the stator coil is housed in the slot of the stator core, insulating paper is inserted into the gap between the inner wall of the slot and the stator coil, and the stator coil is impregnated with liquid insulating varnish. there is
 しかし、固定子コイルの高占積率化に伴って、スロット内壁、固定子コイル、及び絶縁紙の各々の隙間、及び固定子コイル内の隙間が狭くなっている。そのため、絶縁ワニスが固定子コイルに十分に浸透せず、部分固着になるという課題が生じている。
 また、浸透性を高めるために絶縁ワニスに低粘度ワニスを用いると、コイルエンドに滴下したワニスの多くが鉄心部の端面に漏れ出すため、固定子コイル内部の付着量が不十分になるという課題が生じている。これらの結果、固定子コイルの固着性能が低下した場合、回転電機の長期的な絶縁信頼性に悪影響を与えることになる。特に、自動車用の回転電機の場合、固定子コイルの固着性能の低下は自動車の快適性を推し量る一つの基準である騒音、振動、ハーシュネス(Noise、Vibration、Harshness:以下、NVH特性と称す)を悪化させる要因となる。
However, as the space factor of the stator coil increases, the gaps between the inner walls of the slots, the stator coils, and the insulating paper, and the gaps within the stator coils are becoming narrower. As a result, the insulating varnish does not sufficiently permeate the stator coils, causing a problem of partial adhesion.
In addition, if a low-viscosity varnish is used as the insulating varnish to increase permeability, much of the varnish that drips onto the coil end leaks out onto the end surface of the iron core, resulting in an insufficient amount of varnish adhering to the inside of the stator coil. is occurring. As a result, when the fixing performance of the stator coil is lowered, the long-term insulation reliability of the rotary electric machine is adversely affected. In particular, in the case of rotating electric machines for automobiles, the deterioration of the fixing performance of the stator coil affects noise, vibration, and harshness (hereinafter referred to as NVH characteristics), which are one of the criteria for measuring the comfort of automobiles. cause aggravation.
 また、高出力化に伴い固定子コイルの発熱温度は上昇傾向にあるため、回転電機の耐久性の観点から固定子コイルの排熱性能を向上させる必要がある。しかし、絶縁ワニスの固定子コイルへの付着が不十分で固定子コイルと固定子鉄心の間に空気層が存在している場合、固定子コイルの熱を固定子鉄心に効率良く排熱することができないという課題が生じている。 In addition, as the output increases, the temperature of heat generated by the stator coil tends to rise, so it is necessary to improve the heat dissipation performance of the stator coil from the perspective of the durability of the rotating electrical machine. However, if the insulation varnish is not sufficiently adhered to the stator coil and there is an air layer between the stator coil and the stator core, the heat of the stator coil cannot be efficiently discharged to the stator core. There is a problem that it is not possible to
 これらの絶縁ワニスに起因した課題を解決するために、固定子コイルへの絶縁ワニスの含浸処理を行わずに、固定子コイルを固定子鉄心と絶縁して固着させる方法が開示されている(例えば、特許文献1)。
 また、膨張性接着剤層が短時間で発泡硬化する接着シートで固定子コイルと固定子鉄心の間の隙間を埋める方法が開示されている(例えば、特許文献2)。
In order to solve the problems caused by these insulating varnishes, methods have been disclosed in which the stator coils are insulated and fixed to the stator core without impregnating the stator coils with the insulating varnish (for example, , Patent Document 1).
Further, a method of filling the gap between the stator coil and the stator core with an adhesive sheet whose expansive adhesive layer foams and hardens in a short period of time is disclosed (for example, Patent Document 2).
特開2021-70748号公報Japanese Patent Application Laid-Open No. 2021-70748 国際公開番号WO2016/163514号公報International Publication No. WO2016/163514
 電子機器における電子部品が搭載された基板表面、及び回転電機用の電磁鋼鈑が積層された鉄心及びコイルの表面には凹凸が存在する。特許文献1のシート型絶縁ワニス用の熱硬化性樹脂組成物では、常温での加圧で所定の厚みに圧縮され、硬化時の加熱により流動して部材間の細部に浸透するため、絶縁対象の部材同士の隙間を確実に埋め、両者を絶縁及び固着することができる。しかし、凹凸が大きい場合及びワニス層の加熱流動性が高い場合、部分的に空隙が発生し、冷却性能及び絶縁性が低下するという課題があった。
 一方、特許文献2においては、接着シートを一方の基材に貼付け、加熱により膨張し隙間を埋めるが、コイルの隙間には流動せず、固着させることはできない上に、発泡によりシート内部に大きな空孔が形成されることで、電圧印可時に部分放電が発生したり、そのシート層が脆く振動によりクラックが発生する恐れがある。すなわち、シート層の絶縁性、機械強度、放熱性を低下させる課題があった。
Concavities and convexities exist on the surface of substrates on which electronic components are mounted in electronic equipment, and on the surfaces of iron cores and coils on which magnetic steel sheets for rotating electric machines are laminated. In the thermosetting resin composition for the sheet-type insulating varnish of Patent Document 1, it is compressed to a predetermined thickness by pressurization at room temperature, and it flows by heating during curing and penetrates into the details between the members, so that the insulation object The gaps between the members can be reliably filled, and the two can be insulated and fixed together. However, when the unevenness is large and when the heat flowability of the varnish layer is high, there is a problem that voids are generated partially and the cooling performance and the insulating properties are deteriorated.
On the other hand, in Patent Document 2, an adhesive sheet is attached to one of the base materials and expanded by heating to fill the gap, but it does not flow into the gap between the coils and cannot be fixed. Due to the formation of voids, partial discharge may occur when a voltage is applied, or the sheet layer may be fragile and cracks may occur due to vibration. That is, there is a problem that the insulating properties, mechanical strength, and heat dissipation properties of the sheet layer are deteriorated.
 本願は、上記のような課題を解決するための技術を開示するものであり、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するシート型絶縁ワニス、及びその製造方法、さらにこのシート型絶縁ワニスを適用した電気機器及び回転電機を提供することを目的とする。 The present application discloses a technique for solving the above problems, in which the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, thereby filling the gaps reliably. , a sheet-type insulating varnish having excellent properties of insulation, mechanical strength, and heat dissipation after curing, a method for producing the same, and an electric device and a rotating electric machine to which this sheet-type insulating varnish is applied.
 本願に開示されるシート型絶縁ワニスは、絶縁対象の部材同士の隙間に配置されるシート型絶縁ワニスであって、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、60℃以下で反応不活性な潜在性硬化剤と、最大粒径が隙間の寸法よりも小さく平均粒径が隙間の寸法の0.5倍よりも小さい発泡開始温度が60℃以上である熱膨張性マイクロカプセルとを含み、第1熱硬化性樹脂と第2熱硬化性樹脂との合計100質量部に対して、第1熱硬化性樹脂を10質量部~90質量部含む熱硬化性樹脂組成物が未硬化または半硬化の状態でシート状に形成されているものである。
 本願に開示されるシート型絶縁ワニスの製造方法は、絶縁対象の部材同士の隙間に配置されるシート型絶縁ワニスの製造方法であって、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、60℃以下で反応不活性な潜在性硬化剤と、最大粒径が隙間の寸法よりも小さく平均粒径が隙間の寸法の0.5倍よりも小さく発泡開始温度が60℃以上である熱膨張性マイクロカプセルとを含み、第1熱硬化性樹脂と第2熱硬化性樹脂との合計100質量部に対して第1熱硬化性樹脂を10質量部~90質量部であり、熱膨張性マイクロカプセルは第1熱硬化性樹脂と第2熱硬化性樹脂との合計100質量部に対して1~100質量%である熱硬化性樹脂組成物と、希釈用有機溶剤とを攪拌混合し、熱硬化性樹脂組成物のスラリーを作製する第1工程と、
スラリーを離型フィルムまたは離型紙に隙間の寸法の1.1倍~2.0倍の膜厚に塗布し、常温で25MPaの圧力を加えた時に膜厚が10%以上減少する圧縮率を有するように乾燥させる第2工程と、を備えるものである。
 本願に開示される電気機器は、電子部品が搭載された基板と、基板が固定された筐体とを備え、電子部品と基板の間の隙間、及び基板と筐体の間の隙間のいずれか一方または両方の隙間に配置された上記シート型絶縁ワニスを備えるものである。
 本願に開示される回転電機は、固定子鉄心のスロット内に固定子コイルが収納され、スロットの内壁と固定子コイルの間の隙間に配置された上記シート型絶縁ワニスを備えるものである。
The sheet-type insulating varnish disclosed in the present application is a sheet-type insulating varnish that is arranged in a gap between members to be insulated, and is composed of a first thermosetting resin that is solid at room temperature and a second thermosetting resin that is liquid at room temperature. and a latent curing agent that is reactively inactive at 60°C or lower, and the maximum particle size is smaller than the gap dimension and the average particle size is smaller than 0.5 times the gap dimension. A heat containing 10 parts by mass to 90 parts by mass of the first thermosetting resin with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin. The curable resin composition is formed into a sheet in an uncured or semi-cured state.
A method for producing a sheet-type insulating varnish disclosed in the present application is a method for producing a sheet-type insulating varnish that is arranged in a gap between members to be insulated, and comprises a first thermosetting resin that is solid at room temperature and a first thermosetting resin that is solid at room temperature. A liquid second thermosetting resin, a latent curing agent that is inactive at 60° C. or less, and a foam having a maximum particle size smaller than the gap dimension and an average particle size smaller than 0.5 times the gap dimension. 10 parts by mass of the first thermosetting resin to 100 parts by mass of the first thermosetting resin and the second thermosetting resin, including thermally expandable microcapsules having an initiation temperature of 60 ° C. or higher 90 parts by mass of the thermosetting resin composition, and the thermally expandable microcapsules are 1 to 100% by mass with respect to the total 100 parts by mass of the first thermosetting resin and the second thermosetting resin; a first step of stirring and mixing an organic solvent for the thermosetting resin composition to prepare a slurry of the thermosetting resin composition;
Slurry is applied to a release film or release paper to a thickness of 1.1 to 2.0 times the size of the gap, and when a pressure of 25 MPa is applied at room temperature, the thickness has a compressibility of 10% or more. and a second step of drying.
The electrical equipment disclosed in the present application includes a substrate on which electronic components are mounted and a housing to which the substrate is fixed, and either a gap between the electronic component and the substrate or a gap between the substrate and the housing It is provided with the sheet-type insulating varnish described above arranged in one or both gaps.
A rotating electric machine disclosed in the present application includes a stator coil housed in a slot of a stator core, and includes the sheet-type insulating varnish arranged in a gap between the inner wall of the slot and the stator coil.
 本願に開示されるシート型絶縁ワニスによれば、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するシート型絶縁ワニスを提供することができる。
 本願に開示されるシート型絶縁ワニスの製造方法によれば、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するシート型絶縁ワニスを得ることができる。
 本願に開示される電気機器によれば、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するシート型絶縁ワニスを適用した電気機器を提供することができる。
 本願に開示される回転電機によれば、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するシート型絶縁ワニスを適用した回転電機を提供することができる。
According to the sheet-type insulating varnish disclosed in the present application, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, reliably filling the gaps, and providing insulation and mechanical strength after curing. , it is possible to provide a sheet-type insulating varnish having excellent heat dissipation properties.
According to the method for producing the sheet-type insulating varnish disclosed in the present application, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, reliably filling the gaps, and providing insulation after curing. , a sheet-type insulating varnish having excellent mechanical strength and heat dissipation properties can be obtained.
According to the electrical device disclosed in the present application, the thermosetting resin flows when heated and penetrates into the details of the gap between the members to be insulated, reliably filling the gap, and after curing, the insulation, mechanical strength, and heat dissipation. It is possible to provide an electric device to which the sheet-type insulating varnish having excellent properties is applied.
According to the rotating electric machine disclosed in the present application, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, reliably filling the gaps, and after curing, insulation, mechanical strength, and heat dissipation. It is possible to provide a rotating electric machine to which a sheet-type insulating varnish having excellent properties is applied.
図1Aは、実施の形態1に係るシート型絶縁ワニスの概略構成を示す断面図である。図1Bは、実施の形態1に係るシート型絶縁ワニスの概略構成を示す断面図である。1A is a cross-sectional view showing a schematic configuration of a sheet-type insulating varnish according to Embodiment 1. FIG. 1B is a cross-sectional view showing a schematic configuration of the sheet-type insulating varnish according to Embodiment 1. FIG. 実施の形態1に係るシート型絶縁ワニスを回転電機に適用した場合の形状変化を説明する断面図である。FIG. 5 is a cross-sectional view for explaining shape change when the sheet-type insulating varnish according to Embodiment 1 is applied to a rotating electric machine; 実施の形態2に係るシート型絶縁ワニスの製造方法のフローチャートである。6 is a flow chart of a method for manufacturing a sheet-type insulating varnish according to Embodiment 2. FIG. 実施の形態4に係る電源デバイスにシート型絶縁ワニスを適用した場合の説明図である。FIG. 11 is an explanatory diagram of a case where a sheet-type insulating varnish is applied to the power supply device according to the fourth embodiment; 実施の形態5に係る回転電機の固定子の斜視図である。FIG. 11 is a perspective view of a stator of a rotating electric machine according to Embodiment 5; 実施の形態5に係る回転電機の固定子の断面図である。FIG. 11 is a cross-sectional view of a stator of a rotating electric machine according to Embodiment 5; 実施の形態5に係る回転電機の固定子にシート型絶縁ワニスを適用した場合の説明図である。FIG. 14 is an explanatory diagram of a case where a sheet-type insulating varnish is applied to a stator of a rotary electric machine according to Embodiment 5; 実施の形態5に係る回転電機の固定子にシート型絶縁ワニスを適用した場合の説明図である。FIG. 14 is an explanatory diagram of a case where a sheet-type insulating varnish is applied to a stator of a rotary electric machine according to Embodiment 5;
実施の形態1.
 実施の形態1は、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、発泡開始温度が60℃以上である熱膨張性マイクロカプセルと、60℃以下で反応不活性な潜在性硬化剤と、必要に応じて充填剤とを含むシート型絶縁ワニスに関するものである。
Embodiment 1.
Embodiment 1 comprises a first thermosetting resin that is solid at normal temperature, a second thermosetting resin that is liquid at normal temperature, a thermally expandable microcapsule having a foaming start temperature of 60° C. or higher, and It relates to a sheet-type insulating varnish containing a reaction-inert latent curing agent and optionally a filler.
 以下、実施の形態1に係るシート型絶縁ワニスについて、シート型絶縁ワニスの概略構成を示す断面図である図1A、図1B、及びシート型絶縁ワニスを回転電機に適用した場合の形状変化を説明する断面図である図2に基づいて説明する。 1A and 1B, which are cross-sectional views showing a schematic configuration of the sheet-type insulating varnish according to the first embodiment, and a change in shape when the sheet-type insulating varnish is applied to a rotating electrical machine. Description will be made based on FIG. 2 which is a cross-sectional view.
 まず、シート型絶縁ワニスの概略構成と機能を図1A、図1B、図2に基づいて説明する。
 図1A、図1Bは、実施の形態1に係るシート型絶縁ワニスの概略構成を示す断面図である。
 図1Aのシート型絶縁ワニス1aは基本構成であり、樹脂成分2と、熱膨張性マイクロカプセル3を含む。
 樹脂成分2は、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂とを第1熱硬化性樹脂と第2熱硬化性樹脂の合計100質量部に対して、第1熱硬化性樹脂を10質量部~90質量部含み、60℃以下で反応不活性な潜在性硬化剤、及び必要に応じて硬化促進剤、熱可塑性樹脂、製膜性付与剤、粘着付与剤、及び接着付与剤等を含む。
 熱膨張性マイクロカプセル3は、最大粒径が適用対象の隙間の寸法よりも小さく平均粒径が隙間の寸法の0.5倍よりも小さい発泡開始温度が60℃以上のものである。
 樹脂成分2中に熱膨張性マイクロカプセル3が分散されたものが基本構成のシート型絶縁ワニス1aである。
 また、図1Aの基本構成に対して、図1Bに示すように熱伝導率及び機械強度の向上、シート型絶縁ワニスの厚膜化等の観点から、無機系及び樹脂系の充填剤4を分散させた構成としてもよい。充填剤4を分散させたものをシート型絶縁ワニス1bとしている。
 なお、基本構成のシート型絶縁ワニス1aと充填剤4を分散させたシート型絶縁ワニス1bとを区別せずにまとめて記載する場合は、シート型絶縁ワニス1と記載する。
First, the schematic configuration and function of the sheet-type insulating varnish will be described with reference to FIGS. 1A, 1B, and 2. FIG.
1A and 1B are cross-sectional views showing a schematic configuration of a sheet-type insulating varnish according to Embodiment 1. FIG.
A sheet-type insulating varnish 1a of FIG.
The resin component 2 is a first thermosetting resin that is solid at normal temperature and a second thermosetting resin that is liquid at normal temperature, with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin. , Contains 10 parts by mass to 90 parts by mass of the first thermosetting resin, a latent curing agent that is inactive at 60 ° C. or less, and if necessary, a curing accelerator, a thermoplastic resin, a film-forming agent, adhesive Including imparting agent, adhesion imparting agent and the like.
The thermally expandable microcapsules 3 have a maximum particle size smaller than the size of the gap to which they are applied, an average particle size smaller than 0.5 times the size of the gap, and an expansion initiation temperature of 60° C. or higher.
A sheet-type insulating varnish 1a having a basic configuration is obtained by dispersing thermally expandable microcapsules 3 in a resin component 2. As shown in FIG.
In addition, as shown in FIG. 1B, inorganic and resin-based fillers 4 are dispersed in the basic structure of FIG. It is good also as a structure which made it. A sheet-type insulating varnish 1b is obtained by dispersing the filler 4 therein.
When the sheet-type insulating varnish 1a of the basic configuration and the sheet-type insulating varnish 1b in which the filler 4 is dispersed are collectively described without distinction, they are described as a sheet-type insulating varnish 1.
 次に、シート型絶縁ワニス1の機能を図2に基づいて説明する。
 図2は、シート型絶縁ワニス1bを回転電機に適用した場合のシート型絶縁ワニス1bの形状変化を説明する。図2では、回転電機の構成部材として固定子コイル21と固定子鉄心22とをシート型絶縁ワニス1bの適用対象として説明する。
 図2において、F2aはシート型絶縁ワニス1bを固定子コイル21と固定子鉄心22の間に挿入し、固定子鉄心22に固定した状態を表している。
 F2bは固定子コイル21をシート型絶縁ワニス1bに圧着した状態を表している。空気層7が形成されている。図において、「PJ」は「圧着」を示す。
 F2cは加熱によるワニス層の浸透と増厚を表している。F2cにおいて、発泡後の熱膨張性マイクロカプセル3を発泡した熱膨張性マイクロカプセル8と記載している。ワニス層が増量することで、空気層7が消滅している。図において、「HT」は「加熱」、「VP」は「ワニス浸透」、「FM」は「発泡」、「HD」は「硬化」をそれぞれ示す。
 図2でわかるように、シート型絶縁ワニス1は、常温での加圧で所定の厚みに効率よく圧縮される。さらに、硬化時の加熱により流動して部材間の細部に浸透し、その後に熱膨張性マイクロカプセル3の発泡によりワニス層が増厚する。この結果、空気層を排除し、適用対象すなわち絶縁対象の部材同士の隙間を確実に埋め、両者を絶縁及び固着することができる。
Next, the function of the sheet-type insulating varnish 1 will be described with reference to FIG.
FIG. 2 explains the shape change of the sheet-type insulating varnish 1b when the sheet-type insulating varnish 1b is applied to a rotating electric machine. In FIG. 2, the sheet-type insulating varnish 1b is applied to the stator coil 21 and the stator iron core 22 as components of the rotating electric machine.
In FIG. 2, F2a represents a state in which the sheet-type insulating varnish 1b is inserted between the stator coil 21 and the stator core 22 and fixed to the stator core 22. FIG.
F2b represents a state in which the stator coil 21 is pressure-bonded to the sheet-type insulating varnish 1b. An air layer 7 is formed. In the figure, "PJ" indicates "crimping".
F2c represents the penetration and thickening of the varnish layer by heating. In F2c, the thermally expandable microcapsules 3 after foaming are described as foamed thermally expandable microcapsules 8 . As the varnish layer increases, the air layer 7 disappears. In the figure, "HT" indicates "heating", "VP" indicates "varnish penetration", "FM" indicates "foaming", and "HD" indicates "curing".
As can be seen from FIG. 2, the sheet-type insulating varnish 1 is efficiently compressed to a predetermined thickness by pressurization at room temperature. Furthermore, the varnish layer becomes thicker due to the expansion of the heat-expandable microcapsules 3 after the heat-curing causes the varnish to flow and permeate into the details between the members. As a result, the air layer can be eliminated, the gap between the members to be applied, that is, the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
 シート型絶縁ワニス1の材料である熱硬化性樹脂組成物について説明する。熱硬化性樹脂組成物は、絶縁対象の部材同士の隙間に配置されるシート型絶縁ワニス用の樹脂組成物である。適用対象の部材同士の隙間の少なくとも一部はほぼ一定の寸法を有する(以下、これを隙間の寸法という)。
 熱硬化性樹脂組成物は、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、60℃以下で反応不活性な潜在性硬化剤とを含む。さらに熱硬化性樹脂組成物は、最大粒径が隙間の寸法よりも小さく平均粒径が隙間の寸法の0.5倍よりも小さい発泡開始温度が60℃以上である熱膨張性マイクロカプセル3と、第1熱硬化性樹脂と第2熱硬化性樹脂の合計100質量部に対して、第1熱硬化性樹脂を10質量部~90質量部含む。さらに、必要に応じて無機系及び樹脂系の充填剤、硬化促進剤、熱可塑性樹脂、製膜性付与剤、粘着付与剤、及び接着付与剤等を含む。
 なお、以下の説明において、第1熱硬化性樹脂及び第2熱硬化性樹脂を特に区別せず両方をまとめて記載する場合、あるいはこれらの混合樹脂を示す場合は、単に「熱硬化性樹脂」と記載する。また、常温とは15℃~35℃を示す。
The thermosetting resin composition, which is the material of the sheet-type insulating varnish 1, will be described. A thermosetting resin composition is a resin composition for a sheet-type insulating varnish that is arranged in a gap between members to be insulated. At least some of the gaps between the members to which it is applied have substantially constant dimensions (hereafter referred to as gap dimensions).
The thermosetting resin composition includes a first thermosetting resin that is solid at room temperature, a second thermosetting resin that is liquid at room temperature, and a latent curing agent that is reaction-inactive at 60° C. or lower. Furthermore, the thermosetting resin composition includes thermally expandable microcapsules 3 having a maximum particle diameter smaller than the gap dimension and an average particle diameter smaller than 0.5 times the gap dimension and having a foaming start temperature of 60° C. or higher. , containing 10 to 90 parts by mass of the first thermosetting resin with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin. Further, inorganic and resinous fillers, curing accelerators, thermoplastic resins, film-forming agents, tackifiers, adhesion promoters and the like are included as necessary.
In the following description, when the first thermosetting resin and the second thermosetting resin are not particularly distinguished and both are collectively described, or when a mixed resin of these is indicated, simply "thermosetting resin" and described. Further, normal temperature means 15°C to 35°C.
 上記の原材料を組み合わせた熱硬化性樹脂組成物を用いて作製されたシート型絶縁ワニス1は、常温での加圧で所定の厚みに圧縮される柔軟性を有し、さらに、硬化時の加熱により流動して部材間の細部に浸透した後に、熱膨張性マイクロカプセル3の発泡によりワニス層が増厚する特性を有する。従って、実施の形態1による熱硬化性樹脂組成物は、絶縁対象の部材同士の隙間を確実に埋め、両者を絶縁及び固着するシート型絶縁ワニス1を作製するのに好適である。 The sheet-type insulating varnish 1 produced using the thermosetting resin composition that combines the above raw materials has the flexibility to be compressed to a predetermined thickness by pressurization at room temperature, and furthermore, heat during curing. The varnish layer has a characteristic that the thickness of the varnish layer increases due to the foaming of the thermally expandable microcapsules 3 after the varnish flows and penetrates into the details between the members. Therefore, the thermosetting resin composition according to Embodiment 1 is suitable for producing the sheet-type insulating varnish 1 that reliably fills the gaps between the members to be insulated and insulates and adheres them.
 熱硬化性樹脂には、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂として公知のものが用いられる。特に、絶縁ワニスとして汎用に使用されているエポキシ樹脂、フェノール樹脂、またはビニルエステル樹脂等の不飽和ポリエステル樹脂の少なくとも1つを含むことが好ましい。 For thermosetting resins, known epoxy resins, phenolic resins, unsaturated polyester resins, polyurethane resins, diallyl phthalate resins, and silicone resins are used. In particular, it preferably contains at least one of epoxy resin, phenol resin, and unsaturated polyester resin such as vinyl ester resin, which are commonly used as insulating varnish.
 熱硬化性樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ブロム化ビスフェノールA型エポキシ樹脂、ブロム化ビスフェノールF型エポキシ樹脂、ブロム化ビスフェノールAD型エポキシ樹脂、脂環式エポキシ樹脂、ブロム化脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂、ブロム化クレゾールノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、トリグリシジルイソシアネート、ヒダントイン型エポキシ樹脂、複素環式エポキシ樹脂、ビフェニル骨格含有アラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、エポキシ(メタ)アクリレート樹脂(ビニルエステル系樹脂)、ウレタン(メタ)アクリレート樹脂、ポリエーテル(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂等が挙げられる。これらの樹脂を単独で用いてもよいし、2種類以上を混合して用いてもよい。 Specific examples of thermosetting resins include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, brominated bisphenol A epoxy resin, brominated bisphenol F epoxy resin, and brominated bisphenol AD epoxy resin. Resins, alicyclic epoxy resins, brominated alicyclic epoxy resins, phenol novolak type epoxy resins, cresol novolac type epoxy resins, brominated phenol novolak type epoxy resins, brominated cresol novolac type epoxy resins, hydrogenated bisphenol A type epoxy Resins, triglycidyl isocyanate, hydantoin-type epoxy resins, heterocyclic epoxy resins, biphenyl skeleton-containing aralkyl-type epoxy resins, dicyclopentadiene-type epoxy resins, novolac-type phenolic resins, resol-type phenolic resins, epoxy (meth)acrylate resins (vinyl ester resins), urethane (meth)acrylate resins, polyether (meth)acrylate resins, polyester (meth)acrylate resins, and the like. These resins may be used alone, or two or more of them may be mixed and used.
 第1熱硬化性樹脂は常温で固体であり、融点あるいはガラス転移点の軟化温度が160℃以下であり、さらに好ましくは125℃以下である。軟化温度が160℃よりも大きい場合、加熱時に第2熱硬化性樹脂との重合反応が進みにくく、硬化処理工程における加熱温度を200℃よりも高くする必要があり、絶縁対象の部材の劣化を誘発するため好ましくない。 The first thermosetting resin is solid at room temperature, and has a softening temperature of 160°C or less, more preferably 125°C or less, at the melting point or glass transition point. If the softening temperature is higher than 160°C, the polymerization reaction with the second thermosetting resin is difficult to progress during heating, and the heating temperature in the curing treatment step needs to be higher than 200°C. Unfavorable because it is provocative.
 また、第1熱硬化性樹脂は、液状の第2熱硬化性樹脂または希釈用有機溶剤(以下、希釈剤という)の少なくとも一方に溶解しなければならない。溶解しない場合、スラリー作製の際に樹脂成分が均等に溶解した状態が得られず、均質なシート型絶縁ワニス1を形成することができない。 In addition, the first thermosetting resin must be dissolved in at least one of the liquid second thermosetting resin and the diluent organic solvent (hereinafter referred to as diluent). If the varnish does not dissolve, a state in which the resin component is evenly dissolved cannot be obtained during preparation of the slurry, and a homogeneous sheet-type insulating varnish 1 cannot be formed.
 さらに、第1熱硬化性樹脂がエポキシ樹脂の場合、絶縁対象の部材との接着力を高める観点からは、エポキシ当量が200以上であり、軟化温度が50℃から160℃の範囲(以下、このような数値または割合の下限と上限を示す場合、「50℃~160℃」のように記す)にあるエポキシ樹脂がより好ましい。また、第1熱硬化性樹脂がビニルエステル樹脂等の不飽和ポリエステル樹脂の場合も、軟化温度が50℃~160℃であるものが好ましい。これらは常温での他の原材料との予備混合時の作業性に優れ、且つ、加熱で容易に溶融するため、他の原材料との均一混合性が向上する。 Furthermore, when the first thermosetting resin is an epoxy resin, from the viewpoint of increasing the adhesive strength with the member to be insulated, the epoxy equivalent is 200 or more and the softening temperature is in the range of 50°C to 160°C (hereinafter referred to as this When indicating the lower and upper limits of such numerical values or ratios, it is described as "50° C. to 160° C.") is more preferable. Also when the first thermosetting resin is an unsaturated polyester resin such as a vinyl ester resin, the softening temperature is preferably 50°C to 160°C. These are excellent in workability when premixed with other raw materials at room temperature, and are easily melted by heating, so that uniform mixing with other raw materials is improved.
 第2熱硬化性樹脂は、第1熱硬化性樹脂がエポキシ樹脂の場合、絶縁対象の部材との接着力を高めるには、常温で液状のエポキシ樹脂が好適であり、第1熱硬化性樹脂の溶解力を高めるには、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂がより好ましく用いられる。また、第2熱硬化性樹脂は、第1熱硬化性樹脂が不飽和ポリエステル樹脂の場合、第1熱硬化性樹脂の溶解力を高めるには、不飽和ポリエステル樹脂のオリゴマーまたはモノマーの低粘度の低分子量体が好適である。 When the first thermosetting resin is an epoxy resin, the second thermosetting resin is preferably an epoxy resin that is liquid at room temperature in order to increase the adhesive strength with the member to be insulated. Bisphenol A type epoxy resins and bisphenol F type epoxy resins are more preferably used to increase the dissolving power of . In addition, when the first thermosetting resin is an unsaturated polyester resin, the second thermosetting resin should be a low-viscosity unsaturated polyester resin oligomer or monomer in order to increase the dissolving power of the first thermosetting resin. Low molecular weights are preferred.
 このように、常温での状態が異なる第1熱硬化性樹脂と第2熱硬化性樹脂を用い、質量比の配合等を調整することにより、シート型絶縁ワニス1の常温での表面粘着性(タック性)、機械強度(靭性)、粘着性、加熱時の流動性等を制御することができる。第1熱硬化性樹脂と第2熱硬化性樹脂の合計100質量部に対して、第1熱硬化性樹脂は10質量部~90質量部であり、より好ましくは15質量部~85質量部である。 In this way, by using the first thermosetting resin and the second thermosetting resin, which have different states at room temperature, and adjusting the mass ratio, etc., the surface adhesiveness of the sheet-type insulating varnish 1 at room temperature ( tackiness), mechanical strength (toughness), adhesiveness, fluidity during heating, etc. can be controlled. The first thermosetting resin is 10 parts by mass to 90 parts by mass, more preferably 15 parts by mass to 85 parts by mass with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin. be.
 質量比でいうと、第1熱硬化性樹脂と第2熱硬化性樹脂との質量比(A/B)は、10/90~90/10の範囲であることが好ましい。質量比(A/B)が10/90未満の場合、液状樹脂が多いため、乾燥後に安定したシート型絶縁ワニス1が得られず、離型基材から剥離できない。質量比(A/B)が90/10を超える場合、固形樹脂が多いため、シート型絶縁ワニス1の靭性(材料の粘り強さ)が低くなる。このため、乾燥時または離型基材からの剥離時に割れ及び欠けが発生し易く、作業性が悪くなる。 In terms of mass ratio, the mass ratio (A/B) between the first thermosetting resin and the second thermosetting resin is preferably in the range of 10/90 to 90/10. If the mass ratio (A/B) is less than 10/90, the amount of liquid resin is large, so that the sheet-type insulating varnish 1 cannot be obtained stably after drying and cannot be peeled off from the release substrate. If the mass ratio (A/B) exceeds 90/10, the toughness (tenacity of the material) of the sheet-type insulating varnish 1 becomes low because of the large amount of solid resin. For this reason, cracks and chips are likely to occur during drying or during peeling from the release substrate, resulting in poor workability.
 靭性が高く安定したシート型絶縁ワニス1を作製するには、質量比(A/B)は15/85~85/15の範囲であることが好ましい。また、絶縁対象の部材への貼り付けを容易にできる粘着性を確保するには、質量比(A/B)は15/85~50/50の範囲が好ましい。一方、シート型絶縁ワニス1の表面の粘着性が不要な場合(例えば粘着性が作業性を悪化させる場合)は、表面粘着性を低くするために、質量比(A/B)は50/50~85/15の範囲が好ましい。 The mass ratio (A/B) is preferably in the range of 15/85 to 85/15 in order to produce a sheet-type insulating varnish 1 with high toughness and stability. Also, in order to ensure adhesiveness that facilitates attachment to a member to be insulated, the mass ratio (A/B) is preferably in the range of 15/85 to 50/50. On the other hand, when the adhesiveness of the surface of the sheet-type insulating varnish 1 is unnecessary (for example, when the adhesiveness deteriorates workability), the mass ratio (A / B) is 50/50 in order to reduce the surface adhesiveness. A range of ~85/15 is preferred.
 また、熱硬化性樹脂組成物は、熱硬化性樹脂を硬化させる硬化剤を含有することができる。硬化剤は、特に限定されることはなく、熱硬化性樹脂の種類にあわせて公知のものを適宜選択することができる。硬化剤には、アミン類、フェノール類、酸無水物類、イミダゾール類、ポリメルカプタン硬化剤、ポリアミド樹脂等が用いられる。 In addition, the thermosetting resin composition can contain a curing agent that cures the thermosetting resin. The curing agent is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin. Amines, phenols, acid anhydrides, imidazoles, polymercaptan curing agents, polyamide resins and the like are used as curing agents.
 硬化剤の具体例としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸及び無水ハイミック酸等の脂環式酸無水物、ドデセニル無水コハク酸等の脂肪族酸無水物、無水フタル酸及び無水トリメリット酸等の芳香族酸無水物、ジシアンジアミド、4,4’-ジアミノジフェニルスルホン等の芳香族ジアミン、アジピン酸ジヒドラジド等の有機ジヒドラジド、三フッ化ホウ素、三塩化ホウ素及び三臭化ホウ素等のハロゲン化ホウ素アミン錯体、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン及びその誘導体、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール及び2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等のイミダゾール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック樹脂、クレゾールノボラック樹脂、p-ヒドロキシスチレン樹脂等の多価フェノール化合物、有機過酸化物が挙げられる。 Specific examples of curing agents include alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and himic acid anhydride, aliphatic acid anhydrides such as dodecenyl succinic anhydride, phthalic anhydride and anhydride. Aromatic acid anhydrides such as trimellitic acid, aromatic diamines such as dicyandiamide and 4,4′-diaminodiphenylsulfone, organic dihydrazides such as adipic acid dihydrazide, boron trifluoride, boron trichloride and boron tribromide Boron halide amine complex, tris(dimethylaminomethyl)phenol, dimethylbenzylamine, 1,8-diazabicyclo(5,4,0)undecene and its derivatives, 2-methylimidazole, 2-ethyl-4-methylimidazole and 2 -Imidazoles such as phenylimidazole and 1-cyanoethyl-2-methylimidazole, polyhydric phenol compounds such as bisphenol A, bisphenol F, bisphenol S, phenol novolac resin, cresol novolak resin, and p-hydroxystyrene resin, organic peroxides is mentioned.
 ハロゲン化ホウ素アミン錯体の代表的な具体例としては、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素ジエチルアミン錯体、三フッ化ホウ素イソプロピルアミン錯体、三フッ化ホウ素クロロフェニルアミン錯体、三フッ化ホウ素-トリアリルアミン錯体、三フッ化ホウ素ベンジルアミン錯体、三フッ化ホウ素アニリン錯体、三塩化ホウ素モノエチルアミン錯体、三塩化ホウ素フェノール錯体、三塩化ホウ素ピペリジン錯体、三塩化ホウ素硫化ジメチル錯体、三塩化ホウ素N,N-ジメチルオクチルアミン錯体、三塩化ホウ素N,N-ジメチルドデシルアミン錯体、三塩化ホウ素N,N-ジエチルジオクチルアミン錯体等が挙げられる。これらの硬化剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Representative specific examples of boron trifluoride amine complexes include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, boron trifluoride- triallylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, N-dimethyloctylamine complex, boron trichloride N,N-dimethyldodecylamine complex, boron trichloride N,N-diethyldioctylamine complex and the like. These curing agents may be used alone or in combination of two or more.
 また、硬化剤の配合量は、使用する熱硬化性樹脂及び硬化剤の種類等に合わせて適宜調整すればよく、通常、熱硬化性樹脂100質量部に対して0.1質量部以上200質量部以下であることが好ましい。 In addition, the amount of the curing agent may be appropriately adjusted according to the type of the thermosetting resin and the curing agent to be used. It is preferably less than or equal to parts.
 さらに、硬化剤は、熱硬化性樹脂としてエポキシ樹脂を用いた場合、シート型絶縁ワニス1の保存安定性、硬化性、及び硬化樹脂物性等の観点から、60℃以下で反応不活性な潜在性硬化剤が好適である。潜在性硬化剤の具体例としては、三フッ化ホウ素-アミン錯体等のハロゲン化ホウ素アミン錯体、ジシアンジアミド、有機酸ヒドラジッド、4,4’-ジアミノジフェニルスルホン等の芳香族ジアミン等が挙げられる。これらの潜在性硬化剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。潜在性硬化剤の配合量は、熱硬化性樹脂のエポキシ樹脂に対する当量比が0.3~2.0であり、硬化物特性の安定性の観点から、0.5~1.5であることがより好ましい。 Furthermore, when an epoxy resin is used as the thermosetting resin, the curing agent has a latent reaction inactive at 60 ° C. or less from the viewpoint of the storage stability of the sheet-type insulating varnish 1, curability, physical properties of the cured resin, etc. Curing agents are preferred. Specific examples of the latent curing agent include halogenated boron amine complexes such as boron trifluoride-amine complexes, dicyandiamide, organic acid hydrazides, and aromatic diamines such as 4,4'-diaminodiphenylsulfone. These latent curing agents may be used alone or in combination of two or more. The amount of the latent curing agent is such that the equivalent ratio of the thermosetting resin to the epoxy resin is 0.3 to 2.0, and from the viewpoint of the stability of the properties of the cured product, it is 0.5 to 1.5. is more preferred.
 また、熱硬化性樹脂に不飽和ポリエステル樹脂を用いた場合、有機過酸化物は、重合反応を開始させる反応開始剤として用いられる。有機過酸化物としては、10時間半減期温度が40℃以上であれば特に限定されず、当該技術分野において公知のものを用いることができる。有機過酸化物の具体例としては、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシエステル系、パーオキシジカーボネート系の過酸化物等が挙げられる。これらの有機過酸化物は、単独で用いてもよいし、2種類以上を混合して用いてもよい。 Also, when an unsaturated polyester resin is used as the thermosetting resin, the organic peroxide is used as a reaction initiator that initiates the polymerization reaction. The organic peroxide is not particularly limited as long as it has a 10-hour half-life temperature of 40° C. or higher, and those known in the art can be used. Specific examples of organic peroxides include ketone peroxide-based, peroxyketal-based, hydroperoxide-based, dialkyl peroxide-based, diacyl peroxide-based, peroxyester-based, and peroxydicarbonate-based peroxides. is mentioned. These organic peroxides may be used alone or in combination of two or more.
 活性温度が高い有機過酸化物を選択することにより、シート型絶縁ワニス1の可使時間(すなわちシート型絶縁ワニス1の可使時間)を向上させることができる。コイルへの含浸処理に適したシート型絶縁ワニス1の可使時間を確保する観点からは、有機過酸化物の10時間半減期温度が80℃以上であることが好ましい。また、シート型絶縁ワニス1の硬化を効率良く進行させるため、有機過酸化物の10時間半減期温度は、シート型絶縁ワニス1を硬化させる際の硬化炉の設定温度以下であることが好ましい。 By selecting an organic peroxide with a high activation temperature, it is possible to improve the pot life of the sheet-type insulating varnish 1 (that is, the pot life of the sheet-type insulating varnish 1). From the viewpoint of ensuring the pot life of the sheet-type insulating varnish 1 suitable for the impregnation treatment of the coil, the 10-hour half-life temperature of the organic peroxide is preferably 80° C. or higher. Moreover, in order to efficiently cure the sheet-type insulating varnish 1, the 10-hour half-life temperature of the organic peroxide is preferably equal to or lower than the setting temperature of the curing furnace when the sheet-type insulating varnish 1 is cured.
 このような10時間半減期温度を有する有機過酸化物の具体例としては、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、2,2-ジ(4,4-ジ-(ブチルパーオキシ)シクロヘキシル)プロパン、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレラート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサン酸、t-ブチルパーオキシラウリン酸、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ヘキシルパーオキサイド、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、p-メンタンハイドロパーオキサイド、t-ブチルパーオキシアリルモノカーボネート、メチルエチルケトンパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、クミンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等が挙げられる。これらは単独で用いてもよいし、2種類以上を混合して用いてもよい。 Specific examples of organic peroxides having such a 10-hour half-life temperature include 1,1-di(t-butylperoxy)cyclohexane, 1,1-di(t-hexylperoxy)cyclohexane, 1, 1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 2,2-di(4,4-di- (Butylperoxy)cyclohexyl)propane, n-butyl 4,4-di-(t-butylperoxy)valerate, 2,2-di-(t-butylperoxy)butane, t-hexylperoxyisopropyl monocarbonate , t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoic acid, t-butylperoxylauric acid, t-butylperoxyisopropyl monocarbonate, t-butylperoxybenzoate, t -butyl peroxyacetate, t-hexyl peroxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butyl peroxy 2-ethylhexyl monocarbonate, di(2-t-butyl peroxy) oxyisopropyl)benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, di-t-hexyl peroxide, t-butyl cumin Ruperoxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, p-menthane hydroperoxide, t-butyl peroxyallyl monocarbonate, methyl ethyl ketone peroxide, 1,1,3,3-tetramethylbutyl hydroperoxide, t-butyl hydroperoxide, cumin hydroperoxide, diisopropylbenzene hydroperoxide and the like. These may be used alone or in combination of two or more.
 有機過酸化物の配合量は、特に限定されないが、熱硬化性樹脂であるポリエステル樹脂の合計100質量部に対して通常0.1質量部~10質量部であり、より好ましくは0.5質量部~5質量部である。有機過酸化物の配合量が0.1質量部未満であると、架橋密度が小さくなり、硬化が不十分になることがある。一方、有機過酸化物の配合量が10質量部よりも多いと、シート型絶縁ワニス1の可使時間が著しく短くなる傾向にある。 The amount of the organic peroxide to be blended is not particularly limited, but it is usually 0.1 to 10 parts by mass, more preferably 0.5 parts by mass, with respect to the total 100 parts by mass of the polyester resin, which is a thermosetting resin. parts to 5 parts by mass. If the amount of the organic peroxide is less than 0.1 parts by mass, the crosslink density may be low, resulting in insufficient curing. On the other hand, if the amount of the organic peroxide is more than 10 parts by mass, the pot life of the sheet-type insulating varnish 1 tends to be significantly shortened.
 また、熱硬化性樹脂組成物には、必要に応じて硬化促進剤を含有させることができる。硬化促進剤は、特に限定されることはなく、熱硬化性樹脂の種類に合わせて公知のものを適宜選択することができる。硬化促進剤の具体例としては、3級アミン類、イミダゾール類、アミンアダクト類等が挙げられる。シート型絶縁ワニス1の保存安定性、硬化性、及び硬化樹脂物性等の観点から、60℃以下では反応不活性な硬化促進剤がより好ましい。 In addition, the thermosetting resin composition can contain a curing accelerator as necessary. The curing accelerator is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin. Specific examples of curing accelerators include tertiary amines, imidazoles, amine adducts and the like. From the viewpoint of the storage stability, curability, physical properties of the cured resin, etc. of the sheet-type insulating varnish 1, a curing accelerator that is reaction-inactive at 60° C. or lower is more preferable.
 硬化促進剤の配合量は、熱硬化性樹脂の合計100質量部に対し、通常0.01質量部~10質量部であり、より好ましくは0.02質量部~5.0質量部である。硬化促進剤が0.01質量部より小さいと硬化反応の促進効果が劣り、10質量部より大きいと可使時間が短くなる傾向にある。 The blending amount of the curing accelerator is usually 0.01 to 10 parts by mass, more preferably 0.02 to 5.0 parts by mass, with respect to 100 parts by mass of the total thermosetting resin. If the curing accelerator is less than 0.01 parts by mass, the effect of accelerating the curing reaction is poor, and if it is more than 10 parts by mass, the pot life tends to be shortened.
 また、熱硬化性樹脂組成物には、膜厚均一性及び表面平滑性等の製膜性を向上させるため、必要に応じて製膜性付与剤を含有させることができる。製膜性付与剤には、重量平均分子量が10,000~100,000の熱可塑性樹脂が用いられる。熱可塑性樹脂は、第1熱硬化性樹脂と第2熱硬化性樹脂の合計100質量部に対して1質量部~50質量部である。熱可塑性樹脂は、特に限定されることはなく、熱硬化性樹脂の種類に合わせて公知のものを適宜選択することができる。熱可塑性樹脂の具体例としては、例えばフェノキシ樹脂、飽和ポリエステル樹脂等が挙げられる。これらの製膜性付与剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 In addition, the thermosetting resin composition may contain a film-forming agent as necessary in order to improve film-forming properties such as film thickness uniformity and surface smoothness. A thermoplastic resin having a weight average molecular weight of 10,000 to 100,000 is used as the film-forming agent. The thermoplastic resin is 1 part by mass to 50 parts by mass with respect to 100 parts by mass in total of the first thermosetting resin and the second thermosetting resin. The thermoplastic resin is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin. Specific examples of thermoplastic resins include phenoxy resins and saturated polyester resins. These film-forming agents may be used alone or in combination of two or more.
 熱可塑性樹脂の重量平均分子量が10,000よりも小さい場合は、製膜性の改善に至らず、100,000よりも大きい場合は、液状の第2熱硬化性樹脂への溶解分散性が悪く、スラリーを調製できない。製膜性付与剤の配合量は、硬化促進性及び硬化樹脂物性等の観点から、熱硬化性樹脂の合計100質量部に対し、通常1質量部~50質量部であり、より好ましくは5質量部~45質量部である。製膜性付与剤が1質量部よりも小さいと製膜性の改善効果が劣り、50質量部よりも大きいと液状の第2熱硬化性樹脂への溶解分散性が悪く、スラリーを調製できない。 If the weight-average molecular weight of the thermoplastic resin is less than 10,000, film-forming properties are not improved, and if it is greater than 100,000, dissolution and dispersibility in the liquid second thermosetting resin is poor. , the slurry cannot be prepared. The amount of the film-forming agent to be added is usually 1 part by mass to 50 parts by mass, more preferably 5 parts by mass, with respect to the total 100 parts by mass of the thermosetting resin, from the viewpoint of curing acceleration and physical properties of the cured resin. parts to 45 parts by mass. If the film-forming agent is less than 1 part by mass, the effect of improving the film-forming property is inferior, and if it is more than 50 parts by mass, the dissolution and dispersibility in the liquid second thermosetting resin is poor, and a slurry cannot be prepared.
 また、熱硬化性樹脂組成物には、シート型絶縁ワニス1の表面粘着性を向上させるため、必要に応じて、粘着付与剤を含有させることができる。粘着付与剤は、重量平均分子量が10,000~200,000であれば、特に限定されることはなく、熱硬化性樹脂の種類に合わせて公知のものを適宜選択することができる。粘着付与剤の具体例としては、テルペン系樹脂、ロジン系樹脂、天然ゴム、スチレン系エラストマー、ポリビニルアセタール系樹脂、ポリビニルホルマール系樹脂、ポリビニルブチラール系樹脂等が挙げられる。これらの粘着付与剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition, the thermosetting resin composition can contain a tackifier as necessary in order to improve the surface adhesiveness of the sheet-type insulating varnish 1. The tackifier is not particularly limited as long as it has a weight average molecular weight of 10,000 to 200,000, and a known one can be appropriately selected according to the type of thermosetting resin. Specific examples of tackifiers include terpene-based resins, rosin-based resins, natural rubbers, styrene-based elastomers, polyvinyl acetal-based resins, polyvinyl formal-based resins, polyvinyl butyral-based resins, and the like. These tackifiers may be used alone or in combination of two or more.
 粘着付与剤の重量平均分子量が10,000より小さい場合は粘着性の改善に至らず、200,000より大きい場合は、液状の第2熱硬化性樹脂への溶解分散性が悪く、スラリーを調製できない。粘着付与剤の配合量は、硬化促進性及び硬化樹脂物性の観点から、熱硬化性樹脂の合計100質量部に対し、通常1質量部~20質量部であり、より好ましくは2質量部~10質量部である。粘着付与剤が1質量部より小さいと表面粘着性の改善効果が劣り、20質量部よりも大きいと液状の第2熱硬化性樹脂への溶解分散性が悪く、スラリーを調製できない。 If the weight-average molecular weight of the tackifier is less than 10,000, the adhesion is not improved, and if it is more than 200,000, the dissolution and dispersibility in the liquid second thermosetting resin is poor, and a slurry is prepared. Can not. The amount of the tackifier is usually 1 part by mass to 20 parts by mass, more preferably 2 parts by mass to 10 parts by mass with respect to 100 parts by mass of the total thermosetting resin, from the viewpoint of curing acceleration and physical properties of the cured resin. part by mass. If the amount of the tackifier is less than 1 part by mass, the effect of improving the surface tackiness is poor, and if it is more than 20 parts by mass, the dissolution and dispersibility in the liquid second thermosetting resin is poor, and a slurry cannot be prepared.
 また、熱硬化性樹脂組成物は、熱硬化性樹脂と無機充填剤との界面、あるいはシート型絶縁ワニス1と絶縁対象の部材との界面の接着力を向上させる観点から、接着付与剤を含有させることができる。接着付与剤は、特に限定されることはなく、熱硬化性樹脂または無機充填剤の種類に合わせて公知のものを適宜選択することができる。 In addition, the thermosetting resin composition contains an adhesion imparting agent from the viewpoint of improving the adhesive strength of the interface between the thermosetting resin and the inorganic filler or the interface between the sheet-type insulating varnish 1 and the member to be insulated. can be made The tackifier is not particularly limited, and a known one can be appropriately selected according to the type of thermosetting resin or inorganic filler.
 接着付与剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等のシランカップリング剤が挙げられる。これらの接着付与剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 接着付与剤の配合量は、熱硬化性樹脂または接着付与剤の種類等に合わせて適宜設定すればよく、通常、熱硬化性樹脂100質量部に対して0.01質量部~5質量部であることが好ましい。
Specific examples of adhesion promoters include γ-glycidoxypropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyl. Examples include silane coupling agents such as trimethoxysilane. These tackifiers may be used alone or in combination of two or more.
The amount of the tackifier may be appropriately set according to the type of the thermosetting resin or tackifier, and is usually 0.01 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin. Preferably.
 また、熱硬化性樹脂組成物には、絶縁対象の部材表面の凹凸が大きい場合及びワニス層の加熱流動性が高い場合、絶縁対象の部材同士の隙間を埋められず、部分的に空隙が発生した場合であっても、加熱により熱膨張性マイクロカプセル3を膨張させることで、ワニス層が増厚し、その空隙を排除し、部材同士の隙間を確実に埋めることできる。また、コイルの場合、ワニス層に圧着していることで加熱時にワニスが流動し毛細管現象でコイル内部への浸透し、コイル同士を固着させることができる。固着(接着)と空隙の排除により、機械強度、冷却性能及び絶縁性能が高い電子機器及び回転電機を提供することができる。 In addition, when the surface of the member to be insulated has large unevenness and the varnish layer has high fluidity when heated, the thermosetting resin composition cannot fill the gaps between the members to be insulated, and voids are partially generated. Even in this case, by expanding the thermally expandable microcapsules 3 by heating, the thickness of the varnish layer is increased, the voids can be eliminated, and the gaps between the members can be reliably filled. In the case of a coil, since the varnish layer is pressure-bonded to the varnish layer, the varnish flows during heating and permeates into the coil due to capillary action, so that the coils can be fixed to each other. By fixing (bonding) and eliminating voids, it is possible to provide an electronic device and a rotating electric machine with high mechanical strength, cooling performance, and insulation performance.
 熱膨張性マイクロカプセル3は特に限定されたものではなく、低沸点炭化水素などの熱膨張剤を、ガスバリアー性を有する塩化ビニリデン樹脂及びアクリル樹脂などの熱可塑性樹脂からなる熱可塑性高分子殻(シェル)で包み込んだ構造を有するマイクロカプセルで、加熱により、シェルの熱可塑性樹脂が軟化し、熱膨張剤の体積が増大することにより、カプセルが膨張するものであれば良い。また、熱膨張性マイクロカプセル3の表面が、炭酸カルシウム、タルク、酸化チタン等の不活性無機粉体でコーティングされていても構わない。例えば、加熱により膨張する微粒子であれば、マイクロスフェアとして市販されているものを使用して良い。これらの熱膨張性マイクロカプセル3は、単独で用いてもよいし、2種類以上を混合して用いてもよい。 The thermally expandable microcapsules 3 are not particularly limited, and a thermoplastic polymer shell ( A microcapsule having a structure surrounded by a shell) may be used as long as the capsule expands when the thermoplastic resin of the shell is softened by heating and the volume of the thermal expansion agent increases. Moreover, the surface of the thermally expandable microcapsules 3 may be coated with an inert inorganic powder such as calcium carbonate, talc, titanium oxide, or the like. For example, as long as the fine particles expand when heated, commercially available microspheres may be used. These thermally expandable microcapsules 3 may be used alone or in combination of two or more.
 シート型絶縁ワニス1は、絶縁対象の部材間(例えばコイルと鉄心間)の隙間に、貼り付けあるいは挿入等により配置され相間絶縁として用いられる。このため、熱膨張性マイクロカプセル3の最大粒径が隙間の寸法よりも小さく、平均粒径が隙間の寸法の0.5倍よりも小さいものが好ましい。例えば、隙間の実測寸法が、公差を含めて10μm~100μmである場合、最大粒径が10μm以下で平均粒径が5μm以下の熱膨張性マイクロカプセル3が選定される。
 また、シート型絶縁ワニス1は、半硬化あるいは未硬化のため、加熱すると流動し、絶縁対象の部材表面の凹部及び絶縁対象の部材同士の隙間に浸透する。効率よく浸透させるため、流動時に硬化を極力進めないため、60℃以下で反応不活性な潜在性硬化剤を用いている。ワニスの流動時に熱膨張性マイクロカプセル3が発泡すると凹部及び隙間への浸透を阻害するため、熱膨張性マイクロカプセル3の発泡開始温度は、60℃以上で、流動時に粘度上昇を抑え、熱膨張性マイクロカプセル3の発泡を促し、かつ硬化後の発泡サイズが過度に大きくならないようにするため、潜在性硬化剤の反応開始温度+20℃よりも低いことがより好ましい。
 硬化促進剤により、潜在性硬化剤の反応開始温度が下がる場合は、その反応開始温度+20℃以下とすることが好ましい。シート型絶縁ワニス1は、絶縁対象の部材間を固着し、残存する空隙を排除し、部材同士の隙間を確実に埋めるためには、加熱により流動、発泡、硬化を連動させる必要がある。すなわち、流動時には熱膨張性マイクロカプセル3は発泡せず、流動完了後に発泡し、発泡後に硬化が開始するように温度を昇温させたり、段階的に上昇させるなど、加熱条件を決めることが望ましい。
The sheet-type insulating varnish 1 is placed in a gap between members to be insulated (for example, between a coil and an iron core) by pasting or inserting, and is used as phase-to-phase insulation. Therefore, it is preferable that the maximum particle diameter of the thermally expandable microcapsules 3 is smaller than the dimension of the gap and the average particle diameter is smaller than 0.5 times the dimension of the gap. For example, when the actual measurement size of the gap is 10 μm to 100 μm including tolerance, thermally expandable microcapsules 3 having a maximum particle size of 10 μm or less and an average particle size of 5 μm or less are selected.
In addition, since the sheet-type insulating varnish 1 is semi-cured or uncured, it flows when heated and permeates recesses on the surfaces of members to be insulated and gaps between members to be insulated. A latent curing agent that is reaction inactive at 60° C. or less is used in order to allow efficient penetration and to minimize curing during flow. If the thermally expandable microcapsules 3 foam during the flow of the varnish, it inhibits penetration into recesses and gaps. It is more preferable that the temperature is lower than the reaction initiation temperature of the latent curing agent +20° C. in order to promote foaming of the curable microcapsules 3 and prevent the foam size after curing from becoming excessively large.
When the curing accelerator lowers the reaction initiation temperature of the latent curing agent, the reaction initiation temperature is preferably +20° C. or lower. In order for the sheet-type insulating varnish 1 to adhere between the members to be insulated, eliminate the remaining gaps, and reliably fill the gaps between the members, it is necessary to interlock flow, foaming, and curing by heating. That is, it is desirable to determine the heating conditions such as increasing the temperature or increasing the temperature step by step so that the thermally expandable microcapsules 3 do not foam when flowing, but foam after the completion of flowing and start curing after foaming. .
 熱膨張性マイクロカプセル3の配合量は、特に限定が加えられるものではないが、発泡倍率を過度に高めすぎると、硬化後のシート型絶縁ワニス1に大きな強度低下及び耐熱性の低下を招くため、絶縁対象の部材表面の凹凸及び部材同士の隙間を確実に埋められる量で調整することが望ましい。熱膨張性マイクロカプセル3は種類及び加熱温度により発泡倍率が異なるため、配合量を限定することは難しいが、樹脂組成物を均一に混合できる観点からは、通常、熱硬化性樹脂100質量部に対して1質量部以上100質量部以下であり、ワニス層の加熱流動性を確保する観点からより好ましくは90質量部以下である。1質量部未満の場合、熱膨張性マイクロカプセル3の発泡によりシート型絶縁ワニス1の増厚が不十分で、部材同士の隙間を確実に埋められず、100質量部を超えるとワニスの加熱流動性が悪く、コイルを固着できない。
 また、有機系発泡剤を必要に応じて併用しても良い。有機系発泡剤としては、炭酸アンモニウム、水素化ホウ素アンモニウム、炭酸水素アンモニウム、亜硝酸アンモニウム、アジド類などの無機系発泡剤及びアゾビスイソブチロニトリルなどのアゾ系化合物、トリクロロモノフルオロメタンなどのフッ化アルカン、p-トルエンスルホニルセミカルバジドなどのセミカルバジド系化合物、パラトルエンスルホニルヒドラジドなどのヒドラジン系化合物、5-モルホリル-1,2,3,4-チアトリアゾールなどのトリアゾール系化合物、N,N’-ジニトロソテレフタルアミドなどのN-ニトロソ化合物などがある。
The amount of the thermally expandable microcapsules 3 is not particularly limited, but if the expansion ratio is excessively increased, the strength and heat resistance of the sheet-type insulating varnish 1 after curing will be greatly reduced. It is desirable to adjust the amount so as to reliably fill the irregularities on the surface of the member to be insulated and the gaps between the members. Since the expansion ratio of the thermally expandable microcapsules 3 varies depending on the type and heating temperature, it is difficult to limit the amount to be blended. On the other hand, it is 1 part by mass or more and 100 parts by mass or less, and more preferably 90 parts by mass or less from the viewpoint of ensuring the heat fluidity of the varnish layer. If the amount is less than 1 part by mass, the thickness of the sheet-type insulating varnish 1 is insufficient due to foaming of the thermally expandable microcapsules 3, and the gaps between the members cannot be reliably filled. Poor adhesion, unable to adhere coils.
Moreover, you may use an organic type foaming agent together as needed. Examples of organic foaming agents include inorganic foaming agents such as ammonium carbonate, ammonium borohydride, ammonium hydrogencarbonate, ammonium nitrite, azides, azo compounds such as azobisisobutyronitrile, and fluorides such as trichloromonofluoromethane. alkanes, semicarbazide compounds such as p-toluenesulfonyl semicarbazide, hydrazine compounds such as paratoluenesulfonyl hydrazide, triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole, N,N'-di and N-nitroso compounds such as nitrosoterephthalamide.
 また、熱硬化性樹脂組成物には、熱伝導率及び機械強度の向上、シート型絶縁ワニス1の厚膜化等の観点から、充填剤を含有させることができる。充填剤は、特に限定されることはなく、目的に合わせて公知のものを適宜選択することができる。充填剤は、シラン系カップリング剤、チタネート系カップリング剤等で表面処理されたものでもよいし、表面処理されていないものでもよい。 In addition, the thermosetting resin composition can contain a filler from the viewpoint of improving thermal conductivity and mechanical strength, thickening the sheet-type insulating varnish 1, and the like. The filler is not particularly limited, and known fillers can be appropriately selected according to the purpose. The filler may be surface-treated with a silane-based coupling agent, a titanate-based coupling agent, or the like, or may not be surface-treated.
 無機充填剤の具体例としては、結晶シリカ、溶融シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、ケイ酸カルシウム、二酸化チタン、窒化ケイ素、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、ガラス、硫酸バリウム、マグネシア、酸化ベリリウム、雲母、酸化マグネシウム等が挙げられる。充填剤の形状は、破砕状または球状が好適であるが、亜球状、鱗片状、繊維状、ミルドファイバー、ウィスカー等であってもよい。これらの充填剤は、単独で用いてもよいし、2種類以上を混合して用いてもよい。 Specific examples of inorganic fillers include crystalline silica, fused silica, alumina, talc, clay, calcium carbonate, calcium silicate, titanium dioxide, silicon nitride, aluminum hydroxide, aluminum nitride, boron nitride, glass, barium sulfate, magnesia. , beryllium oxide, mica, and magnesium oxide. The shape of the filler is preferably crushed or spherical, but may be subspherical, scaly, fibrous, milled fiber, whisker, or the like. These fillers may be used alone or in combination of two or more.
 また、硬化後のシート型絶縁ワニス1の耐クラック性及び耐衝撃性を向上させる目的で、熱可塑性樹脂、ゴム成分、各種オリゴマー等の樹脂系充填剤を添加してもよい。熱可塑性樹脂の具体例としては、ブチラール樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、フェノキシ樹脂、MBS樹脂(メチルメタクリレート・ブタジエン・スチレン共重合体)、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合体)、アクリル樹脂等が挙げられ、シリコーンオイル、シリコーン樹脂、シリコーンゴム、フッ素ゴム等により変性することができる。また、各種プラスチック粉末、各種エンジニアリングプラスチック粉末等を添加してもよい。 Also, for the purpose of improving the crack resistance and impact resistance of the sheet-type insulating varnish 1 after curing, a resin-based filler such as a thermoplastic resin, a rubber component, various oligomers, etc. may be added. Specific examples of thermoplastic resins include butyral resin, polyvinyl acetal resin, polyamide resin, aromatic polyester resin, phenoxy resin, MBS resin (methyl methacrylate-butadiene-styrene copolymer), ABS resin (acrylonitrile-butadiene-styrene copolymer). polymer), acrylic resin, etc., and can be modified with silicone oil, silicone resin, silicone rubber, fluororubber, or the like. Also, various plastic powders, various engineering plastic powders, and the like may be added.
 充填剤の配合量は、熱硬化性樹脂組成物を均一に混合できる量であれば良く、通常、熱硬化性樹脂組成物の全量に対して、70体積%以下であり、混合の作業性を考慮すると、より好ましくは65体積%以下である。充填剤の配合量が70体積%よりも大きいと樹脂組成物と均一に混合できなくなり、シート型絶縁ワニス1の特性の再現性が得られない傾向にある。また、シート型絶縁ワニス1を折り曲げて使用する場合は、柔軟性を高める必要があるため、50体積%以下がより好ましい。さらに、シート型絶縁ワニス1の熱伝導率を高めたり、厚いワニス層を形成する必要がない場合、熱硬化性樹脂組成物に充填剤を配合しないことも可能である。 The amount of the filler to be blended may be an amount that allows the thermosetting resin composition to be uniformly mixed, and is usually 70% by volume or less with respect to the total amount of the thermosetting resin composition, and improves the workability of mixing. Taking this into account, it is more preferably 65% by volume or less. If the blending amount of the filler is more than 70% by volume, it becomes impossible to mix uniformly with the resin composition, and the reproducibility of the properties of the sheet-type insulating varnish 1 tends to be unobtainable. Further, when the sheet-type insulating varnish 1 is used by being folded, it is necessary to increase the flexibility, so the content is more preferably 50% by volume or less. Furthermore, if there is no need to increase the thermal conductivity of the sheet-type insulating varnish 1 or form a thick varnish layer, it is possible to omit the filler from the thermosetting resin composition.
 シート型絶縁ワニス1は、絶縁対象の部材間(例えばコイルと鉄心間)の隙間に貼り付けあるいは挿入等により配置され相間絶縁として用いられる。このため、充填剤の最大粒径が隙間の寸法よりも小さく、平均粒径が隙間の寸法の0.5倍よりも小さいものが好ましい。例えば、隙間の実測寸法が、公差を含めて10μm~100μmである場合、最大粒径が10μm以下で平均粒径が5μm以下の充填剤が選定される。 The sheet-type insulating varnish 1 is arranged by pasting or inserting in a gap between members to be insulated (for example, between a coil and an iron core) and used as phase-to-phase insulation. Therefore, it is preferable that the maximum particle size of the filler is smaller than the size of the gap, and the average particle size of the filler is smaller than 0.5 times the size of the gap. For example, when the actual measurement size of the gap is 10 μm to 100 μm including the tolerance, a filler having a maximum particle size of 10 μm or less and an average particle size of 5 μm or less is selected.
 さらに、熱硬化性樹脂組成物には、充填剤等の固体粉末の樹脂中での沈降を抑制する沈降防止剤または分散剤、ボイド発生を防止する消泡剤、シート型絶縁ワニス1同士のブロッキングを防止するポリマービーズ等のアンチブロッキング剤または滑り性向上剤、塗料定着剤、酸化防止剤、難燃化剤、着色剤、増粘剤、減粘剤、界面活性剤等を配合することもできる。 Furthermore, the thermosetting resin composition contains an anti-settling agent or dispersant that suppresses the sedimentation of solid powder such as a filler in the resin, an anti-foaming agent that prevents the generation of voids, and a block between the sheet-type insulating varnishes 1. Anti-blocking agents such as polymer beads or slipperiness improvers, paint fixing agents, antioxidants, flame retardants, colorants, thickeners, viscosity reducers, surfactants, etc. can also be added. .
 以上説明したように、実施の形態1のシート型絶縁ワニスは、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、発泡開始温度が60℃以上である熱膨張性マイクロカプセルと、60℃以下で反応不活性な潜在性硬化剤と、必要に応じて充填剤とを含むものである。
 したがって、実施の形態1のシート型絶縁ワニスは、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有する。
As described above, the sheet-type insulating varnish of Embodiment 1 includes a first thermosetting resin that is solid at normal temperature, a second thermosetting resin that is liquid at normal temperature, and a foaming start temperature of 60° C. or higher. It contains a thermally expandable microcapsule, a latent curing agent that is reaction-inactive at 60° C. or less, and, if necessary, a filler.
Therefore, in the sheet-type insulating varnish of Embodiment 1, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, and reliably fills the gaps. , has excellent heat dissipation properties.
実施の形態2.
 実施の形態2は、実施の形態1による熱硬化性樹脂組成物を用いたシート型絶縁ワニスの製造方法について、図3のフローチャートも参照して説明する。
 このシート型絶縁ワニスの製造方法で製造されるシート型絶縁ワニスは、実施の形態1で説明した熱硬化性樹脂組成物を未硬化または半硬化の状態で膜厚1μm~500μmのシート状に形成したものである。
Embodiment 2.
Embodiment 2 describes a method for producing a sheet-type insulating varnish using the thermosetting resin composition according to Embodiment 1, also referring to the flow chart of FIG.
The sheet-type insulating varnish produced by this method for producing a sheet-type insulating varnish is obtained by forming the thermosetting resin composition described in Embodiment 1 into a sheet having a thickness of 1 μm to 500 μm in an uncured or semi-cured state. It is what I did.
 シート型絶縁ワニスの製造方法は、熱硬化性樹脂組成物のスラリーを作製する第1工程(スラリー作製工程)と、スラリーを離型フィルムまたは離型紙に塗布し乾燥させる第2工程(塗布、乾燥工程)とを備える。
 第1工程(スラリー作製工程)では、実施の形態1による熱硬化性樹脂組成物に希釈剤を加えて所定の混合物粘度とし、熱膨張性マイクロカプセル3及び充填剤4が沈降せず均一に分散するまで撹拌機で撹拌混合する。
The method for producing a sheet-type insulating varnish includes a first step of preparing a slurry of a thermosetting resin composition (slurry preparation step) and a second step of applying the slurry to a release film or release paper and drying it (coating, drying step).
In the first step (slurry preparation step), a diluent is added to the thermosetting resin composition according to Embodiment 1 to obtain a predetermined mixture viscosity, and the thermally expandable microcapsules 3 and filler 4 are uniformly dispersed without sedimentation. Stir and mix with a stirrer until
 スラリーは、少なくとも、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、60℃以下で反応不活性な潜在性硬化剤と、最大粒径が隙間の寸法よりも小さく平均粒径が隙間の寸法の0.5倍よりも小さく発泡開始温度が60℃以上である熱膨張性マイクロカプセル3と、希釈剤とを含んでいる。また、熱硬化性樹脂の合計100質量部に対して、第1熱硬化性樹脂を10質量部~90質量部含み、熱膨張性マイクロカプセル3は熱硬化性樹脂の合計100質量部に対して1質量部以上100質量部以下になるように配合される。 The slurry contains at least a first thermosetting resin that is solid at room temperature, a second thermosetting resin that is liquid at room temperature, a latent curing agent that is reactively inactive at 60° C. or less, and a maximum particle size of the gap. It contains thermally expandable microcapsules 3 having an average particle diameter smaller than 0.5 times the size of the gap and an expansion start temperature of 60° C. or higher, and a diluent. Further, the first thermosetting resin is contained in 10 parts by mass to 90 parts by mass with respect to the total 100 parts by mass of the thermosetting resin, and the thermally expandable microcapsules 3 are included in the total 100 parts by mass of the thermosetting resin. It is blended so as to be 1 part by mass or more and 100 parts by mass or less.
 熱硬化性樹脂を溶解させる希釈剤は、塗膜後には揮発または蒸発してほぼ完全に消滅する。希釈剤は、特に限定されることはなく、使用する熱硬化性樹脂、熱膨張性マイクロカプセル及び充填剤等の種類に合わせて公知のものを適宜選択することができる。
 希釈剤の具体例としては、トルエン、メチルエチルケトン等が挙げられる。これらの溶剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 溶剤の配合量は、混練が可能な混合物粘度となれば特に限定されることはなく、通常、熱硬化性樹脂100質量部に対して20質量部~200質量部である。
The diluent that dissolves the thermosetting resin evaporates or evaporates almost completely after coating. The diluent is not particularly limited, and known diluents can be appropriately selected according to the type of thermosetting resin, thermally expandable microcapsules, filler, and the like to be used.
Specific examples of diluents include toluene and methyl ethyl ketone. These solvents may be used alone or in combination of two or more.
The amount of the solvent to be blended is not particularly limited as long as the mixture has a viscosity that allows kneading.
 次に第2工程(塗布、乾燥工程)では、シート塗工機にて、離型フィルムまたは離型紙に、スラリーを隙間の寸法の1.1倍~2.0倍の膜厚となるように塗布し、乾燥炉で乾燥させ、シート型絶縁ワニス1を作製する。なお、塗工方法については、特に限定されず、当該技術分野において公知の塗工機を用いて行えばよい。
 作製されたシート型絶縁ワニス1は、熱硬化性樹脂組成物が未硬化あるいは半硬化の状態であるため、シート同士が接触すると接着(ブロッキング)してしまう。このため、一方の表面に離型フィルムまたは離型紙の基材が積層されており、使用時には基材を離型して使用する。
Next, in the second process (coating and drying process), the slurry is applied to the release film or release paper with a sheet coating machine so that the film thickness is 1.1 to 2.0 times the size of the gap. It is applied and dried in a drying oven to produce a sheet-type insulating varnish 1. The coating method is not particularly limited, and may be performed using a coating machine known in the technical field.
The thermosetting resin composition of the produced sheet-type insulating varnish 1 is in an uncured or semi-cured state, and therefore adhesion (blocking) occurs when the sheets come into contact with each other. For this reason, a release film or release paper base material is laminated on one surface, and the base material is released before use.
 乾燥炉では、80℃~160℃の温度条件で希釈剤を揮発させる。
 シート型絶縁ワニス1の全質量100重量部に対して乾燥後の不揮発分は97質量部以上であり、より好ましくは99質量部以上である。97質量部未満であれば、残留した希釈剤により、離型紙または離型フィルム等の基材からの離型が困難になる。
 シート型絶縁ワニス1は、希釈剤のみを揮発させた未硬化状態(Aステージ状態)であってもよいし、希釈剤の揮発後に硬化反応を進めるための加熱をさらに行い、半硬化状態(Bステージ状態)としてもよい。
 常温で固体の第1熱硬化性樹脂の常温で液状の第2熱硬化性樹脂の配合において、第2熱硬化性樹脂の種類及び配合量が多い場合に、未硬化状態では粘着性が高く、離型フィルム等の基材からの離型が困難になる場合がある。その場合、加熱により少し反応を進めて、粘着性を下げて半硬化状態とすることで、離型できるようになる。シート型絶縁ワニス1を実装した際に、シート型絶縁ワニス1の加熱流動性を下げたい場合、半硬化状態にして流動性を制御できる。
In the drying oven, the diluent is volatilized under temperature conditions of 80°C to 160°C.
The non-volatile content after drying is 97 parts by mass or more, more preferably 99 parts by mass or more, relative to 100 parts by weight of the total mass of the sheet-type insulating varnish 1 . If it is less than 97 parts by mass, the remaining diluent will make it difficult to release the mold from the substrate such as release paper or release film.
The sheet-type insulating varnish 1 may be in an uncured state (A stage state) in which only the diluent is volatilized, or may be further heated to advance the curing reaction after volatilization of the diluent, and is in a semi-cured state (B stage state).
When blending the first thermosetting resin, which is solid at room temperature, with the second thermosetting resin, which is liquid at room temperature, when the type and amount of the second thermosetting resin are large, the adhesiveness is high in the uncured state, It may become difficult to release from a substrate such as a release film. In that case, the reaction can be advanced a little by heating to lower the adhesiveness and make it semi-cured, so that it can be released from the mold. When the sheet-type insulating varnish 1 is mounted, if the heating fluidity of the sheet-type insulating varnish 1 is desired to be lowered, the fluidity can be controlled by setting it to a semi-cured state.
 ここで、シート型絶縁ワニスの製造方法を図3のフローチャートに基づいて整理して説明する。
 絶縁対象の部材同士の隙間に配置されるシート型絶縁ワニスの製造方法は、第1工程(スラリー作製工程)(S01)と、第2工程(塗布、乾燥工程)(S02)とを備える。
 第1工程(S01)では、常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、60℃以下で反応不活性な潜在性硬化剤と、最大粒径が隙間の寸法よりも小さく平均粒径が隙間の寸法の0.5倍よりも小さく発泡開始温度が60℃以上である熱膨張性マイクロカプセル3とを含み、第1熱硬化性樹脂と第2熱硬化性樹脂との合計100質量部に対して第1熱硬化性樹脂を10質量部~90質量部であり、熱膨張性マイクロカプセル3は第1熱硬化性樹脂と第2熱硬化性樹脂との合計100質量部に対して1~100質量%である熱硬化性樹脂組成物と、希釈用有機溶剤とを攪拌混合し、熱硬化性樹脂組成物のスラリーを作製する。
Here, the manufacturing method of the sheet-type insulating varnish will be organized and explained based on the flow chart of FIG.
A method for manufacturing a sheet-type insulating varnish to be placed in a gap between members to be insulated includes a first step (slurry preparation step) (S01) and a second step (application and drying step) (S02).
In the first step (S01), a first thermosetting resin that is solid at normal temperature, a second thermosetting resin that is liquid at normal temperature, a latent curing agent that is reaction inactive at 60 ° C. or less, and a maximum particle size thermally expandable microcapsules 3 smaller than the size of the gap, having an average particle size smaller than 0.5 times the size of the gap, and having a foaming start temperature of 60° C. or higher, comprising a first thermosetting resin and a second heat The first thermosetting resin is 10 parts by mass to 90 parts by mass with respect to the total 100 parts by mass of the curable resin, and the thermally expandable microcapsules 3 are the first thermosetting resin and the second thermosetting resin. 1 to 100% by mass of the thermosetting resin composition and an organic solvent for dilution are stirred and mixed to prepare a slurry of the thermosetting resin composition.
 第2工程(S02)では、スラリーを離型フィルムまたは離型紙に隙間の寸法の1.1倍~2.0倍の膜厚に塗布し、常温で25MPaの圧力を加えた時に膜厚が10%以上減少する圧縮率を有するように乾燥させる。 In the second step (S02), the slurry is applied to a release film or release paper to a thickness of 1.1 to 2.0 times the size of the gap, and when a pressure of 25 MPa is applied at room temperature, the thickness is 10. Dry to have a compressibility that decreases by more than %.
 また、第2工程(S02)において、80℃~160℃の温度条件で乾燥して希釈剤を揮発させ、乾燥後のシート型絶縁ワニス1の全質量100重量部に対する不揮発分を97質量部以上とすることができる。
 さらに第2工程(S02)の後、硬化反応を進めるための加熱をさらに行い、シート型絶縁ワニス1を半硬化状態とすることができる。
Further, in the second step (S02), the diluent is volatilized by drying under a temperature condition of 80 ° C. to 160 ° C., and the non-volatile content is 97 parts by mass or more with respect to 100 parts by weight of the total mass of the sheet-type insulating varnish 1 after drying. can be
Furthermore, after the second step (S02), heating is further performed to advance the curing reaction, and the sheet-type insulating varnish 1 can be brought into a semi-cured state.
 以上説明したように、実施の形態2のシート型絶縁ワニスの製造方法で製造されたシート型絶縁ワニスは、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有する。 As described above, in the sheet-type insulating varnish produced by the method for producing a sheet-type insulating varnish according to the second embodiment, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated. , which reliably fills this gap and has excellent insulating properties, mechanical strength, and heat dissipation properties after curing.
実施の形態3.
 実施の形態3では、シート型絶縁ワニスの特性について説明する。
 シート型絶縁ワニス1は、表面平滑性及び柔軟性が高い方が好ましい。絶縁対象の部材との貼り付け性が良好であって、硬化後のシート型絶縁ワニス1と絶縁対象の部材との間に空気層が発生しないためには、シート型絶縁ワニス1の膜厚の面内分布を平均値の±30%以内とする。
Embodiment 3.
In Embodiment 3, characteristics of the sheet-type insulating varnish will be described.
The sheet-type insulating varnish 1 preferably has high surface smoothness and flexibility. In order to have good adhesion to the member to be insulated and not to generate an air layer between the cured sheet-type insulating varnish 1 and the member to be insulated, the film thickness of the sheet-type insulating varnish 1 must be The in-plane distribution shall be within ±30% of the average value.
 また、シート型絶縁ワニス1は、常温で180度に折り曲げても割れが発生しない柔軟性を有する。過度な加熱により乾燥が進むと、希釈剤の揮発に加えて樹脂の硬化反応が進行し、柔軟性が消失することがある。この場合、部材の表面形状に沿う柔軟性がないため、部材同士の隙間に配置した際にクラックが発生することがある。あるいは、加熱硬化後も部材に接着及び固着しないことがある。 In addition, the sheet-type insulating varnish 1 has such flexibility that cracks do not occur even when it is bent to 180 degrees at room temperature. If the drying progresses due to excessive heating, the hardening reaction of the resin proceeds in addition to volatilization of the diluent, and flexibility may be lost. In this case, since there is no flexibility to follow the surface shape of the members, cracks may occur when the members are arranged in the gaps between them. Alternatively, it may not be adhered or fixed to the member even after heat curing.
 また、シート型絶縁ワニス1は、膜厚が大きすぎると内部応力が高くなり、180度折り曲げ時に割れが発生する可能性がある。シート型絶縁ワニス1の膜厚は1μm~500μmが好適であり、絶縁対象の部材同士の隙間を完全に埋めるためには5μm~300μmがより好ましい。膜厚が1μm未満の場合、ピンホールのないシート型絶縁ワニスを形成することが難しく、膜厚が500μmを超える場合、180度折り曲げ試験において割れが発生する可能性が大きい。 In addition, if the film thickness of the sheet-type insulating varnish 1 is too large, the internal stress increases, and there is a possibility that cracks will occur when the sheet-type insulating varnish 1 is bent 180 degrees. The film thickness of the sheet-type insulating varnish 1 is preferably 1 μm to 500 μm, and more preferably 5 μm to 300 μm in order to completely fill the gaps between members to be insulated. When the film thickness is less than 1 μm, it is difficult to form a pinhole-free sheet-type insulating varnish.
 また、シート型絶縁ワニス1の膜厚は、絶縁対象の部材同士の隙間の寸法の1.1倍以上であり、通常1.1倍~2.0倍、より好ましくは1.3倍~1.7倍に設定される。具体的には、隙間の寸法から基材の厚みを差し引いた寸法が100μmの場合、シート型絶縁ワニス1の膜厚は110μm~200μmが好適であり、130μm~170μmがより好ましい。膜厚が110μm未満の場合、加熱されたシート型絶縁ワニス1が隙間の細部に十分に充填されず、200μmを超える場合、電子機器の部材同士を固定ネジで固定できなかったり、回転電機の固定子の成形時にスロット間に隙間が生じ円環状に成形できなくなる等、組立性が悪化することがある。 In addition, the film thickness of the sheet-type insulating varnish 1 is 1.1 times or more the dimension of the gap between the members to be insulated, usually 1.1 to 2.0 times, more preferably 1.3 to 1 .7 times. Specifically, when the dimension obtained by subtracting the thickness of the substrate from the dimension of the gap is 100 μm, the film thickness of the sheet-type insulating varnish 1 is preferably 110 μm to 200 μm, more preferably 130 μm to 170 μm. If the film thickness is less than 110 μm, the heated sheet-type insulating varnish 1 is not sufficiently filled in the details of the gaps, and if it exceeds 200 μm, the members of electronic devices cannot be fixed with fixing screws, or the rotating electric machine cannot be fixed. When the child is molded, gaps may occur between the slots, making it impossible to form a circular ring, and the assembly may be deteriorated.
 シート型絶縁ワニス1は、常温で25MPaの圧力で膜厚(総厚)が10%以上減少する圧縮率を有する。部材同士の隙間の寸法公差を考慮すると、20%以上圧縮されることがより好ましい。
 シート型絶縁ワニス1は不揮発分が97質量部(%)以上であるため、完全硬化すると3%~10%の体積収縮がある。また、シート型絶縁ワニス1の基材は、種類によっては25MPaの圧力でほとんど圧縮されないため、シート型絶縁ワニス1の膜厚は、隙間の寸法から基材の厚みを差し引いた寸法よりも10%以上大きくする必要がある。常温で25MPaの圧力でシート型絶縁ワニス1の膜厚が10%未満しか圧縮されない場合、シート型絶縁ワニス1を配置した時には隙間が埋まっていても、硬化収縮により微小な隙間が生じる場合がある。
The sheet-type insulating varnish 1 has a compressibility such that the film thickness (total thickness) is reduced by 10% or more at room temperature and a pressure of 25 MPa. Considering the dimensional tolerance of the gaps between members, it is more preferable to compress by 20% or more.
Since the sheet-type insulating varnish 1 has a nonvolatile content of 97 parts by mass (%) or more, it shrinks in volume by 3% to 10% when completely cured. In addition, since the base material of the sheet-type insulating varnish 1 is hardly compressed at a pressure of 25 MPa depending on the type, the film thickness of the sheet-type insulating varnish 1 is 10% larger than the dimension obtained by subtracting the thickness of the base material from the dimension of the gap. need to be larger. When the film thickness of the sheet-type insulating varnish 1 is compressed by less than 10% under a pressure of 25 MPa at room temperature, even if the gaps are filled when the sheet-type insulating varnish 1 is placed, a minute gap may occur due to curing shrinkage. .
 また、シート型絶縁ワニス1は、部材に予め貼り付けて使用する場合は、常温で表面粘着性(タック性)があるものが好ましい。一方、部材に予め貼り付けると作業性が悪くなる場合は、前述の配合比及び乾燥条件等で、柔軟性と膜厚圧縮性を保持した状態で表面粘着性をなくすことができる。
 表面粘着性がない指標として、40℃で絶縁対象の部材に2MPaの圧力で押しつけても粘着しないこととする。この条件で粘着した場合、作業環境温度(25~35℃)によっては表面粘着性が強くなり、作業性が悪くなる可能性がある。
Moreover, when the sheet-type insulating varnish 1 is used by being attached to a member in advance, it is preferable that the sheet-type insulating varnish 1 has surface adhesiveness (tackiness) at room temperature. On the other hand, if the workability deteriorates when the adhesive is attached to the member in advance, the surface tackiness can be eliminated while the flexibility and film thickness compressibility are maintained by the compounding ratio and drying conditions described above.
As an index of lack of surface tackiness, it is assumed that there is no tackiness even when pressed against a member to be insulated at 40° C. with a pressure of 2 MPa. When sticking under these conditions, the surface stickiness may become strong depending on the work environment temperature (25 to 35° C.), resulting in poor workability.
 シート型絶縁ワニス1は、常温で圧縮される柔軟性を有すると共に、加熱時に流動し、部材間の細部(例えばコイル及び鉄心の凹凸形状等)に浸透しなければならない。このような特性を得るには、シート型絶縁ワニス1の乾燥状態が重要である。柔軟性に関しては、180℃で折り曲げても割れが発生しないことで簡易的に判断できる。これらの柔軟性と流動性の特性をより定量的に判定する手法として、粘弾性測定による弾性率評価がある。 The sheet-type insulating varnish 1 must have the flexibility to be compressed at room temperature, must flow when heated, and permeate into details between members (for example, uneven shapes of coils and iron cores, etc.). In order to obtain such properties, the dry state of the sheet-type insulating varnish 1 is important. Flexibility can be easily determined by checking that no cracks occur even when bent at 180°C. Elastic modulus evaluation by viscoelasticity measurement is a method for more quantitatively determining these characteristics of flexibility and fluidity.
 粘弾性測定の具体例として、シート型絶縁ワニス1の貯蔵せん断弾性率(G′)が常温で1.0×103Pa~5.0×104Paであり、温度上昇とともに低下し、その最低値が80℃~150℃にあって10Pa~2.0×103Paである。上記の値を満たさないシート型絶縁ワニス1は、所要の加圧時の圧縮率が得られず、部材間の細部への浸透性が得られない。 As a specific example of viscoelasticity measurement, the storage shear modulus (G') of the sheet-type insulating varnish 1 is 1.0 × 10 Pa to 5.0 × 10 Pa at normal temperature, decreases with increasing temperature, and the lowest value is 80. °C to 150 °C and 10 Pa to 2.0 x 103 Pa. A sheet-type insulating varnish 1 that does not satisfy the above values cannot obtain a required compressibility when pressurized, and cannot obtain penetration into fine details between members.
 また、貯蔵せん断弾性率の最低値が80℃未満にある場合は、常温放置で反応が進行し、柔軟性が低下しやすい。一方、最低値が150℃以上にある場合は、完全硬化するために必要な加熱温度が高くなり、基材を劣化させる恐れがある。シート型絶縁ワニス1の形状の維持、及び加熱温度での流動性を発現させる観点から、常温での貯蔵せん断弾性率が3.0×103Pa~3.0×104Paであり、且つ、80℃~150℃での貯蔵せん断弾性率の最低値が1.0×102Pa~5.0×102Paであり、常温での値の10分の1以下であることがより好ましい。さらに、180℃以上での貯蔵せん断弾性率は、硬化による影響で、1.0×105Pa以上で飽和する。 Also, if the minimum value of the storage shear modulus is less than 80°C, the reaction proceeds when left at room temperature, and the flexibility tends to decrease. On the other hand, if the minimum value is 150° C. or higher, the heating temperature required for complete curing increases, possibly deteriorating the substrate. From the viewpoint of maintaining the shape of the sheet-type insulating varnish 1 and expressing fluidity at the heating temperature, the storage shear elastic modulus at room temperature is 3.0 × 10 Pa to 3.0 × 10 Pa, and 80 ° C. ~ The minimum value of the storage shear modulus at 150° C. is 1.0×10 2 Pa to 5.0×10 2 Pa, and more preferably 1/10 or less of the value at room temperature. Furthermore, the storage shear modulus at 180° C. or higher saturates at 1.0×10 5 Pa or higher due to the effect of curing.
 また、シート型絶縁ワニス1の損失弾性率(G″)が、常温で1.0×103Pa~5.0×104Paであり、温度上昇とともに低下し、その最低値が80℃~150℃にあって10Pa~2.0×103Paである。さらに、損失正接(tanδ)の極大値が80℃~150℃にあって1.0~3.5である。損失弾性率及び損失正接が上記の値を満たさないシート型絶縁ワニス1は、所要の加圧時の圧縮率が得られず、部材間の細部への浸透性が得られない。 In addition, the loss elastic modulus (G″) of the sheet-type insulating varnish 1 is 1.0×103 Pa to 5.0×104 Pa at normal temperature, decreases as the temperature rises, and its lowest value is 80° C. to 150° C. 10 Pa to 2.0 × 10 Pa. Furthermore, the maximum value of the loss tangent (tan δ) is 1.0 to 3.5 at 80 ° C to 150 ° C. The loss elastic modulus and loss tangent are the above values. A sheet-type insulating varnish 1 that does not satisfy the above cannot obtain a required compressibility when pressurized, and cannot obtain penetration into details between members.
 また、損失弾性率の最低値あるいは損失正接の極大値が80℃未満にある場合は、常温放置で反応が進行し、柔軟性が低下しやすい。一方、それらが150℃以上にある場合は、完全硬化するために必要な加熱温度が高くなり、基材を劣化させる恐れがある。シート型絶縁ワニス1の維持、及び加熱温度での流動性を発現させる観点から、常温での損失弾性率が3.0×103Pa~3.0×104Paであり、且つ、80℃~150℃での損失弾性率の最低値が1.0×102Pa~1.0×103Paであり、常温の値の5分の1以下であることがより好ましい。180℃以上での損失弾性率は、硬化による影響で、5.0×103Pa以上で飽和し、損失正接は0.2以下で飽和する。 In addition, when the minimum value of the loss elastic modulus or the maximum value of the loss tangent is below 80°C, the reaction proceeds when left at room temperature, and the flexibility tends to decrease. On the other hand, if they are at 150° C. or higher, the heating temperature required for complete curing increases, possibly deteriorating the substrate. From the viewpoint of maintaining the sheet-type insulating varnish 1 and expressing fluidity at the heating temperature, the loss elastic modulus at room temperature is 3.0 × 10 Pa to 3.0 × 10 Pa, and at 80 ° C. to 150 ° C. is 1.0×10 2 Pa to 1.0×10 3 Pa, and more preferably 1/5 or less of the value at room temperature. The loss elastic modulus at 180° C. or higher saturates at 5.0×10 3 Pa or higher and the loss tangent saturates at 0.2 or lower due to the influence of curing.
 また、シート型絶縁ワニス1の柔軟性と流動性の特性は、複素粘度でも評価できる。常温での複素粘度が6.0×102Pa・s~1.0×104Pa・sであり、温度上昇とともに低下し、その最低値が80℃~150℃にあって5.0×102Pa・s以下である。 In addition, the characteristics of flexibility and fluidity of the sheet-type insulating varnish 1 can also be evaluated by complex viscosity. The complex viscosity at room temperature is 6.0 × 102 Pa s to 1.0 × 104 Pa s, which decreases as the temperature rises, and has a minimum value of 5.0 × 102 Pa s or less at 80 ° C to 150 ° C. is.
 これらの値を満たさないシート型絶縁ワニス1は、所要の加圧時の圧縮率が得られず、部材間の細部への浸透性が得られない。さらに、シート型絶縁ワニス1の形状の維持、及び加熱温度での流動性を発現させる観点から、常温での複素粘度が1.0×103Pa・s~5.0×103Pa・sであり、且つ、80℃~150℃での複素粘度の最低値が1Pa・s~5.0×102Pa・sであり、常温での値の10分の1以下であることがより好ましい。180℃以上での複素粘度は、硬化による影響で、1.0×104Pa・s以上で飽和する。 A sheet-type insulating varnish 1 that does not satisfy these values cannot obtain the required compressibility when pressurized, and cannot obtain penetration into fine details between members. Furthermore, from the viewpoint of maintaining the shape of the sheet-type insulating varnish 1 and expressing fluidity at the heating temperature, the complex viscosity at room temperature is 1.0 × 10 Pa s to 5.0 × 10 Pa s, and , the minimum value of the complex viscosity at 80° C. to 150° C. is 1 Pa·s to 5.0×10 2 Pa·s, and more preferably 1/10 or less of the value at room temperature. The complex viscosity at 180° C. or higher saturates at 1.0×10 4 Pa·s or higher due to the effect of curing.
 シート型絶縁ワニス1は、絶縁対象の部材同士の隙間に配置された後、硬化処理工程で加熱硬化される。具体的には、一方の部材(発熱部品、基板、筐体、コイル、絶縁紙、絶縁フィルム、鉄心等)に予めシート型絶縁ワニス1を配置し、他方の部材(同上)で圧着固定される。シート型絶縁ワニス1に表面粘着性がない場合、脱落防止として両面テープ等で貼り付けてもよい。 The sheet-type insulating varnish 1 is heat-hardened in a hardening treatment step after being placed in the gap between the members to be insulated. Specifically, the sheet-type insulating varnish 1 is placed in advance on one member (heat-generating component, substrate, housing, coil, insulating paper, insulating film, iron core, etc.) and crimped and fixed by the other member (same as above). . If the sheet-type insulating varnish 1 does not have surface adhesiveness, it may be attached with a double-sided tape or the like to prevent it from coming off.
 シート型絶縁ワニス1は図2で説明したように、常温での加圧で所定の厚みに効率よく圧縮されるとともに、硬化時の加熱により流動して部材間の細部に浸透し、その後に熱膨張性マイクロカプセル3の発泡によりワニス層が増厚することで、空気層を排除し、絶縁対象の部材同士の隙間を確実に埋め、両者を絶縁及び固着することができる。従って、ワニスの流動、熱膨張性マイクロカプセル3の発泡、硬化を連続で進める必要があるため、加熱温度を流動温度(熱膨張性マイクロカプセル3の発泡開始温度以下)、発泡温度(熱膨張性マイクロカプセル3の発泡開始温度~潜在性硬化剤の反応開始温度+20℃)と段階的に高めて設定しても良い。なお。硬化温度は潜在性硬化剤の反応開始温度以上である。 As explained with reference to FIG. 2, the sheet-type insulating varnish 1 is efficiently compressed to a predetermined thickness by pressurization at normal temperature, and is flowed by heating during hardening to permeate into the details between members, and then is heated. By increasing the thickness of the varnish layer by foaming the expandable microcapsules 3, the air layer can be eliminated, the gap between the members to be insulated can be reliably filled, and the two can be insulated and fixed. Therefore, it is necessary to continuously proceed with the flow of the varnish, the foaming of the thermally expandable microcapsules 3, and the curing. The temperature may be increased stepwise from the foaming start temperature of the microcapsules 3 to the reaction start temperature of the latent curing agent+20° C.). In addition. The curing temperature is equal to or higher than the reaction initiation temperature of the latent curing agent.
 シート型絶縁ワニスは、加熱により熱膨張性マイクロカプセル3が発泡し、内部に空孔ができる。空孔は硬化物の絶縁特性及び機械強度を低下させるため、その空孔サイズは、絶縁性を維持するため、平均30μm以下であり、均質な絶縁性と安定した機械強度を得るには平均20μm以下がより好ましい。空孔サイズが平均30μmを超えると、ワニス硬化後に絶縁破壊電圧の低下及び部分放電の発生など絶縁特性に劣化させるとともに、機械強度の低下により、製品の耐振性を悪化させる。
 熱膨張性マイクロカプセル3は、加熱温度及び加熱時間により内部のガス圧を変化させ、体積の増加(膨張)を制御し、中空微粒子を得ることができる。この中空微粒子の空孔サイズを平均30μm以下になるように、加熱温度及び加熱時間を設定することが必要であり、その加熱温度(発泡温度)は60℃~200℃が好ましいが、潜在性硬化剤の反応開始温度+20℃以下であることが必須である。
 硬化促進剤により、潜在性硬化剤の反応開始温度が下がる場合は、その反応開始温度+20℃以下とすることが好ましい。発泡ばらつきを抑制するためには、80℃~180℃がより好ましい。60℃未満の場合は、ワニスの流動を妨げ、200℃を超えると、ワニスの硬化が先行し発泡しなくなったり、空孔サイズを制御できない。加熱時間(発泡時間)に関しては、空孔サイズを平均30μm以下に制御できる時間であれば、特に限定されるものではなく、発泡ばらつきを抑制する観点から、30秒~1時間が好ましい。
 シート型絶縁ワニス1の硬化後の増厚は、熱膨張性マイクロカプセル3の中空微粒子の空孔サイズが平均30μm以下で絶縁対象の部材同士の隙間を確実に埋めれれば、特に限定しないが、硬化後の膜厚は、初期膜厚に対して、10%以上の増加することが好ましい。10%未満の増加の場合、隙間の細部まで埋めることができず、空気層が残存する。
In the sheet-type insulating varnish, the thermally expandable microcapsules 3 are foamed by heating to form voids inside. Since pores reduce the insulating properties and mechanical strength of the cured product, the pore size should be 30 μm or less on average to maintain insulation, and 20 μm on average to obtain uniform insulation and stable mechanical strength. The following are more preferred. If the pore size exceeds 30 μm on average, insulation characteristics such as a decrease in dielectric breakdown voltage and occurrence of partial discharge are deteriorated after curing of the varnish, and vibration resistance of the product is deteriorated due to a decrease in mechanical strength.
The heat-expandable microcapsules 3 can change the internal gas pressure by changing the heating temperature and heating time to control the volume increase (expansion) and obtain hollow fine particles. It is necessary to set the heating temperature and heating time so that the pore size of the hollow fine particles is 30 μm or less on average. It is essential that the reaction initiation temperature of the agent is +20° C. or less.
When the curing accelerator lowers the reaction initiation temperature of the latent curing agent, the reaction initiation temperature is preferably +20° C. or lower. A temperature of 80° C. to 180° C. is more preferable in order to suppress uneven foaming. If the temperature is less than 60°C, the flow of the varnish is hindered, and if it exceeds 200°C, the varnish hardens first and foaming does not occur, and the pore size cannot be controlled. The heating time (foaming time) is not particularly limited as long as the pore size can be controlled to an average of 30 μm or less, and is preferably 30 seconds to 1 hour from the viewpoint of suppressing uneven foaming.
The thickness increase of the sheet-type insulating varnish 1 after curing is not particularly limited as long as the pore size of the hollow fine particles of the thermally expandable microcapsules 3 is 30 μm or less on average and the gaps between the members to be insulated can be reliably filled. It is preferable that the film thickness after curing increases by 10% or more with respect to the initial film thickness. If the increase is less than 10%, the gap cannot be filled in detail and an air layer remains.
 シート型絶縁ワニス1は、絶縁対象の部材(例えばコイル、鉄心等)の隙間に配置された後、硬化処理工程で加熱硬化される。硬化処理工程における加熱温度は、硬化剤及び硬化促進剤の種類によって異なるが、絶縁対象の部材を劣化させない加熱温度と時間に設定される。具体的には、加熱温度は100℃~200℃が好ましく、130℃~190℃がより好ましい。加熱時間は1分~6時間が好ましく、3分~2時間がより好ましい。 The sheet-type insulating varnish 1 is heat-hardened in a hardening process after it is placed in the gaps of the members to be insulated (for example, coils, iron cores, etc.). The heating temperature in the curing treatment step varies depending on the type of curing agent and curing accelerator, but is set to a heating temperature and time that do not degrade the member to be insulated. Specifically, the heating temperature is preferably 100°C to 200°C, more preferably 130°C to 190°C. The heating time is preferably 1 minute to 6 hours, more preferably 3 minutes to 2 hours.
 加熱温度が100℃未満、または加熱時間が1分未満の場合、硬化が不十分となり、部材との接着及び固着ができない。100℃~170℃の比較的低温では6時間を超えても部材を劣化させることは少ないが、170℃以上で6時間を超える場合、または200℃以上の高温加熱では、部材を劣化させる場合がある。なお、シート型絶縁ワニス1は溶剤をほとんど含まないため、誘導加熱または通電加熱等で硬化することもでき、硬化処理工程の簡略化が図られる。  If the heating temperature is less than 100°C or the heating time is less than 1 minute, the curing will be insufficient and it will not be possible to bond and adhere to the member. At a relatively low temperature of 100°C to 170°C, the member is rarely deteriorated even if it exceeds 6 hours. be. Since the sheet-type insulating varnish 1 contains almost no solvent, it can be cured by induction heating or electrical heating, thereby simplifying the curing process.
 また、シート型絶縁ワニス1は、絶縁対象の部材を一体化し耐振性を向上させるために、硬化後の部材との接着力は10N/m以上が好ましく、耐振性の特性ばらつきを抑制するためには、20N/m以上がより好ましい。接着力が10N/m未満では、十分な耐振性が得られず、機器の長期的な信頼性が低下する。 In addition, the sheet-type insulating varnish 1 preferably has an adhesive strength of 10 N / m or more to the member after curing in order to integrate the members to be insulated and improve the vibration resistance. is more preferably 20 N/m or more. If the adhesive force is less than 10 N/m, sufficient vibration resistance cannot be obtained, and the long-term reliability of the device is lowered.
 上記特性を有するシート型絶縁ワニス1によれば、常温での加圧で所定の厚みに効率よく圧縮されるとともに、硬化時の加熱により流動して部材間の細部に浸透し、その後に膨張性マイクロカプセルの発泡によりワニス層が増厚させることで、空気層を排除し、絶縁対象の部材同士の隙間を確実に埋め、両者を絶縁及び固着することができる。 According to the sheet-type insulating varnish 1 having the above characteristics, it is efficiently compressed to a predetermined thickness by pressurization at room temperature, and it flows by heating during curing and penetrates into the details between members, and then expands. By increasing the thickness of the varnish layer by foaming the microcapsules, the air layer can be eliminated, the gap between the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
実施の形態4.
 実施の形態4では、実施の形態1のシート型絶縁ワニスを電気機器に適用した例について、図4に基づいて説明する。
 実施の形態4では、電気機器の例として電源デバイスを想定して説明する。電源デバイスとしては、例えばスイッチング方式のDC-DCコンバータ、AC-DCコンバータ等がある。
 なお、実施の形態4では、シート型絶縁ワニスの適用例として電子機器を例に挙げているが、これに限定されるものではなく、電気機器全般に適用可能である。
Embodiment 4.
In Embodiment 4, an example in which the sheet-type insulating varnish of Embodiment 1 is applied to electrical equipment will be described with reference to FIG.
In the fourth embodiment, a description will be given assuming a power supply device as an example of electrical equipment. Examples of power supply devices include switching type DC-DC converters and AC-DC converters.
In the fourth embodiment, an electronic device is taken as an application example of the sheet-type insulating varnish, but the present invention is not limited to this, and can be applied to electrical devices in general.
 図4に示す電源デバイス15は、電子部品9が搭載された基板10と、基板10が固定された筐体11とを備えている。電子部品9には、電界効果トランジスタ(MOSFET(Metal Oxide Semiconductor Field Effect Transistor))、ダイオード、コンデンサ等の発熱部品が含まれる。
 電子部品9は固定ネジ12によって基板10に固定され、基板10は固定ネジ13によって筐体11に固定されている。
A power supply device 15 shown in FIG. 4 includes a substrate 10 on which electronic components 9 are mounted, and a housing 11 to which the substrate 10 is fixed. The electronic component 9 includes heat-generating components such as a field effect transistor (MOSFET (Metal Oxide Semiconductor Field Effect Transistor)), a diode, and a capacitor.
The electronic component 9 is fixed to the substrate 10 by fixing screws 12 , and the substrate 10 is fixed to the housing 11 by fixing screws 13 .
 基板10には充填スルーホール14が形成され、電子部品9と基板10の隙間にシート型絶縁ワニス1Cが配置され、基板10と筐体11の隙間にシート型絶縁ワニス1Dが配置されている。すなわち、電源デバイス15の場合、シート型絶縁ワニス1C、1Dが配置される部材同士の隙間とは、電子部品9(発熱部品)と基板10の隙間、及び基板10と筐体11の隙間である。
 なお、実施の形態1のシート型絶縁ワニス1と区別するため、シート型絶縁ワニス1C、1Dとしている。
A filling through hole 14 is formed in the substrate 10, a sheet-type insulating varnish 1C is arranged in the gap between the electronic component 9 and the substrate 10, and a sheet-type insulating varnish 1D is arranged in the gap between the substrate 10 and the housing 11. That is, in the case of the power supply device 15, the gaps between the members on which the sheet- type insulating varnishes 1C and 1D are arranged are the gaps between the electronic component 9 (heat-generating component) and the substrate 10, and the gaps between the substrate 10 and the housing 11. .
In order to distinguish from the sheet-type insulating varnish 1 of Embodiment 1, the sheet-type insulating varnishes are referred to as 1C and 1D.
 電子部品9と基板10との隙間には、基板10側にこの隙間の寸法の1.2倍の膜厚のシート型絶縁ワニス1Cを貼り付けた後、電子部品9を固定ネジ12で基板10に固定し、130℃~200℃で加熱して、シート型絶縁ワニス1Cを流動、発泡、硬化する。
 基板10と筐体11との隙間を絶縁する場合、筐体11側に、隙間の寸法(図中、G1で示す)の1.2倍の膜厚のシート型絶縁ワニス1Dを貼り付けた後、基板10を固定ネジ13で筐体11に固定し、130℃~200℃で加熱して、シート型絶縁ワニス1Dを流動、発泡、硬化する。
In the gap between the electronic component 9 and the substrate 10, the sheet-type insulating varnish 1C having a thickness of 1.2 times the size of the gap is pasted on the substrate 10 side. and heated at 130° C. to 200° C. to flow, foam and harden the sheet type insulating varnish 1C.
When insulating the gap between the substrate 10 and the housing 11, after attaching a sheet-type insulating varnish 1D having a film thickness 1.2 times the size of the gap (indicated by G1 in the figure) to the housing 11 side , the substrate 10 is fixed to the housing 11 with the fixing screws 13 and heated at 130° C. to 200° C. to flow, foam and harden the sheet-type insulating varnish 1D.
 シート型絶縁ワニス1C、1Dは、常温での加圧で所定の厚みに効率よく圧縮されるとともに、硬化時の加熱により流動して部材間の細部に浸透し、その後に膨張性マイクロカプセルの発泡によりワニス層が増厚することで、空気層を排除し、絶縁対象の部材同士の隙間を確実に埋め、両者を絶縁及び固着することができる。
 加熱温度を一定温度に設定して、空気層の排除が不十分な場合は、ワニスの流動、熱膨張性マイクロカプセル3の発泡、硬化を連続で効率良く進行させるため、加熱温度を流動温度(熱膨張性マイクロカプセル3の発泡開始温度以下)、発泡温度(膨張性マイクロカプセルの発泡開始温度~潜在性硬化剤の反応開始温度+20℃)と段階的に高めて設定しても良い。なお。硬化温度は潜在性硬化剤の反応開始温度以上である。
 この硬化処理により、電子部品9が基板10にシート型絶縁ワニス1Cによって固着される。さらに基板10と筐体11がシート型絶縁ワニス1Dによって絶縁されると共に、基板10が筐体11に固着される。なお、硬化前のシート型絶縁ワニス1C、1Dは、表面粘着性を有していることが作業性の面で好ましい。
The sheet- type insulating varnishes 1C and 1D are efficiently compressed to a predetermined thickness by pressurization at room temperature, and are flowed by heating during curing to permeate the details between members, and then foam the expandable microcapsules. By increasing the thickness of the varnish layer, the air layer can be eliminated, the gap between the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
If the air layer is not sufficiently eliminated by setting the heating temperature to a constant temperature, the heating temperature is set to the flowing temperature ( The temperature may be increased stepwise from the foaming start temperature of the thermally expandable microcapsules 3 or lower) to the foaming temperature (from the foaming start temperature of the expandable microcapsules to the reaction start temperature of the latent curing agent+20° C.). In addition. The curing temperature is equal to or higher than the reaction initiation temperature of the latent curing agent.
By this curing treatment, the electronic component 9 is fixed to the substrate 10 by the sheet-type insulating varnish 1C. Furthermore, the substrate 10 and the housing 11 are insulated by the sheet-type insulating varnish 1D, and the substrate 10 is fixed to the housing 11 . In terms of workability, it is preferable that the sheet- type insulating varnishes 1C and 1D before curing have surface adhesiveness.
 シート型絶縁ワニス1C、1Dは、硬化処理前には常温で圧縮される柔軟性を有し、加熱時に流動して部材間の細部に浸透し、その後に膨張性マイクロカプセルの発泡によりワニス層が増厚することで、空気層を排除し、隙間を確実に埋めることができるように作製されている。具体的には、シート型絶縁ワニス1C、1Dは、180度折り曲げても割れない柔軟性を有し、且つ、貯蔵せん断弾性率、損失弾性率、損失正接、及び複素粘度を実施の形態3で説明した所定の範囲内とすることにより、部材間の細部への浸透性を有している。 The sheet- type insulating varnishes 1C and 1D have the flexibility to be compressed at room temperature before curing treatment, flow when heated and penetrate into the details between members, and then foam the expandable microcapsules to form a varnish layer. By increasing the thickness, it is manufactured so that the air layer can be eliminated and the gap can be reliably filled. Specifically, the sheet- type insulating varnishes 1C and 1D have flexibility that does not break even when bent 180 degrees, and the storage shear elastic modulus, loss elastic modulus, loss tangent, and complex viscosity are By being within the predetermined range described, it has permeability to details between members.
 このため、シート型絶縁ワニス1C、1Dは、硬化処理時の加熱により、電子部品9と基板10の隙間の細部、及び基板10と筐体11の隙間の細部にそれぞれ浸透した後、熱膨張性マイクロカプセル3の発泡によりワニス層が増厚することで、空気層を排除し、隙間を確実に埋めることができる。したがって、シート型絶縁ワニス1C、1Dを用いた電源デバイス15は、絶縁劣化が生じ難く、運転時の電子部品9からの発熱が基板10に効率的に排熱される。また、シート型絶縁ワニス1C、1Dは溶剤を含有していないため、汎用の加熱炉だけでなく誘導加熱及び通電加熱で硬化することができる。さらに、硬化処理工程中のエネルギーロスが少ないことから、硬化時間が短く、電源デバイスの製造工程の簡略化が図られる。 For this reason, the sheet- type insulating varnishes 1C and 1D permeate into the details of the gap between the electronic component 9 and the substrate 10 and the details of the gap between the substrate 10 and the housing 11 by heating during the curing treatment, and then, after they have permeated into the details of the gap between the substrate 10 and the housing 11, By increasing the thickness of the varnish layer due to the foaming of the microcapsules 3, the air layer can be eliminated and the gap can be reliably filled. Therefore, the power supply device 15 using the sheet- type insulating varnishes 1C and 1D is less susceptible to insulation deterioration, and the heat generated from the electronic components 9 during operation is efficiently discharged to the substrate 10 . Moreover, since the sheet- type insulating varnishes 1C and 1D do not contain a solvent, they can be cured not only by a general-purpose heating furnace, but also by induction heating and electric heating. Furthermore, since the energy loss during the curing process is small, the curing time is short, and the manufacturing process of the power supply device can be simplified.
 一方、絶縁コーティング剤、ポッティング剤等の液状の絶縁材料を用いた場合、部材同士の隙間を絶縁材料が流動するため、隙間を確実に埋めることは難しい。また、液状の絶縁材料は溶剤を含むため、塗布後の硬化処理工程中に多量の有機成分が揮発し、衛生面及び臭気面の問題がある。また、硬化処理工程中に樹脂の硬化反応に加えて、硬化反応に関与しない有機成分の揮散が進むため、加熱炉でのエネルギーロスが大きくなり、硬化時間が長くなる。その結果、CO2排出量が増加するため、環境面での問題がある。 On the other hand, when a liquid insulating material such as an insulating coating agent or potting agent is used, the insulating material flows through the gaps between the members, making it difficult to reliably fill the gaps. In addition, since the liquid insulating material contains a solvent, a large amount of the organic component volatilizes during the curing process after coating, which poses hygiene and odor problems. In addition to the curing reaction of the resin during the curing treatment step, volatilization of organic components that do not participate in the curing reaction progresses, resulting in increased energy loss in the heating furnace and longer curing time. As a result, the amount of CO2 emitted increases, which poses an environmental problem.
 実施の形態4によれば、電子部品9と基板10の隙間、及び基板10と筐体11の隙間にシート型絶縁ワニス1C、1Dをそれぞれ配置することにより、絶縁信頼性、排熱性、及び耐振性の向上が図られ、電源デバイス15の小型化及び高出力化が実現する。
 なお、図4では、電子部品9と基板10の隙間、及び基板10と筐体11の両方の隙間にシート型絶縁ワニス1C、1Dを配置しているが、いずれか一方の隙間にシート型絶縁ワニス1C(1D)を配置する場合もある。
According to the fourth embodiment, by placing the sheet- type insulating varnishes 1C and 1D in the gap between the electronic component 9 and the substrate 10 and in the gap between the substrate 10 and the housing 11, respectively, the insulation reliability, heat dissipation, and vibration resistance are improved. As a result, the power supply device 15 can be made smaller and have a higher output.
In FIG. 4, the sheet- type insulating varnishes 1C and 1D are placed in the gap between the electronic component 9 and the substrate 10 and in the gap between the substrate 10 and the housing 11. Varnish 1C (1D) may also be placed.
 以上説明したように、実施の形態4は実施の形態1のシート型絶縁ワニスを電気機器に適用したものである。
 したがって、実施の形態4によれば、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するシート型絶縁ワニスを適用した電気機器を提供することができる。
As described above, in the fourth embodiment, the sheet-type insulating varnish of the first embodiment is applied to electrical equipment.
Therefore, according to the fourth embodiment, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, and reliably fills the gaps. It is possible to provide an electrical device to which the sheet-type insulating varnish having excellent properties is applied.
実施の形態5.
 実施の形態5では、実施の形態1のシート型絶縁ワニスを回転電機へ適用した例について、図5-図8に基づいて説明する。
Embodiment 5.
In Embodiment 5, an example in which the sheet-type insulating varnish of Embodiment 1 is applied to a rotating electrical machine will be described with reference to FIGS. 5 to 8. FIG.
 まず、電動機、発電機、圧縮機等の回転電機の固定子の構造を説明する。図5は回転電機の固定子の斜視図であり、図6は断面図である。
 回転電機は、図5、図6に示すように、固定子コイル21と円環状の固定子鉄心22を含む固定子20を備えている。固定子鉄心22のティース部23の間には、所定数のスロット24が周方向に設けられ、スロット24内に固定子コイル21が収納される。
First, the structure of a stator for rotating electric machines such as motors, generators, and compressors will be described. FIG. 5 is a perspective view of the stator of the rotary electric machine, and FIG. 6 is a cross-sectional view.
The rotary electric machine includes a stator 20 including a stator coil 21 and an annular stator core 22, as shown in FIGS. A predetermined number of slots 24 are provided in the circumferential direction between the teeth portions 23 of the stator core 22 , and the stator coils 21 are accommodated in the slots 24 .
 次に、シート型絶縁ワニスを回転電機の固定子20への適用について、図7、図8に基づいて説明する。なお、実施の形態1のシート型絶縁ワニス1と区別するため、シート型絶縁ワニス1Eとしている。
 図7に示すように、固定子鉄心5(スロット24の内壁)と固定子コイル21の隙間には、シート型絶縁ワニス1Eが配置される。
 また、スロット24の内壁と固定子コイル21の隙間には、絶縁紙25または絶縁フィルムが配置される場合がある。この場合、図8に示すように、絶縁紙25のコイル側の面にシート型絶縁ワニス1Eを配置する。なお、絶縁紙25の両側にシート型絶縁ワニス1Eを配置してもよい。
 すなわち、スロット24の内壁とシート型絶縁ワニス1Eとの間に絶縁紙25が配置するか、またはスロット24の内壁とシート型絶縁ワニス1Eの間に絶縁紙25とシート型絶縁ワニス1Eとが絶縁紙25がシート型絶縁ワニス1Eで挟まれるように配置してもよい。
 回転電機の場合、絶縁対象の部材同士の隙間とは、固定子鉄心22と固定子コイル21の隙間、または絶縁紙25と固定子コイル21の隙間、または固定子鉄心22と絶縁紙25の隙間である。なお、固定子コイル21には、絶縁テープが貼着されていてもよい。
Next, application of the sheet-type insulating varnish to the stator 20 of the rotary electric machine will be described with reference to FIGS. 7 and 8. FIG. In addition, in order to distinguish from the sheet-type insulating varnish 1 of Embodiment 1, it is referred to as a sheet-type insulating varnish 1E.
As shown in FIG. 7, the sheet-type insulating varnish 1E is arranged in the gap between the stator core 5 (the inner wall of the slot 24) and the stator coil 21. As shown in FIG.
In some cases, an insulating paper 25 or an insulating film is arranged in the gap between the inner wall of the slot 24 and the stator coil 21 . In this case, as shown in FIG. 8, the sheet-type insulating varnish 1E is arranged on the surface of the insulating paper 25 on the coil side. The sheet-type insulating varnish 1E may be arranged on both sides of the insulating paper 25. FIG.
That is, the insulating paper 25 is arranged between the inner wall of the slot 24 and the sheet-type insulating varnish 1E, or the insulating paper 25 and the sheet-type insulating varnish 1E are insulated between the inner wall of the slot 24 and the sheet-type insulating varnish 1E. The paper 25 may be arranged so as to be sandwiched between the sheet-type insulating varnishes 1E.
In the case of a rotating electric machine, the gap between the members to be insulated is the gap between the stator core 22 and the stator coil 21, the gap between the insulating paper 25 and the stator coil 21, or the gap between the stator core 22 and the insulating paper 25. is. In addition, an insulating tape may be attached to the stator coil 21 .
 絶縁紙25が配置されないスロット24において、固定子鉄心22と固定子コイル21の隙間の実測寸法が公差を含めて30μm~150μmである場合、熱膨張性マイクロカプセル3及び充填剤4として最大粒径が30μm以下であり、平均粒径が15μm以下のものが選定される。
 また、絶縁紙25が配置されるスロット24において、絶縁紙25の厚みを差し引いた隙間の実測寸法が公差を含めて10μm~100μmである場合、熱膨張性マイクロカプセル及び充填剤として最大粒径が10μm以下であり、平均粒径が5μm以下のものが選定される。
In the slot 24 where the insulating paper 25 is not arranged, when the measured dimension of the gap between the stator core 22 and the stator coil 21 is 30 μm to 150 μm including tolerance, the maximum particle size of the thermally expandable microcapsules 3 and the filler 4 is 30 μm or less and the average particle diameter is 15 μm or less.
Also, in the slot 24 in which the insulating paper 25 is arranged, when the actual measurement size of the gap after subtracting the thickness of the insulating paper 25 is 10 μm to 100 μm including the tolerance, the maximum particle size of the thermally expandable microcapsules and the filler is It is 10 μm or less, and those having an average particle size of 5 μm or less are selected.
 回転電機の製造工程においては、固定子鉄心22または絶縁紙25にシート型絶縁ワニス1Eを配置し、さらに固定子コイル21を配置した後、固定子鉄心22を円環状に成形することによりシート型絶縁ワニス1Eを圧縮固定する。このとき、シート型絶縁ワニス1Eの膜厚が大きすぎると、成形時にスロット24間に隙間が生じ、円環状に成形できない。 In the manufacturing process of the rotating electrical machine, the sheet-type insulating varnish 1E is placed on the stator core 22 or the insulating paper 25, and after the stator coils 21 are further placed, the stator core 22 is formed into an annular shape to obtain the sheet-type insulating varnish 1E. The insulating varnish 1E is compressed and fixed. At this time, if the film thickness of the sheet-type insulating varnish 1E is too large, gaps are generated between the slots 24 during molding, and the ring cannot be molded.
 また、シート型絶縁ワニス1Eの膜厚は、固定子鉄心22と固定子コイル21の隙間の寸法よりも大きく設定されているため、固定子鉄心22を円環状に成形する時の圧力で膜厚が減少しなければならない。常温で25MPaの圧力で膜厚が10%未満しか圧縮されない場合、成形時にスロット24間に隙間が生じ、円環状に成形できない。このため、シート型絶縁ワニス1Eの膜厚は、固定子鉄心22と固定子コイル21の隙間の寸法の1.1倍~2.0倍、より好ましくは1.3~1.7倍であり、常温で25MPaの圧力で10%以上、より好ましくは20%以上圧縮されるものとする。 In addition, since the film thickness of the sheet-type insulating varnish 1E is set to be larger than the dimension of the gap between the stator core 22 and the stator coil 21, the film thickness is reduced by the pressure applied when the stator core 22 is formed into an annular shape. must decrease. If the film thickness is compressed by less than 10% with a pressure of 25 MPa at room temperature, gaps will occur between the slots 24 during molding, making it impossible to form an annular shape. Therefore, the film thickness of the sheet-type insulating varnish 1E is 1.1 to 2.0 times, more preferably 1.3 to 1.7 times, the dimension of the gap between the stator core 22 and the stator coil 21. , at room temperature and a pressure of 25 MPa, the compression is 10% or more, preferably 20% or more.
 また、回転電機の固定子20の場合、表面粘着性を有するシート型絶縁ワニス1Eを固定子鉄心22または絶縁紙25に予め貼り付けていると、固定子コイル21を挿入する際の作業性が悪くなる。このため、シート型絶縁ワニス1Eには、柔軟性及び圧縮性を保持した状態で、常温で表面粘着性のないものが選択される。 Further, in the case of the stator 20 of a rotary electric machine, if the sheet-type insulating varnish 1E having surface adhesiveness is previously applied to the stator core 22 or the insulating paper 25, the workability when inserting the stator coil 21 is reduced. Deteriorate. For this reason, the sheet-type insulating varnish 1E is selected to have no surface tackiness at room temperature while maintaining flexibility and compressibility.
 シート型絶縁ワニス1Eは、硬化処理時の加熱により、固定子鉄心22または絶縁紙25と固定子コイル21の隙間、及び固定子コイル21の隙間の細部に浸透した後、熱膨張性マイクロカプセル3によりワニス層が増厚することで、空気層を排除し隙間を確実に埋めることができる。
 シート型絶縁ワニス1Eは、常温での加圧で所定の厚みに効率よく圧縮されるとともに、硬化時の加熱により流動して部材間の細部に浸透し、その後に熱膨張性マイクロカプセル3の発泡によりワニス層が増厚することで、空気層を排除し、絶縁対象の部材同士の隙間を確実に埋め、両者を絶縁及び固着することができる。
 加熱温度を一定温度に設定して、空気層の排除が不十分な場合は、ワニスの流動、熱膨張性マイクロカプセル3の発泡、硬化を連続で効率良く進行させるため、加熱温度を流動温度(熱膨張性マイクロカプセル3の発泡開始温度以下)、発泡温度(熱膨張性マイクロカプセル3の発泡開始温度~潜在性硬化剤の反応開始温度+20℃)と段階的に高めて設定しても良い。なお。硬化温度は潜在性硬化剤の反応開始温度以上である。
 この硬化処理により、シート型絶縁ワニス1Eを用いた回転電機は、固定子コイル21の絶縁性能が高く、絶縁劣化が生じ難い。また、固定子コイル21の巻線からの発熱を固定子鉄心22に効率的に排熱することができる。
The sheet-type insulating varnish 1E penetrates into the details of the gap between the stator core 22 or the insulating paper 25 and the stator coil 21 and the gap between the stator coil 21 by heating during the curing treatment, and then forms the thermally expandable microcapsules 3. By increasing the thickness of the varnish layer, the air layer can be eliminated and the gap can be reliably filled.
The sheet-type insulating varnish 1E is efficiently compressed to a predetermined thickness by pressurization at room temperature, and is fluidized by heating during curing to penetrate into details between members, and then foams the thermally expandable microcapsules 3. By increasing the thickness of the varnish layer, the air layer can be eliminated, the gap between the members to be insulated can be reliably filled, and the two can be insulated and fixed together.
If the air layer is not sufficiently eliminated by setting the heating temperature to a constant temperature, the heating temperature is set to the flowing temperature ( The temperature may be increased stepwise from the foaming start temperature of the thermally expandable microcapsules 3 or lower to the foaming temperature (from the foaming start temperature of the thermally expandable microcapsules 3 to the reaction start temperature of the latent curing agent+20° C.). In addition. The curing temperature is equal to or higher than the reaction initiation temperature of the latent curing agent.
Due to this hardening treatment, the rotating electrical machine using the sheet-type insulating varnish 1E has high insulation performance of the stator coil 21, and insulation deterioration is less likely to occur. Moreover, the heat generated from the windings of the stator coil 21 can be efficiently discharged to the stator core 22 .
 さらに、固定子コイル21の固着が確実に行えるため、機械的強度が維持され、NVH特性の改善が図られる。また、シート型絶縁ワニス1Eは溶剤を含有していないため、汎用の加熱炉だけでなく誘導加熱及び通電加熱で硬化することができる。さらに、硬化処理工程中のエネルギーロスが少ないことから、硬化時間が短く、回転電機の製造工程の簡略化が図られる。 Furthermore, since the stator coil 21 can be securely fixed, the mechanical strength is maintained and the NVH characteristics are improved. Moreover, since the sheet-type insulating varnish 1E does not contain a solvent, it can be cured not only by a general-purpose heating furnace, but also by induction heating and electric heating. Furthermore, since the energy loss during the curing treatment process is small, the curing time is short, and the manufacturing process of the rotary electric machine can be simplified.
 実施の形態5によれば、固定子鉄心22または絶縁紙25と固定子コイル21との隙間、または固定子鉄心22と絶縁紙25の隙間にシート型絶縁ワニス1Eを配置することにより、絶縁信頼性、排熱性、及び耐振性の向上が図られ、回転電機の小型化及び高出力化が実現できる。 According to the fifth embodiment, the insulation reliability is improved by arranging the sheet-type insulating varnish 1E in the gap between the stator core 22 or the insulating paper 25 and the stator coil 21, or in the gap between the stator core 22 and the insulating paper 25. performance, heat dissipation, and vibration resistance can be improved, and miniaturization and high output of the rotating electric machine can be realized.
 以上説明したように、実施の形態5は実施の形態1のシート型絶縁ワニスを回転電機に適用したものである。
 したがって、実施の形態5によれば、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するシート型絶縁ワニスを適用した回転電機器を提供することができる。
As described above, the fifth embodiment applies the sheet-type insulating varnish of the first embodiment to a rotating electric machine.
Therefore, according to Embodiment 5, the thermosetting resin flows when heated and penetrates into the details of the gaps of the members to be insulated, and reliably fills the gaps. It is possible to provide a rotating electrical device to which a sheet-type insulating varnish having excellent properties is applied.
実施の形態6.
 実施の形態6では、シート型絶縁ワニスの実施例及び比較例について説明する。
 実施例及び比較例により本願のシート型絶縁ワニスの詳細を説明するが、本願はこれらに限定されるものではない。
 実施例及び比較例では、下記の材料を表1及び表2に記載の配合にて混合し、熱硬化性樹脂組成物を調整した。これらの熱硬化性樹脂組成物に希釈剤を配合して離型フィルムに塗工し、不揮発分が99%以上になるように希釈剤を揮発乾燥し、シート型絶縁ワニスを作製した。
Embodiment 6.
In Embodiment 6, examples and comparative examples of the sheet-type insulating varnish will be described.
Although the details of the sheet-type insulating varnish of the present application will be described with reference to Examples and Comparative Examples, the present application is not limited to these.
In Examples and Comparative Examples, the following materials were mixed according to the formulations shown in Tables 1 and 2 to prepare thermosetting resin compositions. These thermosetting resin compositions were blended with a diluent and applied to a release film, and the diluent was volatilized and dried so that the non-volatile content was 99% or more to prepare a sheet-type insulating varnish.
<固形の第1熱硬化性樹脂>
(1-1)ビスフェノールA型エポキシ樹脂(エポキシ当量1500、軟化点100℃)
(1-2)ビスフェノールA型ビニルエステル樹脂(重合平均分子量2000、軟化点80℃)
<Solid first thermosetting resin>
(1-1) Bisphenol A type epoxy resin (epoxy equivalent 1500, softening point 100°C)
(1-2) Bisphenol A type vinyl ester resin (polymerization average molecular weight 2000, softening point 80°C)
<液状の第2熱硬化性樹脂>
(2-1)ビスフェノールA型エポキシ樹脂(エポキシ当量185)
(2-2)ネオペンチルグリコールジメタクリレート(重合平均分子量240)
<Liquid Second Thermosetting Resin>
(2-1) Bisphenol A type epoxy resin (epoxy equivalent 185)
(2-2) Neopentyl glycol dimethacrylate (polymerization average molecular weight 240)
<硬化剤>
(3-1)ジシアンジアミド(反応開始温度160℃)
(3-2)2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(10時間半減期温度117.9℃)
(3-3)プロピレンアミン(常温で反応活性)
<Curing agent>
(3-1) Dicyandiamide (reaction initiation temperature 160° C.)
(3-2) 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (10-hour half-life temperature 117.9° C.)
(3-3) Propyleneamine (reactive at room temperature)
<硬化促進剤>
(4-1)1-シアノエチル-2-メチルイミダゾール(反応開始温度100℃)
(4-2)1,8-ジアザビシクロ[5.4.0]ウンデセン-7(反応開始温度100℃)
<Curing accelerator>
(4-1) 1-cyanoethyl-2-methylimidazole (reaction initiation temperature 100° C.)
(4-2) 1,8-diazabicyclo[5.4.0]undecene-7 (reaction initiation temperature 100° C.)
<熱可塑性樹脂>
(5-1)フェノキシ樹脂(重合平均分子量15万)
(5-2)ポリエステル樹脂(重合平均分子量10万)
<Thermoplastic resin>
(5-1) Phenoxy resin (polymerization average molecular weight 150,000)
(5-2) Polyester resin (polymerization average molecular weight 100,000)
<熱膨張性マイクロカプセル>
(6-1)最大粒径15μm、平均粒径10μm、発泡開始温度65℃
(6-2)最大粒径30μm、平均粒径20μm、発泡開始温度120℃
(6-3)最大粒径100μm、平均粒径50μm、発泡開始温度180℃
(6-4)最大粒径45μm、平均粒径25μm、発泡開始温度125℃
(6-5)最大粒径60μm、平均粒径35μm、発泡開始温度185℃
(6-6)最大粒径95μm、平均粒径45μm、発泡開始温度50℃
(6-7)最大粒径105μm、平均粒径55μm、発泡開始温度120℃
<Thermal expandable microcapsules>
(6-1) Maximum particle size 15 μm, average particle size 10 μm, foaming start temperature 65°C
(6-2) Maximum particle size 30 µm, average particle size 20 µm, foaming start temperature 120°C
(6-3) Maximum particle size 100 µm, average particle size 50 µm, foaming start temperature 180°C
(6-4) Maximum particle size 45 μm, average particle size 25 μm, foaming start temperature 125°C
(6-5) Maximum particle size 60 µm, average particle size 35 µm, foaming start temperature 185°C
(6-6) Maximum particle size 95 μm, average particle size 45 μm, foaming start temperature 50°C
(6-7) Maximum particle size 105 μm, average particle size 55 μm, foaming start temperature 120°C
<無機充填剤>
(7-1)溶融シリカ(最大粒径7μm、平均粒径2μm)
(7-2)アルミナ(最大粒径18μm、平均粒径5μm)
(7-3)結晶シリカ(最大粒径130μm、平均粒径60μm)
<Inorganic filler>
(7-1) Fused silica (maximum particle size 7 μm, average particle size 2 μm)
(7-2) Alumina (maximum particle size 18 μm, average particle size 5 μm)
(7-3) Crystalline silica (maximum particle size 130 μm, average particle size 60 μm)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1-5によるシート型絶縁ワニスは、上記実施の形態1及び2に記載された原材料とその配合に従って作製されている。一方、表2に示すように、比較例1-7によるシート型絶縁ワニスは、上記実施の形態1及び2に記載された原材料とその配合に従っておらず、本願のシート型絶縁ワニスには適合していない。 As shown in Table 1, the sheet-type insulating varnishes of Examples 1-5 are produced according to the raw materials and their blends described in Embodiments 1 and 2 above. On the other hand, as shown in Table 2, the sheet-type insulating varnishes according to Comparative Examples 1-7 did not conform to the raw materials and their formulations described in Embodiments 1 and 2 above, and were not suitable for the sheet-type insulating varnish of the present application. not
 実施例1-5及び比較例1-7によるシート型絶縁ワニスに対し、表面平滑性、柔軟性、圧縮率、粘着性、離型性、ゲル化時間、貯蔵せん断弾性率、損失弾性率、損失正接、複素粘度について評価した。また、シート型絶縁ワニスの硬化物について、接着強度、絶縁耐圧、膜厚増加率、熱膨張性マイクロカプセルの空孔サイズについて評価した。さらに、固定子を製作し、コイルと鉄心との間の隙間状態とコイル固着状態を観察した。 For the sheet-type insulating varnishes of Examples 1-5 and Comparative Examples 1-7, surface smoothness, flexibility, compressibility, adhesiveness, releasability, gel time, storage shear modulus, loss modulus, loss Tangent and complex viscosity were evaluated. In addition, the cured product of the sheet-type insulating varnish was evaluated for adhesive strength, dielectric strength, film thickness increase rate, and pore size of the thermally expandable microcapsules. Furthermore, a stator was manufactured, and the state of the gap between the coil and the iron core and the state of adhesion of the coil were observed.
 次に、評価したそれぞれの内容について説明する。表面平滑性は、シート型絶縁ワニスの厚みの面内分布が平均値の±30%以内であるか否かで判断した(〇:±30%以内、×:±30%超)。柔軟性と圧縮率の測定は、シート型絶縁ワニスの可使時間を確認するために、シート型絶縁ワニスの作製直後と、40℃にて30日保管した後の2度行った。柔軟性は、25℃において、シート型絶縁ワニスを180度に折り曲げたときに発生した割れまたは欠けの有無により判定した(〇:発生無し、×:発生有り)。シート型絶縁ワニスの圧縮率は、圧延鋼板上にシート型絶縁ワニスを配置し、25℃で25MPaの圧力を加えた時のシート型絶縁ワニスの厚みの減少から算出した。圧縮率の評価は、圧縮率が10%以上であるか否かで判断した(〇:10%以上、×:10%未満)。 Next, I will explain the contents of each evaluation. The surface smoothness was judged by whether or not the in-plane distribution of the thickness of the sheet-type insulating varnish was within ±30% of the average value (◯: within ±30%, ×: more than ±30%). In order to confirm the pot life of the sheet-type insulating varnish, the flexibility and compressibility were measured twice immediately after the sheet-type insulating varnish was produced and after storage at 40° C. for 30 days. Flexibility was determined by the presence or absence of cracks or chips that occurred when the sheet-type insulating varnish was bent at 180 degrees at 25° C. (◯: no occurrence, ×: occurrence). The compressibility of the sheet-type insulating varnish was calculated from the reduction in the thickness of the sheet-type insulating varnish when the sheet-type insulating varnish was placed on a rolled steel plate and a pressure of 25 MPa was applied at 25°C. The evaluation of the compression rate was judged by whether or not the compression rate was 10% or more (O: 10% or more, x: less than 10%).
 粘着性は、圧延鋼板上にシート型絶縁ワニスを配置し、40℃で2MPaの圧力で押しつけて粘着するか否かを、作製直後と、40℃にて30日保管後に評価した。なお、粘着性については、シート型絶縁ワニスの用途によって有る方が好ましい場合と無い方が好ましい場合があるため、どちらがよいとは言えない。ただし、作製直後と30日経過後とで粘着性が変化することは好ましくないため、その点を評価した。 The adhesiveness was evaluated by placing a sheet-type insulating varnish on a rolled steel plate and pressing it with a pressure of 2 MPa at 40°C to determine whether it adhered immediately after production and after storage at 40°C for 30 days. Regarding adhesiveness, depending on the application of the sheet-type insulating varnish, it may be preferable to have adhesiveness or not to have it, so it cannot be said which one is better. However, since it is not preferable for the adhesiveness to change between immediately after production and after 30 days have passed, this point was evaluated.
 また、エナメル線の皮膜への影響を調査するため、クレージング現象の発生有無を確認した。ポリエステルイミド/ポリアミドイミドを皮膜とするエナメル線(φ1.0mm)を5%に伸長した後にU字形状に曲げた試験片を作製し、常温で皮膜表面にシート型絶縁ワニスを貼り付けて5分後に剥離した。シート型絶縁ワニスに粘着性(タック性)がなく貼り付かない場合は、クリップで固定して接触させた。剥離後、光学顕微鏡観察とピンホール試験を実施し、クレージング現象の有無を評価した。 In addition, in order to investigate the effect of the enameled wire on the film, it was confirmed whether the crazing phenomenon occurred. An enameled wire (φ1.0 mm) coated with polyesterimide/polyamideimide was stretched to 5% and then bent into a U-shape to prepare a test piece, and a sheet-type insulating varnish was applied to the surface of the film at room temperature for 5 minutes. peeled off later. When the sheet-type insulating varnish did not stick due to lack of adhesiveness (tackiness), it was fixed with a clip and brought into contact. After peeling, observation with an optical microscope and a pinhole test were carried out to evaluate the presence or absence of the crazing phenomenon.
 ピンホール試験は、JISC3003に準拠し、食塩水中に規定の長さ(約5m)の試験片を浸漬し、液を正極、試験片を負極として12Vで1分間直流電圧を加えたときに発生するピンホール数を調べた。さらに、貼り付け後に150℃×1hrの条件で硬化させた試験片についても、皮膜表面の亀裂またはピンホールの発生有無を光学顕微鏡で観察した。それらの結果、亀裂またはピンホールの発生がなく、絶縁破壊電圧の低下がない場合はクレージングなしと判定し、亀裂またはピンホールの発生が確認され、絶縁破壊電圧の低下がある場合はクレージングありと判定した(○:クレージングなし、×:クレージングあり)。 The pinhole test conforms to JISC3003, immersing a test piece of a specified length (approximately 5 m) in salt water, and applying a DC voltage of 12 V for 1 minute with the liquid as the positive electrode and the test piece as the negative electrode. I checked the number of pinholes. Furthermore, the test pieces cured under the conditions of 150° C. for 1 hour after application were also observed with an optical microscope for the presence or absence of cracks or pinholes on the film surface. As a result, if there are no cracks or pinholes and there is no decrease in dielectric breakdown voltage, it is determined that there is no crazing. It was determined (○: no crazing, ×: crazing).
 ゲル化時間は、シート型絶縁ワニスの熱硬化性樹脂組成物を採取し、熱板法にて150℃下でのゲル化時間を測定した。軟化点は、熱硬化性樹脂組成物からなるシートを採取し、JISC2161「電気絶縁用粉体塗料試験方法」に準拠し測定した。貯蔵せん断弾性率、損失弾性率、損失正接、複素粘度、及び最低複素粘度は、100μm~300μmの膜厚のシート型絶縁ワニスを用い、パラレルプレート冶具にて常温から昇温速度5℃/分で昇温させた時の動的粘弾性評価にて測定した。 For the gelling time, the thermosetting resin composition of the sheet-type insulating varnish was sampled and the gelling time was measured at 150°C by the hot plate method. The softening point was measured according to JISC2161 "Electrical Insulating Powder Coating Test Method" by taking a sheet of the thermosetting resin composition. The storage shear modulus, loss modulus, loss tangent, complex viscosity, and minimum complex viscosity were measured using a sheet-type insulating varnish with a film thickness of 100 μm to 300 μm, using a parallel plate jig from room temperature at a heating rate of 5 ° C./min. It was measured by dynamic viscoelasticity evaluation when the temperature was raised.
 シート型絶縁ワニスの硬化物特性を測定する試験片は、ワニスの流動、発泡、硬化を順次で進めるため、試験片を加熱炉にて常温から150℃まで10分で昇温し、150℃にて1時間で硬化させて作製した。 The test piece for measuring the properties of the cured product of the sheet-type insulating varnish was heated from room temperature to 150°C in 10 minutes in a heating furnace to advance the flow, foaming, and curing of the varnish in sequence, and then heated to 150°C. It was prepared by curing in 1 hour.
 接着強度は、接着試験片を作製し、引張試験機にて評価した。接着強度は、接着試験片を作製し、引張試験機にて評価した。接着試験片は、シート型絶縁ワニスをアセトン脱脂の処理表面を施した電磁鋼板に圧着し、硬化させて作製した。引張試験は、25℃において剥離角度180度、引張速度10mm/minの条件で行い、以下の判定基準で評価した(○:接着強度10N/m以上、×:接着強度10N/m未満)。 Adhesive strength was evaluated by preparing an adhesive test piece and using a tensile tester. Adhesive strength was evaluated by preparing an adhesive test piece and using a tensile tester. An adhesion test piece was prepared by press-bonding a sheet-type insulating varnish to an electrical steel sheet having a surface treated with acetone degreasing and curing the varnish. The tensile test was performed at 25° C. under the conditions of a peel angle of 180 degrees and a tensile speed of 10 mm/min, and evaluated according to the following criteria (○: adhesive strength of 10 N/m or more, x: adhesive strength of less than 10 N/m).
 絶縁耐圧は、シート型絶縁ワニスを鋼板片側に貼り付けて、常温から150℃まで10分で昇温し、150℃で1時間硬化させた試験片を、絶縁破壊試験器を用いて油中で0.5kV/秒での一定昇圧にて電圧印加することにより絶縁破壊電圧を測定し、以下の判定基準で評価した(○:絶縁破壊電圧8kV以上、×:絶縁破壊電圧8kV以下)。 Dielectric strength is measured by attaching a sheet-type insulating varnish to one side of a steel plate, raising the temperature from room temperature to 150 ° C. in 10 minutes, and curing the test piece at 150 ° C. for 1 hour. The dielectric breakdown voltage was measured by applying a constant boosted voltage of 0.5 kV/sec, and evaluated according to the following criteria (○: dielectric breakdown voltage 8 kV or more, ×: dielectric breakdown voltage 8 kV or less).
 膜厚増加率を硬化後の膜厚を硬化前の膜厚で除して算出し、硬化後の増厚有無を確認した。また、硬化後の熱膨張性マイクロカプセルの空孔サイズは、断面観察により計測し、判定した(〇:平均粒径30μm以下、×:30μm超)。 The film thickness increase rate was calculated by dividing the film thickness after curing by the film thickness before curing, and the presence or absence of an increase in thickness after curing was confirmed. In addition, the pore size of the thermally expandable microcapsules after curing was measured and judged by cross-sectional observation (◯: average particle size of 30 μm or less, ×: more than 30 μm).
 シート型絶縁ワニスの回転電機への使用検証として、コイルと鉄心との隙間が大きくなるように、図6において、コイルを平角形状ではなく、Φ1.5mmの丸形状の電線に変更し、固定子を作製した。コイルと鉄心との隙間100μmに対して、膜厚120μmのシート型絶縁ワニスを挿入して圧着した後、常温から150℃まで10分で昇温し、150℃で1時間硬化させた。硬化後に断面観察し、鉄心とコイルの間に空気層が存在するかを確認した(〇:空気層なし、×:空気層あり)。さらに、コイルを抜き出して、コイル間の固着状況を確認した(〇:完全固着、×:未固着)。 In order to verify the use of sheet-type insulating varnish in a rotating electric machine, in Fig. 6, the coil was changed from a rectangular wire to a round wire with a diameter of 1.5mm so that the gap between the coil and the iron core was increased. was made. A sheet-type insulating varnish having a film thickness of 120 μm was inserted into a gap of 100 μm between the coil and the iron core and crimped. After curing, the cross section was observed to confirm whether an air layer existed between the iron core and the coil (○: no air layer, ×: air layer present). Furthermore, the coils were pulled out and the state of adhesion between the coils was checked (◯: completely adhered, ×: not adhered).
 実施例1-5によるシート型絶縁ワニスの評価結果を表3に、比較例1-7によるシート型絶縁ワニスの評価結果を表4にそれぞれ示す。 Table 3 shows the evaluation results of the sheet-type insulating varnishes according to Examples 1-5, and Table 4 shows the evaluation results of the sheet-type insulating varnishes according to Comparative Examples 1-7.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1-5によるシート型絶縁ワニスはいずれも、作製直後及び30日経過後において、優れた柔軟性及び離型性を有し、20%以上の圧縮率を有している。エナメル線に対してクレージングを発生させない。また、25℃での貯蔵せん断弾性率が1.0×10Pa~5.0×104Paの範囲内であり、その最低値が80℃~150℃にあって10Pa~2.0×103Paの範囲内である。また、25℃での損失弾性率が1.0×103Pa~5.0×104Paの範囲内であり、その最低値が80℃~150℃にあって10Pa~2.0×103Paの範囲内である。 All of the sheet-type insulating varnishes of Examples 1-5 have excellent flexibility and releasability immediately after production and after 30 days have passed, and have a compressibility of 20% or more. Does not cause crazing on enameled wire. In addition, the storage shear modulus at 25 ° C. is within the range of 1.0 × 10 Pa to 5.0 × 10 Pa, and the minimum value is within the range of 10 Pa to 2.0 × 10 Pa at 80 ° C. to 150 ° C. is. In addition, the loss elastic modulus at 25 ° C. is within the range of 1.0 × 10 Pa to 5.0 × 10 Pa, and the minimum value is 80 ° C. to 150 ° C. and within the range of 10 Pa to 2.0 × 10 Pa be.
 また、損失正接の極大値が80℃~150℃にあって1.0~3.5の範囲内である。さらに、25℃での複素粘度が6.0×102Pa・s~1.0×104Pa・sの範囲内であり、その最低値が80℃~150℃にあって500Pa・s以下である。以上の評価結果から、実施例1-5によるシート型絶縁ワニスは、常温での加圧で所定の厚みに圧縮され、硬化時の加熱により部材間の細部への浸透性が得られることが明らかである。 Also, the maximum value of the loss tangent is in the range of 1.0 to 3.5 at 80°C to 150°C. Furthermore, the complex viscosity at 25°C is in the range of 6.0 x 102 Pa·s to 1.0 x 104 Pa·s, and the minimum value is 500 Pa·s or less at 80°C to 150°C. From the above evaluation results, it is clear that the sheet-type insulating varnish according to Example 1-5 can be compressed to a predetermined thickness by pressing at room temperature, and can obtain penetration into details between members by heating during curing. is.
 また、実施例1-5によるシート型絶縁ワニスは、いずれも25℃で20MPa以上の接着強度を有しており、絶縁対象の部材を強固に接着及び固着させることができる。さらに、硬化後の絶縁耐圧が高く、絶縁信頼性に優れている。また、40℃にて30日保管後において柔軟性と圧縮率に変化がないことから、常温では反応進行が遅く可使時間が長い。熱膨張性マイクロカプセルは硬化後に発泡しており、その空孔サイズも30μm以下であり、ワニス膜厚も増大している。また、固定子による検証においても、コイルと鉄心の間には隙間がなく、コイルも完全に固着されている。 In addition, the sheet-type insulating varnishes of Examples 1-5 all have an adhesive strength of 20 MPa or more at 25° C., and can strongly adhere and fix the members to be insulated. Furthermore, the insulation voltage after curing is high and the insulation reliability is excellent. In addition, since there is no change in flexibility and compressibility after storage at 40° C. for 30 days, the reaction progresses slowly at room temperature and the pot life is long. The thermally expandable microcapsules are foamed after curing, the pore size is 30 μm or less, and the varnish film thickness is increased. Also, in the verification using the stator, there is no gap between the coil and the core, and the coil is completely fixed.
 比較例1は、実施例1の配合に類似し、熱膨張性マイクロカプセルを含有していないため、ワニス層は硬化後には増厚しないため、コイルと鉄心の隙間を埋められず、空気層が残存している。 Comparative Example 1 is similar to the formulation of Example 1 and does not contain thermally expandable microcapsules, so the varnish layer does not increase in thickness after curing, so the gap between the coil and the core cannot be filled, and an air layer is formed. remains.
 比較例2は、実施例2の配合に類似し、熱膨張性マイクロカプセル(6-1)を熱硬化性樹脂100質量部に対して、105質量部を含んでいるため、表面が平滑なシート型絶縁ワニスを得ることができず、また、ワニス層の加熱時の粘性が高いため、コイル間の隙間に流動せず、コイルを固着できない。 Comparative Example 2 is similar to the formulation of Example 2, and contains 105 parts by weight of the thermally expandable microcapsules (6-1) with respect to 100 parts by weight of the thermosetting resin, so that the sheet has a smooth surface. A mold insulating varnish cannot be obtained, and since the varnish layer is highly viscous when heated, it does not flow into the gaps between the coils and the coils cannot be fixed.
 比較例3は、実施例3の配合に類似し、常温で反応活性である硬化剤(3-3)を含み、熱膨張性マイクロカプセル(6-3)の発泡開始温度が180℃と硬化剤の反応開始温度より顕著に高い。このため、常温静置状態で反応が進行し経時的に物性が変化することから、可使時間に問題がある。30日経過後には柔軟性と粘着性が失われ、圧縮率が0%となる。また、加熱硬化時の流動性が低いため、微小な隙間への浸透性が得られず、部材との接着力が劣る。さらに、常温で硬化が進行しているため、ワニス層の流動もなく、また、熱膨張性マイクロカプセルも発泡せず、シート型絶縁ワニスの膜厚増加も全く起こらないため、コイルと鉄心の隙間も埋められず、またコイルも固着できない。また、使用時の折り曲げにより割れ及び剥離が発生し、施工性が悪化する。 Comparative Example 3 contains a curing agent (3-3) that is reactively active at room temperature and has a foaming initiation temperature of 180° C. for the thermally expandable microcapsules (6-3). is significantly higher than the reaction start temperature of For this reason, the reaction progresses in the standing state at room temperature, and the physical properties change over time, so there is a problem with the pot life. After 30 days, the pliability and stickiness are lost and the compressibility is 0%. In addition, since the fluidity at the time of heat curing is low, the penetration into minute gaps cannot be obtained, and the adhesion to members is inferior. Furthermore, since curing proceeds at room temperature, there is no flow of the varnish layer, no foaming of the thermally expandable microcapsules, and no increase in the film thickness of the sheet-type insulating varnish. cannot be buried and the coil cannot be fixed. In addition, cracking and peeling occur due to bending during use, and workability deteriorates.
 比較例4は、実施例4の配合に類似し、平均粒径25μm、発泡開始温度125℃の熱膨張性マイクロカプセル(6-4)を配合している。組成物の構成原料は問題ないため、シート型絶縁ワニスの特性及び固定子で検証でも良好であるが、硬化後に発泡した熱膨張性マイクロカプセルの空孔サイズが平均35μmと大きいことが起因し、絶縁性の低下に加えて、硬化物の強度不足によってコイルの固着性が低下した。なお、昇温速度及び硬化温度などの硬化条件を見直すことで、空孔サイズの小径化し、これらを改善できる場合もある。 Comparative Example 4 is similar to the composition of Example 4, and contains thermally expandable microcapsules (6-4) having an average particle size of 25 μm and an expansion start temperature of 125°C. Since there is no problem with the constituent raw materials of the composition, the characteristics of the sheet-type insulating varnish and the stator are good, but the pore size of the thermally expandable microcapsules foamed after curing is as large as 35 μm on average. In addition to the deterioration of insulation, the adhesion of the coil was reduced due to insufficient strength of the cured product. In some cases, these problems can be improved by reducing the pore size by reviewing the curing conditions such as the heating rate and curing temperature.
 比較例5は、実施例5の配合に類似し、発泡開始温度が潜在性硬化剤(3-1)の反応開始温度より25℃高い熱膨張性マイクロカプセル(6-5)と無機充填剤として、最大粒径130μm、平均粒径60μmの結晶シリカ(7-3)を使用している。粒径が大きい無機充填剤を含むため、膜厚120μmのシート型絶縁ワニスを作製した際には、表面平滑性が悪化した。加熱によりワニスはコイルの隙間に流動し、コイルを固着することはできるが、硬化反応が先行して進むため、熱膨張性マイクロカプセルは発泡せず、シート型絶縁ワニスの膜厚増加も全く起こらないため、コイルと鉄心の隙間に存在する空気層を埋めることができなかった。また、コイルと鉄心との隙間100μmである固定子の検証では、無機充填剤の最大粒径(130μm)がその隙間(100μm)より大きいため、ティース間に隙間が生じ、固定子を作製できなかった。 Comparative Example 5 is similar to the formulation of Example 5, and the thermally expandable microcapsules (6-5) having a foaming initiation temperature 25° C. higher than the reaction initiation temperature of the latent curing agent (3-1) and the inorganic filler , crystalline silica (7-3) with a maximum particle size of 130 μm and an average particle size of 60 μm. Since the inorganic filler having a large particle size was included, the surface smoothness deteriorated when a sheet-type insulating varnish having a film thickness of 120 μm was produced. When heated, the varnish flows into the gaps between the coils and can fix the coils, but because the curing reaction proceeds first, the thermally expandable microcapsules do not foam and the film thickness of the sheet-type insulating varnish does not increase at all. Therefore, the air layer existing in the gap between the coil and the iron core could not be filled. Also, in the verification of the stator with a gap of 100 μm between the coil and the iron core, the maximum particle size of the inorganic filler (130 μm) was larger than the gap (100 μm), so gaps were generated between the teeth and the stator could not be manufactured. Ta.
 比較例6は、実施例5の配合に類似し、発泡開始温度50℃で平均粒径60μmの熱膨張性マイクロカプセル(6-6)と、無機充填剤として、溶融シリカ(7-1)を73体積%含む。無機充填剤を多く含むため、シート型絶縁ワニスの平滑性も悪く、靭性が低く、柔軟性及び粘着性を有しておらず、圧縮率は0%である。また、発泡開始温度が低温(50℃)で熱膨張性マイクロカプセルを含むため、加熱開始時に発泡が進み、ワニスの流動性を阻害するため、コイルを固着することができない。 Comparative Example 6 is similar to the formulation of Example 5, and contains thermally expandable microcapsules (6-6) having an average particle diameter of 60 μm at a foaming initiation temperature of 50° C. and fused silica (7-1) as an inorganic filler. Contains 73% by volume. Since it contains a large amount of inorganic filler, the sheet-type insulating varnish has poor smoothness, low toughness, lacks flexibility and adhesiveness, and has a compressibility of 0%. In addition, since the varnish has a low foaming start temperature (50° C.) and contains thermally expandable microcapsules, foaming progresses at the start of heating and hinders the fluidity of the varnish, making it impossible to fix the coil.
 比較例7は、実施例2の配合に類似し、最大粒径105μm、平均粒径55μm、発泡開始温度120℃の熱膨張性マイクロカプセル(6-7)を使用している。最大粒径が大きい熱膨張性マイクロカプセルを含むため、膜厚120μmのシート型絶縁ワニスを作製した際には、表面平滑性が低下した。熱膨張性マイクロカプセルの粒径が大きいことから、硬化後の発泡では、空孔サイズが平均50μmと大きくなり、絶縁性の低下に加えて、硬化物の強度不足によってコイルの固着性が低下した。また、固定子での検証では、最大粒径が隙間の寸法(100μm)よりも大きく、平均粒径が隙間の寸法の0.5倍(50μm)より大きい熱膨張性マイクロカプセルを含むため、コイルと鉄心の隙間に挿入し圧着した後の硬化時には、熱膨張性マイクロカプセルの発泡が不十分であり、コイルと鉄心の隙間に存在する空気層を埋めることができなかった。 Comparative Example 7 uses thermally expandable microcapsules (6-7) having a maximum particle size of 105 μm, an average particle size of 55 μm, and a foaming start temperature of 120° C., similar to the formulation of Example 2. Since the varnish contains thermally expandable microcapsules having a large maximum particle size, the surface smoothness was lowered when a sheet-type insulating varnish having a film thickness of 120 μm was produced. Due to the large particle size of the thermally expandable microcapsules, the pore size increased to an average of 50 μm in the foaming after curing, and in addition to the deterioration of insulation, the adhesion of the coil decreased due to the lack of strength of the cured product. . In addition, in the stator verification, the coil At the time of hardening after being inserted into the gap between the coil and the iron core and crimped, the thermally expandable microcapsules foamed insufficiently and could not fill the air layer existing in the gap between the coil and the iron core.
 以上のように、実施例1-5においては、全ての評価項目が良好であった。一方、比較例1-7では、いずれかの評価項目において劣るものが認められた。 As described above, in Examples 1-5, all evaluation items were good. On the other hand, Comparative Examples 1-7 were found to be inferior in any of the evaluation items.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組合せで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組合せる場合が含まれるものとする。
While this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may not apply to particular embodiments. are not limited to, and can be applied to the embodiments singly or in various combinations.
Therefore, countless modifications not illustrated are envisioned within the scope of the technology disclosed in the present application. For example, when at least one component is modified, added or omitted, and at least one component is extracted and combined with the components of other embodiments. .
 本願のシート型絶縁ワニスは、加熱時に熱硬化性樹脂が流動して絶縁対象となる部材の隙間の細部に浸透し、この隙間を確実に埋め、硬化後に絶縁性、機械強度、放熱性に優れた特性を有するため、広く電気機器及び回転電機に広く適用することができる。 In the sheet-type insulating varnish of the present application, the thermosetting resin flows when heated and penetrates into the details of the gaps in the members to be insulated, filling the gaps reliably, and after curing, it has excellent insulation, mechanical strength, and heat dissipation. Since it has such characteristics, it can be widely applied to electrical equipment and rotating electric machines.
1a,1b,1C,1D,1E シート型絶縁ワニス、2 樹脂成分、3 熱膨張性マイクロカプセル、4 充填剤、7 空気層、8 発泡した熱膨張性マイクロカプセル、9 電子部品、10 基板、11 筐体、12,13 固定ネジ、14 充填スルーホール、15 電源デバイス、20 固定子、21 固定子コイル、22 固定子鉄心、23 ティース部、24 スロット、25 絶縁紙。 1a, 1b, 1C, 1D, 1E sheet type insulating varnish, 2 resin component, 3 thermally expandable microcapsule, 4 filler, 7 air layer, 8 foamed thermally expandable microcapsule, 9 electronic component, 10 substrate, 11 Case, 12, 13 fixing screw, 14 filling through hole, 15 power supply device, 20 stator, 21 stator coil, 22 stator core, 23 teeth, 24 slot, 25 insulating paper.

Claims (17)

  1.  絶縁対象の部材同士の隙間に配置されるシート型絶縁ワニスであって、
    常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、60℃以下で反応不活性な潜在性硬化剤と、最大粒径が前記隙間の寸法よりも小さく平均粒径が前記隙間の寸法の0.5倍よりも小さい発泡開始温度が60℃以上である熱膨張性マイクロカプセルとを含み、前記第1熱硬化性樹脂と前記第2熱硬化性樹脂との合計100質量部に対して、前記第1熱硬化性樹脂を10質量部~90質量部含む熱硬化性樹脂組成物が未硬化または半硬化の状態でシート状に形成されているシート型絶縁ワニス。
    A sheet-type insulating varnish arranged in a gap between members to be insulated,
    A first thermosetting resin that is solid at normal temperature, a second thermosetting resin that is liquid at normal temperature, a latent curing agent that is inactive at 60° C. or less, and a maximum particle size that is smaller than the size of the gap and is average and thermally expandable microcapsules having a particle size smaller than 0.5 times the size of the gap and a foaming start temperature of 60° C. or higher, and a mixture of the first thermosetting resin and the second thermosetting resin. A sheet-type insulating varnish in which a thermosetting resin composition containing 10 parts by mass to 90 parts by mass of the first thermosetting resin is formed into a sheet in an uncured or semi-cured state with respect to a total of 100 parts by mass. .
  2. 前記熱膨張性マイクロカプセルの発泡開始温度が60℃以上で、前記潜在性硬化剤の反応開始温度+20℃以下である請求項1に記載のシート型絶縁ワニス。 2. The sheet-type insulating varnish according to claim 1, wherein the thermally expandable microcapsules have a foaming initiation temperature of 60° C. or higher and a reaction initiation temperature of the latent curing agent +20° C. or lower.
  3. 前記潜在性硬化剤の反応開始温度が硬化促進剤により下がる場合は、前記熱膨張性マイクロカプセルの発泡開始温度は60℃以上で、前記硬化促進剤の反応開始温度+20℃以下とする請求項1に記載のシート型絶縁ワニス。 2. When the reaction initiation temperature of the latent curing agent is lowered by the curing accelerator, the foaming initiation temperature of the thermally expandable microcapsules is 60° C. or higher and the reaction initiation temperature of the curing accelerator +20° C. or lower. The sheet-type insulating varnish described in .
  4. 前記熱膨張性マイクロカプセルの配合量が、第1熱硬化性樹脂と第2熱硬化性樹脂の全量に対して1~100質量%以下である請求項1から請求項3のいずれか1項に記載のシート型絶縁ワニス。 4. The method according to any one of claims 1 to 3, wherein the amount of the thermally expandable microcapsules is 1 to 100% by mass or less with respect to the total amount of the first thermosetting resin and the second thermosetting resin. Sheet type insulating varnish as described.
  5. 発泡した前記熱膨張性マイクロカプセル内に硬化後に形成される空孔の平均サイズが30μm以下である請求項1から請求項4のいずれか1項に記載のシート型絶縁ワニス。 5. The sheet-type insulating varnish according to any one of claims 1 to 4, wherein an average size of pores formed in said foamed thermally expandable microcapsules after curing is 30 [mu]m or less.
  6. 常温で25MPaの圧力を加えた時に前記膜厚が10%以上減少する圧縮率を有する請求項1から請求項5のいずれか1項に記載のシート型絶縁ワニス。 6. The sheet-type insulating varnish according to any one of claims 1 to 5, having a compressibility such that the film thickness is reduced by 10% or more when a pressure of 25 MPa is applied at room temperature.
  7. 前記第1熱硬化性樹脂及び前記第2熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、及び不飽和ポリエステル樹脂の少なくとも1つを含む請求項1から請求項6のいずれか1項に記載のシート型絶縁ワニス。 7. The sheet according to any one of claims 1 to 6, wherein said first thermosetting resin and said second thermosetting resin comprise at least one of an epoxy resin, a phenolic resin, and an unsaturated polyester resin. Mold insulating varnish.
  8. 前記潜在性硬化剤は、三フッ化ホウ素-アミン錯体、ジシアンジアミド、有機酸ヒドラジッドのいずれかである請求項1から請求項7のいずれか1項に記載のシート型絶縁ワニス。 The sheet-type insulating varnish according to any one of claims 1 to 7, wherein the latent curing agent is boron trifluoride-amine complex, dicyandiamide, or organic acid hydrazide.
  9. 無機系または樹脂系の充填剤を含み、前記熱硬化性樹脂組成物の全量に対して、70体積%以下である請求項1から請求項8のいずれか1項に記載のシート型絶縁ワニス。 9. The sheet-type insulating varnish according to any one of claims 1 to 8, which contains an inorganic or resinous filler in an amount of 70% by volume or less relative to the total amount of the thermosetting resin composition.
  10. 電子部品が搭載された基板と、前記基板が固定された筐体とを備え、
    前記電子部品と前記基板の間の隙間、および前記基板と前記筐体の間の隙間のいずれか一方または両方の前記隙間に配置された請求項1から請求項9のいずれか1項に記載のシート型絶縁ワニスを備える電気機器。
    A board on which electronic components are mounted and a housing to which the board is fixed,
    10. The electronic component according to any one of claims 1 to 9, arranged in one or both of a gap between the electronic component and the substrate and a gap between the substrate and the housing. Electrical equipment with sheet-type insulating varnish.
  11. 前記シート型絶縁ワニスが加熱されて、前記熱硬化性樹脂組成物が流動し、発泡し、硬化している請求項10に記載の電気機器。 11. The electric device according to claim 10, wherein the sheet-type insulating varnish is heated so that the thermosetting resin composition flows, foams, and hardens.
  12. 固定子鉄心のスロット内に固定子コイルが収納され、
    前記スロットの内壁と前記固定子コイルの間の隙間に配置された請求項1から請求項9のいずれか1項に記載のシート型絶縁ワニスを備える回転電機。
    The stator coil is housed in the slot of the stator core,
    A rotating electric machine comprising the sheet-type insulating varnish according to any one of claims 1 to 9, arranged in a gap between an inner wall of the slot and the stator coil.
  13. 前記スロットの内壁と前記シート型絶縁ワニスとの間に絶縁紙が配置されるか、
    または前記スロットの内壁と前記シート型絶縁ワニスの間に絶縁紙とシート型絶縁ワニスとを前記絶縁紙が前記シート型絶縁ワニスで挟まれるように配置された請求項12に記載の回転電機。
    an insulating paper is placed between the inner wall of the slot and the sheet-type insulating varnish;
    13. The electric rotating machine according to claim 12, wherein an insulating paper and a sheet-type insulating varnish are arranged between the inner wall of the slot and the sheet-type insulating varnish so that the insulating paper is sandwiched between the sheet-type insulating varnishes.
  14. 前記シート型絶縁ワニスが加熱されて、前記熱硬化性樹脂組成物が流動し、発泡し、硬化している請求項12または請求項13に記載の回転電機。 The electric rotating machine according to claim 12 or 13, wherein the sheet-type insulating varnish is heated so that the thermosetting resin composition flows, foams, and hardens.
  15. 絶縁対象の部材同士の隙間に配置されるシート型絶縁ワニスの製造方法であって、
    常温で固体の第1熱硬化性樹脂と、常温で液状の第2熱硬化性樹脂と、60℃以下で反応不活性な潜在性硬化剤と、最大粒径が隙間の寸法よりも小さく平均粒径が前記隙間の寸法の0.5倍よりも小さく発泡開始温度が60℃以上である熱膨張性マイクロカプセルとを含み、
    前記第1熱硬化性樹脂と前記第2熱硬化性樹脂との合計100質量部に対して前記第1熱硬化性樹脂を10質量部~90質量部であり、
    前記熱膨張性マイクロカプセルは前記第1熱硬化性樹脂と前記第2熱硬化性樹脂との合計100質量部に対して1~100質量%である熱硬化性樹脂組成物と、希釈用有機溶剤とを攪拌混合し、熱硬化性樹脂組成物のスラリーを作製する第1工程と、
    前記スラリーを離型フィルムまたは離型紙に前記隙間の寸法の1.1倍~2.0倍の膜厚に塗布し、
    常温で25MPaの圧力を加えた時に前記膜厚が10%以上減少する圧縮率を有するように乾燥させる第2工程と、を備えるシート型絶縁ワニスの製造方法。
    A method for manufacturing a sheet-type insulating varnish to be placed in a gap between members to be insulated, comprising:
    A first thermosetting resin that is solid at normal temperature, a second thermosetting resin that is liquid at normal temperature, a latent curing agent that is inactive at 60 ° C. or less, and an average particle whose maximum particle size is smaller than the size of the gap. Thermally expandable microcapsules having a diameter smaller than 0.5 times the size of the gap and a foaming start temperature of 60° C. or higher,
    10 parts by mass to 90 parts by mass of the first thermosetting resin with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin,
    The thermally expandable microcapsules are a thermosetting resin composition that is 1 to 100% by mass with respect to a total of 100 parts by mass of the first thermosetting resin and the second thermosetting resin, and an organic solvent for dilution. A first step of stirring and mixing to prepare a slurry of the thermosetting resin composition;
    The slurry is applied to a release film or release paper to a thickness of 1.1 to 2.0 times the size of the gap,
    A method for producing a sheet-type insulating varnish, comprising: a second step of drying such that the film thickness is reduced by 10% or more when a pressure of 25 MPa is applied at normal temperature.
  16. 前記第2工程において、80℃~160℃の温度条件で乾燥して希釈剤を揮発させ、乾燥後の前記シート型絶縁ワニスの全質量100重量部に対する不揮発分を97質量部以上とする請求項15に記載のシート型絶縁ワニスの製造方法。 In the second step, the diluent is volatilized by drying under a temperature condition of 80° C. to 160° C., and the non-volatile content is 97 parts by mass or more with respect to 100 parts by weight of the total mass of the sheet-type insulating varnish after drying. 16. The method for producing a sheet-type insulating varnish according to 15.
  17. 前記第2工程の後、硬化反応を進めるための加熱をさらに行い、前記シート型絶縁ワニスを半硬化状態とする請求項15または請求項16に記載のシート型絶縁ワニスの製造方法。 17. The method for producing a sheet-type insulating varnish according to claim 15, wherein after the second step, heating is further performed to advance the curing reaction, so that the sheet-type insulating varnish is in a semi-cured state.
PCT/JP2022/007498 2022-02-24 2022-02-24 Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine WO2023162068A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/007498 WO2023162068A1 (en) 2022-02-24 2022-02-24 Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine
JP2024502317A JPWO2023162068A1 (en) 2022-02-24 2022-02-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007498 WO2023162068A1 (en) 2022-02-24 2022-02-24 Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine

Publications (1)

Publication Number Publication Date
WO2023162068A1 true WO2023162068A1 (en) 2023-08-31

Family

ID=87764974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007498 WO2023162068A1 (en) 2022-02-24 2022-02-24 Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine

Country Status (2)

Country Link
JP (1) JPWO2023162068A1 (en)
WO (1) WO2023162068A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180324A (en) * 1997-09-02 1999-03-26 Toshiba Corp Impregnable thermosetting resin composition and electric rotating machine insulated coil
JP2006225544A (en) * 2005-02-18 2006-08-31 Nagase Chemtex Corp Epoxy resin adhesive
WO2008145190A1 (en) * 2007-05-31 2008-12-04 Abb Research Ltd Laminate for electrical machines
JP2010261030A (en) * 2009-04-10 2010-11-18 Nitto Shinko Kk Adhesive sheet
JP2013031252A (en) * 2011-07-27 2013-02-07 Toyota Motor Corp Concentrated winding stator and manufacturing method of the same
JP2014225389A (en) * 2013-05-16 2014-12-04 株式会社巴川製紙所 Electric insulation paper, electric insulator obtained by heating the paper and electric motor or transformer having electric insulation space
JP2015168687A (en) * 2014-03-04 2015-09-28 京セラケミカル株式会社 Resin composition for immersion of coil and coil device
JP2016046061A (en) * 2014-08-21 2016-04-04 住友電工ウインテック株式会社 Insulation wire and manufacturing method of insulation wire
JP2016081563A (en) * 2014-10-09 2016-05-16 住友電気工業株式会社 Self-fusible insulated electric wire, electric wire for coil and winding wire bundle
WO2019102929A1 (en) * 2017-11-24 2019-05-31 住友電工ウインテック株式会社 Self-fusing resin composition and self-fusing insulated electric wire
US20210351655A1 (en) * 2018-10-16 2021-11-11 Bayerische Motoren Werke Aktiengesellschaft Coil and Electrically Excited Synchronous Machine
WO2021256390A1 (en) * 2020-06-16 2021-12-23 住友電気工業株式会社 Resin composition, self-fusing insulated electrical wire, and wire coil

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180324A (en) * 1997-09-02 1999-03-26 Toshiba Corp Impregnable thermosetting resin composition and electric rotating machine insulated coil
JP2006225544A (en) * 2005-02-18 2006-08-31 Nagase Chemtex Corp Epoxy resin adhesive
WO2008145190A1 (en) * 2007-05-31 2008-12-04 Abb Research Ltd Laminate for electrical machines
JP2010261030A (en) * 2009-04-10 2010-11-18 Nitto Shinko Kk Adhesive sheet
JP2013031252A (en) * 2011-07-27 2013-02-07 Toyota Motor Corp Concentrated winding stator and manufacturing method of the same
JP2014225389A (en) * 2013-05-16 2014-12-04 株式会社巴川製紙所 Electric insulation paper, electric insulator obtained by heating the paper and electric motor or transformer having electric insulation space
JP2015168687A (en) * 2014-03-04 2015-09-28 京セラケミカル株式会社 Resin composition for immersion of coil and coil device
JP2016046061A (en) * 2014-08-21 2016-04-04 住友電工ウインテック株式会社 Insulation wire and manufacturing method of insulation wire
JP2016081563A (en) * 2014-10-09 2016-05-16 住友電気工業株式会社 Self-fusible insulated electric wire, electric wire for coil and winding wire bundle
WO2019102929A1 (en) * 2017-11-24 2019-05-31 住友電工ウインテック株式会社 Self-fusing resin composition and self-fusing insulated electric wire
US20210351655A1 (en) * 2018-10-16 2021-11-11 Bayerische Motoren Werke Aktiengesellschaft Coil and Electrically Excited Synchronous Machine
WO2021256390A1 (en) * 2020-06-16 2021-12-23 住友電気工業株式会社 Resin composition, self-fusing insulated electrical wire, and wire coil

Also Published As

Publication number Publication date
JPWO2023162068A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP6824372B1 (en) Insulation sheet and its manufacturing method, and rotary electric machine
JP6914309B2 (en) Sheet type insulating varnish and its manufacturing method, electrical equipment, and rotary electric machine
JP2007302881A (en) Adhesive composition and adhesive sheet
JP5171798B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP6310730B2 (en) Epoxy resin composition and electric power equipment using the same
JP5346166B2 (en) Adhesive for electronic parts
JP5532575B2 (en) Adhesive sheet
TWI694126B (en) Resin composition, adhesive film and semiconductor device
CN115506177B (en) Insulating sheet, method for manufacturing same, and rotating electrical machine
JP5118956B2 (en) Adhesive for electronic parts
WO2023162068A1 (en) Sheet-type insulating varnish, method for manufacturing same, electric apparatus, and rotary electric machine
JP2012072305A (en) Resin paste composition
JP6279161B1 (en) Curable composition, cured product thereof and rotating machine
JP2019218452A (en) Thermosetting adhesive sheet for substrate with built-in component and manufacturing method of substrate with built-in component
JP7058704B1 (en) Insulation sheet and its manufacturing method, and rotary electric machine
JP2016190964A (en) Adhesive film
JP2008189815A (en) Dispersant, filler, heat-conductive resin composition and heat-conductive sheet
KR20120044199A (en) Adhesive compound and adhesive tape for electronic accessories
JP5637069B2 (en) Adhesive sheet
KR100707732B1 (en) Adhesive and adhesive tape for electronic accessories
JP6912030B2 (en) Resin compositions, adhesive films, and semiconductor devices
JP2010138280A (en) Primer composition, cast article for electric insulation and method for producing the same
JP5449306B2 (en) Dispersant, heat conductive resin composition and heat conductive sheet
WO2022039121A2 (en) Thermosetting resin composition
WO2022176071A1 (en) Insulating sheet, stator and method for producing stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928598

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024502317

Country of ref document: JP