WO2023162058A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2023162058A1
WO2023162058A1 PCT/JP2022/007459 JP2022007459W WO2023162058A1 WO 2023162058 A1 WO2023162058 A1 WO 2023162058A1 JP 2022007459 W JP2022007459 W JP 2022007459W WO 2023162058 A1 WO2023162058 A1 WO 2023162058A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
fixed
spiral portion
scroll
rocking
Prior art date
Application number
PCT/JP2022/007459
Other languages
French (fr)
Japanese (ja)
Inventor
慎一郎 津田
一喜 小林
渉 岩竹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/007459 priority Critical patent/WO2023162058A1/en
Publication of WO2023162058A1 publication Critical patent/WO2023162058A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to scroll compressors used in air conditioners, refrigerators, and the like.
  • the compression mechanism of scroll compressors used in air conditioners and refrigerators is composed of a fixed scroll spiral portion and an orbiting scroll spiral portion.
  • a space is formed between the fixed scroll and the orbiting scroll by fixing the fixed scroll and arranging the orbiting scroll so that the spiral portion of the orbiting scroll meshes with the spiral portion of the fixed scroll. Refrigerant can be sucked and compressed at .
  • the compression function is improved by increasing the suction volume of the compression mechanism as much as possible while maintaining the diameter of the sealed container that houses the compression mechanism. It is important to let
  • Patent Literature 1 discloses an example in which an auxiliary suction hole for communicating a suction pipe and a refrigerant suction space is formed in a sealed container separately from the suction hole.
  • the suction hole and the auxiliary suction hole formed in the closed container are used together to promote the flow from the suction hole to the refrigerant suction space.
  • the suction pressure loss increases, and the refrigerant suction efficiency decreases.
  • the present disclosure has been made to solve the problems described above, and an object of the present disclosure is to provide a scroll compressor capable of suppressing a decrease in refrigerant suction efficiency even when the spiral portion is expanded in the radial direction.
  • a scroll compressor includes a closed container that forms an outer shell, a suction pipe that allows refrigerant to flow into a first suction space inside the closed container, a fixed base plate and a fixed base plate that are provided in the closed container.
  • a fixed scroll having a fixed spiral portion which is a spiral projection provided on one surface of the base plate, an oscillating bed plate, and an oscillating spiral portion which is a spiral projection provided on one surface of the oscillating bed plate.
  • a compression chamber for compressing refrigerant by meshing the fixed spiral portion and the oscillating spiral portion; and a suction for guiding the refrigerant flowing into the first suction space to the compression chamber.
  • a suction passage is formed to intermittently communicate the suction hole and the suction chamber when the is rocking.
  • the frame is formed with the suction hole that communicates the second suction space and the first suction space, and the swing bed plate swings the swing scroll.
  • a suction passage is formed to intermittently communicate the suction hole and the suction chamber when the suction chamber is closed. Therefore, even if the spiral portion is expanded in the radial direction and the swing bed plate closes the suction hole, the suction channel can intermittently communicate the suction hole and the suction chamber. As a result, the refrigerant can be taken into the suction chamber while suppressing the suction pressure loss, and the deterioration of the refrigerant suction efficiency can be suppressed.
  • FIG. 1 is a cross-sectional view showing the configuration of a scroll compressor according to Embodiment 1;
  • FIG. 4 is a diagram showing a compression stroke for explaining the operation of the compression mechanism of the scroll compressor according to Embodiment 1;
  • FIG. FIG. 4 is a plan view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the compression mechanism of the scroll compressor according to Embodiment 1;
  • FIG. 4 is a cross-sectional view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the scroll compressor according to Embodiment 1;
  • FIG. 2 is a diagram illustrating a suction chamber of the scroll compressor according to Embodiment 1;
  • FIG. 1 is a cross-sectional view showing the configuration of a scroll compressor according to Embodiment 1;
  • FIG. 4 is a diagram showing a compression stroke for explaining the operation of the compression mechanism of the scroll
  • FIG. 5 is a diagram for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion in the compression stroke for explaining the operation of the compression mechanism of the scroll compressor according to Embodiment 1;
  • FIG. 7 is a plan view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the compression mechanism according to the first modification of the scroll compressor according to Embodiment 1;
  • FIG. 8 is a plan view illustrating the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the compression mechanism according to the second modification of the scroll compressor according to Embodiment 1;
  • FIG. 8 is a plan view for explaining the positional relationship among the suction hole, the suction flow path, the fixed spiral portion, and the oscillating spiral portion of the compression mechanism of the scroll compressor according to Embodiment 2;
  • FIG. 7 is a cross-sectional view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the scroll compressor according to Embodiment 2;
  • FIG. 1 is a cross-sectional view showing the configuration of a scroll compressor 1 according to Embodiment 1.
  • the scroll compressor 1 has a function of sucking refrigerant, compressing it, and discharging it in a high-temperature, high-pressure state.
  • the scroll compressor 1 includes a closed container 90 forming an outer shell.
  • the sealed container 90 is composed of a sealed container upper portion 91 and a sealed container lower portion 92 .
  • a suction pipe 1f is provided on the side of the lower portion 92 of the hermetic container for allowing the low-pressure gas refrigerant from the main refrigerant circuit outside the hermetic container 90 to flow into the interior of the hermetic container 90 .
  • a discharge pipe 1g is provided in the upper portion of the closed container upper portion 91 for discharging the high-temperature and high-pressure discharged refrigerant from the inside of the closed container 90 to the main refrigerant circuit outside.
  • a compression mechanism 1a for compressing the refrigerant, a rotary shaft 1b for driving the compression mechanism 1a, and an electric stator 1c and an electric rotor 1d for rotating the rotary shaft 1b are housed inside the sealed container 90. Further, inside the sealed container 90, a pump element 1e is housed that supplies the refrigerating machine oil stored in the oil reservoir 80 formed at the bottom of the sealed container 90 to the compression mechanism 1a.
  • the compression mechanism 1a has a fixed scroll 11 and an orbiting scroll 12.
  • the orbiting scroll 12 is rotationally driven together with the rotating shaft 1b.
  • the fixed scroll 11 includes a fixed base plate 11a and a fixed spiral portion 11b, which is a spiral protrusion provided on the lower surface of the fixed base plate 11a.
  • the fixed scroll 11 is arranged above the orbiting scroll 12, and the outer peripheral portion of the fixed base plate 11a is fixed to the inner peripheral wall of the lower portion 92 of the sealed container.
  • the oscillating scroll 12 includes an oscillating bed plate 12a and an oscillating spiral portion 12b, which is a spiral projection provided on the upper surface of the oscillating bed plate 12a.
  • the compression mechanism 1a has an asymmetric spiral shape in which the fixed spiral portion 11b and the oscillating spiral portion 12b have different winding end phases.
  • a hollow cylindrical boss 12d is provided at the center of the lower surface of the rocking plate 12a.
  • a suction flow path 32 is formed on the outer peripheral side of the rocking plate 12a. This suction flow path 32 will be described later.
  • the rotary shaft 1b has a main shaft portion 1bb, an eccentric shaft portion 1ba positioned above the main shaft portion 1bb, and a sub-shaft portion 1bc positioned below the main shaft portion 1bb.
  • the rotating shaft 1b is fitted to the orbiting scroll 12 so that the orbiting scroll 12 can perform an oscillating motion via the orbiting bearing 12c of the orbiting scroll 12.
  • the orbiting spiral portion 12b of the orbiting scroll 12 and the fixed spiral portion 11b of the fixed scroll 11 are combined so as to have opposite phases.
  • a suction chamber 73a, a compression chamber 73b, and an innermost chamber 73c are formed by engaging the swinging spiral portion 12b and the fixed spiral portion 11b (see FIG. 2, which will be described later).
  • the suction chamber 73a is an unsealed space for sucking the refrigerant in the second suction space 72 surrounded by the inner peripheral wall of the lower portion 92 of the sealed container and the outer peripheral portion of the spiral portion.
  • the compression chamber 73b is a closed space that compresses the refrigerant sucked by the suction chamber 73a.
  • the innermost chamber 73c is the innermost compression space and is a closed space in which the refrigerant compressed in the compression chamber 73b is discharged to the discharge space 74 through the discharge port 22 formed in the fixed base plate 11a.
  • a discharge valve 23 is provided on the outlet side of the discharge port 22 so as to open and close the outlet of the discharge port 22. When the pressure in the innermost chamber 73c reaches a predetermined value or higher, the discharge valve 23 closes the discharge port 22. , the refrigerant in the innermost chamber 73 c is discharged into the discharge space 74 .
  • the frame 17 is for fixing the fixed scroll 11, and its outer peripheral portion is fixed to the inner peripheral wall of the lower part 92 of the sealed container.
  • the frame 17 also has a thrust surface (not shown) that axially supports the thrust force acting on the orbiting scroll 12 .
  • the frame 17 has a suction hole 31 that communicates a first suction space 71 and a second suction space 72 into which refrigerant flows from the suction pipe 1f.
  • An Oldham ring 13 that functions as an anti-rotation mechanism for the orbiting scroll 12 is provided between the orbiting scroll 12 and the frame 17 .
  • the electric stator 1c supplies driving force to the rotating shaft 1b via the electric rotor 1d.
  • the electric stator 1c is fixed to the inner peripheral wall of the lower portion 92 of the sealed container by shrink fitting or the like.
  • the electric stator 1c is externally powered by lead wires (not shown) connected to glass terminals (not shown) between the frame 17 and the electric stator 1c.
  • the electric rotor 1d is fixed to the rotating shaft 1b by shrink fitting or the like.
  • a first balance weight 60 is fixed to the rotating shaft 1b, and a second balance weight 61 is fixed to the electric rotor 1d.
  • the first balance weight 60 and the second balance weight 61 control the moment balance of the entire rotation system in the scroll compressor 1 .
  • the eccentric shaft portion 1ba of the rotary shaft 1b is fitted in a rocking bearing 12c provided on the lower surface of the rocking plate 12a, and slides on each other via an oil film of refrigerating machine oil.
  • the rocking bearing 12c is formed by press-fitting a bearing material used for sliding bearings, such as a copper-lead alloy, to the inner periphery of a hollow cylindrical boss portion 12d.
  • a slider 15 for supporting the orbiting scroll 12 is provided on the outer peripheral side of the eccentric shaft portion 1ba to cause the orbiting scroll 12 to revolve.
  • a main shaft portion 1bb of the rotating shaft 1b is rotatably fitted to a main bearing 17a provided at the center of the frame 17, and slides on each other via an oil film of refrigerating machine oil.
  • the main bearing 17a is formed by press-fitting a bearing material used for sliding bearings, such as a copper-lead alloy, to the inner circumference of a hollow cylindrical boss portion 17b.
  • a sleeve 21 is provided on the outer peripheral side of the main shaft portion 1bb for smoothly rotating the main shaft portion 1bb.
  • a sub-frame 19 fixed with bolts (not shown) to a sub-frame holder 19a fixed to the inner peripheral wall of the lower part 92 of the sealed container is provided below the electric stator 1c and the electric rotor 1d.
  • a sub-bearing 20 made of a ball bearing is provided on the upper portion of the sub-frame 19, and the sub-bearing 20 radially supports the rotating shaft 1b.
  • the secondary bearing 20 may have a bearing structure other than a ball bearing.
  • the sub-shaft portion 1bc of the rotating shaft 1b is fitted with the sub-bearing 20 and slides on the sub-bearing 20 via an oil film of refrigerating machine oil. Note that the main shaft portion 1bb and the sub shaft portion 1bc are aligned with each other.
  • FIG. 2 is a diagram showing a compression stroke for explaining the operation of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 1.
  • FIG. 11 is a compression stroke diagram showing the state of the fixed spiral portion 11b and the swinging spiral portion 12b at [deg].
  • FIG. 1 the flow of the refrigerant in the scroll compressor 1 will be described using FIGS. 1 and 2.
  • the fixed spiral portion 11b of the fixed scroll 11 and the oscillating spiral portion 12b of the oscillating scroll 12 perform relative oscillating motions.
  • the refrigerant that has flowed into the second suction space 72 is drawn into a suction chamber 73a (the hatched area in FIG. 2) formed by the fixed spiral portion 11b and the swinging spiral portion 12b along with this swinging motion.
  • Refrigerant sucked into the suction chamber 73a transitions to the compression chamber 73b at a certain rotation angle, and changes in geometric volume of the compression chamber 73b due to changes in the positional relationship between the fixed spiral portion 11b and the swinging spiral portion 12b. , is boosted from low pressure to high pressure. After that, the refrigerant in the compression chamber 73b transitions to the innermost chamber 73c at a certain rotation angle and is discharged into the discharge space 74 through the discharge port 22 communicating with the innermost chamber 73c. After that, the refrigerant discharged into the discharge space 74 flows out from the discharge pipe 1g shown in FIG.
  • FIG. 3 is a plan view illustrating the positional relationship between the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 1.
  • FIG. 4 is a cross-sectional view illustrating the positional relationship among the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the scroll compressor 1 according to Embodiment 1.
  • FIG. FIG. 5 is a diagram illustrating the suction chamber 73a of the scroll compressor 1 according to Embodiment 1.
  • FIG. Note that the arrows in FIG. 4 indicate the flow of the coolant.
  • the scroll compressor 1 has a suction flow that intermittently communicates the suction hole 31 and the suction chamber 73a while the orbiting scroll 12 is swinging. It is characterized in that the path 32 is formed in the rocking base plate 12a.
  • the suction flow path 32 is an elliptical through hole in plan view, and is formed in the rocking base plate 12a so as to straddle the teeth of the fixed spiral portion 11b.
  • FIG. 5 The hatched area in FIG. 5 indicates the suction chamber 73a.
  • the suction chamber 73a is an inward surface suction chamber 73a1 formed by the inward surface of the fixed spiral portion 11b of the fixed scroll 11 and the outward surface of the orbiting spiral portion 12b of the orbiting scroll 12, and the fixed spiral portion 11b of the fixed scroll 11. and an outward surface suction chamber 73a2 formed by the inward surface of the orbiting spiral portion 12b of the orbiting scroll 12.
  • the inward suction chamber 73a1 consists of the inward suction chamber suction port 102a, the inward surface of the fixed spiral portion 11b, the outward surface of the swinging spiral portion 12b, the swing base plate 12a, and the fixed base plate 11a (see FIG. 1). It is an enclosed space.
  • the outward surface suction chamber 73a2 includes the outward surface suction chamber suction port 102b, the outward surface of the fixed spiral portion 11b, the inward surface of the swing spiral portion 12b, the swing base plate 12a, and the fixed base plate 11a (see FIG. 1). ) is a space surrounded by
  • the inward surface suction chamber suction port 102a is an opening of the inward surface suction chamber 73a1 with respect to the second suction space 72, which is a straight line connecting the fixed spiral base circle center 100a and the fixed spiral inward surface end point 101a.
  • the outward surface suction chamber suction port 102b is an opening of the outward surface suction chamber 73a2 to the second suction space 72, which is a straight line connecting the swing spiral base circle center 100b and the swing spiral inward surface end point 101b. be.
  • FIG. 6 shows the positional relationship of the suction hole 31, the suction flow path 32, the fixed spiral portion 11b, and the swinging spiral portion 12b in the compression stroke for explaining the operation of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 1. It is a figure explaining.
  • FIG. 6(a) shows the inward surface suction chamber 73a1 at the start of refrigerant suction, and the inward surface suction chamber 73a1 has no volume. Since the suction port of the chamber 73a1 is closed, no refrigerant is drawn at this time. On the other hand, by expanding the spiral portion in the radial direction, the rocking plate 12 a covers the suction hole 31 . However, since the suction channel 32 formed in the rocking base plate 12 a communicates with the suction hole 31 , the refrigerant flows from the suction hole 31 into the second suction space 72 through the suction channel 32 .
  • the orbiting scroll 12 is in a ⁇ /2 orbiting motion from the time point when the inward suction chamber 73a1 starts to suck the refrigerant.
  • the volume of the inward suction chamber 73a1 is formed, and the flow path area of the suction port of the inward suction chamber 73a1 begins to increase, so the inward suction chamber 73a1 starts sucking the refrigerant.
  • the rocking plate 12a still blocks most of the suction holes 31, but the refrigerant flows from the suction holes 31 into the second suction space 72 through the suction passages 32 as described above.
  • the suction flow path 32 opens directly into the inward surface suction chamber 73a1.
  • the refrigerant is taken into the inward surface suction chamber 73 a 1 from the suction hole 31 without passing through the second suction space 72 .
  • a space is created between the inner peripheral wall of the closed container lower portion 92 and the oscillating base plate 12a, and the second suction space 72 expands.
  • the refrigerant also flows through the suction space 72 to the inward suction chamber 73a1.
  • the orbiting scroll 12 is in a ⁇ -oscillating motion from the time point when the inward suction chamber 73a1 starts to suck the refrigerant.
  • the passage area of the suction port of the inward suction chamber 73a1 becomes maximum.
  • the suction hole 31 is arranged near the winding end of the fixed spiral portion 11b, the space between the inner peripheral wall of the lower part 92 of the sealed container and the rocking plate 12a becomes the largest. The amount of refrigerant taken into the inward suction chamber 73a1 via the second suction space 72 increases.
  • the suction channel 32 formed in the rocking base plate 12a hardly communicates with the second suction space 72, so that the suction hole 31 passes through the suction channel 32 to the second suction space. Refrigerant does not flow into 72 .
  • the suction flow path 32 communicates with the suction hole 31 and the inward suction chamber 73a1, there is a path through which the refrigerant is taken in from the suction hole 31 to the inward suction chamber 73a1 through the suction flow path 32.
  • the orbiting scroll 12 is in an orbiting motion of 3 ⁇ /2 from the time point when the inward suction chamber 73a1 starts to suck the refrigerant.
  • the suction hole 31 begins to be blocked by the orbiting base plate 12a.
  • a path from the suction hole 31 to the inward suction chamber 73a1 via the suction passage 32 exists because the suction passage 32 opens to the suction hole 31 and the inward suction chamber 73a1.
  • a suction passage 32 is formed in the swing base plate 12a to intermittently communicate the suction hole 31 and the suction chamber 73a while the swing scroll 12 is swinging. By doing so, the refrigerant can be sucked into the suction chamber 73a from the suction hole 31 through the suction flow path 32 even at the timing when the suction hole 31 is blocked by the rocking plate 12a.
  • FIG. 7 illustrates the positional relationship between the suction hole 31, the suction flow path 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a according to the first modification of the scroll compressor 1 according to the first embodiment. It is a top view.
  • FIG. 8 illustrates the positional relationship between the suction hole 31, the suction flow path 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a according to the second modification of the scroll compressor 1 according to the first embodiment. It is a top view.
  • the outward surface suction chamber 73a2 is formed by the outward surface of the fixed spiral portion 11b of the fixed scroll 11 and the inward surface of the orbiting spiral portion 12b of the orbiting scroll 12. also mention.
  • the suction passage 32 formed in the rocking base plate 12a is a through hole of a size that does not straddle the teeth of the fixed spiral portion 11b. It is possible to obtain the same effect as the effect of That is, even at the timing when the suction hole 31 is blocked by the rocking plate 12a, the refrigerant can be sucked into the suction chamber 73a from the suction hole 31 through the suction flow path 32.
  • the suction passage 32 needs to be a through hole of a size that does not straddle the teeth of the fixed spiral portion 11b.
  • the area of the intake channel 32 is reduced. Therefore, in order to compensate for this, it is conceivable to remove a portion of the rocking plate 12a that does not form a sliding portion with the fixed spiral portion 11b, and use the removed portion as the second suction space 72.
  • the reason why the through hole needs to be of a size that does not straddle the teeth of the fixed spiral portion 11b is that if the through hole has a size that straddles the teeth of the fixed spiral portion 11b, the outward surface suction chamber 73a2 and the compression chamber 73b This is because there is a possibility that a phase that becomes a positional relationship in which the two are in communication with each other and compression cannot be performed in the first place due to a decrease in volumetric efficiency or leakage.
  • the outward surface suction chamber 73a2 and the compression chamber 73b as shown in FIG. 7, if the through hole is large, the outward surface suction chamber 73a2 and the compression chamber 73b are closed at a timing close to the start of compression of the outward surface suction chamber 73a2. communication occurs.
  • the suction flow path 32 formed in the rocking base plate 12a has an elliptical opening shape and a single through hole. can be obtained, the shape of the opening of the suction flow path 32 and the number of through-holes are not limited.
  • the suction flow path 32 may be formed by notching part of the outer peripheral portion of the rocking plate 12a, that is, by notching.
  • the scroll compressor 1 according to Embodiment 1 has a so-called frame-outer-wall-less structure in which the outer wall portion of the frame 17 that was present for fastening the fixed scroll 11 and the frame 17 is removed.
  • the compressor may have a structure in which the fixed scroll 11 is fixed by the outer wall of the frame 17 as long as the suction hole 31 opens toward the bottom surface of the rocking plate 12a.
  • the number of suction holes 31 is one as shown in FIG.
  • the compression mechanism 1a has an asymmetric spiral shape in which the fixed spiral portion 11b and the oscillating spiral portion 12b end in different winding phases, but the compression mechanism 1a is not limited to this.
  • the compression mechanism 1a may have a symmetrical spiral shape in which the winding ends of the fixed spiral portion 11b and the swinging spiral portion 12b are in the same phase.
  • the bottom surface of the rocking plate 12a and the top surface of the frame 17 are configured to slide, but the configuration is not limited to this.
  • a thrust plate (not shown) having an opening facing the suction hole 31 is inserted between the rocking base plate 12a and the frame 17, and after applying an anti-rotation mechanism, rocking is performed via the thrust plate.
  • the bottom surface of the base plate 12a and the top surface of the frame 17 may slide.
  • the scroll compressor 1 includes the sealed container 90 forming the outer shell, the suction pipe 1f for flowing the refrigerant into the first suction space 71 inside the sealed container 90, and the a fixed scroll 11 having a fixed base plate 11a and a fixed spiral portion 11b which is a spiral projection provided on one surface of the fixed base plate 11a; a compression chamber 73b that compresses the refrigerant by meshing the fixed spiral portion 11b and the swinging spiral portion 12b; , a suction chamber 73a that guides the refrigerant flowing into the first suction space 71 to the compression chamber 73b; and a frame 17 that is fixed to the inner peripheral wall of the sealed container 90 and has the fixed scroll 11 fixedly arranged therein.
  • 31 is formed in the rocking bed plate 12a, and a suction passage 32 is formed in the rocking bed plate 12a to intermittently communicate the suction hole 31 and the suction chamber 73a when the rocking scroll 12 is rocking. It is.
  • the frame 17 is formed with the suction hole 31 that allows the second suction space 72 and the first suction space 71 to communicate with each other.
  • a suction passage 32 is formed to intermittently communicate the suction hole 31 and the suction chamber 73a while the orbiting scroll 12 is swinging. Therefore, even if the spiral portion is expanded in the radial direction and the rocking plate 12a closes the suction hole 31, the suction passage 32 intermittently communicates the suction hole 31 and the suction chamber 73a. be able to. As a result, the refrigerant can be taken into the suction chamber 73a while suppressing the suction pressure loss, and the deterioration of the refrigerant suction efficiency can be suppressed.
  • the suction passage 32 is a through hole or a notch formed in the rocking bed plate 12a.
  • Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
  • FIG. 9 is a plan view for explaining the positional relationship between the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 2.
  • FIG. 10 is a cross-sectional view for explaining the positional relationship among the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the scroll compressor 1 according to Embodiment 2.
  • the suction flow path 32 for intermittently communicating the suction hole 31 and the suction chamber 73a while the orbiting scroll 12 is swinging is provided by the swing bed plate 12a.
  • the back surface of the rocking plate 12a that is, the lower surface in the vertical direction, that is, the surface opposite to the surface facing the fixed scroll 11 has an entire outer peripheral portion. It is characterized by forming an auxiliary suction flow path 33 recessed inward along the circumferential direction.
  • the back surface of the rocking base plate 12a is the back surface of FIG.
  • the suction flow path 32 does not communicate with the suction hole 31 in the axial direction, it can always communicate with the suction hole 31 via the auxiliary suction flow path 33 .
  • the auxiliary suction passages 33 can always be used.
  • the suction hole 31 and the suction channel 32 communicate with each other. Therefore, by combining the suction flow path 32 and the auxiliary suction flow path 33, it is possible to expand the spiral portion in the radial direction while suppressing the suction pressure loss regardless of the circumferential arrangement of the suction holes 31.
  • the auxiliary suction flow path 33 is formed along the entire circumference of the back surface of the rocking plate 12a, but the present invention is not limited to this. As long as the expected effect can be obtained, the auxiliary suction flow path 33 recessed inward along the circumferential direction may be formed only on a part of the outer periphery of the back surface of the rocking plate 12a instead of on the entire periphery. . Further, the shape of the auxiliary suction flow path 33 is not limited to the above, and other shapes may be used as long as the expected effect can be obtained.
  • the auxiliary suction passage 33 communicates with the suction hole 31 and the suction channel 32 .
  • the suction flow path 32 is axially axially moved through the auxiliary suction flow path 33 formed in at least a part of the outer peripheral portion of the back surface of the rocking plate 12a. , it is possible to always communicate with the suction hole 31 even if it is not in communication with the suction hole 31 . Therefore, by combining the suction flow path 32 and the auxiliary suction flow path 33, it is possible to expand the spiral portion in the radial direction while suppressing the suction pressure loss regardless of the circumferential arrangement of the suction holes 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This scroll compressor comprising: a compression mechanism that has a closed container forming an outer shell, a suction pipe that allows a refrigerant to flow into a first suction space inside the closed container, a fixed scroll that is provided in the closed container and has a fixed base plate and a fixed spiral portion which is a spiral projection provided on one surface of the fixed base plate, and a rocking scroll that has a rocking base plate and a rocking spiral portion which is a spiral projection provided on one surface of the rocking base plate, the compression mechanism being formed with a compression chamber where the refrigerator is compressed and a suction chamber that introduces the refrigerant flowing into the first suction space into the compression chamber by the meshing of the fixed spiral portion and the rocking spiral portion; and a frame that is fixed to the inner peripheral wall of the closed container and fixedly arranges the fixed scroll, wherein the frame is formed with a suction hole that communicates a second suction space surrounded by the inner peripheral wall of the closed container and the outer peripheral portions of the fixed spiral portion and the rocking spiral portion with the first suction space, and the rocking base plate is formed with a suction passage that intermittently communicates the suction hole and the suction chamber when the rocking scroll is rocking.

Description

スクロール圧縮機scroll compressor
 本開示は、空気調和機および冷凍機などに用いられるスクロール圧縮機に関するものである。 The present disclosure relates to scroll compressors used in air conditioners, refrigerators, and the like.
 空気調和機および冷凍機などに用いられるスクロール圧縮機の圧縮機構は、固定スクロールの渦巻部と揺動スクロールの渦巻部とで構成されている。そして、固定スクロールを固定し、揺動スクロールをその渦巻部が固定スクロールの渦巻部に対して噛み合うように配置し揺動運動させることで、固定スクロールと揺動スクロールとの間に形成された空間にて冷媒の吸入および圧縮を行うことができる。 The compression mechanism of scroll compressors used in air conditioners and refrigerators is composed of a fixed scroll spiral portion and an orbiting scroll spiral portion. A space is formed between the fixed scroll and the orbiting scroll by fixing the fixed scroll and arranging the orbiting scroll so that the spiral portion of the orbiting scroll meshes with the spiral portion of the fixed scroll. Refrigerant can be sucked and compressed at .
 このようなスクロール圧縮機では、小型化かつ低コスト化を図るため、圧縮機構を収納する密閉容器の径を維持しながら可能な限り圧縮機構の吸入容積を大きくすることで、圧縮機能力を向上させることが重要となっている。 In order to reduce the size and cost of such a scroll compressor, the compression function is improved by increasing the suction volume of the compression mechanism as much as possible while maintaining the diameter of the sealed container that houses the compression mechanism. It is important to let
 圧縮機構に冷媒を円滑に取り込むためには、冷媒を密閉容器の内部に流入させる吸入管と連通する冷媒吸入空間を渦巻部の外周側に十分に形成する必要がある。したがって、渦巻部を径方向に拡大して圧縮機能力の向上を図る場合、限られた渦巻部の収納空間の外周側に冷媒吸入空間を形成する必要があるため、これにより渦巻部の外径の拡大が制限されてしまう。特に、揺動スクロールの背面、つまり上下方向の下側の面、すなわち固定スクロールと対向する面の反対側の面から密閉容器またはフレームに形成された吸入孔を介して冷媒を吸入する方式の場合、渦巻部の外径の大きさによっては揺動スクロールの運動により吸入孔が閉塞されるため、渦巻部を径方向に十分に拡大できない。このような背景の中で、例えば特許文献1には、吸入管と冷媒吸入空間とを連通させる補助吸入孔を、吸入孔とは別に密閉容器に形成する例が示されている。 In order to smoothly take the refrigerant into the compression mechanism, it is necessary to form a sufficient refrigerant suction space on the outer peripheral side of the spiral portion that communicates with the suction pipe that flows the refrigerant into the sealed container. Therefore, when expanding the spiral portion in the radial direction to improve the compression function, it is necessary to form a refrigerant suction space on the outer peripheral side of the limited storage space of the spiral portion. expansion is restricted. In particular, in the case of a method in which the refrigerant is sucked from the back surface of the orbiting scroll, that is, the lower surface in the vertical direction, that is, the surface opposite to the surface facing the fixed scroll through a suction hole formed in the closed container or frame. Depending on the size of the outer diameter of the spiral portion, the movement of the orbiting scroll may block the suction hole, so that the spiral portion cannot be sufficiently enlarged in the radial direction. Against this background, Patent Literature 1, for example, discloses an example in which an auxiliary suction hole for communicating a suction pipe and a refrigerant suction space is formed in a sealed container separately from the suction hole.
特許第3227075号公報Japanese Patent No. 3227075
 特許文献1のスクロール圧縮機では、密閉容器に形成された吸入孔および補助吸入孔を併用することで、吸入孔から冷媒吸入空間への流れを促進するものであるが、渦巻部を径方向に拡大した場合、揺動台板によって吸入孔および補助吸入孔からの冷媒流路が閉塞されて吸入圧力損失が増大し、冷媒吸入効率が低下してしまうという課題があった。 In the scroll compressor of Patent Document 1, the suction hole and the auxiliary suction hole formed in the closed container are used together to promote the flow from the suction hole to the refrigerant suction space. When enlarged, there is a problem that the refrigerant flow path from the suction hole and the auxiliary suction hole is blocked by the rocking plate, the suction pressure loss increases, and the refrigerant suction efficiency decreases.
 本開示は、以上のような課題を解決するためになされたもので、渦巻部を径方向に拡大した場合でも冷媒吸入効率の低下を抑制することができるスクロール圧縮機を提供することを目的としている。 The present disclosure has been made to solve the problems described above, and an object of the present disclosure is to provide a scroll compressor capable of suppressing a decrease in refrigerant suction efficiency even when the spiral portion is expanded in the radial direction. there is
 本開示に係るスクロール圧縮機は、外郭を構成する密閉容器と、冷媒を前記密閉容器の内部の第1吸入空間に流入させる吸入管と、前記密閉容器内に設けられ、固定台板と該固定台板の一面に設けられた渦巻状突起である固定渦巻部とを有する固定スクロールと、揺動台板と該揺動台板の一面に設けられた渦巻状突起である揺動渦巻部とを有する揺動スクロールと、を有し、前記固定渦巻部と前記揺動渦巻部とが噛み合うことにより、冷媒を圧縮する圧縮室と、前記第1吸入空間に流入した冷媒を前記圧縮室へ導く吸入室と、が形成される圧縮機構と、前記密閉容器の内周壁に固定され、前記固定スクロールを固定配置するフレームと、を備え、前記フレームには、前記密閉容器の前記内周壁と前記固定渦巻部および前記揺動渦巻部の外周部とで囲まれた第2吸入空間と、前記第1吸入空間とを連通させる吸入孔が形成されており、前記揺動台板には、前記揺動スクロールが揺動しているときに前記吸入孔と前記吸入室とを間欠的に連通させる吸入流路が形成されているものである。 A scroll compressor according to the present disclosure includes a closed container that forms an outer shell, a suction pipe that allows refrigerant to flow into a first suction space inside the closed container, a fixed base plate and a fixed base plate that are provided in the closed container. A fixed scroll having a fixed spiral portion which is a spiral projection provided on one surface of the base plate, an oscillating bed plate, and an oscillating spiral portion which is a spiral projection provided on one surface of the oscillating bed plate. a compression chamber for compressing refrigerant by meshing the fixed spiral portion and the oscillating spiral portion; and a suction for guiding the refrigerant flowing into the first suction space to the compression chamber. and a frame that is fixed to the inner peripheral wall of the closed container and fixedly arranges the fixed scroll, wherein the frame includes the inner peripheral wall of the closed container and the fixed scroll. a second suction space surrounded by a portion and an outer peripheral portion of the swing spiral portion and a suction hole communicating with the first suction space, and the swing base plate includes the swing scroll. A suction passage is formed to intermittently communicate the suction hole and the suction chamber when the is rocking.
 本開示に係るスクロール圧縮機によれば、フレームには、第2吸入空間と第1吸入空間とを連通させる吸入孔が形成されており、揺動台板には、揺動スクロールが揺動しているときに吸入孔と吸入室とを間欠的に連通させる吸入流路が形成されている。このため、渦巻部を径方向に拡大し、揺動台板が吸入孔を閉塞するような構成にしても、吸入流路によって吸入孔と吸入室とを間欠的に連通させることができる。その結果、吸入圧力損失を抑えた上で吸入室に冷媒を取り込むことができ、冷媒吸入効率の低下を抑制することができる。 According to the scroll compressor according to the present disclosure, the frame is formed with the suction hole that communicates the second suction space and the first suction space, and the swing bed plate swings the swing scroll. A suction passage is formed to intermittently communicate the suction hole and the suction chamber when the suction chamber is closed. Therefore, even if the spiral portion is expanded in the radial direction and the swing bed plate closes the suction hole, the suction channel can intermittently communicate the suction hole and the suction chamber. As a result, the refrigerant can be taken into the suction chamber while suppressing the suction pressure loss, and the deterioration of the refrigerant suction efficiency can be suppressed.
実施の形態1に係るスクロール圧縮機の構成を示す断面図である。1 is a cross-sectional view showing the configuration of a scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の圧縮機構の動作を説明する圧縮行程を示す図である。4 is a diagram showing a compression stroke for explaining the operation of the compression mechanism of the scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の圧縮機構の吸入孔、吸入流路、固定渦巻部、および揺動渦巻部の位置関係を説明する平面図である。FIG. 4 is a plan view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the compression mechanism of the scroll compressor according to Embodiment 1; 実施の形態1に係るスクロール圧縮機の吸入孔、吸入流路、固定渦巻部、および揺動渦巻部の位置関係を説明する断面図である。FIG. 4 is a cross-sectional view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the scroll compressor according to Embodiment 1; 実施の形態1に係るスクロール圧縮機の吸入室を説明する図である。FIG. 2 is a diagram illustrating a suction chamber of the scroll compressor according to Embodiment 1; FIG. 実施の形態1に係るスクロール圧縮機の圧縮機構の動作を説明する圧縮行程における吸入孔、吸入流路、固定渦巻部、および揺動渦巻部の位置関係を説明する図である。FIG. 5 is a diagram for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion in the compression stroke for explaining the operation of the compression mechanism of the scroll compressor according to Embodiment 1; 実施の形態1に係るスクロール圧縮機の第1変形例による圧縮機構の吸入孔、吸入流路、固定渦巻部、および揺動渦巻部の位置関係を説明する平面図である。FIG. 7 is a plan view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the compression mechanism according to the first modification of the scroll compressor according to Embodiment 1; 実施の形態1に係るスクロール圧縮機の第2変形例による圧縮機構の吸入孔、吸入流路、固定渦巻部、および揺動渦巻部の位置関係を説明する平面図である。FIG. 8 is a plan view illustrating the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the compression mechanism according to the second modification of the scroll compressor according to Embodiment 1; 実施の形態2に係るスクロール圧縮機の圧縮機構の吸入孔、吸入流路、固定渦巻部、および揺動渦巻部の位置関係を説明する平面図である。FIG. 8 is a plan view for explaining the positional relationship among the suction hole, the suction flow path, the fixed spiral portion, and the oscillating spiral portion of the compression mechanism of the scroll compressor according to Embodiment 2; 実施の形態2に係るスクロール圧縮機の吸入孔、吸入流路、固定渦巻部、および揺動渦巻部の位置関係を説明する断面図である。FIG. 7 is a cross-sectional view for explaining the positional relationship between the suction hole, the suction flow path, the fixed spiral portion, and the swinging spiral portion of the scroll compressor according to Embodiment 2;
 以下、実施の形態に係るスクロール圧縮機について図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。 A scroll compressor according to an embodiment will be described below with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In particular, the combination of components is not limited only to the combinations in each embodiment, and the components described in other embodiments can be applied to other embodiments.
 実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機1の構成を示す断面図である。なお、図1中の矢印は冷媒の流れを示している。
Embodiment 1.
FIG. 1 is a cross-sectional view showing the configuration of a scroll compressor 1 according to Embodiment 1. FIG. Note that the arrows in FIG. 1 indicate the flow of the refrigerant.
 実施の形態1に係るスクロール圧縮機1は、冷媒を吸入し、圧縮して高温高圧の状態として吐出させる機能を有している。このスクロール圧縮機1は、外郭を構成する密閉容器90を備えている。密閉容器90は、密閉容器上部91と密閉容器下部92とで構成されている。密閉容器下部92の側部には、密閉容器90の外部の主冷媒回路からの低圧のガス冷媒を密閉容器90の内部に流入させる吸入管1fが設けられている。また、密閉容器上部91の上部には、高温高圧の吐出冷媒を密閉容器90の内部から外部の主冷媒回路へと流出させる吐出管1gが設けられている。 The scroll compressor 1 according to Embodiment 1 has a function of sucking refrigerant, compressing it, and discharging it in a high-temperature, high-pressure state. The scroll compressor 1 includes a closed container 90 forming an outer shell. The sealed container 90 is composed of a sealed container upper portion 91 and a sealed container lower portion 92 . A suction pipe 1f is provided on the side of the lower portion 92 of the hermetic container for allowing the low-pressure gas refrigerant from the main refrigerant circuit outside the hermetic container 90 to flow into the interior of the hermetic container 90 . A discharge pipe 1g is provided in the upper portion of the closed container upper portion 91 for discharging the high-temperature and high-pressure discharged refrigerant from the inside of the closed container 90 to the main refrigerant circuit outside.
 密閉容器90の内部には、冷媒を圧縮する圧縮機構1a、圧縮機構1aを駆動させる回転軸1b、および、回転軸1bを回転させる電動固定子1c並びに電動回転子1dが収納されている。さらに、密閉容器90の内部には、密閉容器90の底部に形成された油溜部80に貯留されている冷凍機油を圧縮機構1aに供給するポンプ要素1eが収納されている。 A compression mechanism 1a for compressing the refrigerant, a rotary shaft 1b for driving the compression mechanism 1a, and an electric stator 1c and an electric rotor 1d for rotating the rotary shaft 1b are housed inside the sealed container 90. Further, inside the sealed container 90, a pump element 1e is housed that supplies the refrigerating machine oil stored in the oil reservoir 80 formed at the bottom of the sealed container 90 to the compression mechanism 1a.
 圧縮機構1aは、固定スクロール11と揺動スクロール12とを有している。揺動スクロール12は、回転軸1bとともに回転駆動する。固定スクロール11は、固定台板11aと、固定台板11aの下面に設けられた渦巻状突起である固定渦巻部11bとを備えている。固定スクロール11は、揺動スクロール12の上部に配置され、固定台板11aの外周部が密閉容器下部92の内周壁に固定されている。揺動スクロール12は、揺動台板12aと、揺動台板12aの上面に設けられた渦巻状突起である揺動渦巻部12bとを備えている。なお、以下において、固定渦巻部11bおよび揺動渦巻部12bの総称を、渦巻部と称する。圧縮機構1aは、固定渦巻部11bおよび揺動渦巻部12bの巻き終わりの位相が異なる非対称渦巻形状を有している。また、揺動台板12aの下面の中心部には、中空円筒状のボス部12dが設けられている。また、揺動台板12aの外周側には吸入流路32が形成されている。この吸入流路32については後述する。 The compression mechanism 1a has a fixed scroll 11 and an orbiting scroll 12. The orbiting scroll 12 is rotationally driven together with the rotating shaft 1b. The fixed scroll 11 includes a fixed base plate 11a and a fixed spiral portion 11b, which is a spiral protrusion provided on the lower surface of the fixed base plate 11a. The fixed scroll 11 is arranged above the orbiting scroll 12, and the outer peripheral portion of the fixed base plate 11a is fixed to the inner peripheral wall of the lower portion 92 of the sealed container. The oscillating scroll 12 includes an oscillating bed plate 12a and an oscillating spiral portion 12b, which is a spiral projection provided on the upper surface of the oscillating bed plate 12a. In addition, hereinafter, the fixed spiral portion 11b and the swinging spiral portion 12b are collectively referred to as a spiral portion. The compression mechanism 1a has an asymmetric spiral shape in which the fixed spiral portion 11b and the oscillating spiral portion 12b have different winding end phases. A hollow cylindrical boss 12d is provided at the center of the lower surface of the rocking plate 12a. A suction flow path 32 is formed on the outer peripheral side of the rocking plate 12a. This suction flow path 32 will be described later.
 回転軸1bは、主軸部1bbと、主軸部1bbの上部に位置する偏心軸部1baと、主軸部1bbの下部に位置する副軸部1bcとを有している。回転軸1bは、揺動スクロール12の揺動軸受12cを介して揺動スクロール12が揺動運動可能なように、揺動スクロール12に嵌合される。そして、揺動スクロール12の揺動渦巻部12bと固定スクロール11の固定渦巻部11bとは、互いに逆位相になるように組み合わせられる。揺動渦巻部12bと固定渦巻部11bとが噛み合うことにより、吸入室73a、圧縮室73b、および、最内室73cが形成される(後述する図2参照)。ここで、吸入室73aとは、密閉容器下部92の内周壁と渦巻部の外周部とで囲まれた第2吸入空間72の冷媒を吸入する密閉されていない空間である。圧縮室73bとは、吸入室73aが吸入した冷媒を圧縮する密閉された空間である。最内室73cとは、最も内側の圧縮空間であり圧縮室73bで圧縮した冷媒を、固定台板11aに形成された吐出ポート22を介して吐出空間74に吐出する密閉された空間である。なお、吐出ポート22の出口側には、吐出ポート22の出口を開閉自在に塞ぐ吐出弁23が設けられており、最内室73cの圧力が所定値以上となると、吐出弁23が吐出ポート22の出口を開放し、最内室73cの冷媒が吐出空間74に吐出される。 The rotary shaft 1b has a main shaft portion 1bb, an eccentric shaft portion 1ba positioned above the main shaft portion 1bb, and a sub-shaft portion 1bc positioned below the main shaft portion 1bb. The rotating shaft 1b is fitted to the orbiting scroll 12 so that the orbiting scroll 12 can perform an oscillating motion via the orbiting bearing 12c of the orbiting scroll 12. As shown in FIG. The orbiting spiral portion 12b of the orbiting scroll 12 and the fixed spiral portion 11b of the fixed scroll 11 are combined so as to have opposite phases. A suction chamber 73a, a compression chamber 73b, and an innermost chamber 73c are formed by engaging the swinging spiral portion 12b and the fixed spiral portion 11b (see FIG. 2, which will be described later). Here, the suction chamber 73a is an unsealed space for sucking the refrigerant in the second suction space 72 surrounded by the inner peripheral wall of the lower portion 92 of the sealed container and the outer peripheral portion of the spiral portion. The compression chamber 73b is a closed space that compresses the refrigerant sucked by the suction chamber 73a. The innermost chamber 73c is the innermost compression space and is a closed space in which the refrigerant compressed in the compression chamber 73b is discharged to the discharge space 74 through the discharge port 22 formed in the fixed base plate 11a. A discharge valve 23 is provided on the outlet side of the discharge port 22 so as to open and close the outlet of the discharge port 22. When the pressure in the innermost chamber 73c reaches a predetermined value or higher, the discharge valve 23 closes the discharge port 22. , the refrigerant in the innermost chamber 73 c is discharged into the discharge space 74 .
 フレーム17は、固定スクロール11を固定配置するものであり、その外周部が密閉容器下部92の内周壁に固定されている。また、フレーム17は、揺動スクロール12に作用するスラスト力を軸方向に支持するスラスト面(図示せず)を有する。さらに、フレーム17は、吸入管1fから冷媒が流入する第1吸入空間71と第2吸入空間72とを連通させる吸入孔31を有する。そして、揺動スクロール12とフレーム17との間には、揺動スクロール12の自転防止機構として機能するオルダムリング13が設けられている。 The frame 17 is for fixing the fixed scroll 11, and its outer peripheral portion is fixed to the inner peripheral wall of the lower part 92 of the sealed container. The frame 17 also has a thrust surface (not shown) that axially supports the thrust force acting on the orbiting scroll 12 . Further, the frame 17 has a suction hole 31 that communicates a first suction space 71 and a second suction space 72 into which refrigerant flows from the suction pipe 1f. An Oldham ring 13 that functions as an anti-rotation mechanism for the orbiting scroll 12 is provided between the orbiting scroll 12 and the frame 17 .
 電動固定子1cは、電動回転子1dを介して回転軸1bに対して駆動力を供給する。電動固定子1cは、密閉容器下部92の内周壁に焼嵌めなどによって固定される。電動固定子1cは、フレーム17と電動固定子1cとの間に存在するガラス端子(図示せず)に接続されたリード線(図示せず)によって外部から電力が供給される。電動回転子1dは、回転軸1bに焼嵌めなどによって固定される。また、回転軸1bには第1バランスウェイト60が固定されており、電動回転子1dには第2バランスウェイト61が固定されている。第1バランスウェイト60および第2バランスウェイト61は、スクロール圧縮機1における回転系全体のモーメントバランスを制御するものである。 The electric stator 1c supplies driving force to the rotating shaft 1b via the electric rotor 1d. The electric stator 1c is fixed to the inner peripheral wall of the lower portion 92 of the sealed container by shrink fitting or the like. The electric stator 1c is externally powered by lead wires (not shown) connected to glass terminals (not shown) between the frame 17 and the electric stator 1c. The electric rotor 1d is fixed to the rotating shaft 1b by shrink fitting or the like. A first balance weight 60 is fixed to the rotating shaft 1b, and a second balance weight 61 is fixed to the electric rotor 1d. The first balance weight 60 and the second balance weight 61 control the moment balance of the entire rotation system in the scroll compressor 1 .
 回転軸1bの偏心軸部1baは、揺動台板12aの下面に設けられた揺動軸受12cに嵌合され、冷凍機油による油膜を介して互いに摺動する。ここで、揺動軸受12cは、中空円筒状のボス部12dの内周に、銅鉛合金などの滑り軸受に使用される軸受材料が圧入などにより固定され、形成されている。また、偏心軸部1baの外周側には、揺動スクロール12を公転運動させるために揺動スクロール12を支承するスライダー15が設けられている。回転軸1bの主軸部1bbは、フレーム17の中心部に設けられた主軸受17aと回転自在に嵌合され、冷凍機油による油膜を介して互いに摺動する。ここで、主軸受17aは、中空円筒状のボス部17bの内周に、銅鉛合金などの滑り軸受に使用される軸受材料が圧入などにより固定され、形成されている。また、主軸部1bbの外周側には、主軸部1bbを円滑に回転運動させるためのスリーブ21が設けられている。 The eccentric shaft portion 1ba of the rotary shaft 1b is fitted in a rocking bearing 12c provided on the lower surface of the rocking plate 12a, and slides on each other via an oil film of refrigerating machine oil. Here, the rocking bearing 12c is formed by press-fitting a bearing material used for sliding bearings, such as a copper-lead alloy, to the inner periphery of a hollow cylindrical boss portion 12d. A slider 15 for supporting the orbiting scroll 12 is provided on the outer peripheral side of the eccentric shaft portion 1ba to cause the orbiting scroll 12 to revolve. A main shaft portion 1bb of the rotating shaft 1b is rotatably fitted to a main bearing 17a provided at the center of the frame 17, and slides on each other via an oil film of refrigerating machine oil. Here, the main bearing 17a is formed by press-fitting a bearing material used for sliding bearings, such as a copper-lead alloy, to the inner circumference of a hollow cylindrical boss portion 17b. In addition, a sleeve 21 is provided on the outer peripheral side of the main shaft portion 1bb for smoothly rotating the main shaft portion 1bb.
 電動固定子1cおよび電動回転子1dの下部には、密閉容器下部92の内周壁に固定されたサブフレームホルダ19aにボルト(図示せず)で固定されたサブフレーム19が設けられている。また、サブフレーム19の上部には玉軸受からなる副軸受20が設けられており、副軸受20は回転軸1bを半径方向に軸支する。ここで、副軸受20は、玉軸受以外の軸受構成であってもよい。回転軸1bの副軸部1bcは、副軸受20と嵌合され、冷凍機油による油膜を介して副軸受20と摺動する。なお、主軸部1bbおよび副軸部1bcの軸心は一致している。 A sub-frame 19 fixed with bolts (not shown) to a sub-frame holder 19a fixed to the inner peripheral wall of the lower part 92 of the sealed container is provided below the electric stator 1c and the electric rotor 1d. A sub-bearing 20 made of a ball bearing is provided on the upper portion of the sub-frame 19, and the sub-bearing 20 radially supports the rotating shaft 1b. Here, the secondary bearing 20 may have a bearing structure other than a ball bearing. The sub-shaft portion 1bc of the rotating shaft 1b is fitted with the sub-bearing 20 and slides on the sub-bearing 20 via an oil film of refrigerating machine oil. Note that the main shaft portion 1bb and the sub shaft portion 1bc are aligned with each other.
 図2は、実施の形態1に係るスクロール圧縮機1の圧縮機構1aの動作を説明する圧縮行程を示す図である。なお、図2(a)~(d)は、揺動渦巻部12bの一回転中の動作のうち、それぞれクランク角θ=0[deg]、90[deg]、180[deg]、および、270[deg]における固定渦巻部11bと揺動渦巻部12bとの状態を示す圧縮行程図である。 FIG. 2 is a diagram showing a compression stroke for explaining the operation of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 1. FIG. 2(a) to 2(d) show the operation during one rotation of the oscillating spiral portion 12b when the crank angle θ=0 [deg], 90 [deg], 180 [deg], and 270 [deg], respectively. FIG. 11 is a compression stroke diagram showing the state of the fixed spiral portion 11b and the swinging spiral portion 12b at [deg].
 以下、スクロール圧縮機1内の冷媒の流れについて、図1および図2を用いて説明する。  Hereinafter, the flow of the refrigerant in the scroll compressor 1 will be described using FIGS. 1 and 2. FIG.
 図1に示す吸入管1fから密閉容器90内の第1吸入空間71に流入した低圧のガス冷媒は、フレーム17に形成された吸入孔31を通って第2吸入空間72に流入する。圧縮機構1aでは、図2(a)~(d)に示すように、固定スクロール11の固定渦巻部11bと揺動スクロール12の揺動渦巻部12bとの相対的な揺動動作を行っている。そして、第2吸入空間72に流入した冷媒は、この揺動動作に伴い、固定渦巻部11bと揺動渦巻部12bとにより形成される吸入室73a(図2のハッチング領域)に吸入される。吸入室73aに吸入された冷媒は、ある回転角において圧縮室73bに遷移し、固定渦巻部11bと揺動渦巻部12bとの位置関係の変化に伴う圧縮室73bの幾何学的な容積変化によって、低圧から高圧に昇圧される。その後、圧縮室73b内の冷媒は、ある回転角において最内室73cに遷移し、最内室73cと連通する吐出ポート22を通って吐出空間74に吐出される。その後、吐出空間74に吐出された冷媒は、高温高圧の吐出冷媒として、図1に示す吐出管1gから密閉容器90の外部の主冷媒回路へと流出する。 The low-pressure gas refrigerant that has flowed into the first suction space 71 inside the sealed container 90 from the suction pipe 1f shown in FIG. In the compression mechanism 1a, as shown in FIGS. 2(a) to 2(d), the fixed spiral portion 11b of the fixed scroll 11 and the oscillating spiral portion 12b of the oscillating scroll 12 perform relative oscillating motions. . The refrigerant that has flowed into the second suction space 72 is drawn into a suction chamber 73a (the hatched area in FIG. 2) formed by the fixed spiral portion 11b and the swinging spiral portion 12b along with this swinging motion. Refrigerant sucked into the suction chamber 73a transitions to the compression chamber 73b at a certain rotation angle, and changes in geometric volume of the compression chamber 73b due to changes in the positional relationship between the fixed spiral portion 11b and the swinging spiral portion 12b. , is boosted from low pressure to high pressure. After that, the refrigerant in the compression chamber 73b transitions to the innermost chamber 73c at a certain rotation angle and is discharged into the discharge space 74 through the discharge port 22 communicating with the innermost chamber 73c. After that, the refrigerant discharged into the discharge space 74 flows out from the discharge pipe 1g shown in FIG.
 図3は、実施の形態1に係るスクロール圧縮機1の圧縮機構1aの吸入孔31、吸入流路32、固定渦巻部11b、および揺動渦巻部12bの位置関係を説明する平面図である。図4は、実施の形態1に係るスクロール圧縮機1の吸入孔31、吸入流路32、固定渦巻部11b、および揺動渦巻部12bの位置関係を説明する断面図である。図5は、実施の形態1に係るスクロール圧縮機1の吸入室73aを説明する図である。なお、図4中の矢印は冷媒の流れを示している。 FIG. 3 is a plan view illustrating the positional relationship between the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 1. FIG. FIG. 4 is a cross-sectional view illustrating the positional relationship among the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the scroll compressor 1 according to Embodiment 1. FIG. FIG. 5 is a diagram illustrating the suction chamber 73a of the scroll compressor 1 according to Embodiment 1. FIG. Note that the arrows in FIG. 4 indicate the flow of the coolant.
 実施の形態1に係るスクロール圧縮機1は、図3および図4に示すように、揺動スクロール12が揺動しているときに吸入孔31と吸入室73aとを間欠的に連通させる吸入流路32が揺動台板12aに形成されていることを特徴としている。吸入流路32は、平面視して楕円状の貫通孔であり、固定渦巻部11bの歯を跨ぐように揺動台板12aに形成されている。 As shown in FIGS. 3 and 4, the scroll compressor 1 according to the first embodiment has a suction flow that intermittently communicates the suction hole 31 and the suction chamber 73a while the orbiting scroll 12 is swinging. It is characterized in that the path 32 is formed in the rocking base plate 12a. The suction flow path 32 is an elliptical through hole in plan view, and is formed in the rocking base plate 12a so as to straddle the teeth of the fixed spiral portion 11b.
 ここで、スクロール圧縮機1の吸入室73aの定義について、図5を用いて説明する。なお、図5のハッチング領域は吸入室73aを示している。 Here, the definition of the suction chamber 73a of the scroll compressor 1 will be explained using FIG. The hatched area in FIG. 5 indicates the suction chamber 73a.
 吸入室73aは、固定スクロール11の固定渦巻部11bの内向面と揺動スクロール12の揺動渦巻部12bの外向面とで形成される内向面吸入室73a1と、固定スクロール11の固定渦巻部11bの外向面と揺動スクロール12の揺動渦巻部12bの内向面とで形成される外向面吸入室73a2とで構成されている。内向面吸入室73a1は、内向面吸入室吸入口102a、固定渦巻部11bの内向面、揺動渦巻部12bの外向面、および、揺動台板12a並びに固定台板11a(図1参照)で囲まれた空間である。また、外向面吸入室73a2は、外向面吸入室吸入口102b、固定渦巻部11bの外向面、揺動渦巻部12bの内向面、および、揺動台板12a並びに固定台板11a(図1参照)で囲まれた空間である。ここで、内向面吸入室吸入口102aは、固定渦巻基礎円中心100aと固定渦巻内向面終点101aとを結んだ直線状の、内向面吸入室73a1の第2吸入空間72に対する開口部である。同様に、外向面吸入室吸入口102bは、揺動渦巻基礎円中心100bと揺動渦巻内向面終点101bとを結んだ直線状の、外向面吸入室73a2の第2吸入空間72に対する開口部である。 The suction chamber 73a is an inward surface suction chamber 73a1 formed by the inward surface of the fixed spiral portion 11b of the fixed scroll 11 and the outward surface of the orbiting spiral portion 12b of the orbiting scroll 12, and the fixed spiral portion 11b of the fixed scroll 11. and an outward surface suction chamber 73a2 formed by the inward surface of the orbiting spiral portion 12b of the orbiting scroll 12. As shown in FIG. The inward suction chamber 73a1 consists of the inward suction chamber suction port 102a, the inward surface of the fixed spiral portion 11b, the outward surface of the swinging spiral portion 12b, the swing base plate 12a, and the fixed base plate 11a (see FIG. 1). It is an enclosed space. The outward surface suction chamber 73a2 includes the outward surface suction chamber suction port 102b, the outward surface of the fixed spiral portion 11b, the inward surface of the swing spiral portion 12b, the swing base plate 12a, and the fixed base plate 11a (see FIG. 1). ) is a space surrounded by Here, the inward surface suction chamber suction port 102a is an opening of the inward surface suction chamber 73a1 with respect to the second suction space 72, which is a straight line connecting the fixed spiral base circle center 100a and the fixed spiral inward surface end point 101a. Similarly, the outward surface suction chamber suction port 102b is an opening of the outward surface suction chamber 73a2 to the second suction space 72, which is a straight line connecting the swing spiral base circle center 100b and the swing spiral inward surface end point 101b. be.
 図6は、実施の形態1に係るスクロール圧縮機1の圧縮機構1aの動作を説明する圧縮行程における吸入孔31、吸入流路32、固定渦巻部11b、および揺動渦巻部12bの位置関係を説明する図である。 FIG. 6 shows the positional relationship of the suction hole 31, the suction flow path 32, the fixed spiral portion 11b, and the swinging spiral portion 12b in the compression stroke for explaining the operation of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 1. It is a figure explaining.
 以下、図6を用いて、固定スクロール11の固定渦巻部11bの内向面と揺動スクロール12の揺動渦巻部12bの外向面とで形成される内向面吸入室73a1について、吸入過程の説明をする。 The suction process of the inward suction chamber 73a1 formed by the inward surface of the fixed spiral portion 11b of the fixed scroll 11 and the outward surface of the orbiting spiral portion 12b of the orbiting scroll 12 will be described below with reference to FIG. do.
 図6(a)は、内向面吸入室73a1の冷媒吸入開始時点であり、内向面吸入室73a1は容積が形成されておらず、つまり内向面吸入室73a1の容積はゼロであり、内向面吸入室73a1の吸入口が閉じているため、この時点では冷媒の吸入はない。一方で、渦巻部を径方向に拡大したことで、揺動台板12aが吸入孔31に被る。しかし、揺動台板12aに形成された吸入流路32は吸入孔31に連通しているため、吸入流路32を通って吸入孔31から第2吸入空間72に冷媒が流入する。 FIG. 6(a) shows the inward surface suction chamber 73a1 at the start of refrigerant suction, and the inward surface suction chamber 73a1 has no volume. Since the suction port of the chamber 73a1 is closed, no refrigerant is drawn at this time. On the other hand, by expanding the spiral portion in the radial direction, the rocking plate 12 a covers the suction hole 31 . However, since the suction channel 32 formed in the rocking base plate 12 a communicates with the suction hole 31 , the refrigerant flows from the suction hole 31 into the second suction space 72 through the suction channel 32 .
 図6(b)は、内向面吸入室73a1の冷媒吸入開始時点から揺動スクロール12がπ/2揺動運動をしている。この時点で、内向面吸入室73a1に容積が形成されるとともに、内向面吸入室73a1の吸入口の流路面積も増加を始めるため、内向面吸入室73a1は冷媒の吸入を開始する。また、この時点でも揺動台板12aが吸入孔31の大半を閉塞しているが、前述したように吸入流路32を通って吸入孔31から第2吸入空間72に冷媒が流入することに加え、吸入流路32が内向面吸入室73a1に直接開口する。そのため、吸入孔31から第2吸入空間72を経由することなく内向面吸入室73a1に冷媒が取り込まれる。また、揺動スクロール12の揺動運動に伴い、密閉容器下部92の内周壁と揺動台板12aとの間に空間が生じて第2吸入空間72が拡大するため、吸入孔31から第2吸入空間72を経由した内向面吸入室73a1への冷媒の流れも生じる。 In FIG. 6(b), the orbiting scroll 12 is in a π/2 orbiting motion from the time point when the inward suction chamber 73a1 starts to suck the refrigerant. At this point, the volume of the inward suction chamber 73a1 is formed, and the flow path area of the suction port of the inward suction chamber 73a1 begins to increase, so the inward suction chamber 73a1 starts sucking the refrigerant. At this point, the rocking plate 12a still blocks most of the suction holes 31, but the refrigerant flows from the suction holes 31 into the second suction space 72 through the suction passages 32 as described above. In addition, the suction flow path 32 opens directly into the inward surface suction chamber 73a1. Therefore, the refrigerant is taken into the inward surface suction chamber 73 a 1 from the suction hole 31 without passing through the second suction space 72 . In addition, as the orbiting scroll 12 oscillates, a space is created between the inner peripheral wall of the closed container lower portion 92 and the oscillating base plate 12a, and the second suction space 72 expands. The refrigerant also flows through the suction space 72 to the inward suction chamber 73a1.
 図6(c)は、内向面吸入室73a1の冷媒吸入開始時点から揺動スクロール12がπ揺動運動をしている。この時点で、内向面吸入室73a1の吸入口の流路面積は最大となる。また、固定渦巻部11bの巻き終わり端部付近に吸入孔31を配置した場合は、密閉容器下部92の内周壁と揺動台板12aとの間の空間が最も大きくなるため、吸入孔31から第2吸入空間72を経由して内向面吸入室73a1に取り込まれる冷媒量が増加する。また、この時点では揺動台板12aに形成された吸入流路32は第2吸入空間72に対してほとんど連通していないため、吸入孔31から吸入流路32を経由して第2吸入空間72に冷媒が流入することはない。一方で、吸入流路32は吸入孔31および内向面吸入室73a1に連通しているため、吸入流路32を通って吸入孔31から内向面吸入室73a1に冷媒が取り込まれる経路が存在している。 In FIG. 6(c), the orbiting scroll 12 is in a π-oscillating motion from the time point when the inward suction chamber 73a1 starts to suck the refrigerant. At this point, the passage area of the suction port of the inward suction chamber 73a1 becomes maximum. Further, when the suction hole 31 is arranged near the winding end of the fixed spiral portion 11b, the space between the inner peripheral wall of the lower part 92 of the sealed container and the rocking plate 12a becomes the largest. The amount of refrigerant taken into the inward suction chamber 73a1 via the second suction space 72 increases. Further, at this point, the suction channel 32 formed in the rocking base plate 12a hardly communicates with the second suction space 72, so that the suction hole 31 passes through the suction channel 32 to the second suction space. Refrigerant does not flow into 72 . On the other hand, since the suction flow path 32 communicates with the suction hole 31 and the inward suction chamber 73a1, there is a path through which the refrigerant is taken in from the suction hole 31 to the inward suction chamber 73a1 through the suction flow path 32. there is
 図6(d)は、内向面吸入室73a1の冷媒吸入開始時点から揺動スクロール12が3π/2揺動運動をしている。この時点で、揺動スクロール12の揺動運動に伴い、吸入孔31が揺動台板12aによって閉塞され始める。一方で、吸入流路32を経由する吸入孔31から内向面吸入室73a1への経路は、吸入流路32が吸入孔31および内向面吸入室73a1に開口しているため存在している。 In FIG. 6(d), the orbiting scroll 12 is in an orbiting motion of 3π/2 from the time point when the inward suction chamber 73a1 starts to suck the refrigerant. At this point, as the orbiting scroll 12 pivots, the suction hole 31 begins to be blocked by the orbiting base plate 12a. On the other hand, a path from the suction hole 31 to the inward suction chamber 73a1 via the suction passage 32 exists because the suction passage 32 opens to the suction hole 31 and the inward suction chamber 73a1.
 内向面吸入室73a1の冷媒吸入開始時点から揺動スクロール12が2π揺動運動すると、再び図6(a)の位置関係となり、吸入室73a内の冷媒は圧縮室73bに遷移する。この時点で、吸入流路32は圧縮室73bに連通していないため、圧縮室73bからの冷媒漏れの影響は軽微である。 When the orbiting scroll 12 oscillates by 2π from the start of refrigerant suction into the inward suction chamber 73a1, the positional relationship shown in FIG. At this point, the suction flow path 32 is not in communication with the compression chamber 73b, so the influence of refrigerant leakage from the compression chamber 73b is minor.
 したがって、揺動スクロール12が揺動しているときに吸入孔31と吸入室73aとを間欠的に連通させる吸入流路32を揺動台板12aに形成する。そうすることで、吸入孔31が揺動台板12aによって閉塞されるタイミングであっても、吸入孔31から吸入流路32を経由して吸入室73aに冷媒を吸入することができる。 Therefore, a suction passage 32 is formed in the swing base plate 12a to intermittently communicate the suction hole 31 and the suction chamber 73a while the swing scroll 12 is swinging. By doing so, the refrigerant can be sucked into the suction chamber 73a from the suction hole 31 through the suction flow path 32 even at the timing when the suction hole 31 is blocked by the rocking plate 12a.
 図7は、実施の形態1に係るスクロール圧縮機1の第1変形例による圧縮機構1aの吸入孔31、吸入流路32、固定渦巻部11b、および揺動渦巻部12bの位置関係を説明する平面図である。図8は、実施の形態1に係るスクロール圧縮機1の第2変形例による圧縮機構1aの吸入孔31、吸入流路32、固定渦巻部11b、および揺動渦巻部12bの位置関係を説明する平面図である。 FIG. 7 illustrates the positional relationship between the suction hole 31, the suction flow path 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a according to the first modification of the scroll compressor 1 according to the first embodiment. It is a top view. FIG. 8 illustrates the positional relationship between the suction hole 31, the suction flow path 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a according to the second modification of the scroll compressor 1 according to the first embodiment. It is a top view.
 なお、上記では、内向面吸入室73a1について説明したが、固定スクロール11の固定渦巻部11bの外向面と揺動スクロール12の揺動渦巻部12bの内向面とで形成される外向面吸入室73a2についても言及する。図7に示すように、揺動台板12aに形成する吸入流路32を、固定渦巻部11bの歯を跨がない大きさの貫通孔にすることで、内向面吸入室73a1について説明した際の効果と同様の効果を得ることができる。つまり、吸入孔31が揺動台板12aによって閉塞されるタイミングであっても、吸入孔31から吸入流路32を経由して吸入室73aに冷媒を吸入することができる。しかしながら、外向面吸入室73a2の場合では、内向面吸入室73a1の場合と比較して、吸入流路32を固定渦巻部11bの歯を跨がない大きさの貫通孔にする必要があるため、吸入流路32の面積は小さくなる。したがって、その分を補うために、揺動台板12aにおいて、固定渦巻部11bとの摺動部とならない部分を取り除き、その取り除いた部分を第2吸入空間72とすることが考えられる。ここで、固定渦巻部11bの歯を跨がない大きさの貫通孔にする必要があるのは、固定渦巻部11bの歯を跨ぐような大きさの場合、外向面吸入室73a2と圧縮室73bとが連通するような位置関係になる位相が発生し、体積効率の低下もしくは漏れによりそもそも圧縮ができない可能性があるためである。なお、図7に示すような外向面吸入室73a2と圧縮室73bとの位置関係では、貫通孔が大きいと、外向面吸入室73a2が圧縮開始に近いタイミングで外向面吸入室73a2と圧縮室73bとの連通が発生する。 Although the inward surface suction chamber 73a1 has been described above, the outward surface suction chamber 73a2 is formed by the outward surface of the fixed spiral portion 11b of the fixed scroll 11 and the inward surface of the orbiting spiral portion 12b of the orbiting scroll 12. also mention. As shown in FIG. 7, the suction passage 32 formed in the rocking base plate 12a is a through hole of a size that does not straddle the teeth of the fixed spiral portion 11b. It is possible to obtain the same effect as the effect of That is, even at the timing when the suction hole 31 is blocked by the rocking plate 12a, the refrigerant can be sucked into the suction chamber 73a from the suction hole 31 through the suction flow path 32. FIG. However, in the case of the outward surface suction chamber 73a2, compared with the case of the inward surface suction chamber 73a1, the suction passage 32 needs to be a through hole of a size that does not straddle the teeth of the fixed spiral portion 11b. The area of the intake channel 32 is reduced. Therefore, in order to compensate for this, it is conceivable to remove a portion of the rocking plate 12a that does not form a sliding portion with the fixed spiral portion 11b, and use the removed portion as the second suction space 72. FIG. Here, the reason why the through hole needs to be of a size that does not straddle the teeth of the fixed spiral portion 11b is that if the through hole has a size that straddles the teeth of the fixed spiral portion 11b, the outward surface suction chamber 73a2 and the compression chamber 73b This is because there is a possibility that a phase that becomes a positional relationship in which the two are in communication with each other and compression cannot be performed in the first place due to a decrease in volumetric efficiency or leakage. In addition, in the positional relationship between the outward surface suction chamber 73a2 and the compression chamber 73b as shown in FIG. 7, if the through hole is large, the outward surface suction chamber 73a2 and the compression chamber 73b are closed at a timing close to the start of compression of the outward surface suction chamber 73a2. communication occurs.
 また、実施の形態1では、図6に示すように揺動台板12aに形成した吸入流路32を、開口形状が楕円状かつ1つの貫通孔としたが、それに限定されず、想定する効果が得られるのであれば、吸入流路32の開口形状および貫通孔の個数は問わない。また、図8に示すように、吸入流路32を、揺動台板12aの外周部の一部を切り欠くこと、つまり切り欠きによって形成してもよい。また、実施の形態1に係るスクロール圧縮機1は、図1に示すように、固定スクロール11とフレーム17とを締結するために存在したフレーム17の外壁部を取り除いた、いわゆるフレーム外壁レス構造であるが、吸入孔31が揺動台板12aの底面に向かって開口するのであれば、フレーム17の外壁によって固定スクロール11を固定する構造の圧縮機であってもよい。 Further, in Embodiment 1, as shown in FIG. 6, the suction flow path 32 formed in the rocking base plate 12a has an elliptical opening shape and a single through hole. can be obtained, the shape of the opening of the suction flow path 32 and the number of through-holes are not limited. Further, as shown in FIG. 8, the suction flow path 32 may be formed by notching part of the outer peripheral portion of the rocking plate 12a, that is, by notching. Further, as shown in FIG. 1, the scroll compressor 1 according to Embodiment 1 has a so-called frame-outer-wall-less structure in which the outer wall portion of the frame 17 that was present for fastening the fixed scroll 11 and the frame 17 is removed. However, the compressor may have a structure in which the fixed scroll 11 is fixed by the outer wall of the frame 17 as long as the suction hole 31 opens toward the bottom surface of the rocking plate 12a.
 また、実施の形態1では、図6に示すように吸入孔31の個数を1つとしたが、それに限定されず、吸入孔31の個数、並びに開口形状および配置は問わない。また、実施の形態1では、圧縮機構1aは、固定渦巻部11bおよび揺動渦巻部12bの巻き終わりの位相が異なる非対称渦巻形状を有しているとしたが、それに限定されない。圧縮機構1aは、固定渦巻部11bおよび揺動渦巻部12bの巻き終わりの位相が同じである対称渦巻形状を有していてもよい。また、実施の形態1では、揺動台板12aの底面とフレーム17の上面とが摺動する構成としたが、それに限定されない。揺動台板12aとフレーム17との間に、吸入孔31に対向する箇所が開口したスラストプレート(図示せず)を挿入し、自転防止機構を施した上で、スラストプレートを介して揺動台板12aの底面とフレーム17の上面とが摺動する構成としてもよい。 Also, in Embodiment 1, the number of suction holes 31 is one as shown in FIG. Further, in Embodiment 1, the compression mechanism 1a has an asymmetric spiral shape in which the fixed spiral portion 11b and the oscillating spiral portion 12b end in different winding phases, but the compression mechanism 1a is not limited to this. The compression mechanism 1a may have a symmetrical spiral shape in which the winding ends of the fixed spiral portion 11b and the swinging spiral portion 12b are in the same phase. Further, in Embodiment 1, the bottom surface of the rocking plate 12a and the top surface of the frame 17 are configured to slide, but the configuration is not limited to this. A thrust plate (not shown) having an opening facing the suction hole 31 is inserted between the rocking base plate 12a and the frame 17, and after applying an anti-rotation mechanism, rocking is performed via the thrust plate. The bottom surface of the base plate 12a and the top surface of the frame 17 may slide.
 以上、実施の形態1に係るスクロール圧縮機1は、外郭を構成する密閉容器90と、冷媒を密閉容器90の内部の第1吸入空間71に流入させる吸入管1fと、密閉容器90内に設けられ、固定台板11aと該固定台板11aの一面に設けられた渦巻状突起である固定渦巻部11bとを有する固定スクロール11と、揺動台板12aと該揺動台板12aの一面に設けられた渦巻状突起である揺動渦巻部12bとを有する揺動スクロール12と、を有し、固定渦巻部11bと揺動渦巻部12bとが噛み合うことにより、冷媒を圧縮する圧縮室73bと、第1吸入空間71に流入した冷媒を圧縮室73bへ導く吸入室73aと、が形成される圧縮機構1aと、密閉容器90の内周壁に固定され、固定スクロール11を固定配置するフレーム17と、を備えている。そして、フレーム17には、密閉容器90の内周壁と固定渦巻部11bおよび揺動渦巻部12bの外周部とで囲まれた第2吸入空間72と、第1吸入空間71とを連通させる吸入孔31が形成されており、揺動台板12aには、揺動スクロール12が揺動しているときに吸入孔31と吸入室73aとを間欠的に連通させる吸入流路32が形成されているものである。 As described above, the scroll compressor 1 according to the first embodiment includes the sealed container 90 forming the outer shell, the suction pipe 1f for flowing the refrigerant into the first suction space 71 inside the sealed container 90, and the a fixed scroll 11 having a fixed base plate 11a and a fixed spiral portion 11b which is a spiral projection provided on one surface of the fixed base plate 11a; a compression chamber 73b that compresses the refrigerant by meshing the fixed spiral portion 11b and the swinging spiral portion 12b; , a suction chamber 73a that guides the refrigerant flowing into the first suction space 71 to the compression chamber 73b; and a frame 17 that is fixed to the inner peripheral wall of the sealed container 90 and has the fixed scroll 11 fixedly arranged therein. , is equipped with In the frame 17, a second suction space 72 surrounded by the inner peripheral wall of the sealed container 90 and the outer peripheral portions of the fixed spiral portion 11b and the swinging spiral portion 12b and a suction hole that communicates the first suction space 71 with each other. 31 is formed in the rocking bed plate 12a, and a suction passage 32 is formed in the rocking bed plate 12a to intermittently communicate the suction hole 31 and the suction chamber 73a when the rocking scroll 12 is rocking. It is.
 実施の形態1に係るスクロール圧縮機1によれば、フレーム17には、第2吸入空間72と第1吸入空間71とを連通させる吸入孔31が形成されており、揺動台板12aには、揺動スクロール12が揺動しているときに吸入孔31と吸入室73aとを間欠的に連通させる吸入流路32が形成されている。このため、渦巻部を径方向に拡大し、揺動台板12aが吸入孔31を閉塞するような構成にしても、吸入流路32によって吸入孔31と吸入室73aとを間欠的に連通させることができる。その結果、吸入圧力損失を抑えた上で吸入室73aに冷媒を取り込むことができ、冷媒吸入効率の低下を抑制することができる。換言すると、吸入圧力損失を抑えながら渦巻部を径方向に拡大し、圧縮機能力を向上させることができる。また、渦巻部の径をそのままにして、密閉容器90の径を小さくすることで、圧縮機能力を下げることなく圧縮機を小型化することも可能となる。 According to the scroll compressor 1 according to Embodiment 1, the frame 17 is formed with the suction hole 31 that allows the second suction space 72 and the first suction space 71 to communicate with each other. A suction passage 32 is formed to intermittently communicate the suction hole 31 and the suction chamber 73a while the orbiting scroll 12 is swinging. Therefore, even if the spiral portion is expanded in the radial direction and the rocking plate 12a closes the suction hole 31, the suction passage 32 intermittently communicates the suction hole 31 and the suction chamber 73a. be able to. As a result, the refrigerant can be taken into the suction chamber 73a while suppressing the suction pressure loss, and the deterioration of the refrigerant suction efficiency can be suppressed. In other words, it is possible to expand the spiral portion in the radial direction while suppressing the suction pressure loss, thereby improving the compression function force. Further, by reducing the diameter of the sealed container 90 while keeping the diameter of the spiral portion as it is, it is possible to reduce the size of the compressor without lowering the compression function.
 また、実施の形態1に係るスクロール圧縮機1において、吸入流路32は、揺動台板12aに形成された貫通孔あるいは切り欠きである。 Further, in the scroll compressor 1 according to Embodiment 1, the suction passage 32 is a through hole or a notch formed in the rocking bed plate 12a.
 実施の形態1に係るスクロール圧縮機1によれば、単純な構造で上記と同様の効果を得ることができる。 According to the scroll compressor 1 according to Embodiment 1, the same effects as described above can be obtained with a simple structure.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
 図9は、実施の形態2に係るスクロール圧縮機1の圧縮機構1aの吸入孔31、吸入流路32、固定渦巻部11b、および揺動渦巻部12bの位置関係を説明する平面図である。図10は、実施の形態2に係るスクロール圧縮機1の吸入孔31、吸入流路32、固定渦巻部11b、および揺動渦巻部12bの位置関係を説明する断面図である。なお、図10中の矢印は冷媒の流れを示している。 FIG. 9 is a plan view for explaining the positional relationship between the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the compression mechanism 1a of the scroll compressor 1 according to Embodiment 2. FIG. FIG. 10 is a cross-sectional view for explaining the positional relationship among the suction hole 31, the suction passage 32, the fixed spiral portion 11b, and the swinging spiral portion 12b of the scroll compressor 1 according to Embodiment 2. FIG. Note that the arrows in FIG. 10 indicate the flow of the coolant.
 実施の形態2では、実施の形態1と同様に、揺動スクロール12が揺動しているときに吸入孔31と吸入室73aとを間欠的に連通させる吸入流路32を揺動台板12aに形成するとともに、図9および図10に示すように、揺動台板12aの背面、つまり上下方向の下側の面、すなわち固定スクロール11と対向する面の反対側の面の外周部の全周に、周方向に沿って内側に凹んだ補助吸入流路33を形成することを特徴とする。ここで、揺動台板12aの背面は、図9の紙面直交方向の裏側であり、図10の下側である。これにより、吸入流路32は、軸方向で吸入孔31に連通していなくても、補助吸入流路33を介することで常に吸入孔31と連通することが可能となる。具体的には、図9に示されるように軸方向に見て、周方向における吸入流路32の位置と吸入孔31の位置とが重複しない場合でも、補助吸入流路33を介することで常に吸入孔31と吸入流路32とが連通する。したがって、吸入流路32と補助吸入流路33とを組み合わせることで、吸入孔31の周方向の配置にかかわらず、吸入圧力損失を抑えながら渦巻部を径方向に拡大することができる。 In the second embodiment, as in the first embodiment, the suction flow path 32 for intermittently communicating the suction hole 31 and the suction chamber 73a while the orbiting scroll 12 is swinging is provided by the swing bed plate 12a. As shown in FIGS. 9 and 10, the back surface of the rocking plate 12a, that is, the lower surface in the vertical direction, that is, the surface opposite to the surface facing the fixed scroll 11 has an entire outer peripheral portion. It is characterized by forming an auxiliary suction flow path 33 recessed inward along the circumferential direction. Here, the back surface of the rocking base plate 12a is the back surface of FIG. As a result, even if the suction flow path 32 does not communicate with the suction hole 31 in the axial direction, it can always communicate with the suction hole 31 via the auxiliary suction flow path 33 . Specifically, as shown in FIG. 9, even when the positions of the suction passages 32 and the positions of the suction holes 31 in the circumferential direction do not overlap when viewed in the axial direction, the auxiliary suction passages 33 can always be used. The suction hole 31 and the suction channel 32 communicate with each other. Therefore, by combining the suction flow path 32 and the auxiliary suction flow path 33, it is possible to expand the spiral portion in the radial direction while suppressing the suction pressure loss regardless of the circumferential arrangement of the suction holes 31. FIG.
 なお、実施の形態2では、補助吸入流路33を揺動台板12aの背面の外周部の全周に形成したが、それに限定されない。想定する効果が得られるのであれば、揺動台板12aの背面の外周部の全周ではなく一部にのみ、周方向に沿って内側に凹んだ補助吸入流路33を形成してもよい。また、補助吸入流路33の形状も上記に限定されず、想定する効果が得られれば他の形状でもよい。 It should be noted that in the second embodiment, the auxiliary suction flow path 33 is formed along the entire circumference of the back surface of the rocking plate 12a, but the present invention is not limited to this. As long as the expected effect can be obtained, the auxiliary suction flow path 33 recessed inward along the circumferential direction may be formed only on a part of the outer periphery of the back surface of the rocking plate 12a instead of on the entire periphery. . Further, the shape of the auxiliary suction flow path 33 is not limited to the above, and other shapes may be used as long as the expected effect can be obtained.
 以上、実施の形態2に係るスクロール圧縮機1において、揺動台板12aの背面の外周部の少なくとも一部が周方向に沿って内側に凹んだ補助吸入流路33が形成されており、補助吸入流路33は、吸入孔31および吸入流路32と連通している。 As described above, in the scroll compressor 1 according to Embodiment 2, at least a part of the outer peripheral portion of the back surface of the rocking bed plate 12a is formed with the auxiliary suction passage 33 recessed inward along the circumferential direction. The suction channel 33 communicates with the suction hole 31 and the suction channel 32 .
 実施の形態2に係るスクロール圧縮機1によれば、吸入流路32は、揺動台板12aの背面の外周部の少なくとも一部に形成された補助吸入流路33を介することで、軸方向で吸入孔31に連通していなくても常に吸入孔31と連通することが可能となる。したがって、吸入流路32と補助吸入流路33とを組み合わせることで、吸入孔31の周方向の配置にかかわらず、吸入圧力損失を抑えながら渦巻部を径方向に拡大することができる。 According to the scroll compressor 1 according to Embodiment 2, the suction flow path 32 is axially axially moved through the auxiliary suction flow path 33 formed in at least a part of the outer peripheral portion of the back surface of the rocking plate 12a. , it is possible to always communicate with the suction hole 31 even if it is not in communication with the suction hole 31 . Therefore, by combining the suction flow path 32 and the auxiliary suction flow path 33, it is possible to expand the spiral portion in the radial direction while suppressing the suction pressure loss regardless of the circumferential arrangement of the suction holes 31. FIG.
 1 スクロール圧縮機、1a 圧縮機構、1b 回転軸、1ba 偏心軸部、1bb 主軸部、1bc 副軸部、1c 電動固定子、1d 電動回転子、1e ポンプ要素、1f 吸入管、1g 吐出管、11 固定スクロール、11a 固定台板、11b 固定渦巻部、12 揺動スクロール、12a 揺動台板、12b 揺動渦巻部、12c 揺動軸受、12d ボス部、13 オルダムリング、15 スライダー、17 フレーム、17a 主軸受、17b ボス部、19 サブフレーム、19a サブフレームホルダ、20 副軸受、21 スリーブ、22 吐出ポート、23 吐出弁、31 吸入孔、32 吸入流路、33 補助吸入流路、60 第1バランスウェイト、61 第2バランスウェイト、71 第1吸入空間、72 第2吸入空間、73a 吸入室、73a1 内向面吸入室、73a2 外向面吸入室、73b 圧縮室、73c 最内室、74 吐出空間、80 油溜部、90 密閉容器、91 密閉容器上部、92 密閉容器下部、100a 固定渦巻基礎円中心、100b 揺動渦巻基礎円中心、101a 固定渦巻内向面終点、101b 揺動渦巻内向面終点、102a 内向面吸入室吸入口、102b 外向面吸入室吸入口。 1 scroll compressor, 1a compression mechanism, 1b rotary shaft, 1ba eccentric shaft portion, 1bb main shaft portion, 1bc sub shaft portion, 1c electric stator, 1d electric rotor, 1e pump element, 1f suction pipe, 1g discharge pipe, 11 Fixed scroll 11a Fixed bed plate 11b Fixed spiral part 12 Oscillating scroll 12a Oscillating bed plate 12b Oscillating spiral part 12c Oscillating bearing 12d Boss part 13 Oldham ring 15 Slider 17 Frame 17a Main bearing, 17b boss, 19 subframe, 19a subframe holder, 20 sub bearing, 21 sleeve, 22 discharge port, 23 discharge valve, 31 suction hole, 32 suction flow path, 33 auxiliary suction flow path, 60 first balance weight, 61 second balance weight, 71 first suction space, 72 second suction space, 73a suction chamber, 73a1 inward suction chamber, 73a2 outward suction chamber, 73b compression chamber, 73c innermost chamber, 74 discharge space, 80 Oil reservoir, 90 Closed container, 91 Upper closed container, 92 Lower closed container, 100a Fixed spiral base circle center, 100b Oscillating spiral basic circle center, 101a Fixed spiral inward surface end point, 101b Oscillating spiral inward surface end point, 102a Inward Surface suction chamber suction port, 102b Outward surface suction chamber suction port.

Claims (3)

  1.  外郭を構成する密閉容器と、
     冷媒を前記密閉容器の内部の第1吸入空間に流入させる吸入管と、
     前記密閉容器内に設けられ、固定台板と該固定台板の一面に設けられた渦巻状突起である固定渦巻部とを有する固定スクロールと、揺動台板と該揺動台板の一面に設けられた渦巻状突起である揺動渦巻部とを有する揺動スクロールと、を有し、前記固定渦巻部と前記揺動渦巻部とが噛み合うことにより、冷媒を圧縮する圧縮室と、前記第1吸入空間に流入した冷媒を前記圧縮室へ導く吸入室と、が形成される圧縮機構と、
     前記密閉容器の内周壁に固定され、前記固定スクロールを固定配置するフレームと、を備え、
     前記フレームには、前記密閉容器の前記内周壁と前記固定渦巻部および前記揺動渦巻部の外周部とで囲まれた第2吸入空間と、前記第1吸入空間とを連通させる吸入孔が形成されており、
     前記揺動台板には、前記揺動スクロールが揺動しているときに前記吸入孔と前記吸入室とを間欠的に連通させる吸入流路が形成されている
     スクロール圧縮機。
    a closed container forming an outer shell;
    a suction pipe for flowing refrigerant into a first suction space inside the closed container;
    a fixed scroll provided in the airtight container and having a fixed base plate and a fixed spiral portion which is a spiral-shaped projection provided on one surface of the fixed base plate; an orbiting scroll having an orbiting spiral portion that is a spiral projection provided; the fixed spiral portion and the orbiting spiral portion are meshed to compress the refrigerant; 1 a compression mechanism formed with a suction chamber that guides the refrigerant that has flowed into the suction space to the compression chamber;
    a frame that is fixed to the inner peripheral wall of the closed container and that fixedly arranges the fixed scroll;
    The frame is formed with a suction hole that communicates a second suction space surrounded by the inner peripheral wall of the sealed container and the outer peripheral portions of the fixed spiral portion and the swinging spiral portion with the first suction space. has been
    A scroll compressor, wherein the oscillating base plate is formed with a suction passage that intermittently communicates the suction hole and the suction chamber when the oscillating scroll is oscillating.
  2.  前記揺動台板の背面の外周部の少なくとも一部が周方向に沿って内側に凹んだ補助吸入流路が形成されており、
     前記補助吸入流路は、
     前記吸入孔および前記吸入流路と連通している
     請求項1に記載のスクロール圧縮機。
    At least a part of the outer peripheral portion of the back surface of the rocking base plate is formed with an auxiliary suction flow path recessed inward along the circumferential direction,
    The auxiliary intake channel is
    The scroll compressor according to claim 1, wherein the suction hole and the suction flow path are in communication.
  3.  前記吸入流路は、
     前記揺動台板に形成された貫通孔あるいは切り欠きである
     請求項1または2に記載のスクロール圧縮機。
    The suction channel is
    The scroll compressor according to claim 1 or 2, which is a through hole or a notch formed in the rocking bed plate.
PCT/JP2022/007459 2022-02-24 2022-02-24 Scroll compressor WO2023162058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007459 WO2023162058A1 (en) 2022-02-24 2022-02-24 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007459 WO2023162058A1 (en) 2022-02-24 2022-02-24 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2023162058A1 true WO2023162058A1 (en) 2023-08-31

Family

ID=87765229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007459 WO2023162058A1 (en) 2022-02-24 2022-02-24 Scroll compressor

Country Status (1)

Country Link
WO (1) WO2023162058A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166782A (en) * 1985-01-25 1985-08-30 Hitachi Ltd Scroll type fluid machinery
JPH0476288A (en) * 1990-07-19 1992-03-11 Sanyo Electric Co Ltd Scroll compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166782A (en) * 1985-01-25 1985-08-30 Hitachi Ltd Scroll type fluid machinery
JPH0476288A (en) * 1990-07-19 1992-03-11 Sanyo Electric Co Ltd Scroll compressor

Similar Documents

Publication Publication Date Title
JP2007154761A (en) Scroll compressor
KR20110015863A (en) Compressor
JP5455763B2 (en) Scroll compressor, refrigeration cycle equipment
JP7343774B2 (en) scroll compressor
WO2023162058A1 (en) Scroll compressor
JP6615425B1 (en) Scroll compressor
JP6739660B1 (en) Scroll compressor
WO2022172356A1 (en) Scroll compressor
US11441562B2 (en) Scroll compressor having noise reduction structure
JP2018009537A (en) Scroll compressor and refrigeration cycle device
JP7241925B2 (en) scroll compressor
JP5494139B2 (en) Rotary compressor
JP4407253B2 (en) Scroll compressor
US11668302B2 (en) Scroll compressor having oil supply passages in fluid communication with compression chambers
JPH02227583A (en) Scroll compressor
JP7138807B2 (en) scroll compressor
JP2003269335A (en) Rotary compressor
JP6701453B1 (en) Scroll compressor
US11603840B2 (en) Scroll compressor having compression chamber oil supplies having stages in which oil supply overlaps and stages in which oil supply does not overlap
JP7154421B2 (en) scroll compressor
KR102548470B1 (en) Compressor having oldham's ring
WO2022244238A1 (en) Scroll compressor
US11067078B2 (en) Scroll compressor having single discharge port open at starting end of fixed-side wrap
JP6972391B2 (en) Scroll compressor
JP2018044492A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024502307

Country of ref document: JP

Kind code of ref document: A