WO2023153424A1 - Solid electrolytic capacitor, and solid electrolytic capacitor manufacturing method - Google Patents

Solid electrolytic capacitor, and solid electrolytic capacitor manufacturing method Download PDF

Info

Publication number
WO2023153424A1
WO2023153424A1 PCT/JP2023/004152 JP2023004152W WO2023153424A1 WO 2023153424 A1 WO2023153424 A1 WO 2023153424A1 JP 2023004152 W JP2023004152 W JP 2023004152W WO 2023153424 A1 WO2023153424 A1 WO 2023153424A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
solid electrolytic
assembly
electrolytic capacitor
capacitor assembly
Prior art date
Application number
PCT/JP2023/004152
Other languages
French (fr)
Japanese (ja)
Inventor
尚大 平尾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023153424A1 publication Critical patent/WO2023153424A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor having a structure in which a laminate of a plurality of capacitor elements is molded with an insulating resin.
  • Patent Document 1 describes an electrolytic capacitor.
  • the electrolytic capacitor described in Patent Document 1 includes a plurality of capacitor elements. Each of the plurality of capacitor elements functions as an individual solid electrolytic capacitor.
  • a plurality of capacitor elements are stacked.
  • a laminate of a plurality of capacitor elements is provided inside the insulating resin body. In other words, the laminate of multiple capacitor elements is sealed with an insulating resin.
  • an object of the present invention is to provide a highly reliable solid electrolytic capacitor.
  • a solid electrolytic capacitor of the present invention includes a capacitor assembly, an insulating resin body, and a restraining member.
  • a capacitor assembly has a structure in which a plurality of capacitor elements are stacked.
  • the insulating resin body seals the periphery of the capacitor assembly.
  • the first member is an integral member that sandwiches the capacitor assembly from at least both sides in the stacking direction of the plurality of capacitor elements and is sealed together with the capacitor assembly by an insulating resin.
  • the positional relationship of the plurality of capacitor elements is maintained by the first member.
  • the connection state of the multiple capacitor elements, the connection state of the capacitor assembly and other conductor portions of the solid electrolytic capacitor, and the state of the capacitor assembly sealed with the insulating resin are maintained in a stable state. be done.
  • FIG. 1A and 1B are side cross-sectional views of a solid electrolytic capacitor according to the first embodiment.
  • FIG. 2A is a plan view of the solid electrolytic capacitor according to the first embodiment
  • FIG. 2B is a plan view of the solid electrolytic capacitor with the insulating resin body removed.
  • FIG. 3 is an external perspective view of the solid electrolytic capacitor according to the first embodiment.
  • FIG. 4 is an external perspective view of a structure including a capacitor assembly, terminal electrodes, and restraining members of the solid electrolytic capacitor according to the first embodiment.
  • 5A is a plan view of a capacitor element
  • FIG. 5B is a side sectional view of the capacitor element
  • FIG. 5C is an external perspective view of the capacitor element.
  • FIG. 6(A) is an external perspective view of the restraining member of the first example
  • FIG. 6(B) is a trihedral view of the restraining member of the first example
  • FIG. 7 is a flow chart showing an example of the method for manufacturing the solid electrolytic capacitor according to the first embodiment.
  • FIG. 8 is a trihedral view of the restraint member of the second example.
  • FIG. 9 is a trihedral view of the restraining member of the third example.
  • FIG. 10 is a trihedral view of the restraining member of the fourth example.
  • FIG. 11 is a trihedral view of the restraining member of the fifth example.
  • FIG. 12 is a side sectional view of a solid electrolytic capacitor according to the second embodiment.
  • FIG. 12 is a side sectional view of a solid electrolytic capacitor according to the second embodiment.
  • FIG. 13(A) is a side cross-sectional view of a solid electrolytic capacitor according to the third embodiment
  • FIG. 13(B) is a plan view showing a capacitor assembly and a restraining member according to the third embodiment.
  • FIG. 13(C) is a plan view showing an example of a derivative of FIG. 13(B).
  • FIG. 14(A) is a side cross-sectional view of a solid electrolytic capacitor according to a fourth embodiment
  • FIG. 14(B) is a plan view showing a capacitor assembly and a restraining member according to the fourth embodiment.
  • FIG. 14(C) is a plain view showing an example of a derivative of FIG. 14(B).
  • FIG. 15 is a side cross-sectional view of a solid electrolytic capacitor according to the fifth embodiment.
  • FIG. 16 is a flow chart showing an example of a method for manufacturing a solid electrolytic capacitor according to the fifth embodiment.
  • FIG. 1A and 1B are side cross-sectional views of a solid electrolytic capacitor according to the first embodiment.
  • 1(A) and 1(B) show the same cross section, and are divided into two figures in consideration of the visibility of the reference numerals and dimensions.
  • FIG. 2A is a plan view of the solid electrolytic capacitor according to the first embodiment
  • FIG. 2B is a plan view of the solid electrolytic capacitor with the insulating resin body removed.
  • FIG. 3 is an external perspective view of the solid electrolytic capacitor according to the first embodiment.
  • FIG. 4 is an external perspective view of a structure including a capacitor assembly, terminal electrodes, and restraining members of the solid electrolytic capacitor according to the first embodiment.
  • the solid electrolytic capacitor 1 includes a capacitor assembly 10 and first terminal electrodes 20. , a second terminal electrode 30 , an insulating resin body 40 , and a restraining member 50 .
  • the capacitor assembly 10 includes a plurality of capacitor elements 11 - 14 (capacitor element 11 , capacitor element 12 , capacitor element 13 , capacitor element 14 ) and a conductive member 19 .
  • the number of capacitor elements constituting the capacitor assembly 10 is four, but the number of capacitor elements may be plural.
  • Capacitor assembly 10 in which restraining member 50 is arranged is sealed with insulating resin body 40 .
  • the insulating resin body 40 has a substantially rectangular parallelepiped shape having a top surface 401 , a bottom surface 402 , a first end surface 403 , a second end surface 404 , a side surface 405 and a side surface 406 .
  • the first terminal electrode 20 is connected to the anodes of the plurality of capacitor elements 11-14 of the capacitor assembly 10 (specific connection configuration will be described later).
  • the first terminal electrode 20 is exposed to the outside from the first end surface 403 of the insulating resin body 40 and arranged over the first end surface 403 and the bottom surface 402 .
  • the second terminal electrode 30 is connected to the cathodes of the plurality of capacitor elements 11-14 of the capacitor assembly 10 (specific connection configuration will be described later).
  • the second terminal electrode 30 is exposed to the outside from the second end surface 404 of the insulating resin body 40 and arranged over the second end surface 404 and the bottom surface 402 .
  • Capacitor element 11 comprises electrode foil 111 , dielectric 112 and connecting conductor 113 .
  • Capacitor element 12 comprises electrode foil 121 , dielectric 122 and connecting conductor 123 .
  • Capacitor element 13 comprises electrode foil 131 , dielectric 132 and connecting conductor 133 .
  • Capacitor element 14 comprises electrode foil 141 , dielectric 142 and connecting conductor 143 .
  • the plurality of capacitor elements 11-14 have the same shape in this embodiment. However, it is not limited to this.
  • 5A is a plan view of a capacitor element
  • FIG. 5B is a side sectional view of the capacitor element
  • FIG. 5C is an external perspective view of the capacitor element.
  • 5A, 5B, and 5C show the capacitor element 11 as an example.
  • 5(A), 5(B), and 5(C) show views in which the first end side of the capacitor element is cut halfway.
  • the electrode foil 111 is rectangular in plan view and has a first end 11EG1 and a second end 11EG2.
  • the direction connecting first end portion 11EG1 and second end portion 11EG2 is the length direction of electrode foil 111 and capacitor element 11 .
  • the direction orthogonal to the length direction and the thickness direction of electrode foil 111 is the width direction of electrode foil 111 and capacitor element 11 .
  • the electrode foil 111 has a large number of holes near its surface. In other words, the vicinity of the surface of the electrode foil 111 is in a porous state (porous body).
  • the dielectric 112 covers the outer surface of the electrode foil 111, including the second end 11EG2, except for a predetermined length of the electrode foil 111 on the side of the first end 11EG1. At this time, the dielectric 112 also covers the surfaces of the numerous holes of the electrode foil 111 . Note that the dielectric 112 may cover the entire surface of the electrode foil 111 . As described above, even if the dielectric 112 covers the entire surface of the electrode foil 111, when the electrode foil 111 is joined (connected) to the first terminal electrode 20, spot welding or the like is performed to prevent the dielectric at the joint. Body 112 penetrates. Therefore, since the electrode foil 111 and the first terminal electrode 20 are electrically connected, there is no problem.
  • connection conductor 113 covers the outer surface of the dielectric 112 (the surface facing the surface in contact with the electrode foil 111). At this time, the connection conductor 113 is not directly connected to the electrode foil 111 . In other words, the end of the connecting conductor 113 on the first end 11EG1 side of the capacitor element 11 is positioned closer to the second end 11EG2 than the end of the dielectric 112 on the first end 11EG1 side.
  • the connecting conductors 113 are also filled in the numerous holes covered with the dielectric 112 .
  • the capacitor element 11 becomes a flat film-shaped solid electrolytic capacitor.
  • the electrode foil 111 becomes an anode and the connecting conductor 113 becomes a cathode.
  • capacitor element 12 has a first end 12EG1 and a second end 12EG2
  • capacitor element 13 has a first end 13EG1 and a second end 13EG2
  • capacitor Element 14 has a first end 14EG1 and a second end 14EG2.
  • a plurality of capacitor elements 11-14 are stacked. More specifically, the plurality of capacitor elements 11-14 are arranged in a direction substantially perpendicular to their flat film surfaces so that their flat film surfaces overlap each other. In this embodiment, for example, as shown in FIGS. 1A and 1B, capacitor element 11, capacitor element 12, capacitor element 13, and capacitor element 14 are arranged and stacked in this order.
  • connection conductor 113 of the capacitor element 11 and the connection conductor 123 of the capacitor element 12 are physically and electrically connected by the conducting member 19 arranged therebetween.
  • a plate-like second terminal electrode 30 is arranged between the connection conductor 123 of the capacitor element 12 and the connection conductor 133 of the capacitor element 13 .
  • the second terminal electrode 30 is sandwiched between the connecting conductor 123 of the capacitor element 12 and the connecting conductor 133 of the capacitor element 13 .
  • Connection conductor 123 of capacitor element 12 and second terminal electrode 30 are physically and electrically connected by conducting member 19 .
  • the second terminal electrode 30 and the connection conductor 133 of the capacitor element 13 are physically and electrically connected by the conducting member 19 .
  • the cathodes of the plurality of capacitor elements 11 - 14 are connected to the second terminal electrode 30 .
  • the portion of second terminal electrode 30 sandwiched between capacitor element 12 (connection conductor 123) and capacitor element 13 (connection conductor 133) corresponds to the "second connection portion" of the present invention.
  • connection conductor 133 of the capacitor element 13 and the connection conductor 143 of the capacitor element 14 are physically and electrically connected by the conductive member 19 arranged therebetween.
  • the first terminal electrode 20 is arranged between the electrode foil 121 and the electrode foil 131 .
  • the first terminal electrode 20 is sandwiched and welded between the electrode foil 121 and the electrode foil 131 .
  • the anodes of the plurality of capacitor elements 11 - 14 are connected to the first terminal electrode 20 .
  • a portion of the first terminal electrode 20 sandwiched between the capacitor element 12 (electrode foil 121) and the capacitor element 13 (electrode foil 131) corresponds to the "first connecting portion" of the present invention.
  • the plurality of capacitor elements 11-14 are configured such that the distance between capacitor element 11 and capacitor element 14 in the stacking direction at the second end (distance between the upper end capacitor and the lower end capacitor) is the first It is arranged so as to be longer than the distance between capacitor element 11 and capacitor element 14 at the ends. More specifically, as shown in FIGS. 1A and 1B, for example, they are arranged so as to spread in the stacking direction from the first end toward the second end.
  • the thickness (length in the stacking direction) D2 of the second end of capacitor assembly 10 is equal to the thickness (length in the stacking direction) of the first end of capacitor assembly 10. d) greater than D1.
  • the thickness of each end portion refers to the upper end and lower end capacitors (capacitor element 14 in this embodiment) of the connection conductor of the upper end capacitor (capacitor element 11 in this embodiment) constituting the capacitor assembly 10. means the distance from the lower end of the connecting conductor of
  • FIG. 6(A) is an external perspective view of the restraining member of the first example
  • FIG. 6(B) is a trihedral view of the restraining member of the first example.
  • the restraint member 50 is annular. More specifically, the restraining member 50 has sides of a first portion 501 , a second portion 502 , a third portion 503 and a fourth portion 504 . Each side portion has a substantially prismatic shape. The first portion 501 and the second portion 502 are arranged parallel, and the third portion 503 and the fourth portion 504 are arranged parallel.
  • the direction in which the first portion 501 and the second portion 502 extend is orthogonal to the direction in which the third portion 503 and the fourth portion 504 extend.
  • One end of the first portion 501 connects to one end of the third portion 503
  • the other end of the third portion 503 connects to one end of the second portion 502 .
  • the other end of the second portion 502 connects to one end of the fourth portion 504
  • the other end of the fourth portion 504 connects to the other end of the first portion 501 .
  • the restraint member 50 becomes an annular body having a hollow portion 500.
  • substantially prismatic shape includes prismatic shapes, and indicates a state in which the corners of each part in a cross-sectional view are rounded or chamfered.
  • the restraint member 50 is provided on both sides of the capacitor assembly 10 in the stacking direction and widthwise. located outward on both sides of the direction.
  • First portion 501 of restraining member 50 abuts on the upper end surface of capacitor assembly 10 in the stacking direction (the upper surface of connecting conductor 113 of capacitor element 11).
  • the second portion 502 of the restraining member 50 abuts on the lower end surface of the capacitor assembly 10 in the stacking direction (the lower surface of the connection conductor 143 of the capacitor element 14).
  • the restraint member 50 restrains the capacitor assembly 10, that is, the laminate of the plurality of capacitor elements 11-14 from both sides in the lamination direction. Although it is preferable that the restraining member 50 abuts on the side surface of the capacitor assembly 10, the restraining member 50 does not have to abut on the side surface.
  • the manner in which the capacitor assembly 10 is restrained by the restraining member 50 is shown.
  • the restraint member 50 can make the relative positional relationship of the plurality of capacitor elements 11 to 14 constituting the capacitor assembly 10 substantially the same before and after being covered with the insulating resin body 40 (fixed), Just do it.
  • the term "restraint" in the present application is not limited to the state in which the restraining member 50 comes into contact with the plurality of capacitor elements 11-14 and pinches and fixes them while applying a predetermined stress.
  • the relative positional relationship between the plurality of capacitor elements 11-14 after being covered with the insulating resin body 40 is the same or substantially the same ( (within the error range that does not affect the characteristics). That is, the restraining member 50 corresponds to a kind of "first member” of the present invention.
  • the restraint member 50 is in contact with the plurality of capacitor elements 11-14 and sandwiches the plurality of capacitor elements 11-14 while applying a predetermined stress, This is good because the positional relationship is fixed more reliably.
  • the insulating resin body 40 has a substantially rectangular parallelepiped shape, and includes a top surface 401, a bottom surface 402, a first end surface 403, It has a second end face 404 , a side face 405 and a side face 406 .
  • Insulating resin body 40 seals capacitor assembly 10 restrained by restraining member 50 . In other words, restraint member 50 and capacitor assembly 10 are embedded in insulating resin body 40 and are not exposed to the outside.
  • the first end face 403 is the end face of the insulating resin body 40 on the first end side of the capacitor assembly 10 .
  • the first terminal electrode 20 is exposed from the first end surface 403 .
  • the second end face 404 is the end face of the insulating resin body 40 on the second end side of the capacitor assembly 10 .
  • the second terminal electrode 30 is exposed from the second end surface 404 .
  • FIG. 7 is a flow chart showing an example of the method for manufacturing the solid electrolytic capacitor according to the first embodiment. Here, a schematic manufacturing method is shown, and specific manufacturing methods, various materials, conditions, and the like will be described later.
  • a plurality of capacitor elements 11-14 are formed (S11).
  • a plurality of capacitor elements 11-14 are laminated to form a capacitor assembly 10 (S12).
  • the capacitor assembly 10 restrained by the restraining member 50 is sealed with the insulating resin body 40 (S14). More specifically, the insulating resin body 40 is formed by covering the capacitor assembly 10 restrained by the restraining member 50 with a fluid insulating resin and solidifying the insulating resin by heat treatment.
  • the first terminal electrode 20 and the second terminal electrode 30 projecting from the insulating resin body 40 are shaped, and the solid electrolytic capacitor 1 is formed.
  • the solid electrolytic capacitor 1 can realize high reliability.
  • Capacitor assembly 10 (a laminate of a plurality of capacitor elements 11 to 14 ) is constrained from both ends in the lamination direction, so that displacement of capacitor assembly 10 in insulating resin body 40 can be suppressed.
  • the capacitor assembly 10 (laminated body of the plurality of capacitor elements 11-14) is constrained from both ends in the lamination direction, the positions of the plurality of capacitor elements 11-14 are pushed by the fluid insulating resin. It is possible to prevent the relationship from being deviated. As a result, separation between the plurality of capacitor elements 11-14 and the conductive member 19 can be suppressed, and an increase in ESR and breakage can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
  • the capacitor assembly 10 (laminated body of the plurality of capacitor elements 11 to 14) is restrained from both ends in the lamination direction, so that even if the solid electrolytic capacitor 1 as a whole is warped during heating, the plurality of capacitor elements 11 -14 and the conductive member 19 can be suppressed, and an increase in ESR and breakage can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
  • the capacitor assembly 10 (laminated body of a plurality of capacitor elements 11 to 14) is constrained from both ends in the lamination direction, the capacitor assembly 10 and the first terminal electrode 20 may be damaged by stress during heating or warping stress. Alternatively, separation from the second terminal electrode 30 and defective conduction can be suppressed, and a decrease in the capacity of the solid electrolytic capacitor 1 can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
  • the capacitor assembly 10 (laminated body of the plurality of capacitor elements 11 to 14) is constrained from both ends in the lamination direction, it is possible to suppress the difference in the distance between the plurality of capacitor elements 11 to 14 due to manufacturing variations. . As a result, the frequency of occurrence of the various problems described above can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
  • the restraining member 50 can be easily fixed to the capacitor assembly 10 . That is, as shown in FIG. 1B, the distance Li between the first portion 501 and the second portion 502 of the restraining member 50 is made larger than the thickness D1 and smaller than the thickness D2. As a result, by inserting the restraint member 50 from the first end side of the capacitor assembly 10 , the capacitor assembly 10 does not pass through the hollow portion 500 of the restraint member 50 , and the capacitor assembly 10 is securely attached to the restraint member 50 . is inserted into
  • the restraint member 50 is securely fixed to the capacitor assembly 10, and restrains the plurality of capacitor elements 11-14 from both sides in the lamination direction of the capacitor assembly 10 (the laminate of the plurality of capacitor elements 11-14). can. Moreover, with this configuration, it is only necessary to insert the restraining member 50 from the first end side of the capacitor assembly 10 during manufacturing. Therefore, a highly reliable solid electrolytic capacitor 1 can be manufactured easily and reliably.
  • the restraining member 50 is arranged at a position overlapping the second terminal electrode 30 when the capacitor assembly 10 is viewed from above (viewed in the stacking direction). Thereby, the positional relationship between the plurality of capacitor elements 12 and 13 and the second terminal electrode 30 can be fixed. Therefore, it is possible to suppress the occurrence of connection problems between the plurality of capacitor elements 12 and 13 and the second terminal electrode 30 . As a result, solid electrolytic capacitor 1 can achieve even higher reliability.
  • Capacitor element 11-14 (Description of specific materials, etc. of each component of the solid electrolytic capacitor 1) (Capacitor element 11-14) Capacitor elements 11-14 are realized, for example, with the following materials and thicknesses. In addition, below, the capacitor
  • the electrode foil 111 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon, or an alloy containing these metals. It should be noted that the electrode foil 111 is preferably made of aluminum or an aluminum alloy. The electrode foil 111 may be made of a valve action metal exhibiting a so-called valve action.
  • the electrode foil 111 preferably has a flat plate shape, and the thickness of the core portion of the electrode foil 111 (the central portion where the pores of the porous body do not reach) is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness (thickness of one side) of the porous part (the part where the pores of the porous body are formed) is preferably 5 ⁇ m or more and 200 ⁇ m or less.
  • the dielectric 112 is preferably made of the oxide film of the electrode foil 111 .
  • the dielectric 112 is formed by oxidizing it in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or sodium salts or ammonium salts thereof.
  • the thickness of the dielectric 112 is preferably 10 nm or more and 100 nm or less.
  • connection conductor 113 is preferably multi-layered.
  • the connection conductor 113 comprises an inner layer and an outer layer.
  • the inner layer is a layer on the dielectric 112 side of the connecting conductor 113, and is, for example, a conductive polymer having a pyrrole, thiophene, or aniline skeleton, or a conductive polymer PEDOT [ Poly(3,4-ethylenedioxythiophene)], etc., and may be a PEDOT:PSS layer composited with polystyrene sulfonic acid (PSS) as a dopant.
  • PSS polystyrene sulfonic acid
  • a method of forming a polymer film such as poly(3,4-ethylenedioxythiophene) on the surface of the dielectric 112 using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene, or , poly(3,4-ethylenedioxythiophene) or the like is applied to the surface of the dielectric portion and dried.
  • the outer layer is a layer formed outside the inner layer.
  • the outer layer is a layer formed so as to cover the entire dielectric 112 after forming an inner layer that fills fine recesses of the porous portion.
  • the thickness of the outer layer is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the outer layer is preferably a carbon layer, graphene layer, or silver layer formed by applying a conductive paste such as carbon paste, graphene paste, or silver paste.
  • a composite layer in which a silver layer is provided on a carbon layer or a graphene layer, or a mixed layer in which a carbon paste or a graphene paste and a silver paste are mixed may be used.
  • a conductive adhesive layer may be provided as a layer next to the outer layer.
  • a material for forming the conductive adhesive layer for example, a mixture of insulating resin such as epoxy resin or phenol resin and conductive particles such as carbon or silver may be used.
  • the conductive member 19 is preferably an electrode paste containing, for example, nickel, silver or copper as its main component.
  • the maximum thickness of the conductive member 19 is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the first terminal electrode 20 and the second terminal electrode 30 are preferably made of a metal material that is easily bent and has high electrical conductivity.
  • the first terminal electrode 20 and the second terminal electrode 30 are made of material cut from, for example, a metal plate.
  • the first terminal electrode 20 and the second terminal electrode 30 may be made of the same material, or may be made of different materials. Examples of metal materials used for the plate material include, but are not limited to, copper, gold, silver, aluminum, nickel, iron, tin, chromium, zirconium and alloys thereof.
  • the insulating resin body 40 is mainly made of resin and may contain filler.
  • the resin for example, epoxy resin, phenol resin, polyimide resin, silicone resin, polyamide resin, liquid crystal polymer, and the like are preferable.
  • the form of the resin both solid resin and liquid resin can be used.
  • the corners are preferably rounded by barrel polishing after resin sealing.
  • Preferred fillers include, for example, silica particles, alumina particles, and metal particles.
  • the maximum diameter of the filler is desirably 30 ⁇ m or more and 40 ⁇ m or less, for example.
  • a material containing silica particles in addition to the solid epoxy resin and phenol resin is more preferable.
  • the restraint member 50 is preferably mainly made of metal (preferably the same material as the first electrode portion or the second electrode portion), resin (preferably the same material as the insulating resin body 40), or ceramic. . It is preferable that the restraining member 50 have strength not to be deformed by the flow of the insulating resin.
  • the restraining member 50 serves as a conductive path to the second terminal electrode 30, so ESR can be reduced.
  • Metals used for the restraint member 50 include silver, copper, gold, aluminum, and alloys thereof. These metals are preferable because of their high electrical conductivity and ease of processing, but are not limited to these. Among these, silver is particularly preferred because it has high electrical conductivity, is readily available, and is easy to process. Note that the metal referred to here does not have to be a so-called solid material. That is, a metal containing some impurities may be used, or a composite material in which a metal filler is dispersed in a resin may be used.
  • FIG. 8 is a trihedral view of the restraint member of the second example.
  • FIG. 9 is a trihedral view of the restraining member of the third example.
  • FIG. 10 is a trihedral view of the restraining member of the fourth example.
  • FIG. 11 is a trihedral view of the restraining member of the fifth example.
  • the restraint member 50CY of the second example differs from the restraint member 50 of the first example in that each side portion is cylindrical.
  • the cross section of the side contacting the capacitor assembly 10 is circular and has no corners. Therefore, binding member 50CY is less likely to scrape capacitor assembly 10 . This makes it possible to achieve even higher reliability.
  • At least the cross section on the inner peripheral surface side should be circular, and at least one of the first portion 501 and the second portion 502 may have a circular cross section on the inner peripheral surface side. good.
  • the binding member 50X1 of the third example differs from the binding member 50 of the first example in that a part of the fourth portion 504 is cut out. That is, the restraining member 50X1 has an annular shape with a part notched.
  • the restraining member 50X1 can restrain the capacitor assembly 10 from both sides in the stacking direction. Also, with this configuration, the restraint member 50X1 can be formed by winding a linear member around the capacitor assembly 10. As shown in FIG. Furthermore, the restraining member 50X1 can be formed by bending a plate-like member with respect to the capacitor assembly 10. As shown in FIG.
  • the binding member 50X2 of the fourth example differs from the binding member 50 of the first example in that the third portion 503 is omitted. That is, the restraint member 50X2 has an annular shape with a part notched.
  • the restraining member 50X2 can restrain the capacitor assembly 10 from both sides in the stacking direction. Also, with this configuration, the restraining member 50X2 can be formed by winding a linear member around the capacitor assembly 10. As shown in FIG. Further, the restraining member 50X2 can be formed by bending a plate-like member with respect to the capacitor assembly 10, similarly to the restraining member 50X1.
  • the restraining member 50X3 of the fifth example differs from the restraining member 50 of the first example in that it is composed of a plurality of members. Specifically, the restraint member 50X3 forms a portion corresponding to the first portion 501 of the restraint member 50 by a first portion 5011 and a first portion 5012. As shown in FIG. Also, the restraining member 50X3 forms a portion corresponding to the second portion 502 of the restraining member 50 by the second portion 5021 and the second portion 5022. As shown in FIG.
  • the restraining member 50X3 can restrain the capacitor assembly 10 from both sides in the stacking direction.
  • each side portion of the restraining member is not limited to a columnar shape, and may be cylindrical.
  • FIG. 12 is a side sectional view of a solid electrolytic capacitor according to the second embodiment.
  • the solid electrolytic capacitor 1A according to the second embodiment differs from the solid electrolytic capacitor 1 according to the first embodiment in that it includes a reinforcing member 60.
  • a reinforcing member 60 As shown in FIG. 12, the solid electrolytic capacitor 1A according to the second embodiment differs from the solid electrolytic capacitor 1 according to the first embodiment in that it includes a reinforcing member 60.
  • Other configurations of the solid electrolytic capacitor 1A are the same as those of the solid electrolytic capacitor 1, and the description of the same portions is omitted.
  • the reinforcing member 60 corresponds to the "second member" of the present invention.
  • the reinforcing member 60 is formed so as to cover at least a part of the connecting portions (welded portions) between the electrode foils 111 to 141 and the first terminal electrodes 20 .
  • the reinforcing member 60 physically connects the electrode foils 111 - 141 and the first terminal electrode 20 .
  • the reinforcing member 60 may be electrically connected to the plurality of electrode foils 111 to 141 and the first terminal electrode 20 .
  • the reinforcing member 60 may be made of an insulating adhesive or the like.
  • the reinforcing member 60 uses a conductive bonding material such as solder.
  • the reinforcing member 60 is formed only inside the electrode foils 111 and 141 in the stacking direction, but may be formed outside.
  • the reinforcing member 60 By thus providing the reinforcing member 60, the connection between the plurality of electrode foils 111-141 and the first terminal electrode 20 can be reinforced. Therefore, solid electrolytic capacitor 1A can realize higher reliability.
  • FIG. 13(A) is a side cross-sectional view of a solid electrolytic capacitor according to the third embodiment
  • FIG. 13(B) is a plan view showing a capacitor assembly and a restraining member according to the third embodiment.
  • FIG. 13(C) is a plan view showing an example of a derivative of FIG. 13(B).
  • the solid electrolytic capacitor 1B As shown in FIGS. 13A, 13B, and 13C, the solid electrolytic capacitor 1B according to the third embodiment has The capacitor assembly 10B, the first terminal electrode 20B, and the second terminal electrode 30B are different. Only the points different from the solid electrolytic capacitor 1 will be described below.
  • the capacitor assembly 10B includes a plurality of capacitor elements 11B, 12, 13, 14B.
  • the basic structure of the plurality of capacitor elements 11B, 12, 13, and 14B is similar to that of the capacitor element 11 shown in the first embodiment.
  • a plurality of capacitor elements 11B, 12, 13, and 14B are stacked.
  • the length direction of each of the plurality of capacitor elements 11B, 12, 13, 14B is perpendicular to the stacking direction.
  • the first ends 11EG1-14EG1 (anode) of the plurality of capacitor elements 11B, 12, 13, 14B are bundled. This bundled portion is connected to the first terminal electrode 20B.
  • the second terminal electrode 30B has a plate-like base portion 309. Capacitor assembly 10B is placed on base 309 . The second terminal electrode 30B is connected to the cathode of the capacitor assembly 10B.
  • the solid electrolytic capacitor 1B further has the following configuration.
  • Capacitor element 11B includes protrusion 114 .
  • Protruding portion 114 has a shape protruding from the upper surface of connecting conductor 113 of capacitor element 11B.
  • the capacitor element 14B has a projecting portion 144 .
  • Protruding portion 144 has a shape protruding from the lower surface of connecting conductor 143 of capacitor element 14B.
  • the projecting portion 114 and the projecting portion 144 are arranged at approximately the same position in the length direction of the capacitor assembly 10B. As shown in FIG. 13B, the protrusions 114 and 144 are formed over substantially the entire length of the capacitor assembly 10B in the width direction.
  • the first portion 501 of the restraining member 50CY abuts on the projecting portion 114 and the second portion 502 of the restraining member 50CY abuts on the projecting portion 144 . Thereby, the restraining member 50CY is locked to the capacitor assembly 10B.
  • the restraining member 50CY is reliably installed in the capacitor assembly 10B even when the plurality of capacitor elements 11B, 12, 13, and 14B are arranged so that their length directions are parallel. Thereby, the solid electrolytic capacitor 1B can realize high reliability.
  • the solid electrolytic capacitor 1B only needs to include at least one of the protruding portion 114 and the protruding portion 144.
  • the protrusion may be formed partially in the width direction of the capacitor assembly 10B. In this case, it is preferable to have a plurality of protrusions 114S.
  • FIG. 14(A) is a side cross-sectional view of a solid electrolytic capacitor according to a fourth embodiment
  • FIG. 14(B) is a plan view showing a capacitor assembly and a restraining member according to the fourth embodiment.
  • FIG. 14(C) is a plain view showing an example of a derivative of FIG. 14(B).
  • the solid electrolytic capacitor 1C according to the fourth embodiment has The difference is in the capacitor assembly 10C. Only the points different from the solid electrolytic capacitor 1B will be described below. Note that the first terminal electrode 20C and the second terminal electrode 30C in the solid electrolytic capacitor 1C are the same as the first terminal electrode 20B and the second terminal electrode 30B in the solid electrolytic capacitor 1B, respectively, and the description thereof is omitted.
  • the capacitor assembly 10C includes a plurality of capacitor elements 11C-14C.
  • the thickness of the plurality of capacitor elements 11C-14C increases from the first end 11EG1-14EG1 toward the second end 11EG2-14EG2. That is, the plurality of capacitor elements 11C to 14C have inclined upper and lower surfaces when viewed from the side (see FIG. 14B).
  • the capacitor element 11C or the capacitor element 14C should have such a shape that becomes thicker from the first end toward the second end. Furthermore, the capacitor element 11C may have a shape that is thicker on the upper surface side, and the capacitor element 14C may have a shape that is thicker on the lower surface side.
  • the capacitor element 11CX may have a shape in which the thickness increases from the middle position in the length direction. The same applies to the derivation of the capacitor element 14C.
  • FIG. 15 is a side cross-sectional view of a solid electrolytic capacitor according to the fifth embodiment.
  • the solid electrolytic capacitor 1D according to the fifth embodiment differs from the solid electrolytic capacitor 1B according to the third embodiment in the capacitor assembly 10D and the second terminal electrode 30D. Only the points different from the solid electrolytic capacitor 1B will be described below. Note that the first terminal electrode 20D in the solid electrolytic capacitor 1D is the same as the first terminal electrode 20B in the solid electrolytic capacitor 1B, and the description thereof is omitted.
  • the capacitor assembly 10D includes a plurality of capacitor elements 11D, 12, 13, and 14.
  • Capacitor element 11D includes projecting portion 114, similar to capacitor element 11B.
  • the second terminal electrode 30D has a base portion 309.
  • the pedestal 309 includes a projecting portion 39 .
  • the projecting portion 39 has a shape projecting from the surface of the base portion 309 opposite to the surface on which the capacitor assembly 10D is placed.
  • the protruding portion 114 of the capacitor element 11D and the protruding portion 39 of the base portion 309 are arranged at substantially the same position in the length direction of the capacitor assembly 10D.
  • the restraining member 50CY restrains the laminated structure of the capacitor assembly 10D and the base portion 309 of the second terminal electrode 30D from both sides in the lamination direction. As a result, various problems as described above can be suppressed, and the solid electrolytic capacitor 1D can achieve high reliability.
  • the first portion 501 of the restraining member 50CY abuts on the protruding portion 114 of the capacitor element 11B, and the first portion 501 of the restraining member 50CY abuts on the protruding portion 39 of the base portion 309 . Thereby, the restraining member 50CY is locked to the capacitor assembly 10D. With such a configuration, the binding member 50CY is securely installed in the capacitor assembly 10D, and the solid electrolytic capacitor 1D can more reliably achieve high reliability.
  • FIG. 16 is a flow chart showing an example of a method for manufacturing a solid electrolytic capacitor according to the fifth embodiment.
  • a plurality of capacitor elements 11D, 12, 13 and 14 are formed (S11).
  • a plurality of capacitor elements 11D, 12, 13, and 14 are stacked to form a capacitor assembly 10D (S12).
  • the capacitor assembly 10D is arranged (placed) on the base portion 309 of the second terminal electrode 30D (S20).
  • the portion including the base portion 309 of the capacitor assembly 10D and the second terminal electrode 30D restrained by the restraining member 50 is sealed with the insulating resin body 40 (S24). More specifically, the portion including the base portion 309 of the capacitor assembly 10 and the second terminal electrode 30D restrained by the restraining member 50 is covered with a fluid insulating resin, and the insulating resin is solidified by heat treatment. to form the insulating resin body 40 .
  • the first terminal electrode 20D and the second terminal electrode 30D projecting from the insulating resin body 40 are shaped to form the solid electrolytic capacitor 1D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A solid electrolytic capacitor (1) is provided with a capacitor aggregate (10), an insulating resin body (40), and a restraining member (50). The capacitor aggregate (10) has a configuration in which a plurality of capacitor elements (11-14) are laminated. The insulating resin body (40) seals the periphery of the capacitor aggregate (10). The restraining member (50) holds the capacitor aggregate (10) at least from both sides thereof in the lamination direction of the plurality of capacitor elements (11-14), and is an integral member that is sealed by the insulating resin body (40) together with the capacitor aggregate (10).

Description

固体電解コンデンサ、および、固体電解コンデンサの製造方法Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
 本発明は、複数のコンデンサ素子の積層体を絶縁性樹脂でモールドした構成を備える固体電解コンデンサに関する。 The present invention relates to a solid electrolytic capacitor having a structure in which a laminate of a plurality of capacitor elements is molded with an insulating resin.
 特許文献1には、電解コンデンサが記載されている。特許文献1に記載の電解コンデンサは、複数のコンデンサ素子を備える。複数のコンデンサ素子は、それぞれが個々の固体電解コンデンサとして機能する。 Patent Document 1 describes an electrolytic capacitor. The electrolytic capacitor described in Patent Document 1 includes a plurality of capacitor elements. Each of the plurality of capacitor elements functions as an individual solid electrolytic capacitor.
 複数のコンデンサ素子は、積層されている。複数のコンデンサ素子の積層体は、絶縁性樹脂体の内部に設けられている。言い換えれば、複数のコンデンサ素子の積層体は、絶縁性樹脂によって封止されている。 A plurality of capacitor elements are stacked. A laminate of a plurality of capacitor elements is provided inside the insulating resin body. In other words, the laminate of multiple capacitor elements is sealed with an insulating resin.
国際公開第2020/179170号WO2020/179170
 近年、固体電解コンデンサは、更なる信頼性の向上を要求されている。 In recent years, solid electrolytic capacitors have been required to further improve their reliability.
 したがって、本発明の目的は、高い信頼性を有する固体電解コンデンサを提供することにある。 Therefore, an object of the present invention is to provide a highly reliable solid electrolytic capacitor.
 この発明の固体電解コンデンサは、コンデンサ集合体、絶縁性樹脂体、および、拘束部材を備える。コンデンサ集合体は、複数のコンデンサ素子が積層された構成を備える。絶縁性樹脂体は、コンデンサ集合体の周囲を封止する。第1部材は、複数のコンデンサ素子の積層方向の少なくとも両側からコンデンサ集合体を挟み、コンデンサ集合体とともに絶縁性樹脂体によって封止される、一体の部材である。 A solid electrolytic capacitor of the present invention includes a capacitor assembly, an insulating resin body, and a restraining member. A capacitor assembly has a structure in which a plurality of capacitor elements are stacked. The insulating resin body seals the periphery of the capacitor assembly. The first member is an integral member that sandwiches the capacitor assembly from at least both sides in the stacking direction of the plurality of capacitor elements and is sealed together with the capacitor assembly by an insulating resin.
 この構成では、複数のコンデンサ素子の位置関係が第1部材によって維持される。これにより、複数のコンデンサ素子の接続状態、コンデンサ集合体と固体電解コンデンサの他の導体部分との接続状態、コンデンサ集合体が絶縁性樹脂体で封止されている状態は、安定した状態で維持される。 With this configuration, the positional relationship of the plurality of capacitor elements is maintained by the first member. As a result, the connection state of the multiple capacitor elements, the connection state of the capacitor assembly and other conductor portions of the solid electrolytic capacitor, and the state of the capacitor assembly sealed with the insulating resin are maintained in a stable state. be done.
 この発明によれば、高い信頼性を有する固体電解コンデンサを実現できる。 According to this invention, a highly reliable solid electrolytic capacitor can be realized.
図1(A)、図1(B)は、第1の実施形態に係る固体電解コンデンサの側面断面図である。1A and 1B are side cross-sectional views of a solid electrolytic capacitor according to the first embodiment. 図2(A)は、第1の実施形態に係る固体電解コンデンサの平面図であり、図2(B)は、この固体電解コンデンサの絶縁性樹脂体を除いた状態での平面図である。FIG. 2A is a plan view of the solid electrolytic capacitor according to the first embodiment, and FIG. 2B is a plan view of the solid electrolytic capacitor with the insulating resin body removed. 図3は、第1の実施形態に係る固体電解コンデンサの外観斜視図である。FIG. 3 is an external perspective view of the solid electrolytic capacitor according to the first embodiment. 図4は、第1の実施形態に係る固体電解コンデンサのコンデンサ集合体、各端子電極、拘束部材からなる構造体の外観斜視図である。FIG. 4 is an external perspective view of a structure including a capacitor assembly, terminal electrodes, and restraining members of the solid electrolytic capacitor according to the first embodiment. 図5(A)は、コンデンサ素子の平面図、図5(B)は、コンデンサ素子の側面断面図、図5(C)は、コンデンサ素子の外観斜視図である。5A is a plan view of a capacitor element, FIG. 5B is a side sectional view of the capacitor element, and FIG. 5C is an external perspective view of the capacitor element. 図6(A)は、第1例の拘束部材の外観斜視図であり、図6(B)は、第1例の拘束部材の三面図である。FIG. 6(A) is an external perspective view of the restraining member of the first example, and FIG. 6(B) is a trihedral view of the restraining member of the first example. 図7は、第1の実施形態に係る固体電解コンデンサの製造方法の一例を示すフローチャートである。FIG. 7 is a flow chart showing an example of the method for manufacturing the solid electrolytic capacitor according to the first embodiment. 図8は、第2例の拘束部材の三面図である。FIG. 8 is a trihedral view of the restraint member of the second example. 図9は、第3例の拘束部材の三面図である。FIG. 9 is a trihedral view of the restraining member of the third example. 図10は、第4例の拘束部材の三面図である。FIG. 10 is a trihedral view of the restraining member of the fourth example. 図11は、第5例の拘束部材の三面図である。FIG. 11 is a trihedral view of the restraining member of the fifth example. 図12は、第2の実施形態に係る固体電解コンデンサの側面断面図である。FIG. 12 is a side sectional view of a solid electrolytic capacitor according to the second embodiment. 図13(A)は、第3の実施形態に係る固体電解コンデンサの側面断面図であり、図13(B)は、第3の実施形態に係るコンデンサ集合体と拘束部材とを示す平面図であり、図13(C)は、図13(B)の派生例の一例を示す平明図である。FIG. 13(A) is a side cross-sectional view of a solid electrolytic capacitor according to the third embodiment, and FIG. 13(B) is a plan view showing a capacitor assembly and a restraining member according to the third embodiment. FIG. 13(C) is a plan view showing an example of a derivative of FIG. 13(B). 図14(A)は、第4の実施形態に係る固体電解コンデンサの側面断面図であり、図14(B)は、第4の実施形態に係るコンデンサ集合体と拘束部材とを示す平面図であり、図14(C)は、図14(B)の派生例の一例を示す平明図である。FIG. 14(A) is a side cross-sectional view of a solid electrolytic capacitor according to a fourth embodiment, and FIG. 14(B) is a plan view showing a capacitor assembly and a restraining member according to the fourth embodiment. FIG. 14(C) is a plain view showing an example of a derivative of FIG. 14(B). 図15は、第5の実施形態に係る固体電解コンデンサの側面断面図である。FIG. 15 is a side cross-sectional view of a solid electrolytic capacitor according to the fifth embodiment. 図16は、第5の実施形態に係る固体電解コンデンサの製造方法の一例を示すフローチャートである。FIG. 16 is a flow chart showing an example of a method for manufacturing a solid electrolytic capacitor according to the fifth embodiment.
 [第1の実施形態]
 本発明の第1の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図1(A)、図1(B)は、第1の実施形態に係る固体電解コンデンサの側面断面図である。図1(A)と図1(B)とは同じ断面を示しており、符号や寸法の見やすさを考慮して、2つの図に分けて記載している。図2(A)は、第1の実施形態に係る固体電解コンデンサの平面図であり、図2(B)は、この固体電解コンデンサの絶縁性樹脂体を除いた状態での平面図である。図3は、第1の実施形態に係る固体電解コンデンサの外観斜視図である。図4は、第1の実施形態に係る固体電解コンデンサのコンデンサ集合体、各端子電極、拘束部材からなる構造体の外観斜視図である。
[First embodiment]
A solid electrolytic capacitor according to a first embodiment of the present invention will be described with reference to the drawings. 1A and 1B are side cross-sectional views of a solid electrolytic capacitor according to the first embodiment. 1(A) and 1(B) show the same cross section, and are divided into two figures in consideration of the visibility of the reference numerals and dimensions. FIG. 2A is a plan view of the solid electrolytic capacitor according to the first embodiment, and FIG. 2B is a plan view of the solid electrolytic capacitor with the insulating resin body removed. FIG. 3 is an external perspective view of the solid electrolytic capacitor according to the first embodiment. FIG. 4 is an external perspective view of a structure including a capacitor assembly, terminal electrodes, and restraining members of the solid electrolytic capacitor according to the first embodiment.
 (固体電解コンデンサ1の概略的な構成の説明)
 図1(A)、図1(B)、図2(A)、図2(B)、図3、図4に示すように、固体電解コンデンサ1は、コンデンサ集合体10、第1端子電極20、第2端子電極30、絶縁性樹脂体40、および、拘束部材50を備える。
(Description of Schematic Configuration of Solid Electrolytic Capacitor 1)
As shown in FIGS. 1(A), 1(B), 2(A), 2(B), 3, and 4, the solid electrolytic capacitor 1 includes a capacitor assembly 10 and first terminal electrodes 20. , a second terminal electrode 30 , an insulating resin body 40 , and a restraining member 50 .
 コンデンサ集合体10は、複数のコンデンサ素子11-14(コンデンサ素子11、コンデンサ素子12、コンデンサ素子13、コンデンサ素子14)、および、導通部材19を備える。なお、本実施形態では、コンデンサ集合体10を構成するコンデンサ素子の個数は、4個であるが、コンデンサ素子の個数は、複数であればよい。 The capacitor assembly 10 includes a plurality of capacitor elements 11 - 14 (capacitor element 11 , capacitor element 12 , capacitor element 13 , capacitor element 14 ) and a conductive member 19 . In this embodiment, the number of capacitor elements constituting the capacitor assembly 10 is four, but the number of capacitor elements may be plural.
 コンデンサ集合体10を構成する複数のコンデンサ素子11-14は、拘束部材50によって、複数のコンデンサ素子11-14の積層方向の両側から拘束されている。拘束部材50が配置されたコンデンサ集合体10は、絶縁性樹脂体40によって封止されている。 The plurality of capacitor elements 11-14 constituting the capacitor assembly 10 are constrained from both sides in the stacking direction of the plurality of capacitor elements 11-14 by the constraining members 50. FIG. Capacitor assembly 10 in which restraining member 50 is arranged is sealed with insulating resin body 40 .
 絶縁性樹脂体40は、天面401、底面402、第1端面403、第2端面404、側面405、および、側面406を有する略直方体形状である。 The insulating resin body 40 has a substantially rectangular parallelepiped shape having a top surface 401 , a bottom surface 402 , a first end surface 403 , a second end surface 404 , a side surface 405 and a side surface 406 .
 第1端子電極20は、コンデンサ集合体10の複数のコンデンサ素子11-14の陽極に接続される(具体的な接続構成は後述する。)。第1端子電極20は、絶縁性樹脂体40の第1端面403から外部に露出し、第1端面403および底面402に亘って配置される。 The first terminal electrode 20 is connected to the anodes of the plurality of capacitor elements 11-14 of the capacitor assembly 10 (specific connection configuration will be described later). The first terminal electrode 20 is exposed to the outside from the first end surface 403 of the insulating resin body 40 and arranged over the first end surface 403 and the bottom surface 402 .
 第2端子電極30は、コンデンサ集合体10の複数のコンデンサ素子11-14の陰極に接続される(具体的な接続構成は後述する。)。第2端子電極30は、絶縁性樹脂体40の第2端面404から外部に露出し、第2端面404および底面402に亘って配置される。 The second terminal electrode 30 is connected to the cathodes of the plurality of capacitor elements 11-14 of the capacitor assembly 10 (specific connection configuration will be described later). The second terminal electrode 30 is exposed to the outside from the second end surface 404 of the insulating resin body 40 and arranged over the second end surface 404 and the bottom surface 402 .
 (固体電解コンデンサ1の構成要素の具体的な説明)
 (複数のコンデンサ素子11-14の構成)
 コンデンサ素子11は、電極箔111、誘電体112、および、接続導体113を備える。コンデンサ素子12は、電極箔121、誘電体122、および、接続導体123を備える。コンデンサ素子13は、電極箔131、誘電体132、および、接続導体133を備える。コンデンサ素子14は、電極箔141、誘電体142、および、接続導体143を備える。
(Specific description of constituent elements of the solid electrolytic capacitor 1)
(Structure of a plurality of capacitor elements 11-14)
Capacitor element 11 comprises electrode foil 111 , dielectric 112 and connecting conductor 113 . Capacitor element 12 comprises electrode foil 121 , dielectric 122 and connecting conductor 123 . Capacitor element 13 comprises electrode foil 131 , dielectric 132 and connecting conductor 133 . Capacitor element 14 comprises electrode foil 141 , dielectric 142 and connecting conductor 143 .
 複数のコンデンサ素子11-14は、この実施形態においては、同じ形状を有する。ただし、この限りではない。図5(A)は、コンデンサ素子の平面図、図5(B)は、コンデンサ素子の側面断面図、図5(C)は、コンデンサ素子の外観斜視図である。なお、図5(A)、図5(B)、図5(C)では、コンデンサ素子11を例に示している。また、図5(A)、図5(B)、図5(C)では、コンデンサ素子の第1端部側を途中で切った図を示している。 The plurality of capacitor elements 11-14 have the same shape in this embodiment. However, it is not limited to this. 5A is a plan view of a capacitor element, FIG. 5B is a side sectional view of the capacitor element, and FIG. 5C is an external perspective view of the capacitor element. 5A, 5B, and 5C show the capacitor element 11 as an example. 5(A), 5(B), and 5(C) show views in which the first end side of the capacitor element is cut halfway.
 図5(A)、図5(B)、図5(C)に示すように、電極箔111は、平面視して矩形であり、第1端部11EG1と第2端部11EG2を有する。第1端部11EG1と第2端部11EG2とを結ぶ方向が、電極箔111およびコンデンサ素子11の長さ方向である。そして、長さ方向および電極箔111の厚み方向に直交する方向が、電極箔111およびコンデンサ素子11の幅方向である。 As shown in FIGS. 5A, 5B, and 5C, the electrode foil 111 is rectangular in plan view and has a first end 11EG1 and a second end 11EG2. The direction connecting first end portion 11EG1 and second end portion 11EG2 is the length direction of electrode foil 111 and capacitor element 11 . The direction orthogonal to the length direction and the thickness direction of electrode foil 111 is the width direction of electrode foil 111 and capacitor element 11 .
 図示を省略しているが、電極箔111の表面近傍は多数の孔を備える。言い換えれば、電極箔111の表面近傍は、ポーラス状態(多孔質体)である。 Although not shown, the electrode foil 111 has a large number of holes near its surface. In other words, the vicinity of the surface of the electrode foil 111 is in a porous state (porous body).
 誘電体112は、電極箔111における第1端部11EG1側の所定長さの部分を除き、第2端部11EG2を含んで、電極箔111の外面を覆う。この際、誘電体112は、電極箔111の多数の孔の表面も覆っている。なお、誘電体112は、電極箔111の全面を覆っていてもよい。このように、誘電体112が電極箔111の全面を覆っていても、電極箔111が第1端子電極20に接合(接続)される時には、スポット溶接等が行われることで、接合箇所の誘電体112は、貫通する。したがって、電極箔111と第1端子電極20とは導通するので、問題にはならない。 The dielectric 112 covers the outer surface of the electrode foil 111, including the second end 11EG2, except for a predetermined length of the electrode foil 111 on the side of the first end 11EG1. At this time, the dielectric 112 also covers the surfaces of the numerous holes of the electrode foil 111 . Note that the dielectric 112 may cover the entire surface of the electrode foil 111 . As described above, even if the dielectric 112 covers the entire surface of the electrode foil 111, when the electrode foil 111 is joined (connected) to the first terminal electrode 20, spot welding or the like is performed to prevent the dielectric at the joint. Body 112 penetrates. Therefore, since the electrode foil 111 and the first terminal electrode 20 are electrically connected, there is no problem.
 接続導体113は、誘電体112の外面(電極箔111に当接する面と対向する面)を覆う。この際、接続導体113は、電極箔111に直接接続しない。すなわち、コンデンサ素子11の第1端部11EG1側の接続導体113の端部は、この第1端部11EG1側の誘電体112の端部より、第2端部11EG2側に位置する。接続導体113は、誘電体112で覆われた多数の孔内にも充填されている。 The connection conductor 113 covers the outer surface of the dielectric 112 (the surface facing the surface in contact with the electrode foil 111). At this time, the connection conductor 113 is not directly connected to the electrode foil 111 . In other words, the end of the connecting conductor 113 on the first end 11EG1 side of the capacitor element 11 is positioned closer to the second end 11EG2 than the end of the dielectric 112 on the first end 11EG1 side. The connecting conductors 113 are also filled in the numerous holes covered with the dielectric 112 .
 このような構成によって、コンデンサ素子11は、平膜形状の固体電解コンデンサとなる。このコンデンサ素子11では、電極箔111が陽極になり、接続導体113が陰極になる。 With such a configuration, the capacitor element 11 becomes a flat film-shaped solid electrolytic capacitor. In this capacitor element 11, the electrode foil 111 becomes an anode and the connecting conductor 113 becomes a cathode.
 なお、コンデンサ素子11と同様に、コンデンサ素子12は、第1端部12EG1と第2端部12EG2を有し、コンデンサ素子13は、第1端部13EG1と第2端部13EG2を有し、コンデンサ素子14は、第1端部14EG1と第2端部14EG2を有する。 Note that similarly to capacitor element 11, capacitor element 12 has a first end 12EG1 and a second end 12EG2, capacitor element 13 has a first end 13EG1 and a second end 13EG2, and capacitor Element 14 has a first end 14EG1 and a second end 14EG2.
 (コンデンサ集合体10の構成、第1端子電極20および第2端子電極30への接続態様)
 複数のコンデンサ素子11-14は、積層されている。より具体的には、複数のコンデンサ素子11-14は、それぞれの平膜面が重なり合うように、それぞれの平膜面に略直交する方向に配列される。この実施形態では、例えば図1(A)、図1(B)に示すように、コンデンサ素子11、コンデンサ素子12、コンデンサ素子13、および、コンデンサ素子14の順に配置、積層される。
(Structure of Capacitor Assembly 10, Mode of Connection to First Terminal Electrode 20 and Second Terminal Electrode 30)
A plurality of capacitor elements 11-14 are stacked. More specifically, the plurality of capacitor elements 11-14 are arranged in a direction substantially perpendicular to their flat film surfaces so that their flat film surfaces overlap each other. In this embodiment, for example, as shown in FIGS. 1A and 1B, capacitor element 11, capacitor element 12, capacitor element 13, and capacitor element 14 are arranged and stacked in this order.
 コンデンサ素子11の接続導体113とコンデンサ素子12の接続導体123とは、これらの間に配置された導通部材19によって、物理的、電気的に接続される。 The connection conductor 113 of the capacitor element 11 and the connection conductor 123 of the capacitor element 12 are physically and electrically connected by the conducting member 19 arranged therebetween.
 コンデンサ素子12の接続導体123とコンデンサ素子13の接続導体133との間には、板状の第2端子電極30が配置されている。言い換えれば、第2端子電極30は、コンデンサ素子12の接続導体123とコンデンサ素子13の接続導体133との間に挟まれている。コンデンサ素子12の接続導体123と第2端子電極30とは、導通部材19によって、物理的、電気的に接続される。第2端子電極30とコンデンサ素子13の接続導体133とは、導通部材19によって、物理的、電気的に接続される。 A plate-like second terminal electrode 30 is arranged between the connection conductor 123 of the capacitor element 12 and the connection conductor 133 of the capacitor element 13 . In other words, the second terminal electrode 30 is sandwiched between the connecting conductor 123 of the capacitor element 12 and the connecting conductor 133 of the capacitor element 13 . Connection conductor 123 of capacitor element 12 and second terminal electrode 30 are physically and electrically connected by conducting member 19 . The second terminal electrode 30 and the connection conductor 133 of the capacitor element 13 are physically and electrically connected by the conducting member 19 .
 この構成によって、複数のコンデンサ素子11-14の陰極(コンデンサ集合体10の陰極)は、第2端子電極30に接続される。この第2端子電極30におけるコンデンサ素子12(接続導体123)とコンデンサ素子13(接続導体133)とに挟まれている部分が、本発明の「第2接続部」に対応する。 With this configuration, the cathodes of the plurality of capacitor elements 11 - 14 (the cathodes of the capacitor assembly 10 ) are connected to the second terminal electrode 30 . The portion of second terminal electrode 30 sandwiched between capacitor element 12 (connection conductor 123) and capacitor element 13 (connection conductor 133) corresponds to the "second connection portion" of the present invention.
 コンデンサ素子13の接続導体133とコンデンサ素子14の接続導体143とは、これらの間に配置された導通部材19によって、物理的、電気的に接続される。 The connection conductor 133 of the capacitor element 13 and the connection conductor 143 of the capacitor element 14 are physically and electrically connected by the conductive member 19 arranged therebetween.
 コンデンサ素子11の電極箔111における第1端部11EG1側の部分、コンデンサ素子12の電極箔121における第1端部12EG1側の部分、コンデンサ素子13の電極箔131における第1端部13EG1側の部分、および、コンデンサ素子14の電極箔141における第1端部14EG1側の部分は、この順に積層され、溶接される。この際、電極箔121と電極箔131との間には、第1端子電極20が配置される。第1端子電極20は、電極箔121と電極箔131とに挟まれ溶接される。 A portion of electrode foil 111 of capacitor element 11 on the first end 11EG1 side, a portion of electrode foil 121 of capacitor element 12 on the first end 12EG1 side, and a portion of electrode foil 131 of capacitor element 13 on the first end 13EG1 side. , and the portion of the electrode foil 141 of the capacitor element 14 on the first end portion 14EG1 side are laminated and welded in this order. At this time, the first terminal electrode 20 is arranged between the electrode foil 121 and the electrode foil 131 . The first terminal electrode 20 is sandwiched and welded between the electrode foil 121 and the electrode foil 131 .
 この構成によって、複数のコンデンサ素子11-14の陽極(コンデンサ集合体10の陽極)は、第1端子電極20に接続される。この第1端子電極20におけるコンデンサ素子12(電極箔121)とコンデンサ素子13(電極箔131)とに挟まれている部分が、本発明の「第1接続部」に対応する。 With this configuration, the anodes of the plurality of capacitor elements 11 - 14 (the anodes of the capacitor assembly 10 ) are connected to the first terminal electrode 20 . A portion of the first terminal electrode 20 sandwiched between the capacitor element 12 (electrode foil 121) and the capacitor element 13 (electrode foil 131) corresponds to the "first connecting portion" of the present invention.
 このような構成において、複数のコンデンサ素子11-14は、第2端部での積層方向のコンデンサ素子11とコンデンサ素子14との距離(上端のコンデンサと下端のコンデンサとの距離)が、第1端部でのコンデンサ素子11とコンデンサ素子14との距離よりも長くなるように配置される。より具体的には、例えば図1(A)、図1(B)に示すように、第1端部から第2端部に向かって、積層方向に広がるように、配置される。 In such a configuration, the plurality of capacitor elements 11-14 are configured such that the distance between capacitor element 11 and capacitor element 14 in the stacking direction at the second end (distance between the upper end capacitor and the lower end capacitor) is the first It is arranged so as to be longer than the distance between capacitor element 11 and capacitor element 14 at the ends. More specifically, as shown in FIGS. 1A and 1B, for example, they are arranged so as to spread in the stacking direction from the first end toward the second end.
 これにより、図1(B)に示すように、コンデンサ集合体10における第2端部の厚み(積層方向の長さ)D2は、コンデンサ集合体10における第1端部の厚み(積層方向の長さ)D1よりも大きい。なお、ここでの各端部の厚みとは、コンデンサ集合体10を構成する上端のコンデンサ(本実施形態ではコンデンサ素子11)の接続導体の上端と下端のコンデンサ(本実施形態ではコンデンサ素子14)の接続導体の下端との距離を意味する。 Accordingly, as shown in FIG. 1B, the thickness (length in the stacking direction) D2 of the second end of capacitor assembly 10 is equal to the thickness (length in the stacking direction) of the first end of capacitor assembly 10. d) greater than D1. Here, the thickness of each end portion refers to the upper end and lower end capacitors (capacitor element 14 in this embodiment) of the connection conductor of the upper end capacitor (capacitor element 11 in this embodiment) constituting the capacitor assembly 10. means the distance from the lower end of the connecting conductor of
 (拘束部材50の具体的構成)
 図6(A)は、第1例の拘束部材の外観斜視図であり、図6(B)は、第1例の拘束部材の三面図である。
(Specific configuration of restraining member 50)
FIG. 6(A) is an external perspective view of the restraining member of the first example, and FIG. 6(B) is a trihedral view of the restraining member of the first example.
 図6(A)、図6(B)に示すように、拘束部材50は、環状である。より具体的には、拘束部材50は、第1部分501、第2部分502、第3部分503、および、第4部分504の辺部を有する。各辺部は、それぞれに略角柱状である。第1部分501と第2部分502とは、平行に配置され、第3部分503と第4部分504とは、平行に配置される。 As shown in FIGS. 6(A) and 6(B), the restraint member 50 is annular. More specifically, the restraining member 50 has sides of a first portion 501 , a second portion 502 , a third portion 503 and a fourth portion 504 . Each side portion has a substantially prismatic shape. The first portion 501 and the second portion 502 are arranged parallel, and the third portion 503 and the fourth portion 504 are arranged parallel.
 第1部分501および第2部分502の延びる方向は、第3部分503および第4部分504の延びる方向と直交する。第1部分501の一方端は第3部分503の一方端に接続し、第3部分503の他方端は第2部分502の一方端に接続する。第2部分502の他方端は第4部分504の一方端に接続し、第4部分504の他方端は第1部分501の他方端に接続する。 The direction in which the first portion 501 and the second portion 502 extend is orthogonal to the direction in which the third portion 503 and the fourth portion 504 extend. One end of the first portion 501 connects to one end of the third portion 503 , and the other end of the third portion 503 connects to one end of the second portion 502 . The other end of the second portion 502 connects to one end of the fourth portion 504 , and the other end of the fourth portion 504 connects to the other end of the first portion 501 .
 このような構成によって、拘束部材50は、中空部500を有する環状体となる。なお、略角柱状とは、角柱状を含み、各部分を断面視した角部がR面取りまたは面取りされている状態を示す。 With such a configuration, the restraint member 50 becomes an annular body having a hollow portion 500. Note that the term “substantially prismatic shape” includes prismatic shapes, and indicates a state in which the corners of each part in a cross-sectional view are rounded or chamfered.
 (拘束部材50のコンデンサ集合体10への配置態様)
 図1(A)、図1(B)、図2(A)、図2(B)、図3、図4に示すように、拘束部材50は、コンデンサ集合体10の積層方向の両側および幅方向の両側の外方に配置される。拘束部材50の第1部分501は、コンデンサ集合体10の積層方向の上端面(コンデンサ素子11の接続導体113の上面)に当接する。拘束部材50の第2部分502は、コンデンサ集合体10の積層方向の下端面(コンデンサ素子14の接続導体143の下面)に当接する。
(Arrangement Mode of Restraint Member 50 on Capacitor Assembly 10)
As shown in FIGS. 1(A), 1(B), 2(A), 2(B), 3, and 4, the restraint member 50 is provided on both sides of the capacitor assembly 10 in the stacking direction and widthwise. located outward on both sides of the direction. First portion 501 of restraining member 50 abuts on the upper end surface of capacitor assembly 10 in the stacking direction (the upper surface of connecting conductor 113 of capacitor element 11). The second portion 502 of the restraining member 50 abuts on the lower end surface of the capacitor assembly 10 in the stacking direction (the lower surface of the connection conductor 143 of the capacitor element 14).
 この構成によって、拘束部材50は、コンデンサ集合体10すなわち複数のコンデンサ素子11-14の積層体を、積層方向の両側から拘束する。なお、拘束部材50は、コンデンサ集合体10の側面に当接することが好ましいが、側面に当接しなくてもよい。 With this configuration, the restraint member 50 restrains the capacitor assembly 10, that is, the laminate of the plurality of capacitor elements 11-14 from both sides in the lamination direction. Although it is preferable that the restraining member 50 abuts on the side surface of the capacitor assembly 10, the restraining member 50 does not have to abut on the side surface.
 そして、コンデンサ集合体10が拘束部材50によって拘束されることで、後述する固体電解コンデンサ1の製造時等に生じる各種の信頼性の低下を抑制できる。 Further, by restraining the capacitor assembly 10 by the restraining member 50, it is possible to suppress various deteriorations in reliability that occur during manufacturing of the solid electrolytic capacitor 1, which will be described later.
 なお、上述の説明では、コンデンサ集合体10を拘束部材50によって拘束する態様を示した。しかしながら、拘束部材50は、コンデンサ集合体10を構成する複数のコンデンサ素子11-14の相対的な位置関係を、絶縁性樹脂体40で覆う前後でほぼ同じにできるもの(固定できるもの)であればよい。 In addition, in the above description, the manner in which the capacitor assembly 10 is restrained by the restraining member 50 is shown. However, as long as the restraint member 50 can make the relative positional relationship of the plurality of capacitor elements 11 to 14 constituting the capacitor assembly 10 substantially the same before and after being covered with the insulating resin body 40 (fixed), Just do it.
 より具体的には、本願での「拘束」とは、拘束部材50が複数のコンデンサ素子11-14に接触して、所定の応力を加えた状態で挟んで固定するものに限らない。言い換えれば、コンデンサ集合体10において、絶縁性樹脂体40で覆われた後における複数のコンデンサ素子11-14間の相対的な位置関係が絶縁性樹脂体40で覆われる前と同じもしくはほぼ同じ(特性に影響を与えない程度の誤差範囲内で同じ)になるようにすることを意味する。すなわち、拘束部材50は、本発明の「第1部材」の一種に対応する。ただし、上述のように、拘束部材50は、拘束部材50が複数のコンデンサ素子11-14に接触して、所定の応力を加えた状態で挟む構造であれば、複数のコンデンサ素子11-14の位置関係はより確実に固定されるのでよい。 More specifically, the term "restraint" in the present application is not limited to the state in which the restraining member 50 comes into contact with the plurality of capacitor elements 11-14 and pinches and fixes them while applying a predetermined stress. In other words, in the capacitor assembly 10, the relative positional relationship between the plurality of capacitor elements 11-14 after being covered with the insulating resin body 40 is the same or substantially the same ( (within the error range that does not affect the characteristics). That is, the restraining member 50 corresponds to a kind of "first member" of the present invention. However, as described above, if the restraint member 50 is in contact with the plurality of capacitor elements 11-14 and sandwiches the plurality of capacitor elements 11-14 while applying a predetermined stress, This is good because the positional relationship is fixed more reliably.
 (絶縁性樹脂体40の構成)
 図1(A)、図1(B)、図2(A)、図3に示すように、絶縁性樹脂体40は、略直方体形状であり、天面401、底面402、第1端面403、第2端面404、側面405、および、側面406を有する。絶縁性樹脂体40は、拘束部材50によって拘束されたコンデンサ集合体10を封止する。すなわち、拘束部材50およびコンデンサ集合体10は、絶縁性樹脂体40に内蔵されており、外部に露出していない。
(Structure of insulating resin body 40)
As shown in FIGS. 1A, 1B, 2A, and 3, the insulating resin body 40 has a substantially rectangular parallelepiped shape, and includes a top surface 401, a bottom surface 402, a first end surface 403, It has a second end face 404 , a side face 405 and a side face 406 . Insulating resin body 40 seals capacitor assembly 10 restrained by restraining member 50 . In other words, restraint member 50 and capacitor assembly 10 are embedded in insulating resin body 40 and are not exposed to the outside.
 第1端面403は、絶縁性樹脂体40におけるコンデンサ集合体10の第1端部側の端面である。第1端面403から第1端子電極20が露出する。 The first end face 403 is the end face of the insulating resin body 40 on the first end side of the capacitor assembly 10 . The first terminal electrode 20 is exposed from the first end surface 403 .
 第2端面404は、絶縁性樹脂体40におけるコンデンサ集合体10の第2端部側の端面である。第2端面404から第2端子電極30が露出する。 The second end face 404 is the end face of the insulating resin body 40 on the second end side of the capacitor assembly 10 . The second terminal electrode 30 is exposed from the second end surface 404 .
 (固体電解コンデンサ1の製造方法)
 図7は、第1の実施形態に係る固体電解コンデンサの製造方法の一例を示すフローチャートである。なお、ここでは、概略的な製造方法を示し、具体的な製造方法および各種材料や条件等は後述する。
(Manufacturing method of solid electrolytic capacitor 1)
FIG. 7 is a flow chart showing an example of the method for manufacturing the solid electrolytic capacitor according to the first embodiment. Here, a schematic manufacturing method is shown, and specific manufacturing methods, various materials, conditions, and the like will be described later.
 図7に示すように、まず、複数のコンデンサ素子11-14を形成する(S11)。 As shown in FIG. 7, first, a plurality of capacitor elements 11-14 are formed (S11).
 次に、複数のコンデンサ素子11-14を積層し、コンデンサ集合体10を形成する(S12)。 Next, a plurality of capacitor elements 11-14 are laminated to form a capacitor assembly 10 (S12).
 次に、コンデンサ集合体10を拘束部材50で拘束する(S13)。 Next, the capacitor assembly 10 is restrained by the restraining member 50 (S13).
 次に、拘束部材50で拘束されたコンデンサ集合体10を絶縁性樹脂体40で封止する(S14)。より具体的には、拘束部材50で拘束されたコンデンサ集合体10を、流動性の絶縁性樹脂で覆い、熱処理によって絶縁性樹脂を固化させることで絶縁性樹脂体40を形成する。 Next, the capacitor assembly 10 restrained by the restraining member 50 is sealed with the insulating resin body 40 (S14). More specifically, the insulating resin body 40 is formed by covering the capacitor assembly 10 restrained by the restraining member 50 with a fluid insulating resin and solidifying the insulating resin by heat treatment.
 この後、絶縁性樹脂体40から突出した第1端子電極20および第2端子電極30を整形し、固体電解コンデンサ1が形成される。 After that, the first terminal electrode 20 and the second terminal electrode 30 projecting from the insulating resin body 40 are shaped, and the solid electrolytic capacitor 1 is formed.
 (固体電解コンデンサ1の構成による作用効果)
 ・コンデンサ集合体10(複数のコンデンサ素子11-14の積層体)が積層方向の両端から拘束されていることで、製造時の熱処理による加熱時においてコンデンサ集合体10の内部で発生したガスによるコンデンサ集合体10の内部で剥離を抑制できる。例えば、複数のコンデンサ素子11-14と導通部材19との剥離を抑制できる。これにより、ESRの増加や破損を抑制できる。したがって、固体電解コンデンサ1は、高い信頼性を実現できる。
(Effects of configuration of solid electrolytic capacitor 1)
・Because the capacitor assembly 10 (a laminate of a plurality of capacitor elements 11 to 14) is constrained from both ends in the stacking direction, the capacitor is prevented by gas generated inside the capacitor assembly 10 during heating by heat treatment during manufacturing. Delamination can be suppressed inside the assembly 10 . For example, peeling between the plurality of capacitor elements 11-14 and the conductive member 19 can be suppressed. As a result, an increase in ESR and damage can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
 さらに、急激な電圧印加に伴う加熱時や自己修復機能発現時の発熱時も同様に、剥離が抑制される。これにより、固体電解コンデンサ1は、高い信頼性を実現できる。 Furthermore, peeling is similarly suppressed during heating due to sudden voltage application and during heat generation when the self-repairing function is manifested. Thereby, the solid electrolytic capacitor 1 can realize high reliability.
 ・コンデンサ集合体10(複数のコンデンサ素子11-14の積層体)が積層方向の両端から拘束されていることで、コンデンサ集合体10の位置が絶縁性樹脂体40内においてずれることを抑制できる。これにより、絶縁性樹脂体40の厚みが局所的に薄くなることを抑制でき、大気の湿度がコンデンサ集合体10に透過することを抑制できる。または、局所的に薄くなった部分にクラックが生じ、大気とコンデンサ集合体10が直接に接することを抑制できる。したがって、コンデンサ集合体10の電極部分や導体部分の劣化を抑制でき、ESRの増加を抑制できる。この結果、固体電解コンデンサ1は、高い信頼性を実現できる。 · Capacitor assembly 10 (a laminate of a plurality of capacitor elements 11 to 14 ) is constrained from both ends in the lamination direction, so that displacement of capacitor assembly 10 in insulating resin body 40 can be suppressed. As a result, it is possible to prevent the thickness of the insulating resin body 40 from being locally thinned, and it is possible to prevent the atmospheric humidity from permeating the capacitor assembly 10 . Alternatively, it is possible to prevent cracks from occurring in locally thinned portions and direct contact between the atmosphere and the capacitor assembly 10 . Therefore, deterioration of the electrode portions and conductor portions of the capacitor assembly 10 can be suppressed, and an increase in ESR can be suppressed. As a result, the solid electrolytic capacitor 1 can achieve high reliability.
 ・コンデンサ集合体10(複数のコンデンサ素子11-14の積層体)が積層方向の両端から拘束されていることで、流動性の絶縁性樹脂で押されて、複数のコンデンサ素子11-14の位置関係がずれてしまうことを抑制できる。これにより、複数のコンデンサ素子11-14と導通部材19との剥離を抑制でき、ESRの増加や破損を抑制できる。したがって、固体電解コンデンサ1は、高い信頼性を実現できる。 ・Because the capacitor assembly 10 (laminated body of the plurality of capacitor elements 11-14) is constrained from both ends in the lamination direction, the positions of the plurality of capacitor elements 11-14 are pushed by the fluid insulating resin. It is possible to prevent the relationship from being deviated. As a result, separation between the plurality of capacitor elements 11-14 and the conductive member 19 can be suppressed, and an increase in ESR and breakage can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
 ・コンデンサ集合体10(複数のコンデンサ素子11-14の積層体)が積層方向の両端から拘束されていることで、加熱時に固体電解コンデンサ1の全体に反りが生じても、複数のコンデンサ素子11-14と導通部材19との剥離を抑制でき、ESRの増加や破損を抑制できる。したがって、固体電解コンデンサ1は、高い信頼性を実現できる。 The capacitor assembly 10 (laminated body of the plurality of capacitor elements 11 to 14) is restrained from both ends in the lamination direction, so that even if the solid electrolytic capacitor 1 as a whole is warped during heating, the plurality of capacitor elements 11 -14 and the conductive member 19 can be suppressed, and an increase in ESR and breakage can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
 ・コンデンサ集合体10(複数のコンデンサ素子11-14の積層体)が積層方向の両端から拘束されていることで、加熱時のストレス、または反りの応力によるコンデンサ集合体10と第1端子電極20または第2端子電極30との剥離や導通不良を抑制でき、固体電解コンデンサ1としての容量の低下を抑制できる。したがって、固体電解コンデンサ1は、高い信頼性を実現できる。 ・Since the capacitor assembly 10 (laminated body of a plurality of capacitor elements 11 to 14) is constrained from both ends in the lamination direction, the capacitor assembly 10 and the first terminal electrode 20 may be damaged by stress during heating or warping stress. Alternatively, separation from the second terminal electrode 30 and defective conduction can be suppressed, and a decrease in the capacity of the solid electrolytic capacitor 1 can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
 ・コンデンサ集合体10(複数のコンデンサ素子11-14の積層体)が積層方向の両端から拘束されていることで、製造時のバラツキによる複数のコンデンサ素子11-14間の距離の差を抑制できる。これにより、上述の各種の問題の発生頻度を抑制できる。したがって、固体電解コンデンサ1は、高い信頼性を実現できる。 ・Since the capacitor assembly 10 (laminated body of the plurality of capacitor elements 11 to 14) is constrained from both ends in the lamination direction, it is possible to suppress the difference in the distance between the plurality of capacitor elements 11 to 14 due to manufacturing variations. . As a result, the frequency of occurrence of the various problems described above can be suppressed. Therefore, the solid electrolytic capacitor 1 can achieve high reliability.
 ・コンデンサ集合体10の第2端部の厚みD2が第1端部の厚みD1よりも大きいことで、拘束部材50をコンデンサ集合体10に容易に固定できる。すなわち、図1(B)に示すように、拘束部材50の第1部分501と第2部分502との距離Liを厚みD1よりも大きく、厚みD2よりも小さくする。これにより、拘束部材50をコンデンサ集合体10の第1端部側から差し込むことによって、コンデンサ集合体10は、拘束部材50の中空部500を通り抜けず、コンデンサ集合体10は、拘束部材50に確実に挿嵌される。 - Since the thickness D2 of the second end of the capacitor assembly 10 is larger than the thickness D1 of the first end, the restraining member 50 can be easily fixed to the capacitor assembly 10 . That is, as shown in FIG. 1B, the distance Li between the first portion 501 and the second portion 502 of the restraining member 50 is made larger than the thickness D1 and smaller than the thickness D2. As a result, by inserting the restraint member 50 from the first end side of the capacitor assembly 10 , the capacitor assembly 10 does not pass through the hollow portion 500 of the restraint member 50 , and the capacitor assembly 10 is securely attached to the restraint member 50 . is inserted into
 これにより、拘束部材50は、コンデンサ集合体10に確実に固定され、コンデンサ集合体10(複数のコンデンサ素子11-14の積層体)の積層方向の両側から、複数のコンデンサ素子11-14を拘束できる。また、この構成によって、製造時に、拘束部材50をコンデンサ集合体10の第1端部側から差し込むだけでよい。したがって、信頼性の高い固体電解コンデンサ1を、容易に且つ確実に製造できる。 As a result, the restraint member 50 is securely fixed to the capacitor assembly 10, and restrains the plurality of capacitor elements 11-14 from both sides in the lamination direction of the capacitor assembly 10 (the laminate of the plurality of capacitor elements 11-14). can. Moreover, with this configuration, it is only necessary to insert the restraining member 50 from the first end side of the capacitor assembly 10 during manufacturing. Therefore, a highly reliable solid electrolytic capacitor 1 can be manufactured easily and reliably.
 ・拘束部材50は、コンデンサ集合体10を平面視して(積層方向に視て)、第2端子電極30と重なる位置に配置される。これにより、複数のコンデンサ素子12、13と第2端子電極30との位置関係を固定できる。したがって、複数のコンデンサ素子12、13と第2端子電極30との接続の不具合の発生を抑制できる。この結果、固体電解コンデンサ1は、さらに高い信頼性を実現できる。 · The restraining member 50 is arranged at a position overlapping the second terminal electrode 30 when the capacitor assembly 10 is viewed from above (viewed in the stacking direction). Thereby, the positional relationship between the plurality of capacitor elements 12 and 13 and the second terminal electrode 30 can be fixed. Therefore, it is possible to suppress the occurrence of connection problems between the plurality of capacitor elements 12 and 13 and the second terminal electrode 30 . As a result, solid electrolytic capacitor 1 can achieve even higher reliability.
 (固体電解コンデンサ1の各構成要素の具体的な材料等の説明)
 (コンデンサ素子11-14)
 コンデンサ素子11-14は、例えば以下の材料や厚みで実現される。なお、以下では、コンデンサ素子11を例に説明する。
(Description of specific materials, etc. of each component of the solid electrolytic capacitor 1)
(Capacitor element 11-14)
Capacitor elements 11-14 are realized, for example, with the following materials and thicknesses. In addition, below, the capacitor|condenser element 11 is demonstrated to an example.
 電極箔111は、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、ケイ素等の金属単体、または、これらの金属を含む合金等からなる。なお、電極箔111は、アルミニウムまたはアルミニウム合金であることが好ましい。電極箔111は、いわゆる弁作用を示す弁作用金属であればよい。 The electrode foil 111 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon, or an alloy containing these metals. It should be noted that the electrode foil 111 is preferably made of aluminum or an aluminum alloy. The electrode foil 111 may be made of a valve action metal exhibiting a so-called valve action.
 電極箔111は、平板状であることが好ましく、電極箔111の芯部(多孔質体の孔が到達しない中心部)の厚みは、5μm以上、100μm以下であることが好ましい。多孔質部(多孔質体の孔が形成されている部)の厚さ(片面の厚さ)は、5μm以上、200μm以下であることが好ましい。 The electrode foil 111 preferably has a flat plate shape, and the thickness of the core portion of the electrode foil 111 (the central portion where the pores of the porous body do not reach) is preferably 5 μm or more and 100 μm or less. The thickness (thickness of one side) of the porous part (the part where the pores of the porous body are formed) is preferably 5 μm or more and 200 μm or less.
 誘電体112は、電極箔111の酸化皮膜からなることが好ましい。誘電体112は、例えば、電極箔111にアルミニウム箔を用いる場合、ホウ酸、リン酸、アジピン酸、またはそれらのナトリウム塩、アンモニウム塩等を含む水溶液中で酸化させることで形成される。誘電体112の厚みは10nm以上、100nm以下であることが好ましい。 The dielectric 112 is preferably made of the oxide film of the electrode foil 111 . For example, when an aluminum foil is used for the electrode foil 111, the dielectric 112 is formed by oxidizing it in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or sodium salts or ammonium salts thereof. The thickness of the dielectric 112 is preferably 10 nm or more and 100 nm or less.
 接続導体113は多層であることが好ましい。例えば、接続導体113は、内層と外層とを備える。 The connection conductor 113 is preferably multi-layered. For example, the connection conductor 113 comprises an inner layer and an outer layer.
 内層は、接続導体113の誘電体112側の層であり、例えば、ピロール類、チオフェン類、アニリン類等を骨格とした導電性高分子、もしくはチオフェン類を骨格とする導電性高分子のPEDOT[ポリ(3,4-エチレンジオキシチオフェン)]等で実現され、ドーパントとなるポリスチレンスルホン酸(PSS)と複合化させたPEDOT:PSSの層であってもよい。内層は、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体112の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体部の表面に塗布して乾燥させる方法等によって形成される。 The inner layer is a layer on the dielectric 112 side of the connecting conductor 113, and is, for example, a conductive polymer having a pyrrole, thiophene, or aniline skeleton, or a conductive polymer PEDOT [ Poly(3,4-ethylenedioxythiophene)], etc., and may be a PEDOT:PSS layer composited with polystyrene sulfonic acid (PSS) as a dopant. For the inner layer, for example, a method of forming a polymer film such as poly(3,4-ethylenedioxythiophene) on the surface of the dielectric 112 using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene, or , poly(3,4-ethylenedioxythiophene) or the like is applied to the surface of the dielectric portion and dried.
 外層は、内層の外側に形成される層である。例えば、外層は、多孔質部の細かい凹部を充填する内層を形成した後、誘電体112全体を被覆するように形成された層である。 The outer layer is a layer formed outside the inner layer. For example, the outer layer is a layer formed so as to cover the entire dielectric 112 after forming an inner layer that fills fine recesses of the porous portion.
 外層の厚みは、2μm以上、20μm以下であることが好ましい。外層は、例えば、カーボンペースト、グラフェンペースト、銀ペーストのような導電性ペーストを付与することによって形成されてなるカーボン層、グラフェン層又は銀層であることが好ましい。カーボン層やグラフェン層の上に銀層が設けられた複合層や、カーボンペーストやグラフェンペーストと銀ペーストを混合する混合層であってもよい。 The thickness of the outer layer is preferably 2 µm or more and 20 µm or less. The outer layer is preferably a carbon layer, graphene layer, or silver layer formed by applying a conductive paste such as carbon paste, graphene paste, or silver paste. A composite layer in which a silver layer is provided on a carbon layer or a graphene layer, or a mixed layer in which a carbon paste or a graphene paste and a silver paste are mixed may be used.
 外層のさらに次層として、導電性接着剤層が設けられていてもよい。導電性接着剤層を構成する材料としては、例えば、エポキシ樹脂、フェノール樹脂等の絶縁性樹脂と、カーボンや銀等の導電性粒子との混合物を用いるとよい。 A conductive adhesive layer may be provided as a layer next to the outer layer. As a material for forming the conductive adhesive layer, for example, a mixture of insulating resin such as epoxy resin or phenol resin and conductive particles such as carbon or silver may be used.
 導通部材19は、例えばニッケル、銀又は銅を主成分とする電極ペーストであることが好ましい。導通部材19の最大厚みは、2μm以上、20μm以下であることが好ましい。 The conductive member 19 is preferably an electrode paste containing, for example, nickel, silver or copper as its main component. The maximum thickness of the conductive member 19 is preferably 2 μm or more and 20 μm or less.
 第1端子電極20および第2端子電極30は、折り曲げ加工が容易で高い導電性を有する金属材料で形成されていることが好ましい。第1端子電極20および第2端子電極30は、例えば金属製の板材から切り出された材料で形成されている。なお、第1端子電極20および第2端子電極30は同一材料であっても良いし、異なる材料であってもよい。板材に用いられる金属材料としては、例えば銅、金、銀、アルミニウム、ニッケル、鉄、錫、クロム、ジルコニウムおよびそれらの合金が挙げられるが、これらに限られない。 The first terminal electrode 20 and the second terminal electrode 30 are preferably made of a metal material that is easily bent and has high electrical conductivity. The first terminal electrode 20 and the second terminal electrode 30 are made of material cut from, for example, a metal plate. The first terminal electrode 20 and the second terminal electrode 30 may be made of the same material, or may be made of different materials. Examples of metal materials used for the plate material include, but are not limited to, copper, gold, silver, aluminum, nickel, iron, tin, chromium, zirconium and alloys thereof.
 絶縁性樹脂体40は、樹脂が主体であり、フィラーを含んでいてもよい。樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等が好ましい。樹脂の形態は、固形樹脂、液状樹脂いずれも使用可能である。樹脂封止後のバレル研磨により、角部に丸みが付けられていることが好ましい。フィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等が好ましい。フィラーの最大径は、例えば30μm以上、40μm以下が望ましい。固形エポキシ樹脂とフェノール樹脂に、シリカ粒子を含む材料であることがより好ましい。 The insulating resin body 40 is mainly made of resin and may contain filler. As the resin, for example, epoxy resin, phenol resin, polyimide resin, silicone resin, polyamide resin, liquid crystal polymer, and the like are preferable. As for the form of the resin, both solid resin and liquid resin can be used. The corners are preferably rounded by barrel polishing after resin sealing. Preferred fillers include, for example, silica particles, alumina particles, and metal particles. The maximum diameter of the filler is desirably 30 μm or more and 40 μm or less, for example. A material containing silica particles in addition to the solid epoxy resin and phenol resin is more preferable.
 拘束部材50は、金属(好ましくは第一電極部または第二電極部と同一材料)、樹脂(好ましくは絶縁性樹脂体40と同一材料)、セラミックのいずれかが主体となっていることが好ましい。拘束部材50は、絶縁性樹脂の流動によって変形しない強度を有することが好ましい。 The restraint member 50 is preferably mainly made of metal (preferably the same material as the first electrode portion or the second electrode portion), resin (preferably the same material as the insulating resin body 40), or ceramic. . It is preferable that the restraining member 50 have strength not to be deformed by the flow of the insulating resin.
 拘束部材50に電気伝導性の高い金属を用いることによって、拘束部材50が第2端子電極30への導通経路となるため、ESRを低減させることができる。拘束部材50に用いられる金属としては、銀、銅、金、アルミニウムおよびそれらの合金が挙げられる。これらの金属は、電気伝導性が高く、加工が容易であることから好ましいが、これらに限られない。銀は、これらの中でも電気伝導性が高く、容易に入手でき、また加工が容易であることから特に好ましい。なお、ここで言う金属は、いわゆる無垢材でなくてもよい。すなわち、若干の不純物を含んだ金属を用いるようにしてもよく、さらに金属のフィラーを樹脂中に分散させた複合材であってもよい。一方、拘束部材50に絶縁性の材料を用いることによって、拘束部材50が接続導体113および接続導体143を削っても、拘束部材50による不所望な短絡を抑制できる。拘束部材50と絶縁性樹脂体40とに同一材料を用いることによって、拘束部材50と絶縁性樹脂体40との間の剥離の発生を抑制することができる。また、拘束部材50にセラミックを用いることによって、経時変化を抑制することができる。 By using a highly electrically conductive metal for the restraining member 50, the restraining member 50 serves as a conductive path to the second terminal electrode 30, so ESR can be reduced. Metals used for the restraint member 50 include silver, copper, gold, aluminum, and alloys thereof. These metals are preferable because of their high electrical conductivity and ease of processing, but are not limited to these. Among these, silver is particularly preferred because it has high electrical conductivity, is readily available, and is easy to process. Note that the metal referred to here does not have to be a so-called solid material. That is, a metal containing some impurities may be used, or a composite material in which a metal filler is dispersed in a resin may be used. On the other hand, by using an insulating material for the restraint member 50, even if the restraint member 50 cuts the connection conductor 113 and the connection conductor 143, it is possible to suppress an unwanted short circuit caused by the restraint member 50. FIG. By using the same material for the restraining member 50 and the insulating resin body 40, it is possible to suppress the occurrence of peeling between the restraining member 50 and the insulating resin body 40. FIG. In addition, by using ceramic for the restraining member 50, it is possible to suppress changes over time.
 (拘束部材の各種態様)
 図8は、第2例の拘束部材の三面図である。図9は、第3例の拘束部材の三面図である。図10は、第4例の拘束部材の三面図である。図11は、第5例の拘束部材の三面図である。
(Various modes of restraint members)
FIG. 8 is a trihedral view of the restraint member of the second example. FIG. 9 is a trihedral view of the restraining member of the third example. FIG. 10 is a trihedral view of the restraining member of the fourth example. FIG. 11 is a trihedral view of the restraining member of the fifth example.
 図8に示すように、第2例の拘束部材50CYは、第1例の拘束部材50に対して、各辺部が円柱状である点で異なる。このような構成によって、コンデンサ集合体10に当接する側の断面が円形であり、角部を有さない。したがって、拘束部材50CYは、コンデンサ集合体10を削り難い。これにより、さらに高い信頼性を実現できる。 As shown in FIG. 8, the restraint member 50CY of the second example differs from the restraint member 50 of the first example in that each side portion is cylindrical. With such a configuration, the cross section of the side contacting the capacitor assembly 10 is circular and has no corners. Therefore, binding member 50CY is less likely to scrape capacitor assembly 10 . This makes it possible to achieve even higher reliability.
 なお、拘束部材50CYでは、少なくとも内周面側の断面が円形であればよく、さらには、少なくとも、第1部分501および第2部分502の少なくとも一方の内周面側の断面が円形であればよい。 In the restraint member 50CY, at least the cross section on the inner peripheral surface side should be circular, and at least one of the first portion 501 and the second portion 502 may have a circular cross section on the inner peripheral surface side. good.
 図9に示すように、第3例の拘束部材50X1は、第1例の拘束部材50に対して、第4部分504の一部を切り欠いた点で異なる。すなわち、拘束部材50X1は、一部を切り欠いた環状である。 As shown in FIG. 9, the binding member 50X1 of the third example differs from the binding member 50 of the first example in that a part of the fourth portion 504 is cut out. That is, the restraining member 50X1 has an annular shape with a part notched.
 このような構成であっても、拘束部材50X1は、コンデンサ集合体10を積層方向の両側から拘束できる。また、この構成によって、拘束部材50X1は、線状の部材をコンデンサ集合体10に巻き付けることで形成できる。さらに、拘束部材50X1は、板状の部材をコンデンサ集合体10に対して折り曲げ加工することで形成できる。 Even with such a configuration, the restraining member 50X1 can restrain the capacitor assembly 10 from both sides in the stacking direction. Also, with this configuration, the restraint member 50X1 can be formed by winding a linear member around the capacitor assembly 10. As shown in FIG. Furthermore, the restraining member 50X1 can be formed by bending a plate-like member with respect to the capacitor assembly 10. As shown in FIG.
 図10に示すように、第4例の拘束部材50X2は、第1例の拘束部材50に対して、第3部分503を省略した点で異なる。すなわち、拘束部材50X2は、一部を切り欠いた環状である。 As shown in FIG. 10, the binding member 50X2 of the fourth example differs from the binding member 50 of the first example in that the third portion 503 is omitted. That is, the restraint member 50X2 has an annular shape with a part notched.
 このような構成であっても、拘束部材50X2は、コンデンサ集合体10を積層方向の両側から拘束できる。また、この構成によって、拘束部材50X2は、線状の部材をコンデンサ集合体10に巻き付けることで形成できる。さらに、拘束部材50X2は、拘束部材50X1と同様に、板状の部材をコンデンサ集合体10に対して折り曲げ加工することで形成できる。 Even with such a configuration, the restraining member 50X2 can restrain the capacitor assembly 10 from both sides in the stacking direction. Also, with this configuration, the restraining member 50X2 can be formed by winding a linear member around the capacitor assembly 10. As shown in FIG. Further, the restraining member 50X2 can be formed by bending a plate-like member with respect to the capacitor assembly 10, similarly to the restraining member 50X1.
 図11に示すように、第5例の拘束部材50X3は、第1例の拘束部材50に対して、複数の部材で構成された点で異なる。具体的には、拘束部材50X3は、拘束部材50の第1部分501に相当する部分を、第1部分5011と第1部分5012とによって形成する。また、拘束部材50X3は、拘束部材50の第2部分502に相当する部分を、第2部分5021と第2部分5022とによって形成する。 As shown in FIG. 11, the restraining member 50X3 of the fifth example differs from the restraining member 50 of the first example in that it is composed of a plurality of members. Specifically, the restraint member 50X3 forms a portion corresponding to the first portion 501 of the restraint member 50 by a first portion 5011 and a first portion 5012. As shown in FIG. Also, the restraining member 50X3 forms a portion corresponding to the second portion 502 of the restraining member 50 by the second portion 5021 and the second portion 5022. As shown in FIG.
 このような構成であっても、拘束部材50X3は、コンデンサ集合体10を積層方向の両側から拘束できる。 Even with such a configuration, the restraining member 50X3 can restrain the capacitor assembly 10 from both sides in the stacking direction.
 なお、これらの構造は、拘束部材の構造を示す一例であり、これらの構造を組み合わせてもよい。すなわち、拘束部材は、コンデンサ集合体10を、積層方向の両側から拘束できる構造であればよい。また、拘束部材の各辺部は、柱状に限らず、筒状であってもよい。 It should be noted that these structures are examples showing the structure of the restraining member, and these structures may be combined. That is, the restraining member may have any structure as long as it can restrain the capacitor assembly 10 from both sides in the stacking direction. Moreover, each side portion of the restraining member is not limited to a columnar shape, and may be cylindrical.
 [第2の実施形態]
 本発明の第2の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図12は、第2の実施形態に係る固体電解コンデンサの側面断面図である。
[Second embodiment]
A solid electrolytic capacitor according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 12 is a side sectional view of a solid electrolytic capacitor according to the second embodiment.
 図12に示すように、第2の実施形態に係る固体電解コンデンサ1Aは、第1の実施形態に係る固体電解コンデンサ1に対して、補強部材60を備える点で異なる。固体電解コンデンサ1Aの他の構成は、固体電解コンデンサ1と同様であり、同様の箇所の説明は省略する。補強部材60は、本発明の「第2部材」に対応する。 As shown in FIG. 12, the solid electrolytic capacitor 1A according to the second embodiment differs from the solid electrolytic capacitor 1 according to the first embodiment in that it includes a reinforcing member 60. As shown in FIG. Other configurations of the solid electrolytic capacitor 1A are the same as those of the solid electrolytic capacitor 1, and the description of the same portions is omitted. The reinforcing member 60 corresponds to the "second member" of the present invention.
 補強部材60は、複数の電極箔111-141と第1端子電極20との接続部(溶接部)の少なくとも一部を覆うように形成される。補強部材60は、複数の電極箔111-141と第1端子電極20とに物理的に接続する。なお、補強部材60は、複数の電極箔111-141と第1端子電極20とに電気的に接続してもよい。電気的に接続しない場合には、補強部材60は、絶縁性の接着剤等を用いることができる。電気的に接続する場合には、補強部材60は、はんだ等の導電性接合材を用いる。 The reinforcing member 60 is formed so as to cover at least a part of the connecting portions (welded portions) between the electrode foils 111 to 141 and the first terminal electrodes 20 . The reinforcing member 60 physically connects the electrode foils 111 - 141 and the first terminal electrode 20 . Note that the reinforcing member 60 may be electrically connected to the plurality of electrode foils 111 to 141 and the first terminal electrode 20 . In the case of no electrical connection, the reinforcing member 60 may be made of an insulating adhesive or the like. For electrical connection, the reinforcing member 60 uses a conductive bonding material such as solder.
 図12の例では、補強部材60は、積層方向において、電極箔111および電極箔141よりも内側のみに形成されているが、外側に形成されていてもよい。 In the example of FIG. 12, the reinforcing member 60 is formed only inside the electrode foils 111 and 141 in the stacking direction, but may be formed outside.
 このように、補強部材60を備えることによって、複数の電極箔111-141と第1端子電極20との接続を補強できる。したがって、固体電解コンデンサ1Aは、さらに高い信頼性を実現できる。 By thus providing the reinforcing member 60, the connection between the plurality of electrode foils 111-141 and the first terminal electrode 20 can be reinforced. Therefore, solid electrolytic capacitor 1A can realize higher reliability.
 [第3の実施形態]
 本発明の第3の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図13(A)は、第3の実施形態に係る固体電解コンデンサの側面断面図であり、図13(B)は、第3の実施形態に係るコンデンサ集合体と拘束部材とを示す平面図であり、図13(C)は、図13(B)の派生例の一例を示す平明図である。
[Third embodiment]
A solid electrolytic capacitor according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 13(A) is a side cross-sectional view of a solid electrolytic capacitor according to the third embodiment, and FIG. 13(B) is a plan view showing a capacitor assembly and a restraining member according to the third embodiment. FIG. 13(C) is a plan view showing an example of a derivative of FIG. 13(B).
 図13(A)、図13(B)、図13(C)に示すように、第3の実施形態に係る固体電解コンデンサ1Bは、第1の実施形態に係る固体電解コンデンサ1に対して、コンデンサ集合体10B、第1端子電極20B、第2端子電極30Bにおいて異なる。以下では、固体電解コンデンサ1と異なる箇所のみを説明する。 As shown in FIGS. 13A, 13B, and 13C, the solid electrolytic capacitor 1B according to the third embodiment has The capacitor assembly 10B, the first terminal electrode 20B, and the second terminal electrode 30B are different. Only the points different from the solid electrolytic capacitor 1 will be described below.
 コンデンサ集合体10Bは、複数のコンデンサ素子11B、12、13、14Bを備える。複数のコンデンサ素子11B、12、13、14Bの基本的な構造は、同様の構造であり、第1の実施形態に示したコンデンサ素子11と同様の構造である。 The capacitor assembly 10B includes a plurality of capacitor elements 11B, 12, 13, 14B. The basic structure of the plurality of capacitor elements 11B, 12, 13, and 14B is similar to that of the capacitor element 11 shown in the first embodiment.
 複数のコンデンサ素子11B、12、13、14Bは、積層されている。複数のコンデンサ素子11B、12、13、14Bのそれぞれの長さ方向は、積層方向に対して直交する。 A plurality of capacitor elements 11B, 12, 13, and 14B are stacked. The length direction of each of the plurality of capacitor elements 11B, 12, 13, 14B is perpendicular to the stacking direction.
 複数のコンデンサ素子11B、12、13、14Bの第1端部11EG1-14EG1(陽極)は束ねられている。この束ねられている部分は、第1端子電極20Bに接続される。 The first ends 11EG1-14EG1 (anode) of the plurality of capacitor elements 11B, 12, 13, 14B are bundled. This bundled portion is connected to the first terminal electrode 20B.
 第2端子電極30Bは、平板状の台部309を有する。コンデンサ集合体10Bは、台部309上に載置されている。第2端子電極30Bは、コンデンサ集合体10Bの陰極に接続される。 The second terminal electrode 30B has a plate-like base portion 309. Capacitor assembly 10B is placed on base 309 . The second terminal electrode 30B is connected to the cathode of the capacitor assembly 10B.
 このような構成において、固体電解コンデンサ1Bは、さらに次の構成を備える。 
 コンデンサ素子11Bは、突出部114を備える。突出部114は、コンデンサ素子11Bの接続導体113の上面から突出する形状である。
With such a configuration, the solid electrolytic capacitor 1B further has the following configuration.
Capacitor element 11B includes protrusion 114 . Protruding portion 114 has a shape protruding from the upper surface of connecting conductor 113 of capacitor element 11B.
 コンデンサ素子14Bは、突出部144を備える。突出部144は、コンデンサ素子14Bの接続導体143の下面から突出する形状である。 The capacitor element 14B has a projecting portion 144 . Protruding portion 144 has a shape protruding from the lower surface of connecting conductor 143 of capacitor element 14B.
 図13(A)に示すように、突出部114と突出部144は、コンデンサ集合体10Bの長さ方向において、略同じ位置に配置される。図13(B)に示すように、突出部114と突出部144は、コンデンサ集合体10Bの幅方向の略全長に亘って形成される。 As shown in FIG. 13(A), the projecting portion 114 and the projecting portion 144 are arranged at approximately the same position in the length direction of the capacitor assembly 10B. As shown in FIG. 13B, the protrusions 114 and 144 are formed over substantially the entire length of the capacitor assembly 10B in the width direction.
 拘束部材50CYの第1部分501は、突出部114に当接し、拘束部材50CYの第2部分502は、突出部144に当接する。これにより、拘束部材50CYは、コンデンサ集合体10Bに係止される。 The first portion 501 of the restraining member 50CY abuts on the projecting portion 114 and the second portion 502 of the restraining member 50CY abuts on the projecting portion 144 . Thereby, the restraining member 50CY is locked to the capacitor assembly 10B.
 このような構成によって、複数のコンデンサ素子11B、12、13、14Bの長さ方向が平行となるように配置されても、拘束部材50CYは、コンデンサ集合体10Bに確実に設置される。これにより、固体電解コンデンサ1Bは、高い信頼性を実現できる。 With such a configuration, the restraining member 50CY is reliably installed in the capacitor assembly 10B even when the plurality of capacitor elements 11B, 12, 13, and 14B are arranged so that their length directions are parallel. Thereby, the solid electrolytic capacitor 1B can realize high reliability.
 なお、固体電解コンデンサ1Bは、突出部114および突出部144の少なくとも一方を備えていればよい。 It should be noted that the solid electrolytic capacitor 1B only needs to include at least one of the protruding portion 114 and the protruding portion 144.
 また、図13(C)の突出部114Sに示すように、突出部は、コンデンサ集合体10Bの幅方向の一部に形成されていてもよい。この場合、複数の突出部114Sを備えることが好ましい。 Further, as shown in a protrusion 114S in FIG. 13(C), the protrusion may be formed partially in the width direction of the capacitor assembly 10B. In this case, it is preferable to have a plurality of protrusions 114S.
 [第4の実施形態]
 本発明の第4の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図14(A)は、第4の実施形態に係る固体電解コンデンサの側面断面図であり、図14(B)は、第4の実施形態に係るコンデンサ集合体と拘束部材とを示す平面図であり、図14(C)は、図14(B)の派生例の一例を示す平明図である。
[Fourth embodiment]
A solid electrolytic capacitor according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 14(A) is a side cross-sectional view of a solid electrolytic capacitor according to a fourth embodiment, and FIG. 14(B) is a plan view showing a capacitor assembly and a restraining member according to the fourth embodiment. FIG. 14(C) is a plain view showing an example of a derivative of FIG. 14(B).
 図14(A)、図14(B)、図14(C)に示すように、第4の実施形態に係る固体電解コンデンサ1Cは、第3の実施形態に係る固体電解コンデンサ1Bに対して、コンデンサ集合体10Cにおいて異なる。以下では、固体電解コンデンサ1Bと異なる箇所のみを説明する。なお、固体電解コンデンサ1Cにおける第1端子電極20Cおよび第2端子電極30Cは、それぞれに固体電解コンデンサ1Bにおける第1端子電極20Bおよび第2端子電極30Bと同様であり、説明は省略する。 As shown in FIGS. 14A, 14B, and 14C, the solid electrolytic capacitor 1C according to the fourth embodiment has The difference is in the capacitor assembly 10C. Only the points different from the solid electrolytic capacitor 1B will be described below. Note that the first terminal electrode 20C and the second terminal electrode 30C in the solid electrolytic capacitor 1C are the same as the first terminal electrode 20B and the second terminal electrode 30B in the solid electrolytic capacitor 1B, respectively, and the description thereof is omitted.
 コンデンサ集合体10Cは、複数のコンデンサ素子11C-14Cを備える。複数のコンデンサ素子11C-14Cの厚みは、第1端部11EG1-14EG1から第2端部11EG2-14EG2に向かって大きくなる。すなわち、複数のコンデンサ素子11C-14Cは、側面視して上面および下面に傾斜を有する(図14(B)参照)。 The capacitor assembly 10C includes a plurality of capacitor elements 11C-14C. The thickness of the plurality of capacitor elements 11C-14C increases from the first end 11EG1-14EG1 toward the second end 11EG2-14EG2. That is, the plurality of capacitor elements 11C to 14C have inclined upper and lower surfaces when viewed from the side (see FIG. 14B).
 このような構成によって、固体電解コンデンサ1Bの突出部114、144と同様の機能を実現できる。したがって、拘束部材50CYは、コンデンサ集合体10Cに確実に設置される。これにより、固体電解コンデンサ1Cは、高い信頼性を実現できる。 With such a configuration, functions similar to those of the projecting portions 114 and 144 of the solid electrolytic capacitor 1B can be realized. Therefore, the restraint member 50CY is securely installed on the capacitor assembly 10C. Thereby, the solid electrolytic capacitor 1C can realize high reliability.
 なお、このような第1端部から第2端部に向かって厚くなる形状は、少なくともコンデンサ素子11Cまたはコンデンサ素子14Cが備えていればよい。さらには、コンデンサ素子11Cであれば、上面側が厚くなる形状であればよく、コンデンサ素子14Cであれば、下面側が厚くなる形状であればよい。 It should be noted that at least the capacitor element 11C or the capacitor element 14C should have such a shape that becomes thicker from the first end toward the second end. Furthermore, the capacitor element 11C may have a shape that is thicker on the upper surface side, and the capacitor element 14C may have a shape that is thicker on the lower surface side.
 また、図14(C)に示すように、コンデンサ素子11Cの派生として、コンデンサ素子11CXは、長さ方向の途中位置から厚みが大きくなる形状であってもよい。これは、コンデンサ素子14Cの派生も同様である。 Also, as shown in FIG. 14(C), as a derivative of the capacitor element 11C, the capacitor element 11CX may have a shape in which the thickness increases from the middle position in the length direction. The same applies to the derivation of the capacitor element 14C.
 [第5の実施形態]
 本発明の第5の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図15は、第5の実施形態に係る固体電解コンデンサの側面断面図である。
[Fifth embodiment]
A solid electrolytic capacitor according to a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 15 is a side cross-sectional view of a solid electrolytic capacitor according to the fifth embodiment.
 図15に示すように、第5の実施形態に係る固体電解コンデンサ1Dは、第3の実施形態に係る固体電解コンデンサ1Bに対して、コンデンサ集合体10D、第2端子電極30Dにおいて異なる。以下では、固体電解コンデンサ1Bと異なる箇所のみを説明する。なお、固体電解コンデンサ1Dにおける第1端子電極20Dは、固体電解コンデンサ1Bにおける第1端子電極20Bと同様であり、説明は省略する。 As shown in FIG. 15, the solid electrolytic capacitor 1D according to the fifth embodiment differs from the solid electrolytic capacitor 1B according to the third embodiment in the capacitor assembly 10D and the second terminal electrode 30D. Only the points different from the solid electrolytic capacitor 1B will be described below. Note that the first terminal electrode 20D in the solid electrolytic capacitor 1D is the same as the first terminal electrode 20B in the solid electrolytic capacitor 1B, and the description thereof is omitted.
 コンデンサ集合体10Dは、複数のコンデンサ素子11D、12、13、14を備える。コンデンサ素子11Dは、コンデンサ素子11Bと同様に、突出部114を備える。 The capacitor assembly 10D includes a plurality of capacitor elements 11D, 12, 13, and 14. Capacitor element 11D includes projecting portion 114, similar to capacitor element 11B.
 第2端子電極30Dは、台部309を備える。台部309は、突出部39を備える。突出部39は、台部309におけるコンデンサ集合体10Dが載置される面と反対側の面から突出する形状である。 The second terminal electrode 30D has a base portion 309. The pedestal 309 includes a projecting portion 39 . The projecting portion 39 has a shape projecting from the surface of the base portion 309 opposite to the surface on which the capacitor assembly 10D is placed.
 コンデンサ素子11Dの突出部114と台部309の突出部39とは、コンデンサ集合体10Dの長さ方向において、略同じ位置に配置される。 The protruding portion 114 of the capacitor element 11D and the protruding portion 39 of the base portion 309 are arranged at substantially the same position in the length direction of the capacitor assembly 10D.
 拘束部材50CYは、コンデンサ集合体10Dおよび第2端子電極30Dの台部309の積層構造体を、積層方向の両側から拘束する。これにより、上述のような各種問題を抑制でき、固体電解コンデンサ1Dは、高い信頼性を実現できる。 The restraining member 50CY restrains the laminated structure of the capacitor assembly 10D and the base portion 309 of the second terminal electrode 30D from both sides in the lamination direction. As a result, various problems as described above can be suppressed, and the solid electrolytic capacitor 1D can achieve high reliability.
 さらに、拘束部材50CYの第1部分501は、コンデンサ素子11Bの突出部114に当接し、拘束部材50CYの第1部分501は、台部309の突出部39に当接する。これにより、拘束部材50CYは、コンデンサ集合体10Dに係止される。このような構成によって、拘束部材50CYは、コンデンサ集合体10Dに確実に設置され、固体電解コンデンサ1Dは、高い信頼性をより確実に実現できる。 Furthermore, the first portion 501 of the restraining member 50CY abuts on the protruding portion 114 of the capacitor element 11B, and the first portion 501 of the restraining member 50CY abuts on the protruding portion 39 of the base portion 309 . Thereby, the restraining member 50CY is locked to the capacitor assembly 10D. With such a configuration, the binding member 50CY is securely installed in the capacitor assembly 10D, and the solid electrolytic capacitor 1D can more reliably achieve high reliability.
 (固体電解コンデンサ1Dの製造方法)
 図16は、第5の実施形態に係る固体電解コンデンサの製造方法の一例を示すフローチャートである。
(Manufacturing method of solid electrolytic capacitor 1D)
FIG. 16 is a flow chart showing an example of a method for manufacturing a solid electrolytic capacitor according to the fifth embodiment.
 図16に示すように、複数のコンデンサ素子11D、12、13、14を形成する(S11)。 As shown in FIG. 16, a plurality of capacitor elements 11D, 12, 13 and 14 are formed (S11).
 次に、複数のコンデンサ素子11D、12、13、14を積層し、コンデンサ集合体10Dを形成する(S12)。 Next, a plurality of capacitor elements 11D, 12, 13, and 14 are stacked to form a capacitor assembly 10D (S12).
 次に、第2端子電極30Dの台部309にコンデンサ集合体10Dを配置(載置)する(S20)。 Next, the capacitor assembly 10D is arranged (placed) on the base portion 309 of the second terminal electrode 30D (S20).
 次に、コンデンサ集合体10Dと台部309を拘束部材50CYで拘束する(S23)。 Next, the capacitor assembly 10D and the base portion 309 are restrained by the restraining member 50CY (S23).
 次に、拘束部材50で拘束されたコンデンサ集合体10Dおよび第2端子電極30Dの台部309を含む部分を絶縁性樹脂体40で封止する(S24)。より具体的には、拘束部材50で拘束されたコンデンサ集合体10および第2端子電極30Dの台部309を含む部分を、流動性の絶縁性樹脂で覆い、熱処理によって絶縁性樹脂を固化させることで絶縁性樹脂体40を形成する。 Next, the portion including the base portion 309 of the capacitor assembly 10D and the second terminal electrode 30D restrained by the restraining member 50 is sealed with the insulating resin body 40 (S24). More specifically, the portion including the base portion 309 of the capacitor assembly 10 and the second terminal electrode 30D restrained by the restraining member 50 is covered with a fluid insulating resin, and the insulating resin is solidified by heat treatment. to form the insulating resin body 40 .
 この後、絶縁性樹脂体40から突出した第1端子電極20Dおよび第2端子電極30Dを整形し、固体電解コンデンサ1Dが形成される。 After that, the first terminal electrode 20D and the second terminal electrode 30D projecting from the insulating resin body 40 are shaped to form the solid electrolytic capacitor 1D.
 なお、上述の各実施形態に示す構成および各種の派生例は、適宜組み合わせることが可能であり、それぞれの組み合わせに応じた作用効果を奏することができる。
It should be noted that the configurations and various derivative examples shown in the respective embodiments described above can be combined as appropriate, and effects can be obtained according to each combination.
1、1A、1B、1C、1D:固体電解コンデンサ
10、10B、10C、10D:コンデンサ集合体
11、11B、11C、11CX、11D、12、13、14、14B、14C:コンデンサ素子
11EG1、12EG1、13EG1、14EG1:第1端部
11EG2、12EG2、13EG2、14EG2:第2端部
19:導通部材
20、20B、20C、20D:第1端子電極
30、30B、30C、30D:第2端子電極
39、114S、144:突出部
40:絶縁性樹脂体
50、50CY、50X1、50X2、50X3:拘束部材
60:補強部材
111、121、131、141:電極箔
112、122、132、142:誘電体
113、123、133、143:接続導体
114:突出部
309:台部
401:天面
402:底面
403:第1端面
404:第2端面
405、406:側面
500:中空部
501、5011、5012:第1部分
502、5021、5022:第2部分
503:第3部分
504:第4部分
1, 1A, 1B, 1C, 1D: Solid electrolytic capacitors 10, 10B, 10C, 10D: Capacitor assemblies 11, 11B, 11C, 11CX, 11D, 12, 13, 14, 14B, 14C: Capacitor elements 11EG1, 12EG1, 13EG1, 14EG1: first ends 11EG2, 12EG2, 13EG2, 14EG2: second ends 19: conductive members 20, 20B, 20C, 20D: first terminal electrodes 30, 30B, 30C, 30D: second terminal electrodes 39, 114S, 144: Protrusions 40: Insulating resin bodies 50, 50CY, 50X1, 50X2, 50X3: Restraining members 60: Reinforcing members 111, 121, 131, 141: Electrode foils 112, 122, 132, 142: Dielectric 113, 123, 133, 143: Connection conductor 114: Protruding portion 309: Base portion 401: Top surface 402: Bottom surface 403: First end surface 404: Second end surface 405, 406: Side surface 500: Hollow portions 501, 5011, 5012: First Parts 502, 5021, 5022: Second part 503: Third part 504: Fourth part

Claims (12)

  1.  複数のコンデンサ素子が積層されたコンデンサ集合体と、
     前記コンデンサ集合体の周囲を封止する絶縁性樹脂体と、
     前記複数のコンデンサ素子の積層方向の少なくとも両側から前記コンデンサ集合体を挟み、前記コンデンサ集合体とともに前記絶縁性樹脂体によって封止される、一体の部材である第1部材と、
     を備える、固体電解コンデンサ。
    a capacitor assembly in which a plurality of capacitor elements are laminated;
    an insulating resin body that seals the periphery of the capacitor assembly;
    a first member that is an integral member that sandwiches the capacitor assembly from at least both sides in the lamination direction of the plurality of capacitor elements and that is sealed together with the capacitor assembly by the insulating resin body;
    A solid electrolytic capacitor, comprising:
  2.  前記第1部材は、前記コンデンサ集合体における前記積層方向に直交する幅方向の両端を固定する、
     請求項1に記載の固体電解コンデンサ。
    The first member fixes both ends of the capacitor assembly in a width direction perpendicular to the stacking direction.
    The solid electrolytic capacitor according to claim 1.
  3.  前記第1部材は、環状、または、一部を切り欠いた環状である、
     請求項1または請求項2に記載の固体電解コンデンサ。
    The first member is an annular shape or a partially notched annular shape,
    3. The solid electrolytic capacitor according to claim 1 or 2.
  4.  前記第1部材は、絶縁体である、
     請求項1乃至請求項3のいずれかに記載の固体電解コンデンサ。
    The first member is an insulator,
    4. The solid electrolytic capacitor according to claim 1.
  5.  前記第1部材は、セラミックである、
     請求項1乃至請求項4のいずれかに記載の固体電解コンデンサ。
    The first member is ceramic,
    5. The solid electrolytic capacitor according to claim 1.
  6.  前記複数のコンデンサ素子は、
     陽極を構成する電極箔と、
     前記電極箔の長さ方向の第1端部を除き、前記第1端部に対して反対側の第2端部を含んで、前記電極箔を覆う誘電体と、
     前記誘電体を覆い、前記電極箔に非接触の接続導体と、
     を備え、
     前記第1部材は、
     前記コンデンサ集合体の積層方向の両端のコンデンサ素子の前記接続導体に当接して配置される、
     請求項1乃至請求項5のいずれかに記載の固体電解コンデンサ。
    The plurality of capacitor elements are
    an electrode foil constituting an anode;
    a dielectric covering the electrode foil except for a first longitudinal end of the electrode foil and including a second end opposite to the first end;
    a connection conductor covering the dielectric and not in contact with the electrode foil;
    with
    The first member is
    arranged in contact with the connection conductors of the capacitor elements at both ends in the stacking direction of the capacitor assembly;
    6. The solid electrolytic capacitor according to claim 1.
  7.  前記コンデンサ集合体における前記第2端部での前記積層方向の第2厚みは、前記コンデンサ集合体における前記第1端部での前記積層方向の第1厚みよりも大きい、
     請求項6に記載の固体電解コンデンサ。
    A second thickness in the stacking direction at the second end of the capacitor assembly is greater than a first thickness in the stacking direction at the first end of the capacitor assembly,
    The solid electrolytic capacitor according to claim 6.
  8.  前記コンデンサ集合体の前記積層方向の少なくとも一方端のコンデンサ素子の接続導体から、前記コンデンサ集合体の外方に突出する突出部を備える、
     請求項6または請求項7に記載の固体電解コンデンサ。
    a projecting portion projecting outward from the capacitor assembly from a connection conductor of a capacitor element at at least one end in the stacking direction of the capacitor assembly,
    The solid electrolytic capacitor according to claim 6 or 7.
  9.  前記第1端部に配置され、前記コンデンサ集合体の陽極に接続する第1接続部を有する第1端子電極と、
     前記長さ方向の第2端部に配置され、前記コンデンサ集合体の陰極に接続する第2接続部を有する第2端子電極と、
     を備え、
     前記第2接続部は、前記積層方向において前記複数のコンデンサ素子に挟まれて配置され、
     前記積層方向に視て、前記第1部材は、前記第2接続部と重なる位置に配置される、
     請求項6乃至請求項8のいずれかに記載の固体電解コンデンサ。
    a first terminal electrode disposed at the first end and having a first connection portion connected to an anode of the capacitor assembly;
    a second terminal electrode disposed at the second end in the length direction and having a second connection portion connected to the cathode of the capacitor assembly;
    with
    wherein the second connecting portion is arranged sandwiched between the plurality of capacitor elements in the stacking direction,
    When viewed in the stacking direction, the first member is arranged at a position overlapping the second connection portion,
    9. The solid electrolytic capacitor according to claim 6.
  10.  前記第1端部に配置され、前記コンデンサ集合体の陽極に接続する第1接続部を有する第1端子電極と、
     前記長さ方向の第2端部に配置され、前記コンデンサ集合体の陰極に接続する第2接続部を有する第2端子電極と、
     を備え、
     前記第2接続部は、前記コンデンサ集合体を前記積層方向の一方端側から固定する台部を備え、
     前記台部は、前記コンデンサ集合体に対向する面と反対側の面から突出する突出部を備える、
     請求項6に記載の固体電解コンデンサ。
    a first terminal electrode disposed at the first end and having a first connection portion connected to an anode of the capacitor assembly;
    a second terminal electrode disposed at the second end in the length direction and having a second connection portion connected to the cathode of the capacitor assembly;
    with
    the second connecting portion includes a base portion for fixing the capacitor assembly from one end side in the stacking direction,
    The pedestal includes a protruding portion that protrudes from a surface opposite to the surface facing the capacitor assembly,
    The solid electrolytic capacitor according to claim 6.
  11.  前記複数のコンデンサ素子の前記電極箔の接続部の少なくとも一部を覆う第2部材を備える、
     請求項6乃至請求項10のいずれかに記載の固体電解コンデンサ。
    a second member covering at least a portion of the connection portions of the electrode foils of the plurality of capacitor elements;
    The solid electrolytic capacitor according to any one of claims 6 to 10.
  12.  それぞれが固体電解コンデンサとしての構成を有する複数のコンデンサ素子を形成する工程と、
     前記複数のコンデンサ素子を積層して、コンデンサ集合体を形成する工程と、
     前記コンデンサ集合体の前記複数のコンデンサ素子の相対的な位置関係を第1部材で固定する工程と、
     前記第1部材で固定された前記コンデンサ集合体の周囲を流動性の絶縁性樹脂で覆う工程と、
     前記絶縁性樹脂を固化する工程と、
     を有し、
     前記第1部材は、環状、または、一部を切り欠いた環状からなり、
     前記第1部材で固定する工程は、前記コンデンサ集合体の長さ方向から前記第1部材を挿嵌させる、
     固体電解コンデンサの製造方法。
    forming a plurality of capacitor elements each configured as a solid electrolytic capacitor;
    laminating the plurality of capacitor elements to form a capacitor assembly;
    fixing the relative positional relationship of the plurality of capacitor elements of the capacitor assembly with a first member;
    a step of covering the periphery of the capacitor assembly fixed by the first member with a fluid insulating resin;
    solidifying the insulating resin;
    has
    The first member is an annular ring or a partially cut-out annular ring,
    The step of fixing with the first member includes inserting the first member from the length direction of the capacitor assembly.
    A method for manufacturing a solid electrolytic capacitor.
PCT/JP2023/004152 2022-02-09 2023-02-08 Solid electrolytic capacitor, and solid electrolytic capacitor manufacturing method WO2023153424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018346 2022-02-09
JP2022018346 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153424A1 true WO2023153424A1 (en) 2023-08-17

Family

ID=87564400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004152 WO2023153424A1 (en) 2022-02-09 2023-02-08 Solid electrolytic capacitor, and solid electrolytic capacitor manufacturing method

Country Status (1)

Country Link
WO (1) WO2023153424A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310542U (en) * 1986-07-09 1988-01-23
JP2001230156A (en) * 1999-12-10 2001-08-24 Showa Denko Kk Laminated solid electrolytic capacitor
JP2003077764A (en) * 2001-09-03 2003-03-14 Matsushita Electric Ind Co Ltd Multilayer solid electrolytic capacitor and its manufacturing method
JP2006108539A (en) * 2004-10-08 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2008047553A (en) * 2005-12-28 2008-02-28 Showa Denko Kk Solid electrolytic capacitor and manufacturing method thereof
WO2020179170A1 (en) * 2019-03-05 2020-09-10 株式会社村田製作所 Electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310542U (en) * 1986-07-09 1988-01-23
JP2001230156A (en) * 1999-12-10 2001-08-24 Showa Denko Kk Laminated solid electrolytic capacitor
JP2003077764A (en) * 2001-09-03 2003-03-14 Matsushita Electric Ind Co Ltd Multilayer solid electrolytic capacitor and its manufacturing method
JP2006108539A (en) * 2004-10-08 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2008047553A (en) * 2005-12-28 2008-02-28 Showa Denko Kk Solid electrolytic capacitor and manufacturing method thereof
WO2020179170A1 (en) * 2019-03-05 2020-09-10 株式会社村田製作所 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR101117041B1 (en) Stacked type solid electrolytic capacitor and method for manufacturing same
US7355835B2 (en) Stacked capacitor and method of fabricating the same
US11670460B2 (en) Electrolytic capacitor and manufacturing method thereof
JP4688675B2 (en) Multilayer solid electrolytic capacitor
CN112420395B (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US20040174660A1 (en) Stacked solid electrolytic capacitor and stacked transmission line element
US11232913B2 (en) Electrolytic capacitor
WO2023153424A1 (en) Solid electrolytic capacitor, and solid electrolytic capacitor manufacturing method
WO2019156120A1 (en) Electrolytic capacitor
JP5146677B2 (en) Multilayer electrolytic capacitor
US11211204B2 (en) Solid electrolytic capacitor and method for manufacturing same
JPH07240351A (en) Electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor
WO2023188555A1 (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
JP2008177199A (en) Solid electrolytic capacitor
JP5247495B2 (en) Solid electrolytic capacitor
JP2008177200A (en) Solid electrolytic capacitor
WO2024048414A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
WO2024090047A1 (en) Solid electrolytic capacitor
JP2008021774A (en) Chip-type solid electrolytic capacitor, and manufacturing method thereof
JP5051851B2 (en) Multilayer solid electrolytic capacitor
WO2024029458A1 (en) Solid electrolytic capacitor
WO2024048412A1 (en) Solid electrolytic capacitor
WO2024070529A1 (en) Capacitor element
WO2023167229A1 (en) Method for producing solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752888

Country of ref document: EP

Kind code of ref document: A1