WO2023160386A1 - 一种功率余量传输方法、装置和*** - Google Patents

一种功率余量传输方法、装置和*** Download PDF

Info

Publication number
WO2023160386A1
WO2023160386A1 PCT/CN2023/074844 CN2023074844W WO2023160386A1 WO 2023160386 A1 WO2023160386 A1 WO 2023160386A1 CN 2023074844 W CN2023074844 W CN 2023074844W WO 2023160386 A1 WO2023160386 A1 WO 2023160386A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power headroom
power level
radio frequency
terminal
Prior art date
Application number
PCT/CN2023/074844
Other languages
English (en)
French (fr)
Inventor
胡丹
张旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023160386A1 publication Critical patent/WO2023160386A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a power headroom transmission method, device and system.
  • the power headroom indicates the remaining power of a terminal device after completing the current transmission. If the power headroom is a positive value, the base station can schedule more resource blocks for the terminal device in the next scheduling. If the power headroom is a negative value, the terminal device reports that its scheduled transmission power has exceeded the allowed maximum transmission power. Wherein, the maximum transmission power of the terminal device will be affected by the maximum terminal power of the terminal device. In other words, when the maximum terminal power of the terminal equipment changes, the maximum transmission power also changes.
  • new radio access technology new radio access technology
  • NR new radio access technology
  • a terminal can support radio frequency link switching on multiple carriers.
  • different numbers of radio frequency links can be configured on different carriers. Different numbers of radio frequency links correspond to different power levels, so the maximum terminal power is also different, and different maximum terminal power affects the calculation of the power headroom.
  • the radio frequency link of the terminal device is switched, how to report the power headroom becomes an urgent problem to be solved.
  • the present application provides a power headroom transmission method, device and system, which are used to implement accurate power headroom reporting by terminal equipment during radio frequency link switching.
  • a power headroom transmission method is provided.
  • the method can be executed by a terminal device, or by a chip that has a function similar to that of the terminal device.
  • the terminal device receives first indication information, where the first indication information is used to indicate radio frequency link switching.
  • the terminal device sends a first uplink transmission, where the first uplink transmission includes power headroom information.
  • the power headroom is determined according to at least one power level of the first power level and the second power level.
  • the first power level corresponds to uplink transmission after the radio frequency link is switched.
  • the second power level corresponds to uplink transmission before radio frequency link switching.
  • the above-mentioned first uplink transmission belongs to the uplink transmission after the radio frequency link is switched.
  • the terminal device may determine a power headroom according to at least one of the first power level and the second power level, and report the power headroom. In this way, the maximum transmission power used by the power headroom sent by the terminal device can be aligned with that of the network device. In this way, the network device can also perform uplink power control on the terminal device according to the power headroom sent by the terminal device, which can improve the utilization rate of resources in the uplink power domain.
  • the first indication information may be used to indicate carrier switching.
  • the first indication information may also be used to indicate that the number of radio frequency links to be switched changes.
  • the first indication information may also be used to indicate a specific carrier or radio frequency link to be handed over to.
  • the first power level corresponds to the first uplink transmission.
  • the second power level corresponds to the second uplink transmission.
  • the second uplink transmission is an uplink transmission before receiving the first indication information.
  • the second uplink transmission may be the last uplink transmission before receiving the first indication information.
  • the first power level is the power level corresponding to the number of radio frequency links after the radio frequency link switching
  • the second power level is the power level corresponding to the number of radio frequency links before the radio frequency link switching.
  • the terminal device can use at least one of the power levels corresponding to the number of radio frequency links after the radio frequency link switch and the power level corresponding to the number of radio frequency links before the radio frequency link switch level, determine the power headroom, and report the power headroom.
  • the first power level is a power level corresponding to the number of radio frequency links after carrier switching
  • the second power level is a power level corresponding to the number of radio frequency links before carrier switching.
  • the first power level is a corresponding power level after switching the number of radio frequency links
  • the second power level is a corresponding power level before switching the number of radio frequency links.
  • the power headroom includes a first power headroom and a second power headroom, wherein the first power headroom is a power headroom determined according to a first power level, and the second power headroom is The power headroom determined according to the second power level.
  • the terminal device can determine the power headroom according to the first power level and the second power level, and report the power headroom. In this way, the maximum transmission power used by the power headroom sent by the terminal device can be aligned with that of the network device.
  • the power headroom includes the first power headroom and does not include the second power headroom.
  • the first power headroom is a power headroom determined according to a first power level
  • the second power headroom is a power headroom determined according to a second power level.
  • the terminal device can determine the power headroom according to the first power level, and report the power headroom. In this way, the maximum transmission power used by the power headroom sent by the terminal device can be aligned with that of the network device.
  • the power headroom includes the second power headroom and does not include the first power headroom.
  • the first power headroom is a power headroom determined according to a first power level
  • the second power headroom is a power headroom determined according to a second power level.
  • the terminal device can determine the power headroom according to the second power level, and report the power headroom. In this way, the maximum transmission power used by the power headroom sent by the terminal device can be aligned with that of the network device.
  • the first power headroom may be determined according to the first maximum transmission power determined according to the first power level.
  • the second power headroom may be determined according to the second maximum transmission power determined according to the second power level.
  • the first indication information may be information contained in downlink control information (downlink control information, DCI) or media access control (media access control, MAC) control elements (control elements, CE).
  • DCI downlink control information
  • MAC media access control
  • CE control elements
  • the terminal device may further receive first radio resource control (radio resource control, RRC) signaling, where the first RRC signaling includes information used to indicate mechanism 1 or mechanism 2.
  • RRC radio resource control
  • mechanism one is to determine the power headroom according to the first power level and the second power level
  • mechanism two is to determine the power headroom according to the first power level.
  • the first RRC signaling includes information indicating mechanism 1, mechanism 2 or mechanism 3.
  • mechanism one is to determine the power headroom according to the first power level and the second power level
  • mechanism two is to determine the power headroom according to the first power level
  • mechanism three is to determine the power headroom according to the second power level.
  • the terminal device may determine whether to determine the power headroom according to the first power level and the second power level or to determine the power headroom according to the first power level according to the instruction of the network device, and report the power headroom.
  • the power headroom reported by the terminal device is expected by the network device, so the network device can also perform power control for uplink transmission according to the power headroom.
  • the terminal device may also receive the second RRC signaling, and the second RRC signaling is used to configure the DCI or the MAC CE to include indication information of radio frequency link switching. Based on the above solution, whether the terminal device can dynamically switch the radio frequency link may be determined according to the RRC signaling sent by the network device.
  • the terminal device may also send capability information, and the capability information indicates that the terminal device supports DCI or MAC CE includes indication information of radio frequency link switching. Based on the above solution, the terminal device can send capability information of whether dynamic radio frequency link switching is supported to the network device, so that the network device can indicate whether the terminal device can dynamically switch radio frequency links according to the capability information of the terminal device.
  • a power headroom transmission method is provided.
  • the method can be executed by a network device or a chip with a function similar to that of the network device.
  • the network device sends first indication information, where the first indication information is used to indicate radio frequency link switching.
  • the network device receives the first uplink transmission, where the first uplink transmission includes power headroom information.
  • the power headroom is determined according to at least one power level of the first power level and the second power level.
  • the first power level corresponds to uplink transmission after the radio frequency link is switched.
  • the second power level corresponds to uplink transmission before radio frequency link switching.
  • the above-mentioned first uplink transmission is an uplink transmission after the radio frequency link is switched.
  • the first indication information is used to indicate carrier switching.
  • the first indication information is used to indicate that the number of radio frequency links changes.
  • the first indication information is used to indicate a carrier or a radio frequency link.
  • the first power level corresponds to the first uplink transmission.
  • the second power level corresponds to the second uplink transmission.
  • the second uplink transmission is an uplink transmission before receiving the first indication information.
  • the second uplink transmission may be the last uplink transmission before receiving the first indication information.
  • the first power level is the power level corresponding to the number of radio frequency links after the radio frequency link switching
  • the second power level is the power level corresponding to the number of radio frequency links before the radio frequency link switching.
  • the first power level is a power level corresponding to the number of radio frequency links after carrier switching
  • the second power level is a power level corresponding to the number of radio frequency links before carrier switching.
  • the first power level is a corresponding power level after switching the number of radio frequency links
  • the second power level is a corresponding power level before switching the number of radio frequency links.
  • the power headroom includes a first power headroom and a second power headroom, wherein the first power headroom is a power headroom determined according to a first power level, and the second power headroom is The power headroom determined by the second power level.
  • the power headroom includes the first power headroom and does not include the second power headroom, the first power headroom is a power headroom determined according to the first power level, and the second power headroom is The power headroom determined according to the second power level.
  • the power headroom includes the second power headroom and does not include the first power headroom
  • the first power headroom is a power headroom determined according to the first power level
  • the second power headroom is The power headroom determined according to the second power level.
  • the first power headroom is the first maximum transmission rate determined according to the first power level
  • the power is determined.
  • the second power headroom is determined according to the second maximum transmission power determined according to the second power level.
  • the first indication information may be information contained in DCI or MAC CE.
  • the network device sends first RRC signaling, where the first RRC signaling includes information used to indicate mechanism one or mechanism two.
  • first RRC signaling includes information used to indicate mechanism one or mechanism two.
  • mechanism one is to determine the power headroom according to the first power level and the second power level
  • mechanism two is to determine the power headroom according to the first power level.
  • the first RRC signaling may further include information for indicating mechanism 1, mechanism 2 or mechanism 3.
  • mechanism one is to determine the power headroom according to the first power level and the second power level
  • mechanism two is to determine the power headroom according to the first power level
  • mechanism three is to determine the power headroom according to the second power level.
  • the network device sends the second RRC signaling, and the second RRC signaling is used to configure the DCI or the MAC CE to include indication information of radio frequency link switching.
  • the network device receives capability information, and the capability information indicates that the terminal device supports DCI or MAC CE includes indication information of radio frequency link switching.
  • the embodiment of the present application provides a communication device, and the device may be a terminal device, and may also be a chip for the terminal device.
  • the device has the function of realizing any realization method of the first aspect above. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the embodiment of the present application provides a communication device, and the device may be a network device, or may be a chip or a module for the network device.
  • the device has the function of implementing any implementation method of the second aspect above. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the embodiment of the present application provides a communication device, including a processor and a memory; the memory is used to store computer instructions, and when the device is running, the processor executes the computer instructions stored in the memory so that the device executes Any implementation method in the first aspect to the second aspect above.
  • the embodiment of the present application provides a communication device, including a unit or means (means) for performing each step of any implementation method in the first aspect to the second aspect.
  • the embodiment of the present application provides a communication device, including a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit, and execute any implementation method in the first aspect to the second aspect above.
  • the processor includes one or more.
  • an embodiment of the present application provides a communication device, including a processor coupled to a memory, and the processor is used to call a program stored in the memory to execute any implementation method in the first aspect to the second aspect above .
  • the memory may be located within the device or external to the device. And there may be one or more processors.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when it is run on a communication device, the above-mentioned first to second aspects Any implementation method is executed.
  • the embodiment of the present application further provides a computer program product, the computer program product includes computer programs or instructions, and when the computer programs or instructions are run by the communication device, any of the above first to second aspects can be realized method is executed.
  • the embodiment of the present application further provides a chip system, including: a processor, configured to execute any implementation method in the first aspect to the second aspect above.
  • the embodiment of the present application also provides a communication system, including: for performing the above-mentioned first aspect Any terminal device implementing the method and a network device configured to execute any implementing method in the second aspect above.
  • beneficial effects of the second aspect to the twelfth aspect can refer to the beneficial effects of the method shown in the first aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is one of exemplary flow charts of a power headroom transmission method provided in an embodiment of the present application
  • FIG. 3 is one of the schematic diagrams of scenarios of a power headroom transmission method provided in an embodiment of the present application
  • FIG. 4 is one of exemplary flow charts of a power headroom transmission method provided in an embodiment of the present application.
  • FIG. 5 is one of the scene schematic diagrams of a power headroom transmission method provided by an embodiment of the present application.
  • FIG. 6 is one of schematic diagrams of a communication device provided in an embodiment of the present application.
  • FIG. 7 is one of schematic diagrams of a communication device provided by an embodiment of the present application.
  • Power headroom refers to the remaining power of a terminal device after completing the current transmission.
  • the network device can configure a maximum transmission power for the terminal device, then the power headroom can be understood as the remaining power after subtracting the current transmission power from the maximum transmission power.
  • the power headroom can be understood as P0-P1.
  • the maximum transmission power the upper limit of the transmission power that the terminal device can use when transmitting a message.
  • the maximum transmission power may be the maximum transmission power configured on the transmission opportunity i of a physical uplink shared channel (PUSCH) on the carrier f of the serving cell c.
  • the maximum transmission power is related to factors such as the transmission capability of the UE and the frequency band where the PUSCH is located.
  • Transmitter (TX) a physical concept, which can also be called a radio frequency (radio frequency, RF) transmission channel.
  • a transmission channel is referred to as a radio frequency link for short.
  • the transmission channel can work in the following manner, but is not limited to the following manner: the transmission channel can receive the baseband signal from the baseband chip, and perform radio frequency processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain the radio frequency signal , and finally radiate the radio frequency signal into space through the antenna.
  • radio frequency processing such as up-conversion, amplification and filtering
  • the transmission channel may include an antenna switch, an antenna tuner, a low noise amplifier (low noise amplifier, LNA), a power amplifier (power amplifier, PA), a mixer (mixer), a local oscillator (local oscillator, LO) , filter (filter) and other electronic devices, these electronic devices can be integrated into one or more chips as required.
  • the antenna can also sometimes be considered as part of the transmit channel.
  • the radio frequency link in this application may also be replaced by Tx, antenna, radio frequency, transmission channel, transmission port, reception channel or any combination thereof.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the radio access network 100 may include at least one network device (such as 110a and/or 110b in FIG. 1 ), and may also include at least one terminal device (such as at least one of 120a-120j in FIG. 1).
  • the terminal device is connected to the access network equipment in a wireless manner, and the access network equipment is connected to the core network in a wireless or wired manner.
  • Terminal devices and network devices may be connected to each other in a wired or wireless manner.
  • Figure 1 is only a schematic diagram, and the communication system may also include other network devices, such as It may include a wireless relay device and a wireless backhaul device, which are not shown in FIG. 1 .
  • a network device is a network-side device with a wireless transceiver function.
  • the network device may be a device that provides a wireless communication function for a terminal device in a radio access network (radio access network, RAN), and is called a RAN device.
  • radio access network radio access network
  • the network equipment may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), or a next-generation base station in a fifth-generation (5th generation, 5G) mobile communication system (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete some functions of the base station Modules or units, for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • a base station is used as an example of a network device for description below.
  • a terminal device is a user-side device with a wireless transceiver function.
  • the terminal equipment may also be called user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminal devices can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (internet of things, IOT), virtual reality, augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminal devices can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • a terminal is taken as a terminal device as an example for description.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • Example of the application Spectrum resources used by wireless communication are not limited.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the terminal may send the power headroom to the base station. If the power headroom is a positive value, the base station can schedule more resource blocks for the terminal device in the next scheduling. If the power headroom is a negative value, the terminal reports that its scheduled transmission power has exceeded the allowed maximum transmission power.
  • the network device can adjust the uplink transmission power of the terminal according to the PHR.
  • the PHR mechanism in which the terminal performs the PUSCH is taken as an example for description.
  • the PHR can be determined by the following formula (1):
  • P O, PUSCH, b, f, c (j) and ⁇ b, f, c (j) can be collectively referred to as the target power value, j ⁇ 0,1,...,J-1 ⁇ , when the base station configures
  • the terminal will base on the current transmission mode, such as initial access transmission, data scheduling transmission based on downlink control information (DCI) or data scheduling transmission based on RRC, etc. , and the value indicated by the (sounding reference signal indication, SRI) field determines the parameter set number used in the current PUSCH transmission, thereby determining the value of PO and ⁇ .
  • each parameter set includes an identification (identify, ID) of the set, values of PO and ⁇ .
  • resource block, RB resource block
  • is the value corresponding to the subcarrier size (SCS) configuration.
  • PL b,f,c (q d ) is the estimated value of the downlink path loss calculated by the terminal according to the reference signal index value (q d ), which is used as the path loss compensation value of the uplink power control.
  • ⁇ TF,b,f,c (i) According to the type of information carried by PUSCH, such as uplink shared channel (uplink shared channel, UL-SCH) or channel state information (channel state information, CSI), etc., occupied physical resource location and Quantity and other factors are determined.
  • uplink shared channel uplink shared channel
  • CSI channel state information
  • f b, f, c (i, l) is the actual PUSCH power control adjustment status i of PUSCH transmission on BWP b of carrier f of serving cell c.
  • the information is indicated by the base station through the DCI, which enables the base station to adjust the PUSCH transmission power in real time according to the current transmission channel state and scheduling situation.
  • P CMAX,f,c (i) is the maximum transmission power configured on the PUSCH transmission opportunity i on the carrier f of the serving cell c. That is, the maximum transmission power mentioned in the technical terms of the embodiments of the present application.
  • the value of P CMAX,f,c (i) satisfies the following formula (2):
  • P CMAX,L,f,c satisfy the following formula (3):
  • P CMAX,L,f,c MIN ⁇ P EMAX,c - ⁇ T C,c ,(P PowerClass - ⁇ P PowerClass )-MAX(MAX(MPR c + ⁇ MPR c ,A-MPR c )+ ⁇ T IB,c + ⁇ T C,c + ⁇ T RXSRS ,P-MPR c ) ⁇ Formula (3)
  • ⁇ T IB,c represents the additional tolerance of the serving cell c
  • ⁇ T C,c is a predefined value.
  • MPR c in formula (3) represents MPR
  • A-MPR c represents additional maximum output power backoff.
  • P-MPR c represents the maximum output power fallback set in order to ensure regulation.
  • P EMAX,c in the above formula (3) and formula (4) is the value configured by additionalPmax in the cell p-MAX or NR-NS-PmaxList.
  • NR proposes a new uplink transmission mode. If the terminal supports two carriers, the terminal can switch between the two carriers to improve the utilization rate of the radio frequency link. Assuming that the terminal has two radio frequency connections, if the terminal supports switching between two carriers, then the radio frequency links supported on different carriers can be shown in Table 1.
  • Table 1 defines communication behaviors of terminals on these two carriers. Wherein, carrier 1 and carrier 2 represent the two carriers respectively, and Tx represents a radio frequency link. Case 1 in Table 1 means that the terminal has 1 RF link on carrier 1 and 1 RF link on carrier 2. Case 2 in Table 1 indicates that the terminal has no radio frequency link on carrier 1 and has 2 radio frequency links on carrier 2.
  • the terminal supports a maximum of 1 radio frequency link on carrier 1, and supports a maximum of 2 radio frequency links on carrier 2.
  • the terminal can switch between these two cases, that is, one radio frequency link can be switched between two carriers, and switching between these two cases requires switching time. This switching time may be called an uplink switching gap (uplink switching gap).
  • the terminal does not wish to communicate on either of the two carriers during the uplink handoff interval.
  • enhancements are made on the basis of the radio frequency links shown in Table 1.
  • one enhancement is an enhancement in the number of Tx, the total number of Tx has not changed, but the maximum number of Tx on the carrier 1 has changed from 1Tx to 2Tx.
  • Table 3 it can be seen that a case is added on the basis of Table 1, that is, Case 3.
  • each radio frequency link includes a power amplifier (power amplifier, PA). It can be understood that the carriers where the two radio frequency links are located have higher transmit power than the carrier where one radio frequency link is located.
  • the transmit power is about 3 decibels (dB) higher.
  • the terminal can send PHR on the corresponding PUSCH only after the PHR triggering condition is satisfied. Therefore, if the terminal switches carriers during this period, the PCMAX,f,c applied by the PHR reported by the terminal may not be aligned with the PCMAX,f,c value based on when the base station receives the PHR, so the power reported by the terminal There may be errors in the headroom, for example, there is a large gap with the power headroom required by the base station, which may also cause the power headroom reported by the terminal to be unable to be used by the base station to control the uplink power of the terminal.
  • the embodiment of the present application provides a power headroom transmission method, which is used to determine the power headroom when the terminal undergoes carrier switching, and send the power headroom information to the base station, so that the base station can perform power control on the terminal .
  • FIG. 2 it is an exemplary flow chart of a power headroom transmission method provided by an embodiment of the present application, which may include the following operations.
  • S201 The base station sends first indication information.
  • the terminal receives the first indication information.
  • the base station sends the first indication information to the terminal, and the terminal receives the first indication information from the base station.
  • the first indication information may be used to indicate radio frequency link switching.
  • the first indication information may be used to indicate carrier switching, for example, switching from carrier 1 to carrier 2 shown in Table 1.
  • the first indication information may be used to indicate case switching, for example, switching from case 1 to case 2 shown in Table 1.
  • the first indication information may be used to indicate switching of the number of radio frequency links, for example, the first indication information may indicate that the number of radio frequency links of the terminal on carrier 1 as shown in Table 1 changes.
  • the first indication information may indicate that the number of radio frequency links of the terminal on carrier 1 is switched from 1 to 2 radio frequency links, that is, switched from 1 radio frequency link to 2 radio frequency links.
  • the first indication information may also indicate a radio frequency link or a carrier.
  • the first indication information may indicate carrier 1, and the terminal may determine whether to perform carrier switching according to the first indication information.
  • the carrier currently used by the terminal for communication is carrier 2, and the terminal receives first indication information indicating carrier 1, then the terminal may determine that carrier switching is required. That is to say, if the terminal needs to switch from carrier 2 to carrier 1, then the first indication information may also be considered as indicating carrier switching.
  • the radio frequency link currently used by the terminal for communication is radio frequency link 1, and the terminal receives the first indication information indicating radio frequency link 2 and radio frequency link 1, then the terminal can determine the number of radio frequency link occurrences Variety.
  • the first indication information is used to indicate switching of radio frequency links or switching of the number of radio frequency links.
  • the first indication information indicating radio frequency link switching is used as an example for illustration.
  • the first indication information may be downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the first indication information may be uplink scheduling signaling (uplink grant, UL grant), and the format of the first indication information may be DCI format 0_0, DCI format 0_1 or DCI format 0_2 wait.
  • the first indication information may be group common DCI.
  • the first indication information may be information included in a media access control (media access control, MAC) control element (control element, CE).
  • the first indication information may directly indicate radio frequency link switching.
  • the first indication information may include an indication field indicating radio frequency link switching, and the indication field may directly indicate radio frequency link switching.
  • the bit width of the indication field for RF link switching in DCI or MAC CE is 2 bits. When the value of the indication field is 0, the terminal can use 0 radio frequency links for communication. When the value of the indication field is 1, the terminal can use 1 RF link communication, and so on.
  • the first indication information may implicitly indicate radio frequency link switching.
  • a base station can indicate The number of antenna ports implicitly indicates the number of RF links.
  • S202 The terminal sends a first uplink transmission.
  • the base station receives the first uplink transmission.
  • the terminal sends the first uplink transmission to the base station, and the base station receives the first uplink transmission from the terminal.
  • the first uplink transmission in S202 may be understood as uplink transmission after radio frequency link switching.
  • the first uplink transmission may include a reference signal, such as a channel sounding reference signal (sounding reference signal, SRS), and may also include a data channel, such as a physical uplink shared channel (physical uplink shared channel, PUSCH).
  • a reference signal such as a channel sounding reference signal (sounding reference signal, SRS)
  • SRS sounding reference signal
  • a data channel such as a physical uplink shared channel (physical uplink shared channel, PUSCH).
  • the power headroom may be included in the first uplink transmission.
  • the terminal may determine the power headroom when the PHR trigger condition is met.
  • the PHR trigger condition may be configured by the base station.
  • the base station may configure a PHR trigger condition to the terminal through RRC signaling.
  • the PHR triggering condition may include that the PHR prohibition timer expires and the path loss change of at least one activated serving cell exceeds a preset value, the PHR cycle timer expires, high-level configuration or reconfiguration power headroom reporting function, activation of any MAC entity A secondary cell and the first activated downlink bandwidth part (bandwidth part, BWP) is not a dormant BWP, a primary and secondary cell is added, a dormant BWP is switched to a non-dormant BWP in any MAC entity, and the PHR prohibition timer expires and the MAC entity has a new One or more of the uplink resource for transmission and PUCCH transmission on the cell, the power backoff caused by power management exceeds the preset value, and the like.
  • BWP bandwidth part
  • the terminal may determine the power headroom according to at least one power level of the first power level and the second power level.
  • the first power level and the second power level may be the same or different.
  • the first power level may correspond to uplink transmission after radio frequency link switching.
  • the first power level may correspond to the first uplink transmission in S202.
  • the second power level may correspond to uplink transmission before radio frequency link switching.
  • the second power level may correspond to the second uplink transmission.
  • the second uplink transmission may be the uplink transmission before the first indication information in S201.
  • the second uplink transmission is located before the first indication information in the time domain.
  • the time domain resource occupied by the second uplink transmission is located before the time domain resource occupied by the first indication information in the time domain.
  • the second uplink transmission may be the last uplink transmission before the first indication information in S201.
  • the uplink transmission corresponding to the power level can be understood as the power level used by the terminal when sending the uplink transmission.
  • the power level can be used to determine the maximum transmission power, as shown in formula (3).
  • the terminal may determine the power headroom according to the first power level. That is to say, the terminal may determine the power headroom by using the power level after the radio frequency link is switched. Alternatively, it can be understood that the terminal may determine the power headroom by using a power level corresponding to the number of radio frequency links after radio frequency link switching. For example, as shown in Table 1, in case 2, the terminal switches from 0Tx to 2Tx, then the terminal can use the power level corresponding to 2Tx to determine the power headroom.
  • the terminal may determine the power headroom according to the second power level. That is to say, the terminal can determine the power headroom by using the power level before the radio frequency link switching. Alternatively, it can be understood that the terminal may determine the power headroom by using the power level corresponding to the number of radio frequency links before the radio frequency link switching. For example, as shown in Table 1, in case 2, the terminal switches from 0Tx to 2Tx, then the terminal can determine the power headroom by using the power level corresponding to 0Tx.
  • the terminal may determine the power headroom according to the first power level and the second power level. That is to say, the terminal may determine the power headroom by using the power level before the radio frequency link switching and the power level after the radio frequency link switching.
  • the terminal may determine the power headroom by using the power level corresponding to the number of radio frequency links before the radio frequency link switching and the power level corresponding to the number of radio frequency links after the radio frequency link switching. For example, as shown in Table 1, in Case 2, the terminal switches from 0Tx to 2Tx, then the terminal can use the power level corresponding to 0Tx to and the power level corresponding to 2Tx determine the power headroom.
  • the embodiment shown in FIG. 2 may further include the following operation S203.
  • the base station determines the power headroom according to the power headroom information.
  • the base station may determine the power headroom according to the power headroom information carried in the first uplink transmission in S202.
  • the base station may perform uplink transmission power control on the terminal based on the power headroom.
  • Method 1 Determine the power headroom according to the first power level and the second power level.
  • the terminal may determine the first maximum transmission power according to the maximum terminal power corresponding to the first power level, that is, PCMAX,f,c (i) in formula (1). For example, the terminal may determine the maximum terminal power (power class) corresponding to the first power class according to the first power class, and determine the first maximum transmission power according to formula (2) to formula (4). Similarly, the terminal may determine the second maximum transmission power according to the maximum terminal power (power class) corresponding to the second power class.
  • the terminal may determine the first power headroom according to formula (1) and the first maximum transmission power. And, the terminal may determine the second power headroom according to formula (1) and the second maximum transmission power.
  • the first uplink transmission may carry the first power headroom and the second power headroom.
  • the terminal uses 1Tx to send uplink transmission, such as the second uplink transmission, before t1 .
  • the terminal receives the first indication information at t1 .
  • the first indication information indicates the radio frequency links 1Tx and 2Tx, that is, the terminal can use 1Tx and 2Tx, a total of two radio frequency links to send uplink transmission, such as the first uplink transmission.
  • the terminal determines that the power headroom needs to be calculated according to the trigger condition of the PHR, and sends the PHR at t2 .
  • the terminal calculates the power headroom according to the power level currently used, that is, the power level corresponding to the number of radio frequency links is 1, and when the terminal sends PHR, the power level adopted by the terminal has been switched to the corresponding power level of the number of radio frequency links being 2 power level, then the maximum transmission power used by the power headroom reported by the terminal will not be aligned with the base station.
  • the terminal may calculate the first maximum transmission power according to the first power level, for example, the power level corresponding to the number of radio frequency links being 2.
  • the terminal may calculate the second maximum transmission power according to the second power level, for example, the power level corresponding to the number of radio frequency links being one.
  • the terminal may respectively determine two power headrooms according to the first maximum transmission power and the second maximum transmission power, which are referred to as a first power headroom and a second power headroom.
  • the first power headroom is a power headroom determined based on a first power level
  • the second power headroom is a power headroom determined based on a second power level.
  • the terminal may send the first uplink transmission at t2 , such as PUSCH, and the first uplink transmission may carry the first power headroom and the second power headroom.
  • the terminal when a radio frequency link occurs, the terminal can determine the power margin according to the first power level and the second power level, which can be understood as the corresponding power level before the radio frequency link switching and the corresponding power level after the radio frequency link switching. and report the power headroom. In this way, the maximum transmission power used by the power headroom sent by the terminal can be aligned with the base station. In this way, the base station can also perform uplink power control on the terminal according to the power headroom sent by the terminal, which can improve the utilization rate of resources in the uplink power domain.
  • Method 2 The terminal determines the power headroom according to the first power level.
  • the terminal may determine the first maximum transmission power according to the maximum terminal power corresponding to the first power level, that is, PCMAX,f,c (i) in formula (1). For example, the terminal may determine the maximum terminal power (power class) corresponding to the first power class according to the first power class, and determine the first maximum transmission power according to formula (2) to formula (4). The terminal may determine the first power headroom according to formula (1) and the first maximum transmission power. In S202, the first uplink transmission may carry a first power headroom.
  • the terminal uses 1Tx to send uplink transmission, such as the second uplink transmission, before t1 .
  • the terminal receives the first indication information at t1 .
  • the first indication information indicates the radio frequency links 1Tx and 2Tx, that is, the terminal can use 1Tx and 2Tx, a total of two radio frequency links to send uplink transmission, such as the first uplink transmission.
  • the terminal determines that the power headroom needs to be calculated according to the trigger condition of the PHR, and sends the PHR at t2 .
  • the terminal may calculate the first maximum transmission power according to the first power level, for example, the power level corresponding to the number of radio frequency links being 2.
  • the terminal may determine the power headroom according to the first maximum transmission power, which is referred to as the first power headroom.
  • the terminal may send the first uplink transmission at t2 , such as PUSCH, and the first uplink transmission may carry the first power headroom.
  • the terminal when a radio frequency link occurs, the terminal can determine the power headroom according to the first power level, which can be understood as the corresponding power level after the radio frequency link is switched, and report the power headroom. In this way, the maximum transmission power used by the power headroom sent by the terminal can be aligned with the base station. In this way, the base station can also perform uplink power control on the terminal according to the power headroom sent by the terminal, which can improve the utilization rate of resources in the uplink power domain.
  • Method 3 The terminal determines the power headroom according to the second power level.
  • the terminal may determine the second maximum transmission power according to the maximum terminal power corresponding to the second power level, that is, PCMAX,f,c (i) in formula (1). For example, the terminal may determine the maximum terminal power (power class) corresponding to the second power class according to the second power class, and determine the second maximum transmission power according to formula (2) to formula (4). The terminal may determine the second power headroom according to formula (1) and the second maximum transmission power. In S202, the first uplink transmission may carry the second power headroom.
  • the terminal uses 1Tx to send uplink transmission, such as the second uplink transmission, before t1 .
  • the terminal receives the first indication information at t1 .
  • the first indication information indicates the radio frequency links 1Tx and 2Tx, that is, the terminal can use 1Tx and 2Tx, a total of two radio frequency links to send uplink transmission, such as the first uplink transmission.
  • the terminal determines that the power headroom needs to be calculated according to the trigger condition of the PHR, and sends the PHR at t2 .
  • the terminal may calculate the second maximum transmission power according to the second power level, for example, the power level corresponding to the number of radio frequency links being one.
  • the terminal may determine the power headroom according to the second maximum transmission power, which is referred to as the second power headroom.
  • the terminal may send the first uplink transmission at t2 , such as PUSCH, and the first uplink transmission may carry the second power headroom.
  • the terminal determines the power headroom according to the second power level, which can be understood as the corresponding power level before the handover of the radio frequency link, and reports the power headroom.
  • the maximum transmission power used by the power headroom sent by the terminal can be aligned with the base station.
  • the base station can also perform uplink power control on the terminal according to the power headroom sent by the terminal, which can improve the utilization rate of resources in the uplink power domain.
  • the carrier switching action of the terminal is relatively frequent, or the maximum transmission power is increased or the duration of the maximum transmission power transmission is relatively short.
  • the terminal can use any one of the above methods 1 to 3 to determine the power headroom and report the power headroom. In this way, the maximum transmission power used by the power headroom sent by the terminal can be aligned with the base station.
  • the terminal determines the power headroom according to the above method 1, method 2 or method 3, which may be indicated by the base station through RRC signaling.
  • the base station may send RRC signaling to the terminal, and the RRC signaling may include information for indicating mechanism 1, mechanism 2 or mechanism 3.
  • mechanism one may be to determine the power headroom according to the first power level and the second power level, that is, mechanism one is the above method one.
  • the second mechanism may be to determine the power headroom according to the first power level, that is, the second mechanism is the second method above.
  • the third mechanism may be to determine the power headroom according to the second power level, that is, the third mechanism is the third method above. In this way, the terminal can determine the power headroom in a manner indicated by the base station, so that the power headroom reported by the terminal can meet the requirements of the base station.
  • the base station may directly indicate mechanism 1, mechanism 2 or mechanism 3 through RRC signaling. or, The base station may also implicitly indicate mechanism 1, mechanism 2 or mechanism 3 through RRC signaling. Or the base station instructs the UE to report the PHR according to one of the mechanism 1 and the mechanism 2 through RRC signaling. Alternatively, the base station instructs the UE to report the PHR according to one of the first mechanism, the second mechanism and the third mechanism through the RRC signaling. Alternatively, the base station instructs the UE to use mechanism 1 as a PHR reporting method through RRC signaling, or the base station instructs the UE to use mechanism 2 as a PHR reporting method through RRC signaling.
  • the protocol predefines that the terminal determines the power headroom according to one of manners 1, 2, and 3. Then the terminal can determine the power headroom according to the way predefined in the protocol, and send the power headroom to the base station.
  • the base station can configure whether the DCI or MAC CE (such as the first indication information) includes the indication information of radio frequency link switching through RRC signaling. In other words, the base station can configure whether the terminal supports dynamic switching of radio frequency links through RRC signaling. For example, the base station can send RRC signaling to the terminal. If the RRC signaling configuration DCI or MAC CE contains indication information for radio frequency link switching, it can be understood that the base station configures the terminal to support dynamic switching of the radio frequency link through RRC signaling. In this way, the base station can instruct the terminal which radio frequency link or radio frequency links to use to send uplink transmission through the indication information of radio frequency link switching in DCI or MAC CE.
  • the base station sends RRC signaling to the terminal, and the RRC signaling configures an indication field including radio frequency link switching in the DCI or MAC CE. That is to say, the base station configures the terminal to support dynamic switching of radio frequency links through RRC signaling. Then, the base station can indicate to the terminal the radio frequency link or the number of radio frequency links for sending uplink transmission through DCI or MAC CE. The terminal can determine the radio frequency link or the number of radio frequency links that send the uplink signal through the indication field of the radio frequency link switching in the DCI or MAC CE. The method for the terminal to determine the radio frequency link or the number of radio frequency links may be implemented with reference to the foregoing implementation manners, and details are not repeated here.
  • the RRC signaling can also configure the number of bits occupied by the indication field of radio frequency link switching in DCI or MAC CE. For example, 1 bit, 2 bits or more bits are not specifically limited in this application.
  • the terminal may send capability information to the base station.
  • the capability information indicates whether the terminal supports DCI or MAC CE includes indication information of radio frequency link switching, or it can be understood that the capability information is used to indicate whether the terminal supports dynamic switching of radio frequency links.
  • the base station can configure DCI or MAC CE to the terminal through RRC signaling Contains the indication information of radio frequency link switching.
  • the base station can configure the DCI or MAC CE to the terminal through RRC signaling. Instructions for RF link switching.
  • the terminal may determine the first transmission power according to the first maximum transmission power. In S202, the terminal may use the first transmission power to send the first uplink transmission, such as PUSCH. In another possible situation, the terminal may determine the second transmission power according to the second maximum transmission power. In S202, the terminal may use the second transmission power to send the first uplink transmission, such as PUSCH. Exemplarily, the terminal may determine the first transmission power or the second transmission power according to the following formula (5).
  • the above formula (5) indicates that the terminal uses the parameter set number j to send the uplink signal in S202 on the BWP b of the carrier f of the serving cell c, and when the power control adjustment state index value is 1, the terminal sends the uplink signal at the actual timing i of The transmission power of the uplink signal.
  • the terminal determines the first transmission power by using the above formula (5) and the first maximum transmission power, or determines the second transmission power by using the above formula (5) and the second maximum transmission power.
  • the terminal may choose to use the first transmission power to send the uplink signal in S202, or choose to use the second transmission power to send the uplink signal in S202.
  • the terminal needs to report PHRs corresponding to multiple carriers in one MAC CE. Therefore, in the MAC CE, such as the entry MAC CE (multiple entry MAC CE), it may include indicating whether there is a PHR report on each carrier. For example, a field (Ci) may be included in the MAC CE, which is used to indicate whether the PHR corresponding to the serving cell i exists, and setting this field to 1 indicates that the corresponding serving cell has reported the PHR, otherwise it has not reported. For different carriers, if the RF links on different carriers change or the number of RF links changes, then the PHR on different carriers will be calculated due to different RF links or different numbers of RF links. rather different.
  • a field may be included in the MAC CE, which is used to indicate whether the PHR corresponding to the serving cell i exists, and setting this field to 1 indicates that the corresponding serving cell has reported the PHR, otherwise it has not reported.
  • the maximum transmission power will also be different due to different radio frequency links, resulting in different PHRs. Therefore, in the dynamic carrier aggregation scenario, how to report the PHR has also become a major problem.
  • an embodiment of the present application provides a power headroom transmission method.
  • FIG. 4 it is an exemplary flow chart of a power headroom transmission method provided by an embodiment of the present application, which may include the following operations.
  • S401 The base station sends second indication information.
  • the terminal receives the second indication information.
  • the base station may send the second indication information to the terminal, and the terminal may receive the second indication information from the base station.
  • the second indication information may be used to indicate dynamic power aggregation.
  • the second indication information may be used as scheduling information to take effect in a dynamic power aggregation scenario.
  • at least two carriers are configured as CA.
  • the total power level of at least two carriers constituting the CA may be predefined, or the maximum transmission power may be predefined.
  • the maximum transmission power of the terminal on one of the above-mentioned at least two carriers can be changed dynamically. It only needs to ensure that the total uplink transmission power simultaneously sent on the at least two carriers does not exceed the maximum transmission power of the at least two carriers. Can.
  • S402 The terminal sends a third uplink transmission.
  • the base station receives the third uplink transmission.
  • the terminal may send the third uplink transmission to the base station, and the base station may receive the third uplink transmission from the terminal.
  • the power headroom may be included in the third uplink transmission.
  • the power headroom included in the third uplink transmission is referred to as the third power headroom.
  • the third power headroom may be a power headroom determined by the terminal in a carrier aggregation scenario.
  • the terminal may determine the third power headroom according to the third power level.
  • the third power level may be the total power level of at least two carriers.
  • the terminal can determine the corresponding maximum terminal power (power class) according to the third power class, and calculate the third maximum transmission power according to formula (2) to formula (4).
  • the terminal may determine the third power headroom according to the third maximum transmission power and formula (1).
  • the embodiment shown in FIG. 4 may further include the following operation S403.
  • the base station determines the power headroom according to the power headroom information.
  • the base station may determine the third power headroom according to the power headroom information carried in the third uplink transmission in S402.
  • the base station may perform uplink transmission power control on the terminal based on the third power headroom.
  • the terminal uses the radio frequency link 1Tx to send uplink transmission before t1 .
  • the terminal receives the third indication information at t1 .
  • the third indication information indicates dynamic power aggregation. It is assumed that the third indication information takes effect at t2 , that is, the terminal starts to adopt dynamic power aggregation at t2 . Between t1 and t2, the terminal determines that the power headroom needs to be calculated according to the trigger condition of the PHR, and sends the PHR at t3 .
  • the terminal calculates the power headroom according to the power level adopted by t1 , that is, the number of radio frequency links is one corresponding power level, and when the terminal sends PHR, the power level adopted by the terminal has been switched to the corresponding power level during power aggregation , then the maximum transmission power used by the power headroom reported by the terminal will not be aligned with the base station.
  • the terminal can calculate the third maximum transmission power according to the third power level, that is, the total power level in the dynamic power aggregation scenario, and determine the third power headroom according to the third maximum transmission power. Then the terminal may send a third uplink transmission at t3 , such as PUSCH, and the third uplink transmission may carry a third power headroom.
  • the terminal determines the power headroom according to the third power level, which can be understood as the total power level of at least two carriers constituting the CA, and reports the power headroom.
  • the third power level which can be understood as the total power level of at least two carriers constituting the CA.
  • the maximum transmission power used by the power headroom sent by the terminal can be aligned with the base station.
  • the base station can also perform uplink power control on the terminal according to the power headroom sent by the terminal, which can improve the utilization rate of resources in the uplink power domain.
  • the terminal may determine the third transmission power according to the third maximum transmission power.
  • the terminal may use the third transmission power to send a third uplink transmission, such as PUSCH.
  • the terminal may determine the third transmission power according to formula (5), which will not be repeated here.
  • a communication device 600 includes a processing unit 610 and a transceiver unit 620 .
  • the communication device 600 is configured to implement functions of a terminal or a base station in the method embodiments shown in FIG. 2 to FIG. 5 above.
  • the transceiver unit 620 is configured to receive the first indication information.
  • the first indication information is used to indicate radio frequency link switching.
  • the processing unit 610 is configured to determine the power headroom according to at least one power level of the first power level and the second power level.
  • the first power level corresponds to uplink transmission after radio frequency link switching
  • the second power level corresponds to uplink transmission before radio frequency link switching.
  • the transceiver unit 620 is configured to send the first uplink transmission.
  • the first uplink transmission includes power headroom information.
  • the first uplink transmission is uplink transmission after the radio frequency link is switched.
  • the first power level is the power level corresponding to the number of radio frequency links after the radio frequency link switching
  • the second power level is the power level corresponding to the number of radio frequency links before the radio frequency link switching.
  • the power headroom includes a first power headroom and a second power headroom.
  • the first power headroom is a power headroom determined according to a first power level
  • the second power headroom is a power headroom determined according to a second power level.
  • the power headroom includes the first power headroom and does not include the second power headroom.
  • the first power headroom is a power headroom determined according to a first power level
  • the second power headroom is a power headroom determined according to a second power level.
  • the power headroom includes the second power headroom and does not include the first power headroom.
  • the first power headroom is a power headroom determined according to a first power level
  • the second power headroom is a power headroom determined according to a second power level.
  • the first power headroom may be determined according to the first maximum transmission power determined according to the first power level.
  • the second power headroom may be determined according to the second maximum transmission power determined according to the second power level.
  • the first indication information is information contained in DCI or MAC CE.
  • the transceiving unit 620 is further configured to receive first radio resource control RRC signaling, where the first RRC signaling includes information for indicating mechanism one or mechanism two.
  • first RRC signaling includes information for indicating mechanism one or mechanism two.
  • mechanism one is to determine the power headroom according to the first power level and the second power level
  • mechanism two is to determine the power headroom according to the first power level.
  • the transceiver unit 620 is further configured to receive second RRC signaling, and the second RRC signaling is used to configure DCI or MAC CE to include indication information of radio frequency link switching.
  • the transceiver unit 620 is further configured to send capability information, and the capability information indicates that the terminal device supports DCI or MAC CE includes indication information of radio frequency link switching.
  • the transceiver unit 620 is used to send the first indication information.
  • the first indication information is used to indicate radio frequency link switching.
  • the transceiver unit 620 is further configured to receive the first uplink transmission.
  • the first uplink transmission includes power headroom information.
  • the processing unit 610 is configured to determine the power headroom according to the power headroom information.
  • the power headroom is determined according to at least one power level of the first power level and the second power level.
  • the first power level corresponds to uplink transmission after radio frequency link switching
  • the second power level corresponds to uplink transmission before radio frequency link switching.
  • the above-mentioned first uplink transmission is an uplink transmission after the radio frequency link is switched.
  • the first power level is the power level corresponding to the number of radio frequency links after the radio frequency link switching
  • the second power level is the power level corresponding to the number of radio frequency links before the radio frequency link switching.
  • the power headroom includes a first power headroom and a second power headroom, the first power headroom is determined according to the first power level, and the second power headroom is determined according to the second power level Determined power headroom.
  • the power headroom includes the first power headroom and does not include the second power headroom, the first power headroom is the power headroom determined according to the first power level, and the second power headroom is determined according to the second power headroom The power headroom determined by the power class.
  • the power headroom includes the second power headroom and excludes the first power headroom.
  • the first power headroom is the power headroom determined according to the first power level
  • the second power headroom is the power headroom determined according to the second power level.
  • the first power headroom may be determined according to the first maximum transmission power determined according to the first power level.
  • the second power headroom may be determined according to the second maximum transmission power determined according to the second power level.
  • the first indication information is information contained in DCI or MAC CE.
  • the transceiving unit 620 is further configured to send first RRC signaling, where the first RRC signaling includes information for indicating mechanism one or mechanism two.
  • first RRC signaling includes information for indicating mechanism one or mechanism two.
  • mechanism one is to determine the power headroom according to the first power level and the second power level
  • mechanism two is to determine the power headroom according to the first power level.
  • the transceiver unit 620 is further configured to send second RRC signaling, and the second RRC signaling is used to configure DCI or MAC CE to include indication information of radio frequency link switching.
  • the transceiver unit 620 is further configured to receive capability information, and the capability information indicates that the terminal device supports DCI or MAC CE includes indication information of radio frequency link switching.
  • processing unit 610 and the transceiver unit 620 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 2 to FIG. 5 , and will not be repeated here.
  • the communication device 700 includes a processor 710 .
  • the communication device 700 may further include an interface circuit 720 .
  • the processor 710 and the interface circuit 720 are coupled to each other.
  • the interface circuit 720 may be a transceiver or an input-output interface.
  • the communication device 700 may further include a memory 730 for storing and processing The instructions executed by the processor 710 or the input data required by the processor 710 to execute the instructions are stored, or the data generated after the processor 710 executes the instructions is stored.
  • the communication apparatus 700 may be used to implement the method corresponding to the terminal device in the above-mentioned application embodiment, and for specific functions, refer to the description in the above-mentioned embodiment.
  • the communication apparatus 700 may be used to implement the method corresponding to the network device in the above-mentioned application embodiment, and for specific functions, refer to the description in the above-mentioned embodiment.
  • the processor 710 is used to implement the functions of the processing unit 610
  • the interface circuit 720 is used to implement the functions of the transceiver unit 620 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the The information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), the The information is sent by the base station to the terminal.
  • the base station module here may be a baseband chip of the base station, or a DU or other modules, and the DU here may be a DU under an open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer programs or instructions. When the computer programs or instructions are executed, the above-mentioned method embodiments performed by the network device or the terminal device are implemented. method. In this way, the functions described in the above embodiments can be realized in the form of software function units and sold or used as independent products. Based on such an understanding, the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to it or the part of the technical solution.
  • the computer software product is stored in a storage medium, including several instructions for So that a computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the storage medium includes: a U disk, a mobile hard disk, a read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and other various media that can store program codes.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on the computer, the computer is made to execute any method described above by the terminal device or the network device Methods.
  • the present application also provides a system, and the system includes a device for performing the aforementioned terminal device functions and a device for performing the aforementioned network device functions.
  • the embodiment of the present application also provides a processing apparatus, including a processor and an interface; the processor is configured to execute the method performed by the terminal device or the network device involved in any one of the above method embodiments.
  • the method steps in the embodiments of the present application can be implemented by means of hardware, or by a processor executing software Instructions are implemented.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种功率余量传输方法、装置和***,用来在射频链路切换时进行功率余量上报,涉及无线通信技术领域。该方法中,终端设备在发生射频链路切换时,可以根据第一功率等级和第二功率等级中的至少一种功率等级,确定功率余量,并进行功率余量上报。这样,终端设备发送的功率余量所采用的最大传输功率可以与网络设备对齐。这样,网络设备也可以根据终端设备发送的功率余量对终端设备进行上行功率控制,可以提升上行功率域资源的利用率。

Description

一种功率余量传输方法、装置和***
相关申请的交叉引用
本申请要求在2022年02月24日提交中国专利局、申请号为202210173492.9、申请名称为“一种功率余量传输方法、装置和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种功率余量传输方法、装置和***。
背景技术
功率余量表示一个终端设备完成当前传输后的剩余功率。如果功率余量为正值,在下次调度时,基站可以为终端设备调度更多的资源块。如果功率余量为负值,终端设备上报其调度的传输功率已经超过允许的最大传输功率。其中,终端设备的最大传输功率会受到终端设备的最大终端功率的影响。换句话说,终端设备的最大终端功率发生变化时,最大传输功率也会发生变化。
目前,新无线接入技术(new radio access technology,NR)提出终端可以支持在多个载波进行射频链路切换。而且不同的载波上可以配置不同的射频链路数量。不同的射频链路数量所对应的功率等级不同,因此最大终端功率也有所不同,不同的最大终端功率影响功率余量的计算。在终端设备的射频链路发生切换时,如何上报功率余量成为亟待解决的问题。
发明内容
本申请提供一种功率余量传输方法、装置和***,用于实现终端设备在射频链路切换时进行准确的功率余量上报。
第一方面,提供一种功率余量传输方法。该方法可以由终端设备执行,或者类似终端设备功能的芯片执行。该方法中,终端设备接收第一指示信息,第一指示信息用于指示射频链路切换。终端设备发送第一上行传输,第一上行传输包括功率余量的信息。其中,功率余量根据第一功率等级和第二功率等级中至少一种功率等级确定。其中,第一功率等级对应射频链路切换后的上行传输。第二功率等级对应射频链路切换前的上行传输。上述第一上行传输属于射频链路切换后的上行传输。
基于上述方案,终端设备在发生射频链路切换时,可以根据第一功率等级和第二功率等级中的至少一种功率等级,确定功率余量,并进行功率余量上报。这样,终端设备发送的功率余量所采用的最大传输功率可以与网络设备对齐。这样,网络设备也可以根据终端设备发送的功率余量对终端设备进行上行功率控制,可以提升上行功率域资源的利用率。
在一个示例中,第一指示信息可以用于指示载波切换。或者,第一指示信息还可以用于指示要切换的射频链路数量发生变化。另一个示例中,第一指示信息也可以用于指示具体要切换到的载波或者射频链路。
一种可能的情况中,第一功率等级对应第一上行传输。另一种可能的情况中,第二功率等级对应第二上行传输。可选的,第二上行传输为接收第一指示信息之前的上行传输。例如,第二上行传输可以是接收第一指示信息之前的最后一个上行传输。
在一种可能的实现方式中,第一功率等级为射频链路切换后的射频链路数量对应功率等级,第二功率等级为射频链路切换前的射频链路数量对应的功率等级。
基于上述方案,终端设备在发生射频链路切换时,可以根据射频链路切换后的射频链路数量对应功率等级和射频链路切换前的射频链路数量对应的功率等级中的至少一种功率等级,确定功率余量,并进行功率余量上报。
在一个示例中,第一功率等级为载波切换后的射频链路数量对应功率等级,第二功率等级为载波切换前的射频链路数量对应的功率等级。另一个示例中,第一功率等级为射频链路数量切换后对应的功率等级,第二功率等级为射频链路数量切换前对应的功率等级。
在一种可能的实现方式中,功率余量包括第一功率余量和第二功率余量,其中,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
基于上述方案,终端设备在发生射频链路切换时,可以根据第一功率等级和第二功率等级确定功率余量,并进行功率余量上报。这样,终端设备发送的功率余量所采用的最大传输功率可以与网络设备对齐。
在一种可能的实现方式中,功率余量包括第一功率余量且不包括第二功率余量。其中,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
基于上述方案,终端设备在发生射频链路切换时,可以根据第一功率等级确定功率余量,并进行功率余量上报。这样,终端设备发送的功率余量所采用的最大传输功率可以与网络设备对齐。
在一种可能的实现方式中,功率余量包括第二功率余量且不包括第一功率余量。其中,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
基于上述方案,终端设备在发生射频链路切换时,可以根据第二功率等级确定功率余量,并进行功率余量上报。这样,终端设备发送的功率余量所采用的最大传输功率可以与网络设备对齐。
在一种可能的实现方式中,第一功率余量可以是根据第一功率等级确定出的第一最大传输功率确定的。第二功率余量可以是根据第二功率等级确定出的第二最大传输功率确定的。
在一种可能的实现方式中,第一指示信息可以是下行控制信息(downlink control information,DCI)或者媒体访问控制(meida access control,MAC)控制元素(control elements,CE)包含的信息。基于上述方案,第一指示信息可以通过多种方式实现传输,从而使得第一指示信息实现方式较为灵活。
在一种可能的实现方式中,终端设备还可以接收第一无线资源控制(radio resource control,RRC)信令,第一RRC信令包含用于指示机制一或机制二的信息。其中,机制一为根据第一功率等级和第二功率等级确定功率余量,机制二为根据第一功率等级确定功率余量。
在另一种可能的实现方式中,第一RRC信令包含指示机制一、机制二或机制三的信息。其中,机制一为根据第一功率等级和第二功率等级确定功率余量,机制二为根据第一功率等级确定功率余量,机制三为根据第二功率等级确定功率余量。
基于上述方案,终端设备可以根据网络设备的指示,确定是采用根据第一功率等级和第二功率等级确定功率余量,还是采用根据第一功率等级确定功率余量,并进行功率余量上报。这样,终端设备上报的功率余量是网络设备所期望的,因此网络设备也可以根据该功率余量进行上行传输的功率控制。
在一种可能的实现方式中,终端设备还可以接收第二RRC信令,第二RRC信令用于配置DCI或者MAC CE包含射频链路切换的指示信息。基于上述方案,终端设备是否可以动态的进行射频链路切换可以是根据网络设备发送的RRC信令确定的。
在一种可能的实现方式中,终端设备还可以发送能力信息,能力信息指示终端设备支持DCI或者MAC CE包含射频链路切换的指示信息。基于上述方案,终端设备可以向网络设备发送是否支持动态射频链路切换的能力信息,这样网络设备可以根据终端设备的能力信息,指示终端设备是否可以动态的射频链路切换。
第二方面,提供一种功率余量传输方法。该方法可以由网络设备或者类似网络设备功能的芯片执行。该方法中,网络设备发送第一指示信息,第一指示信息用于指示射频链路切换。网络设备接收第一上行传输,第一上行传输包括功率余量的信息。其中,功率余量根据第一功率等级和第二功率等级中至少一种功率等级确定。其中,第一功率等级对应射频链路切换后的上行传输。第二功率等级对应射频链路切换前的上行传输。上述第一上行传输是射频链路切换后的上行传输。
在一个示例中,第一指示信息用于指示载波切换。或者,第一指示信息用于指示射频链路数量发生变化。另一个示例中,第一指示信息用于指示载波或者射频链路。
一种可能的情况中,第一功率等级对应第一上行传输。另一种可能的情况中,第二功率等级对应第二上行传输。可选的,第二上行传输为接收第一指示信息之前的上行传输。例如,第二上行传输可以是接收第一指示信息之前的最后一个上行传输。
在一种可能的实现方式中,第一功率等级为射频链路切换后的射频链路数量对应功率等级,第二功率等级为射频链路切换前的射频链路数量对应的功率等级。
在一个示例中,第一功率等级为载波切换后的射频链路数量对应功率等级,第二功率等级为载波切换前的射频链路数量对应的功率等级。另一个示例中,第一功率等级为射频链路数量切换后对应的功率等级,第二功率等级为射频链路数量切换前对应的功率等级。
在一种可能的实现方式中,功率余量包括第一功率余量和第二功率余量,其中,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是第二功率等级确定的功率余量。在一种可能的实现方式中,功率余量包括第一功率余量且不包括第二功率余量,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
在一种可能的实现方式中,功率余量包括第二功率余量且不包括第一功率余量,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
在一种可能的实现方式中,第一功率余量是根据第一功率等级确定出的第一最大传输 功率确定的。第二功率余量是根据第二功率等级确定出的第二最大传输功率确定的。
在一种可能的实现方式中,第一指示信息可以是DCI或者MAC CE包含的信息。
在一种可能的实现方式中,网络设备发送第一RRC信令,第一RRC信令包含用于指示机制一或机制二的信息。其中,机制一为根据第一功率等级和第二功率等级确定功率余量,机制二为根据第一功率等级确定功率余量。
在一种可能的实现方式中,第一RRC信令还可以包含用于指示机制一、机制二或机制三的信息。其中,机制一为根据第一功率等级和第二功率等级确定功率余量,机制二为根据第一功率等级确定功率余量,机制三为根据第二功率等级确定功率余量。
在一种可能的实现方式中,网络设备发送第二RRC信令,第二RRC信令用于配置DCI或者MAC CE包含射频链路切换的指示信息。
在一种可能的实现方式中,网络设备接收能力信息,能力信息指示终端设备支持DCI或者MAC CE包含射频链路切换的指示信息。
第三方面,本申请实施例提供一种通信装置,该装置可以是终端设备,还可以是用于终端设备的芯片。该装置具有实现上述第一方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,本申请实施例提供一种通信装置,该装置可以是网络设备,还可以是用于网络设备的芯片或模块。该装置具有实现上述第二方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机指令,当该装置运行时,该处理器执行该存储器存储的计算机指令,以使该装置执行上述第一方面至第二方面中的任意实现方法。
第六方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面至第二方面中的任意实现方法的各个步骤的单元或手段(means)。
第七方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面至第二方面中的任意实现方法。该处理器包括一个或多个。
第八方面,本申请实施例提供一种通信装置,包括与存储器耦合的处理器,该处理器用于调用所述存储器中存储的程序,以执行上述第一方面至第二方面中的任意实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个。
第九方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得上述第一方面至第二方面中的任意实现方法被执行。
第十方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被通信装置运行时,使得上述第一方面至第二方面中的任意实现方法被执行。
第十一方面,本申请实施例还提供一种芯片***,包括:处理器,用于执行上述第一方面至第二方面中的任意实现方法。
第十二方面,本申请实施例还提供一种通信***,包括:用于执行上述第一方面中的 任意实现方法的终端设备和用于执行上述第二方面中的任意实现方法的网络设备。
另外,第二方面至第十二方面的有益效果可以参照第一方面所示的方法中的有益效果。
附图说明
图1为本申请实施例提供的一种通信***的示意图;
图2为本申请实施例提供的一种功率余量传输方法的示例性流程图之一;
图3为本申请实施例提供的一种功率余量传输方法的场景示意图之一;
图4为本申请实施例提供的一种功率余量传输方法的示例性流程图之一;
图5为本申请实施例提供的一种功率余量传输方法的场景示意图之一;
图6为本申请实施例提供的一种通信装置的示意图之一;
图7为本申请实施例提供的一种通信装置的示意图之一。
具体实施方式
以下,对本申请实施例涉及的技术术语进行解释和说明。
1、功率余量,指一个终端设备完成当前传输后的剩余功率。网络设备可以为终端设备配置一个最大传输功率,那么上述功率余量可以理解为最大传输功率减去当前传输的传输功率后的剩余功率。举例来说,终端设备发送物理上行控制信道(physical uplink shared channel,PUSCH)时的传输功率为P1,网络设备为终端设备配置的最大传输功率为P0,那么功率余量可以理解为P0-P1。
2、最大传输功率,终端设备在传输一个信息时可以采用的传输功率上限。举例来说,最大传输功率可以是服务小区c的载波f上的物理上行共享链路(physical uplink shared channel,PUSCH)在发送时机i上配置的最大传输功率。该最大传输功率与UE发送能力、PUSCH所在的频带等因素相关。
3、发射通道(transmitter,TX):一个物理概念,也可以称为射频(radio frequency,RF)发射通道,在本申请中,发射通道均简称为射频链路。在本申请中,发射通道可以是按照如下方式工作的,但不仅限于如下方式:发射通道可接收来自基带芯片的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。具体地,发射通道可以包括天线开关,天线调谐器,低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是发射通道的一部分。可选的,本申请中射频链路也可以替换为Tx、天线、射频、发射通道、发送端口、接收通道或者它们的任意组合。
图1是本申请的实施例应用的通信***1000的架构示意图。如图1所示,该通信***包括无线接入网100和核心网200。其中,无线接入网100可以包括至少一个网络设备(如图1中的110a和/或110b),还可以包括至少一个终端装置(如图1中的120a-120j中的至少一个)。终端装置通过无线的方式与接入网设备相连,接入网设备通过无线或有线方式与核心网连接。终端装置和终端装置之间以及网络设备和网络设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信***中还可以包括其它网络设备,如还 可以包括无线中继设备和无线回传设备,在图1中未画出。
网络设备是一种具有无线收发功能的网络侧设备。网络设备可以是无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,称为RAN设备。例如,网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信***中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信***中的下一代基站、未来移动通信***中的基站或WiFi***中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为网络设备的例子进行描述。
终端设备是一种具有无线收发功能的用户侧设备。终端设备也可以称为用户设备(user equipment,UE)、移动台、移动终端等。终端装置可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端装置可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端装置所采用的具体技术和具体装置形态不做限定。本申请实施例中以终端为终端设备为例进行说明。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例 对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子***来执行。这里的包含有基站功能的控制子***可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
目前,终端在达到功率余量上报(power headroom report,PHR)的触发条件时,终端可以向基站发送功率余量。如果功率余量为正值,在下次调度时,基站可以为终端设备调度更多的资源块。如果功率余量为负值,终端上报其调度的传输功率已经超过允许的最大传输功率。网络设备可以根据PHR调整终端的上行传输功率。以下,以终端进行PUSCH的PHR机制为例进行说明。
如果终端根据实际传输的PUSCH计算第一类PHR,该PHR可以通过以下公式(1)确定:
其中,PO,PUSCH,b,f,c(j)和αb,f,c(j)可以统称为目标功率值,j∈{0,1,…,J-1},当基站配置了多个指示PO和α取值的参数集合时,终端会根据当前传输模式,如初始接入传输,基于下行控制信息(downlink control information,DCI)的数据调度传输或基于RRC的数据调度传输等,以及(sounding reference signal indication,SRI)字段指示的值确定当前PUSCH传输采用的参数集合编号,从而确定PO和α取值。其中,每个参数集合包括该集合的标识(identify,ID),PO和α的取值。
是服务小区c的载波f的上行激活BWP b上的PUSCH发送实际上PUSCH占用的资源块(resource block,RB)数量。
μ是子载波间隔(subcarrier size,SCS)配置对应的值。
PLb,f,c(qd)是终端根据参考信号索引值(qd)计算得到的下行路径损耗估计值,作为上行功率控制的路径损耗补偿值。
ΔTF,b,f,c(i)根据PUSCH承载的信息类型,例如上行共享信道(uplink shared channel,UL-SCH)或者信道状态信息(channel state information,CSI)等、占用的物理资源位置和数量等因素确定。
fb,f,c(i,l)是服务小区c的载波f的BWP b上的PUSCH发送实际i上的PUSCH功率控制调整状态。该信息是由基站通过DCI指示的,可以使得基站根据当前传输的信道状态、调度情况实时调整PUSCH发送功率。
PCMAX,f,c(i)是服务小区c的载波f上PUSCH发送时机i上配置的最大传输功率。也就是本申请实施例的技术术语中提及的最大传输功率。PCMAX,f,c(i)的取值满足如下公式(2):
PCMAX,L,f,c≤PCMAX,f,c≤PCMAX,H,f,c          公式(2)
其中,PCMAX,L,f,c满足以下公式(3):
PCMAX,L,f,c=MIN{PEMAX,c-ΔTC,c,(PPowerClass-ΔPPowerClass)-MAX(MAX(MPRc+ΔMPRc,A-MPRc)+ΔTIB,c+ΔTC,c+ΔTRXSRS,P-MPRc)}               公式(3)
PCMAX,H,f,c满足以下公式(4):
PCMAX,H,f,c=MIN{PEMAX,c,PPowerClass-ΔPPowerClass}     公式(4)
上述公式3中ΔTIB,c表示服务小区c的额外容忍度,ΔTC,c是预定义的值。公式(3)中的MPRc表示MPR,A-MPRc表示额外最大输出功率回退。
ΔTRXSRS是否应用与SRS端口和天线配置相关。P-MPRc表示为了保证法规的设置的最大输出功率回退。
上述公式(3)和公式(4)中的PEMAX,c为信元p-MAX或者NR-NS-PmaxList中的additionalPmax配置的值。PPowerClass为不同功率等级下定义的终端的最大终端功率。对于使能功率等级2的终端,ΔPPowerClass=3dB;对于使能功率等级3的终端ΔPPowerClass=6dB。
由此可见,不同功率等级下的PPowerClass不同,因此不同功率等级下的PCMAX,L,f,c也不同,这就导致了通过不同功率等级确定的功率余量不同。
NR提出了一种新的上行传输模式,如果终端支持2个载波,那么终端可以在这两个载波上进行切换,提高射频链路利用率。假设终端有两个射频连,如果该终端支持在两个载波之间进行切换,那么在不同的载波上支持的射频链路可以如表1所示。相关技术中,通过表1对终端在这两个载波上的通信行为进行了定义。其中,载波1和载波2分别表示这两个载波,Tx表示射频链路。表1中的案例1表示终端在载波1上有1个射频链路,在载波2上有1个射频链路。表1中的案例2表示终端在载波1没有射频链路,在载波2上有2个射频链路。可以看出,终端在载波1最大支持1个射频链路,在载波2最大支持2个射频链路。终端可以在这两个案例之间进行切换,即可以把1个射频链路在两个载波之间进行切换,而这两个案例之间切换需要切换时间。这个切换时间可以称之为上行链路切换间隔(uplink switching gap)。终端在上行链路切换间隔内不希望在两个载波中的任何一个载波上进行通信。
表1:一种载波切换的示例
相关技术中,对表1中示出的射频链路的基础上进行了增强。其中,一个增强是在Tx数量上的增强,总的Tx数量没有发生改变,但是在载波1上的最大Tx数量从1Tx变为了2Tx。参见表3,可以看出在表1的基础上增加了一个案例,也就是案例3。
表2:一种载波切换的示例
其中,每个射频链路上包含一个功率放大器(power amplifier,PA)。可以理解为,两个射频链路所在的载波,比一个射频链路所在载波可发射的功率更高。发射功率约高3分贝(dB)。
由表1和表2可以看出,终端在载波之间的切换会导致射频链路发生改变,而射频链 路的改变,会导致终端的功率等级发生变化。所以,射频链路的改变最终会导致功率余量发生变化。
目前,PHR触发和PHR实际上报时间存在时间差,满足PHR触发条件后终端才能够在相应的PUSCH上发送PHR。因此,如果在此期间终端发生载波的切换,那么终端上报的PHR所应用的PCMAX,f,c与基站接收PHR时依据的PCMAX,f,c取值可能不对齐,因此终端上报的功率余量可能会存在误差,例如与基站所需的功率余量差距较大,这也会导致终端上报的功率余量可能无法用于基站对终端进行上行功率控制。
有鉴于此,本申请实施例提供一种功率余量传输方法,用来在终端发生载波切换时,终端确定功率余量,并向基站发送功率余量的信息,从而让基站对终端进行功率控制。参阅图2,为本申请实施例提供的一种功率余量传输方法的示例性流程图,可以包括以下操作。
S201:基站发送第一指示信息。
相应的,终端接收第一指示信息。例如,基站向终端发送第一指示信息,终端从基站接收该第一指示信息。
在S201中,第一指示信息可以用于指示射频链路切换。可选的,第一指示信息可以用于指示载波切换,例如从表1所示的载波1切换至载波2。可选的,第一指示信息可以用于指示案例切换,例如从表1中所示的案例1切换至案例2。或者,第一指示信息可以用于指示射频链路数量切换,例如第一指示信息可以指示终端在如表1所示的载波1上的射频链路数量发生变化。举例来说,第一指示信息可以指示终端在载波1上的射频链路数量从1个切换至2个射频链路,也就说从1个射频链路切换至2个射频链路。
需要说明的是,第一指示信息也可以指示射频链路或者载波。例如,第一指示信息可以指示载波1,终端可以根据第一指示信息确定是否需要进行载波切换。举例来说,终端当前用于通信的载波为载波2,终端接收第一指示信息,该第一指示信息指示载波1,那么终端可以确定需要进行载波切换。也就是说,终端需要从载波2切换至载波1,那么也可以认为第一指示信息指示载波切换。又例如,终端当前用于通信的射频链路为射频链路1,终端接收第一指示信息,该第一指示信息指示射频链路2和射频链路1,那么终端可以确定射频链路数量发生变化。也就是说,终端的射频链路数量从1个切换为2个,那么可以认为第一指示信息用于指示射频链路切换或者说射频链路数量切换。为了便于描述,本申请实施例中以第一指示信息指示射频链路切换为例进行说明。
一种可能的情况中,第一指示信息可以是下行控制信息(downlink control information,DCI)。举例来说,在第一指示信息为DCI时,第一指示信息可以是上行调度信令(uplink grant,UL grant),第一指示信息的格式可以为DCI格式0_0、DCI格式0_1或者DCI格式0_2等。又例如,在第一指示信息为DCI时,第一指示信息可以是组公共DCI。另一种可能的情况中,第一指示信息可以是媒体访问控制(media access control,MAC)控制元素(control element,CE)包含的信息。
一个示例中,第一指示信息可以直接指示射频链路切换。例如,第一指示信息中可以包括指示射频链路切换的指示域,该指示域可以直接指示射频链路切换。例如,DCI或者MAC CE中的射频链路切换的指示域位宽为2比特,指示域取值为0时,终端可以采用0个射频链路通信,指示域取值为1时,终端可以采用1个射频链路通信,以此类推。
另一个示例中,第一指示信息可以隐式指示射频链路切换。例如,基站可以通过指示 天线端口数隐式指示射频链路数量。
S202:终端发送第一上行传输。
相应的,基站接收第一上行传输。例如,终端向基站发送第一上行传输,基站从终端接收该第一上行传输。可选的,S202的第一上行传输可以理解为射频链路切换后的上行传输。
可以理解的是,第一上行传输可以包括参考信号,如信道探测参考信号(sounding reference signal,SRS)等,也可以包括数据信道,如物理上行共享信道(physical uplink shared channel,PUSCH)等。
在S202中,第一上行传输中可以包括功率余量。在一种可能的实现方式中,终端可以在满足PHR触发条件时确定功率余量。其中,PHR触发条件可以是基站配置的。例如,基站可以通过RRC信令向终端配置PHR触发条件。示例性的,PHR触发条件可以包括PHR禁止定时器过期且至少一个激活服务小区的路径损耗变化超过预设值、PHR周期定时器过期、高层配置或者重配功率余量上报功能、任意MAC实体激活一个辅小区且第一个激活下行带宽部分(bandwidth part,BWP)不是休眠BWP、增添一个主辅小区、任意MAC实体中将休眠BWP切换到非休眠BWP以及PHR禁止定时器过期且MAC实体有新传输的上行资源且该小区上有PUCCH传输,功率管理引起的功率回退超过预设值等中的一个或多个。
在S202中,终端可以根据第一功率等级和第二功率等级中至少一项功率等级确定功率余量。可选的,上述第一功率等级和第二功率等级可能相同也可能不同。
可以理解的是,第一功率等级可以对应射频链路切换后的上行传输。例如,第一功率等级可以对应S202中的第一上行传输。第二功率等级可以对应射频链路切换前的上行传输。例如,第二功率等级可以对应第二上行传输。该第二上行传输可以是S201中的第一指示信息之前的上行传输。比如,第二上行传输在时域上位于第一指示信息之前。又例如,第二上行传输占用的时域资源在时域上位于第一指示信息占用的时域资源之前。举例来说,第二上行传输可以是S201中的第一指示信息之前的最后一个上行传输。
需要说明的是,功率等级对应的上行传输可以理解为,终端在发送上行传输时采用的功率等级。可选的,该功率等级可以用于确定最大传输功率,如公式(3)所示。
一种可能的情况中,终端可以根据第一功率等级确定功率余量。也就是说,终端可以采用射频链路切换之后的功率等级确定功率余量。或者,可以理解为终端可以采用射频链路切换之后的射频链路数量对应的功率等级确定功率余量。举例来说,如表1所示,案例2中终端从0Tx切换至2Tx,那么终端可以采用2Tx对应的功率等级确定功率余量。
另一种可能的情况中,终端可以根据第二功率等级确定功率余量。也就是说,终端可以采用射频链路切换之前的功率等级确定功率余量。或者,可以理解为终端可以采用射频链路切换之前的射频链路数量对应的功率等级确定功率余量。举例来说,如表1所示,案例2中终端从0Tx切换至2Tx,那么终端可以采用0Tx对应的功率等级确定功率余量。
再一种可能的情况中,终端可以根据第一功率等级和第二功率等级确定功率余量。也就是说,终端可以采用射频链路切换之前的功率等级以及射频链路切换之后的功率等级确定功率余量。或者,可以理解为终端可以采用射频链路切换之前的射频链路数量对应的功率等级以及射频链路切换之后的射频链路数量对应的功率等级确定功率余量。举例来说,如表1所示,案例2中终端从0Tx切换至2Tx,那么终端可以采用0Tx对应的功率等级以 及2Tx对应的功率等级确定功率余量。
可选的,图2所示的实施例中还可以包括以下操作S203。
S203:基站根据功率余量的信息,确定功率余量。
例如,基站可以根据S202中第一上行传输中携带的功率余量的信息,确定功率余量。可选的,基站可以基于功率余量,对终端进行上行传输的功率控制。
以下,对终端确定功率余量的方法进行详细介绍。
方法一、根据第一功率等级和第二功率等级确定功率余量。
终端可以根据第一功率等级对应的最大终端功率确定第一最大传输功率,也就是公式(1)中的PCMAX,f,c(i)。例如,终端可以根据第一功率等级确定第一功率等级对应的最大终端功率(power class),并根据公式(2)至公式(4)确定第一最大传输功率。同理,终端可以根据第二功率等级所对应的最大终端功率(power class)确定第二最大传输功率。
终端可以根据公式(1)以及第一最大传输功率确定第一功率余量。以及,终端可以根据公式(1)以及第二最大传输功率确定第二功率余量。在S202中,第一上行传输可以携带第一功率余量和第二功率余量。
举例来说,如图3所示,终端在t1之前采用1Tx发送上行传输,如第二上行传输。终端在t1接收到第一指示信息。第一指示信息指示射频链路1Tx和2Tx,也就是终端可以采用1Tx和2Tx,共两个射频链路发送上行传输,如第一上行传输。假设在t1之前,终端根据PHR触发条件确定需要计算功率余量,并在t2发送PHR。如果终端根据当前采用的功率等级,也就是射频链路数量为1个对应的功率等级计算功率余量,而在终端发送PHR时,终端采用的功率等级已经切换为射频链路数量为2个对应的功率等级,那么终端上报的功率余量所采用的最大传输功率会与基站不对齐。
基于本申请实施例提供的上述方法一,终端可以根据第一功率等级,如射频链路数量为2个对应的功率等级计算第一最大传输功率。终端可以根据第二功率等级,如射频链路数量为1个对应的功率等级计算第二最大传输功率。终端可以根据第一最大传输功率和第二最大传输功率,分别确定两个功率余量,称为第一功率余量和第二功率余量。其中,第一功率余量是基于第一功率等级确定的功率余量,第二功率余量是基于第二功率等级确定的功率余量。那么终端在t2可以发送第一上行传输,如PUSCH,该第一上行传输中可以携带第一功率余量和第二功率余量。
基于上述方案,终端在发生射频链路时,可以根据第一功率等级和第二功率等级,可以理解为射频链路切换前对应的功率等级和射频链路切换后对应的功率等级,确定功率余量,并进行功率余量上报。这样,终端发送的功率余量所采用的最大传输功率可以与基站对齐。这样,基站也可以根据终端发送的功率余量对终端进行上行功率控制,可以提升上行功率域资源的利用率。
方法二、终端根据第一功率等级确定功率余量。
终端可以根据第一功率等级对应的最大终端功率确定第一最大传输功率,也就是公式(1)中的PCMAX,f,c(i)。例如,终端可以根据第一功率等级确定第一功率等级对应的最大终端功率(power class),并根据公式(2)至公式(4)确定第一最大传输功率。终端可以根据公式(1)以及第一最大传输功率确定第一功率余量。在S202中,第一上行传输可以携带第一功率余量。
举例来说,如图3所示,终端在t1之前采用1Tx发送上行传输,如第二上行传输。终 端在t1接收到第一指示信息。第一指示信息指示射频链路1Tx和2Tx,也就是终端可以采用1Tx和2Tx,共两个射频链路发送上行传输,如第一上行传输。假设在t1之前,终端根据PHR触发条件确定需要计算功率余量,并在t2发送PHR。基于本申请实施例提供的上述方法二,终端可以根据第一功率等级,如射频链路数量为2个对应的功率等级计算第一最大传输功率。终端可以根据第一最大传输功率确定功率余量,称为第一功率余量。那么终端在t2可以发送第一上行传输,如PUSCH,该第一上行传输中可以携带第一功率余量。
基于上述方案,终端在发生射频链路时,根据第一功率等级,可以理解为射频链路切换后对应的功率等级确定功率余量,并进行功率余量上报。这样,终端发送的功率余量所采用的最大传输功率可以与基站对齐。这样,基站也可以根据终端发送的功率余量对终端进行上行功率控制,可以提升上行功率域资源的利用率。
方法三、终端根据第二功率等级确定功率余量。
终端可以根据第二功率等级对应的最大终端功率确定第二最大传输功率,也就是公式(1)中的PCMAX,f,c(i)。例如,终端可以根据第二功率等级确定第二功率等级对应的最大终端功率(power class),并根据公式(2)至公式(4)确定第二最大传输功率。终端可以根据公式(1)以及第二最大传输功率确定第二功率余量。在S202中,第一上行传输可以携带第二功率余量。
举例来说,如图3所示,终端在t1之前采用1Tx发送上行传输,如第二上行传输。终端在t1接收到第一指示信息。第一指示信息指示射频链路1Tx和2Tx,也就是终端可以采用1Tx和2Tx,共两个射频链路发送上行传输,如第一上行传输。假设在t1之前,终端根据PHR触发条件确定需要计算功率余量,并在t2发送PHR。基于本申请实施例提供的上述方法三,终端可以根据第二功率等级,如射频链路数量为1个对应的功率等级计算第二最大传输功率。终端可以根据第二最大传输功率确定功率余量,称为第二功率余量。那么终端在t2可以发送第一上行传输,如PUSCH,该第一上行传输中可以携带第二功率余量。
基于上述方案,终端在发生射频链路时根据第二功率等级,可以理解为射频链路切换前对应的功率等级,确定功率余量,并进行功率余量上报。这样,终端发送的功率余量所采用的最大传输功率可以与基站对齐。这样,基站也可以根据终端发送的功率余量对终端进行上行功率控制,可以提升上行功率域资源的利用率。
基于本申请实施例示出的上述方法一至方法三,在终端的切换载波动作较为频繁,或者提升最大传输功率或者降低最大传输功率传输的持续时间比较短,举例来说,上报完当前PHR后,最大传输功率会很快恢复到触发PHR时刻的状态时,终端可以采用上述方法一至方法三中的任一种方法确定功率余量,并进行功率余量上报。这样,终端发送的功率余量所采用的最大传输功率可以与基站对齐。
一种可能的情况中,终端根据上述方法一、方法二还是方法三确定功率余量,可以是基站通过RRC信令指示的。例如,基站可以向终端发送RRC信令,该RRC信令中可以包含用于指示机制一、机制二或机制三的信息。其中,机制一可以是根据第一功率等级和第二功率等级确定功率余量,也就是机制一为上述方法一。机制二可以是根据第一功率等级确定功率余量,也就是机制二为上述方法二。机制三可以是根据第二功率等级确定功率余量,也就是机制三为上述方法三。这样,终端可以采用基站指示的方式确定功率余量,使得终端上报的功率余量可以符合基站的需求。
应当理解的是,基站可以通过RRC信令直接指示机制一、机制二或机制三。或者, 基站也可以通过RRC信令隐式指示机制一、机制二或机制三。或者基站通过RRC信令指示UE根据机制一和机制二中的一种作为PHR上报方式。再或者,基站通过RRC信令指示UE根据机制一、机制二和机制三种的一种作为PHR上报方式。又或者,基站通过RRC信令指示UE根据机制一作为PHR上报方式,或者基站通过RRC信令指示UE根据机制二作为PHR上报方式。
又例如,假设协议预定义终端根据方式一、方式二和方式三中的一种方式确定功率余量。那么终端可以根据协议预定义的方式确定功率余量,并将该功率余量发送给基站。
一种可能的实现方式中,基站可以通过RRC信令配置DCI或MAC CE(如第一指示信息)中是否包含射频链路切换的指示信息。换句话说,基站可以通过RRC信令配置终端是否支持射频链路的动态切换。例如,基站可以向终端发送RRC信令,如果该RRC信令配置DCI或MAC CE中包含射频链路切换的指示信息,那么可以理解为基站通过RRC信令配置终端支持射频链路的动态切换。这样,基站就可以通过DCI或者MAC CE中射频链路切换的指示信息,指示终端采用哪个或者哪几个射频链路发送上行传输。
举例来说,基站向终端发送RRC信令,该RRC信令配置DCI或MAC CE中包含射频链路切换的指示域。也就是说,基站通过RRC信令配置终端支持射频链路的动态切换。那么,基站可以通过DCI或者MAC CE向终端指示发送上行传输的射频链路或者射频链路数量。终端可以通过DCI或者MAC CE中的射频链路切换的指示域,确定发送上行信号的射频链路或者射频链路数量。终端确定射频链路或者射频链路数量的方法可以参照前述实施方式实施,此处不再赘述。可选的,该RRC信令还可以配置DCI或MAC CE中射频链路切换的指示域所占用的比特数。如,1比特、2比特或者更多的比特,本申请不做具体限定。
可选的,终端可以向基站发送能力信息。该能力信息指示终端是否支持DCI或者MAC CE包含射频链路切换的指示信息,或者可以理解为该能力信息用于指示终端是否支持射频链路的动态切换。示例性的,在该能力信息指示终端支持DCI或者MAC CE包含射频链路切换的指示信息,也就是终端支持射频链路的动态切换时,基站可以通过RRC信令向终端配置DCI或MAC CE中包含射频链路切换的指示信息。在该能力信息指示终端不支持DCI或者MAC CE包含射频链路切换的指示信息,也就是终端不支持射频链路的动态切换时,基站可以通过RRC信令向终端配置DCI或MAC CE中不包含射频链路切换的指示信息。
在一种可能的情况中,终端可以根据第一最大传输功率确定第一传输功率。在S202中,终端可以采用第一传输功率发送第一上行传输,如PUSCH。另一种可能的情况中,终端可以根据第二最大传输功率确定第二传输功率。在S202中,终端可以采用第二传输功率发送第一上行传输,如PUSCH。示例性的,终端可以根据以下公式(5)确定第一传输功率或者第二传输功率。
上述公式(5)表示终端在服务小区c的载波f的BWP b上采用参数集合编号j发送S202中的上行信号,且功控调整状态索引值为l时,终端在上行信号发送实际时机i上的 上行信号的传输功率。
因此,终端通过上述公式(5)以及第一最大传输功率确定第一传输功率,或者通过上述公式(5)以及第二最大传输功率确定第二传输功率。终端可以选择采用第一传输功率发送S202中的上行信号,或者选择采用第二传输功率发送S202中的上行信号。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请实施例所必须的。
在一种可能的实现方式中,在载波聚合(carrier aggregation,CA)情况下,终端需要在一个MAC CE中上报多个载波对应的PHR。因此在该一个MAC CE,如进入MAC CE(multiple entry MAC CE)中可以包括指示每一个载波上是否有PHR上报。如MAC CE中可以包含一个字段(Ci),该字段用于表示服务小区i对应的PHR是否存在,该字段置1表示对应的服务小区上报了PHR,否则是没有上报。而针对不同的载波,如果不同的载波上的射频链路发生变化或者说射频链路数量发生变化,那么不同的载波上的PHR在计算时,会由于射频链路不同或者说射频链路数量不同而不同。
因此,在动态载波聚合场景下,同样会由于射频链路不同导致最大传输功率不同,从而导致PHR不同。因此,在动态载波聚合场景下,如何进行PHR上报也成为主要问题。
有鉴于此,本申请实施例提供一种功率余量传输方法。参阅图4,为本申请实施例提供的一种功率余量传输方法的示例性流程图,可以包括以下操作。
S401:基站发送第二指示信息。
相应的,终端接收第二指示信息。例如,基站可以向终端发送第二指示信息,终端可以从基站接收该第二指示信息。
在一种可能的实现方式中,第二指示信息可以用于指示动态功率聚合。或者,第二指示信息可以作为调度信息在动态功率聚合场景下生效。举例来说,至少两个载波被配置为CA。构成CA的至少两个载波的总功率等级可以是预定义的,或者最大传输功率是预定义的。然而,终端在上述至少两个载波中的一个载波的最大传输功率是可以动态变化的,只需保证在至少两个载波上同时发送的上行传输总功率不超过至少两个载波的最大传输功率即可。
S402:终端发送第三上行传输。
相应的,基站接收第三上行传输。例如,终端可以向基站发送第三上行传输,基站可以从终端接收该第三上行传输。
在一个示例中,第三上行传输中可以包含功率余量。为了便于区分,将第三上行传输中包含的功率余量称为第三功率余量。该第三功率余量可以是终端在载波聚合场景下,确定的功率余量。
例如,终端在载波聚合场景下,终端可以根据第三功率等级确定第三功率余量。该第三功率等级可以至少连个载波的总功率等级。终端可以根据第三功率等级确定对应的最大终端功率(power class),并根据公式(2)至公式(4)第三最大传输功率。终端可以根据第三最大传输功率以及公式(1)确定第三功率余量。
可选的,图4所示的实施例还可以包含以下操作S403。
S403:基站根据功率余量的信息,确定功率余量。
例如,基站可以根据S402中第三上行传输中携带的功率余量的信息,确定第三功率余量。可选的,基站可以基于第三功率余量,对终端进行上行传输的功率控制。
举例来说,如图5所示,终端在t1之前采用射频链路1Tx发送上行传输。终端在t1接收到第三指示信息。第三指示信息指示动态功率聚合。假设第三指示信息在t2生效,也就是说,在t2开始终端采用动态功率聚合。在t1至t2之间终端根据PHR触发条件确定需要计算功率余量,并在t3发送PHR。如果终端根据t1采用的功率等级,也就是射频链路数量为1个对应的功率等级计算功率余量,而在终端发送PHR时,终端采用的功率等级已经切换为功率聚合时对应的功率等级,那么终端上报的功率余量所采用的最大传输功率会与基站不对齐。基于图4所示的方法,终端可以根据第三功率等级,也就是动态功率聚合场景下的总功率等级计算第三最大传输功率,并根据第三最大传输功率确定第三功率余量。那么终端在t3可以发送第三上行传输,如PUSCH,该第三上行传输中可以携带第三功率余量。
基于上述方案,终端在动态功率聚合场景下,根据第三功率等级,可以理解为构成CA的至少两个载波的总功率等级,确定功率余量,并进行功率余量上报。这样,终端发送的功率余量所采用的最大传输功率可以与基站对齐。这样,基站也可以根据终端发送的功率余量对终端进行上行功率控制,可以提升上行功率域资源的利用率。
在一种可能的情况中,终端可以根据第三最大传输功率确定第三传输功率。在S202中,终端可以采用第三传输功率发送第三上行传输,如PUSCH。示例性的,终端可以根据公式(5)确定第三传输功率,此处不再赘述。
基于与上述实施例的同一构思,本申请实施例还提供一种通信装置。如图6所示,通信装置600包括处理单元610和收发单元620。通信装置600用于实现上述图2至图5中所示的方法实施例中终端或基站的功能。
当通信装置600用于实现终端的功能时:收发单元620,用于接收第一指示信息。其中,第一指示信息用于指示射频链路切换。处理单元610,用于根据第一功率等级和第二功率等级中至少一种功率等级确定功率余量。其中,第一功率等级对应射频链路切换后的上行传输,第二功率等级对应射频链路切换前的上行传输。收发单元620,用于发送第一上行传输。第一上行传输包括功率余量的信息。第一上行传输是射频链路切换后的上行传输。
在一种设计中,第一功率等级为射频链路切换后的射频链路数量对应功率等级,第二功率等级为射频链路切换前的射频链路数量对应的功率等级。
在一种设计中,功率余量包括第一功率余量和第二功率余量。其中,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
在一种设计中,功率余量包括第一功率余量,且不包括第二功率余量。其中,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
在一种设计中,功率余量包括第二功率余量,且不包括第一功率余量。其中,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
在一种设计中,第一功率余量可以是根据第一功率等级确定出的第一最大传输功率确定的。第二功率余量可以是根据第二功率等级确定出的第二最大传输功率确定的。
在一种设计中,第一指示信息是DCI或者MAC CE包含的信息。
在一种设计中,收发单元620,还用于接收第一无线资源控制RRC信令,第一RRC信令包含用于指示机制一或机制二的信息。其中,机制一为根据第一功率等级和第二功率等级确定功率余量,机制二为根据第一功率等级确定功率余量。
在一种设计中,收发单元620,还用于接收第二RRC信令,第二RRC信令用于配置DCI或者MAC CE包含射频链路切换的指示信息。
在一种设计中,收发单元620,还用于发送能力信息,能力信息指示终端设备支持DCI或者MAC CE包含射频链路切换的指示信息。
当通信装置600用于实现基站的功能时:收发单元620,用于发送第一指示信息。其中,第一指示信息用于指示射频链路切换。收发单元620,还用于接收第一上行传输。其中,第一上行传输包括功率余量的信息。处理单元610,用于根据功率余量的信息,确定功率余量。其中,功率余量根据第一功率等级和第二功率等级中至少一种功率等级确定。其中,第一功率等级对应射频链路切换后的上行传输,第二功率等级对应射频链路切换前的上行传输。上述第一上行传输是射频链路切换后的上行传输。
在一种设计中,第一功率等级为射频链路切换后的射频链路数量对应功率等级,第二功率等级为射频链路切换前的射频链路数量对应的功率等级。
在一种设计中,功率余量包括第一功率余量和第二功率余量,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。在一种设计中,功率余量包括第一功率余量且不包括第二功率余量,第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
在一种设计中,功率余量包括第二功率余量且不包括第一功率余量。第一功率余量是根据第一功率等级确定的功率余量,第二功率余量是根据第二功率等级确定的功率余量。
在一种设计中,第一功率余量可以是根据第一功率等级确定出的第一最大传输功率确定的。第二功率余量可以是根据第二功率等级确定出的第二最大传输功率确定的。
在一种设计中,第一指示信息是DCI或者MAC CE包含的信息。
在一种设计中,收发单元620,还用于发送第一RRC信令,第一RRC信令包含用于指示机制一或机制二的信息。其中,机制一为根据第一功率等级和第二功率等级确定功率余量,机制二为根据第一功率等级确定功率余量。
在一种设计中,收发单元620,还用于发送第二RRC信令,第二RRC信令用于配置DCI或者MAC CE包含射频链路切换的指示信息。
在一种设计中,收发单元620,还用于接收能力信息,能力信息指示终端设备支持DCI或者MAC CE包含射频链路切换的指示信息。
有关上述处理单元610和收发单元620更详细的描述可以直接参考图2~图5所示的方法实施例中相关描述直接得到,这里不加赘述。
如图7所示,通信装置700包括处理器710。可选地,通信装置700还可以包括接口电路720。处理器710和接口电路720之间相互耦合。可以理解的是,接口电路720可以为收发器或输入输出接口。可选的,通信装置700还可以包括存储器730,用于存储处理 器710执行的指令或存储处理器710运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
在第一种实现方式中,该通信装置700可以用于实现上述申请实施例中对应于终端设备的方法,具体功能参见上述实施例中的说明。
在第二种实现方式中,该通信装置700可以用于实现上述申请实施例中对应于网络设备的方法,具体功能参见上述实施例中的说明。
当通信装置700用于实现图2至图5所示的方法时,处理器710用于实现上述处理单元610的功能,接口电路720用于实现上述收发单元620的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由网络设备或终端设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由终端设备或网络设备所执行的方法。
本申请还提供一种***,***包括执行前述终端设备功能的装置和执行前述网络设备功能的装置。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的终端设备或网络设备所执行的方法。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件 指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (24)

  1. 一种功率余量传输方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示射频链路切换;
    发送第一上行传输,所述第一上行传输包括功率余量的信息,所述功率余量根据第一功率等级和第二功率等级中至少一种功率等级确定;其中,所述第一功率等级对应射频链路切换后的上行传输,所述第二功率等级对应射频链路切换前的上行传输,所述第一上行传输属于射频链路切换后的上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一功率等级为射频链路切换后的射频链路数量对应功率等级,所述第二功率等级为射频链路切换前的射频链路数量对应的功率等级。
  3. 根据权利要求1或2所述的方法,其特征在于,所述功率余量包括第一功率余量和第二功率余量,所述第一功率余量是根据所述第一功率等级确定的功率余量,所述第二功率余量是根据所述第二功率等级确定的功率余量。
  4. 根据权利要求1或2所述的方法,其特征在于,所述功率余量包括第一功率余量且不包括第二功率余量,所述第一功率余量是根据所述第一功率等级确定的功率余量,所述第二功率余量是根据所述第二功率等级确定的功率余量。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一功率余量是根据所述第一功率等级确定出的第一最大传输功率确定的功率等级;
    所述第二功率余量是根据所述第二功率等级确定出的第二最大传输功率确定的功率等级。
  6. 根据权利要求1~5任一所述的方法,其特征在于,所述第一指示信息是下行控制信息DCI或者媒体访问控制MAC控制元素CE包含的信息。
  7. 根据权利要求1~6任一所述的方法,其特征在于,所述发送第一上行传输之前,还包括:
    接收第一无线资源控制RRC信令,所述第一RRC信令包含指示机制一或机制二的信息;
    其中,所述机制一为根据所述第一功率等级和所述第二功率等级确定所述功率余量,所述机制二为根据所述第一功率等级确定所述功率余量。
  8. 根据权利要求1~6任一所述的方法,其特征在于,所述接收第一指示信息之前,还包括:
    接收第二RRC信令,所述第二RRC信令用于配置DCI或者MAC CE包含射频链路切换的指示信息。
  9. 根据权利要求1~6任一所述的方法,其特征在于,所述接收第一指示信息之前,还包括:
    发送能力信息,所述能力信息指示终端设备支持DCI或者MAC CE包含射频链路切换的指示信息。
  10. 一种功率余量传输方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示射频链路切换;
    接收第一上行传输,所述第一上行传输包括功率余量的信息,所述功率余量根据第一 功率等级和第二功率等级中至少一种功率等级确定;其中,所述第一功率等级对应射频链路切换后的上行传输,所述第二功率等级对应射频链路切换前的上行传输,所述第一上行传输属于射频链路切换后的上行传输。
  11. 根据权利要求10所述的方法,其特征在于,所述第一功率等级为射频链路切换后的射频链路数量对应功率等级,所述第二功率等级为射频链路切换前的射频链路数量对应的功率等级。
  12. 根据权利要求10或11所述的方法,其特征在于,所述功率余量包括第一功率余量和第二功率余量,所述第一功率余量是根据所述第一功率等级确定的功率余量,所述第二功率余量是根据所述第二功率等级确定的功率余量。
  13. 根据权利要求10或11所述的方法,其特征在于,所述功率余量包括第一功率余量且不包括第二功率余量,所述第一功率余量是根据所述第一功率等级确定的功率余量,所述第二功率余量是根据所述第二功率等级确定的功率余量。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一功率余量是根据所述第一功率等级确定出的第一最大传输功率确定的功率等级;
    所述第二功率余量是根据所述第二功率等级确定出的第二最大传输功率确定的功率等级。
  15. 根据权利要求10~14任一所述的方法,其特征在于,所述第一指示信息是下行控制信息DCI或者媒体访问控制MAC控制元素CE包含的信息。
  16. 根据权利要求10~15任一所述的方法,其特征在于,所述接收第一上行传输之前,还包括:
    发送第一无线资源控制RRC信令,所述第一RRC信令包含指示机制一或机制二的信息;
    其中,所述机制一为根据所述第一功率等级和所述第二功率等级确定所述功率余量,所述机制二为根据所述第一功率等级确定所述功率余量。
  17. 根据权利要求10~16任一所述的方法,其特征在于,所述发送第一指示信息之前,还包括:
    发送第二RRC信令,所述第二RRC信令用于配置DCI或者MAC CE包含射频链路切换的指示信息。
  18. 根据权利要求10~17任一所述的方法,其特征在于,所述发送第一指示信息之前,还包括:
    接收能力信息,所述能力信息指示终端设备支持DCI或者MAC CE包含射频链路切换的指示信息。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1~9中任一项所述方法的单元。
  20. 一种通信装置,其特征在于,包括用于执行如权利要求10~18中任一项所述方法的单元。
  21. 一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得如权利要求1~9中任一项所述的方法被执行,或使得如权利要求10~18中任一项所述的方法被执行。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令, 当所述计算机程序或指令被通信装置执行时,实现如权利要求1~9中任一项所述的方法或者实现如权利要求10~18中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1~9任一项所述的方法或者执行如权利要求10~18任一项所述的方法。
  24. 一种通信***,其特征在于,包括用于执行如权利要求1~9中任一项所述方法的通信装置,和用于执行如权利要求10~18中任一项所述方法的通信装置。
PCT/CN2023/074844 2022-02-24 2023-02-07 一种功率余量传输方法、装置和*** WO2023160386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210173492.9A CN116709491A (zh) 2022-02-24 2022-02-24 一种功率余量传输方法、装置和***
CN202210173492.9 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023160386A1 true WO2023160386A1 (zh) 2023-08-31

Family

ID=87764819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074844 WO2023160386A1 (zh) 2022-02-24 2023-02-07 一种功率余量传输方法、装置和***

Country Status (2)

Country Link
CN (1) CN116709491A (zh)
WO (1) WO2023160386A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401525A (zh) * 2017-12-25 2018-08-14 北京小米移动软件有限公司 功率余量报告传输方法和装置
CN110149684A (zh) * 2018-02-11 2019-08-20 维沃移动通信有限公司 无线通信方法、终端设备和网络设备
CN110583053A (zh) * 2017-05-04 2019-12-17 三星电子株式会社 用于在通信***中传输功率余量信息的方法和装置
CN111357371A (zh) * 2017-11-17 2020-06-30 中兴通讯股份有限公司 用于多载波***中的上行链路传输的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110583053A (zh) * 2017-05-04 2019-12-17 三星电子株式会社 用于在通信***中传输功率余量信息的方法和装置
CN111357371A (zh) * 2017-11-17 2020-06-30 中兴通讯股份有限公司 用于多载波***中的上行链路传输的方法和装置
CN108401525A (zh) * 2017-12-25 2018-08-14 北京小米移动软件有限公司 功率余量报告传输方法和装置
CN110149684A (zh) * 2018-02-11 2019-08-20 维沃移动通信有限公司 无线通信方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN116709491A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
KR101565764B1 (ko) 사용자 장비를 위한 최대 출력 전력을 설정하는 방법, 파워 헤드룸을 보고하는 방법, 및 사용자 장비
US10182343B2 (en) Wireless device, network node, and methods therein for sending a message comprising one or more populated fields
US10966238B2 (en) Wireless device, network node, and methods performed thereby for handling grant use
US20220264481A1 (en) Signaling Power Exposure Events
EP3253135A1 (en) Method for performing, by terminal, transmission power control in wireless communication system, and terminal using method
EP3001720B1 (en) Method for transmitting power headroom report in network supporting interworkings between multiple communication systems, and apparatus therefor
US11445450B2 (en) Uplink data transmission method, terminal device, and base station
US9693324B2 (en) Method and device for reporting power headroom report
CN112867129B (zh) 功率余量上报发送方法和装置
WO2021022894A1 (zh) 一种天线面板状态的通知方法、设备、芯片及存储介质
US20230164701A1 (en) Power control for signal interference management
CN111757433A (zh) 功率控制的方法、终端设备和网络设备
WO2023160386A1 (zh) 一种功率余量传输方法、装置和***
CN114747260B (zh) 上行发射功率控制方法及装置
WO2021129120A1 (zh) 通信方法以及终端设备
WO2023138295A1 (zh) 一种功率余量上报方法和装置
WO2023165350A1 (zh) 一种功率余量上报方法及装置
WO2024032216A1 (zh) 传输信息的方法和装置
US20230413192A1 (en) Power control for multi-channels and power prioritization
CN117939608A (zh) 功率余量指示信息上报方法、电子设备和存储介质
WO2023130328A1 (zh) 通信方法、终端设备及网络设备
WO2023065892A1 (zh) 通信方法及装置
WO2023184419A1 (zh) 功率控制方法、装置、设备及存储介质
CN113784427A (zh) 功率控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759011

Country of ref document: EP

Kind code of ref document: A1