WO2023157864A1 - Organic semiconductor ink, organic film, photoelectric conversion layer, method for producing photoelectric conversion layer, and organic photoelectric conversion element - Google Patents

Organic semiconductor ink, organic film, photoelectric conversion layer, method for producing photoelectric conversion layer, and organic photoelectric conversion element Download PDF

Info

Publication number
WO2023157864A1
WO2023157864A1 PCT/JP2023/005158 JP2023005158W WO2023157864A1 WO 2023157864 A1 WO2023157864 A1 WO 2023157864A1 JP 2023005158 W JP2023005158 W JP 2023005158W WO 2023157864 A1 WO2023157864 A1 WO 2023157864A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
aromatic hydrocarbon
photoelectric conversion
condensed
organic
Prior art date
Application number
PCT/JP2023/005158
Other languages
French (fr)
Japanese (ja)
Inventor
茂 中根
千浩 中林
英典 中山
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023157864A1 publication Critical patent/WO2023157864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to organic semiconductor inks and organic films.
  • the present invention also relates to a method for producing a photoelectric conversion layer using this organic semiconductor ink, a photoelectric conversion layer made of this organic film, and an organic photoelectric conversion element having this photoelectric conversion layer.
  • Organic photoelectric conversion films that convert the energy of incident light into electrical energy are expected to be applied to solar cells and optical sensors (photodiodes).
  • organic photoelectric conversion films consist of a mixture of a conjugated polymer, which is an electron-donating semiconductor (p-type organic semiconductor), and a fullerene derivative typified by PCBM, which is an electron-accepting semiconductor (n-type organic semiconductor).
  • p-type organic semiconductor an electron-donating semiconductor
  • PCBM electron-accepting semiconductor
  • n-type organic semiconductor electron-accepting semiconductor
  • PCE can be further improved by using low-molecular-weight acceptors called non-fullerene-type acceptors instead of fullerene derivatives.
  • non-fullerene-type acceptors instead of fullerene derivatives.
  • the energy conversion efficiency from sunlight exceeds 18%.
  • One of the major issues with organic photoelectric conversion films is considered to be the stability of the BHJ structure.
  • the p-type organic semiconductor and the n-type organic semiconductor each have co-continuous domains with a size of about 10 to 100 nm in the film. This is primarily determined by the exciton diffusion length in the organic semiconductor.
  • the p-type organic semiconductor and the n-type organic semiconductor constituting the BHJ structure have low compatibility and are not excessively mixed.
  • such low compatibility promotes the growth of phase-separated sizes through molecular diffusion over time and heating, resulting in the growth of larger than ideal domain sizes.
  • Such phase separation which can grow up to a micrometer size, causes practical problems such as deterioration of photoelectric conversion characteristics and variation in characteristics between pixels of an image sensor.
  • At least one of the p-type organic semiconductor and the n-type organic semiconductor is crosslinked to reduce the thermal mobility in order to suppress the molecular diffusion of the p-type organic semiconductor and the n-type organic semiconductor, thereby increasing the growth rate of the phase separation size.
  • Patent Document 1 reports that the thermal stability of the BHJ structure is increased by adding an epoxy-based cross-linking agent to the organic semiconductor ink in addition to the p-type organic semiconductor and the n-type organic semiconductor for cross-linking.
  • the present invention provides an organic film in which phase separation of a p-type organic semiconductor and an n-type organic semiconductor is unlikely to occur due to the passage of time or heating without using a cross-linking component, and to produce the organic film by a coating method.
  • An object of the present invention is to provide an organic semiconductor ink suitable for
  • the present inventors have found that by using a specific compatibilizer that has compatibility with each of the p-type organic semiconductor and the n-type organic semiconductor and that is difficult to self-aggregate or crystallize due to heating or the passage of time, It has been found that an organic film in which phase separation between a p-type organic semiconductor and an n-type organic semiconductor is unlikely to occur can be provided by heating.
  • the gist of the present invention is as follows.
  • An organic semiconductor ink containing a p-type organic semiconductor, an n-type organic semiconductor, a compatibilizer and a solvent has a main skeleton of 2 to 5 condensed rings A of aromatic hydrocarbon rings having two or more substituents R adjacent to each other, At least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon ring that is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings than the condensed ring A. is a monovalent group of B, An organic semiconductor ink characterized by being an organic compound in which the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane.
  • An organic semiconductor ink containing a p-type organic semiconductor, an n-type organic semiconductor, a compatibilizer and a solvent has a main skeleton of 2 to 5 condensed rings A of aromatic hydrocarbon rings having two or more substituents R adjacent to each other,
  • the substituent R is a monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings as the condensed ring A, [2 ].
  • n is a positive number.
  • A represents an atom selected from Group 14 of the periodic table;
  • X 1 to X 4 each independently represent a hydrogen atom or a halogen atom;
  • R 1a and R 1b each independently represents a chain alkyl group, and each of R 2 to R 5 independently represents a chain alkyl group, a chain alkoxy group, a chain thioalkyl group, or a hydrogen atom.
  • An organic film comprising a p-type organic semiconductor, an n-type organic semiconductor and an organic compound,
  • the organic compound has a main skeleton of 2 to 5 condensed rings A of an aromatic hydrocarbon ring having two or more substituents R adjacent to each other, At least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon ring that is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings than the condensed ring A. is a monovalent group of B,
  • An organic film containing a p-type organic semiconductor, an n-type organic semiconductor and an organic compound has a main skeleton of 2 to 5 condensed rings A of an aromatic hydrocarbon ring having two or more substituents R adjacent to each other,
  • the substituent R is a monovalent group of an aromatic hydrocarbon ring B' which is a monocyclic aromatic hydrocarbon ring or 2 to 4 condensed aromatic hydrocarbon rings.
  • the substituent R is a monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings as the condensed ring A, [16 ].
  • a photoelectric conversion layer comprising the organic film according to any one of [15] to [17].
  • a method for producing a photoelectric conversion layer comprising the step of applying the organic semiconductor ink according to any one of [1] to [14].
  • An organic photoelectric conversion device comprising a photoelectric conversion layer made of the organic film according to any one of [15] to [17].
  • the organic semiconductor ink of the present invention contains a p-type organic semiconductor, an n-type organic semiconductor, and a component compatible with these, even after an organic film is formed from this organic semiconductor ink, the p-type organic semiconductor and the n-type organic semiconductor remain unchanged. Phase separation can be suppressed.
  • the organic semiconductor ink of the present invention contains a specific compatibilizer, a cross-linking component is added to the organic semiconductor ink in order to kinetically suppress phase separation as in the conventional invention. There is no need to apply external energy such as heat or light. Therefore, an organic photoelectric conversion layer and an organic photoelectric conversion element having excellent heat resistance stability can be manufactured at a lower cost than conventional methods.
  • FIG. 10 is optical microscope photographs of the film surfaces of the photoelectric conversion layers produced in Comparative Examples 4 and 5 before and after heating.
  • FIG. 10 is an optical microscope photograph of the film surface before and after heating of the photoelectric conversion layers produced in Comparative Examples 6 and 7.
  • FIG. 10 is optical microscope photographs of the film surfaces of the photoelectric conversion layers produced in Comparative Examples 8 and 9 before and after heating.
  • FIG. 10 is an optical microscope photograph of the film surface before and after heating of the photoelectric conversion layers produced in Comparative Examples 10 and 11.
  • Organic semiconductor ink is characterized by containing a p-type organic semiconductor, an n-type organic semiconductor, a specific compatibilizer and a solvent.
  • the compatibilizer used in the first embodiment of the present invention (hereinafter sometimes referred to as "compatibilizer I”) is an aromatic hydrocarbon ring having two or more substituents R adjacent to each other. 2 to 5 condensed ring A as a main skeleton, at least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or two aromatic hydrocarbon rings having the same or fewer condensed rings as the condensed ring A It is a monovalent group of an aromatic hydrocarbon ring B which is a 4-condensed ring, and is an organic compound in which the condensed ring A and the aromatic hydrocarbon ring B do not exist on the same plane.
  • the compatibilizer used in the second embodiment of the present invention (hereinafter sometimes referred to as "compatibilizer II”) is an aromatic hydrocarbon ring having two or more substituents R adjacent to each other.
  • the main skeleton is 2 to 5 condensed rings A, and the substituent R is a monovalent aromatic hydrocarbon ring B', which is a monocyclic aromatic hydrocarbon ring or 2 to 4 condensed aromatic hydrocarbon rings. It is an organic compound that is a group.
  • “Compatibilizer I” and “Compatibilizer II” may be collectively referred to as "the compatibilizer of the present invention”.
  • the "main skeleton” refers to a condensed ring skeleton that forms the largest skeleton in the organic compound of the compatibilizer.
  • the “coplanar” plane refers to the ⁇ -conjugated plane of the aromatic hydrocarbon ring. Therefore, “the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane” means that the ⁇ -conjugated plane of the condensed ring A and the ⁇ -conjugated plane of the aromatic hydrocarbon ring B are on the same plane.
  • a monovalent substituent R consisting of an aromatic hydrocarbon ring B is a single bond bonded to the condensed ring A due to steric hindrance (steric restriction) with the substituent R on the adjacent condensed ring A. It means a state in which the ⁇ -conjugated plane of the condensed ring A and the ⁇ -conjugated plane of the aromatic hydrocarbon ring B are not aligned on the same plane because free rotation is prevented.
  • aromatic hydrocarbon ring refers to rings having aromaticity, and includes not only so-called narrowly defined hydrocarbon rings but also heterocyclic rings. However, in consideration of the influence on the photoelectric conversion characteristics, a hydrocarbon ring in a narrow sense is preferable to a heterocyclic ring.
  • a conjugated compound having a twisted positional relationship in which at least two conjugated skeletons are connected and not arranged on the same plane maintains compatibility with the p-type organic semiconductor and the n-type organic semiconductor.
  • it itself does not have strong crystallinity, it functions effectively as a compatibilizer for p-type organic semiconductors and n-type organic semiconductors.
  • the condensed ring A constituting the main skeleton of the compatibilizer of the present invention is 2 to 5 condensed rings of aromatic hydrocarbon rings.
  • the number of condensed rings in the condensed ring A is preferably large in terms of chemical stability.
  • the number of condensed rings in the condensed ring A is 2-5, preferably 2-4.
  • the total number of carbon atoms in the condensed ring A of the main skeleton is preferably 10-18.
  • the condensed ring A of the main skeleton may be composed of an aromatic hydrocarbon ring and the condensed ring A as a whole forms one ⁇ -conjugated plane.
  • anthracene fluoranthene, pyrene, glycene, benzo[b]fluoranthene, benzo[a]pyrene, perylene and the like.
  • Heterocyclic rings include quinoline, phenanthroline, benzodithiophene, naphthodithiophene, and the like.
  • the condensed ring A which is the main skeleton of the compatibilizer of the present invention, has two or more substituents R adjacent to each other.
  • adjacent means bonding to adjacent carbon atoms on the condensed ring A of the main skeleton.
  • at least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon having the same or fewer condensed rings as the condensed ring A. It is a monovalent group of the aromatic hydrocarbon ring B which is 2 to 4 condensed hydrogen rings.
  • the monovalent group of the aromatic hydrocarbon ring B is a group in which the aromatic hydrocarbon ring B is directly bonded to the condensed ring A of the main skeleton through a single bond.
  • This aromatic hydrocarbon ring B may further have a substituent as long as it does not impair the properties as a compatibilizer. groups, alkoxy groups, thioalkyl groups, and the like.
  • At least one of the substituents R is a monocyclic aromatic hydrocarbon ring or an aromatic hydrocarbon ring consisting of 2 to 4 condensed aromatic hydrocarbon rings. It is a monovalent group of the hydrocarbon ring B'.
  • the monovalent group of the aromatic hydrocarbon ring B' is a group in which the aromatic hydrocarbon ring B' is directly bonded to the condensed ring A of the main skeleton through a single bond.
  • This aromatic hydrocarbon ring B' may further have a substituent as long as it does not impair the properties as a compatibilizer. , an alkyl group, an alkoxy group, a thioalkyl group, and the like.
  • the aromatic hydrocarbon ring B' is preferably an aromatic hydrocarbon ring having 2 to 4 condensed rings having the same or fewer condensed rings as the condensed ring A. Hydrogen ring B.
  • examples of monocyclic groups include a phenyl group, a thienyl group, and a pyridinyl group.
  • examples of the 2 to 4 condensed ring group of the aromatic hydrocarbon ring include condensed ring groups having 2 to 4 condensed rings among the condensed rings described above as specific examples of the condensed ring A.
  • the substituents R of the condensed ring A of the main skeleton do not impair the properties as a compatibilizer.
  • it may be a group selected from the above-mentioned monovalent groups of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B', an alkyl group, an alkoxy group, a thioalkyl group, etc. good.
  • P-type organic semiconductors and n-type organic semiconductors are usually highly hydrophobic. Therefore, from the viewpoint of compatibility with these semiconductors, it is preferable that the substituent R other than the monovalent group of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' also have high hydrophobicity. group hydrocarbon groups and the like.
  • the substituent R other than the monovalent group of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' is the ⁇ -conjugated plane of the condensed ring A and the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B'
  • aromatic hydrocarbon groups such as phenyl group, naphthyl group and anthryl group are more preferred, and phenyl group is even more preferred. That is, the substituent R other than the monovalent group of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' is preferably a monovalent group of the aromatic hydrocarbon ring, more preferably a phenyl group. preferable.
  • the number of substituents R possessed by the condensed ring A of the main skeleton is not particularly limited as long as it is 2 or more.
  • the number of substituents R is more preferably 3 or more, most preferably 4 or more. Since the number of substituents R adjacent to each other is large, the volume of the compatibilizing agent increases, and aggregation between p-type organic semiconductors and aggregation between n-type organic semiconductors can be further suppressed.
  • the compatibilizing agent of the present invention preferably has a high melting point and boiling point and a high molecular weight from the viewpoint that the compatibilizing agent is less likely to be lost from the composition or the photoelectric conversion layer due to volatilization, sublimation, or the like.
  • the molecular weight is preferably low in terms of solubility in solvents. Therefore, the molecular weight of the compatibilizer of the present invention is preferably 200 or more, more preferably 300 or more, still more preferably 400 or more, preferably 10000 or less, and 5000 or less. is more preferable, and 2500 or less is even more preferable.
  • the HOMO of the compatibilizer of the present invention is preferably lower than the HOMO of the n-type organic semiconductor.
  • the LUMO of the compatibilizer of the present invention is preferably higher than the LUMO of the p-type organic semiconductor. This is to prevent the electron orbit of the compatibilizing agent of the present invention from acting as a carrier trap level in the photoelectric conversion process, thereby preventing the photoelectric conversion characteristics from deteriorating.
  • Preferred specific examples of the compatibilizing agent of the present invention include 1,2,3,4-tetraphenylnaphthalene, 1-methyl-3,4-diphenylnaphthalene, 1,2-diphenylanthracene, 1,2- Examples thereof include diphenylnaphthalene, 1,2,3,4-tetraphenylanthracene, 1,2-diphenylnaphthacene, 1,2,6,7-tetraphenylpyrene, etc., but are not limited thereto.
  • Representative examples of the above-exemplified compounds are 1,2,3,4-tetraphenylnaphthalene, 1-methyl-3,4-diphenylnaphthalene, and 1,2-diphenylanthracene, using the molecular modeling software Spartan (version 18).
  • the molecular model of the three-dimensional structure created by applying the semiempirical molecular orbital method is shown below. In both cases, it can be seen that the ring corresponding to the condensed ring A and the ring corresponding to the aromatic hydrocarbon ring B do not exist on the same plane.
  • the organic semiconductor ink of the present invention may contain only one type of the compatibilizing agent of the present invention, or may contain two or more types having different condensed rings A in the main skeleton and different substituents R.
  • the p-type organic semiconductor is not particularly limited and may be a known organic semiconductor compound, but is preferably a donor semiconductor, typically an organic semiconductor (compound).
  • Examples of p-type organic semiconductors include hole-transporting organic compounds that are p-type conjugated polymers, and electron-donating compounds can be used.
  • skeleton structures with excellent hole-transport properties include a carbazole structure, a thiophene structure, a benzodithiophene structure, a thienothiophene structure, a dibenzofuran structure, a triarylamine structure, a naphthalene structure, a phenanthrene structure, and a pyrene structure. be done.
  • a compound that easily forms a film by being mixed with an n-type organic semiconductor to be described later and applied is preferable.
  • the p-type organic semiconductor may be a polymer compound, and a unit derived from a donor monomer (benzodithiophene, cyclopentadithiophene, dithienosilole, etc.) and an acceptor monomer (benzo[1,2-b:4 ,5-b′]dithiophene-4,8-dione, imidothiophene, etc.).
  • a polymer compound is preferable as the p-type organic semiconductor in that the photoelectric conversion layer can be easily manufactured by a coating method.
  • n is a positive number.
  • the p-type organic semiconductor used in the present invention preferably has a high weight-average molecular weight in order to improve the properties as a p-type semiconductor. is more preferable, and 150,000 or more is even more preferable.
  • the weight-average molecular weight of the p-type organic semiconductor is preferably low in terms of solubility in a solvent, specifically, preferably 400,000 or less, more preferably 300,000 or less.
  • the weight average molecular weight of the p-type organic semiconductor is the value determined by size exclusion chromatography.
  • p-type organic semiconductor used in the present invention include, but are not limited to, the following polymer compounds.
  • n-type organic semiconductor is an acceptor semiconductor, and is mainly represented by an electron-transporting compound, and refers to a semiconductor compound having an electron-accepting property.
  • the n-type organic semiconductor refers to the compound with the higher electron affinity when the two compounds are used in contact. Therefore, any compound can be used as the acceptor compound as long as it is an electron-accepting compound.
  • n-type semiconductors include condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives); 5- to 7-membered heterocyclic compounds such as pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole , indazole, benzimidazole, benzotriazole, benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, triazolopyrimidine, te
  • the fullerene skeleton is bulky, when a bulk heterojunction structure is used to increase the photoelectric conversion efficiency, the distance from the p-type semiconductor tends to increase, and the photoelectric conversion efficiency may decrease.
  • the ratio of the n-type semiconductor having a fullerene skeleton is smaller than that of the n-type semiconductor having no fullerene skeleton.
  • the ratio of the n-type semiconductor having a fullerene skeleton in the n-type semiconductor is preferably 10% by mass or less, and the n-type semiconductor does not substantially contain a non-fullerene having a fullerene skeleton type semiconductors are more preferred.
  • the expression “substantially free of a fullerene skeleton” means that electron transport among charges generated in the photoelectric conversion layer is carried by a non-fullerene n-type semiconductor, and the morphology of the photoelectric conversion layer is A small amount may be included for improvement.
  • the amount of the n-type semiconductor containing a fullerene skeleton contained in the total amount of the n-type organic semiconductor is usually 5% by mass or less, preferably 2% by mass or less.
  • the n-type organic semiconductor used in the present invention is a compound represented by the following formula (I) and a It is preferable to contain at least one compound of multimers of the compound represented by.
  • A represents an atom selected from Group 14 of the periodic table
  • X 1 to X 4 each independently represent a hydrogen atom or a halogen atom
  • R 1a and R 1b each independently represents a chain alkyl group
  • R 2 to R 5 each independently represent a chain alkyl group, a chain alkoxy group, a chain thioalkyl group, or a hydrogen atom.
  • A represents an atom selected from Group 14 of the periodic table.
  • A is preferably a carbon atom or a silicon atom from the viewpoint of compound stability.
  • X 1 to X 4 each independently represent a hydrogen atom or a halogen atom.
  • X 1 to X 4 are preferably halogen atoms because the HOMO/LUMO of the n-type organic semiconductor can be easily controlled.
  • R 1a and R 1b each independently represent a chain alkyl group.
  • the number of carbon atoms in R 1a and R 1b is preferably large from the viewpoint of increasing the solubility of the n-type organic semiconductor, and is preferably small from the viewpoint of easiness of forming a BHJ-type photoelectric conversion layer with the p-type organic semiconductor. .
  • the number of carbon atoms in R 1a and R 1b is preferably 8 or more, more preferably 10 or more, still more preferably 12 or more, preferably 24 or less, and more preferably 20 or less. It is preferably 18 or less, and more preferably 18 or less.
  • chain alkyl groups having 8 to 24 carbon atoms include linear alkyl groups such as n-octyl group, n-decyl group, lauryl group, myristyl group, palmityl group and stearyl group; 2-ethylhexyl group and 2-butyl Branched primary alkyl groups such as octyl groups and secondary alkyl groups such as 2-octyl groups, 2-nonyl groups and 2-decyl groups are included.
  • a linear alkyl group or a branched primary alkyl group is preferable, and a 2-ethylhexyl group or a 2-butyloctyl group is particularly preferable.
  • R 2 to R 5 each independently represent a chain alkyl group, a chain alkoxy group, a chain thioalkyl group, or a hydrogen atom.
  • R 2 to R 5 are preferably a chain alkyl group, a chain alkoxy group or a chain thioalkyl group from the viewpoint of increasing the solubility of the n-type organic semiconductor.
  • R 2 to R 5 are an alkyl group, an alkoxy group or a thioalkyl group
  • the number of carbon atoms is preferably large from the viewpoint of increasing the solubility of the n-type organic semiconductor, and the BHJ-type photoelectric conversion layer with the p-type organic semiconductor. From the viewpoint of ease of formation, it is preferable that the number is small.
  • the number of carbon atoms in R 1a and R 1b is preferably 8 or more, more preferably 10 or more, still more preferably 12 or more, preferably 24 or less, and more preferably 20 or less. It is preferably 18 or less, and more preferably 18 or less.
  • R 2 to R 5 are preferably alkoxy groups, more preferably alkoxy groups having 8 to 24 carbon atoms. Specific examples include a 2-ethylhexyloxy group and a palmityloxy group.
  • R 1a and R 1b are preferably the same group, and R 2 to R 5 are two or more different groups. Preferably.
  • n-type organic semiconductor used in the present invention include, but are not limited to, the following compounds.
  • the ratio of the p-type organic semiconductor to the n-type organic semiconductor contained in the organic semiconductor ink of the present invention is 0.00 in mass ratio of the n-type organic semiconductor to the p-type organic semiconductor (n-type organic semiconductor/p-type organic semiconductor mass ratio). It is preferably 5 times or more, more preferably 1.0 times or more, preferably 3.5 times or less, and more preferably 3.0 times or less.
  • the compatibility of the p-type organic semiconductor and the n-type organic semiconductor is improved by the compatibilizer of the present invention, and the compatibility of the p-type organic semiconductor and the n-type organic semiconductor is improved, and the phase changes due to heating and the passage of time.
  • the content of the compatibilizer is large in that the effect of stabilizing the BHJ structure due to the inclusion of the compatibilizer is likely to occur.
  • the content of the compatibilizing agent of the present invention in the organic semiconductor ink of the present invention is preferably 0.1 times or more, more preferably 0.3 times or more, in terms of the mass ratio of the p-type organic semiconductor. More preferably 0.5 times or more, most preferably 1.0 times or more.
  • the compatibilizing agent itself is less in the organic film produced by using the organic semiconductor ink of the present invention because it is difficult to crystallize.
  • the content of the compatibilizing agent of the present invention in the organic semiconductor ink of the present invention is preferably 10.0 times or less, more preferably 7.0 times or less in mass ratio with respect to the p-type organic semiconductor. It is more preferably 5.0 times or less.
  • the organic semiconductor ink of the present invention can be used as a coating liquid by further containing a solvent.
  • the solvent contained in the organic semiconductor ink of the present invention may be a liquid capable of dissolving the p-type organic semiconductor, the n-type organic semiconductor, and the compatibilizing agent of the present invention.
  • the solvent examples include aromatic hydrocarbon solvents such as toluene, xylene, mesitylene and cyclohexylbenzene; halogen-containing aromatic hydrocarbon solvents such as chlorobenzene and o-dichlorobenzene; halogen-containing solvents such as 1,2-dichloroethane.
  • aromatic hydrocarbon solvents such as toluene, xylene, mesitylene and cyclohexylbenzene
  • halogen-containing aromatic hydrocarbon solvents such as chlorobenzene and o-dichlorobenzene
  • halogen-containing solvents such as 1,2-dichloroethane.
  • Aliphatic hydrocarbon solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, Aromatic ether solvents such as anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole; ethyl acetate, n-butyl acetate, ethyl lactate , n-butyl lactate and other aliphatic ester solvents and phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, isopropyl benzoate, propyl benzoate, n-butyl benzoate and other aromatic ester solvents,
  • one type When using a solvent, one type may be used alone, or two or more types may be used in combination.
  • aromatic solvents are preferable from the viewpoint of solubility of p-type organic semiconductors and n-type organic semiconductors, aromatic non-halogen solvents are particularly preferable, and toluene, xylene, mesitylene, and pseudocumene are particularly preferable.
  • the organic semiconductor ink of the present invention contains components such as stabilizers and thickeners as necessary. may When the organic semiconductor ink of the present invention contains these other components, the inherent effects of the organic semiconductor ink are likely to be sufficiently exhibited.
  • the total amount of compatibilizing agents is preferably 90% by mass or more.
  • the solid content concentration contained in the organic semiconductor ink of the present invention ie, the content of components other than the solvent in the organic semiconductor ink, is preferably large from the viewpoint of excellent formation efficiency of the photoelectric conversion layer. On the other hand, it is preferable that the amount is small from the viewpoint that it is easy to obtain an ink that is uniform, highly stable, and excellent in coatability.
  • the solid content concentration of the organic semiconductor ink is preferably 10 mg/mL or more, more preferably 15 mg/mL or more, preferably 150 mg/mL or less, and more preferably 60 mg/mL or less. .
  • the organic semiconductor ink of the present invention can be prepared by mixing the p-type organic semiconductor, the n-type organic semiconductor, the compatibilizer of the present invention, and other optional components in a solvent to a predetermined concentration. can be manufactured. There are no particular restrictions on the order in which the components are added at that time, as long as a uniform ink can be obtained.
  • heating is preferred because it facilitates obtaining a liquid having a uniform composition in a shorter time.
  • the temperature in the case of heating is preferably a high temperature from the viewpoint of improving the solubility of each component, and a low temperature from the viewpoint that deterioration of each component and volatilization of the solvent are unlikely to occur.
  • the temperature for heating is preferably about 50 to 200.degree.
  • when mixing each component it is preferable to stir. After mixing, components that have not completely dissolved may be removed by filter filtration or the like. When heating during mixing, filter filtration may be performed after returning the liquid mixture to room temperature (25° C.). From the standpoint of ink stability, the mixed liquid is preferably left at room temperature (25° C.) for about 1 minute to 24 hours.
  • the organic semiconductor ink of the present invention can form a photoelectric conversion layer with excellent stability of the BHJ structure by containing a specific compatibilizer, and is suitable for forming a photoelectric conversion layer of an organic photoelectric conversion element. can be used.
  • the organic film of the present invention is a film containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic compound, wherein the organic compound is the aforementioned compatibilizing agent of the present invention. That is, the organic film of the first embodiment of the present invention is an organic film containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic compound, wherein the organic compound has two or more substituents adjacent to each other.
  • the main skeleton is 2 to 5 condensed rings A of aromatic hydrocarbon rings having R, and at least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or the condensed ring A and the number of condensed rings are A monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed rings of the same or fewer aromatic hydrocarbon rings, and the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane
  • the organic film of the second embodiment of the present invention is an organic film containing a p-type organic semiconductor, an n-type organic semiconductor and an organic compound, wherein the organic compound has two or more substituents adjacent to each other.
  • the organic film is characterized by being an organic compound that is a monovalent group of an aromatic hydrocarbon ring B' that is a condensed ring.
  • the aromatic hydrocarbon ring B' is preferably an aromatic hydrocarbon ring having 2 to 4 condensed rings having the same or fewer condensed rings as the condensed ring A.
  • Hydrogen ring B is preferably an aromatic hydrocarbon ring having 2 to 4 condensed rings having the same or fewer condensed rings as the condensed ring A.
  • the p-type organic semiconductor, n-type organic semiconductor, and organic compound contained in the organic film of the present invention are the same as in the organic semiconductor ink of the present invention described above, excluding the solvent, including their contents.
  • the organic film of the invention can be produced by removing the solvent from the organic semiconductor ink of the invention. Specifically, it can be manufactured by a coating method using the organic semiconductor ink of the present invention.
  • the organic film of the present invention is useful as a photoelectric conversion layer.
  • the photoelectric conversion layer of the present invention is composed of the organic film of the present invention, and can be produced by a coating method using the organic semiconductor ink of the present invention. That is, the method for producing a photoelectric conversion layer comprising an organic film of the present invention has a step of applying the organic semiconductor ink of the present invention.
  • the photoelectric conversion layer of the present invention is a layer made of the organic film of the present invention and coated with the organic semiconductor ink of the present invention as described above.
  • the photoelectric conversion layer of the present invention is formed on the surface on which the photoelectric conversion layer is formed (usually on the electrode surface of the organic photoelectric conversion element of the present invention described later, or other layers such as a hole transport layer formed on the electrode. above) can be formed by applying the organic semiconductor ink of the present invention.
  • the formed coating film may be dried by heating if necessary.
  • the coating method there are no particular restrictions on the coating method, but a specific example is a spin coating method.
  • the conditions for spin coating may be appropriately determined according to a standard method in consideration of the viscosity of the organic semiconductor ink and the like.
  • the temperature for spin coating is not particularly limited, it is usually carried out at 100°C or less, for example, 20 to 80°C.
  • the heating conditions in the case of drying the coating film by heating are preferably a temperature at which the solvent can be removed by drying and at a temperature at which each component in the ink is not degraded by thermal decomposition or heat. Specifically, it is preferably 50 to 250.degree. C., more preferably 80 to 230.degree.
  • the time for drying the solvent may be any time that allows the solvent to be sufficiently removed and does not degrade each component in the ink. It is usually carried out for 1 to 60 minutes.
  • the film thickness of the photoelectric conversion layer of the present invention can be arbitrarily designed according to the composition of the photoelectric conversion layer and the application of the organic photoelectric conversion element having the photoelectric conversion layer of the present invention.
  • the thickness of the photoelectric conversion layer is preferably thick from the viewpoint of easily increasing light absorption efficiency, and is preferably thin from the viewpoint that loss of device output due to increase in internal resistance is less likely to occur. Therefore, the film thickness of the photoelectric conversion layer is normally set to 10 nm to 1 ⁇ m.
  • Organic photoelectric conversion device is a device having the photoelectric conversion layer of the present invention described above.
  • the structure of the organic photoelectric conversion element of the present invention is not particularly limited as long as it has the photoelectric conversion layer of the present invention.
  • the same structure as the element disclosed in JP-A-2007-324587 can be cited. That is, for example, it may have a structure in which a transparent electrode, an electron transport layer, the photoelectric conversion layer of the present invention, a hole transport layer, and a metal electrode are laminated in this order on a transparent substrate. , a hole transport layer, the photoelectric conversion layer of the present invention, an electron transport layer, and a metal electrode may be laminated in this order.
  • the organic photoelectric conversion element of the present invention may have layers other than these, and may not have layers other than the two electrodes and the photoelectric conversion layer of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of the organic photoelectric conversion element of the present invention.
  • This organic photoelectric conversion element 10 has a first electrode 11 as an upper electrode, a hole transport layer 12, a photoelectric conversion layer 13, an electron transport layer 14, and a second electrode 15 as a lower electrode in this order (
  • the two electrodes of the first electrode 11 and the second electrode 15 of the organic photoelectric conversion element may be collectively referred to as "both electrodes").
  • the hole transport layer 12 , the photoelectric conversion layer 13 and the electron transport layer 14 form the organic photoelectric film 20 .
  • a substrate is usually provided on the opposite side of the first electrode 11 from the hole transport layer 12 .
  • a photoelectric conversion layer is a layer that absorbs light and separates charges.
  • the organic photoelectric conversion element of the present invention has the photoelectric conversion layer of the present invention described above.
  • the electrodes (first electrode, second electrode) can be made of any conductive material.
  • electrode constituent materials include metals such as platinum, gold, silver, aluminum, chromium, nickel, copper, titanium, magnesium, calcium, barium, and sodium, or alloys thereof; metal oxides such as indium oxide and tin oxide.
  • conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene; acid such as hydrochloric acid, sulfuric acid and sulfonic acid; Conductive polymers added with dopants such as acids, halogen atoms such as iodine, metal atoms such as sodium and potassium; conductive particles such as metal particles, carbon black, fullerene, and carbon nanotubes dispersed in a matrix such as a polymer binder An electrically conductive composite material, etc. are mentioned.
  • the constituent material of the electrode one type may be used alone, or two or more types may be used together in an arbitrary combination and ratio.
  • the organic photoelectric conversion element at least one pair (two) of electrodes is provided, and a photoelectric conversion layer is provided between the pair of electrodes. At this time, it is preferable that at least one of the pair of electrodes is transparent (that is, transmits light absorbed by the photoelectric conversion layer for power generation).
  • transparent electrode materials include composite oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO); and metal thin films.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • metal thin films metal thin films.
  • the electrode has a function of collecting holes and electrons generated in the photoelectric conversion layer. Therefore, among the above materials, it is preferable to use a constituent material suitable for collecting holes and electrons as a constituent material of the electrode.
  • Electrode materials suitable for collecting holes include, for example, materials having a high work function, such as Au and ITO.
  • Electrode materials suitable for collecting electrons include, for example, materials having a low work function, such as Al.
  • the thickness of the electrode is not particularly limited, and is determined appropriately in consideration of the material of the electrode, the required conductivity, transparency, etc., but it is usually 10 nm to 100 ⁇ m.
  • the electrodes can be formed, for example, by dry processes such as vacuum deposition and sputtering. Alternatively, for example, it can be formed by a wet process using conductive ink or the like. At this time, any conductive ink can be used. For example, a conductive polymer, a metal particle dispersion, or the like can be used.
  • the electrode may have a laminated structure of two or more layers, and may be subjected to surface treatment for improving properties (electrical properties, wettability, etc.).
  • the organic photoelectric conversion element may have a substrate for supporting the two electrodes, the photoelectric conversion layer, other layers, and the like.
  • the substrate may be provided on either the first electrode side or the second electrode side, or may be provided on both sides, but is preferably provided at least on the first electrode side.
  • the substrate can be made of any material, but when light is incident from the substrate side, a highly transparent material is preferable.
  • substrate constituent materials include inorganic materials such as glass, sapphire, and titania; Resins such as vinyl chloride, polyethylene, cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, and polynorbornene; Paper materials such as paper and synthetic paper; Examples include metal composite materials such as titanium and aluminum.
  • the constituent material of the substrate one type may be used alone, or two or more types may be used together in an arbitrary combination and ratio.
  • the substrate may be a single sheet or a multi-layer structure consisting of two or more sheets. Another layer may be laminated on the substrate for imparting gas barrier properties and controlling the surface state.
  • the thickness of the substrate can be arbitrarily designed according to the application of the organic photoelectric conversion element, the material of the base material, the material of the layer of the element, etc., but it is preferably thick from the viewpoint of excellent strength as a support member. Thinness is preferable in that the size of the conversion element can be reduced and the cost can be reduced when using a base material made of an expensive material.
  • the substrate is preferably in the form of a film or plate having a thickness of 10 ⁇ m to 50 mm.
  • the hole transport layer is not essential in the organic photoelectric conversion element, but by providing the hole transport layer between the photoelectric conversion layer and the first electrode, the photoelectric conversion efficiency is increased and the dark current is reduced. be able to.
  • hole-transporting substance can be used for the hole-transporting layer.
  • hole-transporting polymers such as polytriarylamine compounds exemplified below can be used.
  • the method for producing the hole transport layer is not particularly limited, but it is preferably formed by a wet film formation method using a hole transport polymer.
  • a hole-transporting layer-forming composition containing a hole-transporting polymer and a solvent is usually used for forming a hole-transporting layer by a wet film-forming method using a hole-transporting polymer.
  • the solvent used here may dissolve the hole-transporting polymer, and usually contains 0.05% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass of the hole-transporting polymer at room temperature. % or more is used.
  • the type of solvent is not particularly limited, for example, ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, amide-based solvents, and the like are preferable.
  • ether-based solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, aromatic ethers such as anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole;
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, aromatic ethers such as anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytolu
  • ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate and n-butyl benzoate.
  • aromatic hydrocarbon solvents include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. be done.
  • amide solvents include N,N-dimethylformamide and N,N-dimethylacetamide. In addition to these, dimethyl sulfoxide and the like can also be used.
  • the concentration of the hole-transporting polymer in the composition for forming a hole-transporting layer containing the hole-transporting polymer is arbitrary, but it is preferably low in terms of the uniformity of the film thickness. A higher value is preferable from the point of view that defects are less likely to occur.
  • the concentration of the hole-transporting polymer in the hole-transporting layer-forming composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more. It is more preferably 5% by mass or more, preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the concentration of the solvent in the composition for forming a hole transport layer is usually 10% by mass or more, preferably 30% by mass or more, and more preferably 50% by mass or more.
  • the layer formed is usually heated after coating the composition for forming a hole transport layer.
  • the heating method is not particularly limited, but the conditions for heat drying are usually 100° C. or higher, preferably 120° C. or higher, more preferably 150° C. or higher, and usually 400° C. or lower, preferably 350° C. or lower, more preferably. is below 300°C.
  • the heating time is usually 1 minute or more, preferably 24 hours or less.
  • the heating means is not particularly limited, but means such as placing the laminate having the formed layers on a hot plate or heating in an oven is used. For example, it can be carried out under conditions such as heating on a hot plate at 120° C. or higher for 1 minute or longer.
  • the film thickness of the hole-transporting layer is preferably thick in that the effect of reducing dark current due to the provision of the hole-transporting layer as a blocking layer is likely to occur.
  • a thin film is preferable in terms of widening the angle of incidence and facilitating thinning of the organic photoelectric conversion element.
  • the film thickness is preferably 50 nm or more, more preferably 100 nm or more, preferably 400 nm or less, and more preferably 350 nm or less.
  • the LUMO of the hole transport layer is preferably shallower than the LUMO of the n-type organic semiconductor of the photoelectric conversion layer in terms of easily reducing dark current, specifically, it is shallower than 0.3 eV. It is preferably shallower than 0.5 eV, more preferably shallower than 1.0 eV.
  • the HOMO of the hole transport layer preferably has a small difference from the HOMO of the p-type organic semiconductor of the photoelectric conversion layer in that the holes generated in the photoelectric conversion layer can be efficiently transported to the first electrode. Therefore, the difference is preferably within 0.5 eV, more preferably within 0.3 eV.
  • the electron transport layer is not essential in the organic photoelectric conversion element, but by providing the electron transport layer between the photoelectric conversion layer and the second electrode, the photoelectric conversion efficiency can be increased and the dark current can be reduced. can.
  • the electron transport layer contains a compound capable of efficiently transporting electrons generated in the photoelectric conversion layer to the second electrode.
  • a compound having high electron injection efficiency from the photoelectric conversion layer, high electron mobility, and capable of efficiently transporting the injected electrons is used. is important.
  • the electron transport layer preferably has a small difference in LUMO from the n-type semiconductor of the photoelectric conversion layer. Specifically, the difference is preferably 1.5 eV or less, and is 1.0 eV. is more preferable.
  • the electron transport layer when the dark current is reduced by providing an electron transport layer, the electron transport layer preferably has a deep HOMO with respect to the p-type semiconductor of the photoelectric conversion layer, specifically, it is 0.3 eV or more deep. , more preferably 0.5 eV or more, and even more preferably 1.0 eV or more.
  • Examples of the electron-transporting compound used in the electron-transporting layer include metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo[h]quinoline, oxadi Azole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No.
  • Metal oxides such as titanium oxide, zinc oxide, tin oxide, and cerium oxide can also be used as materials for forming the electron transport layer.
  • a method for producing the electron transport layer a method of forming a metal oxide nanoparticle in a wet process and drying it to form a metal oxide layer, or a method of forming a metal oxide precursor in a wet process and performing a heat conversion process. method can be used.
  • the thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer can be formed by a wet film formation method or a vacuum deposition method, but is usually formed by a vacuum deposition method.
  • the organic photoelectric conversion element of the present invention may include layers other than the electrodes and layers described above, as long as the effects of the present invention are not significantly impaired.
  • the organic photoelectric conversion element of the present invention may be provided with a protective film covering the photoelectric conversion layer portion and the electrode portion in order to reduce the influence of the external environment such as the outside air.
  • the protective layer is, for example, a polymer film such as styrene resin, epoxy resin, acrylic resin, polyurethane, polyimide, polyvinyl alcohol, polyvinylidene fluoride, polyethylene-polyvinyl alcohol copolymer; inorganic oxide such as silicon oxide, silicon nitride, aluminum oxide; It can be composed of a film, a nitride film, or a laminated film of these.
  • the method for forming the protective film there is no limitation on the method for forming the protective film.
  • a method of coating and drying a polymer solution, a method of coating or vapor-depositing a monomer and polymerizing it, and the like can be used.
  • a cross-linking treatment or form a multilayer film it is possible to further perform a cross-linking treatment or form a multilayer film.
  • the protective film is an inorganic film such as an inorganic oxide film or a nitride film, it is formed by, for example, a forming method in a vacuum process such as a sputtering method or a vapor deposition method, or a forming method in a solution process represented by a sol-gel method. can do.
  • a charge injection layer may be provided between the first electrode and the hole transport layer or between the electron transport layer and the second electrode in order to allow the electrode to efficiently collect the charges generated in the photoelectric conversion layer. good.
  • the organic photoelectric conversion device of the present invention may have, for example, an optical filter that does not transmit ultraviolet rays on the light incident side. Since ultraviolet rays generally accelerate the deterioration of organic photoelectric conversion elements in many cases, the life of the organic photoelectric conversion elements can be extended by blocking the ultraviolet rays.
  • the organic photoelectric conversion element of the present invention can be produced by laminating each layer and member in the order of the first electrode, constituent layers such as a photoelectric conversion layer, and the second electrode.
  • it can be manufactured by laminating the first electrode, the hole transport layer, the photoelectric conversion layer, and the second electrode in this order on the substrate by the method described above. Between these layers, an electron transport layer and the like are formed as required.
  • the organic photoelectric conversion device of the present invention can be suitably used for optical sensors, imaging devices, and the like.
  • a known configuration may be applied to the configuration of the optical sensor and the imaging element in that case.
  • Example 1 ⁇ Preparation of organic semiconductor ink> In 1 mL of a mixed solvent of xylene (manufactured by Sigma-Aldrich) and 1,2,4-trimethylbenzene (manufactured by Kanto Chemical Co., Ltd.) (volume ratio 1:1), 8 mg of the following p-type organic semiconductor and 16 mg of the n-type organic semiconductor, 8 mg of 1,2,3,4-tetraphenylnaphthalene (manufactured by Sigma-Aldrich, HOMO: -6.5 eV, LUMO: -2.7 eV) was added to prepare an organic semiconductor ink solution.
  • xylene manufactured by Sigma-Aldrich
  • 1,2,4-trimethylbenzene manufactured by Kanto Chemical Co., Ltd.
  • p-type organic semiconductor p-type organic semiconductor represented by the formula (II) (manufactured by 1-Material, weight average molecular weight 240000, LUMO: -3.5 eV)
  • This organic semiconductor ink solution was heated and stirred on a hot stirrer set at 100° C. for 3 hours, then allowed to stand at room temperature (25° C.) for 3 hours, and then filtered through a 5 ⁇ m polytetrafluoroethylene filter. . Further, this organic semiconductor ink solution was allowed to stand at room temperature (25° C.) for a whole day and night to obtain an organic semiconductor ink.
  • a composition for forming a hole-transporting layer was prepared by dissolving 60 mg of a polytriarylamine compound (hole-transporting polymer) represented by the following formula (1) in 1 mL of anisole. This composition was spin-coated onto the electrode surface of an ITO substrate at a rotation speed of 1000 rpm for 60 seconds, and then dried by heating at 240° C. for 30 minutes to form a hole transport layer having a thickness of 300 nm.
  • a polytriarylamine compound represented by the following formula (1)
  • the organic semiconductor ink prepared above was spin-coated on the hole transport layer at a rotation speed of 1000 rpm for 60 seconds, and then dried by heating at 120°C for 10 minutes to prepare a photoelectric conversion layer with a thickness of 180 nm.
  • Example 2 An organic semiconductor ink was prepared in the same manner as in Example 1 except that 24 mg of 1,2,3,4-tetraphenylnaphthalene was used, and a photoelectric conversion layer was produced using this organic semiconductor ink.
  • Example 8 An organic semiconductor ink was prepared in the same manner as in Example 1, except that 9,10-diphenylanthracene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced using a semiconductor ink.
  • Example 11 An organic semiconductor ink was prepared in the same manner as in Example 2 except that 55,6,11,12-tetraphenylnaphthacene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. was prepared, and a photoelectric conversion layer was produced using this organic semiconductor ink.
  • Table 1 shows the observation results of the film quality before and after heating. In addition, each optical microscope photograph is shown in FIGS.
  • Comparative Examples 8 to 11 are conjugated compounds similar to 1,2,3,4-tetraphenylnaphthalene, in which the substituents R are not adjacent to each other, 9,10-diphenylanthracene and 5 , 6,11,12-tetraphenylnaphthacene.
  • the substituents R are not adjacent to each other, so compared to 1,2,3,4-tetraphenylnaphthalene, it is easier to form a two-dimensional planar structure in the film. That is, it is considered that crystals tend to form, and sufficient compatibility with the p-type organic semiconductor and the n-type organic semiconductor was not obtained.
  • the compatibilizing agent of the present invention it has solubility in both the p-type organic semiconductor and the n-type organic semiconductor, and self-aggregation and crystal formation are caused by heating and aging. It is presumed that an increase in the phase separation size of the BHJ structure can be suppressed because of the absence of the BHJ structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

The present invention provides an organic semiconductor ink which contains a p-type organic semiconductor, an n-type organic semiconductor, a compatibilizer and a solvent, and which is characterized in that: the compatibilizer has a fused ring A of 2 to 5 aromatic hydrocarbon rings as the main skeleton, the fused ring A having two or more substituents R that are adjacent to each other; at least one of the substituents R is a monovalent group of a monocyclic aromatic hydrocarbon ring or an aromatic hydrocarbon ring B that is a fused ring of 2 to 4 aromatic hydrocarbon rings, the aromatic hydrocarbon ring B having the same number of or fewer fused rings in comparison to the fused ring A; and the fused ring A and the aromatic hydrocarbon ring B are not present on the same plane.

Description

有機半導体インク、有機膜、光電変換層、光電変換層の製造方法及び有機光電変換素子Organic semiconductor ink, organic film, photoelectric conversion layer, method for producing photoelectric conversion layer, and organic photoelectric conversion element
 本発明は、有機半導体インク及び有機膜に関する。本発明はまた、この有機半導体インクを用いる光電変換層の製造方法と、この有機膜からなる光電変換層とこの光電変換層を有する有機光電変換素子に関する。 The present invention relates to organic semiconductor inks and organic films. The present invention also relates to a method for producing a photoelectric conversion layer using this organic semiconductor ink, a photoelectric conversion layer made of this organic film, and an organic photoelectric conversion element having this photoelectric conversion layer.
 入射された光のエネルギーを電気エネルギーに変換する有機光電変換膜は、太陽電池や光センサ(光ダイオード)への適応が期待されている。
 有機光電変換膜については、従来、電子ドナー性半導体(p型有機半導体)である共役系ポリマーと、電子アクセプター性半導体(n型有機半導体)となるPCBMに代表されるフラーレン誘導体との混合物からなるバルクへテロジャンクション(BHJ)構造を膜中に形成させることが、高性能な有機光電変換膜を得ることに有望とされ、最大で11%程度のエネルギー変換効率(PCE)を持つ有機太陽電池が報告されている。
Organic photoelectric conversion films that convert the energy of incident light into electrical energy are expected to be applied to solar cells and optical sensors (photodiodes).
Conventionally, organic photoelectric conversion films consist of a mixture of a conjugated polymer, which is an electron-donating semiconductor (p-type organic semiconductor), and a fullerene derivative typified by PCBM, which is an electron-accepting semiconductor (n-type organic semiconductor). Forming a bulk heterojunction (BHJ) structure in a film is promising for obtaining a high-performance organic photoelectric conversion film, and an organic solar cell with a maximum energy conversion efficiency (PCE) of about 11% has been developed. It has been reported.
 近年では、フラーレン誘導体に変わり非フラーレン型アクセプターと呼ばれる低分子アクセプターを用いることにより、更なるPCEの向上が可能であることが報告されている。例えば、太陽光からのエネルギー変換効率が18%を超えるものも報告されている。 In recent years, it has been reported that PCE can be further improved by using low-molecular-weight acceptors called non-fullerene-type acceptors instead of fullerene derivatives. For example, it has been reported that the energy conversion efficiency from sunlight exceeds 18%.
 有機光電変換膜の持つ大きな課題の一つは、BHJ構造の安定性であると考えられている。BHJ構造では、膜中に概ね10~100nm程度のサイズでp型有機半導体とn型有機半導体がそれぞれ共連続のドメインを持つことが理想的であるとされる。これは、有機半導体における励起子の拡散長によって主に決定される。このような分離構造を持つためには、BHJ構造を構成するp型有機半導体とn型有機半導体との相溶性が低く、過度に混合し合わないことが求められる。一方で、このような低い相溶性は、時間の経過や加熱による分子拡散を通じた相分離サイズの成長を促し、結果として、理想的なドメインサイズよりも大きなサイズのドメインへの成長に至る。マイクロメートルサイズにまで成長し得るこのような相分離は、光電変換特性の低下やイメージセンサの画素間の特性バラツキを生じるなど、実用上の問題を引き起こす。  One of the major issues with organic photoelectric conversion films is considered to be the stability of the BHJ structure. In the BHJ structure, it is considered ideal that the p-type organic semiconductor and the n-type organic semiconductor each have co-continuous domains with a size of about 10 to 100 nm in the film. This is primarily determined by the exciton diffusion length in the organic semiconductor. In order to have such a separation structure, it is required that the p-type organic semiconductor and the n-type organic semiconductor constituting the BHJ structure have low compatibility and are not excessively mixed. On the other hand, such low compatibility promotes the growth of phase-separated sizes through molecular diffusion over time and heating, resulting in the growth of larger than ideal domain sizes. Such phase separation, which can grow up to a micrometer size, causes practical problems such as deterioration of photoelectric conversion characteristics and variation in characteristics between pixels of an image sensor.
 このような課題に対応するため、p型有機半導体およびn型有機半導体の分子拡散を抑えるべく、これらの少なくとも一つを架橋し、熱運動性を低下させることで、相分離サイズの成長速度を抑える技術が知られている。
 例えば、特許文献1では、p型有機半導体とn型有機半導体に加えてエポキシ系架橋剤を有機半導体インクに添加して架橋することにより、BHJ構造の熱的安定性を高めることが報告されている。
In order to deal with such problems, at least one of the p-type organic semiconductor and the n-type organic semiconductor is crosslinked to reduce the thermal mobility in order to suppress the molecular diffusion of the p-type organic semiconductor and the n-type organic semiconductor, thereby increasing the growth rate of the phase separation size. There are known techniques for reducing
For example, Patent Document 1 reports that the thermal stability of the BHJ structure is increased by adding an epoxy-based cross-linking agent to the organic semiconductor ink in addition to the p-type organic semiconductor and the n-type organic semiconductor for cross-linking. there is
特願2021-121622号Japanese Patent Application No. 2021-121622
 しかしながら、架橋成分を用いる方法では、架橋のために与える熱または光などの外部エネルギーが光電変換膜のBHJ構造の相分離サイズの増大や材料そのものの劣化を引き起こす可能性がある。 However, in the method using a cross-linking component, external energy such as heat or light applied for cross-linking may increase the phase separation size of the BHJ structure of the photoelectric conversion film and deteriorate the material itself.
 本発明は、架橋成分を用いずに、時間経過や加熱により、p型有機半導体とn型有機半導体の相分離が起こり難い有機膜を提供すること、及び該有機膜を塗布法により製造するのに好適な有機半導体インクを提供することを目的とする。 The present invention provides an organic film in which phase separation of a p-type organic semiconductor and an n-type organic semiconductor is unlikely to occur due to the passage of time or heating without using a cross-linking component, and to produce the organic film by a coating method. An object of the present invention is to provide an organic semiconductor ink suitable for
 本発明者は、p型有機半導体とn型有機半導体のそれぞれに相溶性を有し、また、加熱や時間の経過によって自己凝集や結晶生成し難い特定の相溶化剤を用いることにより、時間経過や加熱により、p型有機半導体とn型有機半導体の相分離が起こり難い有機膜を提供できることを見出した。 The present inventors have found that by using a specific compatibilizer that has compatibility with each of the p-type organic semiconductor and the n-type organic semiconductor and that is difficult to self-aggregate or crystallize due to heating or the passage of time, It has been found that an organic film in which phase separation between a p-type organic semiconductor and an n-type organic semiconductor is unlikely to occur can be provided by heating.
 本発明は、以下を要旨とする。 The gist of the present invention is as follows.
[1] p型有機半導体、n型有機半導体、相溶化剤及び溶媒を含有する有機半導体インクであって、
 該相溶化剤は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
 置換基Rのうち少なくとも一つは、芳香族炭化水素環の単環、又は該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基であり、
 該縮合環Aと該芳香族炭化水素環Bとが同一平面上に存在しない有機化合物であることを特徴とする有機半導体インク。
[1] An organic semiconductor ink containing a p-type organic semiconductor, an n-type organic semiconductor, a compatibilizer and a solvent,
The compatibilizer has a main skeleton of 2 to 5 condensed rings A of aromatic hydrocarbon rings having two or more substituents R adjacent to each other,
At least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon ring that is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings than the condensed ring A. is a monovalent group of B,
An organic semiconductor ink characterized by being an organic compound in which the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane.
[2] p型有機半導体、n型有機半導体、相溶化剤及び溶媒を含有する有機半導体インクであって、
 該相溶化剤は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
 置換基Rは、芳香族炭化水素環の単環、又は芳香族炭化水素環の2~4縮合環である芳香族炭化水素環B’の1価の基である有機半導体インク。
[2] An organic semiconductor ink containing a p-type organic semiconductor, an n-type organic semiconductor, a compatibilizer and a solvent,
The compatibilizer has a main skeleton of 2 to 5 condensed rings A of aromatic hydrocarbon rings having two or more substituents R adjacent to each other,
The organic semiconductor ink in which the substituent R is a monovalent group of an aromatic hydrocarbon ring B' which is a monocyclic aromatic hydrocarbon ring or 2 to 4 condensed aromatic hydrocarbon rings.
[3] 該置換基Rは、該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基である、[2]に記載の有機半導体インク。 [3] The substituent R is a monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings as the condensed ring A, [2 ].
[4] 前記Rが全て芳香族炭化水素環の1価の基である、[1]~[3]のいずれかに記載の有機半導体インク。 [4] The organic semiconductor ink according to any one of [1] to [3], wherein all of the R's are monovalent groups of aromatic hydrocarbon rings.
[5] 前記Rが全てフェニル基である、[4]に記載の有機半導体インク。 [5] The organic semiconductor ink according to [4], wherein all of the R's are phenyl groups.
[6] 前記相溶化剤が1,2,3,4-テトラフェニルナフタレン及び1-メチル-3,4-ジフェニルナフタレンから選ばれる、[5]に記載の有機半導体インク。 [6] The organic semiconductor ink according to [5], wherein the compatibilizer is selected from 1,2,3,4-tetraphenylnaphthalene and 1-methyl-3,4-diphenylnaphthalene.
[7] 前記p型有機半導体及びn型有機半導体が架橋基を有しない、[1]~[6]のいずれかに記載の有機半導体インク。 [7] The organic semiconductor ink according to any one of [1] to [6], wherein the p-type organic semiconductor and the n-type organic semiconductor do not have a cross-linking group.
[8] 前記p型有機半導体が高分子化合物である、[1]~[7]のいずれかに記載の有機半導体インク。 [8] The organic semiconductor ink according to any one of [1] to [7], wherein the p-type organic semiconductor is a polymer compound.
[9] 前記p型有機半導体が重量平均分子量が50000以上400000以下の高分子化合物である、[8]に記載の有機半導体インク。 [9] The organic semiconductor ink according to [8], wherein the p-type organic semiconductor is a polymer compound having a weight average molecular weight of 50,000 to 400,000.
[10] 前記高分子化合物が下記式(II)で表される高分子化合物である、[8]又は[9]に記載の有機半導体インク。 [10] The organic semiconductor ink according to [8] or [9], wherein the polymer compound is a polymer compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(II)中、nは正の数である。) (In formula (II), n is a positive number.)
[11] 前記n型有機半導体が非フラーレン型半導体である、[1]~[10]のいずれかに記載の有機半導体インク。 [11] The organic semiconductor ink according to any one of [1] to [10], wherein the n-type organic semiconductor is a non-fullerene semiconductor.
[12] 前記非フラーレン型半導体が、下記式(I)で表される化合物及び下記式(I)で表される化合物の多量体の少なくとも何れかの化合物である、[11]に記載の有機半導体インク。 [12] The organic compound according to [11], wherein the non-fullerene semiconductor is at least one of a compound represented by the following formula (I) and a polymer of the compound represented by the following formula (I): semiconductor ink.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(I)中、Aは周期表第14族から選ばれる原子を表す。X~Xは、それぞれ独立して、水素原子又はハロゲン原子を表す。R1a及びR1bは、それぞれ独立して、鎖状のアルキル基を表す。R~Rは、それぞれ独立して、鎖状のアルキル基、鎖状のアルコキシ基、鎖状のチオアルキル基、或いは水素原子を表す。) (In formula (I), A represents an atom selected from Group 14 of the periodic table; X 1 to X 4 each independently represent a hydrogen atom or a halogen atom; R 1a and R 1b each independently represents a chain alkyl group, and each of R 2 to R 5 independently represents a chain alkyl group, a chain alkoxy group, a chain thioalkyl group, or a hydrogen atom.)
[13] 前記相溶化剤の前記p型有機半導体に対する含有量比(質量比)が0.1以上10.0以下である、[1]~[12]のいずれかに記載の有機半導体インク。 [13] The organic semiconductor ink according to any one of [1] to [12], wherein the content ratio (mass ratio) of the compatibilizer to the p-type organic semiconductor is 0.1 or more and 10.0 or less.
[14] 前記溶媒がキシレンである、[1]~[13]のいずれかに記載の有機半導体インク。 [14] The organic semiconductor ink according to any one of [1] to [13], wherein the solvent is xylene.
[15] p型有機半導体とn型有機半導体と有機化合物とを含む有機膜であって、
 該有機化合物が、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
 置換基Rのうち少なくとも一つは、芳香族炭化水素環の単環、又は該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基であり、
 該縮合環Aと該芳香族炭化水素環Bとが同一平面上に存在しない有機化合物であることを特徴とする有機膜。
[15] An organic film comprising a p-type organic semiconductor, an n-type organic semiconductor and an organic compound,
The organic compound has a main skeleton of 2 to 5 condensed rings A of an aromatic hydrocarbon ring having two or more substituents R adjacent to each other,
At least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon ring that is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings than the condensed ring A. is a monovalent group of B,
An organic film characterized by being an organic compound in which the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane.
[16]p型有機半導体とn型有機半導体と有機化合物とを含有する有機膜であって、
 該有機化合物は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
 置換基Rは、芳香族炭化水素環の単環、又は芳香族炭化水素環の2~4縮合環である芳香族炭化水素環B’の1価の基である有機膜。
[16] An organic film containing a p-type organic semiconductor, an n-type organic semiconductor and an organic compound,
The organic compound has a main skeleton of 2 to 5 condensed rings A of an aromatic hydrocarbon ring having two or more substituents R adjacent to each other,
The substituent R is a monovalent group of an aromatic hydrocarbon ring B' which is a monocyclic aromatic hydrocarbon ring or 2 to 4 condensed aromatic hydrocarbon rings.
[17]該置換基Rは、該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基である、[16]に記載の有機膜。 [17] The substituent R is a monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings as the condensed ring A, [16 ].
[18] [15]~[17]のいずれかに記載の有機膜からなる光電変換層。 [18] A photoelectric conversion layer comprising the organic film according to any one of [15] to [17].
[19] [1]~[14]のいずれかに記載の有機半導体インクを塗布する工程を有する光電変換層の製造方法。 [19] A method for producing a photoelectric conversion layer, comprising the step of applying the organic semiconductor ink according to any one of [1] to [14].
[20] [15]~[17]のいずれかに記載の有機膜からなる光電変換層を含む有機光電変換素子。 [20] An organic photoelectric conversion device comprising a photoelectric conversion layer made of the organic film according to any one of [15] to [17].
 本発明の有機半導体インクは、p型有機半導体とn型有機半導体とこれらを相溶する成分を含むため、この有機半導体インクから有機膜を成膜後もp型有機半導体とn型有機半導体の相分離を抑制することが出来る。
 このように、本発明の有機半導体インクは特定の相溶化剤を含むため、従来の発明のように相分離を速度論的に抑えるために有機半導体インク中に架橋成分を添加し、架橋のための熱や光などの外部エネルギーを与える必要がない。
 このため、従来に比べて、より安価に、耐熱安定性に優れた有機光電変換層及び有機光電変換素子を製造することができる。
Since the organic semiconductor ink of the present invention contains a p-type organic semiconductor, an n-type organic semiconductor, and a component compatible with these, even after an organic film is formed from this organic semiconductor ink, the p-type organic semiconductor and the n-type organic semiconductor remain unchanged. Phase separation can be suppressed.
Thus, since the organic semiconductor ink of the present invention contains a specific compatibilizer, a cross-linking component is added to the organic semiconductor ink in order to kinetically suppress phase separation as in the conventional invention. There is no need to apply external energy such as heat or light.
Therefore, an organic photoelectric conversion layer and an organic photoelectric conversion element having excellent heat resistance stability can be manufactured at a lower cost than conventional methods.
本発明の有機光電変換素子の実施形態の一例を示す断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which shows an example of embodiment of the organic photoelectric conversion element of this invention. 実施例1と実施例2で製造された光電変換層の加熱前後の膜表面の光学顕微鏡写真である。2 is optical micrographs of the film surface before and after heating of the photoelectric conversion layers produced in Examples 1 and 2. FIG. 比較例1で製造された光電変換層の加熱前後の膜表面の光学顕微鏡写真である。4 is an optical microscope photograph of the film surface before and after heating of the photoelectric conversion layer produced in Comparative Example 1. FIG. 比較例2と比較例3で製造された光電変換層の加熱前後の膜表面の光学顕微鏡写真である。3 is optical micrographs of film surfaces before and after heating of photoelectric conversion layers produced in Comparative Examples 2 and 3. FIG. 比較例4と比較例5で製造された光電変換層の加熱前後の膜表面の光学顕微鏡写真である。FIG. 10 is optical microscope photographs of the film surfaces of the photoelectric conversion layers produced in Comparative Examples 4 and 5 before and after heating. FIG. 比較例6と比較例7で製造された光電変換層の加熱前後の膜表面の光学顕微鏡写真である。FIG. 10 is an optical microscope photograph of the film surface before and after heating of the photoelectric conversion layers produced in Comparative Examples 6 and 7. FIG. 比較例8と比較例9で製造された光電変換層の加熱前後の膜表面の光学顕微鏡写真である。FIG. 10 is optical microscope photographs of the film surfaces of the photoelectric conversion layers produced in Comparative Examples 8 and 9 before and after heating. FIG. 比較例10と比較例11で製造された光電変換層の加熱前後の膜表面の光学顕微鏡写真である。FIG. 10 is an optical microscope photograph of the film surface before and after heating of the photoelectric conversion layers produced in Comparative Examples 10 and 11. FIG.
 以下に本発明を実施するための形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、本発明はこれらの内容に限定されるものではない。 The following describes in detail the embodiments for carrying out the present invention. The descriptions of the constituent elements described below are representative examples of embodiments of the present invention, and the present invention is not limited to these contents.
[有機半導体インク]
 本発明の有機半導体インクは、p型有機半導体、n型有機半導体、特定の相溶化剤及び溶媒を含有することを特徴とする。
[Organic semiconductor ink]
The organic semiconductor ink of the present invention is characterized by containing a p-type organic semiconductor, an n-type organic semiconductor, a specific compatibilizer and a solvent.
<相溶化剤>
 本発明の第1の実施形態で用いる相溶化剤(以下、「相溶化剤I」と称す場合がある。)は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、置換基Rのうち少なくとも一つは、芳香族炭化水素環の単環、又は該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基であり、該縮合環Aと該芳香族炭化水素環Bとが同一平面上に存在しない有機化合物である。
 本発明の第2の実施形態で用いる相溶化剤(以下、「相溶化剤II」と称す場合がある。)は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、置換基Rは、芳香族炭化水素環の単環、又は芳香族炭化水素環の2~4縮合環である芳香族炭化水素環B’の1価の基である有機化合物である。
 以下において、「相溶剤I」と「相溶剤II」を「本発明の相溶剤」と総称する場合がある。
<Compatibilizer>
The compatibilizer used in the first embodiment of the present invention (hereinafter sometimes referred to as "compatibilizer I") is an aromatic hydrocarbon ring having two or more substituents R adjacent to each other. 2 to 5 condensed ring A as a main skeleton, at least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or two aromatic hydrocarbon rings having the same or fewer condensed rings as the condensed ring A It is a monovalent group of an aromatic hydrocarbon ring B which is a 4-condensed ring, and is an organic compound in which the condensed ring A and the aromatic hydrocarbon ring B do not exist on the same plane.
The compatibilizer used in the second embodiment of the present invention (hereinafter sometimes referred to as "compatibilizer II") is an aromatic hydrocarbon ring having two or more substituents R adjacent to each other. The main skeleton is 2 to 5 condensed rings A, and the substituent R is a monovalent aromatic hydrocarbon ring B', which is a monocyclic aromatic hydrocarbon ring or 2 to 4 condensed aromatic hydrocarbon rings. It is an organic compound that is a group.
Hereinafter, "Compatibilizer I" and "Compatibilizer II" may be collectively referred to as "the compatibilizer of the present invention".
 ここで、「主骨格」とは、相溶化剤の有機化合物中、最も大きな骨格を形成する縮合環骨格をさす。
 また、「同一平面」の平面とは、芳香族炭化水素環のπ共役平面をさす。従って、「縮合環Aと芳香族炭化水素環Bとが同一平面上に存在しない」とは、縮合環Aのπ共役平面と芳香族炭化水素環Bのπ共役平面とが同一平面上に存在しないことをさす。例えば、芳香族炭化水素環Bよりなる1価の置換基Rが、これと隣接する縮合環A上の置換基Rとの立体障害(立体的な制約)により、縮合環Aに結合する単結合周りでの自由回転が妨げられ、縮合環Aのπ共役平面と芳香族炭化水素環Bのπ共役平面とが同一平面上に並ばない状態を意味する。
 また、「芳香族炭化水素環」は、芳香族性を有する環をさし、所謂狭義の炭化水素環に加え、複素環も含む。但し、光電変換特性への影響を考えると、複素環より、狭義の炭化水素環が好ましい。
Here, the "main skeleton" refers to a condensed ring skeleton that forms the largest skeleton in the organic compound of the compatibilizer.
In addition, the “coplanar” plane refers to the π-conjugated plane of the aromatic hydrocarbon ring. Therefore, "the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane" means that the π-conjugated plane of the condensed ring A and the π-conjugated plane of the aromatic hydrocarbon ring B are on the same plane. suggest not to For example, a monovalent substituent R consisting of an aromatic hydrocarbon ring B is a single bond bonded to the condensed ring A due to steric hindrance (steric restriction) with the substituent R on the adjacent condensed ring A. It means a state in which the π-conjugated plane of the condensed ring A and the π-conjugated plane of the aromatic hydrocarbon ring B are not aligned on the same plane because free rotation is prevented.
In addition, the term "aromatic hydrocarbon ring" refers to rings having aromaticity, and includes not only so-called narrowly defined hydrocarbon rings but also heterocyclic rings. However, in consideration of the influence on the photoelectric conversion characteristics, a hydrocarbon ring in a narrow sense is preferable to a heterocyclic ring.
(メカニズム)
 ある化合物がp型有機半導体とn型有機半導体の相溶化剤として機能するためには、その化合物がまずp型有機半導体とn型有機半導体のいずれに対しても相溶性を有する必要性がある。通常、p型有機半導体とn型有機半導体はいずれも共役系骨格を主骨格として有することから、相溶化剤もまた共役系骨格を有することが求められる。
 一方で、ナフタレンやピレンなど無置換の共役系化合物の多くは平面構造を有し、且つ構造対称性が高いことから、塗布乾燥時や膜の加熱時に結晶化が容易に進行し、p型有機半導体とn型有機半導体との相溶化剤として機能しない場合がある。
 これに対して、少なくとも二つの共役系骨格が連結し、かつ互いに同一平面上に並ばない、ねじれた位置関係にある共役系化合物は、p型有機半導体及びn型有機半導体との相溶性を保ちつつ、それ自体が強い結晶性を有さないことから、p型有機半導体とn型有機半導体の相溶化剤として有効に機能する。
(mechanism)
In order for a compound to function as a compatibilizer for p-type organic semiconductors and n-type organic semiconductors, the compound must first have compatibility with both p-type organic semiconductors and n-type organic semiconductors. . Since both p-type organic semiconductors and n-type organic semiconductors usually have a conjugated skeleton as a main skeleton, the compatibilizer is also required to have a conjugated skeleton.
On the other hand, many unsubstituted conjugated compounds such as naphthalene and pyrene have a planar structure and high structural symmetry, so crystallization easily proceeds during coating drying and film heating, and p-type organic It may not function as a compatibilizer between the semiconductor and the n-type organic semiconductor.
On the other hand, a conjugated compound having a twisted positional relationship in which at least two conjugated skeletons are connected and not arranged on the same plane maintains compatibility with the p-type organic semiconductor and the n-type organic semiconductor. However, since it itself does not have strong crystallinity, it functions effectively as a compatibilizer for p-type organic semiconductors and n-type organic semiconductors.
(縮合環A)
 本発明の相溶化剤の主骨格を構成する縮合環Aは、芳香族炭化水素環の2~5縮合環である。
 縮合環Aの縮合環数は、化学的安定性の点で多いことが好ましい。また、一方で、p型有機半導体とn型有機半導体との相溶性の点では少ないことが好ましい。そこで、具体的には、縮合環Aの縮合環数は2~5であり、好ましくは2~4である。主骨格の縮合環Aの炭素数の合計は10~18であることが好ましい。
(Condensed ring A)
The condensed ring A constituting the main skeleton of the compatibilizer of the present invention is 2 to 5 condensed rings of aromatic hydrocarbon rings.
The number of condensed rings in the condensed ring A is preferably large in terms of chemical stability. On the other hand, in terms of compatibility between the p-type organic semiconductor and the n-type organic semiconductor, less is preferable. Therefore, specifically, the number of condensed rings in the condensed ring A is 2-5, preferably 2-4. The total number of carbon atoms in the condensed ring A of the main skeleton is preferably 10-18.
 主骨格の縮合環Aとしては、芳香族炭化水素環で構成され、縮合環A全体として一つのπ共役平面を形成するものであればよく、例えば、以下に構造式を示すナフタレン、アズレン、フェナントレン、アントラセン、フルオランテン、ピレン、グリセン、ベンゾ[b]フルオランテン、ベンゾ[a]ピレン、ペリレンなどが挙げられる。また、複素環としては、キノリン、フェナンスロリン、ベンゾジチオフェン、ナフトジチオフェンなどが挙げられる。 The condensed ring A of the main skeleton may be composed of an aromatic hydrocarbon ring and the condensed ring A as a whole forms one π-conjugated plane. , anthracene, fluoranthene, pyrene, glycene, benzo[b]fluoranthene, benzo[a]pyrene, perylene and the like. Heterocyclic rings include quinoline, phenanthroline, benzodithiophene, naphthodithiophene, and the like.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(置換基R)
 本発明の相溶化剤の主骨格である縮合環Aは、互いに隣り合う二つ以上の置換基Rを有する。
 ここで「隣り合う」とは、主骨格の縮合環A上の隣接する炭素原子に結合することを意味する。
 本発明の第1の実施形態の相溶剤Iにおいて、置換基Rのうちの少なくとも一つは、芳香族炭化水素環の単環、又は該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基である。ここで、芳香族炭化水素環Bの1価の基とは、芳香族炭化水素環Bが直接単結合で主骨格の縮合環Aに結合する基である。
 この芳香族炭化水素環Bは、相溶化剤としての特性を損なわない限り、更に置換基を有していてもよく、芳香族炭化水素環Bが有していてもよい置換基としては、アルキル基、アルコキシ基、チオアルキル基等が挙げられる。
(substituent R)
The condensed ring A, which is the main skeleton of the compatibilizer of the present invention, has two or more substituents R adjacent to each other.
Here, "adjacent" means bonding to adjacent carbon atoms on the condensed ring A of the main skeleton.
In the compatibilizer I of the first embodiment of the present invention, at least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon having the same or fewer condensed rings as the condensed ring A. It is a monovalent group of the aromatic hydrocarbon ring B which is 2 to 4 condensed hydrogen rings. Here, the monovalent group of the aromatic hydrocarbon ring B is a group in which the aromatic hydrocarbon ring B is directly bonded to the condensed ring A of the main skeleton through a single bond.
This aromatic hydrocarbon ring B may further have a substituent as long as it does not impair the properties as a compatibilizer. groups, alkoxy groups, thioalkyl groups, and the like.
 本発明の第2の実施形態の相溶剤IIにおいて、置換基Rのうちの少なくとも一つは、芳香族炭化水素環の単環、又は芳香族炭化水素環の2~4縮合環である芳香族炭化水素環B’の1価の基である。ここで、芳香族炭化水素環B’の1価の基とは、芳香族炭化水素環B’が直接単結合で主骨格の縮合環Aに結合する基である。
 この芳香族炭化水素環B’は、相溶化剤としての特性を損なわない限り、更に置換基を有していてもよく、芳香族炭化水素環B’が有していてもよい置換基としては、アルキル基、アルコキシ基、チオアルキル基等が挙げられる。
 本発明の第2の実施形態においても、芳香族炭化水素環B’は、好ましくは、縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bである。
In the compatibilizer II of the second embodiment of the present invention, at least one of the substituents R is a monocyclic aromatic hydrocarbon ring or an aromatic hydrocarbon ring consisting of 2 to 4 condensed aromatic hydrocarbon rings. It is a monovalent group of the hydrocarbon ring B'. Here, the monovalent group of the aromatic hydrocarbon ring B' is a group in which the aromatic hydrocarbon ring B' is directly bonded to the condensed ring A of the main skeleton through a single bond.
This aromatic hydrocarbon ring B' may further have a substituent as long as it does not impair the properties as a compatibilizer. , an alkyl group, an alkoxy group, a thioalkyl group, and the like.
Also in the second embodiment of the present invention, the aromatic hydrocarbon ring B' is preferably an aromatic hydrocarbon ring having 2 to 4 condensed rings having the same or fewer condensed rings as the condensed ring A. Hydrogen ring B.
 芳香族炭化水素環B又は芳香族炭化水素環B’の1価の基のうち、単環基としてはフェニル基、チエニル基、ピリジニル基等が挙げられる。芳香族炭化水素環の2~4縮合環基としては、縮合環Aの具体例として前述した縮合環のうち、縮合環数が2~4の縮合環基が挙げられる。 Among the monovalent groups of the aromatic hydrocarbon ring B or aromatic hydrocarbon ring B', examples of monocyclic groups include a phenyl group, a thienyl group, and a pyridinyl group. Examples of the 2 to 4 condensed ring group of the aromatic hydrocarbon ring include condensed ring groups having 2 to 4 condensed rings among the condensed rings described above as specific examples of the condensed ring A.
 主骨格の縮合環Aが有する置換基Rのうち、芳香族炭化水素環B又は芳香族炭化水素環B’の1価の基以外の置換基Rについては、相溶化剤としての特性を損なわない限り、特に制限はなく、前述の芳香族炭化水素環B又は芳香族炭化水素環B’の1価の基から選ばれる基であっても、アルキル基、アルコキシ基、チオアルキル基等であってもよい。 Among the substituents R of the condensed ring A of the main skeleton, the substituents R other than the monovalent groups of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' do not impair the properties as a compatibilizer. As long as it is not particularly limited, it may be a group selected from the above-mentioned monovalent groups of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B', an alkyl group, an alkoxy group, a thioalkyl group, etc. good.
 p型有機半導体及びn型有機半導体は、通常、疎水性が高い。そこで、これらの半導体との相溶性の観点から、芳香族炭化水素環B又は芳香族炭化水素環B’の1価の基以外の置換基Rも疎水性が高いことが好ましく、アルキル基、芳香族炭化水素基等が挙げられる。また、芳香族炭化水素環B又は芳香族炭化水素環B’の1価の基以外の置換基Rは、縮合環Aのπ共役平面と芳香族炭化水素環B又は芳香族炭化水素環B’のπ共役平面とが同一平面上に並ばないためには、フェニル基、ナフチル基、アントリル基等の芳香族炭化水素基及びチエニル基、ピロリル基、フリル基等の芳香族複素環基などの共役系の置換基が好ましく、フェニル基、ナフチル基、アントリル基など狭義の芳香族炭化水素基がより好ましく、フェニル基がさらに好ましい。すなわち、芳香族炭化水素環B又は芳香族炭化水素環B’の1価の基以外の置換基Rも芳香族炭化水素環の1価の基であることが好ましく、フェニル基であることがより好ましい。 P-type organic semiconductors and n-type organic semiconductors are usually highly hydrophobic. Therefore, from the viewpoint of compatibility with these semiconductors, it is preferable that the substituent R other than the monovalent group of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' also have high hydrophobicity. group hydrocarbon groups and the like. Further, the substituent R other than the monovalent group of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' is the π-conjugated plane of the condensed ring A and the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' In order for the π-conjugated planes of the is preferred, and narrowly defined aromatic hydrocarbon groups such as phenyl group, naphthyl group and anthryl group are more preferred, and phenyl group is even more preferred. That is, the substituent R other than the monovalent group of the aromatic hydrocarbon ring B or the aromatic hydrocarbon ring B' is preferably a monovalent group of the aromatic hydrocarbon ring, more preferably a phenyl group. preferable.
 主骨格の縮合環Aが有する置換基Rの数には特に制限はなく、2以上であればよい。置換基Rの数はより好ましくは、3以上、最も好ましくは4以上である。互いに隣り合う置換基Rが多いことで相溶化剤の体積が増しp型有機半導体同士の凝集、n型有機半導体同士の凝集をより抑制することができる。 The number of substituents R possessed by the condensed ring A of the main skeleton is not particularly limited as long as it is 2 or more. The number of substituents R is more preferably 3 or more, most preferably 4 or more. Since the number of substituents R adjacent to each other is large, the volume of the compatibilizing agent increases, and aggregation between p-type organic semiconductors and aggregation between n-type organic semiconductors can be further suppressed.
(分子量)
 本発明の相溶化剤は、融点や沸点が高く、組成物や光電変換層から揮発や昇華などにより相溶化剤が失われ難い点では、分子量は高いことが好ましい。一方で、溶媒への溶解性の点では、分子量は低いことが好ましい。そこで、本発明の相溶化剤の分子量は、200以上であることが好ましく、300以上であることがより好ましく、400以上であることが更に好ましく、10000以下であることが好ましく、5000以下であることがより好ましく、2500以下であることが更に好ましい。
(molecular weight)
The compatibilizing agent of the present invention preferably has a high melting point and boiling point and a high molecular weight from the viewpoint that the compatibilizing agent is less likely to be lost from the composition or the photoelectric conversion layer due to volatilization, sublimation, or the like. On the other hand, the molecular weight is preferably low in terms of solubility in solvents. Therefore, the molecular weight of the compatibilizer of the present invention is preferably 200 or more, more preferably 300 or more, still more preferably 400 or more, preferably 10000 or less, and 5000 or less. is more preferable, and 2500 or less is even more preferable.
(HOMOとLOMO)
 本発明の相溶化剤のHOMOは、n型有機半導体のHOMOよりも低いことが好ましい。本発明の相溶化剤のLUMOは、p型有機半導体のLUMOよりも高いことが好ましい。これは、本発明の相溶化剤の有する電子軌道が光電変換過程におけるキャリアのトラップ準位として働き、光電変換特性が低下するのを防ぐためである。
(HOMO and LOMO)
The HOMO of the compatibilizer of the present invention is preferably lower than the HOMO of the n-type organic semiconductor. The LUMO of the compatibilizer of the present invention is preferably higher than the LUMO of the p-type organic semiconductor. This is to prevent the electron orbit of the compatibilizing agent of the present invention from acting as a carrier trap level in the photoelectric conversion process, thereby preventing the photoelectric conversion characteristics from deteriorating.
(具体例)
 本発明の相溶化剤の好ましい具体例としては、以下に示す1,2,3,4-テトラフェニルナフタレン、1-メチル-3,4-ジフェニルナフタレン、1,2-ジフェニルアントラセン、1,2-ジフェニルナフタレン、1,2,3,4-テトラフェニルアントラセン、1,2-ジフェニルナフタセン、1,2,6,7-テトラフェニルピレン等が挙げられるが、何らこれらに限定されるものではない。
(Concrete example)
Preferred specific examples of the compatibilizing agent of the present invention include 1,2,3,4-tetraphenylnaphthalene, 1-methyl-3,4-diphenylnaphthalene, 1,2-diphenylanthracene, 1,2- Examples thereof include diphenylnaphthalene, 1,2,3,4-tetraphenylanthracene, 1,2-diphenylnaphthacene, 1,2,6,7-tetraphenylpyrene, etc., but are not limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記例示化合物のうちの代表例として、1,2,3,4-テトラフェニルナフタレン、1-メチル-3,4-ジフェニルナフタレン及び1,2-ジフェニルアントラセンについて、分子モデリングソフトウェアSpartan(バージョン18)を用いて、半経験的分子軌道法を適用することで作成した立体構造の分子モデルを以下に示す。いずれも縮合環Aに該当する環と芳香族炭化水素環Bに該当する環とが同一平面上に存在しないことが分かる。 Representative examples of the above-exemplified compounds are 1,2,3,4-tetraphenylnaphthalene, 1-methyl-3,4-diphenylnaphthalene, and 1,2-diphenylanthracene, using the molecular modeling software Spartan (version 18). The molecular model of the three-dimensional structure created by applying the semiempirical molecular orbital method is shown below. In both cases, it can be seen that the ring corresponding to the condensed ring A and the ring corresponding to the aromatic hydrocarbon ring B do not exist on the same plane.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明の有機半導体インクには、本発明の相溶化剤が1種類のみ含まれていてもよく、主骨格の縮合環Aや置換基Rの異なる2種類以上が含まれていてもよい。 The organic semiconductor ink of the present invention may contain only one type of the compatibilizing agent of the present invention, or may contain two or more types having different condensed rings A in the main skeleton and different substituents R.
<p型有機半導体>
 p型有機半導体は、特に限定されず公知の有機半導体化合物が用いられ得るが、好ましくはドナー性の半導体であり、典型的には有機半導体(化合物)である。p型有機半導体としては、例えば、p型共役高分子である正孔輸送性有機化合物などが挙げられ、電子供与性の化合物を用いることができる。
<p-type organic semiconductor>
The p-type organic semiconductor is not particularly limited and may be a known organic semiconductor compound, but is preferably a donor semiconductor, typically an organic semiconductor (compound). Examples of p-type organic semiconductors include hole-transporting organic compounds that are p-type conjugated polymers, and electron-donating compounds can be used.
 正孔輸送性に優れる骨格構造としては、具体的には、カルバゾール構造、チオフェン構造、ベンゾジチオフェン構造、チエノチオフェン構造、ジベンゾフラン構造、トリアリールアミン構造、ナフタレン構造、フェナントレン構造及びピレン構造などが挙げられる。
 これらのうち、特に後述するn型有機半導体と混合して塗布することにより膜を形成しやすい化合物が好ましい。
Specific examples of skeleton structures with excellent hole-transport properties include a carbazole structure, a thiophene structure, a benzodithiophene structure, a thienothiophene structure, a dibenzofuran structure, a triarylamine structure, a naphthalene structure, a phenanthrene structure, and a pyrene structure. be done.
Among these, a compound that easily forms a film by being mixed with an n-type organic semiconductor to be described later and applied is preferable.
 p型有機半導体は、高分子化合物であってもよく、ドナー性モノマー(ベンゾジチオフェン、シクロペンタジチオフェン、ジチエノシロールなど)に由来する単位と、アクセプター性モノマー(ベンゾ[1,2-b:4,5-b’]ジチオフェン-4,8-ジオン、イミドチオフェンなど)に由来する単位をそれぞれ有するコポリマーなどであってもよい。
 塗布法により光電変換層を製造しやすい点ではp型有機半導体は高分子化合物が好ましい。
The p-type organic semiconductor may be a polymer compound, and a unit derived from a donor monomer (benzodithiophene, cyclopentadithiophene, dithienosilole, etc.) and an acceptor monomer (benzo[1,2-b:4 ,5-b′]dithiophene-4,8-dione, imidothiophene, etc.).
A polymer compound is preferable as the p-type organic semiconductor in that the photoelectric conversion layer can be easily manufactured by a coating method.
 具体的なp型有機半導体としては、例えば、下記式(II)で表される半導体化合物が用いられる。なお、式(II)中、nは正の数である。 As a specific p-type organic semiconductor, for example, a semiconductor compound represented by the following formula (II) is used. In formula (II), n is a positive number.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明で用いるp型有機半導体は、p型半導体としての特性を向上させるためには、重量平均分子量が高いことが好ましく、具体的には、50000以上であることが好ましく、100000以上であることがより好ましく、150000以上であることがさらに好ましい。一方で、p型有機半導体の重量平均分子量は、溶媒への溶解性の点では低いことが好ましく、具体的には、400000以下であることが好ましく、300000以下であることがよりに好ましい。
 ここで、p型有機半導体の重量平均分子量はサイズ排除クロマトグラフィーにより求めた値である。
The p-type organic semiconductor used in the present invention preferably has a high weight-average molecular weight in order to improve the properties as a p-type semiconductor. is more preferable, and 150,000 or more is even more preferable. On the other hand, the weight-average molecular weight of the p-type organic semiconductor is preferably low in terms of solubility in a solvent, specifically, preferably 400,000 or less, more preferably 300,000 or less.
Here, the weight average molecular weight of the p-type organic semiconductor is the value determined by size exclusion chromatography.
 本発明で用いるp型有機半導体としては、具体的には以下の高分子化合物が挙げられるが、何らこれらに限定されるものではない。 Specific examples of the p-type organic semiconductor used in the present invention include, but are not limited to, the following polymer compounds.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<n型有機半導体>
 n型半導体は、アクセプター性半導体であり、主に電子輸送性化合物に代表され、電子受容性を有する半導体化合物をいう。詳しくは、n型有機半導体は、2つの化合物を接触させて用いたときに電子親和力のより大きい方の化合物をいう。したがって、アクセプター性化合物は、電子受容性のある化合物であれば、いずれの化合物も使用可能である。
<n-type organic semiconductor>
An n-type semiconductor is an acceptor semiconductor, and is mainly represented by an electron-transporting compound, and refers to a semiconductor compound having an electron-accepting property. Specifically, the n-type organic semiconductor refers to the compound with the higher electron affinity when the two compounds are used in contact. Therefore, any compound can be used as the acceptor compound as long as it is an electron-accepting compound.
 n型半導体としては、具体的には、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体);窒素原子、酸素原子、硫黄原子を含有する5乃至7員のヘテロ環化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等);ポリアリーレン化合物;フルオレン化合物;シクロペンタジエン化合物;シリル化合物及び含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。
 これらの例に限らず、上述したように、ドナー性半導体として用いた化合物よりも電子親和力の大きな化合物であればアクセプター性半導体として用いることができる。
Specific examples of n-type semiconductors include condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives); 5- to 7-membered heterocyclic compounds such as pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole , indazole, benzimidazole, benzotriazole, benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, triazolopyrimidine, tetrazaindene, oxadiazole, imidazopyridine, pyraridine, pyrrolopyridine, thiadiazolopyridine, dibenzazepine, tribenzazepine, etc.); polyarylene compounds; fluorene compounds; cyclopentadiene compounds;
Not limited to these examples, as described above, any compound having a higher electron affinity than the compound used as the donor semiconductor can be used as the acceptor semiconductor.
 フラーレン骨格は嵩高いため、光電変換効率を高めるためにバルクヘテロ接合構造とした場合にp型半導体との距離が離れやすく、光電変換効率が低下する可能性がある。 Because the fullerene skeleton is bulky, when a bulk heterojunction structure is used to increase the photoelectric conversion efficiency, the distance from the p-type semiconductor tends to increase, and the photoelectric conversion efficiency may decrease.
 従って、本発明におけるn型半導体は、フラーレン骨格を有するn型半導体の割合がフラーレン骨格を有さないn型半導体に対して少ないことが好ましい。具体的には、n型半導体中におけるフラーレン骨格を有するn型半導体の割合が10質量%以下であることが好ましく、n型半導体中にフラーレン骨格を有するものが実質的に含まれていない非フラーレン型半導体であることがより好ましい。 Therefore, in the n-type semiconductor of the present invention, it is preferable that the ratio of the n-type semiconductor having a fullerene skeleton is smaller than that of the n-type semiconductor having no fullerene skeleton. Specifically, the ratio of the n-type semiconductor having a fullerene skeleton in the n-type semiconductor is preferably 10% by mass or less, and the n-type semiconductor does not substantially contain a non-fullerene having a fullerene skeleton type semiconductors are more preferred.
 ここで、「フラーレン骨格を実質的に含まない」とは、光電変換層において発生した電荷の内、電子の輸送を非フラーレン型のn型半導体が担うという意味であり、光電変換層のモルフォロジーの改善のために少量含有することはあり得る。そのような目的においては、通常、n型有機半導体の全量に含まれるフラーレン骨格を含むn型半導体の量は、5質量%以下であり、好ましくは2質量%以下である。 Here, the expression “substantially free of a fullerene skeleton” means that electron transport among charges generated in the photoelectric conversion layer is carried by a non-fullerene n-type semiconductor, and the morphology of the photoelectric conversion layer is A small amount may be included for improvement. For such purposes, the amount of the n-type semiconductor containing a fullerene skeleton contained in the total amount of the n-type organic semiconductor is usually 5% by mass or less, preferably 2% by mass or less.
 本発明で用いるn型有機半導体は、特にp型有機半導体との相溶性およびBHJ型光電変換層の形成しやすさの観点から、下記式(I)で表される化合物及び下記式(I)で表される化合物の多量体の少なくとも何れかの化合物を含むことが好ましい。 The n-type organic semiconductor used in the present invention is a compound represented by the following formula (I) and a It is preferable to contain at least one compound of multimers of the compound represented by.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(I)中、Aは周期表第14族から選ばれる原子を表し、X~Xは、それぞれ独立して、水素原子又はハロゲン原子を表し、R1a及びR1bは、それぞれ独立して、鎖状のアルキル基を表し、R~Rは、それぞれ独立して、鎖状のアルキル基、鎖状のアルコキシ基、鎖状のチオアルキル基、或いは水素原子を表す。) (In formula (I), A represents an atom selected from Group 14 of the periodic table, X 1 to X 4 each independently represent a hydrogen atom or a halogen atom, R 1a and R 1b each independently represents a chain alkyl group, and R 2 to R 5 each independently represent a chain alkyl group, a chain alkoxy group, a chain thioalkyl group, or a hydrogen atom.)
 Aは、周期表第14族から選ばれる原子を表す。Aは、化合物の安定性の点から炭素原子及びケイ素原子が好ましい。
 X~Xは、それぞれ独立して、水素原子又はハロゲン原子を表す。X~Xは、n型有機半導体のHOMO/LUMOを制御しやすい点からハロゲン原子が好ましい。
 R1a及びR1bは、それぞれ独立して、鎖状のアルキル基を表す。R1a及びR1bの炭素数は、n型有機半導体の溶解性を高める点では多いことが好ましく、p型有機半導体とのBHJ型光電変換層の形成し易さの観点からは少ないことが好ましい。R1a及びR1bの炭素数は8以上であることが好ましく、10以上であることがより好ましく、12以上であることがさらに好ましく、24以下であることが好ましく、20以下であることがより好ましく、18以下であることがさらに好ましい。
A represents an atom selected from Group 14 of the periodic table. A is preferably a carbon atom or a silicon atom from the viewpoint of compound stability.
X 1 to X 4 each independently represent a hydrogen atom or a halogen atom. X 1 to X 4 are preferably halogen atoms because the HOMO/LUMO of the n-type organic semiconductor can be easily controlled.
R 1a and R 1b each independently represent a chain alkyl group. The number of carbon atoms in R 1a and R 1b is preferably large from the viewpoint of increasing the solubility of the n-type organic semiconductor, and is preferably small from the viewpoint of easiness of forming a BHJ-type photoelectric conversion layer with the p-type organic semiconductor. . The number of carbon atoms in R 1a and R 1b is preferably 8 or more, more preferably 10 or more, still more preferably 12 or more, preferably 24 or less, and more preferably 20 or less. It is preferably 18 or less, and more preferably 18 or less.
 炭素数8~24の鎖状のアルキル基としては、n-オクチル基、n-デシル基、ラウリル基、ミリスチル基、パルミチル基、ステアリル基等の直鎖アルキル基;2-エチルヘキシル基、2-ブチルオクチル基等の分岐を有する1級アルキル基及び2-オクチル基、2-ノニル基、2-デシル基等の2級アルキル基等が挙げられる。これらのうち、直鎖アルキル基又は分岐を有する1級アルキル基が好ましく、2-エチルヘキシル基又は2-ブチルオクチル基がとりわけ好ましい。 Examples of chain alkyl groups having 8 to 24 carbon atoms include linear alkyl groups such as n-octyl group, n-decyl group, lauryl group, myristyl group, palmityl group and stearyl group; 2-ethylhexyl group and 2-butyl Branched primary alkyl groups such as octyl groups and secondary alkyl groups such as 2-octyl groups, 2-nonyl groups and 2-decyl groups are included. Among these, a linear alkyl group or a branched primary alkyl group is preferable, and a 2-ethylhexyl group or a 2-butyloctyl group is particularly preferable.
 R~Rは、それぞれ独立して、鎖状のアルキル基、鎖状のアルコキシ基、鎖状のチオアルキル基、或いは水素原子を表す。R~Rは、n型有機半導体の溶解性を高める点では、鎖状のアルキル基、鎖状のアルコキシ基及び鎖状のチオアルキル基が好ましい。 R 2 to R 5 each independently represent a chain alkyl group, a chain alkoxy group, a chain thioalkyl group, or a hydrogen atom. R 2 to R 5 are preferably a chain alkyl group, a chain alkoxy group or a chain thioalkyl group from the viewpoint of increasing the solubility of the n-type organic semiconductor.
 R~Rがアルキル基、アルコキシ基又はチオアルキル基である場合の炭素数は、n型有機半導体の溶解性を高める点では多いことが好ましく、p型有機半導体とのBHJ型光電変換層の形成し易さの観点からは少ないことが好ましい。R1a及びR1bの炭素数は8以上であることが好ましく、10以上であることがより好ましく、12以上であることがさらに好ましく、24以下であることが好ましく、20以下であることがより好ましく、18以下であることがさらに好ましい。
 R~Rは、アルコキシ基であることが好ましく、炭素数8~24のアルコキシ基であることがより好ましい。具体的には、2-エチルヘキシルオキシ基又はパルミチルオキシ基が挙げられる。
When R 2 to R 5 are an alkyl group, an alkoxy group or a thioalkyl group, the number of carbon atoms is preferably large from the viewpoint of increasing the solubility of the n-type organic semiconductor, and the BHJ-type photoelectric conversion layer with the p-type organic semiconductor. From the viewpoint of ease of formation, it is preferable that the number is small. The number of carbon atoms in R 1a and R 1b is preferably 8 or more, more preferably 10 or more, still more preferably 12 or more, preferably 24 or less, and more preferably 20 or less. It is preferably 18 or less, and more preferably 18 or less.
R 2 to R 5 are preferably alkoxy groups, more preferably alkoxy groups having 8 to 24 carbon atoms. Specific examples include a 2-ethylhexyloxy group and a palmityloxy group.
 p型有機半導体との相溶性およびBHJ型光電変換層の形成しやすさの観点から、R1aとR1bは同じ基であることが好ましく、R~Rは2種類以上の異なる基であることが好ましい。 From the viewpoint of compatibility with a p-type organic semiconductor and ease of forming a BHJ-type photoelectric conversion layer, R 1a and R 1b are preferably the same group, and R 2 to R 5 are two or more different groups. Preferably.
 本発明で用いるn型有機半導体としては、具体的には以下の化合物が挙げられるが、何らこれらに限定されるものではない。 Specific examples of the n-type organic semiconductor used in the present invention include, but are not limited to, the following compounds.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
<p型有機半導体とn型有機半導体の割合>
 本発明の有機半導体インクに含まれるp型有機半導体とn型有機半導体の割合は、p型有機半導体が多いと、近赤外領域における感度に優れる傾向にあり、n型有機半導体が多いと暗電流が発生し難い傾向にある。本発明の有機半導体インクに含まれるp型有機半導体とn型有機半導体の割合は、p型有機半導体に対するn型有機半導体の質量比率(n型有機半導体/p型有機半導体質量比)で0.5倍以上であることが好ましく、1.0倍以上であることがより好ましく、3.5倍以下であることが好ましく、3.0倍以下であることがより好ましい。
<Proportion of p-type organic semiconductor and n-type organic semiconductor>
As for the ratio of the p-type organic semiconductor and the n-type organic semiconductor contained in the organic semiconductor ink of the present invention, when the p-type organic semiconductor is large, the sensitivity in the near infrared region tends to be excellent. Current tends to be difficult to generate. The ratio of the p-type organic semiconductor to the n-type organic semiconductor contained in the organic semiconductor ink of the present invention is 0.00 in mass ratio of the n-type organic semiconductor to the p-type organic semiconductor (n-type organic semiconductor/p-type organic semiconductor mass ratio). It is preferably 5 times or more, more preferably 1.0 times or more, preferably 3.5 times or less, and more preferably 3.0 times or less.
<相溶化剤の含有量>
 本発明の有機半導体インク中の本発明の相溶化剤の含有量については、本発明の相溶化剤により、p型有機半導体とn型有機半導体の相溶性が向上し、加熱や時間経過による相分離を起こし難くなれば特に制限はない。但し、相溶化剤の含有によるBHJ構造の安定化効果が起こりやすい点では多いことが好ましい。本発明の有機半導体インク中の本発明の相溶化剤の含有量は、p型有機半導体に対する質量比で0.1倍以上であることが好ましく、0.3倍以上であることがより好ましく、0.5倍以上であることがさらに好ましく、最も好ましくは1.0倍以上である。
 一方で、本発明の有機半導体インクを用いて作製した有機膜中で相溶化剤自体の結晶化が起こり難い点では少ないことが好ましい。本発明の有機半導体インク中の本発明の相溶化剤の含有量は、p型有機半導体に対する質量比で10.0倍以下であることが好ましく、7.0倍以下であることがより好ましく、5.0倍以下であることがさらに好ましい。
<Content of compatibilizer>
Regarding the content of the compatibilizer of the present invention in the organic semiconductor ink of the present invention, the compatibility of the p-type organic semiconductor and the n-type organic semiconductor is improved by the compatibilizer of the present invention, and the compatibility of the p-type organic semiconductor and the n-type organic semiconductor is improved, and the phase changes due to heating and the passage of time. There is no particular limitation as long as separation is difficult to occur. However, it is preferable that the content of the compatibilizer is large in that the effect of stabilizing the BHJ structure due to the inclusion of the compatibilizer is likely to occur. The content of the compatibilizing agent of the present invention in the organic semiconductor ink of the present invention is preferably 0.1 times or more, more preferably 0.3 times or more, in terms of the mass ratio of the p-type organic semiconductor. More preferably 0.5 times or more, most preferably 1.0 times or more.
On the other hand, it is preferable that the compatibilizing agent itself is less in the organic film produced by using the organic semiconductor ink of the present invention because it is difficult to crystallize. The content of the compatibilizing agent of the present invention in the organic semiconductor ink of the present invention is preferably 10.0 times or less, more preferably 7.0 times or less in mass ratio with respect to the p-type organic semiconductor. It is more preferably 5.0 times or less.
<溶媒>
 本発明の有機半導体インクは、更に溶媒を含むことにより、塗布液として用いることができる。本発明の有機半導体インクに含まれる溶媒は、p型有機半導体、n型有機半導体及び本発明の相溶化剤を溶解し得る液体であればよい。
<Solvent>
The organic semiconductor ink of the present invention can be used as a coating liquid by further containing a solvent. The solvent contained in the organic semiconductor ink of the present invention may be a liquid capable of dissolving the p-type organic semiconductor, the n-type organic semiconductor, and the compatibilizing agent of the present invention.
 該溶媒としては、例えば、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;クロロベンゼン、o-ジクロロベンゼン等の含ハロゲン芳香族炭化水素系溶媒;1,2-ジクロロエタン等の含ハロゲン脂肪族炭化水素系溶媒;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶媒;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル系溶媒;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル系溶媒及び酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル系溶媒などが挙げられる。 Examples of the solvent include aromatic hydrocarbon solvents such as toluene, xylene, mesitylene and cyclohexylbenzene; halogen-containing aromatic hydrocarbon solvents such as chlorobenzene and o-dichlorobenzene; halogen-containing solvents such as 1,2-dichloroethane. Aliphatic hydrocarbon solvents; aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, Aromatic ether solvents such as anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole; ethyl acetate, n-butyl acetate, ethyl lactate , n-butyl lactate and other aliphatic ester solvents and phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, isopropyl benzoate, propyl benzoate, n-butyl benzoate and other aromatic ester solvents, etc. mentioned.
 溶媒を用いる場合は、1種類を単独で用いてもよく、2種類以上を併用してもよい。 When using a solvent, one type may be used alone, or two or more types may be used in combination.
 これらの溶媒のうち、p型有機半導体およびn型有機半導体の溶解性の観点から芳香族系溶媒が好ましく、芳香族系非ハロゲン系溶媒が特に好ましく、とりわけトルエン、キシレン、メシチレン、プソイドクメンが好ましい。 Among these solvents, aromatic solvents are preferable from the viewpoint of solubility of p-type organic semiconductors and n-type organic semiconductors, aromatic non-halogen solvents are particularly preferable, and toluene, xylene, mesitylene, and pseudocumene are particularly preferable.
<その他の成分>
 本発明の有機半導体インクには、前述のp型有機半導体、n型有機半導体、本発明の相溶化剤及び溶媒の他に、必要に応じて安定剤や増粘剤等の成分が含まれていてもよい。
 本発明の有機半導体インクがこれらのその他の成分を含む場合、有機半導体インク本来の効果が十分に発現しやすい点から、有機半導体インク中における、p型有機半導体、n型有機半導体及び本発明の相溶化剤の合計量は90質量%以上であることが好ましい。
<Other ingredients>
In addition to the p-type organic semiconductor, n-type organic semiconductor, compatibilizer and solvent of the present invention, the organic semiconductor ink of the present invention contains components such as stabilizers and thickeners as necessary. may
When the organic semiconductor ink of the present invention contains these other components, the inherent effects of the organic semiconductor ink are likely to be sufficiently exhibited. The total amount of compatibilizing agents is preferably 90% by mass or more.
<固形分濃度>
 本発明の有機半導体インクに含有される固形分濃度、即ち、有機半導体インク中の溶媒以外の成分の含有量は、光電変換層の形成効率に優れる点では多いことが好ましい。一方で、均一で安定性が高く、塗布性に優れるインクを得やすい点では少ないことが好ましい。
 有機半導体インクの固形分濃度は、10mg/mL以上であることが好ましく、15mg/mL以上であることがより好ましく、150mg/mL以下であることが好ましく、60mg/mL以下であることがより好ましい。
<Solid content concentration>
The solid content concentration contained in the organic semiconductor ink of the present invention, ie, the content of components other than the solvent in the organic semiconductor ink, is preferably large from the viewpoint of excellent formation efficiency of the photoelectric conversion layer. On the other hand, it is preferable that the amount is small from the viewpoint that it is easy to obtain an ink that is uniform, highly stable, and excellent in coatability.
The solid content concentration of the organic semiconductor ink is preferably 10 mg/mL or more, more preferably 15 mg/mL or more, preferably 150 mg/mL or less, and more preferably 60 mg/mL or less. .
<有機半導体インクの製造方法>
 本発明の有機半導体インクは、溶媒に上記のp型有機半導体、n型有機半導体、本発明の相溶化剤及び必要に応じて含まれるその他の成分を所定の濃度となるように混合することにより製造することができる。
 その際の各成分の添加順には、均一なインクを得られれば特に制限はない。
<Method for producing organic semiconductor ink>
The organic semiconductor ink of the present invention can be prepared by mixing the p-type organic semiconductor, the n-type organic semiconductor, the compatibilizer of the present invention, and other optional components in a solvent to a predetermined concentration. can be manufactured.
There are no particular restrictions on the order in which the components are added at that time, as long as a uniform ink can be obtained.
 各成分を混合する工程においては、より短時間で均一組成の液を得やすい点では加熱することが好ましい。加熱する場合の温度は、各成分の溶解性を向上させる点では高温であることが好ましく、各成分の変質や溶媒の揮発等が起こり難い点では、低温であることが好ましい。
 加熱する場合の温度は、50~200℃程度とすることが好ましい。
 また、各成分を混合する際は、撹拌することが好ましい。混合後は溶解しきらなかった成分をフィルター濾過等で除去してもよい。
 混合に際して加熱する場合、フィルター濾過は、混合液を室温(25℃)に戻してから行ってもよい。混合後の液は、インクの安定性の点から室温(25℃)で1分間~24時間程度放置しておくことが好ましい。
In the step of mixing each component, heating is preferred because it facilitates obtaining a liquid having a uniform composition in a shorter time. The temperature in the case of heating is preferably a high temperature from the viewpoint of improving the solubility of each component, and a low temperature from the viewpoint that deterioration of each component and volatilization of the solvent are unlikely to occur.
The temperature for heating is preferably about 50 to 200.degree.
Moreover, when mixing each component, it is preferable to stir. After mixing, components that have not completely dissolved may be removed by filter filtration or the like.
When heating during mixing, filter filtration may be performed after returning the liquid mixture to room temperature (25° C.). From the standpoint of ink stability, the mixed liquid is preferably left at room temperature (25° C.) for about 1 minute to 24 hours.
<有機半導体インクの用途>
 本発明の有機半導体インクは、特定の相溶化剤を含有することにより、BHJ構造の安定性に優れた光電変換層を形成することができ、有機光電変換素子の光電変換層の形成に好適に用いることができる。
<Uses of organic semiconductor ink>
The organic semiconductor ink of the present invention can form a photoelectric conversion layer with excellent stability of the BHJ structure by containing a specific compatibilizer, and is suitable for forming a photoelectric conversion layer of an organic photoelectric conversion element. can be used.
[有機膜]
 本発明の有機膜は、p型有機半導体とn型有機半導体と有機化合物とを含む膜であって、該有機化合物が前述の本発明の相溶化剤であることを特徴とする。
 すなわち、本発明の第1の実施形態の有機膜は、p型有機半導体とn型有機半導体と有機化合物とを含む有機膜であって、該有機化合物が、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、置換基Rのうち少なくとも一つは、芳香族炭化水素環の単環、又は該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基であり、該縮合環Aと該芳香族炭化水素環Bとが同一平面上に存在しない有機化合物であることを特徴とする有機膜である。
 また、本発明の第2の実施形態の有機膜は、p型有機半導体とn型有機半導体と有機化合物とを含む有機膜であって、該有機化合物が、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、置換基Rのうち少なくとも一つは、芳香族炭化水素環の単環、又は芳香族炭化水素環の2~4縮合環である芳香族炭化水素環B’の1価の基である有機化合物であることを特徴とする有機膜である。
 本発明の第2の実施形態においても、芳香族炭化水素環B’は、好ましくは、縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bである。
 本発明の有機膜に含まれるp型有機半導体、n型有機半導体及び有機化合物については、その含有量等も含め、前述の本発明の有機半導体インクで溶媒を除いた場合と同様である。
[Organic film]
The organic film of the present invention is a film containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic compound, wherein the organic compound is the aforementioned compatibilizing agent of the present invention.
That is, the organic film of the first embodiment of the present invention is an organic film containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic compound, wherein the organic compound has two or more substituents adjacent to each other. The main skeleton is 2 to 5 condensed rings A of aromatic hydrocarbon rings having R, and at least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or the condensed ring A and the number of condensed rings are A monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed rings of the same or fewer aromatic hydrocarbon rings, and the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane An organic film characterized by being an organic compound.
Further, the organic film of the second embodiment of the present invention is an organic film containing a p-type organic semiconductor, an n-type organic semiconductor and an organic compound, wherein the organic compound has two or more substituents adjacent to each other. 2 to 5 condensed rings A of aromatic hydrocarbon rings having R as a main skeleton, at least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or 2 to 4 aromatic hydrocarbon rings The organic film is characterized by being an organic compound that is a monovalent group of an aromatic hydrocarbon ring B' that is a condensed ring.
Also in the second embodiment of the present invention, the aromatic hydrocarbon ring B' is preferably an aromatic hydrocarbon ring having 2 to 4 condensed rings having the same or fewer condensed rings as the condensed ring A. Hydrogen ring B.
The p-type organic semiconductor, n-type organic semiconductor, and organic compound contained in the organic film of the present invention are the same as in the organic semiconductor ink of the present invention described above, excluding the solvent, including their contents.
 本発明の有機膜は、本発明の有機半導体インクから溶媒を除くことにより製造することができる。具体的には、本発明の有機半導体インクを用いて塗布法により製造することができる。
 本発明の有機膜は、光電変換層として有用である。
The organic film of the invention can be produced by removing the solvent from the organic semiconductor ink of the invention. Specifically, it can be manufactured by a coating method using the organic semiconductor ink of the present invention.
The organic film of the present invention is useful as a photoelectric conversion layer.
 本発明の光電変換層は、本発明の有機膜からなり、本発明の有機半導体インクを用いて塗布法により製造することができる。すなわち、本発明の有機膜からなる光電変換層の製造方法は、本発明の有機半導体インクを塗布する工程を有する。 The photoelectric conversion layer of the present invention is composed of the organic film of the present invention, and can be produced by a coating method using the organic semiconductor ink of the present invention. That is, the method for producing a photoelectric conversion layer comprising an organic film of the present invention has a step of applying the organic semiconductor ink of the present invention.
[光電変換層]
 本発明の光電変換層は、本発明の有機膜からなり、上述のとおり、本発明の有機半導体インクを塗布してなる層である。
[Photoelectric conversion layer]
The photoelectric conversion layer of the present invention is a layer made of the organic film of the present invention and coated with the organic semiconductor ink of the present invention as described above.
 本発明の光電変換層は、光電変換層を形成する面上(通常は、後述する本発明の有機光電変換素子の電極面上、或いは電極上に形成された正孔輸送層等の他の層上)に、本発明の有機半導体インクを塗布することにより成膜することができる。ここで、形成された塗膜は必要に応じて加熱乾燥させてもよい。 The photoelectric conversion layer of the present invention is formed on the surface on which the photoelectric conversion layer is formed (usually on the electrode surface of the organic photoelectric conversion element of the present invention described later, or other layers such as a hole transport layer formed on the electrode. above) can be formed by applying the organic semiconductor ink of the present invention. Here, the formed coating film may be dried by heating if necessary.
 塗布法としては特に制限はないが、具体的には、スピンコート法などが挙げられる。この場合、スピンコートの条件は、有機半導体インクの粘度等を考慮して、定法に従い適宜決定すればよい。スピンコートさせる場合の温度も特に限定されないが、通常100℃以下、例えば20~80℃で行う。 There are no particular restrictions on the coating method, but a specific example is a spin coating method. In this case, the conditions for spin coating may be appropriately determined according to a standard method in consideration of the viscosity of the organic semiconductor ink and the like. Although the temperature for spin coating is not particularly limited, it is usually carried out at 100°C or less, for example, 20 to 80°C.
 塗膜を加熱乾燥の場合における加熱条件は、溶媒を乾燥除去し得る温度であり、且つインク中の各成分が熱分解や熱により変質等しない温度で行うことが好ましい。具体的には、用いた溶媒の種類や固形分濃度などによっても異なるが、50~250℃が好ましく、80~230℃がより好ましく、100~200℃が特に好ましい。
 溶媒を乾燥させる時間についても、溶媒を十分に除去し得る時間であり、且つインク中の各成分が変質しない時間であればよく、溶媒の種類、固形分濃度及び加熱温度などによっても異なるが、通常1~60分間で行う。
The heating conditions in the case of drying the coating film by heating are preferably a temperature at which the solvent can be removed by drying and at a temperature at which each component in the ink is not degraded by thermal decomposition or heat. Specifically, it is preferably 50 to 250.degree. C., more preferably 80 to 230.degree.
The time for drying the solvent may be any time that allows the solvent to be sufficiently removed and does not degrade each component in the ink. It is usually carried out for 1 to 60 minutes.
 本発明の光電変換層の膜厚は、光電変換層の組成や本発明の光電変換層を有する有機光電変換素子の用途等に応じて任意に設計することができる。光吸収の効率が高くなりやすい点では光電変換層の膜厚は厚いことが好ましく、内部抵抗の増大による素子出力の損失が起こり難い点では薄いことが好ましい。そこで、光電変換層の膜厚は通常10nm~1μmとする。 The film thickness of the photoelectric conversion layer of the present invention can be arbitrarily designed according to the composition of the photoelectric conversion layer and the application of the organic photoelectric conversion element having the photoelectric conversion layer of the present invention. The thickness of the photoelectric conversion layer is preferably thick from the viewpoint of easily increasing light absorption efficiency, and is preferably thin from the viewpoint that loss of device output due to increase in internal resistance is less likely to occur. Therefore, the film thickness of the photoelectric conversion layer is normally set to 10 nm to 1 μm.
[有機光電変換素子]
 本発明の有機光電変換素子は、上述の本発明の光電変換層を有する素子である。
[Organic photoelectric conversion device]
The organic photoelectric conversion device of the present invention is a device having the photoelectric conversion layer of the present invention described above.
 本発明の有機光電変換素子の構造については、本発明の光電変換層を有する素子であれば、特段限定されない。例えば、特開2007-324587号公開公報に開示された素子と同様の構造などが挙げられる。すなわち、例えば、透明基板上に、透明電極、電子輸送層、本発明の光電変換層、正孔輸送層、及び金属電極がこの順に積層された構造であってよく、透明基板上に、透明電極、正孔輸送層、本発明の光電変換層、電子輸送層、及び金属電極の順に積層された構造であってもよい。また、本発明の有機光電変換素子は、これら以外の層を有していてもよく、2つの電極と本発明の光電変換層以外の層は有していなくても構わない。 The structure of the organic photoelectric conversion element of the present invention is not particularly limited as long as it has the photoelectric conversion layer of the present invention. For example, the same structure as the element disclosed in JP-A-2007-324587 can be cited. That is, for example, it may have a structure in which a transparent electrode, an electron transport layer, the photoelectric conversion layer of the present invention, a hole transport layer, and a metal electrode are laminated in this order on a transparent substrate. , a hole transport layer, the photoelectric conversion layer of the present invention, an electron transport layer, and a metal electrode may be laminated in this order. Moreover, the organic photoelectric conversion element of the present invention may have layers other than these, and may not have layers other than the two electrodes and the photoelectric conversion layer of the present invention.
 図1は、本発明の有機光電変換素子の一例を示す断面模式図である。この有機光電変換素子10は、上部電極としての第1電極11、正孔輸送層12、光電変換層13、電子輸送層14、及び下部電極としての第2電極15をこの順に有している(以下、有機光電変換素子が有する第1電極11と第2電極15の2つの電極を合わせて「両電極」と称す場合がある。)。この例では、正孔輸送層12、光電変換層13及び電子輸送層14が有機光電膜20を形成している。通常、第1電極11の正孔輸送層12とは反対側には基板が設けられる。 FIG. 1 is a schematic cross-sectional view showing an example of the organic photoelectric conversion element of the present invention. This organic photoelectric conversion element 10 has a first electrode 11 as an upper electrode, a hole transport layer 12, a photoelectric conversion layer 13, an electron transport layer 14, and a second electrode 15 as a lower electrode in this order ( Hereinafter, the two electrodes of the first electrode 11 and the second electrode 15 of the organic photoelectric conversion element may be collectively referred to as "both electrodes"). In this example, the hole transport layer 12 , the photoelectric conversion layer 13 and the electron transport layer 14 form the organic photoelectric film 20 . A substrate is usually provided on the opposite side of the first electrode 11 from the hole transport layer 12 .
<光電変換層>
 光電変換層は、光を吸収して電荷を分離する層である。本発明の有機光電変換素子は、前述の本発明の光電変換層を有する。
<Photoelectric conversion layer>
A photoelectric conversion layer is a layer that absorbs light and separates charges. The organic photoelectric conversion element of the present invention has the photoelectric conversion layer of the present invention described above.
<電極>
 電極(第1電極、第2電極)は、導電性を有する任意の材料により形成することが可能である。
<Electrode>
The electrodes (first electrode, second electrode) can be made of any conductive material.
 電極の構成材料の例を挙げると、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウム等の金属あるいはそれらの合金;酸化インジウムや酸化錫等の金属酸化物、あるいはその複合酸化物(例えばITO、IZO);ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン等の導電性高分子;前記導電性高分子に、塩酸、硫酸、スルホン酸等の酸、FeCl等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子などのドーパントを添加した導電性高分子;金属粒子、カーボンブラック、フラーレン、カーボンナノチューブ等の導電性粒子をポリマーバインダー等のマトリクスに分散した導電性の複合材料などが挙げられる。電極の構成材料は、1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。 Examples of electrode constituent materials include metals such as platinum, gold, silver, aluminum, chromium, nickel, copper, titanium, magnesium, calcium, barium, and sodium, or alloys thereof; metal oxides such as indium oxide and tin oxide. conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene; acid such as hydrochloric acid, sulfuric acid and sulfonic acid; Conductive polymers added with dopants such as acids, halogen atoms such as iodine, metal atoms such as sodium and potassium; conductive particles such as metal particles, carbon black, fullerene, and carbon nanotubes dispersed in a matrix such as a polymer binder An electrically conductive composite material, etc. are mentioned. As for the constituent material of the electrode, one type may be used alone, or two or more types may be used together in an arbitrary combination and ratio.
 有機光電変換素子において、電極は少なくとも一対(2個)設けられ、この一対の電極の間に光電変換層が設けられる。この際、一対の電極のうち、少なくとも一方は透明である(即ち、発電のために光電変換層が吸収する光を透過させる)ことが好ましい。透明な電極の材料を挙げると、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)等の複合酸化物;金属薄膜などが挙げられる。
 透明な電極を用いる場合における光の透過率について具体的範囲の制限は無いが、有機光電変換素子の光電変換効率を考慮すると、80%以上であることが好ましい。光の透過率は、通常、分光光度計で測定することができる。
In the organic photoelectric conversion element, at least one pair (two) of electrodes is provided, and a photoelectric conversion layer is provided between the pair of electrodes. At this time, it is preferable that at least one of the pair of electrodes is transparent (that is, transmits light absorbed by the photoelectric conversion layer for power generation). Examples of transparent electrode materials include composite oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO); and metal thin films.
Although there is no specific limit to the light transmittance in the case of using a transparent electrode, it is preferably 80% or more in consideration of the photoelectric conversion efficiency of the organic photoelectric conversion element. Light transmittance can usually be measured with a spectrophotometer.
 電極は、光電変換層内に生じた正孔及び電子を捕集する機能を有する。従って、電極の構成材料としては、上述した材料のうち、正孔及び電子を捕集するのに適した構成材料を用いることが好ましい。正孔の捕集に適した電極の材料としては、例えば、Au、ITO等の高い仕事関数を有する材料が挙げられる。電子の捕集に適した電極の材料としては、例えば、Alのような低い仕事関数を有する材料が挙げられる。 The electrode has a function of collecting holes and electrons generated in the photoelectric conversion layer. Therefore, among the above materials, it is preferable to use a constituent material suitable for collecting holes and electrons as a constituent material of the electrode. Electrode materials suitable for collecting holes include, for example, materials having a high work function, such as Au and ITO. Electrode materials suitable for collecting electrons include, for example, materials having a low work function, such as Al.
 電極の厚さには特に制限はなく、電極の材質、必要とされる導電性、透明性等を考慮して適宜決定されるが、通常10nm~100μmとする。 The thickness of the electrode is not particularly limited, and is determined appropriately in consideration of the material of the electrode, the required conductivity, transparency, etc., but it is usually 10 nm to 100 μm.
 電極の形成方法に制限はない。電極は、例えば、真空蒸着、スパッタ等のドライプロセスにより形成することができる。また、例えば、導電性インク等を用いたウェットプロセスにより形成することもできる。この際、導電性インクとしては任意のものを使用することができる。例えば、導電性高分子、金属粒子分散液等を用いることができる。
 電極は2層以上の積層構造でもよく、また、特性(電気特性やぬれ特性等)改良のための表面処理を施してもよい。
There are no restrictions on the method of forming the electrodes. The electrodes can be formed, for example, by dry processes such as vacuum deposition and sputtering. Alternatively, for example, it can be formed by a wet process using conductive ink or the like. At this time, any conductive ink can be used. For example, a conductive polymer, a metal particle dispersion, or the like can be used.
The electrode may have a laminated structure of two or more layers, and may be subjected to surface treatment for improving properties (electrical properties, wettability, etc.).
<基板>
 有機光電変換素子は、両電極や光電変換層及びこれら以外の層等を支持するために、基板を備えていてもよい。基板は、第1電極側、第2電極側のいずれの側に設けられていてもよく、両側に設けられてもよいが、少なくとも、第1電極側に設けられていることが好ましい。
 基板は、任意の材質とすることが可能であるが、光を基板側から入射する場合は、透明性の高い材質が好ましい。
<Substrate>
The organic photoelectric conversion element may have a substrate for supporting the two electrodes, the photoelectric conversion layer, other layers, and the like. The substrate may be provided on either the first electrode side or the second electrode side, or may be provided on both sides, but is preferably provided at least on the first electrode side.
The substrate can be made of any material, but when light is incident from the substrate side, a highly transparent material is preferable.
 基板の構成材料の例を挙げると、ガラス、サファイア、チタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の樹脂;紙、合成紙等の紙材料;表面に絶縁性コート或いはラミネートを施したステンレス、チタン、アルミニウム等の金属複合材料などが挙げられる。
 基板の構成材料は、1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。
Examples of substrate constituent materials include inorganic materials such as glass, sapphire, and titania; Resins such as vinyl chloride, polyethylene, cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, and polynorbornene; Paper materials such as paper and synthetic paper; Examples include metal composite materials such as titanium and aluminum.
As for the constituent material of the substrate, one type may be used alone, or two or more types may be used together in an arbitrary combination and ratio.
 基板は、1枚でも2枚以上の多層構造でも構わない。基板には、ガスバリア性付与や表面状態制御のために、別の層を積層してもよい。 The substrate may be a single sheet or a multi-layer structure consisting of two or more sheets. Another layer may be laminated on the substrate for imparting gas barrier properties and controlling the surface state.
 基板の構造、形状及びサイズに制限はなく、有機光電変換素子を構成する基板以外の部材を支持できればどのような構造、形状、サイズでも任意に設定することができる。基板の厚みは、有機光電変換素子の用途、基材の材質、素子が有する層の材質等に応じて任意に設計可能であるが、支持部材として強度に優れる点では厚いことが好ましく、有機光電変換素子のサイズを小さくすることができ、高価な材質の基材を用いる場合などに安価できる点では薄いことが好ましい。基板は、通常膜厚が10μm~50mmのフィルム状または板状が好ましい。 There are no restrictions on the structure, shape, and size of the substrate, and any structure, shape, and size can be arbitrarily set as long as they can support members other than the substrate that constitute the organic photoelectric conversion element. The thickness of the substrate can be arbitrarily designed according to the application of the organic photoelectric conversion element, the material of the base material, the material of the layer of the element, etc., but it is preferably thick from the viewpoint of excellent strength as a support member. Thinness is preferable in that the size of the conversion element can be reduced and the cost can be reduced when using a base material made of an expensive material. The substrate is preferably in the form of a film or plate having a thickness of 10 μm to 50 mm.
<正孔輸送層>
 正孔輸送層は、有機光電変換素子において必須ではないが、光電変換層と第1電極との間に正孔輸送層を設けることにより、光電変換効率を高めたり、暗電流を低減したりすることができる。
<Hole transport layer>
The hole transport layer is not essential in the organic photoelectric conversion element, but by providing the hole transport layer between the photoelectric conversion layer and the first electrode, the photoelectric conversion efficiency is increased and the dark current is reduced. be able to.
 正孔輸送層には、公知の正孔輸送物質を用いることができる。
 例えば、以下に例示するポリトリアリールアミン化合物等の正孔輸送性高分子を用いることができる。この他、例えば、特開2019-173032号公報に記載の2,7-ビス(4-ブロモフェニル)-9,9-ジヘキシルフルオレン、2-アミノ-9,9-ジヘキシルフルオレン、4-(4-(1,1-ビス(4'-ブロモ-[1,1'-ビフェニル]-4-イル)エチル)フェニル)-1,2-ジヒドロシクロブタ[a]ナフタレンから合成したポリトリルアリールアミン化合物、4,4’-ジブロモビフェニル、2-アミノ-9,9-ジヘキシルフルオレン、3-(1,2-ジヒドロキシシクロブタ[a]ナフタレン-4-イル)アニリンから合成したポリトリアリールアミン化合物、4,4’-ジブロモビフェニル、4-(3,5-ジブロモフェニル)-1,2-ジヒドロシクロブタ[a]ナフタレン、2-アミノ-9,9-ジヘキシルフルオレンから合成したポリトリアリールアミン化合物などを用いることができる。正孔輸送物質は、これらに限定されるものではない。
A known hole-transporting substance can be used for the hole-transporting layer.
For example, hole-transporting polymers such as polytriarylamine compounds exemplified below can be used. In addition, for example, 2,7-bis(4-bromophenyl)-9,9-dihexylfluorene, 2-amino-9,9-dihexylfluorene, 4-(4- (1,1-bis(4′-bromo-[1,1′-biphenyl]-4-yl)ethyl)phenyl)-1,2-dihydrocyclobuta[a]naphthalene polytolylarylamine compounds, 4,4'-dibromobiphenyl, 2-amino-9,9-dihexylfluorene, a polytriarylamine compound synthesized from 3-(1,2-dihydroxycyclobuta[a]naphthalen-4-yl)aniline, 4, Polytriarylamine compounds synthesized from 4'-dibromobiphenyl, 4-(3,5-dibromophenyl)-1,2-dihydrocyclobuta[a]naphthalene, 2-amino-9,9-dihexylfluorene, etc. are used. be able to. The hole transport material is not limited to these.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 正孔輸送層の製造方法も特に限定されないが、好ましくは正孔輸送性高分子を用いて、湿式成膜法により形成される。
 正孔輸送性高分子を用いた湿式成膜法による正孔輸送層の形成には、通常、正孔輸送性高分子と溶剤とを含む正孔輸送層形成用組成物が用いられる。
The method for producing the hole transport layer is not particularly limited, but it is preferably formed by a wet film formation method using a hole transport polymer.
A hole-transporting layer-forming composition containing a hole-transporting polymer and a solvent is usually used for forming a hole-transporting layer by a wet film-forming method using a hole-transporting polymer.
 ここで用いる溶剤は、正孔輸送性高分子を溶解すればよく、通常、正孔輸送性高分子を常温で0.05質量%以上、好ましくは0.5質量%以上、さらに好ましくは1質量%以上溶解する溶剤を用いる。溶剤の種類としては、特に制限されるものではないが、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが好ましい。 The solvent used here may dissolve the hole-transporting polymer, and usually contains 0.05% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass of the hole-transporting polymer at room temperature. % or more is used. Although the type of solvent is not particularly limited, for example, ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, amide-based solvents, and the like are preferable.
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル、及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。 Examples of ether-based solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, aromatic ethers such as anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole;
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。これらの他、ジメチルスルホキシド等も用いることができる。
Examples of ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate and n-butyl benzoate.
Examples of aromatic hydrocarbon solvents include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. be done.
Examples of amide solvents include N,N-dimethylformamide and N,N-dimethylacetamide. In addition to these, dimethyl sulfoxide and the like can also be used.
 正孔輸送性高分子を含む正孔輸送層形成用組成物における正孔輸送性高分子の濃度は、任意であるが、膜厚の均一性の点では低いことが好ましく、正孔輸送層に欠陥が生じ難い点では高いことが好ましい。
 正孔輸送層形成用組成物における正孔輸送性高分子の濃度は、具体的には、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましく、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることが更に好ましい。
The concentration of the hole-transporting polymer in the composition for forming a hole-transporting layer containing the hole-transporting polymer is arbitrary, but it is preferably low in terms of the uniformity of the film thickness. A higher value is preferable from the point of view that defects are less likely to occur.
Specifically, the concentration of the hole-transporting polymer in the hole-transporting layer-forming composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more. It is more preferably 5% by mass or more, preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
 正孔輸送層形成用組成物中の溶剤の濃度は、通常10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上である。 The concentration of the solvent in the composition for forming a hole transport layer is usually 10% by mass or more, preferably 30% by mass or more, and more preferably 50% by mass or more.
 正孔輸送層形成用組成物を用いて正孔輸送層を成膜する場合、正孔輸送層形成用組成物の塗布後に、形成された層は、通常加熱を行う。加熱の手法は特に限定されないが、加熱乾燥の場合の条件としては、通常100℃以上、好ましくは120℃以上、より好ましくは150℃以上で、通常400℃以下、好ましくは350℃以下、より好ましくは300℃以下である。
 加熱時間としては、通常1分間以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、形成された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上で1分間以上加熱する等の条件で行うことができる。
When forming a hole transport layer using the composition for forming a hole transport layer, the layer formed is usually heated after coating the composition for forming a hole transport layer. The heating method is not particularly limited, but the conditions for heat drying are usually 100° C. or higher, preferably 120° C. or higher, more preferably 150° C. or higher, and usually 400° C. or lower, preferably 350° C. or lower, more preferably. is below 300°C.
The heating time is usually 1 minute or more, preferably 24 hours or less. The heating means is not particularly limited, but means such as placing the laminate having the formed layers on a hot plate or heating in an oven is used. For example, it can be carried out under conditions such as heating on a hot plate at 120° C. or higher for 1 minute or longer.
 正孔輸送層の膜厚は、ブロッキング層として正孔輸送層を設けたことによる暗電流の低減効果を発現しやすい点では厚いことが好ましく、有機光電変換素子を利用したCMOSイメージセンサにおいて光の入射角を広くとり、有機光電変換素子を薄膜化しやすい点では薄いことが好ましい。正孔輸送層を設ける場合の膜厚は、50nm以上であることが好ましく、100nm以上であることがより好ましく、400nm以下であることが好ましく、350nm以下であることがより好ましい。 The film thickness of the hole-transporting layer is preferably thick in that the effect of reducing dark current due to the provision of the hole-transporting layer as a blocking layer is likely to occur. A thin film is preferable in terms of widening the angle of incidence and facilitating thinning of the organic photoelectric conversion element. When the hole transport layer is provided, the film thickness is preferably 50 nm or more, more preferably 100 nm or more, preferably 400 nm or less, and more preferably 350 nm or less.
 正孔輸送層のLUMOは、暗電流を効果的に低減しやすい点では、光電変換層のn型有機半導体のLUMOに対して浅いことが好ましく、具体的には、0.3eV以上浅いことが好ましく、0.5eV以上浅いことがより好ましく、1.0eV以上浅いことがさらに好ましい。
 正孔輸送層のHOMOは、光電変換層で発生した正孔を効率よく第1電極へ輸送しやすい点では、光電変換層のp型有機半導体のHOMOとの差が小さいことが好ましく、具体的には、該差が0.5eV以内であることが好ましく、0.3eV以内であることがより好ましい。
The LUMO of the hole transport layer is preferably shallower than the LUMO of the n-type organic semiconductor of the photoelectric conversion layer in terms of easily reducing dark current, specifically, it is shallower than 0.3 eV. It is preferably shallower than 0.5 eV, more preferably shallower than 1.0 eV.
The HOMO of the hole transport layer preferably has a small difference from the HOMO of the p-type organic semiconductor of the photoelectric conversion layer in that the holes generated in the photoelectric conversion layer can be efficiently transported to the first electrode. Therefore, the difference is preferably within 0.5 eV, more preferably within 0.3 eV.
<電子輸送層>
 電子輸送層は、有機光電変換素子において必須ではないが、光電変換層と第2電極との間に電子輸送層を設けることにより、光電変換効率を高めたり、暗電流を低減したりすることができる。
<Electron transport layer>
The electron transport layer is not essential in the organic photoelectric conversion element, but by providing the electron transport layer between the photoelectric conversion layer and the second electrode, the photoelectric conversion efficiency can be increased and the dark current can be reduced. can.
 電子輸送層は、光電変換層で生成した電子を効率よく第2電極に輸送することができる化合物を含有する。電子輸送層に含まれる電子輸送性化合物としては、光電変換層からの電子注入効率が高く、かつ、高い電子移動度を有し、注入された電子を効率よく輸送することができる化合物を用いることが重要である。
 このために、電子輸送層は、光電変換層のn型半導体とのLUMOの差が小さいことが好ましく、具体的には、該差が1.5eV以下であることが好ましく、1.0eVであることがより好ましい。一方で、電子輸送層を設けることによって暗電流を低減させる場合、電子輸送層は光電変換層のp型半導体に対して深いHOMOであることが好ましく、具体的には、0.3eV以上深いことが好ましく、0.5eV以上深いことがより好ましく、1.0eV以上深いことがさらに好ましい。
The electron transport layer contains a compound capable of efficiently transporting electrons generated in the photoelectric conversion layer to the second electrode. As the electron-transporting compound contained in the electron-transporting layer, a compound having high electron injection efficiency from the photoelectric conversion layer, high electron mobility, and capable of efficiently transporting the injected electrons is used. is important.
For this reason, the electron transport layer preferably has a small difference in LUMO from the n-type semiconductor of the photoelectric conversion layer. Specifically, the difference is preferably 1.5 eV or less, and is 1.0 eV. is more preferable. On the other hand, when the dark current is reduced by providing an electron transport layer, the electron transport layer preferably has a deep HOMO with respect to the p-type semiconductor of the photoelectric conversion layer, specifically, it is 0.3 eV or more deep. , more preferably 0.5 eV or more, and even more preferably 1.0 eV or more.
 電子輸送層に用いる電子輸送性化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、フラーレン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 Examples of the electron-transporting compound used in the electron-transporting layer include metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo[h]quinoline, oxadi Azole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compound (JP-A-6-207169), phenanthroline derivative (JP-A-5-331459), 2-t-butyl-9,10-N,N'-dicyanoanthraquinone diimine, fullerene, n-type hydrogenated Crystalline silicon carbide, n-type zinc sulfide, n-type zinc selenide, and the like.
 電子輸送層の形成材料としては、酸化チタン、酸化亜鉛、酸化スズ、酸化セリウムなどの金属酸化物を用いることもできる。その場合、電子輸送層の製造方法としては、金属酸化物のナノ粒子を湿式成膜して乾燥して金属酸化物層とする方法や、金属酸化物の前駆体を湿式成膜して加熱変換する方法を用いることができる。 Metal oxides such as titanium oxide, zinc oxide, tin oxide, and cerium oxide can also be used as materials for forming the electron transport layer. In that case, as a method for producing the electron transport layer, a method of forming a metal oxide nanoparticle in a wet process and drying it to form a metal oxide layer, or a method of forming a metal oxide precursor in a wet process and performing a heat conversion process. method can be used.
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上で、通常300nm以下、好ましくは100nm以下である。 The thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 電子輸送層は、湿式成膜法或いは真空蒸着法により形成することができるが、通常、真空蒸着法により形成させる。 The electron transport layer can be formed by a wet film formation method or a vacuum deposition method, but is usually formed by a vacuum deposition method.
<その他の層>
 本発明の有機光電変換素子は、本発明の効果を著しく損なわなければ、上述した電極や層など以外の層を備えていてもよい。
<Other layers>
The organic photoelectric conversion element of the present invention may include layers other than the electrodes and layers described above, as long as the effects of the present invention are not significantly impaired.
 例えば、本発明の有機光電変換素子は、外気などの外部環境の影響などを軽減するために、光電変換層部分、更には電極部分を含めて覆うように保護膜を備えていてもよい。
 保護層は、例えば、スチレン樹脂、エポキシ樹脂、アクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリエチレンポリビニルアルコール共重合体、等のポリマー膜;酸化珪素、窒化珪素、酸化アルミニウム等の無機酸化膜や窒化膜;あるいはこれらの積層膜などにより構成することができる。
For example, the organic photoelectric conversion element of the present invention may be provided with a protective film covering the photoelectric conversion layer portion and the electrode portion in order to reduce the influence of the external environment such as the outside air.
The protective layer is, for example, a polymer film such as styrene resin, epoxy resin, acrylic resin, polyurethane, polyimide, polyvinyl alcohol, polyvinylidene fluoride, polyethylene-polyvinyl alcohol copolymer; inorganic oxide such as silicon oxide, silicon nitride, aluminum oxide; It can be composed of a film, a nitride film, or a laminated film of these.
 前記の保護膜の形成方法に制限はない。例えば、保護膜をポリマー膜とする場合には、ポリマー溶液の塗布乾燥による形成方法、モノマーを塗布或いは蒸着して重合する形成方法などが挙げられる。また、ポリマー膜の形成に際しては、さらに架橋処理を行なったり、多層膜を形成したりすることも可能である。
 保護膜を無機酸化膜や窒化膜等の無機物膜とする場合には、例えば、スパッタ法、蒸着法等の真空プロセスでの形成方法、ゾルゲル法に代表される溶液プロセスでの形成方法などにより形成することができる。
There is no limitation on the method for forming the protective film. For example, when a polymer film is used as the protective film, a method of coating and drying a polymer solution, a method of coating or vapor-depositing a monomer and polymerizing it, and the like can be used. Further, when forming the polymer film, it is possible to further perform a cross-linking treatment or form a multilayer film.
When the protective film is an inorganic film such as an inorganic oxide film or a nitride film, it is formed by, for example, a forming method in a vacuum process such as a sputtering method or a vapor deposition method, or a forming method in a solution process represented by a sol-gel method. can do.
 光電変換層で発生した電荷を効率よく電極に捕集させるために、第1電極と正孔輸送層との間、あるいは電子輸送層と第2電極との間に電荷注入層を備えていてもよい。 A charge injection layer may be provided between the first electrode and the hole transport layer or between the electron transport layer and the second electrode in order to allow the electrode to efficiently collect the charges generated in the photoelectric conversion layer. good.
 本発明の有機光電変換素子は、例えば、紫外線を透過させない光学フィルターを光の入射側に備えていてもよい。紫外線は、一般的に有機光電変換素子の劣化を促進することが多いため、この紫外線を遮断することにより、有機光電変換素子を長寿命化させることができる。 The organic photoelectric conversion device of the present invention may have, for example, an optical filter that does not transmit ultraviolet rays on the light incident side. Since ultraviolet rays generally accelerate the deterioration of organic photoelectric conversion elements in many cases, the life of the organic photoelectric conversion elements can be extended by blocking the ultraviolet rays.
<有機光電変換素子の製造方法>
 本発明の有機光電変換素子は、第1電極、光電変換層等の構成層、第2電極の順に各層や部材を積層することにより製造することができる。上述の一例の場合、通常、基板上に、第1電極、正孔輸送層、光電変換層、第2電極の順に前述の方法で積層することにより製造することができる。そして、これらの層間に、必要に応じて設けられる電子輸送層等を形成させる。
<Method for producing organic photoelectric conversion element>
The organic photoelectric conversion element of the present invention can be produced by laminating each layer and member in the order of the first electrode, constituent layers such as a photoelectric conversion layer, and the second electrode. In the case of the above example, it can be manufactured by laminating the first electrode, the hole transport layer, the photoelectric conversion layer, and the second electrode in this order on the substrate by the method described above. Between these layers, an electron transport layer and the like are formed as required.
<有機光電変換素子の用途>
 本発明の有機光電変換素子は、光センサーや撮像素子等に好適に用いることができる。
 その場合の光センサー及び撮像素子の構成は、既知の構成を適用すればよい。
<Application of organic photoelectric conversion element>
The organic photoelectric conversion device of the present invention can be suitably used for optical sensors, imaging devices, and the like.
A known configuration may be applied to the configuration of the optical sensor and the imaging element in that case.
 以下、実施例により本発明をより具体的に説明する。本発明の範囲は、以下の実施例により限定されるものではない。 The present invention will be described in more detail below with reference to examples. The scope of the invention is not limited by the following examples.
[実施例1]
<有機半導体インクの調製>
 キシレン(シグマアルドリッチ社製)と1,2,4-トリメチルベンゼン(関東化学社製)の混合溶媒(体積比1:1)1mLに、下記のp型有機半導体8mg及びn型有機半導体16mgと、1,2,3,4-テトラフェニルナフタレン(シグマアルドリッチ社製、HOMO:-6.5eV、LUMO:-2.7eV)8mgとを加えて有機半導体インク用溶液を調製した。
p型有機半導体:前記式(II)で表されるp型有機半導体(1-Material社製、重量平均分子量240000、LUMO:-3.5eV)
n型有機半導体:前記式(I)において、
 A=炭素原子
 X~X=塩素原子
 R1a、R1b=2-エチルヘキシル基 R=2-エチルヘキシル基
 R=2-エチルヘキシルオキシ基
 R、R=水素原子
である非対称非フラーレン系n型有機半導体(HOMO:-5.5eV)
[Example 1]
<Preparation of organic semiconductor ink>
In 1 mL of a mixed solvent of xylene (manufactured by Sigma-Aldrich) and 1,2,4-trimethylbenzene (manufactured by Kanto Chemical Co., Ltd.) (volume ratio 1:1), 8 mg of the following p-type organic semiconductor and 16 mg of the n-type organic semiconductor, 8 mg of 1,2,3,4-tetraphenylnaphthalene (manufactured by Sigma-Aldrich, HOMO: -6.5 eV, LUMO: -2.7 eV) was added to prepare an organic semiconductor ink solution.
p-type organic semiconductor: p-type organic semiconductor represented by the formula (II) (manufactured by 1-Material, weight average molecular weight 240000, LUMO: -3.5 eV)
n-type organic semiconductor: in the formula (I),
A = carbon atom X 1 to X 4 = chlorine atom R 1a , R 1b = 2-ethylhexyl group R 2 = 2-ethylhexyl group R 3 = 2-ethylhexyloxy group R 4 , R 5 = asymmetric non-fullerene which is a hydrogen atom System n-type organic semiconductor (HOMO: -5.5 eV)
 この有機半導体インク用溶液を100℃に設定したホットスターラーの上で3時間加熱撹拌し、次いで室温(25℃)で3時間静置した後に、5μmのポリテトラフルオロエチレンフィルターにてろ過を行った。さらにこの有機半導体インク用溶液を一昼夜室温(25℃)で静置して有機半導体インクとした。 This organic semiconductor ink solution was heated and stirred on a hot stirrer set at 100° C. for 3 hours, then allowed to stand at room temperature (25° C.) for 3 hours, and then filtered through a 5 μm polytetrafluoroethylene filter. . Further, this organic semiconductor ink solution was allowed to stand at room temperature (25° C.) for a whole day and night to obtain an organic semiconductor ink.
<光電変換層の製造>
 ガラス基板上に電極としてインジウムスズ酸化物(ITO)の透明導電膜がパターン成膜されたITO基板の表面を、紫外線オゾン洗浄機(NL-UV253、日本レーザー電子社製)を用いて10分間紫外線オゾン処理した後に、正孔輸送層を次のように形成した。
<Production of photoelectric conversion layer>
The surface of the ITO substrate, in which a transparent conductive film of indium tin oxide (ITO) was pattern-formed as an electrode on a glass substrate, was exposed to ultraviolet light for 10 minutes using an ultraviolet ozone cleaner (NL-UV253, manufactured by Nippon Laser Electronics Co., Ltd.). After ozone treatment, a hole transport layer was formed as follows.
 下記式(1)に示すポリトリアリールアミン化合物(正孔輸送性高分子)60mgを1mLのアニソールに溶解させ、正孔輸送層形成用組成物を調製した。この組成物を回転数1000rpmで60秒間、ITO基板の電極面にスピンコートした後に、240℃で30分間加熱乾燥することにより、膜厚300nmの正孔輸送層を形成した。 A composition for forming a hole-transporting layer was prepared by dissolving 60 mg of a polytriarylamine compound (hole-transporting polymer) represented by the following formula (1) in 1 mL of anisole. This composition was spin-coated onto the electrode surface of an ITO substrate at a rotation speed of 1000 rpm for 60 seconds, and then dried by heating at 240° C. for 30 minutes to form a hole transport layer having a thickness of 300 nm.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 先に調製した有機半導体インクを用いて、正孔輸送層上に回転数1000rpmで60秒間スピンコートした後に、120℃で10分間加熱乾燥することにより、膜厚180nmの光電変換層を作製した。 The organic semiconductor ink prepared above was spin-coated on the hole transport layer at a rotation speed of 1000 rpm for 60 seconds, and then dried by heating at 120°C for 10 minutes to prepare a photoelectric conversion layer with a thickness of 180 nm.
[実施例2]
 1,2,3,4-テトラフェニルナフタレンの量を24mg用いたこと以外は実施例1と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Example 2]
An organic semiconductor ink was prepared in the same manner as in Example 1 except that 24 mg of 1,2,3,4-tetraphenylnaphthalene was used, and a photoelectric conversion layer was produced using this organic semiconductor ink.
[比較例1]
 1,2,3,4-テトラフェニルナフタレンを用いなかったこと以外は実施例1と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 1]
An organic semiconductor ink was prepared in the same manner as in Example 1, except that 1,2,3,4-tetraphenylnaphthalene was not used, and a photoelectric conversion layer was produced using this organic semiconductor ink.
[比較例2]
 1,2,3,4-テトラフェニルナフタレンの代わりにピレン(東京化成工業社製)を用いたこと以外は実施例1と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 2]
An organic semiconductor ink was prepared in the same manner as in Example 1, except that pyrene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced.
[比較例3]
 1,2,3,4-テトラフェニルナフタレンの代わりにピレン(東京化成工業社製)を用いたこと以外は実施例2と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 3]
An organic semiconductor ink was prepared in the same manner as in Example 2 except that pyrene (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced.
[比較例4]
 1,2,3,4-テトラフェニルナフタレンの代わりにアントラセン(東京化成工業社製)を用いたこと以外は実施例1と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 4]
An organic semiconductor ink was prepared in the same manner as in Example 1, except that anthracene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced.
[比較例5]
 1,2,3,4-テトラフェニルナフタレンの代わりにアントラセン(東京化成工業社製)を用いたこと以外は実施例2と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 5]
An organic semiconductor ink was prepared in the same manner as in Example 2 except that anthracene (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced.
[比較例6]
 1,2,3,4-テトラフェニルナフタレンの代わりにトリプチセン(東京化成工業社製)を用いたこと以外は実施例1と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 6]
An organic semiconductor ink was prepared in the same manner as in Example 1, except that triptycene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced.
[比較例7]
 1,2,3,4-テトラフェニルナフタレンの代わりにトリプチセン(東京化成工業社製)を用いたこと以外は実施例2と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 7]
An organic semiconductor ink was prepared in the same manner as in Example 2 except that triptycene (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced.
[比較例8]
 1,2,3,4-テトラフェニルナフタレンの代わりに9,10-ジフェニルアントラセン(東京化成工業社製)を用いたこと以外は実施例1と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 8]
An organic semiconductor ink was prepared in the same manner as in Example 1, except that 9,10-diphenylanthracene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced using a semiconductor ink.
[比較例9]
 1,2,3,4-テトラフェニルナフタレンの代わりに9,10-ジフェニルアントラセン(東京化成工業社製)を用いたこと以外は実施例2と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 9]
An organic semiconductor ink was prepared in the same manner as in Example 2 except that 9,10-diphenylanthracene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. A photoelectric conversion layer was produced using a semiconductor ink.
[比較例10]
 1,2,3,4-テトラフェニルナフタレンの代わりに5,6,11,12-テトラフェニルナフタセン(東京化成工業社製)を用いたこと以外は実施例1と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 10]
An organic semiconductor ink was prepared in the same manner as in Example 1 except that 5,6,11,12-tetraphenylnaphthacene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. was prepared, and a photoelectric conversion layer was produced using this organic semiconductor ink.
[比較例11]
 1,2,3,4-テトラフェニルナフタレンの代わりに55,6,11,12-テトラフェニルナフタセン(東京化成工業社製)を用いたこと以外は実施例2と同様にして、有機半導体インクを調製し、この有機半導体インクを用いて光電変換層を作製した。
[Comparative Example 11]
An organic semiconductor ink was prepared in the same manner as in Example 2 except that 55,6,11,12-tetraphenylnaphthacene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,3,4-tetraphenylnaphthalene. was prepared, and a photoelectric conversion layer was produced using this organic semiconductor ink.
[光電変換層の膜質の評価]
 実施例1、2および比較例1~11で作製した光電変換層の膜質を、キーエンスレーザーマイクロスコープVK-X200の光学顕微鏡機能を用いて、150倍の倍率で観察した。また、観察後に、窒素雰囲気下で、200℃で50分間の加熱を行った後、再び同様に観察した。
[Evaluation of Film Quality of Photoelectric Conversion Layer]
The film quality of the photoelectric conversion layers produced in Examples 1 and 2 and Comparative Examples 1 to 11 was observed at a magnification of 150 using the optical microscope function of Keyence Laser Microscope VK-X200. Moreover, after the observation, the specimen was heated at 200° C. for 50 minutes in a nitrogen atmosphere, and then observed again in the same manner.
 加熱前後の膜質の観察結果を表1に示す。
 また、各光学顕微鏡写真を図2~8に示す。
Table 1 shows the observation results of the film quality before and after heating.
In addition, each optical microscope photograph is shown in FIGS.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[考察]
 実施例1と2を、比較例1~11と比較することにより、本発明の相溶化剤を用いることにより、均一で、時間経過や加熱によっても相分離が起こり難いp型有機半導体とn型有機半導体を含有する有機膜が得られることが裏付けられた。
 具体的には、比較例1のように、p型有機半導体とn型有機半導体のみを混合した場合は、加熱後に1~5μm程度の斑点が確認された。これはp型有機半導体とn型有機半導体の相分離によるものと考えられる。
 これに対し、実施例1、2では、このような相分離は認められず、1,2,3,4-テトラフェニルナフタレンが相溶化剤として機能したことが示唆された。
[Discussion]
By comparing Examples 1 and 2 with Comparative Examples 1 to 11, by using the compatibilizing agent of the present invention, uniform p-type organic semiconductors and n-type organic semiconductors that are less likely to undergo phase separation even with the passage of time or heating It was confirmed that an organic film containing an organic semiconductor can be obtained.
Specifically, when only the p-type organic semiconductor and the n-type organic semiconductor were mixed as in Comparative Example 1, spots of about 1 to 5 μm were observed after heating. This is considered to be due to phase separation between the p-type organic semiconductor and the n-type organic semiconductor.
In contrast, in Examples 1 and 2, no such phase separation was observed, suggesting that 1,2,3,4-tetraphenylnaphthalene functioned as a compatibilizer.
 比較例2~7では、1,2,3,4-テトラフェニルナフタレンに類似した共役系化合物を用いているが、これらの化合物は、加熱前後において結晶の析出が確認された。ピレンとアントラセンは、多環芳香族炭化水素に類する化合物であるが、単純な2次元の平面構造を有するため、秩序性のある結晶を生じやすく、トリプチセンは、3つのベンゼン環骨格がそれぞれ同一平面上に存在せず、3次元構造を有するが、多環芳香族炭化水素部分骨格を有さないため、p型有機半導体及びn型有機半導体との相溶性が低かったと考えられる。 In Comparative Examples 2 to 7, conjugated compounds similar to 1,2,3,4-tetraphenylnaphthalene were used, and it was confirmed that these compounds precipitated crystals before and after heating. Pyrene and anthracene are polycyclic aromatic hydrocarbon compounds, but they have a simple two-dimensional planar structure, so they tend to form ordered crystals. It does not exist on the upper layer and has a three-dimensional structure, but does not have a polycyclic aromatic hydrocarbon partial skeleton, so it is considered that the compatibility with the p-type organic semiconductor and the n-type organic semiconductor was low.
 比較例8~11は、1,2,3,4-テトラフェニルナフタレンに類似した共役系化合物であって、置換基Rが互いに隣り合わない位置にある化合物である9,10-ジフェニルアントラセンと5,6,11,12-テトラフェニルナフタセンを用いた比較例である。これらの相溶加剤は、置換基Rが互いに隣り合わない位置にあることから、1,2,3,4-テトラフェニルナフタレンと比較して、膜中で2次元の平面構造を形成しやすく、すなわち、結晶が生じやすく、p型有機半導体及びn型有機半導体との相溶性が十分に得られなかったと考えられる。 Comparative Examples 8 to 11 are conjugated compounds similar to 1,2,3,4-tetraphenylnaphthalene, in which the substituents R are not adjacent to each other, 9,10-diphenylanthracene and 5 , 6,11,12-tetraphenylnaphthacene. In these compatibilizers, the substituents R are not adjacent to each other, so compared to 1,2,3,4-tetraphenylnaphthalene, it is easier to form a two-dimensional planar structure in the film. That is, it is considered that crystals tend to form, and sufficient compatibility with the p-type organic semiconductor and the n-type organic semiconductor was not obtained.
 以上の結果から、本発明の相溶化剤を用いることにより、これがp型有機半導体とn型有機半導体のそれぞれに対して溶解性を有し、また加熱や経時変化によって自己凝集や結晶生成を起こさないことにより、BHJ構造の相分離サイズ増大を抑制できていることと推定される。 From the above results, by using the compatibilizing agent of the present invention, it has solubility in both the p-type organic semiconductor and the n-type organic semiconductor, and self-aggregation and crystal formation are caused by heating and aging. It is presumed that an increase in the phase separation size of the BHJ structure can be suppressed because of the absence of the BHJ structure.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2022年2月18日付で出願された日本特許出願2022-023979に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2022-023979 filed on February 18, 2022, which is incorporated by reference in its entirety.
 10 有機光電変換素子
 11 第1電極
 12 正孔輸送層
 13 光電変換層
 14 電子輸送層
 15 第2電極
 20 有機光電膜

 
REFERENCE SIGNS LIST 10 organic photoelectric conversion element 11 first electrode 12 hole transport layer 13 photoelectric conversion layer 14 electron transport layer 15 second electrode 20 organic photoelectric film

Claims (20)

  1.  p型有機半導体、n型有機半導体、相溶化剤及び溶媒を含有する有機半導体インクであって、
     該相溶化剤は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
     置換基Rのうち少なくとも一つは、芳香族炭化水素環の単環、又は該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基であり、
     該縮合環Aと該芳香族炭化水素環Bとが同一平面上に存在しない有機化合物であることを特徴とする有機半導体インク。
    An organic semiconductor ink containing a p-type organic semiconductor, an n-type organic semiconductor, a compatibilizer and a solvent,
    The compatibilizer has a main skeleton of 2 to 5 condensed rings A of aromatic hydrocarbon rings having two or more substituents R adjacent to each other,
    At least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon ring that is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings than the condensed ring A. is a monovalent group of B,
    An organic semiconductor ink characterized by being an organic compound in which the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane.
  2.  p型有機半導体、n型有機半導体、相溶化剤及び溶媒を含有する有機半導体インクであって、
     該相溶化剤は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
     置換基Rは、芳香族炭化水素環の単環、又は芳香族炭化水素環の2~4縮合環である芳香族炭化水素環B’の1価の基である有機半導体インク。
    An organic semiconductor ink containing a p-type organic semiconductor, an n-type organic semiconductor, a compatibilizer and a solvent,
    The compatibilizer has a main skeleton of 2 to 5 condensed rings A of aromatic hydrocarbon rings having two or more substituents R adjacent to each other,
    The organic semiconductor ink in which the substituent R is a monovalent group of an aromatic hydrocarbon ring B' which is a monocyclic aromatic hydrocarbon ring or 2 to 4 condensed aromatic hydrocarbon rings.
  3.  該置換基Rは、該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基である、請求項2に記載の有機半導体インク。 Claim 2, wherein the substituent R is a monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed rings of aromatic hydrocarbon rings having the same or fewer condensed rings as the condensed ring A. of organic semiconductor inks.
  4.  前記Rが全て芳香族炭化水素環の1価の基である、請求項1~3のいずれかに記載の有機半導体インク。 The organic semiconductor ink according to any one of claims 1 to 3, wherein all of the R are monovalent groups of aromatic hydrocarbon rings.
  5.  前記Rが全てフェニル基である、請求項4に記載の有機半導体インク。 The organic semiconductor ink according to claim 4, wherein all of the R's are phenyl groups.
  6.  前記相溶化剤が1,2,3,4-テトラフェニルナフタレン及び1-メチル-3,4-ジフェニルナフタレンから選ばれる、請求項5に記載の有機半導体インク。 The organic semiconductor ink according to claim 5, wherein the compatibilizer is selected from 1,2,3,4-tetraphenylnaphthalene and 1-methyl-3,4-diphenylnaphthalene.
  7.  前記p型有機半導体及びn型有機半導体が架橋基を有しない、請求項1~6のいずれかに記載の有機半導体インク。 The organic semiconductor ink according to any one of claims 1 to 6, wherein the p-type organic semiconductor and the n-type organic semiconductor do not have a cross-linking group.
  8.  前記p型有機半導体が高分子化合物である、請求項1~7のいずれかに記載の有機半導体インク。 The organic semiconductor ink according to any one of claims 1 to 7, wherein the p-type organic semiconductor is a polymer compound.
  9. 前記p型有機半導体が重量平均分子量が50000以上400000以下の高分子化合物である、請求項8に記載の有機半導体インク。 9. The organic semiconductor ink according to claim 8, wherein the p-type organic semiconductor is a polymer compound having a weight average molecular weight of 50,000 to 400,000.
  10. 前記高分子化合物が下記式(II)で表される高分子化合物である、請求項8又は9に記載の有機半導体インク。
    Figure JPOXMLDOC01-appb-C000001
    (式(II)中、nは正の数である。)
    The organic semiconductor ink according to claim 8 or 9, wherein the polymer compound is a polymer compound represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (II), n is a positive number.)
  11.  前記n型有機半導体が非フラーレン型半導体である、請求項1~10のいずれかに記載の有機半導体インク。 The organic semiconductor ink according to any one of claims 1 to 10, wherein the n-type organic semiconductor is a non-fullerene semiconductor.
  12.  前記非フラーレン型半導体が、下記式(I)で表される化合物及び下記式(I)で表される化合物の多量体の少なくとも何れかの化合物である、請求項11に記載の有機半導体インク。
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、Aは周期表第14族から選ばれる原子を表す。X~Xは、それぞれ独立して、水素原子又はハロゲン原子を表す。R1a及びR1bは、それぞれ独立して、鎖状のアルキル基を表す。R~Rは、それぞれ独立して、鎖状のアルキル基、鎖状のアルコキシ基、鎖状のチオアルキル基、或いは水素原子を表す。)
    12. The organic semiconductor ink according to claim 11, wherein the non-fullerene semiconductor is at least one of a compound represented by the following formula (I) and a multimer of the compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (I), A represents an atom selected from Group 14 of the periodic table; X 1 to X 4 each independently represent a hydrogen atom or a halogen atom; R 1a and R 1b each independently represents a chain alkyl group, and each of R 2 to R 5 independently represents a chain alkyl group, a chain alkoxy group, a chain thioalkyl group, or a hydrogen atom.)
  13.  前記相溶化剤の前記p型有機半導体に対する含有量比(質量比)が0.1以上10.0以下である、請求項1~12のいずれかに記載の有機半導体インク。 The organic semiconductor ink according to any one of claims 1 to 12, wherein the content ratio (mass ratio) of the compatibilizer to the p-type organic semiconductor is 0.1 or more and 10.0 or less.
  14.  前記溶媒がキシレンである、請求項1~13のいずれかに記載の有機半導体インク。 The organic semiconductor ink according to any one of claims 1 to 13, wherein the solvent is xylene.
  15.  p型有機半導体とn型有機半導体と有機化合物とを含む有機膜であって、
     該有機化合物が、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
     置換基Rのうち少なくとも一つは、芳香族炭化水素環の単環、又は該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基であり、
     該縮合環Aと該芳香族炭化水素環Bとが同一平面上に存在しない有機化合物であることを特徴とする有機膜。
    An organic film comprising a p-type organic semiconductor, an n-type organic semiconductor and an organic compound,
    The organic compound has a main skeleton of 2 to 5 condensed rings A of an aromatic hydrocarbon ring having two or more substituents R adjacent to each other,
    At least one of the substituents R is a monocyclic aromatic hydrocarbon ring, or an aromatic hydrocarbon ring that is 2 to 4 condensed aromatic hydrocarbon rings having the same or fewer condensed rings than the condensed ring A. is a monovalent group of B,
    An organic film characterized by being an organic compound in which the condensed ring A and the aromatic hydrocarbon ring B are not on the same plane.
  16.  p型有機半導体とn型有機半導体と有機化合物とを含有する有機膜であって、
     該有機化合物は、互いに隣り合う二つ以上の置換基Rを有する、芳香族炭化水素環の2~5縮合環Aを主骨格とし、
     置換基Rは、芳香族炭化水素環の単環、又は芳香族炭化水素環の2~4縮合環である芳香族炭化水素環B’の1価の基である有機膜。
    An organic film containing a p-type organic semiconductor, an n-type organic semiconductor and an organic compound,
    The organic compound has a main skeleton of 2 to 5 condensed rings A of an aromatic hydrocarbon ring having two or more substituents R adjacent to each other,
    The substituent R is a monovalent group of an aromatic hydrocarbon ring B' which is a monocyclic aromatic hydrocarbon ring or 2 to 4 condensed aromatic hydrocarbon rings.
  17.  該置換基Rは、該縮合環Aと縮合環数が同じ若しくは少ない芳香族炭化水素環の2~4縮合環である芳香族炭化水素環Bの1価の基である、請求項16に記載の有機膜。 17. According to claim 16, the substituent R is a monovalent group of an aromatic hydrocarbon ring B which is 2 to 4 condensed rings of an aromatic hydrocarbon ring having the same or fewer condensed rings as the condensed ring A. of organic films.
  18.  請求項15~17のいずれかに記載の有機膜からなる光電変換層。 A photoelectric conversion layer comprising the organic film according to any one of claims 15 to 17.
  19.  請求項1~14のいずれかに記載の有機半導体インクを塗布する工程を有する光電変換層の製造方法。 A method for producing a photoelectric conversion layer, comprising a step of applying the organic semiconductor ink according to any one of claims 1 to 14.
  20.  請求項15~17のいずれかに記載の有機膜からなる光電変換層を含む有機光電変換素子。

     
    An organic photoelectric conversion device comprising a photoelectric conversion layer comprising the organic film according to any one of claims 15 to 17.

PCT/JP2023/005158 2022-02-18 2023-02-15 Organic semiconductor ink, organic film, photoelectric conversion layer, method for producing photoelectric conversion layer, and organic photoelectric conversion element WO2023157864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022023979 2022-02-18
JP2022-023979 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157864A1 true WO2023157864A1 (en) 2023-08-24

Family

ID=87578259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005158 WO2023157864A1 (en) 2022-02-18 2023-02-15 Organic semiconductor ink, organic film, photoelectric conversion layer, method for producing photoelectric conversion layer, and organic photoelectric conversion element

Country Status (2)

Country Link
TW (1) TW202342657A (en)
WO (1) WO2023157864A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135402A1 (en) * 2022-12-23 2024-06-27 住友化学株式会社 Ink composition for producing photoelectric conversion elements, method for producing ink composition for producing photoelectric conversion elements, polymer compound and method for producing polymer compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513738A (en) * 2011-05-02 2014-06-05 ユニヴェルシテ ドゥ ボルドー アン Composition for active layer or electrode of solar cell
US20150280143A1 (en) * 2014-03-29 2015-10-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona Conjugated Side-Strapped Phthalocyanines and Methods For Producing and Using The Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513738A (en) * 2011-05-02 2014-06-05 ユニヴェルシテ ドゥ ボルドー アン Composition for active layer or electrode of solar cell
US20150280143A1 (en) * 2014-03-29 2015-10-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona Conjugated Side-Strapped Phthalocyanines and Methods For Producing and Using The Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BONASERA AURELIO, GIULIANO GIULIANA, ARRABITO GIUSEPPE, PIGNATARO BRUNO: "Tackling Performance Challenges in Organic Photovoltaics: An Overview about Compatibilizers", MOLECULES, vol. 25, no. 9, 8 May 2020 (2020-05-08), pages 2200, XP093086705, DOI: 10.3390/molecules25092200 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135402A1 (en) * 2022-12-23 2024-06-27 住友化学株式会社 Ink composition for producing photoelectric conversion elements, method for producing ink composition for producing photoelectric conversion elements, polymer compound and method for producing polymer compound

Also Published As

Publication number Publication date
TW202342657A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6635530B2 (en) Heterocyclic compound and organic electronic device containing the same
KR20090017552A (en) Process for producing organic photo-electric converting element and organic photo-electric converting element
US20090194167A1 (en) Methods of Forming Photoactive Layer
TWI683463B (en) Photoelectric conversion element and image sensor using the same
TWI485124B (en) A low molecular weight compound, a polymer, an electronic device material, an electronic device composition, an organic electroluminescent element, an organic solar cell element, a display device, and a lighting device
WO2023157864A1 (en) Organic semiconductor ink, organic film, photoelectric conversion layer, method for producing photoelectric conversion layer, and organic photoelectric conversion element
JP7339239B2 (en) Photoelectric conversion element
US20210313516A1 (en) Organic photodiode and infrared cmos sensor
JP2009132674A (en) Photoelectric converter material composed of acenaphthofluoranthene compound and photoelectric converter using the same
TW202143526A (en) Photodetector element, sensor and biometric device including same, composition, and ink
WO2014073683A1 (en) Organic electroluminescent element and method for manufacturing same
JP2021057422A (en) CMOS image sensor
EP3557642B1 (en) Photoactive layer and organic solar cell including same
WO2022124223A1 (en) Composition, film, organic photoelectric conversion element, and light-detecting element
JP7257440B2 (en) Composition, film, organic photoelectric conversion device, and photodetection device
KR102083711B1 (en) Heterocyclic compound and organic electronic device comprising the same
WO2023112943A1 (en) Organic semiconductor ink, photoelectric conversion layer, and organic photoelectric conversion element
WO2024075810A1 (en) Organic photoelectric conversion film, organic photoelectric conversion element, method for producing organic photoelectric conversion film, and organic semiconductor ink composition
KR102644523B1 (en) Composition for organic material layer of organic solar cell and method for manufacturing organic solar cell using same
WO2024075812A1 (en) Production method for organic semiconductor ink composition, organic semiconductor ink composition, organic photoelectric conversion film, and organic photoelectric conversion element
KR102605826B1 (en) Compound and organic electronic device comprising the same
JP2024054634A (en) Method of manufacturing organic photoelectric conversion element, and organic photoelectric conversion element
TW202425763A (en) Organic photoelectric conversion film, organic photoelectric conversion element, method for manufacturing organic photoelectric conversion film, and organic semiconductor ink composition
US10312445B2 (en) Polymer and organic electronic element comprising same
JP7250982B1 (en) Ink composition for forming active layer of photodetector, film, and photodetector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024501398

Country of ref document: JP