WO2023154681A1 - Techniques for a virtual bootstrap environment in a distributed virtual private network - Google Patents

Techniques for a virtual bootstrap environment in a distributed virtual private network Download PDF

Info

Publication number
WO2023154681A1
WO2023154681A1 PCT/US2023/062058 US2023062058W WO2023154681A1 WO 2023154681 A1 WO2023154681 A1 WO 2023154681A1 US 2023062058 W US2023062058 W US 2023062058W WO 2023154681 A1 WO2023154681 A1 WO 2023154681A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
instance
host
service
vcn
Prior art date
Application number
PCT/US2023/062058
Other languages
French (fr)
Inventor
Michel Belleau
Original Assignee
Oracle International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/105,768 external-priority patent/US20230254287A1/en
Application filed by Oracle International Corporation filed Critical Oracle International Corporation
Publication of WO2023154681A1 publication Critical patent/WO2023154681A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • G06F2009/45562Creating, deleting, cloning virtual machine instances
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • G06F2009/45575Starting, stopping, suspending or resuming virtual machine instances
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • G06F2009/45595Network integration; Enabling network access in virtual machine instances
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment

Definitions

  • Cloud infrastructure providers may offer cloud computing infrastructure and related services in numerous geographical areas worldwide. To provide this infrastructure, the cloud infrastructure provider may operate one or more data centers corresponding to a localized geographical area. These data centers may be included as part of a "region," a logical abstraction of the geographical area and the computing resources of the one or more data centers. Building new regions can include provisioning the computing resources, configuring infrastructure, and deploying code to those resources. Conventional techniques for building a region involve significant manual operations.
  • Embodiments of the present disclosure relate to creating a bootstrapping environment to support building a region.
  • the region build process can include bootstrapping (e.g., provisioning and/or deploying) resources (e.g., infrastructure components, artifacts, etc.) for any suitable number of services in a region (e.g., a geographical location associated with one or more data centers).
  • the bootstrapping environment may be a virtual environment (e.g., a virtual cloud network) within an existing region.
  • the virtual bootstrapping environment (ViBE) may therefore be constructed and configured in the existing region in advance of the region build process.
  • Services e.g., core services
  • the services in the ViBE may be used to provision computing resources (e.g., bare metal computing hosts, virtual machines, storage, etc.) in the target region.
  • the services in the ViBE may also be used to deploy services to the target region, including instances of the services in the ViBE.
  • the ViBE may be configured to allow networking between hosts in the virtual environment (e.g., compute instances, virtual machines, etc.) and instances in the target region (e.g., compute instances, etc.).
  • the network configuration of the ViBE may allow for exposure of secondary network addresses (e.g., secondary IP addresses) to support anycast routing within the ViBE.
  • the ViBE can be configured to support both a shared network connection to the target region as well as allow services within the ViBE to establish their own network connections to the target region.
  • Virtual private networking routers in the ViBE may be configured to support peering with a virtual private network host in the target region to exchange routing information (e.g., via route reflection) for both ViBE instances and target region instances.
  • One embodiment is directed to a computer-implemented method performed by a distributed computing system (e.g., a cloud computing system) of a cloud service provider.
  • the method may include generating a virtual cloud network in a data center of a host region.
  • the virtual cloud network can include a plurality of host instances (e.g., compute instances) each having primary network addresses (e.g., primary IP addresses accessible within the ViBE) associated with a routing table of the virtual cloud network.
  • the method may also include implementing a virtual private network (VPN) router within the ViBE.
  • VPN virtual private network
  • the VPN router can be hosted on an instance of the plurality of host instances. In some embodiments, more than one VPN router may be implemented.
  • the method may also include providing, by a second instance of the plurality of host instances, a secondary network address (e.g., secondary IP address) of the second instance to the virtual private network router.
  • the secondary network address may be an anycast IP address.
  • the method may also include sending a request addressed to the secondary network address.
  • the request may come from a third instance (e.g., another instance hosting a service in the ViBE).
  • the request is an anycast request.
  • the method may also include routing the request to the virtual private network router according to a default route of the routing table, the default route identifying the primary network address of the first instance.
  • the method can further include establishing a networking tunnel between the first instance and the second instance according to the secondary address and forwarding the request to the second instance.
  • the networking tunnel may be an IP-in-IP tunnel between the first instance and the second instance.
  • Another embodiment is directed to a computing device comprising one or more processors and instructions that, when executed by the one or more processors, cause the computing device to perform the method(s) disclosed herein.
  • Still another embodiment is directed to a non-transitory computer-readable medium storing computer-executable instructions that, when executed by one or more processors of a computing cluster, cause the computing cluster to perform the method(s) disclosed herein.
  • FIG. 1 is a block diagram of an environment in which a Cloud Infrastructure Orchestration Service (CIOS) may operate to dynamically provide bootstrap services in a region, according to at least one embodiment.
  • FIG. 2 is a block diagram for illustrating an environment and method for building a virtual bootstrap environment (ViBE), according to at least one embodiment.
  • FIG. 3 is a block diagram for illustrating an environment and method for bootstrapping services to a target region utilizing the ViBE, according to at least one embodiment.
  • CIOS Cloud Infrastructure Orchestration Service
  • FIG. 4 is a block diagram depicting an example architecture of a network connection between a ViBE and a target region, according to at least one embodiment.
  • FIG. 5 is a block diagram depicting an example architecture and example method for bootstrapping a virtual private network (VPN) host in a target region, according to at least one embodiment.
  • FIG. 6 is another block diagram depicting an example architecture of multiple network connections established between instances in the ViBE and the target region, according to at least one embodiment.
  • FIG. 7 illustrates an example method for networking instances in the ViBE, according to at least one embodiment.
  • FIG. 8 illustrates an example method for establishing a network connection between a ViBE and a target region, according to at least one embodiment.
  • FIG. 9 is a block diagram illustrating one pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment.
  • FIG. 10 is a block diagram illustrating another pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment.
  • FIG. 11 is a block diagram illustrating another pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment.
  • FIG. 12 is a block diagram illustrating another pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment.
  • FIG. 13 is a block diagram illustrating an example computer system, according to at least one embodiment.
  • cloud service is generally used to refer to a service or functionality that is made available by a CSP to users or customers on demand (e.g., via a subscription model) using systems and infrastructure (cloud infrastructure) provided by the CSP.
  • cloud infrastructure systems and infrastructure
  • the servers and systems that make up the CSP's infrastructure, and which are used to provide a cloud service to a customer are separate from the customer's own on-premises servers and systems. Customers can thus avail themselves of cloud services provided by the CSP without having to purchase separate hardware and software resources for the services.
  • Cloud services are designed to provide a subscribing customer easy, scalable, and on-demand access to applications and computing resources without the customer having to invest in procuring the infrastructure that is used for providing the services or functions.
  • Various different types or models of cloud services may be offered such as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS), and others.
  • SaaS Software-as-a-Service
  • PaaS Platform-as-a-Service
  • IaaS Infrastructure-as-a-Service
  • a customer can subscribe to one or more cloud services provided by a CSP.
  • the customer can be any entity such as an individual, an organization, an enterprise, and the like.
  • a CSP is responsible for providing the infrastructure and resources that are used for providing cloud services to subscribing customers.
  • the resources provided by the CSP can include both hardware and software resources. These resources can include, for example, compute resources (e.g., virtual machines, containers, applications, processors), memory resources (e.g., databases, data stores), networking resources (e.g., routers, host machines, load balancers), identity, and other resources.
  • compute resources e.g., virtual machines, containers, applications, processors
  • memory resources e.g., databases, data stores
  • networking resources e.g., routers, host machines, load balancers
  • identity e.g., identity, and other resources.
  • the resources provided by a CSP for providing a set of cloud services CSP are organized into data centers.
  • a data center may be configured to provide a particular set of cloud services.
  • the CSP is responsible for equipping the data center with infrastructure and resources that are used to provide that particular set of cloud services.
  • a CSP may build one or more data centers. [0025] Data centers provided by a CSP may be hosted in different regions.
  • a region is a localized geographic area and may be identified by a region name. Regions are generally independent of each other and can be separated by vast distances, such as across countries or even continents. Regions are grouped into realms. Examples of regions for a CSP may include US West, US East, Australia East, Australia Southeast, and the like. [0026] A region can include one or more data centers, where the data centers are located within a certain geographic area corresponding to the region. As an example, the data centers in a region may be located in a city within that region.
  • Data centers in the US West region may be located in San Jose, California; data centers in the US East region may be located in Ashburn, Virginia; data centers in the Australia East region may be located in Sydney, Australia; data centers in the Australia Southeast region may be located in Melbourne, Australia; and the like.
  • Data centers within a region may be organized into one or more availability domains, which are used for high availability and disaster recovery purposes.
  • An availability domain can include one or more data centers within a region.
  • Availability domains within a region are isolated from each other, fault tolerant, and are architected in such a way that data centers in multiple availability domains are very unlikely to fail simultaneously.
  • the availability domains within a region may be structured in a manner such that a failure at one availability domain within the region is unlikely to impact the availability of data centers in other availability domains within the same region.
  • the CSP creates a tenancy for the customer.
  • the tenancy is like an account that is created for the customer.
  • a tenancy for a customer exists in a single realm and can access all regions that belong to that realm. The customer’s users can then access the services subscribed to by the customer under this tenancy.
  • a CSP builds or deploys data centers to provide cloud services to its customers.
  • a CSP typically builds new data centers in new regions or increases the capacity of existing data centers to service the customers’ growing demands and to better serve the customers.
  • a data center is built in close geographical proximity to the location of customers serviced by that data center. Geographical proximity between a data center and customers serviced by that data center lends to more efficient use of resources and faster and more reliable services being provided to the customers.
  • a CSP typically builds new data centers in new regions in geographical areas that are geographically proximal to the customers serviced by the data centers. For example, for a growing customer base in Germany, a CSP may build one or more data centers in a new region in Germany.
  • region build is used to refer to building one or more data centers in a region. Building a data center in a region involves provisioning or creating a set of new resources that are needed or used for providing a set of services that the data center is configured to provide. The end result of the region build process is the creation of a data center in a region, where the data center is capable of providing a set of services intended for that data center and includes a set of resources that are used to provide the set of services. [0031] Building a new data center in a region is a very complex activity requiring extensive coordination between various bootstrapping activities.
  • this involves the performance and coordination of various tasks such as: identifying the set of services to be provided by the data center; identifying various resources that are needed for providing the set of services; creating, provisioning, and deploying the identified resources; wiring the resources properly so that they can be used in an intended manner; and the like.
  • Each of these tasks further have subtasks that need to be coordinated, further adding to the complexity. Due to this complexity, presently, the building of a data center in a region involves several manually initiated or manually controlled tasks that require careful manual coordination. As a result, the task of building a new region (i.e., building one or more data centers in a region) is very time consuming. It can take time, for example many months, to build a data center.
  • the present disclosure describes techniques for reducing build time, reducing computing resource waste, and reducing risk related to building one or more data centers in a region. Instead of weeks and months needed to build a data center in a region in the past, the techniques described herein can be used to build a new data center in a region in a relatively much shorter time, while reducing the risk of errors over conventional approaches.
  • a Cloud Infrastructure Orchestration Service is disclosed herein that is configured to bootstrap (e.g., provision and deploy) services into a new data center based on predefined configuration files that identify the resources (e.g., infrastructure components and software to be deployed) for implementing a given change to the data center.
  • the CIOS can parse and analyze configuration files (e.g., flock configs) to identify dependencies between resources, execution targets, phases, and flocks.
  • the CIOS may generate specific data structures from the analysis and may use these data structures to drive operations and to manage an order by which services are bootstrapped to a region.
  • the CIOS may utilize these data structures to identify when it can bootstrap a service, when bootstrapping is blocked, and/or when bootstrapping operations associated with a previously blocked service can resume.
  • the CIOS can identify circular dependencies within the data structures and execute operations to eliminate/resolve these circular dependencies prior to task execution.
  • the CIOS substantially reduces the risk of executing tasks prior to the availability of the resources on which those tasks depend.
  • the CIOS may optimize parallel processing to execute changes to a data center while ensuring that tasks are not initiated until the functionality on which those tasks depend is available in the region.
  • a “region” is a logical abstraction corresponding to a geographical location.
  • a region can include any suitable number of one or more execution targets.
  • an execution target could correspond to a data center.
  • An “execution target” refers to a smallest unit of change for executing a release.
  • a “release” refers to a representation of an intent to orchestrate a specific change to a service (e.g., deploy version 8, “add an internal DNS record,” etc.). For most services, an execution target represents an “instance” of a service.
  • a single service can be bootstrapped to each of one or more execution targets.
  • An execution target may be associated with a set of devices (e.g., a data center).
  • “Bootstrapping” is intended to refer to the collective tasks associated with provisioning and deployment of any suitable number of resources (e.g., infrastructure components, artifacts, etc.) corresponding to a single service.
  • a “service” refers to functionality provided by a set of resources.
  • a set of resources for a service includes any suitable combination of infrastructure, platform, or software (e.g., an application) hosted by a cloud provider that can be configured to provide the functionality of a service.
  • a service can be made available to users through the Internet.
  • An “artifact” refers to code being deployed to an infrastructure component or a Kubernetes engine cluster, this may include software (e.g., an application), configuration information (e.g., a configuration file) for an infrastructure component, or the like.
  • a “flock config” refers to a configuration file (or a set of configuration files) that describes a set of all resources (e.g., infrastructure components and artifacts) associated with a single service.
  • a flock config may include declarative statements that specify one or more aspects corresponding to a desired state of the resources of the service.
  • Service state refers to a point-in-time snapshot of every resource (e.g., infrastructure resources, artifacts, etc.) associated with the service.
  • the service state indicates status corresponding to provisioning and/or deployment tasks associated with service resources.
  • IaaS provisioning (or “provisioning”) refers to acquiring computers or virtual hosts for use, and even installing needed libraries or services on them.
  • provisioning a device refers to evolving a device to a state in which it can be utilized by an end-user for their specific use.
  • a device that has undergone the provisioning process may be referred to as a “provisioned device.”
  • Preparing the provisioned device (installing libraries and daemons) may be part of provisioning; this preparation is different from deploying new applications or new versions of an application onto the prepared device. In most cases, deployment does not include provisioning, and the provisioning may need to be performed first.
  • the device Once prepared, the device may be referred to as “an infrastructure component.”
  • IaaS deployment (or “deployment”) refers to the process of providing and/or installing a new application, or a new version of an application, onto a provisioned infrastructure component.
  • a “capability” identifies a unit of functionality associated with a service. The unit could be a portion, or all, of the functionality to be provided by the service. By way of example, a capability can be published indicating that a resource is available for authorization/authentication processing (e.g., a subset of the functionality to be provided by the resource).
  • a “virtual bootstrap environment” refers to a virtual cloud network that is provisioned in the overlay of an existing region (e.g., a “host region”). Once provisioned, a ViBE is connected to a new region using a communication channel (e.g., an IPSec Tunnel VPN). Certain essential core services (or “seed” services) like a deployment orchestrator, a public key infrastructure (PKI) service, and the like can be provisioned in a ViBE.
  • a communication channel e.g., an IPSec Tunnel VPN
  • a “Cloud Infrastructure Orchestration Service” may refer to a system configured to manage provisioning and deployment operations for any suitable number of services as part of a region build.
  • a Multi-Flock Orchestrator may be a computing component (e.g., a service) that coordinates events between components of the CIOS to provision and deploy services to a target region (e.g., a new region).
  • An MFO tracks relevant events for each service of the region build and takes actions in response to those events.
  • a “host region” refers to a region that hosts a virtual bootstrap environment (ViBE).
  • a host region may be used to bootstrap a ViBE.
  • a “target region” refers to a region under build.
  • “Publishing a capability” refers to “publishing” as used in a “publisher-subscriber” computing design or otherwise providing an indication that a particular capability is available (or unavailable).
  • the capabilities are “published” (e.g., collected by a capabilities service, provided to a capabilities service, pushed, pulled, etc.) to provide an indication that functionality of a resource/service is available.
  • capabilities may be published/transmitted via an event, a notification, a data transmission, a function call, an API call, or the like.
  • An event (or other notification/data transmission/etc.) indicating availability of a particular capability can be broadcasted/addressed (e.g., published) to a capabilities service.
  • a “Capabilities Service” may be a flock configured to model dependencies between different flocks.
  • a capabilities service may be provided within a Cloud Infrastructure Orchestration Service and may define what capabilities, services, features have been made available in a region.
  • a “Real-time Regional Data Distributor” (RRDD) may be a service or system configured to manage region data. This region data can be injected into flock configs to dynamically create execution targets for new regions.
  • CIOS Cloud Infrastructure Orchestration Service
  • the CIOS can include computing components (e.g., a CIOS Central and a CIOS Regional, both of which will be described in further detail below) that may be configured to manage bootstrapping tasks (provisioning and deployment) for a given service and a Multi-Flock Orchestrator (also described in further detail below) configured to initiate/manage region builds (e.g., bootstrapping operations corresponding to multiple services).
  • computing components e.g., a CIOS Central and a CIOS Regional, both of which will be described in further detail below
  • a Multi-Flock Orchestrator also described in further detail below
  • the CIOS enables region building and world-wide infrastructure provisioning and code deployment with minimal manual run-time effort from service teams (e.g., beyond an initial approval and/or physical transportation of hardware, in some instances).
  • the high- level responsibilities of the CIOS include, but are not limited to, coordinating region builds, providing users with a view of the current state of resources managed by the CIOS (e.g., of a region, across regions, world-wide, etc.), and managing bootstrapping operations for bootstrapping resources within a region.
  • the CIOS may provide view reconciliation, where a view of a desired state (e.g., a desired configuration) of resources may be reconciled with a current/actual state (e.g., a current configuration) of the resources.
  • view reconciliation may include obtaining state data to identify what resources are actually running and their current configuration and/or state. Reconciliation can be performed at a variety of granularities, such as at a service level.
  • the CIOS can perform plan generation, where differences between the desired and current state of the resources are identified. Part of plan generation can include identifying the operations that would need to be executed to bring the resources from the current state to the desired state.
  • the CIOS may present a generated plan to a user for approval.
  • the CIOS can mark the plan as approved or rejected based on user input from the user. Thus, users can spend less time reasoning about the plan and the plans are more accurate because they are machine generated. Plans are almost too detailed for human consumption; however, the CIOS can provide this data via a sophisticated user interface (UI).
  • UI user interface
  • the CIOS can handle execution of change management by executing the approved plan.
  • the CIOS can handle rolling back to a previous service version by generating a plan that returns the service to a previous (e.g., pre-release) state (e.g., when CIOS detects service health degradation while executing).
  • the CIOS can measure service health by monitoring alarms and executing integration tests.
  • the CIOS can help teams quickly define roll-back behavior in the event of service degradation, which it can later execute.
  • the CIOS can generate and display plans and can track approval.
  • the CIOS can combine the functionality of provisioning and deployment in a single system that coordinates these tasks across a region build.
  • the CIOS also supports the discovery of flocks (e.g., service resources such as flock config(s) corresponding to any suitable number of services), artifacts, resources, and dependencies.
  • the CIOS can discover dependencies between execution tasks at every level (e.g., resource level, execution target level, phase level, service level, etc.) through a static analysis (e.g., including parsing and processing content) of one or more configuration files. Using these dependencies, the CIOS can generate various data structures from these dependencies that can be used to drive task execution (e.g., tasks regarding provisioning of infrastructure resources and deployment of artifacts across the region). [0059] FIG.
  • CIOS 102 can include, but is not limited to, the following components: Real-time Regional Data Distributor (RRDD) 104, Multi-Flock Orchestrator (MFO) 106, CIOS Central 108, CIOS Regional 110, and Capabilities Service 112.
  • RRDD Real-time Regional Data Distributor
  • MFO Multi-Flock Orchestrator
  • CIOS Central 108 CIOS Regional 110
  • Specific functionality of CIOS Central 108 and CIOS Regional 110 is provided in more detail in U.S. Application No. 17/016,754, entitled “Techniques for Deploying Infrastructure Resources with a Declarative Provisioning Tool,” the entire contents of which are incorporated in its entirety for all purposes.
  • any suitable combination of the components of CIOS 102 may be provided as a service.
  • some portion of CIOS 102 may be deployed to a region (e.g., a data center represented by host region 103).
  • CIOS 102 may include any suitable number of cloud services (not depicted in FIG. 1) discussed in further detail in U.S. Application No. 17/016,754 and below with respect to FIGS. 2 and 3.
  • RRDD Real-time Regional Data Distributor
  • RRDD Real-time Regional Data Distributor
  • the region data may be in any suitable form (e.g., JSON format, data objects/containers, XML, etc.).
  • Region data maintained by RRDD 104 may include any suitable number of subsets of data which can individually be referenceable by a corresponding identifier.
  • an identifier “all_regions” can be associated with a data structure (e.g., a list, a structure, an object, etc.) that includes a metadata for all defined regions.
  • an identifier such as “realms” can be associated with a data structure that identifies metadata for a number of realms and a set of regions corresponding to each realm.
  • the region data may maintain any suitable attribute of one or more realm(s), region(s), availability domains (ADs), execution target(s) (ETs), and the like, such as identifiers, DNS suffixes, states (e.g., a state of a region), and the like.
  • the RRDD 104 may be configured to manage region state as part of the region data.
  • a region state may include any suitable information indicating a state of bootstrapping within a region.
  • some example region states can include “initial,” “building,” “production,” “paused,” or “deprecated.” The “initial” state may indicate a region that has not yet been bootstrapped.
  • a “building” state may indicate that bootstrapping of one or more flocks within the region has commenced.
  • a “production” state may indicate that bootstrapping has been completed and the region is ready for validation.
  • a “paused” state may indicate that CIOS Central 108 or CIOS Regional 110 has paused internal interactions with the regional stack, likely due to an operational issue.
  • a “deprecated” state may indicate the region has been deprecated and is likely unavailable and/or will not be contacted again.
  • CIOS Central 108 is configured to provide any suitable number of user interfaces with which users (e.g., user 109) may interact with CIOS 102. By way of example, users can make changes to region data via a user interface provided by CIOS Central 108.
  • CIOS Central 108 may additionally provide a variety of interfaces that enable users to: view changes made to flock configs and/or artifacts, generate and view plans, approve/reject plans, view status on plan execution (e.g., corresponding to tasks involving infrastructure provisioning, deployment, region build, and/or desired state of any suitable number of resources managed by CIOS 102.
  • CIOS Central 108 may implement a control plane configured to manage any suitable number of CIOS Regional 110 instances.
  • CIOS Central 108 can provide one or more user interfaces for presenting region data, enabling the user 109 to view and/or change region data.
  • CIOS Central 108 can be configured to invoke the functionality of RRDD 104 via any suitable number of interfaces.
  • CIOS Central 108 may be configured to manage region data, either directly or indirectly (e.g., via RRDD 104). CIOS Central 108 may be configured to compile flock configs to inject region data as variables within the flock configs.
  • Each instance of CIOS Regional 110 may correspond to a module configured to execute bootstrapping tasks that are associated with a single service of a region.
  • CIOS Regional 110 can receive desired state data from CIOS Central 108.
  • desired state data may include a flock config that declares (e.g., via declarative statements) a desired state of resources associated with a service.
  • CIOS Central 108 can maintain current state data indicating any suitable aspect of the current state of the resources associated with a service.
  • CIOS Regional 110 can identify, through a comparison of the desired state data and the current state data, that changes are needed to one or more resources. For example, CIOS Regional 110 can determine that one or more infrastructure components need to be provisioned, one or more artifacts deployed, or any suitable change needed to the resources of the service to bring the state of those resources in line with the desired state. As CIOS Regional 110 performs bootstrapping operations, it may publish data indicating various capabilities of a resource as they become available. A “capability” identifies a unit of functionality associated with a service. The unit could be a portion, or all of the functionality to be provided by the service.
  • Capabilities Service 112 is configured to maintain capabilities data that indicates 1) what capabilities of various services are currently available, 2) whether any resource/service is waiting on a particular capability, 3) what particular resources and/or services are waiting on a given capability, or any suitable combination of the above. Capabilities Service 112 may provide an interface with which capabilities data may be requested.
  • Capabilities Service 112 may provide one or more interfaces (e.g., application programming interfaces) that enable it to transmit capabilities data to MFO 106 and/or CIOS Regional 110 (e.g., each instance of CIOS Regional 110).
  • MFO 106 and/or any suitable component or module of CIOS Regional 110 may be configured to request capabilities data from Capabilities Service 112.
  • Multi-Flock Orchestrator (MFO) 106 may be configured to drive region build efforts.
  • MFO 106 can manage information that describes what flock/flock config versions and/or artifact versions are to be utilized to bootstrap a given service within a region (or to make a unit of change to a target region).
  • MFO 106 may be configured to monitor (or be otherwise notified of) changes to the region data managed by Real-time Regional Data Distributor 104. In some embodiments, receiving an indication that region data has been changed may cause a region build to be triggered by MFO 106. In some embodiments, MFO 106 may collect various flock configs and artifacts to be used for a region build. Some, or all, of the flock configs may be configured to be region agnostic. That is, the flock configs may not explicitly identify what regions to which the flock is to be bootstrapped. In some embodiments, MFO 106 may trigger a data injection process through which the collected flock configs are recompiled (e.g., by CIOS Central 108).
  • Multi-Flock Orchestrator 106 can perform a static flock analysis in which the flock configs are parsed to identify dependencies between resources, execution targets, phases, and flocks, and in particular to identify circular dependencies that need to be removed.
  • MFO 106 can generate any suitable number of data structures based on the dependencies identified. These data structures (e.g., directed acyclic graph(s), linked lists, etc.) may be utilized by the Cloud Infrastructure Orchestration Service 102 to drive operations for performing a region build. By way of example, these data structures may collectively define an order by which services are bootstrapped within a region. An example of such a data structure is discussed further below with respect to Build Dependency Graph 338 of FIG. 3. If circular dependencies (e.g., service A requires service B and vice versa) exist and are identified through the static flock analysis and/or graph, MFO may be configured to notify any suitable service teams that changes are required to the corresponding flock config to correct these circular dependencies.
  • circular dependencies e.g., service A requires service B and vice versa
  • MFO 106 can be configured to traverse one or more data structures to manage an order by which services are bootstrapped to a region.
  • MFO 106 can identify (e.g., using data obtained from Capabilities Service 112) capabilities available within a given region at any given time. MFO 106 can this data to identify when it can bootstrap a service, when bootstrapping is blocked, and/or when bootstrapping operations associated with a previously blocked service can resume. Based on this traversal, MFO 106 can perform a variety of releases in which instructions are transmitted by MFO 106 to CIOS Central 108 to perform bootstrapping operations corresponding to any suitable number of flock configs.
  • MFO 106 may be configured to identify that one or more flock configs may require multiple releases due to circular dependencies found within the graph. As a result, MFO 106 may transmit multiple instruction sets to CIOS Central 108 for a given flock config to break the circular dependencies identified in the graph.
  • a user can request that a new region (e.g., target region 114) be built. This can involve bootstrapping resources corresponding to a variety of services.
  • target region 114 may not be communicatively available (and/or secure) at a time at which the region build request is initiated.
  • CIOS 102 may initiate the region build using a virtual bootstrap environment 116.
  • Virtual bootstrap environment (ViBE) 116 may be an overlay network that is hosted by host region 103 (a preexisting region that has previously been configured with a core set of services and which is communicatively available and secure). MFO 106 can leverage resources of the host region 103 to bootstrap resources to the ViBE 116 (generally referred to as “building the ViBE”).
  • MFO 106 can provide instructions through CIOS Central 108 that cause an instance of CIOS Regional 110 within a host region (e.g., host region 103) to bootstrap another instance of CIOS Regional within the ViBE 116.
  • a host region e.g., host region 103
  • bootstrapping the services for the target region 114 can continue within the ViBE 116.
  • target region 114 is available to perform bootstrapping operations, the previously bootstrapped services within ViBE 116 may be migrated to target region 114.
  • CIOS 102 can greatly improve the speed at which a region is built by drastically reducing the need for any manual input and/or configuration to be provided.
  • ViBE 202 represents a virtual cloud network that is provisioned in the overlay of an existing region (e.g., host region 204, an example of the host region 103 of FIG. 1 and in an embodiment is a Host Region Service Enclave).
  • ViBE 202 represents an environment in which services can be staged for a target region (e.g., a region under build such as target region 114 of FIG. 1) before the target region becomes available.
  • a target region e.g., a region under build such as target region 114 of FIG.
  • a core set of services may be bootstrapped. While those core set of services exist in the host region 204, they do not yet exist in the ViBE (nor the target region). These essential core services provide the functionality needed to provision devices, establish a chain of trust to the new region, and deploy remaining services (e.g., flocks) into a region.
  • the ViBE 202 may be a tenancy that is deployed in a host region 204. It can be thought of as a virtual region. [0069] When the target region is available to provide bootstrapping operations, the ViBE 202 can be connected to the target region so that services in the ViBE can interact with the services and/or infrastructure components of the target region.
  • a seed service was deployed as part of a container collection and used to bootstrap dependencies necessary to build out the region.
  • resources may be bootstrapped (e.g., provisioned and deployed) into the ViBE 202 and connected to the service enclave of a region (e.g., host region 204) in order to provision hardware and deploy services until the target region is self-sufficient and can be communicated with directly.
  • Multi-Flock Orchestrator (MFO) 206 may be configured to perform operations to build (e.g., configure) ViBE 202.
  • MFO 206 can obtain applicable flock configs corresponding to various resources to be bootstrapped to the new region (in this case, a ViBE region, ViBE 202).
  • MFO 206 may obtain a flock config (e.g., a “ViBE flock config”) that identifies aspects of bootstrapping Capabilities Service 208 and Worker 210.
  • MFO 206 may obtain another flock config corresponding to bootstrapping Domain Name Service (DNS) 212 to ViBE 202.
  • MFO 206 may instruct CIOS Central 214 (e.g., an example of CIOS Central 108 and CIOS Central 214 of FIGS. 1 and 2, respectively).
  • MFO 206 may transmit a request (e.g., including the ViBE flock config) to request bootstrapping of the Capabilities Service 208 and Worker 210 that, at this time do not yet exist in the ViBE 202.
  • CIOS Central 214 may have access to all flock configs.
  • MFO 206 may transmit an identifier for the ViBE flock config rather than the file itself, and CIOS Central 214 may independently obtain it from storage (e.g., from DB 308 or flock DB 312 of FIG. 3).
  • CIOS Central 214 may provide the ViBE flock config via a corresponding request to CIOS Regional 216.
  • CIOS Regional 216 may parse the ViBE flock config to identify and execute specific infrastructure provisioning and deployment operations at step 3.
  • the CIOS Regional 216 may utilize additional corresponding services for provisioning and deployment.
  • CIOS Regional 216 CIOS Regional may instruct deployment orchestrator 218 (e.g., an example of a core service, or other write, build, and deploy applications software, of the host region 204) to execute instructions that in turn cause Capabilities Service 208 and Worker 210 to be bootstrapped within ViBE 202.
  • deployment orchestrator 218 e.g., an example of a core service, or other write, build, and deploy applications software, of the host region 204
  • a capability may be transmitted to the Capabilities Service 208 (from the CIOS Regional 216, Deployment Orchestrator 218 via the Worker 210 or otherwise) indicating that resources corresponding to the ViBE flock are available.
  • Capabilities Service 208 may persist this data.
  • the Capabilities Service 208 adds this information to a list it maintains of available capabilities with the ViBE.
  • the capability provided to Capabilities Service 208 at step 5 may indicate the Capabilities Service 208 and Worker 210 are available for processing.
  • MFO 206 may identify that the capability indicating that Capabilities Service 208 and Worker 210 are available based on receiving or obtaining data (an identifier corresponding to the capability) from the Capabilities Service 208.
  • the MFO 206 may instruct CIOS Central 214 to bootstrap a DNS service (e.g., DNS 212) to the ViBE 202.
  • the instructions may identify or include a particular flock config corresponding to the DNS service.
  • the CIOS Central 214 may instruct the CIOS Regional 216 to deploy DNS 212 to the ViBE 202.
  • the DNS flock config for the DNS 212 is provided by the CIOS Central 214.
  • Worker 210 now that it is deployed in the ViBE 202, may be assigned by CIOS Regional 216 to the task of deploying DNS 212.
  • Worker may execute a declarative infrastructure provisioner in the manner described above in connection with FIG. 3 to identify (e.g., from comparing the flock config (the desired state) to a current state of the (currently non- existing) resources associated with the flock) a set of operations that need to be executed to deploy DNS 212.
  • the Deployment Orchestrator 218 may instruct Worker 210 to deploy DNS 212 in accordance with the operations identified at step 9. As depicted, Worker 210 proceeds with executing operations to deploy DNS 212 to ViBE 202 at step 11. At step 12, Worker 210 notifies Capabilities Service 208 that DNS 212 is available in ViBE 202. MFO 206 may subsequently identify that the resources associated with the ViBE flock config and the DNS flock config are available any may proceed to bootstrap any suitable number of additional resources to the ViBE. [0080] After steps 1-12 are concluded, the process for building the ViBE 202 can be considered complete and the ViBE 202 can be considered built. [0081] FIG.
  • FIG. 3 is a block diagram for illustrating an environment 300 and method for bootstrapping services to a target region utilizing the ViBE, according to at least one embodiment.
  • user 302 may utilize any suitable user interface provided by CIOS Central 304 (an example of CIOS Central 108 and CIOS Central 214 of FIG. 1 and 2, respectively) to modify region data.
  • CIOS Central 304 may execute operations to send the change to RRDD 306 (e.g., an example of RRDD 104 of FIG. 1).
  • RRDD 306 may store the received region data in database 308, a data store configured to store region data including any suitable identifier, attribute, state, etc. of a region, AD, realm, ET, or the like.
  • updater 307 may be utilized to store region data in database 308 or any suitable data store from which such updates may be accessible (e.g., to service teams).
  • updater 307 may be configured to notify (e.g., via any suitable electronic notification) of updates made to database 308.
  • MFO 310 an example of the MFO 106 and 206 of FIGS. 1 and 2, respectively
  • MFO 310 may detect the change in region data.
  • MFO 310 may be configured to poll RRDD 306 for changes in region data.
  • RRDD 306 may be configured to publish or otherwise notify MFO 310 of region changes.
  • detecting the change in region data may trigger MFO 310 to obtain a version set (e.g., a version set associated with a particular identifier such as a “golden version set” identifier). identifying a particular version for each flock (e.g., service) that is to be bootstrapped to the new region and a particular version for each artifact corresponding to that flock.
  • the version set may be obtained from DB 312. As flocks evolve and change, the versions for their corresponding configs and artifacts used for region build may change.
  • MFO 310 may identify which versions of flock configs and artifacts to use for building a region (e.g., a ViBE region, a Target Region/non-ViBE Region, etc.).
  • the flock configs e.g., all versions of the flock configs
  • /or artifacts e.g., all versions of the artifacts
  • MFO 310 may request CIOS Central 304 to recompile of each of the flock configs associated with the version set with the current region data.
  • the request may indicate a version for each flock config and/or artifact corresponding to those flock configs.
  • CIOS Central 304 may obtain current region data from the DB 308 (e.g., directly, or via Real-time Regional Data Distributor 306) and retrieve any suitable flock config and artifact in accordance with the versions requested by MFO 310.
  • CIOS Central 304 may recompile the flock configs with the region data obtained at step 7 to inject the flock configs with current region data.
  • CIOS Central 304 may return the compiled flock configs to MFO 310.
  • CIOS Central 304 may simply indicate compilation is done, and MFO 310 may access the recompiled flock configs via RRDD 306.
  • MFO 310 may perform a static analysis of the recompiled flock configs. As part of the static analysis, MFO 310 may parse the flock configs (e.g., using a library associated with a declarative infrastructure provisioner (e.g., Terraform, or the like)) to identify dependencies between flocks. From the analysis and the dependencies identified, MFO 310 can generate Build Dependency Graph 338.
  • a declarative infrastructure provisioner e.g., Terraform, or the like
  • Build Dependency Graph 338 may be an acyclic directed graph that identifies an order by which flocks are to be bootstrapped (and/or changes indicated in flock configs are to be applied) to the new region.
  • Each node in the graph may correspond to bootstrapping any suitable portion of a particular flock.
  • the specific bootstrapping order may be identified based at least in part on the dependencies.
  • the dependencies may be expressed as an attribute of the node and/or indicated via edges of the graph that connect the nodes.
  • MFO 310 may traverse the graph (e.g., beginning at a starting node) to drive the operations of the region build.
  • MFO 310 may utilize a cycle detection algorithm to detect the presence of a cycle (e.g., service A depends on service B and vice versa).
  • MFO 310 can identify orphaned capabilities dependencies. For example, MFO 310 can identify orphaned nodes of the Build Dependency Graph 338 that do not connect to any other nodes. MFO 310 may identify falsely published capabilities (e.g., when a capability was prematurely published, and the corresponding functionality is not actually yet available). MFO 310 can detect from the graph that one or more instances of publishing the same capability exist.
  • MFO 310 (or another suitable component such as CIOS Central 304) may be configured to notify or otherwise present this information to users (e.g., via an electronic notification, a user interface, or the like).
  • MFO 310 may be configured to force delete/recreate resources to break circular dependencies and may once again provide instructions to CIOS Central 304 to perform bootstrapping operations for those resources and/or corresponding flock configs.
  • a starting node may correspond to bootstrapping the ViBE flock
  • a second node may correspond to bootstrapping DNS.
  • the steps 10-15 correspond to deploying (via deployment orchestrator 317, an example of the deployment orchestrator 218 of FIG.
  • ViBE 316 e.g., an example of ViBE 116 and 202 of FIG.1, and 2, respectively. That is, steps 10-15 of FIG. 3 generally correspond to steps 1-6 of FIG. 2.
  • capabilities corresponding to the ViBE flock being deployed (e.g., indicating that Capabilities Service 318 and Worker 320, corresponding to Capabilities Service 208 and Worker 210 of FIG. 2, are available)
  • the MFO 310 recommence traversal of the Build Dependency Graph 338 to identify next operations to be executed.
  • MFO 310 may continue traversing the Build Dependency Graph 338 to identify that a DNS flock is to be deployed.
  • Steps 16-21 may be executed to deploy DNS 322 (an example of the DNS 212 of FIG. 2). These operations may generally correspond to steps 7-12 of FIG. 2.
  • a capability may be stored indicating that DNS 322 is available.
  • MFO 310 may recommence traversal of the Build Dependency Graph 338. On this traversal, the MFO 310 may identify that any suitable portion of an instance of CIOS Regional (e.g., an example of CIOS Regional 314) is to be deployed to the ViBE 316.
  • steps 16-21 may be substantially repeated with respect to deploying CIOS Regional (ViBE) 326 (an instance of CIOS Regional 314, CIOS Regional 110 of FIG.
  • MFO 310 may recommence traversal of the Build Dependency Graph 338. On this traversal, the MFO 310 may identify that a deployment orchestrator (e.g., Deployment Orchestrator 330, an example of the Deployment Orchestrator 317) is to be deployed to the ViBE 316. In some embodiments, steps 16-21 may be substantially repeated with respect to deploying Deployment Orchestrator 330.
  • a deployment orchestrator e.g., Deployment Orchestrator 330, an example of the Deployment Orchestrator 31
  • ViBE 316 may be considered available for processing subsequent requests.
  • MFO 310 may instruct subsequent bootstrapping requests to be routed to ViBE components rather than utilizing host region components (components of host region 332).
  • MFO 310 can continue traversing the Build Dependency Graph 338, at each node instructing flock deployment to the ViBE 316 via CIOS Central 304.
  • CIOS Central 304 may request CIOS Regional (ViBE) 326 to deploy resources according to the flock config.
  • Target Region 334 may become available. Indication that the Target Region is available may be identifiable from region data for the Target Region 334 being provided by the user 302 (e.g., as an update to the region data).
  • the availability of Target Region 334 may depend on establishing a network connection between the Target Region 334 and external networks (e.g., the Internet).
  • the network connection may be supported over a public network (e.g., the Internet), but use software security tools (e.g., IPSec) to provide one or more encrypted tunnels (e.g., IPSec tunnels such as tunnel 336) from the ViBE 316 to Target Region 334.
  • IPSec software security tools
  • IPSec refers to a protocol suite for authenticating and encrypting network traffic over a network that uses Internet Protocol (IP), and can include one or more available implementations of the protocol suite (e.g., Openswan, Libreswan, strongSwan, etc.).
  • IP Internet Protocol
  • the network may connect the ViBE 316 to the service enclave of the Target Region 334.
  • the initial network connection to the Target Region 334 may be on a connection (e.g., an out-of-band VPN tunnel) sufficient to allow bootstrapping of networking services until an IPSec gateway may be deployed on an asset (e.g., bare-metal asset) in the Target Region 334.
  • Deployment Orchestrator 330 can deploy the IPSec gateway at the asset within Target Region 334.
  • the Deployment Orchestrator 330 may then deploy VPN hosts at the Target Region 334 configured to terminate IPSec tunnels from the ViBE 316.
  • services e.g., Deployment Orchestrator 330, Service A, etc.
  • bootstrapping operations from the ViBE 316 to the Target Region 334 may begin.
  • the bootstrapping operations may begin with services in the ViBE 316 provisioning resources in the Target Region 334 to support hosting instances of core services as they are deployed from the ViBE 316.
  • a host provisioning service may provision hypervisors on infrastructure (e.g., bare-metal hosts) in the Target Region 334 to allocate computing resources for VMs.
  • the host provisioning service may publish information indicating a capability that indicates that the physical resources in the Target Region 334 have been allocated. The capability may be published to Capabilities Service 318 via CIOS Regional (ViBE) 326 (e.g., by Worker 328).
  • CIOS Regional (ViBE) 326 can orchestrate the deployment of instances of core services from the ViBE 316 to the Target Region 334.
  • This deployment may be similar to the processes described above for building the ViBE 316, but using components of the ViBE (e.g., CIOS Regional (ViBE) 326, Worker 328, Deployment Orchestrator 330) instead of components of the Host Region 332 service enclave.
  • the deployment operations may generally correspond to steps 16-21 described above.
  • the DNS record associated with that service may correspond to the instance of the service in the ViBE 316.
  • the DNS record associated with the service may be updated at a later time to complete deployment of the service to the Target Region 334. Said another way, the instance of the service in the ViBE 316 may continue to receive traffic (e.g., requests) to the service until the DNS record is updated.
  • a service may deploy partially into the Target Region 334 and publish information indicating a capability (e.g., to Capabilities Service 318) that the service is partially deployed. For example, a service running in the ViBE 316 may be deployed into the Target Region 334 with a corresponding compute instance, load balancer, and associated applications and other software, but may need to wait for database data to migrate to the Target Region 334 before being completely deployed.
  • the DNS record (e.g., managed by DNS 322) may still be associated with the service in the ViBE 316. Once data migration for the service is complete, the DNS record may be updated to point to the operational service deployed in the Target Region 334. The deployed service in the Target Region 334 may then receive traffic (e.g., requests) for the service, while the instance of the service in the ViBE 316 may no longer receive traffic for the service. Connecting a ViBE to a Target Region [0101] As discussed above, a CSP may build or deploy data centers to provide cloud services to its customers in new regions.
  • the regions may correspond to a general geographic area, which may be preferably in proximity to new customers or customers with expanding service needs (e.g., customer growth in requiring scale-up of cloud services, expansion of cloud services to a new geographic area, etc.).
  • a CIOS e.g., CIOS 102 of FIG. 1
  • ViBE e.g., ViBE 316 of FIG. 3
  • the ViBE may be created in advance or in parallel with the building of the data centers in the new region.
  • a ViBE may be built in advance (e.g., days, weeks, etc.) of the completion of the new data center. Operators may deploy core services to the ViBE to support the deployment of services to the new data center once the physical infrastructure of the new data center is ready to host cloud services. By creating the ViBE in advance of (or in parallel with) the build of a region's data center, the core services deployed therein may be evaluated for deployment readiness (e.g., production testing, resolving dependencies, etc.). [0103] Connecting the ViBE to the target region may include operations to bootstrap a network host in the target region.
  • the network host can be used to support one or more network connections between the ViBE and the target region. During the provisioning and deployment of infrastructure and services to the target region, these network connections can enable traffic between services in the ViBE and services in the target region service enclave. Instances implemented in the ViBE can then form a distributed virtual private network (VPN) with instances in the target region, so that the target region service enclave can be securely networked to the ViBE during bootstrapping of the target region.
  • VPN virtual private network
  • ViBE VCN 404 is a block diagram depicting an example architecture of an environment 400 having a network connection between a ViBE (e.g., ViBE VCN 404) in a host region (e.g., Host Region 432) and a target region (e.g., Target Region 434). Because the depicted architecture relates to network connectivity, the ViBE in FIG. 4 is shown as a VCN in a ViBE Tenancy 402 within the Host Region 432. ViBE VCN 404 may be an example of ViBE 316 of FIG. 3. Detailed examples of the relationship between tenancies and VCNs is provided below with respect to FIGS. 9-12. [0105] The ViBE VCN 404 can include similar services as ViBE 316 of FIG.
  • the ViBE VCN 404 can include one or more networking gateways, including Network Address Translation (NAT) Gateway 412, Service Gateway 414, and Internet Gateway 416.
  • the gateways may be logical connections (e.g., a virtual router or other suitable software implementation) between one or more network resources in the ViBE VCN 404 and an external network.
  • the gateways may route traffic (e.g., according to a routing table for the VCN) inbound to and outbound from network addresses of hosts within the ViBE VCN 404 (e.g., hosts of the ViBE services).
  • the NAT Gateway 412 may be configured to route traffic to and from resources in the ViBE VCN 404 that do not have public network addresses (e.g., public IP addresses).
  • the Service Gateway 414 may be configured to route traffic to and from one or more cloud services 420 provided by the CSP without exposing that traffic to a public internet (e.g., Public Internet 424).
  • the Internet Gateway 416 may be configured to route traffic to and from resources having an exposed public network address.
  • CIOS Regional (ViBE) 426 may have a public address within the ViBE VCN 404 for communication with CIOS Central 438.
  • CIOS Central 438 may be included in a VCN associated with a CIOS Tenancy 436 or another tenancy of the CSP.
  • CIOS Tenancy 436 may be included in Host Region 432 or another region of the CSP.
  • the incoming public traffic to the ViBE VCN 404 may be limited to connections between CIOS Central 438 and CIOS Regional (ViBE) 426 to improve security.
  • Connections to the Internet Gateway 416 may pass through a Load Balancer 418, which can be configured to apply a load balancing policy for managing (e.g., throttling, restricting, etc.) traffic to any public network addresses of ViBE VCN 404 resources (e.g., CIOS Regional (ViBE) 426).
  • the Load Balancer 418 may also be configured to restrict available ports and provide authentication of inbound connections via a security protocol (e.g., mutual transport layer security (mTLS)).
  • mTLS mutual transport layer security
  • the cloud services 420 can include services available from the CSP.
  • cloud services 420 can include an identity service (e.g., an identity cloud service) to perform authentication and authorization procedures, a key-value storage service, and a deployment orchestration service (e.g., Deployment Orchestrator 317 of FIG. 3).
  • an identity service e.g., an identity cloud service
  • a key-value storage service e.g., a key-value storage service
  • a deployment orchestration service e.g., Deployment Orchestrator 317 of FIG. 3
  • services in the ViBE VCN 404 may communicate with cloud services 420 to perform operations related to the ViBE VCN 404.
  • Deployment Orchestrator 430 may communicate with a storage service of cloud services 420 to store data created by Deployment Orchestrator 430.
  • the NAT Gateway 412 may be stateful.
  • a stateful NAT gateway may accept outbound traffic (e.g., requests from services in ViBE VCN 404) but reject inbound traffic that is not a response to outbound traffic (e.g., reject inbound connections).
  • outbound traffic e.g., requests from services in ViBE VCN 404
  • reject inbound traffic e.g., reject inbound connections
  • one or more of the services (e.g., Deployment Orchestrator 430) in the ViBE VCN 404 may establish an encrypted network connection (e.g., an IPSec tunnel) with the Target Region 434.
  • the service in the ViBE VCN 404 can send outbound traffic through NAT Gateway 412 to the Target Region 434 (e.g., to Security Gateway 442) and receive an inbound response (e.g., key exchange for IPSec).
  • the Host Region 432 may reach the Target Region 434 over Public Internet 424, which may be any suitable public network (e.g., the Internet).
  • the Target Region 434 can include a Network Gateway 440, which may be any suitable gateway for establishing connections between the Target Region 434 and the Public Internet 424.
  • the Target Region 434 can also include a Security Gateway 442, Region Network Fabric 444, and one or more services (e.g., Service A 446, Service N 448), which may be services bootstrapped to the Target Region 434 from the ViBE VCN 404 according to the processes described previously.
  • Service A 446 may be an instance of Deployment Orchestrator 430 after deployment from the ViBE VCN 404 to the Target Region 434.
  • the Security Gateway 442 may be configured to implement a security protocol (e.g., IPSec).
  • the security protocol may be any suitable protocol for establishing a secure (e.g., encrypted, authenticated, etc.) connection between the Security Gateway 442 and services in the ViBE VCN 404.
  • the Security Gateway 442 may terminate one or more IPSec tunnels established over the network connection between the ViBE VCN 404 and the Target Region 434.
  • the termination of an IPSec tunnel may be the endpoint where encrypted traffic (e.g., IPSec encrypted IP packets) is decrypted according to the encryption protocol.
  • the decrypted traffic may then be routed to destinations (e.g., Service A 446, Service N 448, other hosts, etc.) in the Target Region 434.
  • the Region Network Fabric 444 can include physical and virtual network infrastructure within the Target Region 434.
  • the Region Network Fabric 444 can include physical switches, routers, and the like, as well as virtual networking components (e.g., virtual routers, virtual gateways).
  • the Region Network Fabric 444 may be the network for the service enclave of the Target Region 434.
  • FIG. 5 is a block diagram depicting an example architecture of an environment 500 and an example method for bootstrapping a virtual private network (VPN) host (e.g., VPN Host 542) in a target region (e.g., Target Region 534), according to at least one embodiment.
  • the ViBE virtual cloud network (VCN) 502 may be similar to ViBE VCN 402 described above with respect to FIG. 4.
  • bootstrapping operations from a ViBE can utilize one or more components of a cloud infrastructure orchestration service (e.g., CIOS 102 of FIG.
  • the ViBE VCN 502 can include one or more services (e.g., Service A 514) hosted on one or more computing resources (e.g., Compute Instance 510).
  • Service A 514 may be a core service (e.g., Deployment Orchestrator 430 of FIG. 4) hosted in the ViBE.
  • the ViBE VCN 502 can include Network Service 508 (an example of Network Service 410 of FIG. 4), which may be similarly hosted on Compute Instance 506.
  • Instances in the ViBE VCN 502 may be organized into one or more subnets of the VCN.
  • Compute Instance 506 may be part of Region Build Subnet 504, while Compute Instance 510 may be part of a different subnet of ViBE VCN 502.
  • the ViBE VCN can also include public key infrastructure (PKI) service 516 and Capabilities Service 518 (an example of Capabilities Service 318 of FIG. 3).
  • PKI public key infrastructure
  • the PKI Service 516 may be configured to provide certificate management to support public-key encryption and may act as a root certificate authority for the ViBE VCN 501. For example, services within the ViBE VCN 502 can request that PKI Service 516 sign certificates for the services for use in negotiating trusted key exchanges (e.g., when setting up an encrypted network connection).
  • a network connection between ViBE VCN 502 and Target Region 534 may be established. However, as the Target Region 534 has been newly created (e.g., one or more data centers newly operational), the infrastructure resources to establish a network connection may not yet be available in the Target Region 534.
  • the Target Region 534 can include a networking host (e.g., a bare-metal computing device) connected to an out-of-band (OOB) gateway 520.
  • the OOB Gateway 520 may be configured to provide an initial networking interface to the Target Region 534.
  • the networking interface may be sufficient (e.g., bandwidth, data rate, etc.) to support an initial bootstrap of the networking host from the ViBE VCN 502, but may not be a suitable interface for networking connections used to support other region build operations (e.g., provisioning and deploying service resources from the ViBE VCN 502 to the Target Region 534).
  • the networking host in Target Region 534 may be configured according to the operations described below to generate VPN Host 542.
  • Network Service 508 may poll Capabilities Service 518 for a posted capability indicating that the Target Region 534 is safe (e.g., ready) to execute the deployment of the VPN Host 542 and associated software resources. The capability may be posted by a component of CIOS or may be manually entered. Network Service 508 may also poll a plan service (not shown) to identify deployment information (e.g., configurations, etc.) for software to be deployed to the networking host in the Target Region 534. [0118] At step 2, the Network Service 508 can obtain the PKI root certificate authority public key from PKI Service 516. This public key may be a self-signed certificate from PKI Service 516.
  • Network Service 508 may establish a network connection to the Target Region.
  • the network connection may be made through the NAT Gateway 512 of the ViBE VCN 502 and may use one or more public networks (e.g., Public Internet 424 of FIG. 4) between the ViBE VCN 502 and the Target Region 534.
  • the network connection can include an OOB VPN tunnel (e.g., an IPSec tunnel) negotiated between the ViBE VCN 502 and the OOB Gateway 520.
  • the Network Service 508 may deploy the VPN Host 542.
  • the networking host may be a bare metal computing device, so that the Network Service 508 can deploy software resources to generate the VPN Host 542 on the bare metal computing device.
  • the software resources can include Security Gateway 544, ViBE Netmesh 546, and border gateway protocol (BGP) service 548.
  • the Security Gateway 544 may be similar to Security Gateway 442 of FIG. 4.
  • the Security Gateway 544 may be configured to terminate (e.g., serve as an endpoint) one or more networking connections from the ViBE (e.g., IPSec tunnels from services in the ViBE).
  • the Security Gateway 544 may use an implementation of IPSec (e.g., Openswan, Libreswan, strongSwan, etc.).
  • the Network Service 508 may provide a copy of the public key of the PKI Service 516 in the ViBE to the VPN Host 542.
  • the networking connections from the ViBE instances other than the Network Service 508 may not target the OOB Gateway 520.
  • the ViBE Netmesh 546 may be a component, process, application, service, or other suitable software resource configured to provide routing and/or forwarding of traffic received at the VPN Host 542 from the ViBE VCN 502 (e.g., from ViBE services) and from services hosted in the Target Region 534 (e.g., services deployed from the ViBE using CIOS during a region build).
  • the BGP Service 548 may be configured to provide BGP functionality for the VPN Host 542, including peering with one or more routers (e.g., software routers) implemented in the Target Region 534 during service deployment from the ViBE, acting as a route reflector for peered routers in the Target Region 534, peering with one or more routers in the ViBE VCN 502, exposing secondary network addresses of services in the Target Region 534 (e.g., to support IP anycast routing), and providing routing information received from host instances in the ViBE VCN 502.
  • routers e.g., software routers
  • a service in the ViBE VCN 502 can establish a network connection (e.g., an IPSec tunnel) with the Target Region 534, thereby creating a VPN connection between the ViBE VCN 502 and the service enclave of the Target Region 534.
  • a network connection e.g., an IPSec tunnel
  • Compute Instance 510 hosting Service A 514 can establish network connection 520 with VPN Host 542.
  • an Internet key exchange process may be used to authenticate the initiator of the IPSec tunnel (Compute Instance 510) and establish encryption keys to support the IPSec tunnel.
  • Compute Instance 510 may provide a certificate signed by PKI Service 516 to VPN Host 542, which may in turn use the public key of PKI Service 516 to authenticate Compute Instance 510 and negotiate a secure key exchange to establish the encrypted tunnel.
  • traffic to and from Service A 514 may use the network connection 520 to transit between the ViBE VCN 502 and the service enclave of the Target Region 534.
  • Service A 514 may be a DNS (e.g., DNS 422 of FIG. 4).
  • a service deployed to Target Region 534 may then use the network connection 520 to connect to the DNS in the ViBE VCN 502 to obtain domain name resolver services.
  • FIG. 6 is another block diagram depicting an example architecture of an environment 600 having multiple network connections established between instances in a ViBE VCN 602 and the Target Region 634, according to at least one embodiment.
  • the ViBE VCN 602 may be an example of ViBE VCN 502 of FIG. 5, while Target Region 634 may be an example of Target Region 534 of FIG. 5 after a network service (e.g., Network Service 508) completes the deployment of VPN Host 642 (which may be an example of VPN Host 542 of FIG. 5).
  • Network Service 508 e.g., Network Service 508
  • the ViBE VCN 602 can include multiple compute instances (e.g., Compute Instance 610, Compute Instance 622, Compute Instance 626), which can be examples of Compute Instance 510 of FIG. 5.
  • the instances can host one or more services (e.g., Service A 620, Service B 624, Service C 628, etc.), which can be examples of ViBE core services described herein (e.g., Deployment Orchestrator 410, Host Provisioning Service 406 of FIG.4, CIOS Regional (ViBE) 326 of FIG. 3, etc.).
  • the instances may correspond to more than one computing resource (e.g., VMs, containers, etc.), and the services may be hosted on any suitable number of computing resources (e.g., according to a flock config).
  • FIG. 6 shows a compute instance (infrastructure resources) corresponding with a service (software resources), but one skilled in the art would recognize that a single service may be supported (e.g., hosted) on more than one computing instance, and that a service (e.g., Service A 620) may include more than one software resource (e.g., more than one constituent micro service or the like).
  • the ViBE VCN 602 can include a plurality of VPN Routers 604.
  • the VPN Routers 604 may be deployed into the ViBE using the techniques described herein with respect to CIOS.
  • the VPN Routers 604 may be configured with ViBE Netmesh 606 and BGP Service 608, which can be similar to ViBE Netmesh 546 and BGP Service 548 described above with respect to FIG. 5.
  • the ViBE Netmesh 606 can allow the instances in the ViBE VCN 602 to expose secondary IP addresses (e.g., anycast IP addresses) to support routing among instances in the ViBE VCN 602.
  • secondary IP addresses e.g., anycast IP addresses
  • ViBE Netmesh 606 may be configured to obtain a secondary IP address corresponding to Compute Instance 610 (exposed via ViBE Netmesh 614 implemented on Compute Instance 610).
  • the secondary IP address may then be used by the VPN Routers 604 to route traffic to Compute Instance 610.
  • Traffic routed in this manner may use an IP-in-IP tunnel between the VPN Routers 604 (using the ViBE Netmesh 606) and the Compute Instance 610 (using ViBE Netmesh 614) to encapsulate the IP traffic over the VCN.
  • the IP-in-IP tunnel may be advantageous if the ViBE VCN 602 does not natively support routing to secondary IP addresses.
  • the service enclave of a host region hosting ViBE VCN 602 may support routing to secondary IP addresses using BGP and top-of-rack switches.
  • Service C 628 may send a request 656 (e.g., an anycast request) to a secondary IP address of Service B 624.
  • the request 656 may be routed according to a default route of a VCN Route Table 652 of the ViBE VCN 602.
  • the default route may target the VPN Routers 604, since the VCN Route Table 652 may not have secondary IP address information for Service B 624.
  • the VPN Routers 604 can then forward the request 656 to Service B 624 according to the secondary IP address information exposed to ViBE Netmesh 606 (address information shared from ViBE Netmesh 615).
  • the request 656 may be sent in an IP-in- IP tunnel to Service B 624.
  • the compute instances can identify the VPN Routers 604 using DNS 618.
  • the VPN Routers 604 may form a portion of a forwarding plane for traffic to and from the Target Region 634. In some embodiments, only one VPN Router 604 may be forwarding traffic to and/or from the Target Region 634 at one time.
  • One instance of the VPN Routers 604 may connect to VPN Host 642 at the Target Region 634 by establishing an IPSec tunnel 636 terminated at the VPN Host 642 (using Security Gateway 644).
  • the instance of VPN Routers 604 can use its own security key (e.g., certificate signed by PKI Service 616) to establish the IPSec tunnel 636.
  • the NAT Gateway 612 in the ViBE VCN 602 may be configured to only allow outbound traffic from the ViBE VCN 602.
  • the NAT Gateway 612 may preserve the state of established network connections, so that an IPSec tunnel traversing NAT Gateway 612 may remain and allow return traffic from the Target Region 634 for the lifetime of the IPSec tunnel.
  • the IPSec tunnel established by the one instance of the VPN Routers 604 may be shared by all instances in the ViBE VCN 602.
  • the ViBE VCN 602 may limit network traffic over a single connection (e.g., based on a configuration of the VCN). Certain services hosted in the ViBE may be configured to implement the same ViBE Netmesh software as the VPN Routers 604.
  • Compute Instance 610 can include ViBE Netmesh 614, while Compute Instance 622 can include ViBE Netmesh 615.
  • Compute instances implementing the ViBE Netmesh software can establish an IPSec tunnel between the compute instance and the Target Region 634 (similarly to establishing the shared IPSec tunnel).
  • Compute Instance 610 can establish network connection 630 to VPN Host 642, while Compute Instance 622 can establish network connection 632 to VPN Host 642.
  • the network connections 630-632 can allow two-way traffic once they have been established from outbound requests from the ViBE VCN 602.
  • Security Gateway 644 may terminate the network connections 630-632 (e.g., terminate the IPSec tunnels).
  • Traffic sent from the instances in the ViBE can then be routed to services in the Target Region 634 by the VPN Host 642.
  • ViBE services may have improved bandwidth and/or data rates to the Target Region 634 as compared to the shared IPSec tunnel 636.
  • terminating multiple IPSec tunnels on a single bare metal VPN Host 642 may take advantage of improved multi-core processing to handle traffic from the ViBE during the build of the Target Region 634.
  • the VPN Host 642 can use BGP Service 648 to peer with the VPN Routers 604 once one or more network connections (e.g., network connection 636) has been established.
  • the VPN Host 642 can use BGP Service 648 to peer with Region Network Fabric 650.
  • the Region Network Fabric 650 may be the networking infrastructure of the Target Region 634 and may include any suitable hardware or software resources (e.g., physical routers, physical switches, software routers, etc.).
  • the VPN Host 642, using BGP Service 648, can receive routing and/or addressing information about subnets in the ViBE VCN 602, advertise routing and/or addressing information about the ViBE VCN 602 to the Region Network Fabric 650, receive secondary IP addresses (e.g., anycast IP addresses) from the ViBE VCN 602 (e.g., from ViBE Netmesh 614), advertise the secondary IP addresses to the Region Network Fabric 650, receive routing and/or addressing information about the Region Network Fabric 650 and services in the Target Region 634, and advertise this Target Region routing and/or addressing information to the ViBE VCN 602.
  • secondary IP addresses e.g., anycast IP addresses
  • FIG. 7 illustrates an example method 700 for networking instances in the ViBE, according to at least one embodiment.
  • the method 700 may be performed by one or more components of a distributed computing system (e.g., a cloud computing system), including one or more components of the Cloud Infrastructure Orchestration Service 102 of FIG. 1.
  • a computer- readable storage medium may comprise computer-readable instructions that, upon execution by one or more processors of a distributed computing system, cause the distributed computing system to perform the method 700.
  • the operations of method 700 may be performed in any suitable order, and method 700 may include more or fewer operations than those depicted in FIG.
  • Some or all of the method 700 may be performed under the control of one or more computing systems configured with executable instructions and may be implemented as code (e.g., executable instructions, one or more computer programs, or one or more applications) executing collectively on one or more processors, by hardware or combinations thereof.
  • the code may be stored on a computer-readable storage medium, for example, in the form of a computer program comprising a plurality of instructions executable by one or more processors.
  • the computer-readable storage medium may be non-transitory.
  • the method 700 may begin at block 702 when a virtual cloud network (VCN) may be generated in a host region.
  • VCN virtual cloud network
  • the VCN may be a Virtual Bootstrap Environment (ViBE) VCN (e.g., ViBE VCN 602.
  • the VCN can include a plurality of host instances (e.g., Compute Instance 610 of FIG. 6).
  • the host instances can have a primary network address associated with a routing table (e.g., VCN Routing Table 652) of the VCN.
  • the host region can include one or more data centers of a cloud service provider.
  • a virtual private network (VPN) router e.g., one of VPN Routers 604 of FIG. 6) can be implemented on a first instance of the plurality of host instances.
  • additional VPN routers may be implemented with the VCN.
  • a second instance e.g., Computing Instance 610 of FIG. 6
  • a secondary network address e.g., a secondary IP address
  • the secondary network address may be provided as part of advertising the networking address of the instance among devices in the VCN according to a networking protocol.
  • a third instance e.g., Computing instance 626 of FIG. 6 of the VCN can send a request (e.g., request 656 of FIG. 6) addressed to the secondary network address.
  • the request may include anycast traffic (e.g., a request to an anycast IP address).
  • the VCN may route the request to the VPN router according to a default route of the routing table. Because the VCN may not have routing information for the secondary address (e.g., the VCN does not natively support anycast traffic), the primary network address of the first instance (e.g., the VPN router) may be the target of the default route.
  • a networking tunnel e.g., an IP-in-IP tunnel
  • the VPN router can forward the request to the second instance using the networking tunnel.
  • FIG. 8 illustrates an example method 800 for establishing a network connection between a ViBE and a target region, according to at least one embodiment.
  • the method 800 may be performed in conjunction with one or more operations of method 700 described above with respect to FIG. 7.
  • the method 800 may be performed with a virtual cloud network (VCN) generated in a host region and including a plurality of host instances.
  • VCN virtual cloud network
  • the method 800 may begin at block 802, where a first service (e.g., Network Service 508 of FIG. 5) can provision a network host (e.g., VPN Host 542 of FIG.5).
  • a first service e.g., Network Service 508 of FIG. 5
  • a network host e.g., VPN Host 542 of FIG.5
  • the network host may be provisioned in a data center of a target region (e.g., Target Region 634 of FIG. 6).
  • a first instance e.g., an instance hosting a VPN router
  • a first network connection e.g., IPSec tunnel 636 of FIG. 6
  • the first instance can receive routing information from the network host in the target region.
  • the routing information can be received over the first network connection.
  • the routing information can include a network address (e.g., IP address) of a target region instance.
  • the target region instance may host a service deployed to the target region (e.g., Service N 652 of FIG. 6).
  • a third instance of the VCN e.g., Computing Instance 626 of FIG. 6
  • can send a second request addressed to the network address of the target region instance e.g., send a request to a service hosted in the target region. Since the routing information was received by the first instance (e.g., by the VPN router), the VCN is aware of the correct route for forwarding the request to the target region service.
  • the request can be routed to the target region instance according to the routing information. The request can be sent over the first network connection.
  • Sending the request from the third instance in the VCN to the target region instance may be an example of traffic sent over the distributed virtual private network established between the host region VCN (e.g., ViBE VCN) and the target region service enclave.
  • Example Architectures for Providing Infrastructure-as-a-Service (IaaS) [0146] As noted above, infrastructure as a service (IaaS) is one particular type of cloud computing. IaaS can be configured to provide virtualized computing resources over a public network (e.g., the Internet).
  • a cloud computing provider can host the infrastructure components (e.g., servers, storage devices, network nodes (e.g., hardware), deployment software, platform virtualization (e.g., a hypervisor layer), or the like).
  • an IaaS provider may also supply a variety of services to accompany those infrastructure components (e.g., billing, monitoring, logging, load balancing and clustering, etc.).
  • these services may be policy-driven, IaaS users may be able to implement policies to drive load balancing to maintain application availability and performance.
  • IaaS customers may access resources and services through a wide area network (WAN), such as the Internet, and can use the cloud provider's services to install the remaining elements of an application stack.
  • WAN wide area network
  • the user can log in to the IaaS platform to create virtual machines (VMs), install operating systems (OSs) on each VM, deploy middleware such as databases, create storage buckets for workloads and backups, and even install enterprise software into that VM.
  • VMs virtual machines
  • OSs install operating systems
  • middleware such as databases
  • storage buckets for workloads and backups
  • enterprise software such as enterprise software into that VM.
  • Customers can then use the provider's services to perform various functions, including balancing network traffic, troubleshooting application issues, monitoring performance, managing disaster recovery, etc.
  • a cloud computing model may require the participation of a cloud provider.
  • the cloud provider may, but need not be, a third-party service that specializes in providing (e.g., offering, renting, selling) IaaS.
  • An entity might also opt to deploy a private cloud, becoming its own provider of infrastructure services.
  • IaaS deployment is the process of putting a new application, or a new version of an application, onto a prepared application server or the like. It may also include the process of preparing the server (e.g., installing libraries, daemons, etc.). This is often managed by the cloud provider, below the hypervisor layer (e.g., the servers, storage, network hardware, and virtualization).
  • IaaS provisioning may refer to acquiring computers or virtual hosts for use, and even installing needed libraries or services on them. In most cases, deployment does not include provisioning, and the provisioning may need to be performed first.
  • IaaS provisioning there are two different challenges for IaaS provisioning. First, there is the initial challenge of provisioning the initial set of infrastructure before anything is running. Second, there is the challenge of evolving the existing infrastructure (e.g., adding new services, changing services, removing services, etc.) once everything has been provisioned.
  • an infrastructure may have many interconnected elements. For example, there may be one or more virtual private clouds (VPCs) (e.g., a potentially on-demand pool of configurable and/or shared computing resources), also known as a core network.
  • VPCs virtual private clouds
  • inbound/outbound traffic group rules provisioned to define how the inbound and/or outbound traffic of the network will be set up and one or more virtual machines (VMs).
  • VMs virtual machines
  • Other infrastructure elements may also be provisioned, such as a load balancer, a database, or the like. As more and more infrastructure elements are desired and/or added, the infrastructure may incrementally evolve.
  • continuous deployment techniques may be employed to enable deployment of infrastructure code across various virtual computing environments. Additionally, the described techniques can enable infrastructure management within these environments.
  • service teams can write code that is desired to be deployed to one or more, but often many, different production environments (e.g., across various different geographic locations, sometimes spanning the entire world).
  • FIG. 9 is a block diagram 900 illustrating an example pattern of an IaaS architecture, according to at least one embodiment.
  • Service operators 902 can be communicatively coupled to a secure host tenancy 904 that can include a virtual cloud network (VCN) 906 and a secure host subnet 908.
  • VCN virtual cloud network
  • the service operators 902 may be using one or more client computing devices, which may be portable handheld devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital assistant (PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems such as iOS, Windows Phone, Android, BlackBerry 8, Palm OS, and the like, and being Internet, e-mail, short message service (SMS), Blackberry®, or other communication protocol enabled.
  • the client computing devices can be general purpose personal computers including, by way of example, personal computers and/or laptop computers running various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems.
  • the client computing devices can be workstation computers running any of a variety of commercially-available UNIX® or UNIX-like operating systems, including without limitation the variety of GNU/Linux operating systems, such as for example, Google Chrome OS.
  • client computing devices may be any other electronic device, such as a thin-client computer, an Internet-enabled gaming system (e.g., a Microsoft Xbox gaming console with or without a Kinect® gesture input device), and/or a personal messaging device, capable of communicating over a network that can access the VCN 906 and/or the Internet.
  • the VCN 906 can include a local peering gateway (LPG) 910 that can be communicatively coupled to a secure shell (SSH) VCN 912 via an LPG 910 contained in the SSH VCN 912.
  • the SSH VCN 912 can include an SSH subnet 914, and the SSH VCN 912 can be communicatively coupled to a control plane VCN 916 via the LPG 910 contained in the control plane VCN 916.
  • the SSH VCN 912 can be communicatively coupled to a data plane VCN 918 via an LPG 910.
  • the control plane VCN 916 and the data plane VCN 918 can be contained in a service tenancy 919 that can be owned and/or operated by the IaaS provider.
  • the control plane VCN 916 can include a control plane demilitarized zone (DMZ) tier 920 that acts as a perimeter network (e.g., portions of a corporate network between the corporate intranet and external networks).
  • the DMZ-based servers may have restricted responsibilities and help keep breaches contained.
  • the DMZ tier 920 can include one or more load balancer (LB) subnet(s) 922, a control plane app tier 924 that can include app subnet(s) 926, a control plane data tier 928 that can include database (DB) subnet(s) 930 (e.g., frontend DB subnet(s) and/or backend DB subnet(s)).
  • LB load balancer
  • the LB subnet(s) 922 contained in the control plane DMZ tier 920 can be communicatively coupled to the app subnet(s) 926 contained in the control plane app tier 924 and an Internet gateway 934 that can be contained in the control plane VCN 916, and the app subnet(s) 926 can be communicatively coupled to the DB subnet(s) 930 contained in the control plane data tier 928 and a service gateway 936 and a network address translation (NAT) gateway 938.
  • the control plane VCN 916 can include the service gateway 936 and the NAT gateway 938.
  • the control plane VCN 916 can include a data plane mirror app tier 940 that can include app subnet(s) 926.
  • the app subnet(s) 926 contained in the data plane mirror app tier 940 can include a virtual network interface controller (VNIC) 942 that can execute a compute instance 944.
  • the compute instance 944 can communicatively couple the app subnet(s) 926 of the data plane mirror app tier 940 to app subnet(s) 926 that can be contained in a data plane app tier 946.
  • the data plane VCN 918 can include the data plane app tier 946, a data plane DMZ tier 948, and a data plane data tier 950.
  • the data plane DMZ tier 948 can include LB subnet(s) 922 that can be communicatively coupled to the app subnet(s) 926 of the data plane app tier 946 and the Internet gateway 934 of the data plane VCN 918.
  • the app subnet(s) 926 can be communicatively coupled to the service gateway 936 of the data plane VCN 918 and the NAT gateway 938 of the data plane VCN 918.
  • the data plane data tier 950 can also include the DB subnet(s) 930 that can be communicatively coupled to the app subnet(s) 926 of the data plane app tier 946.
  • the Internet gateway 934 of the control plane VCN 916 and of the data plane VCN 918 can be communicatively coupled to a metadata management service 952 that can be communicatively coupled to public Internet 954.
  • Public Internet 954 can be communicatively coupled to the NAT gateway 938 of the control plane VCN 916 and of the data plane VCN 918.
  • the service gateway 936 of the control plane VCN 916 and of the data plane VCN 918 can be communicatively couple to cloud services 956.
  • the service gateway 936 of the control plane VCN 916 or of the data plane VCN 918 can make application programming interface (API) calls to cloud services 956 without going through public Internet 954.
  • API application programming interface
  • the API calls to cloud services 956 from the service gateway 936 can be one-way: the service gateway 936 can make API calls to cloud services 956, and cloud services 956 can send requested data to the service gateway 936. However, cloud services 956 may not initiate API calls to the service gateway 936.
  • the secure host tenancy 904 can be directly connected to the service tenancy 919, which may be otherwise isolated.
  • the secure host subnet 908 can communicate with the SSH subnet 914 through an LPG 910 that may enable two-way communication over an otherwise isolated system. Connecting the secure host subnet 908 to the SSH subnet 914 may give the secure host subnet 908 access to other entities within the service tenancy 919.
  • the control plane VCN 916 may allow users of the service tenancy 919 to set up or otherwise provision desired resources. Desired resources provisioned in the control plane VCN 916 may be deployed or otherwise used in the data plane VCN 918.
  • the control plane VCN 916 can be isolated from the data plane VCN 918, and the data plane mirror app tier 940 of the control plane VCN 916 can communicate with the data plane app tier 946 of the data plane VCN 918 via VNICs 942 that can be contained in the data plane mirror app tier 940 and the data plane app tier 946.
  • users of the system, or customers can make requests, for example create, read, update, or delete (CRUD) operations, through public Internet 954 that can communicate the requests to the metadata management service 952.
  • the metadata management service 952 can communicate the request to the control plane VCN 916 through the Internet gateway 934.
  • the request can be received by the LB subnet(s) 922 contained in the control plane DMZ tier 920.
  • the LB subnet(s) 922 may determine that the request is valid, and in response to this determination, the LB subnet(s) 922 can transmit the request to app subnet(s) 926 contained in the control plane app tier 924.
  • the call to public Internet 954 may be transmitted to the NAT gateway 938 that can make the call to public Internet 954.
  • Memory that may be desired to be stored by the request can be stored in the DB subnet(s) 930.
  • the data plane mirror app tier 940 can facilitate direct communication between the control plane VCN 916 and the data plane VCN 918. For example, changes, updates, or other suitable modifications to configuration may be desired to be applied to the resources contained in the data plane VCN 918. Via a VNIC 942, the control plane VCN 916 can directly communicate with, and can thereby execute the changes, updates, or other suitable modifications to configuration to, resources contained in the data plane VCN 918.
  • control plane VCN 916 and the data plane VCN 918 can be contained in the service tenancy 919.
  • the user, or the customer, of the system may not own or operate either the control plane VCN 916 or the data plane VCN 918.
  • the IaaS provider may own or operate the control plane VCN 916 and the data plane VCN 918, both of which may be contained in the service tenancy 919.
  • This embodiment can enable isolation of networks that may prevent users or customers from interacting with other users’, or other customers’, resources. Also, this embodiment may allow users or customers of the system to store databases privately without needing to rely on public Internet 954, which may not have a desired level of threat prevention, for storage.
  • the LB subnet(s) 922 contained in the control plane VCN 916 can be configured to receive a signal from the service gateway 936.
  • the control plane VCN 916 and the data plane VCN 918 may be configured to be called by a customer of the IaaS provider without calling public Internet 954.
  • Customers of the IaaS provider may desire this embodiment since database(s) that the customers use may be controlled by the IaaS provider and may be stored on the service tenancy 919, which may be isolated from public Internet 954.
  • FIG. 10 is a block diagram 1000 illustrating another example pattern of an IaaS architecture, according to at least one embodiment.
  • Service operators 1002 e.g., service operators 902 of FIG.
  • a secure host tenancy 1004 (e.g., the secure host tenancy 904 of FIG. 9) can include a virtual cloud network (VCN) 1006 (e.g., the VCN 906 of FIG. 9) and a secure host subnet 1008 (e.g., the secure host subnet 908 of FIG. 9).
  • the VCN 1006 can include a local peering gateway (LPG) 1010 (e.g., the LPG 910 of FIG. 9) that can be communicatively coupled to a secure shell (SSH) VCN 1012 (e.g., the SSH VCN 912 of FIG. 9) via an LPG 910 contained in the SSH VCN 1012.
  • LPG local peering gateway
  • SSH secure shell
  • the SSH VCN 1012 can include an SSH subnet 1014 (e.g., the SSH subnet 914 of FIG. 9), and the SSH VCN 1012 can be communicatively coupled to a control plane VCN 1016 (e.g., the control plane VCN 916 of FIG. 9) via an LPG 1010 contained in the control plane VCN 1016.
  • the control plane VCN 1016 can be contained in a service tenancy 1019 (e.g., the service tenancy 919 of FIG. 9), and the data plane VCN 1018 (e.g., the data plane VCN 918 of FIG. 9) can be contained in a customer tenancy 1021 that may be owned or operated by users, or customers, of the system.
  • the control plane VCN 1016 can include a control plane DMZ tier 1020 (e.g., the control plane DMZ tier 920 of FIG. 9) that can include LB subnet(s) 1022 (e.g., LB subnet(s) 922 of FIG. 9), a control plane app tier 1024 (e.g., the control plane app tier 924 of FIG. 9) that can include app subnet(s) 1026 (e.g., app subnet(s) 926 of FIG. 9), a control plane data tier 1028 (e.g., the control plane data tier 928 of FIG.
  • a control plane DMZ tier 1020 e.g., the control plane DMZ tier 920 of FIG. 9
  • LB subnet(s) 1022 e.g., LB subnet(s) 922 of FIG. 9
  • a control plane app tier 1024 e.g., the control plane app tier 924 of FIG. 9
  • DB subnet(s) 1030 can include database (DB) subnet(s) 1030 (e.g., similar to DB subnet(s) 930 of FIG. 9).
  • the LB subnet(s) 1022 contained in the control plane DMZ tier 1020 can be communicatively coupled to the app subnet(s) 1026 contained in the control plane app tier 1024 and an Internet gateway 1034 (e.g., the Internet gateway 934 of FIG. 9) that can be contained in the control plane VCN 1016, and the app subnet(s) 1026 can be communicatively coupled to the DB subnet(s) 1030 contained in the control plane data tier 1028 and a service gateway 1036 (e.g., the service gateway of FIG.
  • the control plane VCN 1016 can include the service gateway 1036 and the NAT gateway 1038.
  • the control plane VCN 1016 can include a data plane mirror app tier 1040 (e.g., the data plane mirror app tier 940 of FIG. 9) that can include app subnet(s) 1026.
  • the app subnet(s) 1026 contained in the data plane mirror app tier 1040 can include a virtual network interface controller (VNIC) 1042 (e.g., the VNIC of 942) that can execute a compute instance 1044 (e.g., similar to the compute instance 944 of FIG. 9).
  • VNIC virtual network interface controller
  • the compute instance 1044 can facilitate communication between the app subnet(s) 1026 of the data plane mirror app tier 1040 and the app subnet(s) 1026 that can be contained in a data plane app tier 1046 (e.g., the data plane app tier 946 of FIG. 9) via the VNIC 1042 contained in the data plane mirror app tier 1040 and the VNIC 1042 contained in the data plane app tier 1046.
  • the Internet gateway 1034 contained in the control plane VCN 1016 can be communicatively coupled to a metadata management service 1052 (e.g., the metadata management service 952 of FIG. 9) that can be communicatively coupled to public Internet 1054 (e.g., public Internet 954 of FIG. 9).
  • Public Internet 1054 can be communicatively coupled to the NAT gateway 1038 contained in the control plane VCN 1016.
  • the service gateway 1036 contained in the control plane VCN 1016 can be communicatively couple to cloud services 1056 (e.g., cloud services 956 of FIG. 9).
  • the data plane VCN 1018 can be contained in the customer tenancy 1021.
  • the IaaS provider may provide the control plane VCN 1016 for each customer, and the IaaS provider may, for each customer, set up a unique compute instance 1044 that is contained in the service tenancy 1019.
  • Each compute instance 1044 may allow communication between the control plane VCN 1016, contained in the service tenancy 1019, and the data plane VCN 1018 that is contained in the customer tenancy 1021.
  • the compute instance 1044 may allow resources, that are provisioned in the control plane VCN 1016 that is contained in the service tenancy 1019, to be deployed or otherwise used in the data plane VCN 1018 that is contained in the customer tenancy 1021.
  • the customer of the IaaS provider may have databases that live in the customer tenancy 1021.
  • the control plane VCN 1016 can include the data plane mirror app tier 1040 that can include app subnet(s) 1026.
  • the data plane mirror app tier 1040 can reside in the data plane VCN 1018, but the data plane mirror app tier 1040 may not live in the data plane VCN 1018. That is, the data plane mirror app tier 1040 may have access to the customer tenancy 1021, but the data plane mirror app tier 1040 may not exist in the data plane VCN 1018 or be owned or operated by the customer of the IaaS provider.
  • the data plane mirror app tier 1040 may be configured to make calls to the data plane VCN 1018 but may not be configured to make calls to any entity contained in the control plane VCN 1016.
  • the customer may desire to deploy or otherwise use resources in the data plane VCN 1018 that are provisioned in the control plane VCN 1016, and the data plane mirror app tier 1040 can facilitate the desired deployment, or other usage of resources, of the customer.
  • the customer of the IaaS provider can apply filters to the data plane VCN 1018.
  • the customer can determine what the data plane VCN 1018 can access, and the customer may restrict access to public Internet 1054 from the data plane VCN 1018.
  • the IaaS provider may not be able to apply filters or otherwise control access of the data plane VCN 1018 to any outside networks or databases.
  • cloud services 1056 can be called by the service gateway 1036 to access services that may not exist on public Internet 1054, on the control plane VCN 1016, or on the data plane VCN 1018.
  • the connection between cloud services 1056 and the control plane VCN 1016 or the data plane VCN 1018 may not be live or continuous.
  • Cloud services 1056 may exist on a different network owned or operated by the IaaS provider. Cloud services 1056 may be configured to receive calls from the service gateway 1036 and may be configured to not receive calls from public Internet 1054.
  • Some cloud services 1056 may be isolated from other cloud services 1056, and the control plane VCN 1016 may be isolated from cloud services 1056 that may not be in the same region as the control plane VCN 1016.
  • the control plane VCN 1016 may be located in “Region 1,” and cloud service “Deployment 9,” may be located in Region 1 and in “Region 2.” If a call to Deployment 9 is made by the service gateway 1036 contained in the control plane VCN 1016 located in Region 1, the call may be transmitted to Deployment 9 in Region 1.
  • the control plane VCN 1016, or Deployment 9 in Region 1 may not be communicatively coupled to, or otherwise in communication with, Deployment 9 in Region 2. [0175] FIG.
  • Service operators 1102 can be communicatively coupled to a secure host tenancy 1104 (e.g., the secure host tenancy 904 of FIG. 9) that can include a virtual cloud network (VCN) 1106 (e.g., the VCN 906 of FIG. 9) and a secure host subnet 1108 (e.g., the secure host subnet 908 of FIG. 9).
  • VCN virtual cloud network
  • the VCN 1106 can include an LPG 1110 (e.g., the LPG 910 of FIG.
  • the SSH VCN 1112 can include an SSH subnet 1114 (e.g., the SSH subnet 914 of FIG. 9), and the SSH VCN 1112 can be communicatively coupled to a control plane VCN 1116 (e.g., the control plane VCN 916 of FIG. 9) via an LPG 1110 contained in the control plane VCN 1116 and to a data plane VCN 1118 (e.g., the data plane 918 of FIG. 9) via an LPG 1110 contained in the data plane VCN 1118.
  • a control plane VCN 1116 e.g., the control plane VCN 916 of FIG. 9
  • a data plane VCN 1118 e.g., the data plane 918 of FIG.
  • the control plane VCN 1116 and the data plane VCN 1118 can be contained in a service tenancy 1119 (e.g., the service tenancy 919 of FIG. 9).
  • the control plane VCN 1116 can include a control plane DMZ tier 1120 (e.g., the control plane DMZ tier 920 of FIG. 9) that can include load balancer (LB) subnet(s) 1122 (e.g., LB subnet(s) 922 of FIG. 9), a control plane app tier 1124 (e.g., the control plane app tier 924 of FIG. 9) that can include app subnet(s) 1126 (e.g., similar to app subnet(s) 926 of FIG.
  • LB load balancer
  • a control plane data tier 1128 (e.g., the control plane data tier 928 of FIG. 9) that can include DB subnet(s) 1130.
  • the LB subnet(s) 1122 contained in the control plane DMZ tier 1120 can be communicatively coupled to the app subnet(s) 1126 contained in the control plane app tier 1124 and to an Internet gateway 1134 (e.g., the Internet gateway 934 of FIG. 9) that can be contained in the control plane VCN 1116, and the app subnet(s) 1126 can be communicatively coupled to the DB subnet(s) 1130 contained in the control plane data tier 1128 and to a service gateway 1136 (e.g., the service gateway of FIG.
  • the control plane VCN 1116 can include the service gateway 1136 and the NAT gateway 1138.
  • the data plane VCN 1118 can include a data plane app tier 1146 (e.g., the data plane app tier 946 of FIG. 9), a data plane DMZ tier 1148 (e.g., the data plane DMZ tier 948 of FIG. 9), and a data plane data tier 1150 (e.g., the data plane data tier 950 of FIG. 9).
  • the data plane DMZ tier 1148 can include LB subnet(s) 1122 that can be communicatively coupled to trusted app subnet(s) 1160 and untrusted app subnet(s) 1162 of the data plane app tier 1146 and the Internet gateway 1134 contained in the data plane VCN 1118.
  • the trusted app subnet(s) 1160 can be communicatively coupled to the service gateway 1136 contained in the data plane VCN 1118, the NAT gateway 1138 contained in the data plane VCN 1118, and DB subnet(s) 1130 contained in the data plane data tier 1150.
  • the untrusted app subnet(s) 1162 can be communicatively coupled to the service gateway 1136 contained in the data plane VCN 1118 and DB subnet(s) 1130 contained in the data plane data tier 1150.
  • the data plane data tier 1150 can include DB subnet(s) 1130 that can be communicatively coupled to the service gateway 1136 contained in the data plane VCN 1118.
  • the untrusted app subnet(s) 1162 can include one or more primary VNICs 1164(1)-(N) that can be communicatively coupled to tenant virtual machines (VMs) 1166(1)-(N).
  • VMs tenant virtual machines
  • Each tenant VM 1166(1)-(N) can be communicatively coupled to a respective app subnet 1167(1)-(N) that can be contained in respective container egress VCNs 1168(1)-(N) that can be contained in respective customer tenancies 1170(1)-(N).
  • Respective secondary VNICs 1172(1)-(N) can facilitate communication between the untrusted app subnet(s) 1162 contained in the data plane VCN 1118 and the app subnet contained in the container egress VCNs 1168(1)-(N).
  • Each container egress VCNs 1168(1)-(N) can include a NAT gateway 1138 that can be communicatively coupled to public Internet 1154 (e.g., public Internet 954 of FIG. 9).
  • the Internet gateway 1134 contained in the control plane VCN 1116 and contained in the data plane VCN 1118 can be communicatively coupled to a metadata management service 1152 (e.g., the metadata management system 952 of FIG. 9) that can be communicatively coupled to public Internet 1154.
  • Public Internet 1154 can be communicatively coupled to the NAT gateway 1138 contained in the control plane VCN 1116 and contained in the data plane VCN 1118.
  • the service gateway 1136 contained in the control plane VCN 1116 and contained in the data plane VCN 1118 can be communicatively couple to cloud services 1156.
  • the data plane VCN 1118 can be integrated with customer tenancies 1170.
  • This integration can be useful or desirable for customers of the IaaS provider in some cases such as a case that may desire support when executing code.
  • the customer may provide code to run that may be destructive, may communicate with other customer resources, or may otherwise cause undesirable effects.
  • the IaaS provider may determine whether to run code given to the IaaS provider by the customer.
  • the customer of the IaaS provider may grant temporary network access to the IaaS provider and request a function to be attached to the data plane tier app 1146. Code to run the function may be executed in the VMs 1166(1)-(N), and the code may not be configured to run anywhere else on the data plane VCN 1118.
  • Each VM 1166(1)-(N) may be connected to one customer tenancy 1170.
  • Respective containers 1171(1)-(N) contained in the VMs 1166(1)-(N) may be configured to run the code.
  • there can be a dual isolation e.g., the containers 1171(1)-(N) running code, where the containers 1171(1)-(N) may be contained in at least the VM 1166(1)-(N) that are contained in the untrusted app subnet(s) 1162), which may help prevent incorrect or otherwise undesirable code from damaging the network of the IaaS provider or from damaging a network of a different customer.
  • the containers 1171(1)-(N) may be communicatively coupled to the customer tenancy 1170 and may be configured to transmit or receive data from the customer tenancy 1170.
  • the containers 1171(1)-(N) may not be configured to transmit or receive data from any other entity in the data plane VCN 1118.
  • the IaaS provider may kill or otherwise dispose of the containers 1171(1)- (N).
  • the trusted app subnet(s) 1160 may run code that may be owned or operated by the IaaS provider.
  • the trusted app subnet(s) 1160 may be communicatively coupled to the DB subnet(s) 1130 and be configured to execute CRUD operations in the DB subnet(s) 1130.
  • the untrusted app subnet(s) 1162 may be communicatively coupled to the DB subnet(s) 1130, but in this embodiment, the untrusted app subnet(s) may be configured to execute read operations in the DB subnet(s) 1130.
  • the containers 1171(1)-(N) that can be contained in the VM 1166(1)-(N) of each customer and that may run code from the customer may not be communicatively coupled with the DB subnet(s) 1130.
  • the control plane VCN 1116 and the data plane VCN 1118 may not be directly communicatively coupled. In this embodiment, there may be no direct communication between the control plane VCN 1116 and the data plane VCN 1118.
  • FIG. 12 is a block diagram 1200 illustrating another example pattern of an IaaS architecture, according to at least one embodiment.
  • Service operators 1202 e.g., service operators 902 of FIG.
  • a secure host tenancy 1204 (e.g., the secure host tenancy 904 of FIG. 9) can include a virtual cloud network (VCN) 1206 (e.g., the VCN 906 of FIG. 9) and a secure host subnet 1208 (e.g., the secure host subnet 908 of FIG. 9).
  • the VCN 1206 can include an LPG 1210 (e.g., the LPG 910 of FIG. 9) that can be communicatively coupled to an SSH VCN 1212 (e.g., the SSH VCN 912 of FIG. 9) via an LPG 1210 contained in the SSH VCN 1212.
  • the SSH VCN 1212 can include an SSH subnet 1214 (e.g., the SSH subnet 914 of FIG. 9), and the SSH VCN 1212 can be communicatively coupled to a control plane VCN 1216 (e.g., the control plane VCN 916 of FIG. 9) via an LPG 1210 contained in the control plane VCN 1216 and to a data plane VCN 1218 (e.g., the data plane 918 of FIG. 9) via an LPG 1210 contained in the data plane VCN 1218.
  • the control plane VCN 1216 and the data plane VCN 1218 can be contained in a service tenancy 1219 (e.g., the service tenancy 919 of FIG. 9).
  • the control plane VCN 1216 can include a control plane DMZ tier 1220 (e.g., the control plane DMZ tier 920 of FIG. 9) that can include LB subnet(s) 1222 (e.g., LB subnet(s) 922 of FIG. 9), a control plane app tier 1224 (e.g., the control plane app tier 924 of FIG. 9) that can include app subnet(s) 1226 (e.g., app subnet(s) 926 of FIG. 9), a control plane data tier 1228 (e.g., the control plane data tier 928 of FIG.
  • a control plane DMZ tier 1220 e.g., the control plane DMZ tier 920 of FIG. 9
  • LB subnet(s) 1222 e.g., LB subnet(s) 922 of FIG. 9
  • a control plane app tier 1224 e.g., the control plane app tier 924 of FIG. 9
  • the LB subnet(s) 1222 contained in the control plane DMZ tier 1220 can be communicatively coupled to the app subnet(s) 1226 contained in the control plane app tier 1224 and to an Internet gateway 1234 (e.g., the Internet gateway 934 of FIG. 9) that can be contained in the control plane VCN 1216, and the app subnet(s) 1226 can be communicatively coupled to the DB subnet(s) 1230 contained in the control plane data tier 1228 and to a service gateway 1236 (e.g., the service gateway of FIG.
  • a service gateway 1236 e.g., the service gateway of FIG.
  • the control plane VCN 1216 can include the service gateway 1236 and the NAT gateway 1238.
  • the data plane VCN 1218 can include a data plane app tier 1246 (e.g., the data plane app tier 946 of FIG. 9), a data plane DMZ tier 1248 (e.g., the data plane DMZ tier 948 of FIG. 9), and a data plane data tier 1250 (e.g., the data plane data tier 950 of FIG.9).
  • the data plane DMZ tier 1248 can include LB subnet(s) 1222 that can be communicatively coupled to trusted app subnet(s) 1260 (e.g., trusted app subnet(s) 1160 of FIG. 11) and untrusted app subnet(s) 1262 (e.g., untrusted app subnet(s) 1162 of FIG. 11) of the data plane app tier 1246 and the Internet gateway 1234 contained in the data plane VCN 1218.
  • the trusted app subnet(s) 1260 can be communicatively coupled to the service gateway 1236 contained in the data plane VCN 1218, the NAT gateway 1238 contained in the data plane VCN 1218, and DB subnet(s) 1230 contained in the data plane data tier 1250.
  • the untrusted app subnet(s) 1262 can be communicatively coupled to the service gateway 1236 contained in the data plane VCN 1218 and DB subnet(s) 1230 contained in the data plane data tier 1250.
  • the data plane data tier 1250 can include DB subnet(s) 1230 that can be communicatively coupled to the service gateway 1236 contained in the data plane VCN 1218.
  • the untrusted app subnet(s) 1262 can include primary VNICs 1264(1)-(N) that can be communicatively coupled to tenant virtual machines (VMs) 1266(1)-(N) residing within the untrusted app subnet(s) 1262.
  • VMs tenant virtual machines
  • Each tenant VM 1266(1)-(N) can run code in a respective container 1267(1)-(N), and be communicatively coupled to an app subnet 1226 that can be contained in a data plane app tier 1246 that can be contained in a container egress VCN 1268.
  • Respective secondary VNICs 1272(1)-(N) can facilitate communication between the untrusted app subnet(s) 1262 contained in the data plane VCN 1218 and the app subnet contained in the container egress VCN 1268.
  • the container egress VCN can include a NAT gateway 1238 that can be communicatively coupled to public Internet 1254 (e.g., public Internet 954 of FIG. 9).
  • the Internet gateway 1234 contained in the control plane VCN 1216 and contained in the data plane VCN 1218 can be communicatively coupled to a metadata management service 1252 (e.g., the metadata management system 952 of FIG.9) that can be communicatively coupled to public Internet 1254.
  • Public Internet 1254 can be communicatively coupled to the NAT gateway 1238 contained in the control plane VCN 1216 and contained in the data plane VCN 1218.
  • the service gateway 1236 contained in the control plane VCN 1216 and contained in the data plane VCN 1218 can be communicatively couple to cloud services 1256.
  • the respective containers 1267(1)-(N) that are contained in the VMs 1266(1)-(N) for each customer can be accessed in real-time by the customer.
  • the containers 1267(1)-(N) may be configured to make calls to respective secondary VNICs 1272(1)-(N) contained in app subnet(s) 1226 of the data plane app tier 1246 that can be contained in the container egress VCN 1268.
  • the secondary VNICs 1272(1)-(N) can transmit the calls to the NAT gateway 1238 that may transmit the calls to public Internet 1254.
  • the containers 1267(1)-(N) that can be accessed in real- time by the customer can be isolated from the control plane VCN 1216 and can be isolated from other entities contained in the data plane VCN 1218.
  • the containers 1267(1)-(N) may also be isolated from resources from other customers.
  • the customer can use the containers 1267(1)-(N) to call cloud services 1256.
  • the customer may run code in the containers 1267(1)-(N) that requests a service from cloud services 1256.
  • the containers 1267(1)-(N) can transmit this request to the secondary VNICs 1272(1)-(N) that can transmit the request to the NAT gateway that can transmit the request to public Internet 1254.
  • Public Internet 1254 can transmit the request to LB subnet(s) 1222 contained in the control plane VCN 1216 via the Internet gateway 1234.
  • the LB subnet(s) can transmit the request to app subnet(s) 1226 that can transmit the request to cloud services 1256 via the service gateway 1236.
  • IaaS architectures 900, 1000, 1100, 1200 depicted in the figures may have other components than those depicted.
  • the embodiments shown in the figures are only some examples of a cloud infrastructure system that may incorporate an embodiment of the disclosure.
  • the IaaS systems may have more or fewer components than shown in the figures, may combine two or more components, or may have a different configuration or arrangement of components.
  • the IaaS systems described herein may include a suite of applications, middleware, and database service offerings that are delivered to a customer in a self-service, subscription-based, elastically scalable, reliable, highly available, and secure manner.
  • An example of such an IaaS system is the Oracle Cloud Infrastructure (OCI) provided by the present assignee.
  • FIG. 13 illustrates an example computer system 1300, in which various embodiments may be implemented.
  • the system 1300 may be used to implement any of the computer systems described above.
  • computer system 1300 includes a processing unit 1304 that communicates with a number of peripheral subsystems via a bus subsystem 1302. These peripheral subsystems may include a processing acceleration unit 1306, an I/O subsystem 1308, a storage subsystem 1318 and a communications subsystem 1324.
  • Storage subsystem 1318 includes tangible computer-readable storage media 1322 and a system memory 1310.
  • Bus subsystem 1302 provides a mechanism for letting the various components and subsystems of computer system 1300 communicate with each other as intended. Although bus subsystem 1302 is shown schematically as a single bus, alternative embodiments of the bus subsystem may utilize multiple buses.
  • Bus subsystem 1302 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • bus architectures may include an Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus, which can be implemented as a Mezzanine bus manufactured to the IEEE P1386.1 standard.
  • ISA Industry Standard Architecture
  • MCA Micro Channel Architecture
  • EISA Enhanced ISA
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnect
  • Processing unit 1304 which can be implemented as one or more integrated circuits (e.g., a conventional microprocessor or microcontroller), controls the operation of computer system 1300.
  • processors may be included in processing unit 1304.
  • processors may include single core or multicore processors.
  • processing unit 1304 may be implemented as one or more independent processing units 1332 and/or 1334 with single or multicore processors included in each processing unit.
  • processing unit 1304 may also be implemented as a quad-core processing unit formed by integrating two dual- core processors into a single chip.
  • processing unit 1304 can execute a variety of programs in response to program code and can maintain multiple concurrently executing programs or processes. At any given time, some or all of the program code to be executed can be resident in processor(s) 1304 and/or in storage subsystem 1318. Through suitable programming, processor(s) 1304 can provide various functionalities described above.
  • Computer system 1300 may additionally include a processing acceleration unit 1306, which can include a digital signal processor (DSP), a special-purpose processor, and/or the like.
  • I/O subsystem 1308 may include user interface input devices and user interface output devices.
  • User interface input devices may include a keyboard, pointing devices such as a mouse or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel, a dial, a button, a switch, a keypad, audio input devices with voice command recognition systems, microphones, and other types of input devices.
  • User interface input devices may include, for example, motion sensing and/or gesture recognition devices such as the Microsoft Kinect® motion sensor that enables users to control and interact with an input device, such as the Microsoft Xbox® 360 game controller, through a natural user interface using gestures and spoken commands.
  • User interface input devices may also include eye gesture recognition devices such as the Google Glass® blink detector that detects eye activity (e.g., ‘blinking’ while taking pictures and/or making a menu selection) from users and transforms the eye gestures as input into an input device (e.g., Google Glass®).
  • user interface input devices may include voice recognition sensing devices that enable users to interact with voice recognition systems (e.g., Siri® navigator), through voice commands.
  • User interface input devices may also include, without limitation, three dimensional (3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices such as speakers, digital cameras, digital camcorders, portable media players, webcams, image scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and eye gaze tracking devices.
  • user interface input devices may include, for example, medical imaging input devices such as computed tomography, magnetic resonance imaging, position emission tomography, medical ultrasonography devices.
  • User interface input devices may also include, for example, audio input devices such as MIDI keyboards, digital musical instruments and the like.
  • User interface output devices may include a display subsystem, indicator lights, or non- visual displays such as audio output devices, etc.
  • the display subsystem may be a cathode ray tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD) or plasma display, a projection device, a touch screen, and the like.
  • CTR cathode ray tube
  • LCD liquid crystal display
  • plasma display a projection device
  • touch screen a touch screen
  • output device is intended to include all possible types of devices and mechanisms for outputting information from computer system 1300 to a user or other computer.
  • user interface output devices may include, without limitation, a variety of display devices that visually convey text, graphics and audio/video information such as monitors, printers, speakers, headphones, automotive navigation systems, plotters, voice output devices, and modems.
  • Computer system 1300 may comprise a storage subsystem 1318 that provides a tangible non-transitory computer-readable storage medium for storing software and data constructs that provide the functionality of the embodiments described in this disclosure.
  • the software can include programs, code, instructions, scripts, etc., that when executed by one or more cores or processors of processing unit 1304 provide the functionality described above.
  • Storage subsystem 1318 may also provide a repository for storing data used in accordance with the present disclosure.
  • storage subsystem 1318 can include various components including a system memory 1310, computer-readable storage media 1322, and a computer readable storage media reader 1320.
  • System memory 1310 may store program instructions that are loadable and executable by processing unit 1304.
  • System memory 1310 may also store data that is used during the execution of the instructions and/or data that is generated during the execution of the program instructions.
  • Various different kinds of programs may be loaded into system memory 1310 including but not limited to client applications, Web browsers, mid-tier applications, relational database management systems (RDBMS), virtual machines, containers, etc.
  • RDBMS relational database management systems
  • System memory 1310 may also store an operating system 1316.
  • operating system 1316 may include various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems, a variety of commercially-available UNIX® or UNIX-like operating systems (including without limitation the variety of GNU/Linux operating systems, the Google Chrome® OS, and the like) and/or mobile operating systems such as iOS, Windows® Phone, Android® OS, BlackBerry® OS, and Palm® OS operating systems.
  • the virtual machines along with their guest operating systems (GOSs) may be loaded into system memory 1310 and executed by one or more processors or cores of processing unit 1304.
  • System memory 1310 can come in different configurations depending upon the type of computer system 1300.
  • system memory 1310 may be volatile memory (such as random access memory (RAM)) and/or non-volatile memory (such as read-only memory (ROM), flash memory, etc.). Different types of RAM configurations may be provided including a static random access memory (SRAM), a dynamic random access memory (DRAM), and others.
  • system memory 1310 may include a basic input/output system (BIOS) containing basic routines that help to transfer information between elements within computer system 1300, such as during start-up.
  • BIOS basic input/output system
  • Computer-readable storage media 1322 may represent remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing, storing, computer-readable information for use by computer system 1300 including instructions executable by processing unit 1304 of computer system 1300.
  • Computer-readable storage media 1322 can include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information.
  • computer-readable storage media 1322 may include a hard disk drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM, DVD, and Blu-Ray® disk, or other optical media.
  • Computer-readable storage media 1322 may include, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash drives, secure digital (SD) cards, DVD disks, digital video tape, and the like.
  • Computer-readable storage media 1322 may also include, solid-state drives (SSD) based on non-volatile memory such as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory based SSDs.
  • SSD solid-state drives
  • volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory based SSDs.
  • the disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, programs, and other data for computer system 1300.
  • Machine-readable instructions executable by one or more processors or cores of processing unit 1304 may be stored on a non-transitory computer-readable storage medium.
  • a non-transitory computer-readable storage medium can include physically tangible memory or storage devices that include volatile memory storage devices and/or non-volatile storage devices.
  • Communications subsystem 1324 provides an interface to other computer systems and networks. Communications subsystem 1324 serves as an interface for receiving data from and transmitting data to other systems from computer system 1300. For example, communications subsystem 1324 may enable computer system 1300 to connect to one or more devices via the Internet.
  • communications subsystem 1324 can include radio frequency (RF) transceiver components for accessing wireless voice and/or data networks (e.g., using cellular telephone technology, advanced data network technology, such as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile communication technologies, or any combination thereof), global positioning system (GPS) receiver components, and/or other components.
  • RF radio frequency
  • communications subsystem 1324 can provide wired network connectivity (e.g., Ethernet) in addition to or instead of a wireless interface.
  • communications subsystem 1324 may also receive input communication in the form of structured and/or unstructured data feeds 1326, event streams 1328, event updates 1330, and the like on behalf of one or more users who may use computer system 1300.
  • communications subsystem 1324 may be configured to receive data feeds 1326 in real-time from users of social networks and/or other communication services such as Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary (RSS) feeds, and/or real-time updates from one or more third party information sources.
  • RSS Rich Site Summary
  • communications subsystem 1324 may also be configured to receive data in the form of continuous data streams, which may include event streams 1328 of real-time events and/or event updates 1330, that may be continuous or unbounded in nature with no explicit end.
  • applications that generate continuous data may include, for example, sensor data applications, financial tickers, network performance measuring tools (e.g., network monitoring and traffic management applications), clickstream analysis tools, automobile traffic monitoring, and the like.
  • Communications subsystem 1324 may also be configured to output the structured and/or unstructured data feeds 1326, event streams 1328, event updates 1330, and the like to one or more databases that may be in communication with one or more streaming data source computers coupled to computer system 1300.
  • Computer system 1300 can be one of various types, including a handheld portable device (e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device (e.g., a Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a server rack, or any other data processing system.
  • a handheld portable device e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA
  • a wearable device e.g., a Google Glass® head mounted display
  • PC personal computer system
  • workstation e.g., a workstation
  • mainframe e.g., a mainframe
  • a kiosk e.g., a server rack
  • server rack e.g., a server rack
  • Processes can communicate using a variety of techniques including but not limited to conventional techniques for inter process communication, and different pairs of processes may use different techniques, or the same pair of processes may use different techniques at different times.
  • Embodiments may be implemented by using a computer program product, comprising computer program/instructions which, when executed by a processor, cause the processor to perform any of the methods described in the disclosure.
  • Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is intended to be understood within the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present.
  • Preferred embodiments of this disclosure are described herein, including the best mode known for carrying out the disclosure. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description.

Abstract

Techniques are disclosed for establishing a distributed virtual private network within a virtual bootstrap environment. A distributed computing system can generate a virtual cloud network in a data center of a host region. The virtual cloud network can include a plurality of host instances, including an instance hosting a virtual private network router. A second instance can provide a secondary network address to the virtual private network router. A third instance can send a request addressed to the secondary network address. The virtual cloud network may route the request to the virtual private network router according to a default route of a routing table. The request may then be forwarded by the virtual private network router to the secondary address using a networking tunnel established between the first instance and the second instance.

Description

PATENT Attorney Docket No.: 088325-1326626 (305700PC) Client Reference No.: ORC22134536-WO-PCT (IaaS #400) (ToRB #3b) TECHNIQUES FOR A VIRTUAL BOOTSTRAP ENVIRONMENT IN A DISTRIBUTED VIRTUAL PRIVATE NETWORK CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to U.S. Patent Application No. 18/105,768, filed February 3, 2023, entitled "TECHNIQUES FOR A VIRTUAL BOOTSTRAP ENVIRONMENT IN A DISTRIBUTED VIRTUAL PRIVATE NETWORK"; U.S. Provisional Patent Application No. 63/314,953, filed February 28, 2022, entitled "TECHNIQUES FOR A VIRTUAL BOOTSTRAP ENVIRONMENT IN A DISTRIBUTED VIRTUAL PRIVATE NETWORK"; U.S. Provisional Patent Application No. 63/308,003, filed February 8, 2022, entitled "TECHNIQUES FOR BOOTSTRAPPING A REGION BUILD"; and U.S. Provisional Patent Application No. 63/312,814, filed February 22, 2022, entitled "TECHNIQUES FOR IMPLEMENTING VIRTUAL DATA CENTERS." The contents of each of these applications are hereby incorporated by reference in their entirety for all purposes. TECHNICAL FIELD [0002] This disclosure relates to building regional data centers. More specifically, this disclosure describes techniques for implementing a virtual bootstrap environment in a distributed virtual private network to deploy resources to data center infrastructure during the building of a regional data center. BACKGROUND [0003] Cloud infrastructure providers may offer cloud computing infrastructure and related services in numerous geographical areas worldwide. To provide this infrastructure, the cloud infrastructure provider may operate one or more data centers corresponding to a localized geographical area. These data centers may be included as part of a "region," a logical abstraction of the geographical area and the computing resources of the one or more data centers. Building new regions can include provisioning the computing resources, configuring infrastructure, and deploying code to those resources. Conventional techniques for building a region involve significant manual operations. Bootstrapping existing services into a new region may be challenging since a service may depend on the functionality of other existing services and/or resources in the region. Relying on manual operations to bootstrap services and/or build regions incurs substantial time costs, risks associated with manual configuration errors, and may not scale well. BRIEF SUMMARY [0004] Embodiments of the present disclosure relate to creating a bootstrapping environment to support building a region. The region build process can include bootstrapping (e.g., provisioning and/or deploying) resources (e.g., infrastructure components, artifacts, etc.) for any suitable number of services in a region (e.g., a geographical location associated with one or more data centers). The bootstrapping environment may be a virtual environment (e.g., a virtual cloud network) within an existing region. The virtual bootstrapping environment (ViBE) may therefore be constructed and configured in the existing region in advance of the region build process. Services (e.g., core services) may be deployed to the ViBE to support bootstrapping operations into a target region (e.g., the region to be built in the region build process). The services in the ViBE may be used to provision computing resources (e.g., bare metal computing hosts, virtual machines, storage, etc.) in the target region. The services in the ViBE may also be used to deploy services to the target region, including instances of the services in the ViBE. By using a cloud infrastructure orchestration service in conjunction with the ViBE, the new region may be built intelligently and automatically. [0005] The ViBE may be configured to allow networking between hosts in the virtual environment (e.g., compute instances, virtual machines, etc.) and instances in the target region (e.g., compute instances, etc.). The network configuration of the ViBE may allow for exposure of secondary network addresses (e.g., secondary IP addresses) to support anycast routing within the ViBE. In addition, the ViBE can be configured to support both a shared network connection to the target region as well as allow services within the ViBE to establish their own network connections to the target region. Virtual private networking routers in the ViBE may be configured to support peering with a virtual private network host in the target region to exchange routing information (e.g., via route reflection) for both ViBE instances and target region instances. [0006] One embodiment is directed to a computer-implemented method performed by a distributed computing system (e.g., a cloud computing system) of a cloud service provider. The method may include generating a virtual cloud network in a data center of a host region. The virtual cloud network can include a plurality of host instances (e.g., compute instances) each having primary network addresses (e.g., primary IP addresses accessible within the ViBE) associated with a routing table of the virtual cloud network. The method may also include implementing a virtual private network (VPN) router within the ViBE. The VPN router can be hosted on an instance of the plurality of host instances. In some embodiments, more than one VPN router may be implemented. The method may also include providing, by a second instance of the plurality of host instances, a secondary network address (e.g., secondary IP address) of the second instance to the virtual private network router. The secondary network address may be an anycast IP address. The method may also include sending a request addressed to the secondary network address. The request may come from a third instance (e.g., another instance hosting a service in the ViBE). In some embodiments, the request is an anycast request. The method may also include routing the request to the virtual private network router according to a default route of the routing table, the default route identifying the primary network address of the first instance. The method can further include establishing a networking tunnel between the first instance and the second instance according to the secondary address and forwarding the request to the second instance. In some embodiments, the networking tunnel may be an IP-in-IP tunnel between the first instance and the second instance. [0007] Another embodiment is directed to a computing device comprising one or more processors and instructions that, when executed by the one or more processors, cause the computing device to perform the method(s) disclosed herein. [0008] Still another embodiment is directed to a non-transitory computer-readable medium storing computer-executable instructions that, when executed by one or more processors of a computing cluster, cause the computing cluster to perform the method(s) disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS [0009] To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced. [0010] FIG. 1 is a block diagram of an environment in which a Cloud Infrastructure Orchestration Service (CIOS) may operate to dynamically provide bootstrap services in a region, according to at least one embodiment. [0011] FIG. 2 is a block diagram for illustrating an environment and method for building a virtual bootstrap environment (ViBE), according to at least one embodiment. [0012] FIG. 3 is a block diagram for illustrating an environment and method for bootstrapping services to a target region utilizing the ViBE, according to at least one embodiment. [0013] FIG. 4 is a block diagram depicting an example architecture of a network connection between a ViBE and a target region, according to at least one embodiment. [0014] FIG. 5 is a block diagram depicting an example architecture and example method for bootstrapping a virtual private network (VPN) host in a target region, according to at least one embodiment. [0015] FIG. 6 is another block diagram depicting an example architecture of multiple network connections established between instances in the ViBE and the target region, according to at least one embodiment. [0016] FIG. 7 illustrates an example method for networking instances in the ViBE, according to at least one embodiment. [0017] FIG. 8 illustrates an example method for establishing a network connection between a ViBE and a target region, according to at least one embodiment. [0018] FIG. 9 is a block diagram illustrating one pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment. [0019] FIG. 10 is a block diagram illustrating another pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment. [0020] FIG. 11 is a block diagram illustrating another pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment. [0021] FIG. 12 is a block diagram illustrating another pattern for implementing a cloud infrastructure as a service system, according to at least one embodiment. [0022] FIG. 13 is a block diagram illustrating an example computer system, according to at least one embodiment. DETAILED DESCRIPTION Example Data Center Build (Region Build) Infrastructure [0023] The adoption of cloud services has seen a rapid uptick in recent times. Various types of cloud services are now provided by various different cloud service providers (CSPs). The term cloud service is generally used to refer to a service or functionality that is made available by a CSP to users or customers on demand (e.g., via a subscription model) using systems and infrastructure (cloud infrastructure) provided by the CSP. Typically, the servers and systems that make up the CSP's infrastructure, and which are used to provide a cloud service to a customer, are separate from the customer's own on-premises servers and systems. Customers can thus avail themselves of cloud services provided by the CSP without having to purchase separate hardware and software resources for the services. Cloud services are designed to provide a subscribing customer easy, scalable, and on-demand access to applications and computing resources without the customer having to invest in procuring the infrastructure that is used for providing the services or functions. Various different types or models of cloud services may be offered such as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS), and others. A customer can subscribe to one or more cloud services provided by a CSP. The customer can be any entity such as an individual, an organization, an enterprise, and the like. [0024] As indicated above, a CSP is responsible for providing the infrastructure and resources that are used for providing cloud services to subscribing customers. The resources provided by the CSP can include both hardware and software resources. These resources can include, for example, compute resources (e.g., virtual machines, containers, applications, processors), memory resources (e.g., databases, data stores), networking resources (e.g., routers, host machines, load balancers), identity, and other resources. In certain implementations, the resources provided by a CSP for providing a set of cloud services CSP are organized into data centers. A data center may be configured to provide a particular set of cloud services. The CSP is responsible for equipping the data center with infrastructure and resources that are used to provide that particular set of cloud services. A CSP may build one or more data centers. [0025] Data centers provided by a CSP may be hosted in different regions. A region is a localized geographic area and may be identified by a region name. Regions are generally independent of each other and can be separated by vast distances, such as across countries or even continents. Regions are grouped into realms. Examples of regions for a CSP may include US West, US East, Australia East, Australia Southeast, and the like. [0026] A region can include one or more data centers, where the data centers are located within a certain geographic area corresponding to the region. As an example, the data centers in a region may be located in a city within that region. For example, for a particular CSP, data centers in the US West region may be located in San Jose, California; data centers in the US East region may be located in Ashburn, Virginia; data centers in the Australia East region may be located in Sydney, Australia; data centers in the Australia Southeast region may be located in Melbourne, Australia; and the like. [0027] Data centers within a region may be organized into one or more availability domains, which are used for high availability and disaster recovery purposes. An availability domain can include one or more data centers within a region. Availability domains within a region are isolated from each other, fault tolerant, and are architected in such a way that data centers in multiple availability domains are very unlikely to fail simultaneously. For example, the availability domains within a region may be structured in a manner such that a failure at one availability domain within the region is unlikely to impact the availability of data centers in other availability domains within the same region. [0028] When a customer or subscriber subscribes to or signs up for one or more services provided by a CSP, the CSP creates a tenancy for the customer. The tenancy is like an account that is created for the customer. In certain implementations, a tenancy for a customer exists in a single realm and can access all regions that belong to that realm. The customer’s users can then access the services subscribed to by the customer under this tenancy. [0029] As indicated above, a CSP builds or deploys data centers to provide cloud services to its customers. As a CSP's customer base grows, the CSP typically builds new data centers in new regions or increases the capacity of existing data centers to service the customers’ growing demands and to better serve the customers. Preferably, a data center is built in close geographical proximity to the location of customers serviced by that data center. Geographical proximity between a data center and customers serviced by that data center lends to more efficient use of resources and faster and more reliable services being provided to the customers. Accordingly, a CSP typically builds new data centers in new regions in geographical areas that are geographically proximal to the customers serviced by the data centers. For example, for a growing customer base in Germany, a CSP may build one or more data centers in a new region in Germany. [0030] Building a data center (or multiple data centers) in a region is sometimes also referred to as building a region. The term “region build” is used to refer to building one or more data centers in a region. Building a data center in a region involves provisioning or creating a set of new resources that are needed or used for providing a set of services that the data center is configured to provide. The end result of the region build process is the creation of a data center in a region, where the data center is capable of providing a set of services intended for that data center and includes a set of resources that are used to provide the set of services. [0031] Building a new data center in a region is a very complex activity requiring extensive coordination between various bootstrapping activities. At a high level, this involves the performance and coordination of various tasks such as: identifying the set of services to be provided by the data center; identifying various resources that are needed for providing the set of services; creating, provisioning, and deploying the identified resources; wiring the resources properly so that they can be used in an intended manner; and the like. Each of these tasks further have subtasks that need to be coordinated, further adding to the complexity. Due to this complexity, presently, the building of a data center in a region involves several manually initiated or manually controlled tasks that require careful manual coordination. As a result, the task of building a new region (i.e., building one or more data centers in a region) is very time consuming. It can take time, for example many months, to build a data center. Additionally, the process is very error prone, sometimes requiring several iterations before a desired configuration of the data center is achieved, which further adds to the time taken to build a data center. These limitations and problems severely limit a CSP’s ability to grow computing resources in a timely manner responsive to increasing customer needs. [0032] The present disclosure describes techniques for reducing build time, reducing computing resource waste, and reducing risk related to building one or more data centers in a region. Instead of weeks and months needed to build a data center in a region in the past, the techniques described herein can be used to build a new data center in a region in a relatively much shorter time, while reducing the risk of errors over conventional approaches. [0033] A Cloud Infrastructure Orchestration Service (CIOS) is disclosed herein that is configured to bootstrap (e.g., provision and deploy) services into a new data center based on predefined configuration files that identify the resources (e.g., infrastructure components and software to be deployed) for implementing a given change to the data center. The CIOS can parse and analyze configuration files (e.g., flock configs) to identify dependencies between resources, execution targets, phases, and flocks. The CIOS may generate specific data structures from the analysis and may use these data structures to drive operations and to manage an order by which services are bootstrapped to a region. The CIOS may utilize these data structures to identify when it can bootstrap a service, when bootstrapping is blocked, and/or when bootstrapping operations associated with a previously blocked service can resume. Advantageously, the CIOS can identify circular dependencies within the data structures and execute operations to eliminate/resolve these circular dependencies prior to task execution. Using these techniques, the CIOS substantially reduces the risk of executing tasks prior to the availability of the resources on which those tasks depend. [0034] Utilizing the techniques disclosed herein, the CIOS may optimize parallel processing to execute changes to a data center while ensuring that tasks are not initiated until the functionality on which those tasks depend is available in the region. In this manner, the CIOS enables a region build to be performed more efficiently, which greatly reduces the time required to build a data center and the wasteful computing resource use found in conventional approaches. Certain Definitions [0035] A “region” is a logical abstraction corresponding to a geographical location. A region can include any suitable number of one or more execution targets. In some embodiments, an execution target could correspond to a data center. [0036] An “execution target” refers to a smallest unit of change for executing a release. A “release” refers to a representation of an intent to orchestrate a specific change to a service (e.g., deploy version 8, “add an internal DNS record,” etc.). For most services, an execution target represents an “instance” of a service. A single service can be bootstrapped to each of one or more execution targets. An execution target may be associated with a set of devices (e.g., a data center). [0037] “Bootstrapping” is intended to refer to the collective tasks associated with provisioning and deployment of any suitable number of resources (e.g., infrastructure components, artifacts, etc.) corresponding to a single service. [0038] A “service” refers to functionality provided by a set of resources. A set of resources for a service includes any suitable combination of infrastructure, platform, or software (e.g., an application) hosted by a cloud provider that can be configured to provide the functionality of a service. A service can be made available to users through the Internet. [0039] An “artifact” refers to code being deployed to an infrastructure component or a Kubernetes engine cluster, this may include software (e.g., an application), configuration information (e.g., a configuration file) for an infrastructure component, or the like. [0040] A “flock config” refers to a configuration file (or a set of configuration files) that describes a set of all resources (e.g., infrastructure components and artifacts) associated with a single service. A flock config may include declarative statements that specify one or more aspects corresponding to a desired state of the resources of the service. [0041] “Service state” refers to a point-in-time snapshot of every resource (e.g., infrastructure resources, artifacts, etc.) associated with the service. The service state indicates status corresponding to provisioning and/or deployment tasks associated with service resources. [0042] IaaS provisioning (or “provisioning”) refers to acquiring computers or virtual hosts for use, and even installing needed libraries or services on them. The phrase “provisioning a device” refers to evolving a device to a state in which it can be utilized by an end-user for their specific use. A device that has undergone the provisioning process may be referred to as a “provisioned device.” Preparing the provisioned device (installing libraries and daemons) may be part of provisioning; this preparation is different from deploying new applications or new versions of an application onto the prepared device. In most cases, deployment does not include provisioning, and the provisioning may need to be performed first. Once prepared, the device may be referred to as “an infrastructure component.” [0043] IaaS deployment (or “deployment”) refers to the process of providing and/or installing a new application, or a new version of an application, onto a provisioned infrastructure component. Once the infrastructure component has been provisioned (e.g., acquired, assigned, prepared, etc.), additional software may be deployed (e.g., provided to and installed on the infrastructure component). The infrastructure component can be referred to as a “resource” after provisioning and deployment has concluded. Examples of resources may include, but are not limited to, virtual machines, databases, object storage, block storage, load balancers, and the like. [0044] A “capability” identifies a unit of functionality associated with a service. The unit could be a portion, or all, of the functionality to be provided by the service. By way of example, a capability can be published indicating that a resource is available for authorization/authentication processing (e.g., a subset of the functionality to be provided by the resource). As another example, a capability can be published indicating the full functionality of the service is available. Capabilities can be used to identify functionality on which a resource or service depends and/or functionality of a resource or service that is available for use. [0045] A “virtual bootstrap environment” (ViBE) refers to a virtual cloud network that is provisioned in the overlay of an existing region (e.g., a “host region”). Once provisioned, a ViBE is connected to a new region using a communication channel (e.g., an IPSec Tunnel VPN). Certain essential core services (or “seed” services) like a deployment orchestrator, a public key infrastructure (PKI) service, and the like can be provisioned in a ViBE. These services can provide the capabilities required to bring the hardware online, establish a chain of trust to the new region, and deploy the remaining services in the new region. Utilizing the virtual bootstrap environment can prevent circular dependencies between bootstrapping resources by utilizing resources of the host region. Services can be staged and tested in the ViBE prior to the physical region (e.g., the target region) being available. [0046] A “Cloud Infrastructure Orchestration Service” (CIOS) may refer to a system configured to manage provisioning and deployment operations for any suitable number of services as part of a region build. [0047] A Multi-Flock Orchestrator (MFO) may be a computing component (e.g., a service) that coordinates events between components of the CIOS to provision and deploy services to a target region (e.g., a new region). An MFO tracks relevant events for each service of the region build and takes actions in response to those events. [0048] A “host region” refers to a region that hosts a virtual bootstrap environment (ViBE). A host region may be used to bootstrap a ViBE. [0049] A “target region” refers to a region under build. [0050] “Publishing a capability” refers to “publishing” as used in a “publisher-subscriber” computing design or otherwise providing an indication that a particular capability is available (or unavailable). The capabilities are “published” (e.g., collected by a capabilities service, provided to a capabilities service, pushed, pulled, etc.) to provide an indication that functionality of a resource/service is available. In some embodiments, capabilities may be published/transmitted via an event, a notification, a data transmission, a function call, an API call, or the like. An event (or other notification/data transmission/etc.) indicating availability of a particular capability can be broadcasted/addressed (e.g., published) to a capabilities service. [0051] A “Capabilities Service” may be a flock configured to model dependencies between different flocks. A capabilities service may be provided within a Cloud Infrastructure Orchestration Service and may define what capabilities, services, features have been made available in a region. [0052] A “Real-time Regional Data Distributor” (RRDD) may be a service or system configured to manage region data. This region data can be injected into flock configs to dynamically create execution targets for new regions. [0053] In some examples, techniques for implementing a Cloud Infrastructure Orchestration Service (CIOS) are described herein. Such techniques, as described briefly above, can be configured to manage bootstrapping (e.g., provisioning and deploying software to) infrastructure components within a cloud environment (e.g., a region). In some instances, the CIOS can include computing components (e.g., a CIOS Central and a CIOS Regional, both of which will be described in further detail below) that may be configured to manage bootstrapping tasks (provisioning and deployment) for a given service and a Multi-Flock Orchestrator (also described in further detail below) configured to initiate/manage region builds (e.g., bootstrapping operations corresponding to multiple services). [0054] The CIOS enables region building and world-wide infrastructure provisioning and code deployment with minimal manual run-time effort from service teams (e.g., beyond an initial approval and/or physical transportation of hardware, in some instances). The high- level responsibilities of the CIOS include, but are not limited to, coordinating region builds, providing users with a view of the current state of resources managed by the CIOS (e.g., of a region, across regions, world-wide, etc.), and managing bootstrapping operations for bootstrapping resources within a region. [0055] The CIOS may provide view reconciliation, where a view of a desired state (e.g., a desired configuration) of resources may be reconciled with a current/actual state (e.g., a current configuration) of the resources. In some instances, view reconciliation may include obtaining state data to identify what resources are actually running and their current configuration and/or state. Reconciliation can be performed at a variety of granularities, such as at a service level. [0056] The CIOS can perform plan generation, where differences between the desired and current state of the resources are identified. Part of plan generation can include identifying the operations that would need to be executed to bring the resources from the current state to the desired state. In some examples, the CIOS may present a generated plan to a user for approval. In these examples, the CIOS can mark the plan as approved or rejected based on user input from the user. Thus, users can spend less time reasoning about the plan and the plans are more accurate because they are machine generated. Plans are almost too detailed for human consumption; however, the CIOS can provide this data via a sophisticated user interface (UI). [0057] In some examples, the CIOS can handle execution of change management by executing the approved plan. Once an execution plan has been created and approved, engineers may no longer need to participate in change management unless the CIOS initiates roll-back. The CIOS can handle rolling back to a previous service version by generating a plan that returns the service to a previous (e.g., pre-release) state (e.g., when CIOS detects service health degradation while executing). [0058] The CIOS can measure service health by monitoring alarms and executing integration tests. The CIOS can help teams quickly define roll-back behavior in the event of service degradation, which it can later execute. The CIOS can generate and display plans and can track approval. The CIOS can combine the functionality of provisioning and deployment in a single system that coordinates these tasks across a region build. The CIOS also supports the discovery of flocks (e.g., service resources such as flock config(s) corresponding to any suitable number of services), artifacts, resources, and dependencies. The CIOS can discover dependencies between execution tasks at every level (e.g., resource level, execution target level, phase level, service level, etc.) through a static analysis (e.g., including parsing and processing content) of one or more configuration files. Using these dependencies, the CIOS can generate various data structures from these dependencies that can be used to drive task execution (e.g., tasks regarding provisioning of infrastructure resources and deployment of artifacts across the region). [0059] FIG. 1 is a block diagram of an environment 100 in which a Cloud Infrastructure Orchestration Service (CIOS) 102 may operate to dynamically provide bootstrap services in a region, according to at least one embodiment. CIOS 102 can include, but is not limited to, the following components: Real-time Regional Data Distributor (RRDD) 104, Multi-Flock Orchestrator (MFO) 106, CIOS Central 108, CIOS Regional 110, and Capabilities Service 112. Specific functionality of CIOS Central 108 and CIOS Regional 110 is provided in more detail in U.S. Application No. 17/016,754, entitled “Techniques for Deploying Infrastructure Resources with a Declarative Provisioning Tool,” the entire contents of which are incorporated in its entirety for all purposes. In some embodiments, any suitable combination of the components of CIOS 102 may be provided as a service. In some embodiments, some portion of CIOS 102 may be deployed to a region (e.g., a data center represented by host region 103). In some embodiments, CIOS 102 may include any suitable number of cloud services (not depicted in FIG. 1) discussed in further detail in U.S. Application No. 17/016,754 and below with respect to FIGS. 2 and 3. [0060] Real-time Regional Data Distributor (RRDD) 104 may be configured to maintain and provide region data that identifies realms, regions, execution targets, and availability domains. In some cases, the region data may be in any suitable form (e.g., JSON format, data objects/containers, XML, etc.). Region data maintained by RRDD 104 may include any suitable number of subsets of data which can individually be referenceable by a corresponding identifier. By way of example, an identifier “all_regions” can be associated with a data structure (e.g., a list, a structure, an object, etc.) that includes a metadata for all defined regions. As another example, an identifier such as “realms” can be associated with a data structure that identifies metadata for a number of realms and a set of regions corresponding to each realm. In general, the region data may maintain any suitable attribute of one or more realm(s), region(s), availability domains (ADs), execution target(s) (ETs), and the like, such as identifiers, DNS suffixes, states (e.g., a state of a region), and the like. The RRDD 104 may be configured to manage region state as part of the region data. A region state may include any suitable information indicating a state of bootstrapping within a region. By way of example, some example region states can include “initial,” “building,” “production,” “paused,” or “deprecated.” The “initial” state may indicate a region that has not yet been bootstrapped. A “building” state may indicate that bootstrapping of one or more flocks within the region has commenced. A “production” state may indicate that bootstrapping has been completed and the region is ready for validation. A “paused” state may indicate that CIOS Central 108 or CIOS Regional 110 has paused internal interactions with the regional stack, likely due to an operational issue. A “deprecated” state may indicate the region has been deprecated and is likely unavailable and/or will not be contacted again. [0061] CIOS Central 108 is configured to provide any suitable number of user interfaces with which users (e.g., user 109) may interact with CIOS 102. By way of example, users can make changes to region data via a user interface provided by CIOS Central 108. CIOS Central 108 may additionally provide a variety of interfaces that enable users to: view changes made to flock configs and/or artifacts, generate and view plans, approve/reject plans, view status on plan execution (e.g., corresponding to tasks involving infrastructure provisioning, deployment, region build, and/or desired state of any suitable number of resources managed by CIOS 102. CIOS Central 108 may implement a control plane configured to manage any suitable number of CIOS Regional 110 instances. CIOS Central 108 can provide one or more user interfaces for presenting region data, enabling the user 109 to view and/or change region data. CIOS Central 108 can be configured to invoke the functionality of RRDD 104 via any suitable number of interfaces. Generally, CIOS Central 108 may be configured to manage region data, either directly or indirectly (e.g., via RRDD 104). CIOS Central 108 may be configured to compile flock configs to inject region data as variables within the flock configs. [0062] Each instance of CIOS Regional 110 may correspond to a module configured to execute bootstrapping tasks that are associated with a single service of a region. CIOS Regional 110 can receive desired state data from CIOS Central 108. In some embodiments, desired state data may include a flock config that declares (e.g., via declarative statements) a desired state of resources associated with a service. CIOS Central 108 can maintain current state data indicating any suitable aspect of the current state of the resources associated with a service. In some embodiments, CIOS Regional 110 can identify, through a comparison of the desired state data and the current state data, that changes are needed to one or more resources. For example, CIOS Regional 110 can determine that one or more infrastructure components need to be provisioned, one or more artifacts deployed, or any suitable change needed to the resources of the service to bring the state of those resources in line with the desired state. As CIOS Regional 110 performs bootstrapping operations, it may publish data indicating various capabilities of a resource as they become available. A “capability” identifies a unit of functionality associated with a service. The unit could be a portion, or all of the functionality to be provided by the service. By way of example, a capability can be published indicating that a resource is available for authorization/authentication processing (e.g., a subset of the functionality to be provided by the resource). As another example, a capability can be published indicating the full functionality of the service is available. Capabilities can be used to identify functionality on which a resource or service depends and/or functionality of a resource or service that is available for use. [0063] Capabilities Service 112 is configured to maintain capabilities data that indicates 1) what capabilities of various services are currently available, 2) whether any resource/service is waiting on a particular capability, 3) what particular resources and/or services are waiting on a given capability, or any suitable combination of the above. Capabilities Service 112 may provide an interface with which capabilities data may be requested. Capabilities Service 112 may provide one or more interfaces (e.g., application programming interfaces) that enable it to transmit capabilities data to MFO 106 and/or CIOS Regional 110 (e.g., each instance of CIOS Regional 110). In some embodiments, MFO 106 and/or any suitable component or module of CIOS Regional 110 may be configured to request capabilities data from Capabilities Service 112. [0064] In some embodiments, Multi-Flock Orchestrator (MFO) 106 may be configured to drive region build efforts. In some embodiments, MFO 106 can manage information that describes what flock/flock config versions and/or artifact versions are to be utilized to bootstrap a given service within a region (or to make a unit of change to a target region). In some embodiments, MFO 106 may be configured to monitor (or be otherwise notified of) changes to the region data managed by Real-time Regional Data Distributor 104. In some embodiments, receiving an indication that region data has been changed may cause a region build to be triggered by MFO 106. In some embodiments, MFO 106 may collect various flock configs and artifacts to be used for a region build. Some, or all, of the flock configs may be configured to be region agnostic. That is, the flock configs may not explicitly identify what regions to which the flock is to be bootstrapped. In some embodiments, MFO 106 may trigger a data injection process through which the collected flock configs are recompiled (e.g., by CIOS Central 108). During recompilation, operations may be executed (e.g., by CIOS Central 108) to cause the region data maintained by Real-time Regional Data Distributor 104 to be injected into the config files. Flock configs can reference region data through variables/parameters without requiring hard-coded identification of region data. The flock configs can be dynamically modified at run time using this data injection rather than having the region data be hardcoded, and therefore, and more difficult to change. [0065] Multi-Flock Orchestrator 106 can perform a static flock analysis in which the flock configs are parsed to identify dependencies between resources, execution targets, phases, and flocks, and in particular to identify circular dependencies that need to be removed. In some embodiments, MFO 106 can generate any suitable number of data structures based on the dependencies identified. These data structures (e.g., directed acyclic graph(s), linked lists, etc.) may be utilized by the Cloud Infrastructure Orchestration Service 102 to drive operations for performing a region build. By way of example, these data structures may collectively define an order by which services are bootstrapped within a region. An example of such a data structure is discussed further below with respect to Build Dependency Graph 338 of FIG. 3. If circular dependencies (e.g., service A requires service B and vice versa) exist and are identified through the static flock analysis and/or graph, MFO may be configured to notify any suitable service teams that changes are required to the corresponding flock config to correct these circular dependencies. MFO 106 can be configured to traverse one or more data structures to manage an order by which services are bootstrapped to a region. MFO 106 can identify (e.g., using data obtained from Capabilities Service 112) capabilities available within a given region at any given time. MFO 106 can this data to identify when it can bootstrap a service, when bootstrapping is blocked, and/or when bootstrapping operations associated with a previously blocked service can resume. Based on this traversal, MFO 106 can perform a variety of releases in which instructions are transmitted by MFO 106 to CIOS Central 108 to perform bootstrapping operations corresponding to any suitable number of flock configs. In some examples, MFO 106 may be configured to identify that one or more flock configs may require multiple releases due to circular dependencies found within the graph. As a result, MFO 106 may transmit multiple instruction sets to CIOS Central 108 for a given flock config to break the circular dependencies identified in the graph. [0066] In some embodiments, a user can request that a new region (e.g., target region 114) be built. This can involve bootstrapping resources corresponding to a variety of services. In some embodiments, target region 114 may not be communicatively available (and/or secure) at a time at which the region build request is initiated. Rather than delay bootstrapping until such time as target region 114 is available and configured to perform bootstrapping operations, CIOS 102 may initiate the region build using a virtual bootstrap environment 116. Virtual bootstrap environment (ViBE) 116 may be an overlay network that is hosted by host region 103 (a preexisting region that has previously been configured with a core set of services and which is communicatively available and secure). MFO 106 can leverage resources of the host region 103 to bootstrap resources to the ViBE 116 (generally referred to as “building the ViBE”). By way of example, MFO 106 can provide instructions through CIOS Central 108 that cause an instance of CIOS Regional 110 within a host region (e.g., host region 103) to bootstrap another instance of CIOS Regional within the ViBE 116. Once the CIOS Regional within the ViBE is available for processing, bootstrapping the services for the target region 114 can continue within the ViBE 116. When target region 114 is available to perform bootstrapping operations, the previously bootstrapped services within ViBE 116 may be migrated to target region 114. Utilizing these techniques, CIOS 102 can greatly improve the speed at which a region is built by drastically reducing the need for any manual input and/or configuration to be provided. [0067] FIG. 2 is a block diagram for illustrating an environment 200 and method for building a virtual bootstrap environment (ViBE) 202 (an example of ViBE 116 of FIG. 1), according to at least one embodiment. ViBE 202 represents a virtual cloud network that is provisioned in the overlay of an existing region (e.g., host region 204, an example of the host region 103 of FIG. 1 and in an embodiment is a Host Region Service Enclave). ViBE 202 represents an environment in which services can be staged for a target region (e.g., a region under build such as target region 114 of FIG. 1) before the target region becomes available. [0068] In order to bootstrap a new region (e.g., target region 114 of FIG. 1), a core set of services may be bootstrapped. While those core set of services exist in the host region 204, they do not yet exist in the ViBE (nor the target region). These essential core services provide the functionality needed to provision devices, establish a chain of trust to the new region, and deploy remaining services (e.g., flocks) into a region. The ViBE 202 may be a tenancy that is deployed in a host region 204. It can be thought of as a virtual region. [0069] When the target region is available to provide bootstrapping operations, the ViBE 202 can be connected to the target region so that services in the ViBE can interact with the services and/or infrastructure components of the target region. This will enable deployment of production level services, instead of self-contained seed services as in previous systems, and will require connectivity over the internet to the target region. Conventionally, a seed service was deployed as part of a container collection and used to bootstrap dependencies necessary to build out the region. Using infrastructure/tooling of an existing region, resources may be bootstrapped (e.g., provisioned and deployed) into the ViBE 202 and connected to the service enclave of a region (e.g., host region 204) in order to provision hardware and deploy services until the target region is self-sufficient and can be communicated with directly. Utilizing the ViBE 202 allows for standing up the dependencies and services needed to be able to provision/prepare infrastructure and deploy software while making use of the host region's resources in order to break circular dependencies of core services. [0070] Multi-Flock Orchestrator (MFO) 206 may be configured to perform operations to build (e.g., configure) ViBE 202. MFO 206 can obtain applicable flock configs corresponding to various resources to be bootstrapped to the new region (in this case, a ViBE region, ViBE 202). By way of example, MFO 206 may obtain a flock config (e.g., a “ViBE flock config”) that identifies aspects of bootstrapping Capabilities Service 208 and Worker 210. As another example, MFO 206 may obtain another flock config corresponding to bootstrapping Domain Name Service (DNS) 212 to ViBE 202. [0071] At step 1, MFO 206 may instruct CIOS Central 214 (e.g., an example of CIOS Central 108 and CIOS Central 214 of FIGS. 1 and 2, respectively). For example, MFO 206 may transmit a request (e.g., including the ViBE flock config) to request bootstrapping of the Capabilities Service 208 and Worker 210 that, at this time do not yet exist in the ViBE 202. In some embodiments, CIOS Central 214 may have access to all flock configs. Therefore, in some examples, MFO 206 may transmit an identifier for the ViBE flock config rather than the file itself, and CIOS Central 214 may independently obtain it from storage (e.g., from DB 308 or flock DB 312 of FIG. 3). [0072] At step 2, CIOS Central 214 may provide the ViBE flock config via a corresponding request to CIOS Regional 216. CIOS Regional 216 may parse the ViBE flock config to identify and execute specific infrastructure provisioning and deployment operations at step 3. [0073] In some embodiments, the CIOS Regional 216 may utilize additional corresponding services for provisioning and deployment. For example, at step 4, CIOS Regional 216 CIOS Regional may instruct deployment orchestrator 218 (e.g., an example of a core service, or other write, build, and deploy applications software, of the host region 204) to execute instructions that in turn cause Capabilities Service 208 and Worker 210 to be bootstrapped within ViBE 202. [0074] At step 5, a capability may be transmitted to the Capabilities Service 208 (from the CIOS Regional 216, Deployment Orchestrator 218 via the Worker 210 or otherwise) indicating that resources corresponding to the ViBE flock are available. Capabilities Service 208 may persist this data. In some embodiments, the Capabilities Service 208 adds this information to a list it maintains of available capabilities with the ViBE. By way of example, the capability provided to Capabilities Service 208 at step 5 may indicate the Capabilities Service 208 and Worker 210 are available for processing. [0075] At step 6, MFO 206 may identify that the capability indicating that Capabilities Service 208 and Worker 210 are available based on receiving or obtaining data (an identifier corresponding to the capability) from the Capabilities Service 208. [0076] At step 7, as a result of receiving/obtaining the data at step 6, the MFO 206 may instruct CIOS Central 214 to bootstrap a DNS service (e.g., DNS 212) to the ViBE 202. The instructions may identify or include a particular flock config corresponding to the DNS service. [0077] At step 8, the CIOS Central 214 may instruct the CIOS Regional 216 to deploy DNS 212 to the ViBE 202. In some embodiments, the DNS flock config for the DNS 212 is provided by the CIOS Central 214. [0078] At step 9, Worker 210, now that it is deployed in the ViBE 202, may be assigned by CIOS Regional 216 to the task of deploying DNS 212. Worker may execute a declarative infrastructure provisioner in the manner described above in connection with FIG. 3 to identify (e.g., from comparing the flock config (the desired state) to a current state of the (currently non- existing) resources associated with the flock) a set of operations that need to be executed to deploy DNS 212. [0079] At step 10, the Deployment Orchestrator 218 may instruct Worker 210 to deploy DNS 212 in accordance with the operations identified at step 9. As depicted, Worker 210 proceeds with executing operations to deploy DNS 212 to ViBE 202 at step 11. At step 12, Worker 210 notifies Capabilities Service 208 that DNS 212 is available in ViBE 202. MFO 206 may subsequently identify that the resources associated with the ViBE flock config and the DNS flock config are available any may proceed to bootstrap any suitable number of additional resources to the ViBE. [0080] After steps 1-12 are concluded, the process for building the ViBE 202 can be considered complete and the ViBE 202 can be considered built. [0081] FIG. 3 is a block diagram for illustrating an environment 300 and method for bootstrapping services to a target region utilizing the ViBE, according to at least one embodiment. [0082] At step 1, user 302 may utilize any suitable user interface provided by CIOS Central 304 (an example of CIOS Central 108 and CIOS Central 214 of FIG. 1 and 2, respectively) to modify region data. By way of example, user 302 may create a new region to which a number of services are to be bootstrapped. [0083] At step 2, CIOS Central 304 may execute operations to send the change to RRDD 306 (e.g., an example of RRDD 104 of FIG. 1). At step 3, RRDD 306 may store the received region data in database 308, a data store configured to store region data including any suitable identifier, attribute, state, etc. of a region, AD, realm, ET, or the like. In some embodiments, updater 307 may be utilized to store region data in database 308 or any suitable data store from which such updates may be accessible (e.g., to service teams). In some embodiments, updater 307 may be configured to notify (e.g., via any suitable electronic notification) of updates made to database 308. [0084] At step 4, MFO 310 (an example of the MFO 106 and 206 of FIGS. 1 and 2, respectively) may detect the change in region data. In some embodiments, MFO 310 may be configured to poll RRDD 306 for changes in region data. In some embodiments, RRDD 306 may be configured to publish or otherwise notify MFO 310 of region changes. [0085] At step 5, detecting the change in region data may trigger MFO 310 to obtain a version set (e.g., a version set associated with a particular identifier such as a “golden version set” identifier). identifying a particular version for each flock (e.g., service) that is to be bootstrapped to the new region and a particular version for each artifact corresponding to that flock. The version set may be obtained from DB 312. As flocks evolve and change, the versions for their corresponding configs and artifacts used for region build may change. These changes may be persisted in flock DB 312 such that MFO 310 may identify which versions of flock configs and artifacts to use for building a region (e.g., a ViBE region, a Target Region/non-ViBE Region, etc.). The flock configs (e.g., all versions of the flock configs) and/or artifacts (e.g., all versions of the artifacts) may be stored in DB 308, DB 312, or any suitable data store accessible to the CIOS Central 304 and/or MFO 310. [0086] At step 6, MFO 310 may request CIOS Central 304 to recompile of each of the flock configs associated with the version set with the current region data. In some embodiments, the request may indicate a version for each flock config and/or artifact corresponding to those flock configs. [0087] At step 7, CIOS Central 304 may obtain current region data from the DB 308 (e.g., directly, or via Real-time Regional Data Distributor 306) and retrieve any suitable flock config and artifact in accordance with the versions requested by MFO 310. [0088] At step 8, CIOS Central 304 may recompile the flock configs with the region data obtained at step 7 to inject the flock configs with current region data. CIOS Central 304 may return the compiled flock configs to MFO 310. In some embodiments, CIOS Central 304 may simply indicate compilation is done, and MFO 310 may access the recompiled flock configs via RRDD 306. [0089] At step 9, MFO 310 may perform a static analysis of the recompiled flock configs. As part of the static analysis, MFO 310 may parse the flock configs (e.g., using a library associated with a declarative infrastructure provisioner (e.g., Terraform, or the like)) to identify dependencies between flocks. From the analysis and the dependencies identified, MFO 310 can generate Build Dependency Graph 338. Build Dependency Graph 338 may be an acyclic directed graph that identifies an order by which flocks are to be bootstrapped (and/or changes indicated in flock configs are to be applied) to the new region. Each node in the graph may correspond to bootstrapping any suitable portion of a particular flock. The specific bootstrapping order may be identified based at least in part on the dependencies. In some embodiments, the dependencies may be expressed as an attribute of the node and/or indicated via edges of the graph that connect the nodes. MFO 310 may traverse the graph (e.g., beginning at a starting node) to drive the operations of the region build. [0090] In some embodiments, MFO 310 may utilize a cycle detection algorithm to detect the presence of a cycle (e.g., service A depends on service B and vice versa). MFO 310 can identify orphaned capabilities dependencies. For example, MFO 310 can identify orphaned nodes of the Build Dependency Graph 338 that do not connect to any other nodes. MFO 310 may identify falsely published capabilities (e.g., when a capability was prematurely published, and the corresponding functionality is not actually yet available). MFO 310 can detect from the graph that one or more instances of publishing the same capability exist. In some embodiments, any suitable number of these errors may be detected and MFO 310 (or another suitable component such as CIOS Central 304) may be configured to notify or otherwise present this information to users (e.g., via an electronic notification, a user interface, or the like). In some embodiments, MFO 310 may be configured to force delete/recreate resources to break circular dependencies and may once again provide instructions to CIOS Central 304 to perform bootstrapping operations for those resources and/or corresponding flock configs. [0091] A starting node may correspond to bootstrapping the ViBE flock, a second node may correspond to bootstrapping DNS. The steps 10-15 correspond to deploying (via deployment orchestrator 317, an example of the deployment orchestrator 218 of FIG. 2) a ViBE flock to ViBE 316 (e.g., an example of ViBE 116 and 202 of FIG.1, and 2, respectively). That is, steps 10-15 of FIG. 3 generally correspond to steps 1-6 of FIG. 2. Once notified that capabilities exist corresponding to the ViBE flock being deployed (e.g., indicating that Capabilities Service 318 and Worker 320, corresponding to Capabilities Service 208 and Worker 210 of FIG. 2, are available) the MFO 310 recommence traversal of the Build Dependency Graph 338 to identify next operations to be executed. [0092] By way of example, MFO 310 may continue traversing the Build Dependency Graph 338 to identify that a DNS flock is to be deployed. Steps 16-21 may be executed to deploy DNS 322 (an example of the DNS 212 of FIG. 2). These operations may generally correspond to steps 7-12 of FIG. 2. [0093] At step 21, a capability may be stored indicating that DNS 322 is available. Upon detecting this capability, MFO 310 may recommence traversal of the Build Dependency Graph 338. On this traversal, the MFO 310 may identify that any suitable portion of an instance of CIOS Regional (e.g., an example of CIOS Regional 314) is to be deployed to the ViBE 316. In some embodiments, steps 16-21 may be substantially repeated with respect to deploying CIOS Regional (ViBE) 326 (an instance of CIOS Regional 314, CIOS Regional 110 of FIG. 1)and Worker 328 to the ViBE 316. A capability may be transmitted to the Capabilities Service 318 that CIOS Regional (ViBE) 326 is available. [0094] Upon detecting the CIOS Regional (ViBE) 326 is available, MFO 310 may recommence traversal of the Build Dependency Graph 338. On this traversal, the MFO 310 may identify that a deployment orchestrator (e.g., Deployment Orchestrator 330, an example of the Deployment Orchestrator 317) is to be deployed to the ViBE 316. In some embodiments, steps 16-21 may be substantially repeated with respect to deploying Deployment Orchestrator 330. Information that identifies a capability may be transmitted to the Capabilities Service 318, indicating that Deployment Orchestrator 330 is available. [0095] After Deployment Orchestrator 330 is deployed, ViBE 316 may be considered available for processing subsequent requests. Upon detecting Deployment Orchestrator 330 is available, MFO 310 may instruct subsequent bootstrapping requests to be routed to ViBE components rather than utilizing host region components (components of host region 332). Thus, MFO 310 can continue traversing the Build Dependency Graph 338, at each node instructing flock deployment to the ViBE 316 via CIOS Central 304. CIOS Central 304 may request CIOS Regional (ViBE) 326 to deploy resources according to the flock config. [0096] At some point during this process, Target Region 334 may become available. Indication that the Target Region is available may be identifiable from region data for the Target Region 334 being provided by the user 302 (e.g., as an update to the region data). The availability of Target Region 334 may depend on establishing a network connection between the Target Region 334 and external networks (e.g., the Internet). The network connection may be supported over a public network (e.g., the Internet), but use software security tools (e.g., IPSec) to provide one or more encrypted tunnels (e.g., IPSec tunnels such as tunnel 336) from the ViBE 316 to Target Region 334. As used herein, "IPSec" refers to a protocol suite for authenticating and encrypting network traffic over a network that uses Internet Protocol (IP), and can include one or more available implementations of the protocol suite (e.g., Openswan, Libreswan, strongSwan, etc.). The network may connect the ViBE 316 to the service enclave of the Target Region 334. [0097] Prior to establishing the IPSec tunnels, the initial network connection to the Target Region 334 may be on a connection (e.g., an out-of-band VPN tunnel) sufficient to allow bootstrapping of networking services until an IPSec gateway may be deployed on an asset (e.g., bare-metal asset) in the Target Region 334. To bootstrap the Target Region's 334 network resources, Deployment Orchestrator 330 can deploy the IPSec gateway at the asset within Target Region 334. The Deployment Orchestrator 330 may then deploy VPN hosts at the Target Region 334 configured to terminate IPSec tunnels from the ViBE 316. Once services (e.g., Deployment Orchestrator 330, Service A, etc.) in the ViBE 316 can establish an IPSec connection with the VPN hosts in the Target Region 334, bootstrapping operations from the ViBE 316 to the Target Region 334 may begin. [0098] In some embodiments, the bootstrapping operations may begin with services in the ViBE 316 provisioning resources in the Target Region 334 to support hosting instances of core services as they are deployed from the ViBE 316. For example, a host provisioning service may provision hypervisors on infrastructure (e.g., bare-metal hosts) in the Target Region 334 to allocate computing resources for VMs. When the host provisioning service completes allocation of physical resources in the Target Region 334, the host provisioning service may publish information indicating a capability that indicates that the physical resources in the Target Region 334 have been allocated. The capability may be published to Capabilities Service 318 via CIOS Regional (ViBE) 326 (e.g., by Worker 328). [0099] With the hardware allocation of the Target Region 334 established and posted to capabilities service 318, CIOS Regional (ViBE) 326 can orchestrate the deployment of instances of core services from the ViBE 316 to the Target Region 334. This deployment may be similar to the processes described above for building the ViBE 316, but using components of the ViBE (e.g., CIOS Regional (ViBE) 326, Worker 328, Deployment Orchestrator 330) instead of components of the Host Region 332 service enclave. The deployment operations may generally correspond to steps 16-21 described above. [0100] As a service is deployed from the ViBE 316 to the Target Region 334, the DNS record associated with that service may correspond to the instance of the service in the ViBE 316. The DNS record associated with the service may be updated at a later time to complete deployment of the service to the Target Region 334. Said another way, the instance of the service in the ViBE 316 may continue to receive traffic (e.g., requests) to the service until the DNS record is updated. A service may deploy partially into the Target Region 334 and publish information indicating a capability (e.g., to Capabilities Service 318) that the service is partially deployed. For example, a service running in the ViBE 316 may be deployed into the Target Region 334 with a corresponding compute instance, load balancer, and associated applications and other software, but may need to wait for database data to migrate to the Target Region 334 before being completely deployed. The DNS record (e.g., managed by DNS 322) may still be associated with the service in the ViBE 316. Once data migration for the service is complete, the DNS record may be updated to point to the operational service deployed in the Target Region 334. The deployed service in the Target Region 334 may then receive traffic (e.g., requests) for the service, while the instance of the service in the ViBE 316 may no longer receive traffic for the service. Connecting a ViBE to a Target Region [0101] As discussed above, a CSP may build or deploy data centers to provide cloud services to its customers in new regions. The regions may correspond to a general geographic area, which may be preferably in proximity to new customers or customers with expanding service needs (e.g., customer growth in requiring scale-up of cloud services, expansion of cloud services to a new geographic area, etc.). To support the building of new regions, a CIOS (e.g., CIOS 102 of FIG. 1) may be used to generate a ViBE (e.g., ViBE 316 of FIG. 3) in a designated host region. [0102] The ViBE may be created in advance or in parallel with the building of the data centers in the new region. For example, because the building and provisioning of physical components (e.g., bare metal hosts, racks, networking switches, etc.) can take several months, a ViBE may be built in advance (e.g., days, weeks, etc.) of the completion of the new data center. Operators may deploy core services to the ViBE to support the deployment of services to the new data center once the physical infrastructure of the new data center is ready to host cloud services. By creating the ViBE in advance of (or in parallel with) the build of a region's data center, the core services deployed therein may be evaluated for deployment readiness (e.g., production testing, resolving dependencies, etc.). [0103] Connecting the ViBE to the target region may include operations to bootstrap a network host in the target region. The network host can be used to support one or more network connections between the ViBE and the target region. During the provisioning and deployment of infrastructure and services to the target region, these network connections can enable traffic between services in the ViBE and services in the target region service enclave. Instances implemented in the ViBE can then form a distributed virtual private network (VPN) with instances in the target region, so that the target region service enclave can be securely networked to the ViBE during bootstrapping of the target region. [0104] FIG. 4 is a block diagram depicting an example architecture of an environment 400 having a network connection between a ViBE (e.g., ViBE VCN 404) in a host region (e.g., Host Region 432) and a target region (e.g., Target Region 434). Because the depicted architecture relates to network connectivity, the ViBE in FIG. 4 is shown as a VCN in a ViBE Tenancy 402 within the Host Region 432. ViBE VCN 404 may be an example of ViBE 316 of FIG. 3. Detailed examples of the relationship between tenancies and VCNs is provided below with respect to FIGS. 9-12. [0105] The ViBE VCN 404 can include similar services as ViBE 316 of FIG. 3, such that like- numbered components may be similar to one another. For example, Deployment Orchestrator 430 may be an example of Deployment Orchestrator 330, CIOS Regional (ViBE) 426 may be an example of CIOS Regional (ViBE) 326, and so on. [0106] The ViBE VCN 404 can include one or more networking gateways, including Network Address Translation (NAT) Gateway 412, Service Gateway 414, and Internet Gateway 416. The gateways may be logical connections (e.g., a virtual router or other suitable software implementation) between one or more network resources in the ViBE VCN 404 and an external network. For example, the gateways may route traffic (e.g., according to a routing table for the VCN) inbound to and outbound from network addresses of hosts within the ViBE VCN 404 (e.g., hosts of the ViBE services). [0107] The NAT Gateway 412 may be configured to route traffic to and from resources in the ViBE VCN 404 that do not have public network addresses (e.g., public IP addresses). The Service Gateway 414 may be configured to route traffic to and from one or more cloud services 420 provided by the CSP without exposing that traffic to a public internet (e.g., Public Internet 424). The Internet Gateway 416 may be configured to route traffic to and from resources having an exposed public network address. For example, CIOS Regional (ViBE) 426 may have a public address within the ViBE VCN 404 for communication with CIOS Central 438. CIOS Central 438 may be included in a VCN associated with a CIOS Tenancy 436 or another tenancy of the CSP. Although not depicted in FIG. 4, CIOS Tenancy 436 may be included in Host Region 432 or another region of the CSP. [0108] In some embodiments, the incoming public traffic to the ViBE VCN 404 may be limited to connections between CIOS Central 438 and CIOS Regional (ViBE) 426 to improve security. Connections to the Internet Gateway 416 may pass through a Load Balancer 418, which can be configured to apply a load balancing policy for managing (e.g., throttling, restricting, etc.) traffic to any public network addresses of ViBE VCN 404 resources (e.g., CIOS Regional (ViBE) 426). The Load Balancer 418 may also be configured to restrict available ports and provide authentication of inbound connections via a security protocol (e.g., mutual transport layer security (mTLS)). [0109] The cloud services 420 can include services available from the CSP. As a non-limiting example, cloud services 420 can include an identity service (e.g., an identity cloud service) to perform authentication and authorization procedures, a key-value storage service, and a deployment orchestration service (e.g., Deployment Orchestrator 317 of FIG. 3). During the operation of the ViBE VCN 404 (e.g., during provisioning and deployment operations to the Target Region 434), services in the ViBE VCN 404 may communicate with cloud services 420 to perform operations related to the ViBE VCN 404. For example, Deployment Orchestrator 430 may communicate with a storage service of cloud services 420 to store data created by Deployment Orchestrator 430. [0110] The NAT Gateway 412 may be stateful. A stateful NAT gateway may accept outbound traffic (e.g., requests from services in ViBE VCN 404) but reject inbound traffic that is not a response to outbound traffic (e.g., reject inbound connections). For example, one or more of the services (e.g., Deployment Orchestrator 430) in the ViBE VCN 404 may establish an encrypted network connection (e.g., an IPSec tunnel) with the Target Region 434. To negotiate the encrypted connection, the service in the ViBE VCN 404 can send outbound traffic through NAT Gateway 412 to the Target Region 434 (e.g., to Security Gateway 442) and receive an inbound response (e.g., key exchange for IPSec). Once established, the state of the encrypted network connection may be preserved by the NAT Gateway 412 to permit ongoing two-way traffic over the connection, while continuing to block inbound traffic from the Public Internet 424 that is not in response to outbound traffic. [0111] The Host Region 432 may reach the Target Region 434 over Public Internet 424, which may be any suitable public network (e.g., the Internet). The Target Region 434 can include a Network Gateway 440, which may be any suitable gateway for establishing connections between the Target Region 434 and the Public Internet 424. The Target Region 434 can also include a Security Gateway 442, Region Network Fabric 444, and one or more services (e.g., Service A 446, Service N 448), which may be services bootstrapped to the Target Region 434 from the ViBE VCN 404 according to the processes described previously. For example, Service A 446 may be an instance of Deployment Orchestrator 430 after deployment from the ViBE VCN 404 to the Target Region 434. [0112] The Security Gateway 442 may be configured to implement a security protocol (e.g., IPSec). The security protocol may be any suitable protocol for establishing a secure (e.g., encrypted, authenticated, etc.) connection between the Security Gateway 442 and services in the ViBE VCN 404. For example, the Security Gateway 442 may terminate one or more IPSec tunnels established over the network connection between the ViBE VCN 404 and the Target Region 434. The termination of an IPSec tunnel may be the endpoint where encrypted traffic (e.g., IPSec encrypted IP packets) is decrypted according to the encryption protocol. The decrypted traffic may then be routed to destinations (e.g., Service A 446, Service N 448, other hosts, etc.) in the Target Region 434. [0113] The Region Network Fabric 444 can include physical and virtual network infrastructure within the Target Region 434. For example, the Region Network Fabric 444 can include physical switches, routers, and the like, as well as virtual networking components (e.g., virtual routers, virtual gateways). The Region Network Fabric 444 may be the network for the service enclave of the Target Region 434. [0114] FIG. 5 is a block diagram depicting an example architecture of an environment 500 and an example method for bootstrapping a virtual private network (VPN) host (e.g., VPN Host 542) in a target region (e.g., Target Region 534), according to at least one embodiment. The ViBE virtual cloud network (VCN) 502 may be similar to ViBE VCN 402 described above with respect to FIG. 4. As discussed briefly above, bootstrapping operations from a ViBE can utilize one or more components of a cloud infrastructure orchestration service (e.g., CIOS 102 of FIG. 1) to provision infrastructure resources (e.g., compute instances, storage, etc.) and deploy software resources (e.g., services, applications, etc.) in a target region. These operations can include using a CIOS regional instance (e.g., CIOS Regional (ViBE) 326 of FIG. 3) to execute tasks in conjunction with a Deployment Orchestrator (e.g., Deployment Orchestrator 330 of FIG. 3) to deploy a service to Target Region 534. [0115] The ViBE VCN 502 can include one or more services (e.g., Service A 514) hosted on one or more computing resources (e.g., Compute Instance 510). For example, Service A 514 may be a core service (e.g., Deployment Orchestrator 430 of FIG. 4) hosted in the ViBE. In addition to the core services, the ViBE VCN 502 can include Network Service 508 (an example of Network Service 410 of FIG. 4), which may be similarly hosted on Compute Instance 506. Instances in the ViBE VCN 502 may be organized into one or more subnets of the VCN. For example, Compute Instance 506 may be part of Region Build Subnet 504, while Compute Instance 510 may be part of a different subnet of ViBE VCN 502. The ViBE VCN can also include public key infrastructure (PKI) service 516 and Capabilities Service 518 (an example of Capabilities Service 318 of FIG. 3). The PKI Service 516 may be configured to provide certificate management to support public-key encryption and may act as a root certificate authority for the ViBE VCN 501. For example, services within the ViBE VCN 502 can request that PKI Service 516 sign certificates for the services for use in negotiating trusted key exchanges (e.g., when setting up an encrypted network connection). [0116] To provision and/or deploy resources to Target Region 534, a network connection between ViBE VCN 502 and Target Region 534 may be established. However, as the Target Region 534 has been newly created (e.g., one or more data centers newly operational), the infrastructure resources to establish a network connection may not yet be available in the Target Region 534. The Target Region 534 can include a networking host (e.g., a bare-metal computing device) connected to an out-of-band (OOB) gateway 520. The OOB Gateway 520 may be configured to provide an initial networking interface to the Target Region 534. The networking interface may be sufficient (e.g., bandwidth, data rate, etc.) to support an initial bootstrap of the networking host from the ViBE VCN 502, but may not be a suitable interface for networking connections used to support other region build operations (e.g., provisioning and deploying service resources from the ViBE VCN 502 to the Target Region 534). The networking host in Target Region 534 may be configured according to the operations described below to generate VPN Host 542. [0117] At step 1, Network Service 508 may poll Capabilities Service 518 for a posted capability indicating that the Target Region 534 is safe (e.g., ready) to execute the deployment of the VPN Host 542 and associated software resources. The capability may be posted by a component of CIOS or may be manually entered. Network Service 508 may also poll a plan service (not shown) to identify deployment information (e.g., configurations, etc.) for software to be deployed to the networking host in the Target Region 534. [0118] At step 2, the Network Service 508 can obtain the PKI root certificate authority public key from PKI Service 516. This public key may be a self-signed certificate from PKI Service 516. [0119] At step 3, once the Network Service 508 identifies the capability indicating that the Target Region 534 is ready for provisioning the VPN Host 542, Network Service 508 may establish a network connection to the Target Region. The network connection may be made through the NAT Gateway 512 of the ViBE VCN 502 and may use one or more public networks (e.g., Public Internet 424 of FIG. 4) between the ViBE VCN 502 and the Target Region 534. The network connection can include an OOB VPN tunnel (e.g., an IPSec tunnel) negotiated between the ViBE VCN 502 and the OOB Gateway 520. [0120] At step 4, the Network Service 508 may deploy the VPN Host 542. In some embodiments, the networking host may be a bare metal computing device, so that the Network Service 508 can deploy software resources to generate the VPN Host 542 on the bare metal computing device. The software resources can include Security Gateway 544, ViBE Netmesh 546, and border gateway protocol (BGP) service 548. The Security Gateway 544 may be similar to Security Gateway 442 of FIG. 4. The Security Gateway 544 may be configured to terminate (e.g., serve as an endpoint) one or more networking connections from the ViBE (e.g., IPSec tunnels from services in the ViBE). In some embodiments, the Security Gateway 544 may use an implementation of IPSec (e.g., Openswan, Libreswan, strongSwan, etc.). As part of deploying the VPN Host 542, the Network Service 508 may provide a copy of the public key of the PKI Service 516 in the ViBE to the VPN Host 542. In some embodiments, the networking connections from the ViBE instances other than the Network Service 508 may not target the OOB Gateway 520. [0121] The ViBE Netmesh 546 may be a component, process, application, service, or other suitable software resource configured to provide routing and/or forwarding of traffic received at the VPN Host 542 from the ViBE VCN 502 (e.g., from ViBE services) and from services hosted in the Target Region 534 (e.g., services deployed from the ViBE using CIOS during a region build). The BGP Service 548 may be configured to provide BGP functionality for the VPN Host 542, including peering with one or more routers (e.g., software routers) implemented in the Target Region 534 during service deployment from the ViBE, acting as a route reflector for peered routers in the Target Region 534, peering with one or more routers in the ViBE VCN 502, exposing secondary network addresses of services in the Target Region 534 (e.g., to support IP anycast routing), and providing routing information received from host instances in the ViBE VCN 502. [0122] In some embodiments, a service in the ViBE VCN 502 can establish a network connection (e.g., an IPSec tunnel) with the Target Region 534, thereby creating a VPN connection between the ViBE VCN 502 and the service enclave of the Target Region 534. For example, Compute Instance 510 hosting Service A 514 can establish network connection 520 with VPN Host 542. In the examples when the network connection 520 is an IPSec tunnel, an Internet key exchange process may be used to authenticate the initiator of the IPSec tunnel (Compute Instance 510) and establish encryption keys to support the IPSec tunnel. As part of the authentication, Compute Instance 510 may provide a certificate signed by PKI Service 516 to VPN Host 542, which may in turn use the public key of PKI Service 516 to authenticate Compute Instance 510 and negotiate a secure key exchange to establish the encrypted tunnel. Once network connection 520 is established, traffic to and from Service A 514 may use the network connection 520 to transit between the ViBE VCN 502 and the service enclave of the Target Region 534. For example, Service A 514 may be a DNS (e.g., DNS 422 of FIG. 4). A service deployed to Target Region 534 may then use the network connection 520 to connect to the DNS in the ViBE VCN 502 to obtain domain name resolver services. [0123] FIG. 6 is another block diagram depicting an example architecture of an environment 600 having multiple network connections established between instances in a ViBE VCN 602 and the Target Region 634, according to at least one embodiment. The ViBE VCN 602 may be an example of ViBE VCN 502 of FIG. 5, while Target Region 634 may be an example of Target Region 534 of FIG. 5 after a network service (e.g., Network Service 508) completes the deployment of VPN Host 642 (which may be an example of VPN Host 542 of FIG. 5). [0124] As depicted in FIG. 6, the ViBE VCN 602 can include multiple compute instances (e.g., Compute Instance 610, Compute Instance 622, Compute Instance 626), which can be examples of Compute Instance 510 of FIG. 5. The instances can host one or more services (e.g., Service A 620, Service B 624, Service C 628, etc.), which can be examples of ViBE core services described herein (e.g., Deployment Orchestrator 410, Host Provisioning Service 406 of FIG.4, CIOS Regional (ViBE) 326 of FIG. 3, etc.). The instances may correspond to more than one computing resource (e.g., VMs, containers, etc.), and the services may be hosted on any suitable number of computing resources (e.g., according to a flock config). For simplicity, FIG. 6 shows a compute instance (infrastructure resources) corresponding with a service (software resources), but one skilled in the art would recognize that a single service may be supported (e.g., hosted) on more than one computing instance, and that a service (e.g., Service A 620) may include more than one software resource (e.g., more than one constituent micro service or the like). [0125] The ViBE VCN 602 can include a plurality of VPN Routers 604. The VPN Routers 604 may be deployed into the ViBE using the techniques described herein with respect to CIOS. The VPN Routers 604 may be configured with ViBE Netmesh 606 and BGP Service 608, which can be similar to ViBE Netmesh 546 and BGP Service 548 described above with respect to FIG. 5. The ViBE Netmesh 606 can allow the instances in the ViBE VCN 602 to expose secondary IP addresses (e.g., anycast IP addresses) to support routing among instances in the ViBE VCN 602. For example, ViBE Netmesh 606 may be configured to obtain a secondary IP address corresponding to Compute Instance 610 (exposed via ViBE Netmesh 614 implemented on Compute Instance 610). The secondary IP address may then be used by the VPN Routers 604 to route traffic to Compute Instance 610. Traffic routed in this manner may use an IP-in-IP tunnel between the VPN Routers 604 (using the ViBE Netmesh 606) and the Compute Instance 610 (using ViBE Netmesh 614) to encapsulate the IP traffic over the VCN. The IP-in-IP tunnel may be advantageous if the ViBE VCN 602 does not natively support routing to secondary IP addresses. For comparison, the service enclave of a host region hosting ViBE VCN 602 may support routing to secondary IP addresses using BGP and top-of-rack switches. [0126] As an example of the above, Service C 628 may send a request 656 (e.g., an anycast request) to a secondary IP address of Service B 624. The request 656 may be routed according to a default route of a VCN Route Table 652 of the ViBE VCN 602. The default route may target the VPN Routers 604, since the VCN Route Table 652 may not have secondary IP address information for Service B 624. The VPN Routers 604 can then forward the request 656 to Service B 624 according to the secondary IP address information exposed to ViBE Netmesh 606 (address information shared from ViBE Netmesh 615). The request 656 may be sent in an IP-in- IP tunnel to Service B 624. When establishing the IP-in-IP tunnel, the compute instances can identify the VPN Routers 604 using DNS 618. [0127] The VPN Routers 604 may form a portion of a forwarding plane for traffic to and from the Target Region 634. In some embodiments, only one VPN Router 604 may be forwarding traffic to and/or from the Target Region 634 at one time. [0128] One instance of the VPN Routers 604 may connect to VPN Host 642 at the Target Region 634 by establishing an IPSec tunnel 636 terminated at the VPN Host 642 (using Security Gateway 644). The instance of VPN Routers 604 can use its own security key (e.g., certificate signed by PKI Service 616) to establish the IPSec tunnel 636. As described above, the NAT Gateway 612 in the ViBE VCN 602 may be configured to only allow outbound traffic from the ViBE VCN 602. The NAT Gateway 612 may preserve the state of established network connections, so that an IPSec tunnel traversing NAT Gateway 612 may remain and allow return traffic from the Target Region 634 for the lifetime of the IPSec tunnel. [0129] In some embodiments, the IPSec tunnel established by the one instance of the VPN Routers 604 may be shared by all instances in the ViBE VCN 602. The ViBE VCN 602 may limit network traffic over a single connection (e.g., based on a configuration of the VCN). Certain services hosted in the ViBE may be configured to implement the same ViBE Netmesh software as the VPN Routers 604. For example, Compute Instance 610 can include ViBE Netmesh 614, while Compute Instance 622 can include ViBE Netmesh 615. Compute instances implementing the ViBE Netmesh software can establish an IPSec tunnel between the compute instance and the Target Region 634 (similarly to establishing the shared IPSec tunnel). For example, Compute Instance 610 can establish network connection 630 to VPN Host 642, while Compute Instance 622 can establish network connection 632 to VPN Host 642. The network connections 630-632 can allow two-way traffic once they have been established from outbound requests from the ViBE VCN 602. Security Gateway 644 may terminate the network connections 630-632 (e.g., terminate the IPSec tunnels). Traffic sent from the instances in the ViBE can then be routed to services in the Target Region 634 by the VPN Host 642. By establishing network connections directly with the Target Region 634, ViBE services may have improved bandwidth and/or data rates to the Target Region 634 as compared to the shared IPSec tunnel 636. In addition, terminating multiple IPSec tunnels on a single bare metal VPN Host 642 may take advantage of improved multi-core processing to handle traffic from the ViBE during the build of the Target Region 634. [0130] The VPN Host 642 can use BGP Service 648 to peer with the VPN Routers 604 once one or more network connections (e.g., network connection 636) has been established. In addition, the VPN Host 642 can use BGP Service 648 to peer with Region Network Fabric 650. The Region Network Fabric 650 may be the networking infrastructure of the Target Region 634 and may include any suitable hardware or software resources (e.g., physical routers, physical switches, software routers, etc.). The VPN Host 642, using BGP Service 648, can receive routing and/or addressing information about subnets in the ViBE VCN 602, advertise routing and/or addressing information about the ViBE VCN 602 to the Region Network Fabric 650, receive secondary IP addresses (e.g., anycast IP addresses) from the ViBE VCN 602 (e.g., from ViBE Netmesh 614), advertise the secondary IP addresses to the Region Network Fabric 650, receive routing and/or addressing information about the Region Network Fabric 650 and services in the Target Region 634, and advertise this Target Region routing and/or addressing information to the ViBE VCN 602. Services in the Target Region (e.g., Service N 652) can then send traffic to the ViBE VCN 602 (e.g., to a core service). [0131] FIG. 7 illustrates an example method 700 for networking instances in the ViBE, according to at least one embodiment. The method 700 may be performed by one or more components of a distributed computing system (e.g., a cloud computing system), including one or more components of the Cloud Infrastructure Orchestration Service 102 of FIG. 1. A computer- readable storage medium may comprise computer-readable instructions that, upon execution by one or more processors of a distributed computing system, cause the distributed computing system to perform the method 700. The operations of method 700 may be performed in any suitable order, and method 700 may include more or fewer operations than those depicted in FIG. [0132] Some or all of the method 700 (or any other processes and/or methods described herein, or variations, and/or combinations thereof) may be performed under the control of one or more computing systems configured with executable instructions and may be implemented as code (e.g., executable instructions, one or more computer programs, or one or more applications) executing collectively on one or more processors, by hardware or combinations thereof. The code may be stored on a computer-readable storage medium, for example, in the form of a computer program comprising a plurality of instructions executable by one or more processors. The computer-readable storage medium may be non-transitory. [0133] The method 700 may begin at block 702 when a virtual cloud network (VCN) may be generated in a host region. The VCN may be a Virtual Bootstrap Environment (ViBE) VCN (e.g., ViBE VCN 602. The VCN can include a plurality of host instances (e.g., Compute Instance 610 of FIG. 6). The host instances can have a primary network address associated with a routing table (e.g., VCN Routing Table 652) of the VCN. In some embodiments, the host region can include one or more data centers of a cloud service provider. [0134] At block 704, a virtual private network (VPN) router (e.g., one of VPN Routers 604 of FIG. 6) can be implemented on a first instance of the plurality of host instances. In some embodiments, additional VPN routers may be implemented with the VCN. [0135] At block 706, a second instance (e.g., Computing Instance 610 of FIG. 6) can provide a secondary network address (e.g., a secondary IP address) of the second instance to the VPN router. The secondary network address may be provided as part of advertising the networking address of the instance among devices in the VCN according to a networking protocol. [0136] At block 708, a third instance (e.g., Computing instance 626 of FIG. 6) of the VCN can send a request (e.g., request 656 of FIG. 6) addressed to the secondary network address. In some embodiments, the request may include anycast traffic (e.g., a request to an anycast IP address). [0137] At block 710, the VCN may route the request to the VPN router according to a default route of the routing table. Because the VCN may not have routing information for the secondary address (e.g., the VCN does not natively support anycast traffic), the primary network address of the first instance (e.g., the VPN router) may be the target of the default route. [0138] At block 712, a networking tunnel (e.g., an IP-in-IP tunnel) may be established between the first instance and the second instance (e.g., between the instance associated with the secondary IP address and the VPN router). [0139] At block 714, the VPN router can forward the request to the second instance using the networking tunnel. Forwarding the request can include encapsulating an IP packet of the request using the secondary address. [0140] FIG. 8 illustrates an example method 800 for establishing a network connection between a ViBE and a target region, according to at least one embodiment. The method 800 may be performed in conjunction with one or more operations of method 700 described above with respect to FIG. 7. For example, the method 800 may be performed with a virtual cloud network (VCN) generated in a host region and including a plurality of host instances. [0141] The method 800 may begin at block 802, where a first service (e.g., Network Service 508 of FIG. 5) can provision a network host (e.g., VPN Host 542 of FIG.5). The network host may be provisioned in a data center of a target region (e.g., Target Region 634 of FIG. 6). [0142] At block 804, a first instance (e.g., an instance hosting a VPN router) in the host region can establish a first network connection (e.g., IPSec tunnel 636 of FIG. 6) between the first instance and the network host in the target region. [0143] At block 806, the first instance can receive routing information from the network host in the target region. The routing information can be received over the first network connection. The routing information can include a network address (e.g., IP address) of a target region instance. In some embodiments, the target region instance may host a service deployed to the target region (e.g., Service N 652 of FIG. 6). [0144] At block 808, a third instance of the VCN (e.g., Computing Instance 626 of FIG. 6) can send a second request addressed to the network address of the target region instance (e.g., send a request to a service hosted in the target region). Since the routing information was received by the first instance (e.g., by the VPN router), the VCN is aware of the correct route for forwarding the request to the target region service. [0145] At block 810, the request can be routed to the target region instance according to the routing information. The request can be sent over the first network connection. Sending the request from the third instance in the VCN to the target region instance may be an example of traffic sent over the distributed virtual private network established between the host region VCN (e.g., ViBE VCN) and the target region service enclave. Example Architectures for Providing Infrastructure-as-a-Service (IaaS) [0146] As noted above, infrastructure as a service (IaaS) is one particular type of cloud computing. IaaS can be configured to provide virtualized computing resources over a public network (e.g., the Internet). In an IaaS model, a cloud computing provider can host the infrastructure components (e.g., servers, storage devices, network nodes (e.g., hardware), deployment software, platform virtualization (e.g., a hypervisor layer), or the like). In some cases, an IaaS provider may also supply a variety of services to accompany those infrastructure components (e.g., billing, monitoring, logging, load balancing and clustering, etc.). Thus, as these services may be policy-driven, IaaS users may be able to implement policies to drive load balancing to maintain application availability and performance. [0147] In some instances, IaaS customers may access resources and services through a wide area network (WAN), such as the Internet, and can use the cloud provider's services to install the remaining elements of an application stack. For example, the user can log in to the IaaS platform to create virtual machines (VMs), install operating systems (OSs) on each VM, deploy middleware such as databases, create storage buckets for workloads and backups, and even install enterprise software into that VM. Customers can then use the provider's services to perform various functions, including balancing network traffic, troubleshooting application issues, monitoring performance, managing disaster recovery, etc. [0148] In most cases, a cloud computing model may require the participation of a cloud provider. The cloud provider may, but need not be, a third-party service that specializes in providing (e.g., offering, renting, selling) IaaS. An entity might also opt to deploy a private cloud, becoming its own provider of infrastructure services. [0149] In some examples, IaaS deployment is the process of putting a new application, or a new version of an application, onto a prepared application server or the like. It may also include the process of preparing the server (e.g., installing libraries, daemons, etc.). This is often managed by the cloud provider, below the hypervisor layer (e.g., the servers, storage, network hardware, and virtualization). Thus, the customer may be responsible for handling (OS), middleware, and/or application deployment (e.g., on self-service virtual machines (e.g., that can be spun up on demand) or the like. [0150] In some examples, IaaS provisioning may refer to acquiring computers or virtual hosts for use, and even installing needed libraries or services on them. In most cases, deployment does not include provisioning, and the provisioning may need to be performed first. [0151] In some cases, there are two different challenges for IaaS provisioning. First, there is the initial challenge of provisioning the initial set of infrastructure before anything is running. Second, there is the challenge of evolving the existing infrastructure (e.g., adding new services, changing services, removing services, etc.) once everything has been provisioned. In some cases, these two challenges may be addressed by enabling the configuration of the infrastructure to be defined declaratively. In other words, the infrastructure (e.g., what components are needed and how they interact) can be defined by one or more configuration files. Thus, the overall topology of the infrastructure (e.g., what resources depend on which, and how they each work together) can be described declaratively. In some instances, once the topology is defined, a workflow can be generated that creates and/or manages the different components described in the configuration files. [0152] In some examples, an infrastructure may have many interconnected elements. For example, there may be one or more virtual private clouds (VPCs) (e.g., a potentially on-demand pool of configurable and/or shared computing resources), also known as a core network. In some examples, there may also be one or more inbound/outbound traffic group rules provisioned to define how the inbound and/or outbound traffic of the network will be set up and one or more virtual machines (VMs). Other infrastructure elements may also be provisioned, such as a load balancer, a database, or the like. As more and more infrastructure elements are desired and/or added, the infrastructure may incrementally evolve. [0153] In some instances, continuous deployment techniques may be employed to enable deployment of infrastructure code across various virtual computing environments. Additionally, the described techniques can enable infrastructure management within these environments. In some examples, service teams can write code that is desired to be deployed to one or more, but often many, different production environments (e.g., across various different geographic locations, sometimes spanning the entire world). However, in some examples, the infrastructure on which the code will be deployed may need to first be set up. In some instances, the provisioning can be done manually, a provisioning tool may be utilized to provision the resources, and/or deployment tools may be utilized to deploy the code once the infrastructure is provisioned. [0154] FIG. 9 is a block diagram 900 illustrating an example pattern of an IaaS architecture, according to at least one embodiment. Service operators 902 can be communicatively coupled to a secure host tenancy 904 that can include a virtual cloud network (VCN) 906 and a secure host subnet 908. In some examples, the service operators 902 may be using one or more client computing devices, which may be portable handheld devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital assistant (PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems such as iOS, Windows Phone, Android, BlackBerry 8, Palm OS, and the like, and being Internet, e-mail, short message service (SMS), Blackberry®, or other communication protocol enabled. Alternatively, the client computing devices can be general purpose personal computers including, by way of example, personal computers and/or laptop computers running various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems. The client computing devices can be workstation computers running any of a variety of commercially-available UNIX® or UNIX-like operating systems, including without limitation the variety of GNU/Linux operating systems, such as for example, Google Chrome OS. Alternatively, or in addition, client computing devices may be any other electronic device, such as a thin-client computer, an Internet-enabled gaming system (e.g., a Microsoft Xbox gaming console with or without a Kinect® gesture input device), and/or a personal messaging device, capable of communicating over a network that can access the VCN 906 and/or the Internet. [0155] The VCN 906 can include a local peering gateway (LPG) 910 that can be communicatively coupled to a secure shell (SSH) VCN 912 via an LPG 910 contained in the SSH VCN 912. The SSH VCN 912 can include an SSH subnet 914, and the SSH VCN 912 can be communicatively coupled to a control plane VCN 916 via the LPG 910 contained in the control plane VCN 916. Also, the SSH VCN 912 can be communicatively coupled to a data plane VCN 918 via an LPG 910. The control plane VCN 916 and the data plane VCN 918 can be contained in a service tenancy 919 that can be owned and/or operated by the IaaS provider. [0156] The control plane VCN 916 can include a control plane demilitarized zone (DMZ) tier 920 that acts as a perimeter network (e.g., portions of a corporate network between the corporate intranet and external networks). The DMZ-based servers may have restricted responsibilities and help keep breaches contained. Additionally, the DMZ tier 920 can include one or more load balancer (LB) subnet(s) 922, a control plane app tier 924 that can include app subnet(s) 926, a control plane data tier 928 that can include database (DB) subnet(s) 930 (e.g., frontend DB subnet(s) and/or backend DB subnet(s)). The LB subnet(s) 922 contained in the control plane DMZ tier 920 can be communicatively coupled to the app subnet(s) 926 contained in the control plane app tier 924 and an Internet gateway 934 that can be contained in the control plane VCN 916, and the app subnet(s) 926 can be communicatively coupled to the DB subnet(s) 930 contained in the control plane data tier 928 and a service gateway 936 and a network address translation (NAT) gateway 938. The control plane VCN 916 can include the service gateway 936 and the NAT gateway 938. [0157] The control plane VCN 916 can include a data plane mirror app tier 940 that can include app subnet(s) 926. The app subnet(s) 926 contained in the data plane mirror app tier 940 can include a virtual network interface controller (VNIC) 942 that can execute a compute instance 944. The compute instance 944 can communicatively couple the app subnet(s) 926 of the data plane mirror app tier 940 to app subnet(s) 926 that can be contained in a data plane app tier 946. [0158] The data plane VCN 918 can include the data plane app tier 946, a data plane DMZ tier 948, and a data plane data tier 950. The data plane DMZ tier 948 can include LB subnet(s) 922 that can be communicatively coupled to the app subnet(s) 926 of the data plane app tier 946 and the Internet gateway 934 of the data plane VCN 918. The app subnet(s) 926 can be communicatively coupled to the service gateway 936 of the data plane VCN 918 and the NAT gateway 938 of the data plane VCN 918. The data plane data tier 950 can also include the DB subnet(s) 930 that can be communicatively coupled to the app subnet(s) 926 of the data plane app tier 946. [0159] The Internet gateway 934 of the control plane VCN 916 and of the data plane VCN 918 can be communicatively coupled to a metadata management service 952 that can be communicatively coupled to public Internet 954. Public Internet 954 can be communicatively coupled to the NAT gateway 938 of the control plane VCN 916 and of the data plane VCN 918. The service gateway 936 of the control plane VCN 916 and of the data plane VCN 918 can be communicatively couple to cloud services 956. [0160] In some examples, the service gateway 936 of the control plane VCN 916 or of the data plane VCN 918 can make application programming interface (API) calls to cloud services 956 without going through public Internet 954. The API calls to cloud services 956 from the service gateway 936 can be one-way: the service gateway 936 can make API calls to cloud services 956, and cloud services 956 can send requested data to the service gateway 936. However, cloud services 956 may not initiate API calls to the service gateway 936. [0161] In some examples, the secure host tenancy 904 can be directly connected to the service tenancy 919, which may be otherwise isolated. The secure host subnet 908 can communicate with the SSH subnet 914 through an LPG 910 that may enable two-way communication over an otherwise isolated system. Connecting the secure host subnet 908 to the SSH subnet 914 may give the secure host subnet 908 access to other entities within the service tenancy 919. [0162] The control plane VCN 916 may allow users of the service tenancy 919 to set up or otherwise provision desired resources. Desired resources provisioned in the control plane VCN 916 may be deployed or otherwise used in the data plane VCN 918. In some examples, the control plane VCN 916 can be isolated from the data plane VCN 918, and the data plane mirror app tier 940 of the control plane VCN 916 can communicate with the data plane app tier 946 of the data plane VCN 918 via VNICs 942 that can be contained in the data plane mirror app tier 940 and the data plane app tier 946. [0163] In some examples, users of the system, or customers, can make requests, for example create, read, update, or delete (CRUD) operations, through public Internet 954 that can communicate the requests to the metadata management service 952. The metadata management service 952 can communicate the request to the control plane VCN 916 through the Internet gateway 934. The request can be received by the LB subnet(s) 922 contained in the control plane DMZ tier 920. The LB subnet(s) 922 may determine that the request is valid, and in response to this determination, the LB subnet(s) 922 can transmit the request to app subnet(s) 926 contained in the control plane app tier 924. If the request is validated and requires a call to public Internet 954, the call to public Internet 954 may be transmitted to the NAT gateway 938 that can make the call to public Internet 954. Memory that may be desired to be stored by the request can be stored in the DB subnet(s) 930. [0164] In some examples, the data plane mirror app tier 940 can facilitate direct communication between the control plane VCN 916 and the data plane VCN 918. For example, changes, updates, or other suitable modifications to configuration may be desired to be applied to the resources contained in the data plane VCN 918. Via a VNIC 942, the control plane VCN 916 can directly communicate with, and can thereby execute the changes, updates, or other suitable modifications to configuration to, resources contained in the data plane VCN 918. [0165] In some embodiments, the control plane VCN 916 and the data plane VCN 918 can be contained in the service tenancy 919. In this case, the user, or the customer, of the system may not own or operate either the control plane VCN 916 or the data plane VCN 918. Instead, the IaaS provider may own or operate the control plane VCN 916 and the data plane VCN 918, both of which may be contained in the service tenancy 919. This embodiment can enable isolation of networks that may prevent users or customers from interacting with other users’, or other customers’, resources. Also, this embodiment may allow users or customers of the system to store databases privately without needing to rely on public Internet 954, which may not have a desired level of threat prevention, for storage. [0166] In other embodiments, the LB subnet(s) 922 contained in the control plane VCN 916 can be configured to receive a signal from the service gateway 936. In this embodiment, the control plane VCN 916 and the data plane VCN 918 may be configured to be called by a customer of the IaaS provider without calling public Internet 954. Customers of the IaaS provider may desire this embodiment since database(s) that the customers use may be controlled by the IaaS provider and may be stored on the service tenancy 919, which may be isolated from public Internet 954. [0167] FIG. 10 is a block diagram 1000 illustrating another example pattern of an IaaS architecture, according to at least one embodiment. Service operators 1002 (e.g., service operators 902 of FIG. 9) can be communicatively coupled to a secure host tenancy 1004 (e.g., the secure host tenancy 904 of FIG. 9) that can include a virtual cloud network (VCN) 1006 (e.g., the VCN 906 of FIG. 9) and a secure host subnet 1008 (e.g., the secure host subnet 908 of FIG. 9). The VCN 1006 can include a local peering gateway (LPG) 1010 (e.g., the LPG 910 of FIG. 9) that can be communicatively coupled to a secure shell (SSH) VCN 1012 (e.g., the SSH VCN 912 of FIG. 9) via an LPG 910 contained in the SSH VCN 1012. The SSH VCN 1012 can include an SSH subnet 1014 (e.g., the SSH subnet 914 of FIG. 9), and the SSH VCN 1012 can be communicatively coupled to a control plane VCN 1016 (e.g., the control plane VCN 916 of FIG. 9) via an LPG 1010 contained in the control plane VCN 1016. The control plane VCN 1016 can be contained in a service tenancy 1019 (e.g., the service tenancy 919 of FIG. 9), and the data plane VCN 1018 (e.g., the data plane VCN 918 of FIG. 9) can be contained in a customer tenancy 1021 that may be owned or operated by users, or customers, of the system. [0168] The control plane VCN 1016 can include a control plane DMZ tier 1020 (e.g., the control plane DMZ tier 920 of FIG. 9) that can include LB subnet(s) 1022 (e.g., LB subnet(s) 922 of FIG. 9), a control plane app tier 1024 (e.g., the control plane app tier 924 of FIG. 9) that can include app subnet(s) 1026 (e.g., app subnet(s) 926 of FIG. 9), a control plane data tier 1028 (e.g., the control plane data tier 928 of FIG. 9) that can include database (DB) subnet(s) 1030 (e.g., similar to DB subnet(s) 930 of FIG. 9). The LB subnet(s) 1022 contained in the control plane DMZ tier 1020 can be communicatively coupled to the app subnet(s) 1026 contained in the control plane app tier 1024 and an Internet gateway 1034 (e.g., the Internet gateway 934 of FIG. 9) that can be contained in the control plane VCN 1016, and the app subnet(s) 1026 can be communicatively coupled to the DB subnet(s) 1030 contained in the control plane data tier 1028 and a service gateway 1036 (e.g., the service gateway of FIG. 9) and a network address translation (NAT) gateway 1038 (e.g., the NAT gateway 938 of FIG. 9). The control plane VCN 1016 can include the service gateway 1036 and the NAT gateway 1038. [0169] The control plane VCN 1016 can include a data plane mirror app tier 1040 (e.g., the data plane mirror app tier 940 of FIG. 9) that can include app subnet(s) 1026. The app subnet(s) 1026 contained in the data plane mirror app tier 1040 can include a virtual network interface controller (VNIC) 1042 (e.g., the VNIC of 942) that can execute a compute instance 1044 (e.g., similar to the compute instance 944 of FIG. 9). The compute instance 1044 can facilitate communication between the app subnet(s) 1026 of the data plane mirror app tier 1040 and the app subnet(s) 1026 that can be contained in a data plane app tier 1046 (e.g., the data plane app tier 946 of FIG. 9) via the VNIC 1042 contained in the data plane mirror app tier 1040 and the VNIC 1042 contained in the data plane app tier 1046. [0170] The Internet gateway 1034 contained in the control plane VCN 1016 can be communicatively coupled to a metadata management service 1052 (e.g., the metadata management service 952 of FIG. 9) that can be communicatively coupled to public Internet 1054 (e.g., public Internet 954 of FIG. 9). Public Internet 1054 can be communicatively coupled to the NAT gateway 1038 contained in the control plane VCN 1016. The service gateway 1036 contained in the control plane VCN 1016 can be communicatively couple to cloud services 1056 (e.g., cloud services 956 of FIG. 9). [0171] In some examples, the data plane VCN 1018 can be contained in the customer tenancy 1021. In this case, the IaaS provider may provide the control plane VCN 1016 for each customer, and the IaaS provider may, for each customer, set up a unique compute instance 1044 that is contained in the service tenancy 1019. Each compute instance 1044 may allow communication between the control plane VCN 1016, contained in the service tenancy 1019, and the data plane VCN 1018 that is contained in the customer tenancy 1021. The compute instance 1044 may allow resources, that are provisioned in the control plane VCN 1016 that is contained in the service tenancy 1019, to be deployed or otherwise used in the data plane VCN 1018 that is contained in the customer tenancy 1021. [0172] In other examples, the customer of the IaaS provider may have databases that live in the customer tenancy 1021. In this example, the control plane VCN 1016 can include the data plane mirror app tier 1040 that can include app subnet(s) 1026. The data plane mirror app tier 1040 can reside in the data plane VCN 1018, but the data plane mirror app tier 1040 may not live in the data plane VCN 1018. That is, the data plane mirror app tier 1040 may have access to the customer tenancy 1021, but the data plane mirror app tier 1040 may not exist in the data plane VCN 1018 or be owned or operated by the customer of the IaaS provider. The data plane mirror app tier 1040 may be configured to make calls to the data plane VCN 1018 but may not be configured to make calls to any entity contained in the control plane VCN 1016. The customer may desire to deploy or otherwise use resources in the data plane VCN 1018 that are provisioned in the control plane VCN 1016, and the data plane mirror app tier 1040 can facilitate the desired deployment, or other usage of resources, of the customer. [0173] In some embodiments, the customer of the IaaS provider can apply filters to the data plane VCN 1018. In this embodiment, the customer can determine what the data plane VCN 1018 can access, and the customer may restrict access to public Internet 1054 from the data plane VCN 1018. The IaaS provider may not be able to apply filters or otherwise control access of the data plane VCN 1018 to any outside networks or databases. Applying filters and controls by the customer onto the data plane VCN 1018, contained in the customer tenancy 1021, can help isolate the data plane VCN 1018 from other customers and from public Internet 1054. [0174] In some embodiments, cloud services 1056 can be called by the service gateway 1036 to access services that may not exist on public Internet 1054, on the control plane VCN 1016, or on the data plane VCN 1018. The connection between cloud services 1056 and the control plane VCN 1016 or the data plane VCN 1018 may not be live or continuous. Cloud services 1056 may exist on a different network owned or operated by the IaaS provider. Cloud services 1056 may be configured to receive calls from the service gateway 1036 and may be configured to not receive calls from public Internet 1054. Some cloud services 1056 may be isolated from other cloud services 1056, and the control plane VCN 1016 may be isolated from cloud services 1056 that may not be in the same region as the control plane VCN 1016. For example, the control plane VCN 1016 may be located in “Region 1,” and cloud service “Deployment 9,” may be located in Region 1 and in “Region 2.” If a call to Deployment 9 is made by the service gateway 1036 contained in the control plane VCN 1016 located in Region 1, the call may be transmitted to Deployment 9 in Region 1. In this example, the control plane VCN 1016, or Deployment 9 in Region 1, may not be communicatively coupled to, or otherwise in communication with, Deployment 9 in Region 2. [0175] FIG. 11 is a block diagram 1100 illustrating another example pattern of an IaaS architecture, according to at least one embodiment. Service operators 1102 (e.g., service operators 902 of FIG. 9) can be communicatively coupled to a secure host tenancy 1104 (e.g., the secure host tenancy 904 of FIG. 9) that can include a virtual cloud network (VCN) 1106 (e.g., the VCN 906 of FIG. 9) and a secure host subnet 1108 (e.g., the secure host subnet 908 of FIG. 9). The VCN 1106 can include an LPG 1110 (e.g., the LPG 910 of FIG. 9) that can be communicatively coupled to an SSH VCN 1112 (e.g., the SSH VCN 912 of FIG. 9) via an LPG 1110 contained in the SSH VCN 1112. The SSH VCN 1112 can include an SSH subnet 1114 (e.g., the SSH subnet 914 of FIG. 9), and the SSH VCN 1112 can be communicatively coupled to a control plane VCN 1116 (e.g., the control plane VCN 916 of FIG. 9) via an LPG 1110 contained in the control plane VCN 1116 and to a data plane VCN 1118 (e.g., the data plane 918 of FIG. 9) via an LPG 1110 contained in the data plane VCN 1118. The control plane VCN 1116 and the data plane VCN 1118 can be contained in a service tenancy 1119 (e.g., the service tenancy 919 of FIG. 9). [0176] The control plane VCN 1116 can include a control plane DMZ tier 1120 (e.g., the control plane DMZ tier 920 of FIG. 9) that can include load balancer (LB) subnet(s) 1122 (e.g., LB subnet(s) 922 of FIG. 9), a control plane app tier 1124 (e.g., the control plane app tier 924 of FIG. 9) that can include app subnet(s) 1126 (e.g., similar to app subnet(s) 926 of FIG. 9), a control plane data tier 1128 (e.g., the control plane data tier 928 of FIG. 9) that can include DB subnet(s) 1130. The LB subnet(s) 1122 contained in the control plane DMZ tier 1120 can be communicatively coupled to the app subnet(s) 1126 contained in the control plane app tier 1124 and to an Internet gateway 1134 (e.g., the Internet gateway 934 of FIG. 9) that can be contained in the control plane VCN 1116, and the app subnet(s) 1126 can be communicatively coupled to the DB subnet(s) 1130 contained in the control plane data tier 1128 and to a service gateway 1136 (e.g., the service gateway of FIG. 9) and a network address translation (NAT) gateway 1138 (e.g., the NAT gateway 938 of FIG. 9). The control plane VCN 1116 can include the service gateway 1136 and the NAT gateway 1138. [0177] The data plane VCN 1118 can include a data plane app tier 1146 (e.g., the data plane app tier 946 of FIG. 9), a data plane DMZ tier 1148 (e.g., the data plane DMZ tier 948 of FIG. 9), and a data plane data tier 1150 (e.g., the data plane data tier 950 of FIG. 9). The data plane DMZ tier 1148 can include LB subnet(s) 1122 that can be communicatively coupled to trusted app subnet(s) 1160 and untrusted app subnet(s) 1162 of the data plane app tier 1146 and the Internet gateway 1134 contained in the data plane VCN 1118. The trusted app subnet(s) 1160 can be communicatively coupled to the service gateway 1136 contained in the data plane VCN 1118, the NAT gateway 1138 contained in the data plane VCN 1118, and DB subnet(s) 1130 contained in the data plane data tier 1150. The untrusted app subnet(s) 1162 can be communicatively coupled to the service gateway 1136 contained in the data plane VCN 1118 and DB subnet(s) 1130 contained in the data plane data tier 1150. The data plane data tier 1150 can include DB subnet(s) 1130 that can be communicatively coupled to the service gateway 1136 contained in the data plane VCN 1118. [0178] The untrusted app subnet(s) 1162 can include one or more primary VNICs 1164(1)-(N) that can be communicatively coupled to tenant virtual machines (VMs) 1166(1)-(N). Each tenant VM 1166(1)-(N) can be communicatively coupled to a respective app subnet 1167(1)-(N) that can be contained in respective container egress VCNs 1168(1)-(N) that can be contained in respective customer tenancies 1170(1)-(N). Respective secondary VNICs 1172(1)-(N) can facilitate communication between the untrusted app subnet(s) 1162 contained in the data plane VCN 1118 and the app subnet contained in the container egress VCNs 1168(1)-(N). Each container egress VCNs 1168(1)-(N) can include a NAT gateway 1138 that can be communicatively coupled to public Internet 1154 (e.g., public Internet 954 of FIG. 9). [0179] The Internet gateway 1134 contained in the control plane VCN 1116 and contained in the data plane VCN 1118 can be communicatively coupled to a metadata management service 1152 (e.g., the metadata management system 952 of FIG. 9) that can be communicatively coupled to public Internet 1154. Public Internet 1154 can be communicatively coupled to the NAT gateway 1138 contained in the control plane VCN 1116 and contained in the data plane VCN 1118. The service gateway 1136 contained in the control plane VCN 1116 and contained in the data plane VCN 1118 can be communicatively couple to cloud services 1156. [0180] In some embodiments, the data plane VCN 1118 can be integrated with customer tenancies 1170. This integration can be useful or desirable for customers of the IaaS provider in some cases such as a case that may desire support when executing code. The customer may provide code to run that may be destructive, may communicate with other customer resources, or may otherwise cause undesirable effects. In response to this, the IaaS provider may determine whether to run code given to the IaaS provider by the customer. [0181] In some examples, the customer of the IaaS provider may grant temporary network access to the IaaS provider and request a function to be attached to the data plane tier app 1146. Code to run the function may be executed in the VMs 1166(1)-(N), and the code may not be configured to run anywhere else on the data plane VCN 1118. Each VM 1166(1)-(N) may be connected to one customer tenancy 1170. Respective containers 1171(1)-(N) contained in the VMs 1166(1)-(N) may be configured to run the code. In this case, there can be a dual isolation (e.g., the containers 1171(1)-(N) running code, where the containers 1171(1)-(N) may be contained in at least the VM 1166(1)-(N) that are contained in the untrusted app subnet(s) 1162), which may help prevent incorrect or otherwise undesirable code from damaging the network of the IaaS provider or from damaging a network of a different customer. The containers 1171(1)-(N) may be communicatively coupled to the customer tenancy 1170 and may be configured to transmit or receive data from the customer tenancy 1170. The containers 1171(1)-(N) may not be configured to transmit or receive data from any other entity in the data plane VCN 1118. Upon completion of running the code, the IaaS provider may kill or otherwise dispose of the containers 1171(1)- (N). [0182] In some embodiments, the trusted app subnet(s) 1160 may run code that may be owned or operated by the IaaS provider. In this embodiment, the trusted app subnet(s) 1160 may be communicatively coupled to the DB subnet(s) 1130 and be configured to execute CRUD operations in the DB subnet(s) 1130. The untrusted app subnet(s) 1162 may be communicatively coupled to the DB subnet(s) 1130, but in this embodiment, the untrusted app subnet(s) may be configured to execute read operations in the DB subnet(s) 1130. The containers 1171(1)-(N) that can be contained in the VM 1166(1)-(N) of each customer and that may run code from the customer may not be communicatively coupled with the DB subnet(s) 1130. [0183] In other embodiments, the control plane VCN 1116 and the data plane VCN 1118 may not be directly communicatively coupled. In this embodiment, there may be no direct communication between the control plane VCN 1116 and the data plane VCN 1118. However, communication can occur indirectly through at least one method. An LPG 1110 may be established by the IaaS provider that can facilitate communication between the control plane VCN 1116 and the data plane VCN 1118. In another example, the control plane VCN 1116 or the data plane VCN 1118 can make a call to cloud services 1156 via the service gateway 1136. For example, a call to cloud services 1156 from the control plane VCN 1116 can include a request for a service that can communicate with the data plane VCN 1118. [0184] FIG. 12 is a block diagram 1200 illustrating another example pattern of an IaaS architecture, according to at least one embodiment. Service operators 1202 (e.g., service operators 902 of FIG. 9) can be communicatively coupled to a secure host tenancy 1204 (e.g., the secure host tenancy 904 of FIG. 9) that can include a virtual cloud network (VCN) 1206 (e.g., the VCN 906 of FIG. 9) and a secure host subnet 1208 (e.g., the secure host subnet 908 of FIG. 9). The VCN 1206 can include an LPG 1210 (e.g., the LPG 910 of FIG. 9) that can be communicatively coupled to an SSH VCN 1212 (e.g., the SSH VCN 912 of FIG. 9) via an LPG 1210 contained in the SSH VCN 1212. The SSH VCN 1212 can include an SSH subnet 1214 (e.g., the SSH subnet 914 of FIG. 9), and the SSH VCN 1212 can be communicatively coupled to a control plane VCN 1216 (e.g., the control plane VCN 916 of FIG. 9) via an LPG 1210 contained in the control plane VCN 1216 and to a data plane VCN 1218 (e.g., the data plane 918 of FIG. 9) via an LPG 1210 contained in the data plane VCN 1218. The control plane VCN 1216 and the data plane VCN 1218 can be contained in a service tenancy 1219 (e.g., the service tenancy 919 of FIG. 9). [0185] The control plane VCN 1216 can include a control plane DMZ tier 1220 (e.g., the control plane DMZ tier 920 of FIG. 9) that can include LB subnet(s) 1222 (e.g., LB subnet(s) 922 of FIG. 9), a control plane app tier 1224 (e.g., the control plane app tier 924 of FIG. 9) that can include app subnet(s) 1226 (e.g., app subnet(s) 926 of FIG. 9), a control plane data tier 1228 (e.g., the control plane data tier 928 of FIG. 9) that can include DB subnet(s) 1230 (e.g., DB subnet(s) 1130 of FIG. 11). The LB subnet(s) 1222 contained in the control plane DMZ tier 1220 can be communicatively coupled to the app subnet(s) 1226 contained in the control plane app tier 1224 and to an Internet gateway 1234 (e.g., the Internet gateway 934 of FIG. 9) that can be contained in the control plane VCN 1216, and the app subnet(s) 1226 can be communicatively coupled to the DB subnet(s) 1230 contained in the control plane data tier 1228 and to a service gateway 1236 (e.g., the service gateway of FIG. 9) and a network address translation (NAT) gateway 1238 (e.g., the NAT gateway 938 of FIG. 9). The control plane VCN 1216 can include the service gateway 1236 and the NAT gateway 1238. [0186] The data plane VCN 1218 can include a data plane app tier 1246 (e.g., the data plane app tier 946 of FIG. 9), a data plane DMZ tier 1248 (e.g., the data plane DMZ tier 948 of FIG. 9), and a data plane data tier 1250 (e.g., the data plane data tier 950 of FIG.9). The data plane DMZ tier 1248 can include LB subnet(s) 1222 that can be communicatively coupled to trusted app subnet(s) 1260 (e.g., trusted app subnet(s) 1160 of FIG. 11) and untrusted app subnet(s) 1262 (e.g., untrusted app subnet(s) 1162 of FIG. 11) of the data plane app tier 1246 and the Internet gateway 1234 contained in the data plane VCN 1218. The trusted app subnet(s) 1260 can be communicatively coupled to the service gateway 1236 contained in the data plane VCN 1218, the NAT gateway 1238 contained in the data plane VCN 1218, and DB subnet(s) 1230 contained in the data plane data tier 1250. The untrusted app subnet(s) 1262 can be communicatively coupled to the service gateway 1236 contained in the data plane VCN 1218 and DB subnet(s) 1230 contained in the data plane data tier 1250. The data plane data tier 1250 can include DB subnet(s) 1230 that can be communicatively coupled to the service gateway 1236 contained in the data plane VCN 1218. [0187] The untrusted app subnet(s) 1262 can include primary VNICs 1264(1)-(N) that can be communicatively coupled to tenant virtual machines (VMs) 1266(1)-(N) residing within the untrusted app subnet(s) 1262. Each tenant VM 1266(1)-(N) can run code in a respective container 1267(1)-(N), and be communicatively coupled to an app subnet 1226 that can be contained in a data plane app tier 1246 that can be contained in a container egress VCN 1268. Respective secondary VNICs 1272(1)-(N) can facilitate communication between the untrusted app subnet(s) 1262 contained in the data plane VCN 1218 and the app subnet contained in the container egress VCN 1268. The container egress VCN can include a NAT gateway 1238 that can be communicatively coupled to public Internet 1254 (e.g., public Internet 954 of FIG. 9). [0188] The Internet gateway 1234 contained in the control plane VCN 1216 and contained in the data plane VCN 1218 can be communicatively coupled to a metadata management service 1252 (e.g., the metadata management system 952 of FIG.9) that can be communicatively coupled to public Internet 1254. Public Internet 1254 can be communicatively coupled to the NAT gateway 1238 contained in the control plane VCN 1216 and contained in the data plane VCN 1218. The service gateway 1236 contained in the control plane VCN 1216 and contained in the data plane VCN 1218 can be communicatively couple to cloud services 1256. [0189] In some examples, the pattern illustrated by the architecture of block diagram 1200 of FIG. 12 may be considered an exception to the pattern illustrated by the architecture of block diagram 1100 of FIG.11 and may be desirable for a customer of the IaaS provider if the IaaS provider cannot directly communicate with the customer (e.g., a disconnected region). The respective containers 1267(1)-(N) that are contained in the VMs 1266(1)-(N) for each customer can be accessed in real-time by the customer. The containers 1267(1)-(N) may be configured to make calls to respective secondary VNICs 1272(1)-(N) contained in app subnet(s) 1226 of the data plane app tier 1246 that can be contained in the container egress VCN 1268. The secondary VNICs 1272(1)-(N) can transmit the calls to the NAT gateway 1238 that may transmit the calls to public Internet 1254. In this example, the containers 1267(1)-(N) that can be accessed in real- time by the customer can be isolated from the control plane VCN 1216 and can be isolated from other entities contained in the data plane VCN 1218. The containers 1267(1)-(N) may also be isolated from resources from other customers. [0190] In other examples, the customer can use the containers 1267(1)-(N) to call cloud services 1256. In this example, the customer may run code in the containers 1267(1)-(N) that requests a service from cloud services 1256. The containers 1267(1)-(N) can transmit this request to the secondary VNICs 1272(1)-(N) that can transmit the request to the NAT gateway that can transmit the request to public Internet 1254. Public Internet 1254 can transmit the request to LB subnet(s) 1222 contained in the control plane VCN 1216 via the Internet gateway 1234. In response to determining the request is valid, the LB subnet(s) can transmit the request to app subnet(s) 1226 that can transmit the request to cloud services 1256 via the service gateway 1236. [0191] It should be appreciated that IaaS architectures 900, 1000, 1100, 1200 depicted in the figures may have other components than those depicted. Further, the embodiments shown in the figures are only some examples of a cloud infrastructure system that may incorporate an embodiment of the disclosure. In some other embodiments, the IaaS systems may have more or fewer components than shown in the figures, may combine two or more components, or may have a different configuration or arrangement of components. [0192] In certain embodiments, the IaaS systems described herein may include a suite of applications, middleware, and database service offerings that are delivered to a customer in a self-service, subscription-based, elastically scalable, reliable, highly available, and secure manner. An example of such an IaaS system is the Oracle Cloud Infrastructure (OCI) provided by the present assignee. [0193] FIG. 13 illustrates an example computer system 1300, in which various embodiments may be implemented. The system 1300 may be used to implement any of the computer systems described above. As shown in the figure, computer system 1300 includes a processing unit 1304 that communicates with a number of peripheral subsystems via a bus subsystem 1302. These peripheral subsystems may include a processing acceleration unit 1306, an I/O subsystem 1308, a storage subsystem 1318 and a communications subsystem 1324. Storage subsystem 1318 includes tangible computer-readable storage media 1322 and a system memory 1310. [0194] Bus subsystem 1302 provides a mechanism for letting the various components and subsystems of computer system 1300 communicate with each other as intended. Although bus subsystem 1302 is shown schematically as a single bus, alternative embodiments of the bus subsystem may utilize multiple buses. Bus subsystem 1302 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. For example, such architectures may include an Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus, which can be implemented as a Mezzanine bus manufactured to the IEEE P1386.1 standard. [0195] Processing unit 1304, which can be implemented as one or more integrated circuits (e.g., a conventional microprocessor or microcontroller), controls the operation of computer system 1300. One or more processors may be included in processing unit 1304. These processors may include single core or multicore processors. In certain embodiments, processing unit 1304 may be implemented as one or more independent processing units 1332 and/or 1334 with single or multicore processors included in each processing unit. In other embodiments, processing unit 1304 may also be implemented as a quad-core processing unit formed by integrating two dual- core processors into a single chip. [0196] In various embodiments, processing unit 1304 can execute a variety of programs in response to program code and can maintain multiple concurrently executing programs or processes. At any given time, some or all of the program code to be executed can be resident in processor(s) 1304 and/or in storage subsystem 1318. Through suitable programming, processor(s) 1304 can provide various functionalities described above. Computer system 1300 may additionally include a processing acceleration unit 1306, which can include a digital signal processor (DSP), a special-purpose processor, and/or the like. [0197] I/O subsystem 1308 may include user interface input devices and user interface output devices. User interface input devices may include a keyboard, pointing devices such as a mouse or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel, a dial, a button, a switch, a keypad, audio input devices with voice command recognition systems, microphones, and other types of input devices. User interface input devices may include, for example, motion sensing and/or gesture recognition devices such as the Microsoft Kinect® motion sensor that enables users to control and interact with an input device, such as the Microsoft Xbox® 360 game controller, through a natural user interface using gestures and spoken commands. User interface input devices may also include eye gesture recognition devices such as the Google Glass® blink detector that detects eye activity (e.g., ‘blinking’ while taking pictures and/or making a menu selection) from users and transforms the eye gestures as input into an input device (e.g., Google Glass®). Additionally, user interface input devices may include voice recognition sensing devices that enable users to interact with voice recognition systems (e.g., Siri® navigator), through voice commands. [0198] User interface input devices may also include, without limitation, three dimensional (3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices such as speakers, digital cameras, digital camcorders, portable media players, webcams, image scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and eye gaze tracking devices. Additionally, user interface input devices may include, for example, medical imaging input devices such as computed tomography, magnetic resonance imaging, position emission tomography, medical ultrasonography devices. User interface input devices may also include, for example, audio input devices such as MIDI keyboards, digital musical instruments and the like. [0199] User interface output devices may include a display subsystem, indicator lights, or non- visual displays such as audio output devices, etc. The display subsystem may be a cathode ray tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD) or plasma display, a projection device, a touch screen, and the like. In general, use of the term "output device" is intended to include all possible types of devices and mechanisms for outputting information from computer system 1300 to a user or other computer. For example, user interface output devices may include, without limitation, a variety of display devices that visually convey text, graphics and audio/video information such as monitors, printers, speakers, headphones, automotive navigation systems, plotters, voice output devices, and modems. [0200] Computer system 1300 may comprise a storage subsystem 1318 that provides a tangible non-transitory computer-readable storage medium for storing software and data constructs that provide the functionality of the embodiments described in this disclosure. The software can include programs, code, instructions, scripts, etc., that when executed by one or more cores or processors of processing unit 1304 provide the functionality described above. Storage subsystem 1318 may also provide a repository for storing data used in accordance with the present disclosure. [0201] As depicted in the example in FIG.13, storage subsystem 1318 can include various components including a system memory 1310, computer-readable storage media 1322, and a computer readable storage media reader 1320. System memory 1310 may store program instructions that are loadable and executable by processing unit 1304. System memory 1310 may also store data that is used during the execution of the instructions and/or data that is generated during the execution of the program instructions. Various different kinds of programs may be loaded into system memory 1310 including but not limited to client applications, Web browsers, mid-tier applications, relational database management systems (RDBMS), virtual machines, containers, etc. [0202] System memory 1310 may also store an operating system 1316. Examples of operating system 1316 may include various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems, a variety of commercially-available UNIX® or UNIX-like operating systems (including without limitation the variety of GNU/Linux operating systems, the Google Chrome® OS, and the like) and/or mobile operating systems such as iOS, Windows® Phone, Android® OS, BlackBerry® OS, and Palm® OS operating systems. In certain implementations where computer system 1300 executes one or more virtual machines, the virtual machines along with their guest operating systems (GOSs) may be loaded into system memory 1310 and executed by one or more processors or cores of processing unit 1304. [0203] System memory 1310 can come in different configurations depending upon the type of computer system 1300. For example, system memory 1310 may be volatile memory (such as random access memory (RAM)) and/or non-volatile memory (such as read-only memory (ROM), flash memory, etc.). Different types of RAM configurations may be provided including a static random access memory (SRAM), a dynamic random access memory (DRAM), and others. In some implementations, system memory 1310 may include a basic input/output system (BIOS) containing basic routines that help to transfer information between elements within computer system 1300, such as during start-up. [0204] Computer-readable storage media 1322 may represent remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing, storing, computer-readable information for use by computer system 1300 including instructions executable by processing unit 1304 of computer system 1300. [0205] Computer-readable storage media 1322 can include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information. This can include tangible computer- readable storage media such as RAM, ROM, electronically erasable programmable ROM (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible computer readable media. [0206] By way of example, computer-readable storage media 1322 may include a hard disk drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM, DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 1322 may include, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash drives, secure digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable storage media 1322 may also include, solid-state drives (SSD) based on non-volatile memory such as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory based SSDs. The disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, programs, and other data for computer system 1300. [0207] Machine-readable instructions executable by one or more processors or cores of processing unit 1304 may be stored on a non-transitory computer-readable storage medium. A non-transitory computer-readable storage medium can include physically tangible memory or storage devices that include volatile memory storage devices and/or non-volatile storage devices. Examples of non-transitory computer-readable storage medium include magnetic storage media (e.g., disk or tapes), optical storage media (e.g., DVDs, CDs), various types of RAM, ROM, or flash memory, hard drives, floppy drives, detachable memory drives (e.g., USB drives), or other type of storage device. [0208] Communications subsystem 1324 provides an interface to other computer systems and networks. Communications subsystem 1324 serves as an interface for receiving data from and transmitting data to other systems from computer system 1300. For example, communications subsystem 1324 may enable computer system 1300 to connect to one or more devices via the Internet. In some embodiments communications subsystem 1324 can include radio frequency (RF) transceiver components for accessing wireless voice and/or data networks (e.g., using cellular telephone technology, advanced data network technology, such as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile communication technologies, or any combination thereof), global positioning system (GPS) receiver components, and/or other components. In some embodiments communications subsystem 1324 can provide wired network connectivity (e.g., Ethernet) in addition to or instead of a wireless interface. [0209] In some embodiments, communications subsystem 1324 may also receive input communication in the form of structured and/or unstructured data feeds 1326, event streams 1328, event updates 1330, and the like on behalf of one or more users who may use computer system 1300. [0210] By way of example, communications subsystem 1324 may be configured to receive data feeds 1326 in real-time from users of social networks and/or other communication services such as Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary (RSS) feeds, and/or real-time updates from one or more third party information sources. [0211] Additionally, communications subsystem 1324 may also be configured to receive data in the form of continuous data streams, which may include event streams 1328 of real-time events and/or event updates 1330, that may be continuous or unbounded in nature with no explicit end. Examples of applications that generate continuous data may include, for example, sensor data applications, financial tickers, network performance measuring tools (e.g., network monitoring and traffic management applications), clickstream analysis tools, automobile traffic monitoring, and the like. [0212] Communications subsystem 1324 may also be configured to output the structured and/or unstructured data feeds 1326, event streams 1328, event updates 1330, and the like to one or more databases that may be in communication with one or more streaming data source computers coupled to computer system 1300. [0213] Computer system 1300 can be one of various types, including a handheld portable device (e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device (e.g., a Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a server rack, or any other data processing system. [0214] Due to the ever-changing nature of computers and networks, the description of computer system 1300 depicted in the figure is intended only as a specific example. Many other configurations having more or fewer components than the system depicted in the figure are possible. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, firmware, software (including applets), or a combination. Further, connection to other computing devices, such as network input/output devices, may be employed. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the various embodiments. [0215] Although specific embodiments have been described, various modifications, alterations, alternative constructions, and equivalents are also encompassed within the scope of the disclosure. Embodiments are not restricted to operation within certain specific data processing environments, but are free to operate within a plurality of data processing environments. Additionally, although embodiments have been described using a particular series of transactions and steps, it should be apparent to those skilled in the art that the scope of the present disclosure is not limited to the described series of transactions and steps. Various features and aspects of the above-described embodiments may be used individually or jointly. [0216] Further, while embodiments have been described using a particular combination of hardware and software, it should be recognized that other combinations of hardware and software are also within the scope of the present disclosure. Embodiments may be implemented only in hardware, or only in software, or using combinations thereof. The various processes described herein can be implemented on the same processor or different processors in any combination. Accordingly, where components are described as being configured to perform certain operations, such configuration can be accomplished, e.g., by designing electronic circuits to perform the operation, by programming programmable electronic circuits (such as microprocessors) to perform the operation, or any combination thereof. Processes can communicate using a variety of techniques including but not limited to conventional techniques for inter process communication, and different pairs of processes may use different techniques, or the same pair of processes may use different techniques at different times. Embodiments may be implemented by using a computer program product, comprising computer program/instructions which, when executed by a processor, cause the processor to perform any of the methods described in the disclosure. [0217] The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that additions, subtractions, deletions, and other modifications and changes may be made thereunto without departing from the broader spirit and scope as set forth in the claims. Thus, although specific disclosure embodiments have been described, these are not intended to be limiting. Various modifications and equivalents are within the scope of the following claims. [0218] The use of the terms “a” and “an” and “the” and similar referents in the context of describing the disclosed embodiments (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure. [0219] Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is intended to be understood within the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present. [0220] Preferred embodiments of this disclosure are described herein, including the best mode known for carrying out the disclosure. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. Those of ordinary skill should be able to employ such variations as appropriate and the disclosure may be practiced otherwise than as specifically described herein. Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein. [0221] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein. [0222] In the foregoing specification, aspects of the disclosure are described with reference to specific embodiments thereof, but those skilled in the art will recognize that the disclosure is not limited thereto. Various features and aspects of the above-described disclosure may be used individually or jointly. Further, embodiments can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive.

Claims

WHAT IS CLAIMED IS: 1. A method, comprising: generating, by a distributed computing system of a cloud service provider, a virtual cloud network in a data center of a host region, the virtual cloud network comprising a plurality of host instances each having primary network addresses associated with a routing table of the virtual cloud network; implementing, on a first instance of the plurality of host instances, a virtual private network router; sending, by a second instance of the plurality of host instances, a secondary network address of the second instance to the virtual private network router; sending, from a third instance of the plurality of host instances, a request addressed to the secondary network address; routing the request to the virtual private network router according to a default route of the routing table, the default route identifying the primary network address of the first instance; establishing a networking tunnel between the first instance and the second instance according to the secondary address; and forwarding, by the virtual private network router using the networking tunnel, the request to the second instance.
2. The method of claim 1, further comprising: provisioning, by a first service hosted in the virtual cloud network, a network host in a data center of a target region; establishing a first network connection between the first instance and network host in a target region; and receiving, from the network host using the first network connection, routing information comprising a network address of a target region instance.
3. The method of claim 2, further comprising: sending, from the third instance of the plurality of host instances, a second request addressed to the network address of the target region instance; and routing the second request to the target region instance according to the routing information and using the first network connection.
4. The method of claim 2, further comprising: establishing a second network connection between the third instance of the plurality of host instances and the network host; and sending, from the third instance, a second request addressed to the network address of the target region instance, the second request sent using the second network connection.
5. The method of any one of claims 2 to 4, wherein provisioning the network host comprises provisioning the network host using a an out-of-band network connection between the first service and the data center of the target region.
6. The method of any one of claims 2 to 5, wherein the first network connection is a first IPSec tunnel, and wherein establishing the first network connection comprises terminating the first IPSec tunnel at the network host.
7. The method of claim 4, wherein the second network connection is a second IPSec tunnel, and wherein establishing the second network connection comprises terminating the second IPSec tunnel at the network host.
8. The method of any one of claims 1 to 7, wherein the request is an anycast request.
9. The method of any one of claims 1 to 8, wherein the networking tunnel comprises an IP-in-IP tunnel.
10. A computing system comprising: one or more processors; and one or more memories storing computer-executable instructions that, when executed with the one or more processors, cause the computing system to at least: generate a virtual cloud network in a data center of a host region, the virtual cloud network comprising a plurality of host instances each having primary network addresses associated with a routing table of the virtual cloud network; implement, on a first instance of the plurality of host instances, a virtual private network router; send, by a second instance of the plurality of host instances, a secondary network address of the second instance to the virtual private network router; send, from a third instance of the plurality of host instances, a request addressed to the secondary network address; route the request to the virtual private network router according to a default route of the routing table, the default route identifying the primary network address of the first instance; establish a networking tunnel between the first instance and the second instance according to the secondary address; and forward, by the virtual private network router using the networking tunnel, the request to the second instance.
11. The computing system of claim 10, wherein the one or more memories store additional instructions that, when executed with the one or more processors, further cause the computing system to at least: provision, by a first service hosted in the virtual cloud network, a network host in a data center of a target region; establish a first network connection between the first instance and the virtual private network host in a target region; and receive, from the network host using the first network connection, routing information comprising a network address of a target region instance.
12. The computing system of claim 11, wherein the one or more memories store additional instructions that, when executed with the one or more processors, further cause the computing system to at least: send, from the third instance of the plurality of host instances, a second request addressed to the network address of the target region instance; and route the second request to the target region instance according to the routing information and using the first network connection.
13. The computing system of claim 11, wherein the one or more memories store additional instructions that, when executed with the one or more processors, further cause the computing system to at least: establish a second network connection between the third instance of the plurality of host instances and the network host; and send, from the third instance, a second request addressed to the network address of the target region instance, the second request sent using the second network connection.
14. The computing system of any one of claim 11 to 13, wherein provisioning the network host comprises provisioning the network host using an out-of-band network connection between the first service and the data center of the target region.
15. The computing system of any one of claims 11 to 14, wherein the first network connection is a first IPSec tunnel, and wherein establishing the first network connection comprises terminating the first IPSec tunnel at the network host.
16. A non-transitory computer-readable medium storing computer-executable instructions that, when executed with one or more processors, cause a computing system to at least: generate a virtual cloud network in a data center of a host region, the virtual cloud network comprising a plurality of host instances each having primary network addresses associated with a routing table of the virtual cloud network; implement, on a first instance of the plurality of host instances, a virtual private network router; send, by a second instance of the plurality of host instances, a secondary network address of the second instance to the virtual private network router; send, from a third instance of the plurality of host instances, a request addressed to the secondary network address; route the request to the virtual private network router according to a default route of the routing table, the default route identifying the primary network address of the first instance; establish a networking tunnel between the first instance and the second instance according to the secondary address; and forward, by the virtual private network router using the networking tunnel, the request to the second instance.
17. The non-transitory computer-readable medium of claim 16, storing further instructions that, when executed with the one or more processors, cause the computing system to further: provision, by a first service hosted in the virtual cloud network, a network host in a data center of a target region; establish a first network connection between the first instance and the virtual private network host in a target region; and receive, from the network host using the first network connection, routing information comprising a network address of a target region instance.
18. The non-transitory computer-readable medium of claim 17, storing further instructions that, when executed with the one or more processors, cause the computing system to further: send, from the third instance of the plurality of host instances, a second request addressed to the network address of the target region instance; and route the second request to the target region instance according to the routing information and using the first network connection.
19. The non-transitory computer-readable medium of claim 17, storing further instructions that, when executed with the one or more processors, cause the computing system to further: establish a second network connection between the third instance of the plurality of host instances and the network host; and send, from the third instance, a second request addressed to the network address of the target region instance, the second request sent using the second network connection.
20. The non-transitory computer-readable medium of any one of claims 17 to 19, wherein the first network connection is a first IPSec tunnel, and wherein establishing the first network connection comprises terminating the first IPSec tunnel at the network host.
PCT/US2023/062058 2022-02-08 2023-02-06 Techniques for a virtual bootstrap environment in a distributed virtual private network WO2023154681A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202263308003P 2022-02-08 2022-02-08
US63/308,003 2022-02-08
US202263312814P 2022-02-22 2022-02-22
US63/312,814 2022-02-22
US202263314953P 2022-02-28 2022-02-28
US63/314,953 2022-02-28
US18/105,768 US20230254287A1 (en) 2022-02-08 2023-02-03 Techniques for a virtual bootstrap environment in a distributed virtual private network
US18/105,768 2023-02-03

Publications (1)

Publication Number Publication Date
WO2023154681A1 true WO2023154681A1 (en) 2023-08-17

Family

ID=85640860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2023/062058 WO2023154681A1 (en) 2022-02-08 2023-02-06 Techniques for a virtual bootstrap environment in a distributed virtual private network

Country Status (1)

Country Link
WO (1) WO2023154681A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813379B1 (en) * 2014-05-09 2017-11-07 Amazon Technologies, Inc. Virtual private gateways using compute instances
US20210168052A1 (en) * 2019-11-29 2021-06-03 Amazon Technologies, Inc. Multi-carrier access to provider substrate extensions
US20210266256A1 (en) * 2020-02-26 2021-08-26 Cisco Technology, Inc. Service chaining in multi-fabric cloud networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813379B1 (en) * 2014-05-09 2017-11-07 Amazon Technologies, Inc. Virtual private gateways using compute instances
US20210168052A1 (en) * 2019-11-29 2021-06-03 Amazon Technologies, Inc. Multi-carrier access to provider substrate extensions
US20210266256A1 (en) * 2020-02-26 2021-08-26 Cisco Technology, Inc. Service chaining in multi-fabric cloud networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG HAO ET AL: "Enhancing dynamic cloud-based services using network virtualization", VIRTUALIZED INFRASTRUCTURE SYSTEMS AND ARCHITECTURES, ACM, 2 PENN PLAZA, SUITE 701NEW YORKNY10121-0701USA, 17 August 2009 (2009-08-17), pages 37 - 44, XP058378878, ISBN: 978-1-60558-595-6, DOI: 10.1145/1592648.1592655 *
MD FAIZUL BARI ET AL: "Data Center Network Virtualization: A Survey", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, IEEE, USA, vol. 15, no. 2, 1 April 2013 (2013-04-01), pages 909 - 928, XP011508078, ISSN: 1553-877X, DOI: 10.1109/SURV.2012.090512.00043 *

Similar Documents

Publication Publication Date Title
US11539754B2 (en) Techniques for generating network security policies for application components deployed in a computing environment
US11695776B2 (en) Techniques for automatically configuring minimal cloud service access rights for container applications
JP2024508473A (en) Techniques for validating container framework network policies
US20230328152A1 (en) Routing of web requests to on-premise network in a multi-tenant environment
US20230393858A1 (en) Techniques for bootstrapping across secure air gaps with static sidecar
US20230396590A1 (en) Techniques for bootstrapping across secure air gaps with proxying sidecar
US11948002B2 (en) Management plane orchestration across service cells
US20230254287A1 (en) Techniques for a virtual bootstrap environment in a distributed virtual private network
US20230251871A1 (en) Techniques for migrating services from a virtual bootstrap environment
US20230393859A1 (en) Techniques for bootstrapping across secure air gaps with edge device cluster
US20220138220A1 (en) Dedicated replication channels for replicating records between regions
US20230251888A1 (en) Virtual bootstrap environment for building regional data centers
US20230251909A1 (en) Region seed establishment
WO2023154681A1 (en) Techniques for a virtual bootstrap environment in a distributed virtual private network
US11736579B1 (en) Techniques for resource discovery
US20230251872A1 (en) Techniques for managing region build dependencies
US20230251870A1 (en) Techniques for resource discovery while building data centers
US20230273816A1 (en) Reentrant service deployments
US20230251956A1 (en) Regional capability aware proxy testing
US20230251876A1 (en) Data management techniques for cloud regions
WO2023154680A1 (en) Virtual bootstrap environment for building regional data centers
US20230251921A1 (en) Associating capabilities and alarms
WO2023154683A1 (en) Techniques for migrating services from a virtual bootstrap environment
US20230251873A1 (en) User interface for critical path resources
US20230305858A1 (en) Techniques for building data centers in cloud regions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23711329

Country of ref document: EP

Kind code of ref document: A1