WO2023160607A1 - 太阳能电池片、电池串及二者的制备方法 - Google Patents

太阳能电池片、电池串及二者的制备方法 Download PDF

Info

Publication number
WO2023160607A1
WO2023160607A1 PCT/CN2023/077854 CN2023077854W WO2023160607A1 WO 2023160607 A1 WO2023160607 A1 WO 2023160607A1 CN 2023077854 W CN2023077854 W CN 2023077854W WO 2023160607 A1 WO2023160607 A1 WO 2023160607A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid line
grid
solar cell
structures
gate
Prior art date
Application number
PCT/CN2023/077854
Other languages
English (en)
French (fr)
Inventor
陈红
李汉诚
冯志强
Original Assignee
天合光能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天合光能股份有限公司 filed Critical 天合光能股份有限公司
Priority to EP23759231.6A priority Critical patent/EP4328981A1/en
Publication of WO2023160607A1 publication Critical patent/WO2023160607A1/zh
Priority to US18/604,571 priority patent/US20240222533A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention mainly relates to the field of solar cells, in particular to a solar cell sheet, a cell string and a preparation method for the two.
  • the existing grid structure of solar cells is usually designed as a grid line containing silver for the main grid, and a grid line containing aluminum for the fine grid in some cases (for example, the thin grid on the back of a P-type perc cell contains aluminum).
  • the mainstream printing method is to print the main grid lines first, and then print the fine grid lines, so that the main grid lines and the fine grid lines form an overlap.
  • a silver-tin alloy is formed at the welding point between the main grid line and the solder strip (or other connection structures between battery sheets), so as to achieve the effect of connection and conduction.
  • the current flows to the main grid through the fine grid, and then flows out through the welding strip.
  • This non-linear current conduction method will cause a large resistance loss, thereby reducing the component power.
  • due to process limitations there is also a large height difference between the main grid and the fine grid, and the height of the fine grid is obviously higher than that of the main grid, which leads to easy occurrence of empty welding between the ribbon and the main grid, resulting in poor welding.
  • the direct contact between the busbar and the reaction layer in the existing solar cell will cause damage to the reaction layer, resulting in a decrease in efficiency.
  • the technical problem to be solved by the present invention is to provide a solar cell, a battery string and a preparation method for the two, which can reduce the contact between the main grid and the reaction layer, and enhance the connection between the main grid and the connection structure between the battery sheets, thereby improving efficiency as well as the stability and reliability of solar cells.
  • the present invention provides a solar cell sheet, any surface of the solar cell sheet includes: a plurality of first grid line structures; a plurality of second grid line structures located on the plurality of first grid line structures above the structure, and at least a partial area of the at least one second grid line structure is not in contact with the reaction layer of the solar battery sheet; wherein, the plurality of second grid line structures are suitable for contacting the connecting structures between the plurality of battery sheets.
  • the multiple second gate line structures include multiple and/or multiple arc structures.
  • the multiple second gate line structures include multiple and/or multiple straight lines type structure.
  • the first gate line structure also includes a linear structure, wherein the plurality of first gate line structures include a plurality of first gate line structures extending along the first direction and arranged along the second direction.
  • a gate line; a plurality of second gate lines The structure includes a plurality of second gate lines extending along the first direction and arranged along the second direction and/or extending along the second direction and arranged along the first direction, a plurality of The second grid lines are located on at least a part of the plurality of first grid lines; and the connection structure is a solder strip or solder glue, and the solder ribbon or solder glue is in contact with the plurality of second grid lines.
  • the plurality of second gate lines only extend along the first direction and are arranged along the second direction
  • the first gate line structure further includes A plurality of third grid lines arranged in one direction, and a plurality of second grid lines straddle the plurality of third grid lines, wherein the material of the third grid lines is the same as that of the first grid lines.
  • the second gate line structure further includes a plurality of fourth gate lines extending along the second direction and arranged along the first direction, and the plurality of fourth gate lines are located on at least part of the Above the third grid lines, multiple second grid lines straddle multiple third grid lines and multiple fourth grid lines, wherein the material of the fourth grid lines is the same as that of the second grid lines.
  • the plurality of second grid lines in the solar battery sheet only extend along the second direction and are arranged along the first direction
  • the first grid line structure also includes Furthermore, the plurality of third grid lines arranged along the first direction and the plurality of second grid lines are located on at least part of the third grid lines, wherein the material of the third grid lines is the same as that of the first grid lines.
  • the plurality of second grid lines are located on at least a part of the plurality of first grid lines in such a way that the second grid lines half surround or fully surround the first grid lines.
  • connection layer is further included, and the connection layer is located between the first gate line structure and the second gate line structure.
  • the tie layer is composed of at least one of inorganic substances, organic substances and metals.
  • components infiltrate the contact surfaces of the first grid line structure and the second grid line structure to form an interface layer, and the interface layer includes part of the first grid line structure.
  • a gridline structure and part of the second gridline structure are provided.
  • the first grid line structure included in the interface layer accounts for 1%-99% of the first grid line structure before the component permeates, and the interface Said second gridline structure is contained in a layer from 1% to 99% of said second gridline structure before penetration of said composition occurs.
  • the present invention also provides a method for preparing a solar cell, which is suitable for preparing a solar cell, and is characterized in that it includes the following steps: printing a plurality of first grid lines on any surface of a solar cell; a plurality of second grid line structures, the plurality of second grid line structures are located on the plurality of first grid line structures, and at least a partial area of at least one second grid line structure is not in contact with the reaction layer of the solar cell; wherein, the plurality of second grid line structures A second grid line structure is adapted to be in contact with the connecting structure between the plurality of battery sheets.
  • the present invention also provides a solar cell string, comprising the solar cell sheet described in any one of the above embodiments, wherein the connection structure sequentially connects two adjacent solar cell sheets to form a solar cell string.
  • the present invention also provides a method for preparing a solar battery string, which is characterized in that it includes the following steps: providing a plurality of battery sheets, each battery sheet includes a positive electrode surface and a negative electrode surface, and the positive electrode surface and/or the negative electrode surface has a plurality of The first grid line structure and the plurality of second grid line structures, the plurality of second grid line structures are located on the plurality of first grid line structures, and at least part of the at least one second grid line structure is not in contact with the solar cells. contacting the reaction layer; and sequentially connecting the positive electrode surface and the negative electrode surface of each battery sheet with multiple connection structures to connect the multiple battery sheets in series, wherein the connection structure is in contact with the second grid line structure on the positive electrode surface and/or the negative electrode surface.
  • the solar cells and battery strings of the present invention print the main grid on the fine grid, and then directly weld the main grid and the welding ribbon, avoiding the empty welding caused by the insufficient height of the main grid.
  • the scheme of the present invention effectively reduces the contact between the main grid and the reaction layer, strengthens the connection between the main grid and the welding strip, improves the current efficiency of the battery sheet, and prolongs the service life of the solar battery sheet.
  • FIG. 1A is a schematic view of a solar cell in the prior art, viewed from the front;
  • Figure 1B is a cross-sectional view of the front side of the solar cell shown in Figure 1A;
  • Fig. 1C is a schematic diagram of a back view of a solar cell in the prior art
  • Fig. 1D is a cross-sectional view of the back side of the solar cell shown in Fig. 1C;
  • Fig. 2A is a schematic diagram of a solar battery sheet top view according to Embodiment 1 of the present invention.
  • Figure 2B is a cross-sectional view of the solar cell shown in Figure 2A;
  • Fig. 3A is a schematic diagram of a solar battery sheet top view according to Embodiment 2 of the present invention.
  • Figure 3B is a cross-sectional view of the solar cell shown in Figure 3A;
  • Fig. 4A is a schematic diagram of a solar battery sheet top view according to Embodiment 3 of the present invention.
  • Figure 4B is a cross-sectional view of the solar cell shown in Figure 4A;
  • Fig. 5 is a schematic diagram of a solar cell according to Embodiment 4 of the present invention, viewed from the front;
  • Fig. 6 is a cross-sectional view of a solar battery sheet according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic flow chart of a method for preparing a solar cell according to an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a method for preparing a solar cell string according to an embodiment of the present invention.
  • 9a to 9c are cross-sectional views of a solar battery sheet with a tie layer or an interface layer according to an embodiment of the present invention.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description. In the absence of a contrary statement, these orientation words do not indicate or imply the device or element referred to It must have a specific orientation or be constructed and operated in a specific orientation, so it should not be construed as limiting the protection scope of the present application; the orientation words “inner and outer” refer to the inner and outer relative to the outline of each component itself.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
  • the flow chart is used in this application to illustrate the operations performed by the system according to the embodiment of this application. It should be understood that the preceding or following operations are not necessarily performed in an exact order. Instead, various steps may be processed in reverse order or concurrently. At the same time, other operations are either added to these procedures, or a certain step or steps are removed from these procedures.
  • FIG. 1A is a schematic top view of a solar cell 100 in the prior art
  • FIG. 1B is a cross-sectional view of the front part of the solar cell 100 shown in FIG. 1A
  • FIG. 1C is a schematic plan view of the back of the solar cell 100
  • FIG. 1D is a cross-sectional view of the back of the solar cell 100 shown in FIG. 1C.
  • the front grid lines of the solar cell 100 are arranged in such a way that the busbar 11 containing silver is directly printed on the reaction layer 20 covering the surface of the silicon wafer 10 , and then the The connection structure 40 (such as a ribbon) is welded on the bus bar 11 .
  • the structural arrangement as shown in Figure 1A to Figure 1D is convenient for printing, the result is that the main grid 11 is in direct contact with the reaction layer 20 (as shown in the area circled by a dotted line in Figure 1B), which will damage the reaction layer 20 and lead to battery efficiency. Decline.
  • FIG. 1B it can be seen particularly from FIG.
  • the height of the main grid 11 is smaller than the fine grid 12, and it is difficult to connect the connection structure 40 to the main grid 11, and the phenomenon of empty welding is prone to occur. This also affects the efficiency of the battery. It can be seen that there are some defects in the structure in which the fine grid is located above the main grid in the existing solar cell.
  • reaction layer 20 shown in FIGS. 1A to 1D and proposed below in conjunction with various embodiments of the present invention can serve as a PN junction, conduction, passivation, reflection reduction and/or Any layer or layers in the cell or on the surface of the cell for protection, electron generation, conduction, etc.
  • the present invention proposes a solar cell sheet, any surface of the solar cell sheet includes a plurality of first grid line structures and a plurality of second grid line structures located on the plurality of first grid line structures, and at least one second grid line structure At least a partial area of the grid line structure is not in contact with the reaction layer of the solar cells; wherein, the plurality of second grid line structures are suitable for contacting the connection structures between the plurality of battery cells.
  • Such a structure can effectively reduce the contact between the main grid and the reaction layer, and enhance the connection between the main grid and the solder ribbon, thereby improving the efficiency and the stability and reliability of the solar cell.
  • a solar cell may have two opposing surfaces, or may only have a single side (eg back junction cell IBC). If the solar cell has two opposite surfaces, any one of the two surfaces may include a first gridline structure and a second gridline structure which will be described in detail below. However, if the solar cell has only one side, on which both positive and negative electrodes of the battery are located, in such an embodiment, both the first grid line structure and the second grid line structure are on the single side. On the other hand, the present invention does not limit the shapes of the first grid line structure and the second grid line structure.
  • the multiple second gate line structures include multiple and/or multiple arc structures.
  • the plurality of second gate line structures includes a plurality of lines and/or a plurality of segments of linear structures.
  • the second gridline structure on the solar battery sheet provided by the present invention may only consist of multiple and/or multi-segment arc-shaped structures, or may only consist of multiple and/or multi-segment linear structures, or may simultaneously include multiple and/or multi-segment arc-shaped structures and multiple and/or multi-segment linear structures, the specific combinations thereof are not specifically limited in this application.
  • FIG. 2A is a schematic diagram of grid line arrangement of a solar cell 200 according to Embodiment 1 of the present invention
  • FIG. 2B is a cross-sectional view of the solar cell 200 shown in FIG. 2A .
  • the first grid line structure 31 and the second grid line structure 32 are linear structures, and in this embodiment, refer to the coordinate axis shown in FIG. 2A to set the X axis
  • the direction is the first direction
  • the Y-axis direction is the second direction.
  • the first direction X and the second direction Y above merely show the relative positions of the arrangement of the first grid lines 31 and the second grid lines 32 , but do not mean that the two must intersect at right angles.
  • any surface of the solar cell 200 for example, for a double-sided battery, this any surface can be its front or back; or for a single-sided battery, as shown in Figures 2A and 2B Shown is this single side.
  • any surface of the solar cell 200 includes: a plurality of first grid lines 31 extending along the first direction X and arranged along the second direction Y; a plurality of second grid lines 32 arranged in the direction Y, and the plurality of second grid lines 32 are located on the plurality of first grid lines 31; A grid line 31 is in contact with a plurality of second grid lines 32 (specifically, it may be welded to the second grid line structure 32 ).
  • the composition of the second gate line 32 includes silver (which can be compared to the busbar in the traditional manufacturing method).
  • the first gate line 31 it can be compared to the traditional manufacturing method
  • the first grid line may contain silver, such as the thin grid line on the back of the P-type perc battery. It can be understood that, although such an example is given, no specific limitation is made on the materials of the first grid line and the second grid line in the present invention. It can be seen from FIG.
  • connection structure 40 (such as Ribbon) connection.
  • the first grid lines 31 thin grid
  • the second grid line 32 main grid
  • each first gate line 31 has a second gate line 32 , but the present invention does not take such a structure as an example.
  • the multiple second gate lines 32 are only located on a part of the multiple first gate lines 31 .
  • the second gate lines 32 are only located on some of the first gate lines 31 , and some of the first gate lines 31 are not provided with the second gate lines 32 .
  • FIGS. 2A-2B it is a preferred embodiment of the present invention, wherein the length of the second grid lines 32 is shorter than the length of the first grid lines 31, that is, the second grid lines 32 are discretely arranged on the second grid lines. above a gate line 31 . Compared with the method of continuous arrangement, this arrangement can reduce the consumption of silver in the second grid line, further reducing the cost. In addition, as shown in FIG.
  • the width of the second gate line 32 is slightly greater than the width of the first gate line 31, and the length of the second gate line 32 is also greater than the width of the connection structure 40, so that the first gate line can be guaranteed 31 has the effect of collecting current, and improves the welding efficiency between the second grid line 32 and the connection structure 40, and enhances the stability of the battery.
  • FIG. 3A is a schematic diagram of grid line arrangement of a solar cell 300 according to Embodiment 2 of the present invention
  • FIG. 3B is a cross-sectional view of the solar cell 300 shown in FIG. 3A
  • Embodiment 2 is a further modification based on Embodiment 1. Similar to the first embodiment above, in this embodiment, the first direction X and the second direction Y are also set, and FIG. 3A and FIG. 3B show any surface of the solar cell 300 .
  • the plurality of second grid lines 32 in the solar cell sheet only extend along the first direction X and are arranged along the second direction Y.
  • the first grid lines in the solar cell sheet 300 The structure further includes a plurality of third gate lines 33 extending along the second direction Y and arranged along the first direction X, and the plurality of second gate lines 32 straddle the plurality of third gate lines 33, wherein the third gate lines 33
  • the material is the same as that of the first grid line 31 .
  • the solar battery sheet 300 is provided with a plurality of first grid lines 31 extending along the first direction X and arranged along the second direction Y, extending along the first direction X and
  • the plurality of second gate lines 32 arranged along the second direction Y are further provided with a plurality of third gate lines 33 extending along the second direction Y and arranged along the first direction X.
  • the material of the third grid line 33 is the same as that of the first grid line 31 (or it can be understood as the same fine grid).
  • the third gate line 33 is located below the multiple second gate lines 32 and is in contact with all the multiple second gate lines 32 .
  • the first grid lines 31 and the third grid lines 33 can be printed first, and then the second grid lines 32 containing silver can be printed.
  • the two can be integrally molded and printed through a mold.
  • the first grid lines 31 and the third grid lines 33 may also be printed in multiple layers separately.
  • the structure of Fig. 3A and 3B is in order to make the second grid line 32 be positioned at the first grid line 31, the 3rd grid line 33 tops, thereby does not contact with the reaction layer 20, reduces the damage to the reaction layer 20, thereby Improve battery efficiency.
  • the solar battery sheet 300 provided by this embodiment has added a plurality of third grid lines 33 to distinguish it from the first grid lines 31 , which improves the efficiency of collecting current.
  • FIG. 4A is a schematic diagram of grid line arrangement of a solar cell 400 according to Embodiment 3 of the present invention
  • FIG. 4B is a cross-sectional view of the solar cell 400 shown in FIG. 4A
  • Embodiment 3 is a further modification based on Embodiment 2.
  • the solar battery sheet 400 on the basis of the solar battery sheet 300 shown in FIGS. 3A-3B , the solar battery sheet 400 further includes solar cells extending along the second direction Y and arranged along the first direction X.
  • a plurality of fourth grid lines 34, the plurality of fourth grid lines 34 are located above the third grid lines 33, and the plurality of second grid lines 32 straddle the plurality of third grid lines 33 and the plurality of fourth grid lines in the arrangement direction.
  • the grid lines 34, wherein, the material of the fourth grid line 34 is the same as that of the second grid line 32 (or it can be understood as the same as the main grid).
  • the solar battery sheet 400 provided in this embodiment is provided with a plurality of first strips extending along the first direction X and arranged along the second direction Y.
  • a gate line 31 a plurality of second gate lines 32 extending along the first direction X and arranged along the second direction Y, and a plurality of third gate lines 33 extending along the second direction Y and arranged along the first direction X
  • a fourth gate line 34 is arranged on each third gate line 33, but the present invention It is not limited to this. In some other embodiments of the present invention, the fourth gate lines 34 are only located on some of the third gate lines 33 , and some of the third gate lines 33 are not provided with the fourth gate lines 34 .
  • the material of the fourth grid line 34 is the same as that of the second grid line 32.
  • the first grid line 31 and the second grid line 31 can be printed first. Three grid lines 33 are printed, and then the second grid line 32 and the fourth grid line 34 are printed.
  • the two groups of grid lines One-piece molding printing can be performed through the mold. In some other embodiments, each grid line can also be printed separately.
  • the structure of the solar battery sheet 400 as shown in FIGS. 4A and 4B makes the second grid line 32 and the fourth grid line 34 above the first grid line 31 and the third grid line 33, thereby avoiding the contact between the material containing silver and the third grid line 33.
  • the reaction layers 20 are in contact.
  • the basis of the above embodiments in this embodiment is that the fourth grid line 34 (main grid) in the Y direction is added, so that the current can be collected to the welding structure 40 more effectively, and the The efficiency of the solar cell also further strengthens the stability and reliability of the solar cell.
  • FIG. 5 is a schematic diagram of grid line arrangement of a solar cell 500 according to Embodiment 4 of the present invention.
  • Embodiment 4 can be understood as a further modification based on Embodiment 3 shown in FIGS. 4A-4B .
  • any surface of the solar cell only has a plurality of second grid lines 34 extending along the second direction Y and arranged along the first direction X.
  • the solar cell 500 also includes a plurality of second grid lines 34 along the second A plurality of third grid lines 33 extending in the direction Y and arranged along the first direction X, and a plurality of second grid lines 34 located on the third grid lines 33, wherein the third grid lines 33 and the first grid lines 31
  • the material is the same.
  • the first grid line 31 and the third grid line 33 can be understood as a thin grid
  • the second grid line 34 can be understood as a main grid, wherein the direction of the second grid line 34 is the same as that of the third grid line 33
  • the second gate lines 34 are located on all the third gate lines 33 .
  • the second gate lines 34 are only located on some of the third gate lines 33 , and some of the third gate lines 33 are not provided with the second gate lines 34 .
  • FIG. 6 is a schematic diagram of a solar cell 600 according to Embodiment 5 of the present invention. Exemplarily, the solar battery sheet 600 shown in FIG. 200 to 500 are combined to form more examples.
  • the plurality of second grid lines 32 are located on the plurality of first grid lines 31 in such a way that the second grid lines 32 half surround or completely surround the first grid lines 31. grid line 31 .
  • the second gate line 32 is allowed to partially contact the reaction layer 20 .
  • the width of the second grid line 32 may be greater than that of the first grid line 31 , that is, the left and right sides of the fine grid are covered with a part of the main grid.
  • the upper surface and the left and right sides of the first grid line 31 are covered with a part of the second grid line (containing silver).
  • This part of the silver-containing composition can enhance the reflection effect of light, thereby improving the performance of the solar cell. efficiency.
  • the second grid line 32 half surrounds the first grid line 31, that is, one of the left and right sides of the first grid line 31 is covered with the silver-containing composition of the second grid line 32, and the other side is covered with silver. is naked.
  • the upper surface of the first grid line 31 is also covered with the silver-containing composition of the second grid line, and the lower surface is in contact with the reaction layer 20 . It can be understood that no matter whether the second grid line 32 half surrounds or fully surrounds the first grid line 31, although it has a partial contact with the reaction layer 20, the contact area is relatively small. The structure of layer contact can still achieve the technical effect of reducing loss and improving efficiency.
  • connection structure 40 can be replaced by a connection structure of other materials and shapes such as solder glue in addition to the welding strips shown in the drawings, so as to The purpose of being in contact with multiple second grid lines 32 and connecting multiple battery slices is realized.
  • each second grid line is completely or partially not in contact with the reaction layer, but the present invention does not rely on such a structure is limited.
  • the degree of contact between the second grid line structure and the reaction layer of the solar cell and the specific contact manner are not limited to the above-mentioned several embodiments.
  • part of the second grid lines is directly in contact with the reaction layer, part of the second grid lines is printed on the first grid lines, and the part of the second grid lines located on the first grid lines includes no reaction layer at all. The second grid lines that are in contact with the layer and/or the second grid lines that are not in contact with the reaction layer only in part.
  • Embodiment 5 of the present invention a specific way is given in which at least part of the second grid line structure is not in contact with the reaction layer, that is, the second grid line is located in the first half-enclosed or fully-enclosed form. above the grid.
  • the solar battery sheet proposed by the present invention reduces the contact between the main grid and the reaction layer by making at least a partial area of at least one second grid line structure not in contact with the reaction layer of the solar battery sheet, and enhances the strength of the main grid.
  • the connection between the grid and the ribbon improves the efficiency as well as the stability and reliability of the solar cell.
  • FIG. 7 is a flow chart of a method 70 for preparing a solar battery sheet according to the present invention.
  • the present invention provides a method 70 for preparing a solar cell, which is suitable for preparing the above-mentioned solar cell.
  • the method 70 for preparing a solar battery sheet includes the following steps:
  • S101 Print multiple first gridline structures on any surface of the solar cell
  • S102 Printing multiple second gridline structures on the surface, the multiple second gridline structures are located on the multiple first gridline structures, and at least a partial area of at least one second gridline structure does not react with the solar cells layer contact;
  • the plurality of second gate line structures are adapted to be in contact with the connection structures between the plurality of battery slices.
  • the present invention also provides a solar cell string based on the structure of the above solar cells, including a solar cell proposed in the present invention, such as the solar cells described in any of the above embodiments, wherein,
  • the connection structure sequentially connects two adjacent solar cells to form a solar cell string.
  • FIG. 8 is a schematic flowchart of a method 80 for manufacturing a solar cell string according to an embodiment of the present invention.
  • a method 80 for preparing a solar cell string includes the following steps:
  • each battery sheet includes a positive electrode surface and a negative electrode surface, the positive electrode surface and/or the negative electrode surface have a plurality of first grid line structures and a plurality of second grid line structures, and a plurality of second grid line structures The structure is located on a plurality of first gridline structures, and at least a partial area of at least one second gridline structure is not in contact with the reaction layer of the solar cell sheet;
  • connection structure sequentially connect multiple connecting structures to the positive electrode surface and the negative electrode surface of each battery slice to connect multiple battery slices in series.
  • the connection structure is in contact with the second gate line structure on the surface of the positive electrode and/or the surface of the negative electrode.
  • each battery sheet in step S201 includes a positive electrode surface and a negative electrode surface opposite to each other, and both the positive electrode surface and the negative electrode surface have A plurality of first grid lines, and a plurality of second grid lines extending along the first direction and arranged along the second direction and/or extending along the second direction and arranged along the first direction, and a plurality of second grid lines
  • the wire is located on at least a part of the plurality of first grid lines; in step S202, each connection structure is welded on the second grid line in a manner of straddling the plurality of first grid lines.
  • the battery sheet only has a grid line structure on one side, and the first grid line proposed by the present invention can be prepared in the positive and negative electrode regions of the single side by using the above preparation method 70. structure and the second gridline structure.
  • the method 80 for preparing the solar cell string reference may also be made to the description above, which will not be repeated here.
  • the first grid line structure and the second grid line structure on the solar cell use the expressions "first" and “second” only to distinguish between different locations or relative to the surface of the solar cell.
  • the reaction layers are located at different levels of the grid line structure.
  • the first grid line structure and the second grid line structure are both multi-line/multi-segment linear structures as an example.
  • connection layer 90 between the first gate line 91 and the second gate line 92, and the connection layer can enhance the connection between the first gate line 91 and the second gate line 92. connect.
  • the material of the connecting layer 90 may be selected from one or more materials among inorganic substances, organic substances and metals, which is not limited in the present invention.
  • the connection layer 90 may be a layer completely independent from the first grid line 91 and the second grid line 92, but it is not excluded that in some embodiments of the present invention, in the connection layer 90, due to material penetration, Substance with part of the first grid line 91 and the second grid line 92 . In such an embodiment, due to the bonding layer, the connection strength between the first grid line structure and the second grid line structure can be enhanced, further improving the stability of the battery.
  • the first gate line 91 and the second gate line 92 are still Although they are in direct contact with each other, the difference from the embodiment shown in FIG. 9a is that the part (contact surface) where the first grid line 91 and the second grid line 92 contact each other occurs component penetration, thus forming the structure shown in FIG. 9b and FIG. 9c Interface layers 900 and 900' are shown. Both the interface layer 900 and the interface layer 900 ′ contain part of the first gate line 91 and/or the second gate line 92 . In such an embodiment, the contact resistance between the first grid line 91 and the second grid line 92 is relatively small, and the connection force between the two is relatively strong, so as to realize a further optimized solar battery sheet.
  • the heights of the boundary layers 900 and 900' on the cross-section shown in the drawings are different, which means that the first gate lines 91 contained in the boundary layers in the two embodiments And/or the material composition of the second grid line 92 is somewhat different.
  • the first grid line structure included in the interface layer accounts for 1%-99% of the first grid line structure before the component permeates, and all the grid line structures included in the interface layer
  • the second grid line structure accounts for 1%-99% of the second grid line structure before the component infiltration occurs. This means that in the embodiment where component penetration occurs, as long as a part of the second grid line structure (such as the second grid line 92 ) is not in contact with the reaction layer 20 , the technical effect of the present invention can be achieved.
  • the solar cells and battery strings provided by the present invention print the main grid on the fine grid, and then weld the main grid and the connection structure, so as to avoid the empty welding caused by the insufficient height of the main grid, and effectively reduce the cost of the main grid.
  • the contact between the grid and the reaction layer 20 strengthens the connection between the main grid and the connecting structure, improves the current efficiency of the battery sheet, and prolongs the service life of the solar battery sheet.
  • numbers describing the quantity of components and attributes are used, and it should be understood that such numbers used in the description of the embodiments, in some examples, use the modifiers "about”, “approximately” or “substantially” to express grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used to confirm the breadth of the scope in some embodiments of the application are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种太阳能电池片、电池串及二者的制备方法。太阳能电池片的至少一个表面包括:多个第一栅线结构;多个第二栅线结构,位于多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触;其中,多个第二栅线结构适于与多个电池片之间的连接结构接触。本发明的太阳能电池片可以减少主栅与反应层的接触,增强电池片间连接结构与主栅的连接,提升效率和太阳能电池的稳定性和可靠性。

Description

太阳能电池片、电池串及二者的制备方法 技术领域
本发明主要涉及太阳能电池领域,尤其涉及一种太阳能电池片、电池串及二者的制备方法。
背景技术
现有的太阳能电池片栅线结构通常设计为主栅是含银成分的栅线,细栅在一些情况下是含铝成分的栅线(例如P型perc电池背面细栅含铝),在实际生产过程中,主流的印刷方式是先印刷主栅线,再印刷细栅线,使主栅线与细栅线形成搭接。在焊接组件时,主栅线与焊带(或其他电池片间的连接结构)的焊接点处形成银锡合金,从而达到连接与导电的效果。在这种焊接方式中,电流是经过细栅汇流到主栅上,再经由焊带流出,这种非直线导出电流的方式会导致较大的电阻损失,从而降低组件功率。同时由于工艺限制,主栅和细栅也存在较大的高度差,细栅的高度明显高于主栅的高度,导致焊带与主栅之间易出现空焊,导致焊接不良。除此之外,现有的阳能电池片中主栅与反应层直接接触,会造成对反应层的破坏,导致效率下降。
发明内容
本发明要解决的技术问题是提供一种太阳能电池片、电池串及二者的制备方法,能够减少主栅与反应层的接触,增强主栅与电池片间连接结构之间的连接,从而提高效率以及太阳能电池的稳定性和可靠性。
为解决上述技术问题,本发明提供了一种太阳能电池片,所述太阳能电池片的任一表面包括:多个第一栅线结构;多个第二栅线结构,位于多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触;其中,多个第二栅线结构适于与多个电池片之间的连接结构接触。
可选地,在本发明的一实施例中,多个第二栅线结构包括多条和/或多段弧型结构。
可选地,在本发明的一实施例中,多个第二栅线结构包括多条和/或多段直线 型结构。
可选地,在本发明的一实施例中,第一栅线结构也包括直线型结构,其中,多个第一栅线结构包括沿第一方向延伸且沿第二方向排布的多条第一栅线;多个第二栅线结构包括沿第一方向延伸且沿第二方向排布的和/或沿第二方向延伸且沿第一方向排布的多条第二栅线,多条第二栅线位于至少一部分的多条第一栅线之上;以及连接结构为焊带或焊胶,焊带或焊胶与多条第二栅线接触。
可选地,在本发明的一实施例中,多条第二栅线仅沿第一方向延伸且沿所述第二方向排布,第一栅线结构还包括沿第二方向延伸且沿第一方向排布的多条第三栅线,多条第二栅线横跨多条第三栅线,其中,第三栅线与第一栅线的材质相同。
可选地,在本发明的一实施例中,第二栅线结构还包括沿第二方向延伸且沿第一方向排布的多条第四栅线,多条第四栅线位于至少部分的第三栅线之上,多条第二栅线横跨多条第三栅线以及多条第四栅线,其中,第四栅线与第二栅线的材质相同。
可选地,在本发明的一实施例中,太阳能电池片中的多条第二栅线仅沿第二方向延伸且沿第一方向排布,第一栅线结构还包括沿第二方向延伸且沿第一方向排布的多条第三栅线,多条第二栅线位于至少部分的第三栅线之上,其中,第三栅线与第一栅线的材质相同。
可选地,在本发明的一实施例中,多条第二栅线位于至少一部分的多条第一栅线之上的方式为,第二栅线半包围或全包围第一栅线。
可选地,在本发明的一实施例中,还包括衔接层,所述衔接层位于所述第一栅线结构和所述第二栅线结构之间。
可选地,在本发明的一实施例中,所述衔接层由无机物、有机物和金属中的至少一种组成。
可选地,在本发明的一实施例中,所述第一栅线结构和所述第二栅线结构的接触面发生成分渗透以形成交界层,所述交界层包含部分的所述第一栅线结构和部分的所述第二栅线结构。
可选地,在本发明的一实施例中,所述交界层中所包含的第一栅线结构占发生所述成分渗透前的第一栅线结构的1%-99%,且所述交界层中所含有的所述第二栅线结构占发生所述成分渗透前的所述第二栅线结构的1%-99%。
本发明还提供了一种太阳能电池片的制备方法,适于制备太阳能电池片,其特征在于,包括如下步骤:在太阳能电池片的任一表面印刷多个第一栅线结构;在表面印刷多个第二栅线结构,多个第二栅线结构位于多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触;其中,多个第二栅线结构适于与多个电池片之间的连接结构接触。
本发明还提供了一种太阳能电池串,包含上述任一实施例所述的太阳能电池片,其中,连接结构依次连接相邻两个太阳能电池片以形成太阳能电池串。
本发明还提供了一种太阳能电池串的制备方法,其特征在于,包括如下步骤:提供多个电池片,每个电池片包括正极表面和负极表面,正极表面和/或负极表面上具有多个第一栅线结构以及多个第二栅线结构,多个第二栅线结构位于多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触;以及将多个连接结构依次连接每个电池片的正极表面和负极表面以使多个电池片串联,其中,连接结构在正极表面和/或负极表面与第二栅线结构接触。
与现有技术相比,本发明的太阳能电池片和电池串将主栅印刷于细栅之上,再将主栅与焊带直接进行焊接,避免了由于主栅高度不足导致的空焊。本发明的方案有效地减少了主栅与反应层的接触,增强了主栅与焊带之间的连接,提高了电池片的电流效率,延长了太阳能电池片的使用寿命。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。包括附图是为提供对本申请进一步的理解,它们被收录并构成本申请的一部分,附图示出了本申请的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1A是现有技术中的一种太阳能电池片正面俯视的示意图;
图1B是图1A中所示的太阳能电池片正面的剖视图;
图1C是现有技术中的一种太阳能电池片背面俯视的示意图;
图1D是图1C中所示的太阳能电池片背面的剖视图;
图2A是本发明实施例一的一种太阳能电池片正面俯视的示意图;
图2B是图2A中所示的太阳能电池片的剖视图;
图3A是本发明实施例二的一种太阳能电池片正面俯视的示意图;
图3B是图3A中所示的太阳能电池片的剖视图;
图4A是本发明实施例三的一种太阳能电池片正面俯视的示意图;
图4B是图4A中所示的太阳能电池片的剖视图;
图5是本发明实施例四的一种太阳能电池片正面俯视的示意图;
图6是本发明实施例五的一种太阳能电池片的剖视图;
图7是本发明一实施例的一种太阳能电池片的制备方法的流程示意图;
图8是本发明一实施例的一种太阳能电池串的制备方法的流程示意图;以及
图9a~图9c是本发明一实施例的一种具有衔接层或交界层的太阳能电池片的剖视图。
本发明的较佳实施方式
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。此外,尽管本申请中所使用的术语是从公知公用的术语中选择的,但是本申请说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本申请。
应当理解,当一个部件被称为“在另一个部件上”、“连接到另一个部件”、“耦合于另一个部件”或“接触另一个部件”时,它可以直接在该另一个部件之上、连接于或耦合于、或接触该另一个部件,或者可以存在***部件。相比之下,当一个部件被称为“直接在另一个部件上”、“直接连接于”、“直接耦合于”或“直接接触”另一个部件时,不存在***部件。同样的,当第一个部件被称为“电接触”或“电耦合于”第二个部件,在该第一部件和该第二部件之间存在允许电流流动的电路径。该电路径可以包括电容器、耦合的电感器和/或允许电流流动的其它部件,甚至在导电部件之间没有直接接触。
本申请中使用了流程图用来说明根据本申请的实施例的***所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,或将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1A是现有技术中的一种太阳能电池片100正面俯视的示意图;图1B是图1A中所示的太阳能电池片100正面部分的剖视图。图1C是该太阳能电池片100的背面俯视的示意图;图1D是图1C中所示的太阳能电池片100背面部分的剖视图。可以理解的是,由于本发明涉及太阳能电池片上的多层栅线结构,本发明附图中的俯视的示意图仅示例性的展示在太阳能电池表面上栅线的排布结构,与一般意义的俯视图的概念稍有差别,对于多层栅线结构相互之间的上下位置关系,需要结合各剖视图和文字描述做完整和详尽的理解。
结合参考图1A~1D所示,现有技术中太阳能电池片100正面的栅线排布方式是将含银的主栅11直接印刷在覆盖于硅片10表面的反应层20之上,再将连接结构40(如焊带)焊接于主栅11之上。如图1A~图1D这样的结构设置虽然便于印刷,但是造成的后果是主栅11与反应层20直接接触(如图1B中用虚线圈出的区域),会破坏反应层20并导致电池效率的下降。另外,特别从图1D中可以看出的是,在太阳能电池片100的背面,主栅11的高度小于细栅12,连接结构40与主栅11连接时较为困难,容易发生空焊的现象,从而也影响电池的效率。由此可见,现有的太阳能电池中细栅位于主栅之上的结构存在一些缺陷。
需要说明的是,在图1A~1D中示出的、以及下文结合本发明各个实施例提出的反应层20,可以是电池片上起到PN结作用、导电作用、钝化作用、减少反射和/或其它保护、电子产生、导电等作用的位于电池片中或电池表面上的任意一层或多层。
本发明提出了一种太阳能电池片,太阳能电池片的任一表面包括多个第一栅线结构以及位于多个第一栅线结构之上的多个第二栅线结构,且至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触;其中,多个第二栅线结构适于与多个电池片之间的连接结构接触。这样的结构可以有效的减少主栅与反应层的接触,增强主栅与焊带之间的连接,从而提高效率以及太阳能电池的稳定性和可靠性。
需要说明的是,本发明不对于电池的类型做出具体的限制。因此,在本发明的不同实施例中,太阳能电池可能具有相对的两个表面,也可能只具有单面(例如背结电池IBC)。若太阳能电池具有相对的两个表面,则在两个表面的任一者中可以包括下文将要详述的第一栅线结构和第二栅线结构。而如果太阳能电池仅具有单面,在该单面上同时具有电池的正负极,则在这样的实施例中,第一栅线结构和第二栅线结构均在该单面上。另一方面,本发明也不对上述第一栅线结构和第二栅线结构的形状作出限制。具体的,在本发明的一些实施例中,多个第二栅线结构包括多条和/或多段弧型结构。在本发明的另一实施例中,多个第二栅线结构包括多条和/或多段直线型结构。另外,本发明提供的太阳能电池片上的第二栅线结构可以仅由多条和/或多段弧型结构构成,也可以仅由多条和/或多段直线型结构构成,也可以同时包括多条和/或多段弧型结构以及多条和/或多段直线型结构,其具体组合方式本申请在此不做具体限制。
实施例一
图2A是本发明实施例一的一种太阳能电池片200栅线排布示意图;图2B是图2A中所示的太阳能电池片200的剖视图。
在图2A~2B所示的实施例中,第一栅线结构31与第二栅线结构32均为直线型结构,且在该实施例中,参考图2A所示坐标轴,设定X轴方向为第一方向,Y轴方向为第二方向。可以理解的是,上述第一方向X、第二方向Y仅仅示例性的展示了第一栅线31与第二栅线32排列的相对位置,但不表示二者一定为直角相交的关系。另外,如图2A所示和2B所示的为太阳能电池200的任一表面,例如对于双面电池,该任一表面可以是其正面或背面;或者对于单面电池,则如图2A和2B所示的为该单面。
根据图2A和图2B,太阳能电池片200的任一表面包括:沿第一方向X延伸且沿第二方向Y排布的多条第一栅线31;沿第一方向X延伸且沿第二方向Y排布的多条第二栅线32,多条第二栅线32位于多条第一栅线31之上;以及连接结构(具体为焊带)40,连接结构40横跨多条第一栅线31并与多条第二栅线32接触(具体可以为焊接在第二栅线结构32上)。
示例性的,在2A和2B所示的实施例中,第二栅线32的组成成分中包含银(可类比传统制造方式中的主栅)。而对于第一栅线31,可类比传统制造方式中 的细栅,在本发明的一些实施例中第一栅线可包含银,例如是P型perc电池的背面的细栅线。可以理解的是,虽然做出这样的举例,但是在本发明中并不对于第一栅线和第二栅线的材质做出具体限制。从图2A可以看出的是,对于太阳能电池片200,可以认为其采用的是主栅pad结构,即第二栅线32(主栅)可以抽象为pad点,起到与连接结构40(如焊带)的连接作用。
具体的,为了使多条第二栅线32位于至少一部分的多条第一栅线31之上,在具体印刷过程中为先在覆盖硅片10的反应层20上印刷第一栅线31(细栅),再印刷第二栅线32(主栅),从而使第二栅线32位于第一栅线31之上。这样的结构可以有效减小第二栅线32和反应层20的接触,减少了反应层20的损耗,提高了电池效率。
图2A~2B示出的实施例中,在每一条第一栅线31上均有第二栅线32,但是本发明不以这样的结构为例。示例性的,在其他的一些实施例中,多条第二栅线32仅位于一部分的多条第一栅线31之上。例如,在一些实施例中,第二栅线32仅位于部分条第一栅线31之上,还有部分第一栅线31上并未设置有第二栅线32。
可以理解的是,如图2A~2B所示为本发明一优选的实施例,其中第二栅线32的长度小于第一栅线31的长度,即第二栅线32离散地排布于第一栅线31之上。相比较于连续设置的方式,该设置能够减少第二栅线中银的消耗量,进一步降低成本。除此之外,如图2A所示第二栅线32的宽度略大于第一栅线31的宽度,且第二栅线32的长度也大于连接结构40的宽度,从而可以保证第一栅线31汇集电流的效果,并提高第二栅线32与连接结构40之间的焊接效率,增强电池的稳定性。
实施例二
图3A是本发明实施例二的一种太阳能电池片300栅线排布示意图;图3B是图3A中所示的太阳能电池片300的剖视图。实施例二是基于实施例一的进一步变型。与上述的实施例一相似地,在本实施例中,也设定第一方向X和第二方向Y,且图3A和图3B示出的是太阳能电池300的任一表面。
在如图3A~3B所示实施例中,太阳能电池片中的多条第二栅线32仅沿第一方向X延伸且沿第二方向Y排布,太阳能电池片300中的第一栅线结构还包括沿第二方向Y延伸且沿第一方向X排布的多条第三栅线33,多条第二栅线32横跨多条第三栅线33,其中,第三栅线33与第一栅线31的材质相同。
参考图3A所示,本实施例中太阳能电池片300上除了设置有沿第一方向X延伸且沿第二方向Y排布的多条第一栅线31、沿所述第一方向X延伸且沿所述第二方向Y排布的多条第二栅线32,还设置有沿第二方向Y延伸且沿第一方向X排布的多条第三栅线33。在本实施例中,第三栅线33材质与第一栅线31相同(或者可以理解为同样为细栅)。
具体的,在图3A示出的实施例中,第三栅线33位于多条第二栅线32的下方,且与多条第二栅线32均相接触。为了更好理解太阳能电池片400的结构,在具体印刷过程中,可以先印刷第一栅线31与第三栅线33,再印刷含银的第二栅线32。优选的,在本发明的一些实施例中,由于第一栅线31与第三栅线33为相同的材质,该二者可以通过模具进行一体成型印刷。在其他一些实施例中,也可以将第一栅线31与第三栅线33分开为多层进行印刷。
同样的,如图3A和3B的结构是为了使第二栅线32位于第一栅线31、第三栅线33上方,从而不与反应层20相接触,减少对反应层20的破坏,从而提高电池效率。另外,相比较实施例一,本实施例所提供的太阳能电池片300增加了多条区分与第一栅线31的第三栅线33,提高了汇集电流的效率。
实施例三
图4A是本发明实施例三的一种太阳能电池片400栅线排布示意图;图4B是图4A中所示的太阳能电池片400的剖视图。实施例三是基于实施例二的进一步变型。在如图4A~4B所示实施例中,太阳能电池片400在如图3A~3B所示的太阳能电池片300的基础上,还包括沿第二方向Y延伸且沿第一方向X排布的多条第四栅线34,多条第四栅线34位于第三栅线33之上,多条第二栅线32在排布方向上横跨多条第三栅线33以及多条第四栅线34,其中,第四栅线34与第二栅线32的材质相同(或者可以理解为同样为主栅)。
参考图4A所示,本实施例中所提供的一种太阳能电池片400与实施例三相比,其上除了设置有沿第一方向X延伸且沿第二方向Y排布的多条第一栅线31、沿第一方向X延伸且沿第二方向Y排布的多条第二栅线32和沿第二方向Y延伸且沿第一方向X排布的多条第三栅线33,还设置有沿第二方向Y延伸且沿第一方向X排布的多条第四栅线34,且多条第四栅线34位于第三栅线33之上。可以理解的是,在图4A所示的实施例中,在每条第三栅线33上都排布有第四栅线34,但是本发 明不以此为限。在本发明的一些其他的实施例中,第四栅线34仅位于部分条第三栅线33之上,还有部分第三栅线33上并未设置有第四栅线34。
进一步的,在本实施例中第四栅线34的材质与第二栅线32相同,为了更好理解太阳能电池片400的结构,在具体印刷过程中,可以先印刷第一栅线31与第三栅线33,再印刷第二栅线32与第四栅线34。相似的,在本发明的一些实施例中,由于第一栅线31和第三栅线33材质相同,且第二栅线32与第四栅线34也为相同的材质,这两组栅线可以通过模具进行一体成型印刷。在其他一些实施例中,也可以将各个栅线分开进行印刷。
同样的,如图4A和4B所示的太阳能电池片400的结构使第二栅线32和第四栅线34位于第一栅线31、第三栅线33上方,从而避免含银的材质与反应层20相接触。相比较于实施例二,本实施例中在以上各实施例的基础是,增加了Y方向上的第四栅线34(主栅),从而可以更有效的汇集电流到焊接结构40,提升了太阳能电池的效率,也进一步加强了太阳能电池的稳定性和可靠性。
实施例四
图5是本发明实施例四的一种太阳能电池片500栅线排布示意图。实施例四可以理解为是基于图4A~4B示出的实施例三的进一步变型。在图5所示实施例中,太阳能电池片中任一表面仅具有沿第二方向Y延伸且沿第一方向X排布的多条第二栅线34,太阳能电池片500还包括沿第二方向Y延伸且沿第一方向X排布的多条第三栅线33,多条第二栅线34位于第三栅线33之上,其中,第三栅线33与第一栅线31的材质相同。本实施例中,第一栅线31与第三栅线33可以理解为是细栅,第二栅线34可以理解为是主栅,其中第二栅线34与第三栅线33方向相同,且第二栅线34位于全部的第三栅线33上。可选地,在一些实施例中,第二栅线34仅位于部分条第三栅线33之上,还有部分第三栅线33上并未设置有第二栅线34。
在本实施例中,相较于如图4A~4B所示的太阳能电池片400,对于太阳电池片500的任一表面,仅保留沿Y方向延伸的第二栅线34,从而可以在保证上述技术效果的前提下,还可以降低银浆耗量,从而节省成本。
实施例五
图6是本发明的实施例五的太阳能电池片600的示意图。示例性的,图6示出的电池片600可以与上述参照图2A~5说明的实施例一~四中的太阳能电池片 200~500进行结合,从而形成更多的实施例。
具体的,参考图6所示,在太阳能电池片600中,多条第二栅线32在位于多条第一栅线31之上的方式,是第二栅线32半包围或全包围第一栅线31。这意味着,在图6示出的实施例中,允许第二栅线32有部分与反应层20接触。
示例性的,如果有部分的第二栅线32全包围第一栅线31时,第二栅线32的宽度可以大于第一栅线31,即细栅左右两侧覆盖有主栅的一部分。在此实施例中,第一栅线31的上表面和左右两侧均覆盖有第二栅线的一部分(含银),这部分含银的成分可以增强光照的反射效果,从而提高太阳能电池的效率。在其他一些实施例中,第二栅线32半包围第一栅线31,即第一栅线31的左右两侧面中的一个侧面覆盖有第二栅线32含银的成分,另一侧面则为裸露状态。在此实施例中,第一栅线31上表面同样覆盖有第二栅线含银的成分,下表面则与反应层20相接触。可以理解的是,无论第二栅线32半包围或全包围第一栅线31,其虽然与反应层20存在了部分接触,但是接触面积较小,相比较现有技术的主栅完全与反应层接触的结构,仍能够达到减小损耗、提高效率的技术效果。
另一方面需要说明的是,在本发明上述几个实施例中,连接结构40在各个附图中所展示的焊带之外,还可以替换为焊胶等其他材质和形状的连接结构,以实现与多条第二栅线32接触并连接多个电池片的目的。
需要强调说明的是,本发明提供的一种太阳能电池片中至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触。虽然在本发明的上述几个实施例一~四的附图中,优选地,每条第二栅线均为全部不与反应层接触或部分不与反应层接触,但是本发明不以这样的结构为限。特别是第二栅线结构与太阳能电池片的反应层的接触程度与否以及具体接触方式并不局限于上文所述的几个实施例。
具体的,在本发明的其他一些实施例中,以所有的第一栅线结构和第二栅线结构均是线型结构为例,在全部的第二栅线中,仅有一条或一些条第二栅线与反应层部分或全部接触的情况;或者,在某一条或某些条第二栅线中,任一条第二栅线的其中一部分可以与反应层接触。在一些实施例中,部分第二栅线直接与反应层接触,部分第二栅线印刷于第一栅线之上,且该部分位于第一栅线上的第二栅线包括完全不与反应层接触的第二栅线和/或仅有部分位置与反应层不接触的第二栅线。可以理解的是,上文提到的存在一条或一些条第二栅线结构全部与反应层相接触的情况, 可以理解为在现有技术(主栅全部与反应层完全接触)的基础上,将部分第二栅线(即主栅)改进为本发明所提供的排布方式。
另外,在本发明的实施例五中,给出了第二栅线结构的至少部分区域不与反应层接触的一种具体方式,即第二栅线通过半包围或全包围的形式位于第一栅线之上。
无论采用上述的何种方式,本发明提出的太阳能电池片通过使至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触,从而减少主栅与反应层的接触,增强主栅与焊带之间的连接,从而提高效率以及太阳能电池的稳定性和可靠性。
图7是本发明一种太阳能电池片的制备方法70的流程图。参考图7所示,本发明提供了一种太阳能电池片的制备方法70,适于制备如上所述的太阳能电池片。太阳能电池片的制备方法70包括如下步骤:
S101:在太阳能电池片的任一表面印刷多个第一栅线结构;
S102:在表面印刷多个第二栅线结构,多个第二栅线结构位于多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触;
在上述步骤S102中,多个第二栅线结构适于与多个电池片之间的连接结构接触。
可以理解的是,本实施例中所提供的太阳能电池片的制备方法适用于上述参照图2A~图6的所有实施例中的太阳能电池片,更多关于太阳能电池片的制备方法70的细节可以参照上文的说明,在此不再赘述。
进一步的,本发明基于上述的太阳能电池片的结构,还提供了一种太阳能电池串,包含本发明提出的一种太阳能电池片,例如是上述任一实施例所述的太阳能电池片,其中,连接结构依次连接相邻两个太阳能电池片以形成太阳能电池串。
相应地,本发明还提供了一种太阳能电池串的制备方法。图8是本发明一实施例的一种太阳能电池串的制备方法80的流程示意图。参考图8所示,太阳能电池串的制备方法80包括如下步骤:
S201:提供多个电池片,每个电池片包括正极表面和负极表面,正极表面和/或负极表面上具有多个第一栅线结构以及多个第二栅线结构,多个第二栅线结构位于多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与太阳能电池片的反应层接触;
S202:将多个连接结构依次连接每个电池片的正极表面和负极表面以使多个电池片串联。在此步骤中,连接结构在正极表面和/或负极表面与第二栅线结构接触。
具体的,在本发明的一实施例中,步骤S201中的每个电池片包括相对的正极表面和负极表面,正极表面和负极表面上均具有沿第一方向延伸且沿第二方向排布的多条第一栅线,以及沿第一方向延伸且沿第二方向排布的和/或沿第二方向延伸且沿第一方向排布的多条第二栅线,且多条第二栅线位于至少一部分的多条第一栅线之上;步骤S202中每条连接结构按照横跨多条第一栅线的方式焊接在第二栅线上。另外,在本发明的一些其他的实施例中,电池片仅具有单面的栅线结构,则采用上述制备方法70可以在该单面的正负极区域分别制备本发明提出的第一栅线结构和第二栅线结构。相似的,关于太阳能电池串的制备方法80也可以参考上文的说明,在此不再赘述。
最后需要对本发明太阳能电池片的栅线结构再做出进一步补充说明。在本发明中,太阳能电池片上的第一栅线结构和第二栅线结构之所以采用了“第一”和“第二”的表达方式,只是为了区分位于不同位置或相对于太阳能电池片表面的反应层位于不同层级的栅线结构。在本发明的一些实施例中,第一栅线结构和第二栅线结构之间可以具有明显的或额外的界限,也可以互相之间不具有明显的界限甚至互相之间通过物质渗透而形成了特殊的一层交界层。下面结合附图9a~9c进行具体的说明,在9a~9c示出的实施例中,仍然以第一栅线结构和第二栅线结构均为多条/多段直线型结构举例。
如图9a所示,在该实施例中,第一栅线91与第二栅线92之间还具有衔接层90,该衔接层可以增强第一栅线91和第二栅线92之间的连接。示例性的,衔接层90的材质可以选择无机物、有机物和金属中的一种或多种材料,本发明不对此做出限制。特别地,该衔接层90可以是完全独立与第一栅线91和第二栅线92的一层,但是也不排除在本发明的一些实施例中,在衔接层90中由于发生物质渗透而具有部分第一栅线91和第二栅线92的物质。在这样的实施例中,由于具有衔接层,第一栅线结构和第二栅线结构之间的连接强度可以得道增强,进一步提高了电池的稳定性。
进一步的,在图9b和图9c示出的实施例中,第一栅线91和第二栅线92仍 然互相直接接触,但是与图9a示出的实施例不同的是,第一栅线91和第二栅线92相互接触的部分(接触面)发生成分渗透,从而形成了如图9b和图9c所示的交界层900以及900’。在交界层900和交界层900’中,均含有部分的第一栅线91和/或第二栅线92。在这样的实施例中,第一栅线91和第二栅线92之间的接触电阻相对较小,二者之间的连接力也会相对更强,从而实现进一步优化的太阳能电池片。
从图9b和图9c中可以看出的是,交界层900和900’在附图所示剖面上的高度不同,这意味着,两个实施例中的交界层所包含的第一栅线91和/或第二栅线92的物质成分多少存在差异。示例性的,在本发明的一些实施例中,交界层包含的第一栅线结构占发生所述成分渗透前的第一栅线结构的1%-99%,且所述交界层包含的所述第二栅线结构占发生所述成分渗透前的所述第二栅线结构的1%-99%。这意味着,在发生成分渗透的实施例中,只要保证第二栅线结构(如第二栅线92)有一部分不与反应层20接触,则本发明的技术效果便可以实现。
本发明所提供的太阳能电池片和电池串通过将主栅印刷于细栅之上,再将主栅与连接结构进行焊接,避免了由于主栅高度不足导致的空焊,同时有效地减少了主栅与反应层20的接触,增强了主栅与连接结构之间的连接,提高了电池片的电流效率,延长了太阳能电池片的使用寿命。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的 特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
虽然本申请已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本申请,在没有脱离本申请精神的情况下还可作出各种等效的变化或替换,因此,只要在本申请的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (15)

  1. 一种太阳能电池片,其特征在于,所述太阳能电池片的至少一个表面包括:
    多个第一栅线结构;
    多个第二栅线结构,位于所述多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与所述太阳能电池片的反应层接触;
    其中,所述多个第二栅线结构适于与多个电池片之间的连接结构接触。
  2. 如权利要求1所述的太阳能电池片,其特征在于,所述多个第二栅线结构包括多条和/或多段弧型结构。
  3. 如权利要求1所述的太阳能电池片,其特征在于,所述多个第二栅线结构包括多条和/或多段直线型结构。
  4. 如权利要求3所述的太阳能电池片,其特征在于,所述第一栅线结构也包括直线型结构,其中,
    所述多个第一栅线结构包括沿第一方向延伸且沿第二方向排布的多条第一栅线;
    所述多个第二栅线结构包括沿所述第一方向延伸且沿所述第二方向排布的和/或沿所述第二方向延伸且沿所述第一方向排布的多条第二栅线,所述多条第二栅线位于至少一部分的所述多条第一栅线之上;以及
    所述连接结构包括焊带或焊胶,所述焊带或焊胶与所述多条第二栅线接触。
  5. 如权利要求4所述的太阳能电池片,其特征在于,所述多条第二栅线仅沿所述第一方向延伸且沿所述第二方向排布,所述第一栅线结构还包括沿所述第二方向延伸且沿所述第一方向排布的多条第三栅线,所述多条第二栅线横跨所述多条第三栅线,其中,所述第三栅线与所述第一栅线的材质相同。
  6. 如权利要求5所述的太阳能电池片,其特征在于,所述第二栅线结构还包括沿所述第二方向延伸且沿所述第一方向排布的多条第四栅线,所述多条第四栅线位于至少部分的所述第三栅线之上,所述多条第二栅线横跨所述多条第三栅线以及所述多条第四栅线,其中,所述第四栅线与所述第二栅线的材质相同。
  7. 如权利要求4所述的太阳能电池片,其特征在于,所述太阳能电池片中的多条第二栅线仅沿所述第二方向延伸且沿所述第一方向排布,所述第一栅线结构还 包括沿所述第二方向延伸且沿所述第一方向排布的多条第三栅线,所述多条第二栅线位于至少部分的所述第三栅线之上,其中,所述第三栅线与所述第一栅线的材质相同。
  8. 如权利要求4~7任一项所述的太阳能电池片,其特征在于,所述多条第二栅线位于至少一部分的所述多条第一栅线之上的方式为,所述第二栅线半包围或全包围所述第一栅线。
  9. 如权利要求1~3任一项所述的太阳能电池片,其特征在于,还包括衔接层,所述衔接层位于所述第一栅线结构和所述第二栅线结构之间。
  10. 如权利要求9所述的太阳能电池片,其特征在于,所述衔接层由无机物、有机物和金属中的至少一种组成。
  11. 如权利要求1~3任一项所述的太阳能电池片,其特征在于,所述第一栅线结构和所述第二栅线结构的接触面发生成分渗透以形成交界层,所述交界层包含部分的所述第一栅线结构和/或部分的所述第二栅线结构。
  12. 如权利要求11所述的太阳能电池片,其特征在于,所述交界层包含的第一栅线结构占发生所述成分渗透前的第一栅线结构的1%-99%,且所述交界层包含的所述第二栅线结构占发生所述成分渗透前的所述第二栅线结构的1%-99%。
  13. 一种太阳能电池片的制备方法,适于制备太阳能电池片,其特征在于,包括如下步骤:
    在太阳能电池片的至少一个表面上印刷多个第一栅线结构;
    在所述表面上印刷多个第二栅线结构,所述多个第二栅线结构位于所述多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与所述太阳能电池片的反应层接触;
    其中,所述多个第二栅线结构适于与多个电池片之间的连接结构接触。
  14. 一种太阳能电池串,其特征在于,包含权利要求1~12任一项所述的太阳能电池片,其中,所述连接结构依次连接相邻两个所述太阳能电池片以形成所述太阳能电池串。
  15. 一种太阳能电池串的制备方法,其特征在于,包括如下步骤:
    提供多个电池片,每个电池片包括正极表面和负极表面,所述正极表面和 /或负极表面上具有多个第一栅线结构以及多个第二栅线结构,所述多个第二栅线结构位于所述多个第一栅线结构之上,且至少一个第二栅线结构的至少部分区域不与所述太阳能电池片的反应层接触;以及
    将多个连接结构依次连接所述每个电池片的正极表面和负极表面以使所述多个电池片串联,其中,所述连接结构在所述正极表面和/或所述负极表面与所述第二栅线结构接触。
PCT/CN2023/077854 2022-02-24 2023-02-23 太阳能电池片、电池串及二者的制备方法 WO2023160607A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23759231.6A EP4328981A1 (en) 2022-02-24 2023-02-23 Solar cell piece, cell string and preparation therefor
US18/604,571 US20240222533A1 (en) 2022-02-24 2024-03-14 Solar cell piece, cell string and preparation therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210171553.8 2022-02-24
CN202210171553.8A CN114420773B (zh) 2022-02-24 2022-02-24 太阳能电池片、电池串及二者的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/604,571 Continuation US20240222533A1 (en) 2022-02-24 2024-03-14 Solar cell piece, cell string and preparation therefor

Publications (1)

Publication Number Publication Date
WO2023160607A1 true WO2023160607A1 (zh) 2023-08-31

Family

ID=81262544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077854 WO2023160607A1 (zh) 2022-02-24 2023-02-23 太阳能电池片、电池串及二者的制备方法

Country Status (4)

Country Link
US (1) US20240222533A1 (zh)
EP (1) EP4328981A1 (zh)
CN (1) CN114420773B (zh)
WO (1) WO2023160607A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438482A (zh) * 2023-12-07 2024-01-23 浙江爱旭太阳能科技有限公司 背接触电池片、电池串、电池组件和光伏***
CN117464124A (zh) * 2023-12-25 2024-01-30 浙江晶科能源有限公司 一种焊接设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420773B (zh) * 2022-02-24 2024-07-02 天合光能股份有限公司 太阳能电池片、电池串及二者的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219400A (zh) * 2013-03-22 2013-07-24 江苏荣马新能源有限公司 一种主栅分段式太阳能电池
US20170077320A1 (en) * 2015-09-11 2017-03-16 Solarcity Corporation Anti-corrosion protection of photovoltaic structures
CN107919402A (zh) * 2017-12-21 2018-04-17 润峰电力有限公司 一种晶硅太阳能电池正面电极主栅结构及其印刷方法
CN112234109A (zh) * 2020-11-06 2021-01-15 通威太阳能(安徽)有限公司 一种太阳能电池及其正面电极、制备方法和应用
CN114420773A (zh) * 2022-02-24 2022-04-29 天合光能股份有限公司 太阳能电池片、电池串及二者的制备方法
CN217788414U (zh) * 2022-02-24 2022-11-11 天合光能股份有限公司 太阳能电池片和电池串

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887804B (zh) * 2010-06-29 2012-07-04 彩虹集团公司 一种大面积染料敏化太阳能电池光阳极的制备方法
CN206558513U (zh) * 2016-12-21 2017-10-13 江苏欣战江新能源有限公司 太阳能电池片
CN214152914U (zh) * 2021-03-11 2021-09-07 海宁正泰新能源科技有限公司 一种双面太阳能电池片和光伏组件
CN112951937A (zh) * 2021-04-06 2021-06-11 天合光能股份有限公司 太阳能电池串及其制备方法
CN117790596A (zh) * 2021-08-27 2024-03-29 晶科能源股份有限公司 光伏电池片、电池组件及制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219400A (zh) * 2013-03-22 2013-07-24 江苏荣马新能源有限公司 一种主栅分段式太阳能电池
US20170077320A1 (en) * 2015-09-11 2017-03-16 Solarcity Corporation Anti-corrosion protection of photovoltaic structures
CN107919402A (zh) * 2017-12-21 2018-04-17 润峰电力有限公司 一种晶硅太阳能电池正面电极主栅结构及其印刷方法
CN112234109A (zh) * 2020-11-06 2021-01-15 通威太阳能(安徽)有限公司 一种太阳能电池及其正面电极、制备方法和应用
CN114420773A (zh) * 2022-02-24 2022-04-29 天合光能股份有限公司 太阳能电池片、电池串及二者的制备方法
CN217788414U (zh) * 2022-02-24 2022-11-11 天合光能股份有限公司 太阳能电池片和电池串

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438482A (zh) * 2023-12-07 2024-01-23 浙江爱旭太阳能科技有限公司 背接触电池片、电池串、电池组件和光伏***
CN117464124A (zh) * 2023-12-25 2024-01-30 浙江晶科能源有限公司 一种焊接设备

Also Published As

Publication number Publication date
US20240222533A1 (en) 2024-07-04
CN114420773B (zh) 2024-07-02
EP4328981A1 (en) 2024-02-28
CN114420773A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2023160607A1 (zh) 太阳能电池片、电池串及二者的制备方法
CN106206816B (zh) 太阳能电池单元、电池片阵列、电池组件及其制备方法
WO2016188146A1 (zh) 一种太阳能电池片单元制备方法及太阳能电池组件
JP7075535B1 (ja) 光起電力電池セル、電池モジュール及び製造プロセス
WO2017177726A1 (zh) 一种太阳能电池模组及其制备方法和组件、***
CN204857754U (zh) 一种太阳能电池组件
CN105702759B (zh) 一种太阳能电池主栅电极结构及其制备方法
CN208256683U (zh) 一种多主栅电池的正面电极结构及太阳能电池
CN102593204A (zh) 太阳能电池和制造该太阳能电池的方法
CN218677162U (zh) 一种太阳能电池串和光伏组件
CN104716213A (zh) 光伏电池模块及其制作方法
CN103489945A (zh) 汇流聚能型网状旁路太阳能电池
CN112951937A (zh) 太阳能电池串及其制备方法
CN107464853B (zh) 一种多主栅晶硅太阳能电池片及其焊接方法
JP2017533597A (ja) 太陽電池アレイ、太陽電池モジュール、及びこれらの製造方法
CN217788414U (zh) 太阳能电池片和电池串
JP5903600B2 (ja) 太陽電池モジュール及びこれの製造方法
CN116581171B (zh) 无焊盘超细主栅背接触电池和背接触电池模组及制备方法
JP2017533596A (ja) 太陽電池ユニット、太陽電池アレイ、太陽電池モジュール、及びこれらの製造方法
CN204558491U (zh) 一种光伏电池模块
CN212623492U (zh) 一种电致变色器件的导通结构
CN207967018U (zh) 一种用于叠瓦式光伏组件的焊带及叠瓦式光伏组件
CN206921810U (zh) 带筛孔状低应力铜引线电极的可控硅模块
CN105244385B (zh) 光伏电池片及光伏组件
CN205959993U (zh) 一种可粘接光伏电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023759231

Country of ref document: EP

Ref document number: 23 759 231.6

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023759231

Country of ref document: EP

Effective date: 20231120