WO2023153103A1 - Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board - Google Patents

Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board Download PDF

Info

Publication number
WO2023153103A1
WO2023153103A1 PCT/JP2022/048222 JP2022048222W WO2023153103A1 WO 2023153103 A1 WO2023153103 A1 WO 2023153103A1 JP 2022048222 W JP2022048222 W JP 2022048222W WO 2023153103 A1 WO2023153103 A1 WO 2023153103A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
photosensitive
photosensitive resin
acid
Prior art date
Application number
PCT/JP2022/048222
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 岡出
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023153103A1 publication Critical patent/WO2023153103A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present disclosure relates to a photosensitive resin composition, a photosensitive element, a printed wiring board, and a method for manufacturing a printed wiring board.
  • Permanent resists are formed on printed wiring boards. Permanent resists play a role in preventing corrosion of conductor layers and maintaining electrical insulation between conductor layers in printed wiring boards, and are used as surface protective layers, interlayer insulating layers, and the like.
  • a method for manufacturing a printed wiring board there is a method for manufacturing a multilayer printed wiring board by a build-up method in which an interlayer insulating layer and a conductor circuit layer are sequentially laminated (see, for example, Patent Document 1).
  • a semi-additive method in which circuits are formed by plating, has become mainstream along with the miniaturization of circuits.
  • Electroless copper plating is applied to the substrate, a pattern is formed using a resist, and electrolytic copper is formed.
  • a circuit is formed through a step of forming a copper circuit layer by plating, and a step of (4) stripping the resist and performing flash etching of the electroless layer to form a copper circuit. It's here.
  • laser processing is the mainstream method for forming vias in an interlayer insulating layer formed by curing a thermosetting resin film. There are limits to transformation.
  • an object of the present disclosure is to provide a photosensitive resin composition, a photosensitive element, a printed wiring board, and a method for producing a printed wiring board that can obtain excellent resolution and excellent electrical insulation reliability.
  • One aspect of the present disclosure contains (A) an acid-modified vinyl group-containing resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, and (E) a thermosetting resin. and wherein the component (C) contains a compound having a thioxanthone skeleton, and the component (E) contains a resin having a naphthalene ring.
  • the component (A) comprises at least one acid-modified vinyl group-containing epoxy resin (A1) obtained by using a bisphenol novolak type epoxy resin (a1), and the epoxy resin (a1). may contain at least one acid-modified vinyl group-containing epoxy resin (A2) obtained by using a different epoxy resin (a2).
  • the epoxy resin (a2) is at least one selected from the group consisting of novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and triphenolmethane type epoxy resins. can be any organic resins.
  • the acid-modified vinyl group-containing epoxy resins (A1) and (A2) are respectively the epoxy resins (a1) and (a2) and the ethylenically unsaturated group-containing organic acid (b). It may be a resin obtained by reacting the resins (A1') and (A2') obtained by reacting with the polybasic acid anhydride (c) containing saturated or unsaturated groups.
  • the epoxy resin (a1) may have a structural unit represented by the following general formula (I) or a structural unit represented by the following general formula (II).
  • R 11 represents a hydrogen atom or a methyl group
  • Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group.
  • Plural R 11 may be the same or different, and at least one of Y 1 and Y 2 represents a glycidyl group.
  • R 12 represents a hydrogen atom or a methyl group
  • Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group.
  • Plural R 12 may be the same or different, and at least one of Y 3 and Y 4 represents a glycidyl group.
  • the component (B) may contain a compound having 3 or more ethylenically unsaturated bonds in the molecule.
  • the photosensitive resin composition may further contain (F) a pigment.
  • the component (E) may contain an epoxy resin having a naphthalene ring.
  • the component (A) may have an acid value of 30 to 150 mgKOH/g.
  • Another aspect of the present disclosure relates to a photosensitive element comprising a support film and a photosensitive layer formed using the photosensitive resin composition described above.
  • Another aspect of the present disclosure relates to a printed wiring board comprising a permanent resist containing a cured product of the photosensitive resin composition described above.
  • Another aspect of the present disclosure includes a step of forming a photosensitive layer on a substrate using the photosensitive resin composition or photosensitive element described above, and a step of exposing and developing the photosensitive layer to form a resist pattern. and a step of curing the resist pattern to form a permanent resist.
  • a photosensitive resin composition a photosensitive element, a printed wiring board, and a method for producing a printed wiring board that can obtain excellent resolution and excellent electrical insulation reliability.
  • FIG. 1 is a cross-sectional view schematically showing a photosensitive element according to this embodiment
  • FIG. It is a schematic diagram which shows the manufacturing method of the multilayer printed wiring board which concerns on this embodiment.
  • step includes not only independent steps, but also steps that are indistinguishable from other steps, as long as the intended action of that step is achieved.
  • layer includes not only a shape structure formed over the entire surface but also a shape structure formed partially when viewed as a plan view.
  • a numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the multiple substances present in the composition means the total amount of
  • (meth)acrylate means at least one of “acrylate” and its corresponding “methacrylate”, and the same applies to other similar expressions such as (meth)acrylic acid and (meth)acryloyl. is.
  • solid content refers to the non-volatile content excluding volatile substances (water, solvents, etc.) contained in the photosensitive resin composition, and is liquid at room temperature (around 25° C.), syrup-like, or It also contains a waxy component.
  • the present embodiment relates to the following photosensitive resin composition, photosensitive element, printed wiring board, and printed wiring board manufacturing method.
  • the component (A) comprises at least one acid-modified vinyl group-containing epoxy resin (A1) obtained by using a bisphenol novolak type epoxy resin (a1), and an epoxy resin (a1) different from the epoxy resin (a1).
  • the acid-modified vinyl group-containing epoxy resins (A1) and (A2) are obtained by reacting the epoxy resins (a1) and (a2), respectively, with an ethylenically unsaturated group-containing organic acid (b).
  • Composition. [5]
  • the epoxy resin (a1) has a structural unit represented by the following general formula (I) or a structural unit represented by the following general formula (II), above [2] to [ 4].
  • R 11 represents a hydrogen atom or a methyl group
  • Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group.
  • Plural R 11 may be the same or different, and at least one of Y 1 and Y 2 represents a glycidyl group.
  • R 12 represents a hydrogen atom or a methyl group, and Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group.
  • Plural R 12 may be the same or different, and at least one of Y 3 and Y 4 represents a glycidyl group.
  • [6] The photosensitive resin composition according to any one of [1] to [5] above, wherein the component (B) contains a compound having three or more ethylenically unsaturated bonds in the molecule.
  • a photosensitive element comprising a support film and a photosensitive layer formed using the photosensitive resin composition according to any one of [1] to [9] above.
  • a printed wiring board comprising a permanent resist containing a cured product of the photosensitive resin composition according to any one of [1] to [9] above.
  • a method of manufacturing a printed wiring board comprising: exposing and developing a layer to form a resist pattern; and curing the resist pattern to form a permanent resist.
  • the photosensitive resin composition according to the present embodiment includes (A) an acid-modified vinyl group-containing resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, and (E) a heat It contains a curable resin, the component (C) contains a compound having a thioxanthone skeleton, and the component (E) contains a resin having a naphthalene ring.
  • the photosensitive resin composition according to this embodiment may further contain one or more of (F) a pigment, (G) an elastomer, (H) a curing agent, and (I) an ion scavenger.
  • the photosensitive resin composition according to the present embodiment is a negative photosensitive resin composition, and the cured film of the photosensitive resin composition can be suitably used as a permanent resist such as a surface protective layer and an interlayer insulating layer. can.
  • a permanent resist such as a surface protective layer and an interlayer insulating layer.
  • the photosensitive resin composition according to this embodiment contains an acid-modified vinyl group-containing resin as component (A).
  • the acid-modified vinyl group-containing resin is not particularly limited as long as it has a vinyl bond that is a photopolymerizable ethylenically unsaturated bond and an alkali-soluble acidic group.
  • Examples of groups having an ethylenically unsaturated bond contained in component (A) include vinyl groups, allyl groups, propargyl groups, butenyl groups, ethynyl groups, phenylethynyl groups, maleimide groups, nadimide groups, and (meth)acryloyl groups. is mentioned. Among these, a (meth)acryloyl group is preferable from the viewpoint of reactivity and resolution.
  • Examples of acidic groups possessed by component (A) include carboxy groups, sulfo groups, and phenolic hydroxyl groups. Among these, a carboxy group is preferable from the viewpoint of resolution.
  • Component (A) consists of (a) an epoxy resin (hereinafter sometimes referred to as “(a) component”) and (b) an ethylenically unsaturated group-containing organic acid (hereinafter referred to as “(b) component”). and (c) a saturated or unsaturated group-containing polybasic acid anhydride (hereinafter sometimes referred to as “component (c)”). ) is preferably an acid-modified vinyl group-containing epoxy derivative.
  • acid-modified vinyl group-containing epoxy derivatives examples include acid-modified epoxy (meth)acrylates.
  • Acid-modified epoxy (meth)acrylate is a resin obtained by acid-modifying epoxy (meth)acrylate, which is a reaction product of components (a) and (b), with component (c).
  • As the acid-modified epoxy (meth)acrylate for example, an addition reaction product obtained by adding a saturated or unsaturated polybasic acid anhydride to an esterified product obtained by reacting an epoxy resin and a vinyl group-containing monocarboxylic acid can be used. can.
  • component (A) for example, an acid-modified vinyl group-containing resin ( A1) (hereinafter sometimes referred to as “(A1) component”), and epoxy resin (a2) other than epoxy resin (a1) as component (a) (hereinafter referred to as “epoxy resin (a2)”) and an acid-modified vinyl group-containing resin (A2) (hereinafter sometimes referred to as "(A2) component”) using
  • Examples of the epoxy resin (a1) include epoxy resins having a structural unit represented by the following formula (I) or (II).
  • R 11 represents a hydrogen atom or a methyl group, and multiple R 11 may be the same or different.
  • Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group, and at least one of Y 1 and Y 2 is a glycidyl group.
  • R 11 is preferably a hydrogen atom, and from the viewpoint of further improving insulation reliability, Y 1 and Y 2 are preferably glycidyl groups.
  • the number of structural units represented by formula (I) in the epoxy resin (a1) is 1 or more, and may be 10-100, 15-80 or 15-70. When the number of structural units is within the above range, it becomes easier to improve resolution and insulation reliability.
  • the number of structural units of a structural unit represents an integer value for a single molecule, and represents a rational number, which is an average value, for an aggregate of multiple types of molecules.
  • the number of structural units of the structural units is the same.
  • R 12 represents a hydrogen atom or a methyl group, and multiple R 12 may be the same or different.
  • Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group, and at least one of Y 3 and Y 4 is a glycidyl group.
  • R 12 is preferably a hydrogen atom, and from the viewpoint of further improving insulation reliability, Y 3 and Y 4 are preferably glycidyl groups.
  • the number of structural units represented by formula (II) in the epoxy resin (a1) is 1 or more, and may be 10-100, 15-80 or 15-70. When the number of structural units is within the above range, it becomes easier to improve resolution and insulation reliability.
  • epoxy resins in which R 12 is a hydrogen atom and Y 3 and Y 4 are glycidyl groups are EXA-7376 series (manufactured by DIC Corporation, trade name), and R 12 is a methyl group.
  • Y 3 and Y 4 are glycidyl groups
  • the epoxy resin is commercially available as the EPON SU8 series (trade name, manufactured by Mitsubishi Chemical Corporation).
  • the epoxy resin (a2) is not particularly limited as long as it is an epoxy resin different from the epoxy resin (a1). It is preferably at least one selected from the group consisting of bisphenol F-type epoxy resins, triphenolmethane-type epoxy resins, and biphenyl-type epoxy resins.
  • novolak-type epoxy resins include epoxy resins having a structural unit represented by the following formula (III).
  • examples of the bisphenol A type epoxy resin or bisphenol F type epoxy resin include epoxy resins having a structural unit represented by the following formula (IV).
  • examples of triphenolmethane-type epoxy resins include epoxy resins having a structural unit represented by the following formula (V).
  • Biphenyl-type epoxy resins include epoxy resins having a structural unit represented by the following formula (VI).
  • a novolac-type epoxy resin having a structural unit represented by the following formula (III) is preferable.
  • the novolak-type epoxy resin having such a structural unit include novolak-type epoxy resins represented by the following formula (III').
  • R 13 represents a hydrogen atom or a methyl group
  • Y 5 represents a hydrogen atom or a glycidyl group
  • at least one Y 5 is a glycidyl group.
  • n 1 is a number of 1 or more, and multiple R 13 and Y 5 may be the same or different. From the viewpoint of further improving resolution and insulation reliability, R 13 is preferably a hydrogen atom.
  • the molar ratio of Y 5 that is a hydrogen atom and Y 5 that is a glycidyl group is 0/100 to 30/70 or 0/100 from the viewpoint of further improving resolution and insulation reliability. It may be from 100 to 10/90.
  • n 1 is 1 or more, but may be 10-200, 30-150, or 30-100. When n1 is within the above range, resolution and insulation reliability are likely to be improved.
  • novolak-type epoxy resins represented by formula (III') include phenol novolak-type epoxy resins and cresol novolak-type epoxy resins. These novolak-type epoxy resins can be obtained, for example, by reacting a phenol novolac resin or a cresol novolac resin with epichlorohydrin by a known method.
  • Examples of the phenol novolak type epoxy resin or cresol novolak type epoxy resin represented by formula (III′) include YDCN-701, YDCN-702, YDCN-703, YDCN-704, YDCN-704L, YDPN-638 and YDPN.
  • epoxy resin (a2) a bisphenol A type epoxy resin or a bisphenol F type epoxy resin having a structural unit represented by the following formula (IV) is preferably mentioned.
  • epoxy resins having such structural units include bisphenol A type epoxy resins and bisphenol F type epoxy resins represented by the following formula (IV').
  • R 14 represents a hydrogen atom or a methyl group
  • multiple R 14 may be the same or different
  • Y 6 represents a hydrogen atom or a glycidyl group.
  • n2 represents a number of 1 or more, and when n2 is 2 or more, multiple Y6s may be the same or different, and at least one Y6 is a glycidyl group.
  • R 14 is preferably a hydrogen atom
  • Y 6 is preferably a glycidyl group.
  • n2 is 1 or more, but may be 10-100, 10-80 or 15-60. When n2 is within the above range, resolution and insulation reliability are likely to be improved.
  • Bisphenol A type epoxy resin or bisphenol F type epoxy resin in which Y 6 in formula (IV) is a glycidyl group is, for example, bisphenol A type epoxy resin or bisphenol F type epoxy resin in which Y 6 in formula (IV) is a hydrogen atom It can be obtained by reacting the hydroxyl group (--OY 6 ) of the epoxy resin with epichlorohydrin.
  • reaction temperature is within the above range, side reactions can be suppressed without slowing down the reaction too much.
  • Examples of the bisphenol A type epoxy resin or bisphenol F type epoxy resin represented by the formula (IV') include jER807, jER815, jER825, jER827, jER828, jER834, jER1001, jER1004, jER1007 and jER1009 (the above, Mitsubishi Chemical Corporation company, DER-330, DER-301, DER-361 (manufactured by Dow Chemical Company, trade names), YD-8125, YDF-170, YDF-175S, YDF-2001, YDF-2004 , YDF-8170 (manufactured by Nippon Steel Chemical & Material Co., Ltd., trade name), etc. are commercially available.
  • a triphenolmethane type epoxy resin having a structural unit represented by the following formula (V) is preferably used as the epoxy resin (a2).
  • examples of triphenolmethane-type epoxy resins having such structural units include triphenolmethane-type epoxy resins represented by the following formula (V').
  • Y 7 represents a hydrogen atom or a glycidyl group, multiple Y 7 may be the same or different, and at least one Y 7 is a glycidyl group.
  • n3 represents a number of 1 or more.
  • the molar ratio of Y 7 that is a hydrogen atom in Y 7 and Y 7 that is a glycidyl group may be 0/100 to 30/70. As can be seen from this molar ratio, at least one of Y 7 is a glycidyl group.
  • n3 is 1 or more, but may be 10-100, 15-80, or 15-70. When n3 is within the above range, resolution and insulation reliability are likely to be improved.
  • triphenolmethane type epoxy resin represented by the formula (V') for example, FAE-2500, EPPN-501H, EPPN-502H (manufactured by Nippon Kayaku Co., Ltd., trade names), etc. are commercially available. It is possible.
  • biphenyl-type epoxy resin having a structural unit represented by the following formula (VI) is preferably used as the epoxy resin (a2).
  • Biphenyl-type epoxy resins having such structural units include, for example, biphenyl-type epoxy resins represented by the following formula (VI').
  • Y 8 represents a hydrogen atom or a glycidyl group, multiple Y 8 may be the same or different, and at least one Y 8 is a glycidyl group.
  • n4 represents a number of 1 or more.
  • Biphenyl-type epoxy resins represented by formula (VI′) include, for example, NC-3000, NC-3000-L, NC-3000-H, NC-3000-FH-75M, NC-3100, CER-3000- L (manufactured by Nippon Kayaku Co., Ltd., trade name) and the like are commercially available.
  • a novolak type epoxy resin having a structural unit represented by formula (III), a bisphenol A type epoxy resin having a structural unit represented by formula (IV), and a is preferably at least one selected from the group consisting of bisphenol F type epoxy resins having a structural unit represented by formula (IV), and more preferably a bisphenol F type epoxy resin having a structural unit represented by formula (IV).
  • the (A1) component using a bisphenol novolak type epoxy resin having a structural unit represented by formula (II) as the epoxy resin (a1), and the epoxy resin ( As a2), a component (A2) using a bisphenol A type epoxy resin or a bisphenol F type epoxy resin having a structural unit represented by formula (IV) may be used in combination.
  • Component (b) includes, for example, acrylic acid, dimers of acrylic acid, methacrylic acid, ⁇ -furfurylacrylic acid, ⁇ -styrylacrylic acid, cinnamic acid, crotonic acid, and ⁇ -cyanocinnamic acid. derivatives; semi-ester compounds that are the reaction products of hydroxyl-containing acrylates and dibasic anhydrides; Examples include ester compounds. Component (b) may be used singly or in combination of two or more.
  • a half ester compound can be obtained, for example, by reacting a hydroxyl group-containing acrylate, a vinyl group-containing monoglycidyl ether, or a vinyl group-containing monoglycidyl ester with a dibasic acid anhydride.
  • hydroxyl group-containing acrylates examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylates, trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and glycidyl (meth)acrylate.
  • dibasic acid anhydrides examples include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. , ethylhexahydrophthalic anhydride, and itaconic anhydride.
  • component (a) and component (b) it is preferable to react at a ratio of 0.6 to 1.05 equivalents of component (b) with respect to 1 equivalent of the epoxy group of component (a). It is more preferable to react at a ratio of 0.8 to 1.0 equivalents. By reacting in such a ratio, the photosensitivity is increased, and the linearity of the resist pattern contour tends to be excellent.
  • the components (a) and (b) can be dissolved in an organic solvent and reacted.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, and dipropylene glycol.
  • Glycol ethers such as monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate; Aliphatic hydrocarbons such as octane and decane; Petroleum Petroleum solvents such as ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha are included. You may use an organic solvent individually by 1 type or in combination of 2 or more types.
  • a catalyst may be used to promote the reaction between the (a) component and the (b) component.
  • Catalysts include, for example, triethylamine, benzylmethylamine, methyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, and triphenylphosphine.
  • a catalyst may be used individually by 1 type or in combination of 2 or more types.
  • the amount of the catalyst used is 0.01 to 10 parts by mass with respect to 100 parts by mass of the components (a) and (b). It may be 0.05 to 2 parts by mass, or 0.1 to 1 part by mass.
  • a polymerization inhibitor may be used in the reaction of components (a) and (b) for the purpose of preventing polymerization during the reaction.
  • Polymerization inhibitors include, for example, hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, and pyrogallol.
  • a polymerization inhibitor may be used individually by 1 type or in combination of 2 or more types.
  • the amount of the polymerization inhibitor used is 0.01 to 1 part by mass and 0.02 to 0.8 part by mass with respect to the total 100 parts by mass of the components (a) and (b). parts, or 0.04 to 0.5 parts by mass.
  • the reaction temperature of the components (a) and (b) may be 60 to 150°C, 80 to 120°C, or 90 to 110°C from the viewpoint of productivity.
  • Component (A') obtained by reacting component (a) and component (b) has a hydroxyl group formed by a ring-opening addition reaction between the epoxy group of component (a) and the carboxyl group of component (b). are doing.
  • Component (A') is further reacted with component (c) to form hydroxyl groups of component (A') (including hydroxyl groups originally present in component (a)) and acid anhydride groups of component (c).
  • a semi-esterified acid-modified vinyl group-containing resin is obtained.
  • Component (c) includes, for example, succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, Ethylhexahydrophthalic anhydride and itaconic anhydride are included. Among these, tetrahydrophthalic anhydride is preferred from the viewpoint of resolution. Component (c) may be used singly or in combination of two or more.
  • the reaction temperature of component (A') and component (c) may be 50 to 150°C, 60 to 120°C, or 70 to 100°C from the viewpoint of productivity.
  • a hydrogenated bisphenol A type epoxy resin may be partially used in combination, and styrene-maleic acid such as hydroxyethyl (meth)acrylate modified styrene-maleic anhydride copolymer A part of the system resin may be used together.
  • the (A) component preferably contains the (A1) component.
  • the (A) component may contain the (A1) component and the (A2) component.
  • the acid value of component (A) is not particularly limited.
  • the acid value of component (A) may be 30 mgKOH/g or more, 40 mgKOH/g or more, or 50 mgKOH/g or more from the viewpoint of improving the solubility of the unexposed area in an alkaline aqueous solution.
  • the acid value of component (A) may be 150 mgKOH/g or less, 120 mgKOH/g or less, or 100 mgKOH/g or less from the viewpoint of improving the electrical properties of the cured film.
  • the weight average molecular weight (Mw) of component (A) is not particularly limited.
  • the Mw of component (A) may be 3000 or more, 4000 or more, or 5000 or more from the viewpoint of improving the adhesion and insulation reliability of the cured film.
  • the Mw of component (A) may be 30,000 or less, 25,000 or less, or 18,000 or less from the viewpoint of improving the resolution of the photosensitive layer.
  • Mw can be measured by a gel permeation chromatography (GPC) method. Mw can be measured under the following GPC conditions, for example, and converted using a standard polystyrene calibration curve to Mw. Five sample sets (“PStQuick MP-H” and “PStQuick B”, manufactured by Tosoh Corporation) can be used as standard polystyrene to prepare a calibration curve.
  • GPC gel permeation chromatography
  • GPC apparatus High-speed GPC apparatus "HCL-8320GPC" (manufactured by Tosoh Corporation) Detector: Differential refractometer or UV detector (manufactured by Tosoh Corporation) Column: Column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm) (manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran (THF) Measurement temperature: 40°C Flow rate: 0.35 mL/min Sample concentration: 10 mg/THF5 mL Injection volume: 20 ⁇ L
  • the content of component (A) in the photosensitive resin composition is 20 to 70 based on the total solid content of the photosensitive resin composition, from the viewpoint of improving the heat resistance, electrical properties and chemical resistance of the permanent resist. % by weight, 25-60% by weight, or 30-50% by weight.
  • the component (B) component is not particularly limited as long as it is a photopolymerizable compound or a photocrosslinkable compound, and preferably includes, for example, a compound having a photopolymerizable functional group.
  • photopolymerizable functional groups include ethylenically unsaturated bonds such as vinyl, allyl, propargyl, butenyl, ethynyl, phenylethynyl, maleimide, nadimide, and (meth)acryloyl groups.
  • the component (B) is preferably a compound having a molecular weight of 1000 or less, for example, hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate.
  • Ethylene glycol, methoxytetraethylene glycol, glycol mono- or di(meth)acrylates such as polyethylene glycol; N,N-dimethyl(meth)acrylamide, N-methylol(meth)acrylamide and other (meth)acrylamides; N , N-dimethylaminoethyl (meth)acrylate and other aminoalkyl (meth)acrylates; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tris-hydroxyethyl isocyanurate and other polyhydric alcohols or Polyvalent (meth)acrylates of these ethylene oxide or propylene oxide adducts; (meth)acrylates of ethylene oxide or propylene oxide adducts of phenols such as phenoxyethyl (meth)acrylate and polyethoxydi(meth)acrylate of bisphenol A
  • component (B) components can be used individually by 1 type or in combination of multiple types.
  • the component (B) may contain polyhydric (meth)acrylates of the above polyhydric alcohols or their ethylene oxide or propylene oxide adducts.
  • a compound having three or more ethylenically unsaturated bonds in the molecule can be selected as the component (B).
  • examples of such compounds include the polyvalent (meth)acrylates described above, and from the viewpoint of improving sensitivity, dipentaerythritol tri(meth)acrylate can be selected.
  • the content of component (B) in the photosensitive resin composition is 2 to 50% by mass, 3 to 20% by mass, or 3 to 10% by mass, based on the total solid content in the photosensitive resin composition. It can be selected as appropriate.
  • the content of the component (B) is 2% by mass or more, the photosensitivity tends to be improved, and the exposed portion tends to be less eluted during development.
  • the content is 50% by mass or less, the heat resistance tends to be improved. .
  • the photopolymerization initiator which is the component (C) is capable of polymerizing the components (A) and (B).
  • the photosensitive resin composition according to this embodiment contains a compound having a thioxanthone-based skeleton as the component (C).
  • (C) component may be used individually by 1 type or in combination of 2 or more types.
  • the photosensitive resin composition can obtain excellent resolution because the component (C) contains a compound having a thioxanthone-based skeleton. Therefore, when an interlayer insulating layer or a surface protective layer is produced using a photosensitive resin composition, it becomes possible to form a via hole with a smaller diameter in these layers.
  • Examples of compounds having a thioxanthone skeleton include thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone.
  • the compound having a thioxanthone skeleton may contain 2,4-diethylthioxanthone from the viewpoint of obtaining better resolution.
  • the (C) component may contain a photopolymerization initiator other than the compound having a thioxanthone-based skeleton.
  • photopolymerization initiators are not particularly limited, but examples include benzoin compounds such as benzoin, benzoin methyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2- Phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-methyl-[4-(methylthio)phenyl ]-Acetophenone compounds such as 2-morpholino-1-propane and N,N-dimethylaminoacetophenone; - anthraquinone compounds such as aminoanthraquinone; ketal compounds such as
  • the content of the compound having a thioxanthone skeleton in the photosensitive resin composition is 0.01 to 15% by mass, 0.03 to 5% by mass, or 0.03% to 5% by mass, based on the total solid content of the photosensitive resin composition. 05 to 0.5% by mass. When this content is 0.01% by mass or more, there is a tendency that better resolution is obtained.
  • the content of the compound having a thioxanthone-based skeleton in component (C) is 5 to 100% by mass, 6 to 100% by mass, or 7 to 100% by mass based on the total solid content of component (C). good too. When this content is 5% by mass or more, there is a tendency that better resolution is obtained.
  • the content of component (C) in the photosensitive resin composition is 0.2 to 15% by mass, 0.5 to 10% by mass, 0.5 to 5% by mass, based on the total solid content of the photosensitive resin composition. % by weight, or 0.5 to 1% by weight.
  • the photosensitive resin composition according to this embodiment contains an inorganic filler as component (D). By containing the component (D), the adhesive strength and hardness of the permanent resist can be improved.
  • component (D) Component may be used individually by 1 type or in combination of 2 or more types.
  • inorganic fillers include silica, alumina, titania, tantalum oxide, zirconia, silicon nitride, barium titanate, barium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, lead titanate, lead zirconate titanate, titanium Lead lanthanum zirconate, gallium oxide, spinel, mullite, cordierite, talc, aluminum titanate, yttria-containing zirconia, barium silicate, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, zinc oxide, magnesium titanate, Hydrotalcite, mica, calcined kaolin, and carbon.
  • Component (D) may contain silica from the viewpoint of improving the heat resistance of the permanent resist, and may contain barium sulfate from the viewpoint of improving the heat resistance and adhesive strength of the permanent resist. may contain. From the viewpoint of improving the dispersibility of the inorganic filler, an inorganic filler previously surface-treated with alumina or an organic silane compound may be used.
  • the average particle size of the inorganic filler is 0.01 to 5.0 ⁇ m, 0.05 to 3.0 ⁇ m, 0.1 to 2.0 ⁇ m, or 0.15 to 1.0 ⁇ m from the viewpoint of resolution. good too.
  • the average particle size of the component (D) is the average particle size of the inorganic filler dispersed in the photosensitive resin composition, and is a value obtained by measuring as follows. First, after diluting the photosensitive resin composition 1000 times with methyl ethyl ketone, using a submicron particle analyzer (manufactured by Beckman Coulter, Inc., trade name: N5), in accordance with the international standard ISO 13321, a refractive index of 1 38, the particles dispersed in the solvent are measured, and the particle diameter at 50% of the integrated value (based on volume) in the particle size distribution is defined as the average particle diameter.
  • a submicron particle analyzer manufactured by Beckman Coulter, Inc., trade name: N5
  • a refractive index of 1 38 the particles dispersed in the solvent are measured, and the particle diameter at 50% of the integrated value (based on volume) in the particle size distribution is defined as the average particle diameter.
  • the content of component (D) may be 5 to 70% by mass, 6 to 60% by mass, or 10 to 50% by mass based on the total solid content of the photosensitive resin composition. (D) When the content of the component is within the above range, the low coefficient of thermal expansion, heat resistance, and film strength can be further improved.
  • the content of silica is 5 to 60% by mass, 10 to 55% by mass, or 15 to 50% by mass based on the total solid content of the photosensitive resin composition.
  • the content of barium sulfate is 5 to 30% by mass, 5 to 25% by mass, or 10 to 20% by mass, based on the total solid content of the photosensitive resin composition.
  • the contents of silica and barium sulfate are within the above ranges, the low coefficient of thermal expansion, solder heat resistance, and adhesive strength tend to be excellent.
  • the photosensitive resin composition according to the present embodiment contains a thermosetting resin as the (E) component, and contains a resin having a naphthalene ring as the (E) component. Since the photosensitive resin composition contains a resin having a naphthalene ring as the component (E), the insulation reliability, heat resistance, adhesiveness, and resistance of the cured film (permanent resist) formed from the photosensitive resin composition are improved. Chemical properties can be improved.
  • (E) Component may be used individually by 1 type or in combination of 2 or more types.
  • thermosetting resins having a naphthalene ring examples include epoxy resins having a naphthalene ring, such as naphthalene-type epoxy resins, naphthol novolak-type epoxy resins, naphthol-type epoxy resins, naphthol-aralkyl-type epoxy resins, and naphthylene ether-type epoxy resins. be done.
  • the (E) component may contain a thermosetting resin other than the thermosetting resin having a naphthalene ring (that is, a thermosetting resin not having a naphthalene ring).
  • Other thermosetting resins are not particularly limited, but examples include epoxy resins, phenolic resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, Dicyclopentadiene resins, silicone resins, triazine resins, and melamine resins are included.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, novolac type epoxy resin, and biphenyl type epoxy resin. , dicyclopentadiene-type epoxy resins, hydantoin-type epoxy resins, triglycidyl isocyanurate, and bixylenol-type epoxy resins.
  • the content of the thermosetting resin having a naphthalene ring in the photosensitive resin composition is 1 to 20% by mass, 1.5 to 10% by mass, or 2 to 2%, based on the total solid content of the photosensitive resin composition. It may be 8% by mass. When the content is 1% by mass or more, better insulation reliability tends to be obtained, and when it is 20% by mass or less, better resolution tends to be obtained.
  • the content of the thermosetting resin having a naphthalene ring in component (E) is 5 to 100% by mass, 8 to 80% by mass, or 10 to 50% by mass, based on the total solid content of component (E). There may be. When this content is 5% by mass or more, there is a tendency for better insulation reliability to be obtained.
  • the content of component (E) in the photosensitive resin composition is 2 to 30% by mass, 5 to 25% by mass, or 8 to 20% by mass based on the total solid content of the photosensitive resin composition. good too.
  • the content of the component (E) is within the above range, it is possible to further improve the insulation reliability and heat resistance of the formed cured film while maintaining good developability.
  • the photosensitive resin composition according to the present embodiment uses a compound having a thioxanthone skeleton as the component (C) and a resin having a naphthalene ring as the component (E) in combination to form a surface protective layer and an interlayer insulation layer. It is possible to achieve an excellent effect that both excellent resolution and excellent electrical insulation reliability required for a permanent resist such as a layer can be achieved at high levels.
  • the photosensitive resin composition according to the present embodiment may further contain a pigment as the component (F) from the viewpoint of improving the identifiability or appearance of the manufacturing apparatus.
  • a coloring agent that develops a desired color can be used when, for example, the wiring (conductor pattern) is hidden.
  • Component (F) may be used singly or in combination of two or more.
  • the (F) component includes, for example, phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black.
  • the content of component (F) is 0.01 to 5.0% by mass, based on the total solid content in the photosensitive resin composition, from the viewpoint of facilitating identification of the manufacturing equipment and further concealing the wiring. 0.03 to 3.0 mass %, or 0.05 to 2.0 mass %.
  • the photosensitive resin composition according to this embodiment may further contain an elastomer as the (G) component.
  • an elastomer as the (G) component.
  • component (G) examples include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, acrylic-based elastomers, and silicone-based elastomers. These elastomers are composed of a hard segment component that contributes to heat resistance and strength, and a soft segment component that contributes to flexibility and toughness. Among these, olefin-based elastomers and polyester-based elastomers are preferred.
  • Styrenic elastomers include, for example, styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, and styrene-ethylene-propylene-styrene block copolymers.
  • styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene and 4-cyclohexylstyrene can be used as components constituting the styrene-based elastomer.
  • olefinic elastomers include ethylene-propylene copolymers, ethylene- ⁇ -olefin copolymers, ethylene- ⁇ -olefin-nonconjugated diene copolymers, propylene- ⁇ -olefin copolymers, butene- ⁇ - Olefin copolymers, ethylene-propylene-diene copolymers, dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylenenorbornene, ethylidenenorbornene, butadiene, copolymerization of non-conjugated dienes such as isoprene with ⁇ -olefins coalesced, epoxy-modified polybutadiene, and carboxylic acid-modified butadiene-acrylonitrile copolymers.
  • the epoxy-modified polybutadiene preferably has hydroxyl groups at the ends of the molecule, more preferably has hydroxyl groups at both ends of the molecule, and still more preferably has hydroxyl groups only at both ends of the molecule.
  • the number of hydroxyl groups possessed by the epoxy-modified polybutadiene may be 1 or more, preferably 1 to 5, more preferably 1 or 2, still more preferably 2.
  • urethane-based elastomer a compound composed of a hard segment composed of a low-molecular-weight (short-chain) diol and diisocyanate and a soft segment composed of a high-molecular-weight (long-chain) diol and diisocyanate can be used.
  • short-chain diols examples include ethylene glycol, propylene glycol, 1,4-butanediol, and bisphenol A.
  • the number average molecular weight of the short-chain diol is preferably 48-500.
  • long-chain diols examples include polypropylene glycol, polytetramethylene oxide, poly(1,4-butylene adipate), poly(ethylene-1,4-butylene adipate), polycaprolactone, poly(1,6-hexylene carbonate). ), and poly(1,6-hexylene-neopentylene adipate).
  • the number average molecular weight of the long-chain diol is preferably 500-10,000.
  • polyester-based elastomer a compound obtained by polycondensing a dicarboxylic acid or its derivative and a diol compound or its derivative can be used.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid; aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as adipic acid, sebacic acid and dodecanedicarboxylic acid; and cyclohexanedicarboxylic acid. and alicyclic dicarboxylic acids.
  • a dicarboxylic acid can be used individually by 1 type or in combination of 2 or more types.
  • diol compounds include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and 1,10-decanediol; 1,4-cyclohexanediol, etc. and aromatic diols such as bisphenol A, bis-(4-hydroxyphenyl)methane, bis-(4-hydroxy-3-methylphenyl)propane and resorcinol.
  • aromatic diols such as bisphenol A, bis-(4-hydroxyphenyl)methane, bis-(4-hydroxy-3-methylphenyl)propane and resorcinol.
  • polyester-based elastomer it is possible to use a multi-block copolymer having an aromatic polyester (eg, polybutylene terephthalate) as a hard segment component and an aliphatic polyester (eg, polytetramethylene glycol) as a soft segment component.
  • aromatic polyester eg, polybutylene terephthalate
  • aliphatic polyester eg, polytetramethylene glycol
  • polyester-based elastomers There are various grades of polyester-based elastomers depending on the types, ratios, and molecular weights of hard segments and soft segments.
  • Polyamide-based elastomers are roughly divided into two types: polyether block amide type and polyether ester block amide type, which use polyamide for the hard segment and polyether or polyester for the soft segment.
  • Polyamides include, for example, polyamide-6, polyamide-11, and polyamide-12.
  • Polyethers include, for example, polyoxyethylene glycol, polyoxypropylene glycol, and polytetramethylene glycol.
  • (Meth)acrylic acid esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, methoxyethyl (meth)acrylate, and ethoxyethyl (meth)acrylate.
  • the acrylic elastomer may be a compound obtained by copolymerizing (meth)acrylic acid ester and acrylonitrile, or may be a compound obtained by further copolymerizing a monomer having a functional group serving as a cross-linking point.
  • Monomers with functional groups include, for example, glycidyl methacrylate and allyl glycidyl ether.
  • acrylic elastomers examples include acrylonitrile-butyl acrylate copolymer, acrylonitrile-butyl acrylate-ethyl acrylate copolymer, methyl methacrylate-butyl acrylate-methacrylic acid copolymer, and acrylonitrile-butyl acrylate-glycidyl methacrylate copolymer. is mentioned.
  • acrylic elastomer acrylonitrile-butyl acrylate-glycidyl methacrylate copolymer or methyl methacrylate-butyl acrylate-methacrylic acid copolymer is preferable, and methyl methacrylate-butyl acrylate-methacrylic acid copolymer is more preferable.
  • a silicone elastomer is a compound whose main component is organopolysiloxane.
  • Organopolysiloxanes include, for example, polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane.
  • the silicone-based elastomer may be a compound obtained by partially modifying an organopolysiloxane with a vinyl group, an alkoxy group, or the like.
  • the (G) component may contain a carboxylic acid-modified butadiene-acrylonitrile copolymer or a hydroxyl group-containing polyester elastomer from the viewpoint of improving the adhesion of the cured film.
  • the content of component (G) may be 2 to 40 parts by mass, 4 to 30 parts by mass, 6 to 20 parts by mass, or 10 to 15 parts by mass with respect to 100 parts by mass of component (A).
  • the content of component (G) is within the above range, the elastic modulus of the cured film in the high temperature region becomes low, and the unexposed areas are more easily eluted with the developer.
  • the photosensitive resin composition of the present embodiment may further contain a curing agent as component (H).
  • Component (H) includes a compound that itself cures with heat, ultraviolet rays, etc., or a compound that reacts with the carboxy group or hydroxyl group of the acid-modified vinyl group-containing resin (A) and cures with heat, ultraviolet rays, etc. be done.
  • insulation reliability, heat resistance, adhesive strength, chemical resistance, etc. can be further improved.
  • Component (H) may be used singly or in combination of two or more.
  • (H) component includes, for example, thermosetting compounds such as melamine compounds, urea compounds, oxazoline compounds, and blocked isocyanates.
  • Melamine compounds include, for example, triaminotriazine, hexamethoxymelamine, hexabutoxylated melamine, and the like.
  • Urea compounds include, for example, dimethylol urea.
  • Examples of blocked isocyanates include addition reaction products of polyisocyanate compounds and isocyanate blocking agents.
  • the polyisocyanate compound include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, naphthylene diisocyanate, bis(isocyanatomethyl)cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, and the like.
  • polyisocyanate compounds, and their adducts, burettes and isocyanurates are examples of blocked isocyanate compounds.
  • the content of component (H) is 0.01 to 20% by mass, 0.1 to 10% by mass, or 0.1 to 3% by mass based on the total solid content of the photosensitive resin composition. good. By setting the content of the component (H) within the above range, it is possible to further improve the insulation reliability and heat resistance of the formed cured film while maintaining good developability.
  • the photosensitive resin composition according to the present embodiment may further contain an ion scavenger as component (I) from the viewpoint of improving resist shape, adhesion, fluidity and reliability.
  • Component (I) is not particularly limited as long as it can trap ions in the ion trapping agent and has the function of trapping at least one of cations and anions.
  • the ions to be captured in the present embodiment are incorporated in a composition that reacts with irradiation of light, electron beams, etc. and changes its solubility in a solvent .
  • Ions such as ions (Br ⁇ ) and copper ions (Cu + , Cu 2+ ). Capturing these ions improves electrical insulation, electrolytic corrosion resistance, and the like.
  • the component (I) is preferably an ion trapping agent containing at least one selected from the group consisting of Zr (zirconium), Bi (bismuth), Mg (magnesium) and Al (aluminum).
  • (I) component may be used individually by 1 type or in combination of 2 or more types.
  • Components (I) include cation scavengers that capture cations, anion scavengers that capture anions, and both ion scavengers that capture cations and anions.
  • cation scavengers examples include zirconium phosphate, zirconium tungstate, zirconium molybdate, zirconium tungstate, zirconium antimonate, zirconium selenate, zirconium tellurate, zirconium silicate, zirconium phosphosilicate, and zirconium polyphosphate.
  • Inorganic ion exchangers of metal oxides may be mentioned.
  • anion scavengers include inorganic ion exchangers such as bismuth oxide hydrate and hydrotalcites.
  • amphoteric ion scavengers include inorganic ion exchangers such as metal hydrates such as aluminum oxide hydrate and zirconium oxide hydrate. As both ion scavengers, Toagosei Co., Ltd.
  • IXE-1320 (Mg, Al-containing compound), IXE-600 (Bi-containing compound), IXE-633 (Bi-containing compound), IXE-680 (Bi-containing compound), IXE-6107 (Zr, Bi-containing compound), IXE-6136 (Zr, Bi-containing compound), IXEPLAS-A1 (Zr, Mg, Al-containing compound), IXEPLAS-A2 (Zr, Mg, Al-containing compound), IXEPLAS- B1 (Zr, Bi-containing compound) and the like are commercially available.
  • Component (I) may be in the form of particles, and from the viewpoint of improving insulation properties, the average particle size of component (I) may be 5 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less. It may be 1 ⁇ m or more.
  • the average particle size of the component (I) is the particle size of the particles dispersed in the photosensitive resin composition, and can be measured by the same method as for measuring the average particle size of the component (D).
  • the content is not particularly limited, but from the viewpoint of improving electrical insulation and electrolytic corrosion resistance, the total solid content of the photosensitive resin composition may be 0.05 to 10% by mass, 0.1 to 5% by mass, or 0.2 to 1% by mass.
  • the photosensitive resin composition according to the present embodiment may further contain various additives as necessary.
  • Additives include, for example, polymerization inhibitors such as hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, and pyrogallol; thickeners such as bentone and montmorillonite; antifoaming agents such as silicone, fluorine, and vinyl resin; ring agents; and flame retardants such as brominated epoxy compounds, acid-modified brominated epoxy compounds, antimony compounds, phosphate compounds, aromatic condensed phosphates, and halogen-containing condensed phosphates.
  • the photosensitive resin composition according to the present embodiment contains a solvent for dissolving and dispersing each component, thereby facilitating coating on a substrate and forming a coating film of uniform thickness.
  • solvents examples include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, and dipropylene glycol monoethyl.
  • Glycol ethers such as ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate, carbitol acetate; aliphatic hydrocarbons such as octane and decane; and petroleum ether, petroleum.
  • Petroleum solvents such as naphtha, hydrogenated petroleum naphtha, and solvent naphtha can be mentioned.
  • a solvent may be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the solvent is not particularly limited, but the ratio of the solvent in the photosensitive resin composition may be 10 to 50% by mass, 20 to 40% by mass, or 25 to 35% by mass.
  • the photosensitive resin composition of the present embodiment can be prepared by uniformly mixing each of the above components with a roll mill, bead mill, or the like.
  • the photosensitive element according to this embodiment includes a support film and a photosensitive layer containing the photosensitive resin composition described above.
  • FIG. 1 is a cross-sectional view schematically showing a photosensitive element according to this embodiment. As shown in FIG. 1, the photosensitive element 1 comprises a support film 10 and a photosensitive layer 20 formed on the support film 10. As shown in FIG. 1,
  • the photosensitive resin composition according to the present embodiment is coated on the support film 10 by a known method such as reverse roll coating, gravure roll coating, comma coating, or curtain coating, and then the coating is dried.
  • a known method such as reverse roll coating, gravure roll coating, comma coating, or curtain coating, and then the coating is dried.
  • the support film examples include polyester films such as polyethylene terephthalate and polybutylene terephthalate, and polyolefin films such as polypropylene and polyethylene.
  • the thickness of the support film may be, for example, 5-100 ⁇ m.
  • the thickness of the photosensitive layer may be, for example, 5-50 ⁇ m, 5-40 ⁇ m, or 10-30 ⁇ m.
  • the surface roughness of the support film is not particularly limited, but the arithmetic mean roughness (Ra) may be 1000 nm or less, 500 nm or less, or 250 nm or less.
  • the drying temperature may be 60-120°C, 70-110°C, or 80-100°C.
  • the drying time may be 1-60 minutes, 2-30 minutes, or 5-20 minutes.
  • a protective film 30 covering the photosensitive layer 20 may be further provided on the photosensitive layer 20 .
  • the photosensitive element 1 can also have a protective film 30 laminated on the surface of the photosensitive layer 20 opposite to the surface in contact with the support film 10 .
  • a polymer film such as polyethylene or polypropylene may be used.
  • a printed wiring board according to the present embodiment comprises a permanent resist containing a cured product of the photosensitive resin composition according to the present embodiment.
  • the method for producing a printed wiring board according to the present embodiment includes the steps of forming a photosensitive layer on a substrate using the photosensitive resin composition or photosensitive element described above, and exposing and developing the photosensitive layer to form a resist pattern. and curing the resist pattern to form a permanent resist. An example of each step will be described below.
  • a substrate such as a copper clad laminate is prepared, and a photosensitive layer is formed on the substrate.
  • the photosensitive layer may be formed by applying a photosensitive resin composition onto a substrate and drying the composition. Examples of methods for applying the photosensitive resin composition include screen printing, spraying, roll coating, curtain coating, and electrostatic coating.
  • the drying temperature may be 60-120°C, 70-110°C, or 80-100°C.
  • the drying time may be 1-7 minutes, 1-6 minutes, or 2-5 minutes.
  • the photosensitive layer may be formed on the substrate by peeling off the protective film from the photosensitive element and laminating the photosensitive layer.
  • a method of laminating the photosensitive layer for example, there is a method of thermal lamination using a laminator.
  • Actinic rays include, for example, electron beams, ultraviolet rays, and X-rays, preferably ultraviolet rays.
  • Low-pressure mercury lamps, high-pressure mercury lamps, extra-high pressure mercury lamps, halogen lamps, and the like can be used as the light source.
  • the exposure dose may be 10-2000 mJ/cm 2 , 100-1500 mJ/cm 2 , or 300-1000 mJ/cm 2 .
  • the developing method includes, for example, a dipping method and a spray method.
  • alkaline aqueous solutions such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, and tetramethylammonium hydroxide can be used.
  • a pattern cured film can be formed by subjecting the resist pattern to at least one of post-exposure and post-heating.
  • the exposure dose of the post-exposure may be 100-5000 mJ/cm 2 , 500-2000 mJ/cm 2 , or 700-1500 J/cm 2 .
  • the heating temperature for post-heating may be 100 to 200°C, 120 to 180°C, or 135 to 165°C.
  • the heating time for post-heating may be 5 minutes to 12 hours, 10 minutes to 6 hours, or 30 minutes to 2 hours.
  • FIG. 2 is a schematic diagram showing one aspect of a method for manufacturing a multilayer printed wiring board comprising a cured product of the photosensitive resin composition of the present embodiment as at least one of a surface protective layer and an interlayer insulating layer.
  • a multilayer printed wiring board 100A shown in FIG. 2(f) has wiring patterns on its surface and inside.
  • multilayer printed wiring board 100A a plurality of wiring patterns are provided in layers, an interlayer insulating layer is provided between each layer, and a surface protective layer is provided on the surface. At least one of the surface protective layer and the interlayer insulating layer is formed using the photosensitive resin composition of the present embodiment or the photosensitive element of the present embodiment.
  • the multilayer printed wiring board 100A is obtained by laminating a copper-clad laminate, an interlayer insulating layer, a metal foil, etc., and appropriately forming a wiring pattern by an etching method or a semi-additive method.
  • a method for manufacturing multilayer printed wiring board 100A will be described below with reference to FIG. In the following description, both the surface protective layer and the interlayer insulating layer are formed using the photosensitive resin composition of the present embodiment or the photosensitive element of the present embodiment.
  • interlayer insulating layers 103 are formed on both sides of a substrate (copper-clad laminate, etc.) 101 having wiring patterns 102 on its surface (see FIG. 2(a)).
  • the interlayer insulating layer 103 is formed by the method described in the printed wiring board manufacturing method, that is, by applying the photosensitive resin composition of the present embodiment or thermally laminating the photosensitive element of the present embodiment using a laminator. , forming a photosensitive layer, using a negative film on the photosensitive layer, exposing areas other than those required to be electrically connected to the outside (conductor patterns of other layers), curing, and further unexposed It is formed by removing the part (see FIG. 2(b)).
  • This interlayer insulating layer 103 is a film having an opening 104 .
  • the smear (residue) existing around the opening 104 may be removed by desmear processing.
  • a seed layer 105 is formed by electroless plating (see FIG. 2(c)).
  • a photosensitive layer containing a photosensitive resin composition (semi-additive photosensitive resin composition) is formed on the seed layer 105, and predetermined portions are exposed and developed to form a resin pattern 106 (FIG. 2 ( d) see).
  • a wiring pattern 107 is formed on a portion of the seed layer 105 where the resin pattern 106 is not formed by electroplating, and after removing the resin pattern 106 with a stripping solution, the wiring pattern 107 of the seed layer 105 is formed. The portions not exposed are removed by etching (see FIG. 2(e)).
  • multilayer printed wiring board 100A By repeating the above operation and forming a surface protective layer 108 containing a cured product of the above-described photosensitive resin composition on the outermost surface, multilayer printed wiring board 100A can be produced (see FIG. 2(f)). . In the multilayer printed wiring board 100A obtained in this manner, semiconductor elements are mounted at corresponding locations, and electrical connection can be ensured.
  • the multilayer printed wiring board according to the present embodiment has a surface protective layer and/or an interlayer insulating layer formed using the photosensitive resin composition or the photosensitive element of the present embodiment, the surface protective layer and/or interlayer The insulating layer has excellent resolution and electrical insulation reliability. Therefore, the thickness of the interlayer insulating layer can be reduced, and the diameter of the opening (via hole) for interlayer connection can be reduced.
  • the photosensitive resin composition according to the present embodiment it is possible to form a permanent resist such as an interlayer insulating layer or a surface protective layer of a semiconductor device, which has excellent resolution and electrical insulation reliability.
  • a semiconductor element comprising a layer, a surface protective layer, or the like, and an electronic device including the semiconductor element can be provided.
  • the semiconductor element may be, for example, a memory, a package, or the like having a multilayer wiring structure, a rewiring structure, or the like.
  • Examples of electronic devices include mobile phones, smart phones, tablet terminals, personal computers, and hard disk suspensions.
  • Inorganic filler SC2050 Silica filler (manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m)
  • a 16 ⁇ m-thick polyethylene terephthalate film (manufactured by Toyobo Film Solution Co., Ltd., trade name “G2-16”) was prepared as a support film.
  • the photosensitive resin compositions of Examples and Comparative Examples were uniformly coated on the support film so that the film thickness after drying was 25 ⁇ m, and dried at 75° C. for 30 minutes using a hot air convection dryer. , to form a photosensitive layer.
  • a polyethylene film (manufactured by Tamapoly Co., Ltd., trade name "NF-15") is laminated as a protective film on the surface of the photosensitive layer opposite to the side in contact with the support film, thereby forming a photosensitive element. made.
  • a 1.0 mm-thick copper clad laminate (trade name “MCL-E-67” manufactured by Showa Denko Materials Co., Ltd.) was prepared. While peeling and removing the protective film from the photosensitive element, a press-type vacuum laminator (manufactured by Meiki Seisakusho Co., Ltd., trade name "MVLP-500”) is used to press on the copper-clad laminate at a pressure of 0.4 MPa. The photosensitive layer was laminated under the conditions of a hot plate temperature of 80° C., a vacuum drawing time of 40 seconds, a lamination press time of 20 seconds, and an air pressure of 4 kPa or less to obtain a laminate.
  • an i-line exposure apparatus Ushio (Ushio Co., Ltd., trade name "UX-2240SM-XJ-01"
  • exposure was performed while changing the exposure dose in steps of 50 mJ/cm 2 within the range of 100 to 500 mJ/cm 2 .
  • the evaluation of resolution described below was performed using a test piece exposed to an exposure amount that enabled formation of the smallest size opening among the exposure amounts within the above range.
  • a time corresponding to twice the shortest development time at 30° C. (the shortest time for removing the unexposed portion of the photosensitive layer), 1.765 ⁇ 10 5 Pa Spray development was carried out with pressure, and unexposed areas were developed by dissolution.
  • a test piece having a cured photosensitive layer having a via pattern (opening) of a predetermined size formed on a copper-clad laminate was prepared.
  • the test piece was observed using a metallurgical microscope, and the resolution was evaluated according to the following criteria. Table 1 shows the evaluation results.
  • C The minimum diameter of the opening exceeded 100 ⁇ m.
  • a 1.0 mm-thick copper clad laminate (trade name “MCL-E-67” manufactured by Showa Denko Materials Co., Ltd.) was prepared. While peeling and removing the protective film from the photosensitive element, a press-type vacuum laminator (manufactured by Meiki Seisakusho Co., Ltd., trade name "MVLP-500”) is used to press on the copper-clad laminate at a pressure of 0.4 MPa. The photosensitive layer was laminated under the conditions of a hot plate temperature of 80° C., a vacuum drawing time of 25 seconds, a lamination pressing time of 25 seconds, and an air pressure of 4 kPa or less to obtain a laminate.
  • the laminate thus obtained was entirely exposed at an exposure amount of 500 mJ/cm 2 using a parallel light exposure machine (manufactured by ORC Manufacturing Co., Ltd., product name "EXM-1201”) using an ultra-high pressure mercury lamp as a light source.
  • a parallel light exposure machine manufactured by ORC Manufacturing Co., Ltd., product name "EXM-1201”
  • an ultra-high pressure mercury lamp as a light source.
  • an ultraviolet exposure device manufactured by Oak Manufacturing Co., Ltd., product name “OKM-2317”
  • the sample was exposed at an exposure amount of 2,000 mJ/cm 2 and heated at 170° C. for 1 hour to form a copper clad laminate. to form a cured product of the photosensitive layer.
  • an aqueous solution containing diethylene glycol monobutyl ether: 200 ml/L and sodium hydroxide: 5 g/L was prepared as a swelling liquid. This swelling liquid was heated to 70° C. and the cured product was immersed for 10 minutes.
  • an aqueous solution containing 60 g/L of potassium permanganate and 40 g/L of sodium hydroxide was prepared as a roughening solution. This roughening liquid was heated to 70° C. and the cured product was immersed for 15 minutes.
  • an aqueous solution containing 30 g/L of tin chloride (SnCl 2 ) and 300 ml/L of hydrogen chloride was prepared as a neutralizing solution.
  • This neutralized solution was heated to 40° C. and the cured product was immersed for 5 minutes to reduce potassium permanganate.
  • the surface of the chemically roughened cured product was degreased and washed with an alkaline cleaner (manufactured by Atotech Japan Co., Ltd., trade name "Cleaner Securigant 902”) for 5 minutes. After washing, the chemically roughened cured product was treated with a pre-dip liquid (manufactured by Atotech Japan Co., Ltd., trade name "Pre-dip Neogant B”) for 1 minute at 23°C.
  • an alkaline cleaner manufactured by Atotech Japan Co., Ltd., trade name "Cleaner Securigant 902
  • a pre-dip liquid manufactured by Atotech Japan Co., Ltd., trade name "Pre-dip Neogant B
  • the cured product was treated with an activator liquid (manufactured by Atotech Japan Co., Ltd., trade name "Activator Neogant 834”) for 5 minutes at 35 ° C., and then treated with a reducing liquid (manufactured by Atotech Japan Co., Ltd., The cured product was treated for 5 minutes with a product name "Reducer Neogant WA").
  • an activator liquid manufactured by Atotech Japan Co., Ltd., trade name "Activator Neogant 834”
  • a reducing liquid manufactured by Atotech Japan Co., Ltd.
  • the laminate obtained in this way is placed in a chemical copper solution (manufactured by Atotech Japan Co., Ltd., trade names "Basic Printgant MSK-DK”, “Copper Printgant MSK”, “Stabilizer Printgant MSK”) and electroless plating is applied. This was carried out until the thickness reached about 0.5 ⁇ m. After the electroless plating, annealing was performed at a temperature of 120° C. for 30 minutes in order to remove residual hydrogen gas. Thereafter, copper sulfate electroplating was performed, and annealing treatment was performed at 180° C. for 60 minutes to form a conductor layer with a thickness of 38 ⁇ m.
  • the formed conductor layer was etched to form a circular electrode with a diameter of 6 mm. Subsequently, a photosensitive solder resist film (manufactured by Showa Denko Materials Co., Ltd., trade name “FZ-2700GA”) is placed on the electrodes and the cured product so that the layer thickness is 25 ⁇ m. Meiki Seisakusho, trade name “MVLP-500”), press pressure 0.4 MPa, press hot plate temperature 80 ° C., vacuum drawing time 25 seconds, lamination press time 40 seconds, pressure 4 kPa or less. , to obtain a laminate for evaluation.
  • MVLP-500 photosensitive solder resist film
  • the obtained laminate for evaluation was entirely exposed at an exposure amount of 500 mJ/cm 2 using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd., trade name “EXM-1201”) using an ultra-high pressure mercury lamp as a light source. . Next, it was exposed with an exposure dose of 2,000 mJ/cm 2 using an ultraviolet exposure device and heated at 160° C. for 1 hour to form a cured film of the photosensitive solder resist film.
  • a parallel light exposure machine manufactured by Oak Manufacturing Co., Ltd., trade name “EXM-1201”
  • EXM-1201 ultra-high pressure mercury lamp

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)

Abstract

This photosensitive resin composition comprises: (A) an acid-modified vinyl group-containing resin; (B) a photopolymerizable compound; (C) a photopolymerization initiator; (D) an inorganic filler; and (E) a heat-curable resin, wherein component (C) includes a compound that has a thioxianthone skeleton, and component (E) includes a resin that has a naphthalene ring.

Description

感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法Photosensitive resin composition, photosensitive element, printed wiring board, and method for producing printed wiring board
 本開示は、感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法に関する。 The present disclosure relates to a photosensitive resin composition, a photosensitive element, a printed wiring board, and a method for manufacturing a printed wiring board.
 プリント配線板分野では、プリント配線板上に永久レジストを形成することが行われている。永久レジストは、プリント配線板において、導体層の腐食を防止したり、導体層間の電気絶縁性を保持したりする役割を有しており、表面保護層又は層間絶縁層等として用いられている。 In the field of printed wiring boards, permanent resists are formed on printed wiring boards. Permanent resists play a role in preventing corrosion of conductor layers and maintaining electrical insulation between conductor layers in printed wiring boards, and are used as surface protective layers, interlayer insulating layers, and the like.
 近年、電子機器の小型化及び高性能化が進んでおり、電子機器に用いられる多層プリント配線板においても、回路層数の増加及び配線の微細化による高密度化が進行している。特に、半導体チップが搭載されるBGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)等の半導体パッケージ基板の高密度化は著しく、配線の微細化に加え、層間絶縁層の薄膜化及び層間接続用のビア(ビアホール)の小径化が求められている。また、プリント配線板における層間絶縁層の薄膜化に伴い、層間の優れた電気絶縁信頼性も求められている。電気絶縁信頼性としては特に、高度加速寿命試験(Highly Accelerated Stress Test)後の優れた電気絶縁信頼性(HAST耐性)が求められている。 In recent years, the miniaturization and performance enhancement of electronic devices have progressed, and even in multilayer printed wiring boards used in electronic devices, the number of circuit layers has increased and the wiring has become finer, resulting in higher density. In particular, the density of semiconductor package substrates such as BGA (Ball Grid Array) and CSP (Chip Size Package) on which semiconductor chips are mounted has increased significantly. There is a demand for smaller diameter vias (via holes). In addition, as interlayer insulating layers in printed wiring boards become thinner, there is a demand for excellent interlayer insulating reliability. As electrical insulation reliability, in particular, excellent electrical insulation reliability (HAST resistance) after a highly accelerated life test (Highly Accelerated Stress Test) is required.
 プリント配線板の製造方法として、層間絶縁層と導体回路層とを順次積層して形成するビルドアップ方式による多層プリント配線板の製造方法が挙げられる(例えば、特許文献1参照)。多層プリント配線板では、回路の微細化に伴い、回路をめっきにより形成する、セミアディティブ工法が主流となっている。従来のセミアディティブ工法では、例えば、(1)導体回路上に熱硬化性樹脂フィルムをラミネートし、該熱硬化性樹脂フィルムを加熱によって硬化させて層間絶縁層を形成する工程、(2)層間接続用のビアをレーザ加工により形成し、アルカリ過マンガン酸処理等によってデスミア処理及び粗化処理を行う工程、(3)基板に無電解銅めっき処理を施し、レジストを用いてパターン形成後、電解銅めっきを行うことにより、銅の回路層を形成する工程、(4)レジストを剥離し、無電解層のフラッシュエッチングを行うことにより、銅の回路を形成する工程、を経て回路の形成が行われてきた。 As a method for manufacturing a printed wiring board, there is a method for manufacturing a multilayer printed wiring board by a build-up method in which an interlayer insulating layer and a conductor circuit layer are sequentially laminated (see, for example, Patent Document 1). In multilayer printed wiring boards, a semi-additive method, in which circuits are formed by plating, has become mainstream along with the miniaturization of circuits. In the conventional semi-additive method, for example, (1) a step of laminating a thermosetting resin film on a conductor circuit and curing the thermosetting resin film by heating to form an interlayer insulation layer, (2) interlayer connection (3) Electroless copper plating is applied to the substrate, a pattern is formed using a resist, and electrolytic copper is formed. A circuit is formed through a step of forming a copper circuit layer by plating, and a step of (4) stripping the resist and performing flash etching of the electroless layer to form a copper circuit. It's here.
 上記のように、熱硬化性樹脂フィルムを硬化して形成された層間絶縁層にビアを形成する方法としてはレーザ加工が主流となっているが、レーザ加工機を用いたレーザ照射によるビアの小径化には限界がある。また、レーザ加工機によりビアを形成する場合、それぞれのビアホールを一つずつ形成する必要があり、高密度化によって多数のビアを設ける必要がある場合、ビアの形成に多大な時間を要し、製造効率が悪いという問題がある。 As described above, laser processing is the mainstream method for forming vias in an interlayer insulating layer formed by curing a thermosetting resin film. There are limits to transformation. In addition, when forming vias with a laser processing machine, it is necessary to form each via hole one by one, and when a large number of vias must be provided due to high density, it takes a lot of time to form the vias. There is a problem of poor manufacturing efficiency.
 このような状況下、多数のビアを一括で形成可能な方法として、感光性樹脂組成物を用い、フォトリソグラフィー法によって複数の小径ビアを一括で形成する方法が提案されている(例えば、特許文献2参照)。 Under such circumstances, as a method capable of forming a large number of vias at once, a method of forming a plurality of small-diameter vias at once by photolithography using a photosensitive resin composition has been proposed (see, for example, Patent Documents 2).
特開平7-304931号公報JP-A-7-304931 特開2017-116652号公報JP 2017-116652 A
 近年、配線の微細化、層間絶縁層の薄膜化及び層間接続用のビアホールの小径化がより一層進んでおり、層間絶縁層にはより優れた解像性及び電気絶縁信頼性が要求されている。特許文献2に記載の感光性樹脂組成物では、これらの要求を十分に満足しているとは言えず、さらなる改善の余地がある。 In recent years, the miniaturization of wiring, the thinning of interlayer insulating layers, and the reduction in the diameter of via holes for interlayer connection are progressing further, and higher resolution and electrical insulation reliability are required for interlayer insulating layers. . The photosensitive resin composition described in Patent Document 2 cannot be said to fully satisfy these requirements, and there is room for further improvement.
 そこで、本開示は、優れた解像性及び優れた電気絶縁信頼性を得ることができる感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a photosensitive resin composition, a photosensitive element, a printed wiring board, and a method for producing a printed wiring board that can obtain excellent resolution and excellent electrical insulation reliability. and
 本開示の一側面は、(A)酸変性ビニル基含有樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラー、及び、(E)熱硬化性樹脂を含有し、上記(C)成分がチオキサントン系骨格を有する化合物を含み、上記(E)成分がナフタレン環を有する樹脂を含む、感光性樹脂組成物に関する。 One aspect of the present disclosure contains (A) an acid-modified vinyl group-containing resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, and (E) a thermosetting resin. and wherein the component (C) contains a compound having a thioxanthone skeleton, and the component (E) contains a resin having a naphthalene ring.
 上記感光性樹脂組成物において、上記(A)成分が、ビスフェノールノボラック型エポキシ樹脂(a1)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A1)と、該エポキシ樹脂(a1)とは異なるエポキシ樹脂(a2)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A2)とを含有するものであってよい。 In the photosensitive resin composition, the component (A) comprises at least one acid-modified vinyl group-containing epoxy resin (A1) obtained by using a bisphenol novolak type epoxy resin (a1), and the epoxy resin (a1). may contain at least one acid-modified vinyl group-containing epoxy resin (A2) obtained by using a different epoxy resin (a2).
 上記感光性樹脂組成物において、上記エポキシ樹脂(a2)が、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び、トリフェノールメタン型エポキシ樹脂からなる群より選ばれる少なくとも1種であってよい。 In the photosensitive resin composition, the epoxy resin (a2) is at least one selected from the group consisting of novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and triphenolmethane type epoxy resins. can be
 上記感光性樹脂組成物において、上記酸変性ビニル基含有エポキシ樹脂(A1)及び(A2)が、各々上記エポキシ樹脂(a1)及び(a2)と、エチレン性不飽和基含有有機酸(b)とを反応させてなる樹脂(A1’)及び(A2’)に、飽和基又は不飽和基含有多塩基酸無水物(c)を反応させてなる樹脂であってよい。 In the photosensitive resin composition, the acid-modified vinyl group-containing epoxy resins (A1) and (A2) are respectively the epoxy resins (a1) and (a2) and the ethylenically unsaturated group-containing organic acid (b). It may be a resin obtained by reacting the resins (A1') and (A2') obtained by reacting with the polybasic acid anhydride (c) containing saturated or unsaturated groups.
 上記感光性樹脂組成物において、上記エポキシ樹脂(a1)が、下記一般式(I)で表される構造単位、又は、下記一般式(II)で表される構造単位を有するものであってよい。
Figure JPOXMLDOC01-appb-C000003
[式(I)中、R11は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR11は同一でも異なっていてもよく、Y及びYの少なくとも一方はグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000004
[式(II)中、R12は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR12は同一でも異なっていてもよく、Y及びYの少なくとも一方はグリシジル基を示す。]
In the photosensitive resin composition, the epoxy resin (a1) may have a structural unit represented by the following general formula (I) or a structural unit represented by the following general formula (II). .
Figure JPOXMLDOC01-appb-C000003
[In formula (I), R 11 represents a hydrogen atom or a methyl group, and Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group. Plural R 11 may be the same or different, and at least one of Y 1 and Y 2 represents a glycidyl group. ]
Figure JPOXMLDOC01-appb-C000004
[In formula (II), R 12 represents a hydrogen atom or a methyl group, and Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group. Plural R 12 may be the same or different, and at least one of Y 3 and Y 4 represents a glycidyl group. ]
 上記感光性樹脂組成物において、上記(B)成分が、分子内にエチレン性不飽和結合を3つ以上有する化合物を含んでいてよい。 In the photosensitive resin composition, the component (B) may contain a compound having 3 or more ethylenically unsaturated bonds in the molecule.
 上記感光性樹脂組成物は、更に(F)顔料を含有してよい。 The photosensitive resin composition may further contain (F) a pigment.
 上記感光性樹脂組成物において、上記(E)成分が、ナフタレン環を有するエポキシ樹脂を含んでいてよい。 In the photosensitive resin composition, the component (E) may contain an epoxy resin having a naphthalene ring.
 上記感光性樹脂組成物において、上記(A)成分の酸価が、30~150mgKOH/gであってよい。 In the photosensitive resin composition, the component (A) may have an acid value of 30 to 150 mgKOH/g.
 本開示の他の一側面は、支持フィルムと、上述の感光性樹脂組成物を用いて形成された感光層とを備える、感光性エレメントに関する。 Another aspect of the present disclosure relates to a photosensitive element comprising a support film and a photosensitive layer formed using the photosensitive resin composition described above.
 本開示の他の一側面は、上述の感光性樹脂組成物の硬化物を含む永久レジストを具備する、プリント配線板に関する。 Another aspect of the present disclosure relates to a printed wiring board comprising a permanent resist containing a cured product of the photosensitive resin composition described above.
 本開示の他の一側面は、基板上に、上述の感光性樹脂組成物又は感光性エレメントを用いて感光層を形成する工程と、上記感光層を露光及び現像してレジストパターンを形成する工程と、上記レジストパターンを硬化して永久レジストを形成する工程と、を備える、プリント配線板の製造方法に関する。 Another aspect of the present disclosure includes a step of forming a photosensitive layer on a substrate using the photosensitive resin composition or photosensitive element described above, and a step of exposing and developing the photosensitive layer to form a resist pattern. and a step of curing the resist pattern to form a permanent resist.
 本開示によれば、優れた解像性及び優れた電気絶縁信頼性を得ることができる感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法を提供することができる。 According to the present disclosure, it is possible to provide a photosensitive resin composition, a photosensitive element, a printed wiring board, and a method for producing a printed wiring board that can obtain excellent resolution and excellent electrical insulation reliability. .
本実施形態に係る感光性エレメントを模式的に示す断面図である。1 is a cross-sectional view schematically showing a photosensitive element according to this embodiment; FIG. 本実施形態に係る多層プリント配線板の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the multilayer printed wiring board which concerns on this embodiment.
 以下、本開示について詳細に説明する。本明細書において、「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成される限り、他の工程と明確に区別できない工程も含む。「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The present disclosure will be described in detail below. As used herein, the term "step" includes not only independent steps, but also steps that are indistinguishable from other steps, as long as the intended action of that step is achieved. The term "layer" includes not only a shape structure formed over the entire surface but also a shape structure formed partially when viewed as a plan view. A numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
 本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 When referring to the amount of each component in the composition herein, when there are multiple substances corresponding to each component in the composition, unless otherwise specified, the multiple substances present in the composition means the total amount of
 本明細書において、「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」の少なくとも一方を意味し、(メタ)アクリル酸、(メタ)アクリロイル等の他の類似表現についても同様である。本明細書において、「固形分」とは、感光性樹脂組成物に含まれる揮発する物質(水、溶剤等)を除いた不揮発分を指し、室温(25℃付近)で液状、水飴状、又はワックス状の成分も含む。 As used herein, "(meth)acrylate" means at least one of "acrylate" and its corresponding "methacrylate", and the same applies to other similar expressions such as (meth)acrylic acid and (meth)acryloyl. is. As used herein, the term “solid content” refers to the non-volatile content excluding volatile substances (water, solvents, etc.) contained in the photosensitive resin composition, and is liquid at room temperature (around 25° C.), syrup-like, or It also contains a waxy component.
 本実施形態は、以下の感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法に関する。
[1](A)酸変性ビニル基含有樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラー、及び、(E)熱硬化性樹脂を含有し、上記(C)成分がチオキサントン系骨格を有する化合物を含み、上記(E)成分がナフタレン環を有する樹脂を含む、感光性樹脂組成物。
[2]上記(A)成分が、ビスフェノールノボラック型エポキシ樹脂(a1)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A1)と、該エポキシ樹脂(a1)とは異なるエポキシ樹脂(a2)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A2)とを含有するものである、上記[1]に記載の感光性樹脂組成物。
[3]上記エポキシ樹脂(a2)が、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び、トリフェノールメタン型エポキシ樹脂からなる群より選ばれる少なくとも1種である、上記[2]に記載の感光性樹脂組成物。
[4]上記酸変性ビニル基含有エポキシ樹脂(A1)及び(A2)が、各々上記エポキシ樹脂(a1)及び(a2)と、エチレン性不飽和基含有有機酸(b)とを反応させてなる樹脂(A1’)及び(A2’)に、飽和基又は不飽和基含有多塩基酸無水物(c)を反応させてなる樹脂である、上記[2]又は[3]に記載の感光性樹脂組成物。
[5]上記エポキシ樹脂(a1)が、下記一般式(I)で表される構造単位、又は、下記一般式(II)で表される構造単位を有するものである、上記[2]~[4]のいずれかに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
[式(I)中、R11は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR11は同一でも異なっていてもよく、Y及びYの少なくとも一方はグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000006
[式(II)中、R12は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR12は同一でも異なっていてもよく、Y及びYの少なくとも一方はグリシジル基を示す。]
[6]上記(B)成分が、分子内にエチレン性不飽和結合を3つ以上有する化合物を含む、上記[1]~[5]のいずれかに記載の感光性樹脂組成物。
[7]更に、(F)顔料を含有する、上記[1]~[6]のいずれかに記載の感光性樹脂組成物。
[8]上記(E)成分が、ナフタレン環を有するエポキシ樹脂を含む、上記[1]~[7]のいずれかに記載の感光性樹脂組成物。
[9]上記(A)成分の酸価が、30~150mgKOH/gである、上記[1]~[8]のいずれかに記載の感光性樹脂組成物。
[10]支持フィルムと、上記[1]~[9]のいずれかに記載の感光性樹脂組成物を用いて形成された感光層とを備える、感光性エレメント。
[11]上記[1]~[9]のいずれかに記載の感光性樹脂組成物の硬化物を含む永久レジストを具備する、プリント配線板。
[12]基板上に、上記[1]~[9]のいずれかに記載の感光性樹脂組成物又は上記[10]に記載の感光性エレメントを用いて感光層を形成する工程と、上記感光層を露光及び現像してレジストパターンを形成する工程と、上記レジストパターンを硬化して永久レジストを形成する工程と、を備える、プリント配線板の製造方法。
The present embodiment relates to the following photosensitive resin composition, photosensitive element, printed wiring board, and printed wiring board manufacturing method.
[1] containing (A) an acid-modified vinyl group-containing resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, and (E) a thermosetting resin, the above ( A photosensitive resin composition, wherein the component (C) contains a compound having a thioxanthone skeleton, and the component (E) contains a resin having a naphthalene ring.
[2] The component (A) comprises at least one acid-modified vinyl group-containing epoxy resin (A1) obtained by using a bisphenol novolak type epoxy resin (a1), and an epoxy resin (a1) different from the epoxy resin (a1). The photosensitive resin composition according to [1] above, which contains at least one acid-modified vinyl group-containing epoxy resin (A2) obtained by using a2).
[3] The above [ 2].
[4] The acid-modified vinyl group-containing epoxy resins (A1) and (A2) are obtained by reacting the epoxy resins (a1) and (a2), respectively, with an ethylenically unsaturated group-containing organic acid (b). The photosensitive resin according to the above [2] or [3], which is a resin obtained by reacting the resins (A1′) and (A2′) with a saturated group- or unsaturated group-containing polybasic acid anhydride (c). Composition.
[5] The epoxy resin (a1) has a structural unit represented by the following general formula (I) or a structural unit represented by the following general formula (II), above [2] to [ 4]. The photosensitive resin composition according to any one of the above items.
Figure JPOXMLDOC01-appb-C000005
[In formula (I), R 11 represents a hydrogen atom or a methyl group, and Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group. Plural R 11 may be the same or different, and at least one of Y 1 and Y 2 represents a glycidyl group. ]
Figure JPOXMLDOC01-appb-C000006
[In formula (II), R 12 represents a hydrogen atom or a methyl group, and Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group. Plural R 12 may be the same or different, and at least one of Y 3 and Y 4 represents a glycidyl group. ]
[6] The photosensitive resin composition according to any one of [1] to [5] above, wherein the component (B) contains a compound having three or more ethylenically unsaturated bonds in the molecule.
[7] The photosensitive resin composition according to any one of [1] to [6] above, further comprising (F) a pigment.
[8] The photosensitive resin composition according to any one of [1] to [7] above, wherein the component (E) contains an epoxy resin having a naphthalene ring.
[9] The photosensitive resin composition according to any one of [1] to [8] above, wherein the component (A) has an acid value of 30 to 150 mgKOH/g.
[10] A photosensitive element comprising a support film and a photosensitive layer formed using the photosensitive resin composition according to any one of [1] to [9] above.
[11] A printed wiring board comprising a permanent resist containing a cured product of the photosensitive resin composition according to any one of [1] to [9] above.
[12] forming a photosensitive layer on a substrate using the photosensitive resin composition according to any one of [1] to [9] or the photosensitive element according to [10]; A method of manufacturing a printed wiring board, comprising: exposing and developing a layer to form a resist pattern; and curing the resist pattern to form a permanent resist.
[感光性樹脂組成物]
 本実施形態に係る感光性樹脂組成物は、(A)酸変性ビニル基含有樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラー、及び、(E)熱硬化性樹脂を含有し、上記(C)成分がチオキサントン系骨格を有する化合物を含み、上記(E)成分がナフタレン環を有する樹脂を含む。本実施形態に係る感光性樹脂組成物は更に、(F)顔料、(G)エラストマー、(H)硬化剤、及び、(I)イオン捕捉剤のうちの一種以上を含有してもよい。本実施形態に係る感光性樹脂組成物は、ネガ型の感光性樹脂組成物であり、感光性樹脂組成物の硬化膜は、表面保護層及び層間絶縁層等の永久レジストとして好適に用いることができる。以下、本実施形態の感光性樹脂組成物で用いられる各成分についてより詳細に説明する。
[Photosensitive resin composition]
The photosensitive resin composition according to the present embodiment includes (A) an acid-modified vinyl group-containing resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, and (E) a heat It contains a curable resin, the component (C) contains a compound having a thioxanthone skeleton, and the component (E) contains a resin having a naphthalene ring. The photosensitive resin composition according to this embodiment may further contain one or more of (F) a pigment, (G) an elastomer, (H) a curing agent, and (I) an ion scavenger. The photosensitive resin composition according to the present embodiment is a negative photosensitive resin composition, and the cured film of the photosensitive resin composition can be suitably used as a permanent resist such as a surface protective layer and an interlayer insulating layer. can. Each component used in the photosensitive resin composition of the present embodiment will be described in more detail below.
((A)成分:酸変性ビニル基含有樹脂)
 本実施形態に係る感光性樹脂組成物は、(A)成分として酸変性ビニル基含有樹脂を含有する。酸変性ビニル基含有樹脂は、光重合性のエチレン性不飽和結合であるビニル結合と、アルカリ可溶性の酸性基とを有していれば、特に限定されない。
((A) component: acid-modified vinyl group-containing resin)
The photosensitive resin composition according to this embodiment contains an acid-modified vinyl group-containing resin as component (A). The acid-modified vinyl group-containing resin is not particularly limited as long as it has a vinyl bond that is a photopolymerizable ethylenically unsaturated bond and an alkali-soluble acidic group.
 (A)成分が有するエチレン性不飽和結合を有する基としては、例えば、ビニル基、アリル基、プロパルギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、及び(メタ)アクリロイル基が挙げられる。これらの中でも、反応性及び解像性の観点から、(メタ)アクリロイル基が好ましい。(A)成分が有する酸性基としては、例えば、カルボキシ基、スルホ基、及びフェノール性水酸基が挙げられる。これらの中でも、解像性の観点から、カルボキシ基が好ましい。 Examples of groups having an ethylenically unsaturated bond contained in component (A) include vinyl groups, allyl groups, propargyl groups, butenyl groups, ethynyl groups, phenylethynyl groups, maleimide groups, nadimide groups, and (meth)acryloyl groups. is mentioned. Among these, a (meth)acryloyl group is preferable from the viewpoint of reactivity and resolution. Examples of acidic groups possessed by component (A) include carboxy groups, sulfo groups, and phenolic hydroxyl groups. Among these, a carboxy group is preferable from the viewpoint of resolution.
 (A)成分は、(a)エポキシ樹脂(以下、「(a)成分」と称する場合がある。)と、(b)エチレン性不飽和基含有有機酸(以下、「(b)成分」と称する場合がある。)と、を反応させてなる樹脂(A’)に、(c)飽和基又は不飽和基含有多塩基酸無水物(以下、「(c)成分」と称する場合がある。)を反応させてなる酸変性ビニル基含有エポキシ誘導体であることが好ましい。 Component (A) consists of (a) an epoxy resin (hereinafter sometimes referred to as "(a) component") and (b) an ethylenically unsaturated group-containing organic acid (hereinafter referred to as "(b) component"). and (c) a saturated or unsaturated group-containing polybasic acid anhydride (hereinafter sometimes referred to as "component (c)"). ) is preferably an acid-modified vinyl group-containing epoxy derivative.
 酸変性ビニル基含有エポキシ誘導体としては、例えば、酸変性エポキシ(メタ)アクリレートが挙げられる。酸変性エポキシ(メタ)アクリレートは、(a)成分と(b)成分との反応物であるエポキシ(メタ)アクリレートを(c)成分で酸変性した樹脂である。酸変性エポキシ(メタ)アクリレートとして、例えば、エポキシ樹脂とビニル基含有モノカルボン酸とを反応させて得られるエステル化物に、飽和又は不飽和多塩基酸無水物を付加した付加反応物を用いることができる。 Examples of acid-modified vinyl group-containing epoxy derivatives include acid-modified epoxy (meth)acrylates. Acid-modified epoxy (meth)acrylate is a resin obtained by acid-modifying epoxy (meth)acrylate, which is a reaction product of components (a) and (b), with component (c). As the acid-modified epoxy (meth)acrylate, for example, an addition reaction product obtained by adding a saturated or unsaturated polybasic acid anhydride to an esterified product obtained by reacting an epoxy resin and a vinyl group-containing monocarboxylic acid can be used. can.
 (A)成分としては、例えば、(a)成分としてビスフェノールノボラック型エポキシ樹脂(a1)(以下、「エポキシ樹脂(a1)」と称する場合がある。)を用いてなる酸変性ビニル基含有樹脂(A1)(以下、「(A1)成分」と称する場合がある。)、及び(a)成分としてエポキシ樹脂(a1)以外のエポキシ樹脂(a2)(以下、「エポキシ樹脂(a2)」と称する場合がある。)を用いてなる酸変性ビニル基含有樹脂(A2)(以下、「(A2)成分」と称する場合がある。)が挙げられる。 As the component (A), for example, an acid-modified vinyl group-containing resin ( A1) (hereinafter sometimes referred to as "(A1) component"), and epoxy resin (a2) other than epoxy resin (a1) as component (a) (hereinafter referred to as "epoxy resin (a2)") and an acid-modified vinyl group-containing resin (A2) (hereinafter sometimes referred to as "(A2) component") using
 エポキシ樹脂(a1)としては、例えば、下記式(I)又は(II)で表される構造単位を有するエポキシ樹脂が挙げられる。 Examples of the epoxy resin (a1) include epoxy resins having a structural unit represented by the following formula (I) or (II).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(I)中、R11は水素原子又はメチル基を示し、複数のR11は同一でも異なっていてもよい。Y及びYはそれぞれ独立に水素原子又はグリシジル基を示すが、Y及びYの少なくとも一方はグリシジル基である。解像性をより向上する観点から、R11は、水素原子であることが好ましく、絶縁信頼性をより向上する観点から、Y及びYは、グリシジル基であることが好ましい。 In formula (I), R 11 represents a hydrogen atom or a methyl group, and multiple R 11 may be the same or different. Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group, and at least one of Y 1 and Y 2 is a glycidyl group. From the viewpoint of further improving resolution, R 11 is preferably a hydrogen atom, and from the viewpoint of further improving insulation reliability, Y 1 and Y 2 are preferably glycidyl groups.
 エポキシ樹脂(a1)中の式(I)で表される構造単位数は、1以上であり、10~100、15~80又は15~70であってもよい。構造単位数が上記範囲内であると、解像性及び絶縁信頼性を向上し易くなる。ここで、構造単位の構造単位数は、単一の分子においては整数値を示し、複数種の分子の集合体においては平均値である有理数を示す。以下、構造単位の構造単位数については同様である。 The number of structural units represented by formula (I) in the epoxy resin (a1) is 1 or more, and may be 10-100, 15-80 or 15-70. When the number of structural units is within the above range, it becomes easier to improve resolution and insulation reliability. Here, the number of structural units of a structural unit represents an integer value for a single molecule, and represents a rational number, which is an average value, for an aggregate of multiple types of molecules. Hereinafter, the number of structural units of the structural units is the same.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(II)中、R12は水素原子又はメチル基を示し、複数のR12は同一でも異なっていてもよい。Y及びYはそれぞれ独立に水素原子又はグリシジル基を示すが、Y及びYの少なくとも一方はグリシジル基である。解像性をより向上する観点から、R12は、水素原子であることが好ましく、絶縁信頼性をより向上する観点から、Y及びYは、グリシジル基であることが好ましい。 In formula (II), R 12 represents a hydrogen atom or a methyl group, and multiple R 12 may be the same or different. Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group, and at least one of Y 3 and Y 4 is a glycidyl group. From the viewpoint of further improving resolution, R 12 is preferably a hydrogen atom, and from the viewpoint of further improving insulation reliability, Y 3 and Y 4 are preferably glycidyl groups.
 エポキシ樹脂(a1)中の式(II)で表される構造単位数は、1以上であり、10~100、15~80又は15~70であってもよい。構造単位数が上記範囲内であると、解像性及び絶縁信頼性を向上し易くなる。 The number of structural units represented by formula (II) in the epoxy resin (a1) is 1 or more, and may be 10-100, 15-80 or 15-70. When the number of structural units is within the above range, it becomes easier to improve resolution and insulation reliability.
 式(II)において、R12が水素原子であり、Y及びYがグリシジル基であるエポキシ樹脂は、EXA-7376シリーズ(DIC株式会社製、商品名)として、また、R12がメチル基であり、Y及びYがグリシジル基であるエポキシ樹脂は、EPON SU8シリーズ(三菱ケミカル株式会社製、商品名)として商業的に入手可能である。 In formula (II), epoxy resins in which R 12 is a hydrogen atom and Y 3 and Y 4 are glycidyl groups are EXA-7376 series (manufactured by DIC Corporation, trade name), and R 12 is a methyl group. , and Y 3 and Y 4 are glycidyl groups, and the epoxy resin is commercially available as the EPON SU8 series (trade name, manufactured by Mitsubishi Chemical Corporation).
 エポキシ樹脂(a2)は、エポキシ樹脂(a1)とは異なるエポキシ樹脂であれば特に制限されないが、解像性及び絶縁信頼性をより向上する観点から、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも1種であることが好ましい。 The epoxy resin (a2) is not particularly limited as long as it is an epoxy resin different from the epoxy resin (a1). It is preferably at least one selected from the group consisting of bisphenol F-type epoxy resins, triphenolmethane-type epoxy resins, and biphenyl-type epoxy resins.
 ノボラック型エポキシ樹脂としては、例えば、下記式(III)で表される構造単位を有するエポキシ樹脂が挙げられる。ビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂としては、例えば、下記式(IV)で表される構造単位を有するエポキシ樹脂が挙げられる。トリフェノールメタン型エポキシ樹脂としては、例えば、下記式(V)で表される構造単位を有するエポキシ樹脂が挙げられる。ビフェニル型エポキシ樹脂としては、下記式(VI)で表される構造単位を有するエポキシ樹脂が挙げられる。 Examples of novolak-type epoxy resins include epoxy resins having a structural unit represented by the following formula (III). Examples of the bisphenol A type epoxy resin or bisphenol F type epoxy resin include epoxy resins having a structural unit represented by the following formula (IV). Examples of triphenolmethane-type epoxy resins include epoxy resins having a structural unit represented by the following formula (V). Biphenyl-type epoxy resins include epoxy resins having a structural unit represented by the following formula (VI).
 エポキシ樹脂(a2)としては、下記式(III)で表される構造単位を有するノボラック型エポキシ樹脂が好ましい。このような構造単位を有するノボラック型エポキシ樹脂としては、例えば、下記式(III’)で表されるノボラック型エポキシ樹脂が挙げられる。 As the epoxy resin (a2), a novolac-type epoxy resin having a structural unit represented by the following formula (III) is preferable. Examples of the novolak-type epoxy resin having such a structural unit include novolak-type epoxy resins represented by the following formula (III').
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(III)及び(III’)中、R13は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示すが、Yの少なくとも一つはグリシジル基である。式(III’)中、nは1以上の数であり、複数のR13及びYは、同一でも異なっていてもよい。解像性及び絶縁信頼性をより向上する観点から、R13は、水素原子であることが好ましい。 In formulas (III) and (III'), R 13 represents a hydrogen atom or a methyl group, Y 5 represents a hydrogen atom or a glycidyl group, and at least one Y 5 is a glycidyl group. In formula (III′), n 1 is a number of 1 or more, and multiple R 13 and Y 5 may be the same or different. From the viewpoint of further improving resolution and insulation reliability, R 13 is preferably a hydrogen atom.
 式(III’)中、水素原子であるYとグリシジル基であるYとのモル比が、解像性及び絶縁信頼性をより向上する観点から、0/100~30/70又は0/100~10/90であってもよい。nは1以上であるが、10~200、30~150、又は30~100であってもよい。nが上記範囲内であると、解像性及び絶縁信頼性が向上し易くなる。 In formula (III′), the molar ratio of Y 5 that is a hydrogen atom and Y 5 that is a glycidyl group is 0/100 to 30/70 or 0/100 from the viewpoint of further improving resolution and insulation reliability. It may be from 100 to 10/90. n 1 is 1 or more, but may be 10-200, 30-150, or 30-100. When n1 is within the above range, resolution and insulation reliability are likely to be improved.
 式(III’)で表されるノボラック型エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂が挙げられる。これらのノボラック型エポキシ樹脂は、例えば、公知の方法でフェノールノボラック樹脂又はクレゾールノボラック樹脂と、エピクロルヒドリンとを反応させることにより得ることができる。 Examples of the novolak-type epoxy resins represented by formula (III') include phenol novolak-type epoxy resins and cresol novolak-type epoxy resins. These novolak-type epoxy resins can be obtained, for example, by reacting a phenol novolac resin or a cresol novolac resin with epichlorohydrin by a known method.
 式(III’)で表されるフェノールノボラック型エポキシ樹脂又はクレゾールノボラック型エポキシ樹脂としては、例えば、YDCN-701、YDCN-702、YDCN-703、YDCN-704、YDCN-704L、YDPN-638、YDPN-602(以上、日鉄ケミカル&マテリアル株式会社製、商品名)、DEN-431、DEN-439(以上、ダウ・ケミカル社製、商品名)、EOCN-120、EOCN-102S、EOCN-103S、EOCN-104S、EOCN-1012、EOCN-1025、EOCN-1027、BREN(以上、日本化薬株式会社製、商品名)、EPN-1138、EPN-1235、EPN-1299(以上、BASF社製、商品名)、N-730、N-770、N-865、N-665、N-673、VH-4150、VH-4240(以上、DIC株式会社製、商品名)等が商業的に入手可能である。 Examples of the phenol novolak type epoxy resin or cresol novolak type epoxy resin represented by formula (III′) include YDCN-701, YDCN-702, YDCN-703, YDCN-704, YDCN-704L, YDPN-638 and YDPN. -602 (manufactured by Nippon Steel Chemical & Materials Co., Ltd., trade name), DEN-431, DEN-439 (manufactured by Dow Chemical Co., trade name), EOCN-120, EOCN-102S, EOCN-103S, EOCN-104S, EOCN-1012, EOCN-1025, EOCN-1027, BREN (manufactured by Nippon Kayaku Co., Ltd., product names), EPN-1138, EPN-1235, EPN-1299 (manufactured by BASF, products name), N-730, N-770, N-865, N-665, N-673, VH-4150, VH-4240 (manufactured by DIC Corporation, trade names), etc. are commercially available. .
 エポキシ樹脂(a2)として、下記式(IV)で表される構造単位を有するビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂が好ましく挙げられる。このような構造単位を有するエポキシ樹脂としては、例えば、下記式(IV’)で表されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂が挙げられる。 As the epoxy resin (a2), a bisphenol A type epoxy resin or a bisphenol F type epoxy resin having a structural unit represented by the following formula (IV) is preferably mentioned. Examples of epoxy resins having such structural units include bisphenol A type epoxy resins and bisphenol F type epoxy resins represented by the following formula (IV').
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(IV)及び(IV’)中、R14は水素原子又はメチル基を示し、複数存在するR14は同一でも異なっていてもよく、Yは水素原子又はグリシジル基を示す。式(IV’)中、nは1以上の数を示し、nが2以上の場合、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。 In formulas (IV) and (IV'), R 14 represents a hydrogen atom or a methyl group, multiple R 14 may be the same or different, and Y 6 represents a hydrogen atom or a glycidyl group. In formula (IV'), n2 represents a number of 1 or more, and when n2 is 2 or more, multiple Y6s may be the same or different, and at least one Y6 is a glycidyl group.
 解像性をより向上する観点から、R14は水素原子であることが好ましく、絶縁信頼性をより向上する観点から、Yはグリシジル基であることが好ましい。nは1以上を示すが、10~100、10~80又は15~60であってもよい。nが上記範囲内であると、解像性及び絶縁信頼性が向上し易くなる。 From the viewpoint of further improving resolution, R 14 is preferably a hydrogen atom, and from the viewpoint of further improving insulation reliability, Y 6 is preferably a glycidyl group. n2 is 1 or more, but may be 10-100, 10-80 or 15-60. When n2 is within the above range, resolution and insulation reliability are likely to be improved.
 式(IV)中のYがグリシジル基であるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂は、例えば、式(IV)中のYが水素原子であるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂の水酸基(-OY)とエピクロルヒドリンとを反応させることにより得ることができる。 Bisphenol A type epoxy resin or bisphenol F type epoxy resin in which Y 6 in formula (IV) is a glycidyl group is, for example, bisphenol A type epoxy resin or bisphenol F type epoxy resin in which Y 6 in formula (IV) is a hydrogen atom It can be obtained by reacting the hydroxyl group (--OY 6 ) of the epoxy resin with epichlorohydrin.
 水酸基とエピクロルヒドリンとの反応を促進するためには、反応温度50~120℃でアルカリ金属水酸化物存在下、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の極性有機溶剤中で反応を行うことが好ましい。反応温度が上記範囲内であると、反応が遅くなりすぎることがなく、副反応を抑制することができる。 In order to promote the reaction between hydroxyl groups and epichlorohydrin, it is preferable to carry out the reaction in a polar organic solvent such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. in the presence of an alkali metal hydroxide at a reaction temperature of 50 to 120°C. When the reaction temperature is within the above range, side reactions can be suppressed without slowing down the reaction too much.
 式(IV’)で表されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂としては、例えば、jER807、jER815、jER825、jER827、jER828、jER834、jER1001、jER1004、jER1007及びjER1009(以上、三菱ケミカル株式会社製、商品名)、DER-330、DER-301、DER-361(以上、ダウ・ケミカル社製、商品名)、YD-8125、YDF-170、YDF-175S、YDF-2001、YDF-2004、YDF-8170(以上、日鉄ケミカル&マテリアル株式会社製、商品名)等が商業的に入手可能である。 Examples of the bisphenol A type epoxy resin or bisphenol F type epoxy resin represented by the formula (IV') include jER807, jER815, jER825, jER827, jER828, jER834, jER1001, jER1004, jER1007 and jER1009 (the above, Mitsubishi Chemical Corporation company, DER-330, DER-301, DER-361 (manufactured by Dow Chemical Company, trade names), YD-8125, YDF-170, YDF-175S, YDF-2001, YDF-2004 , YDF-8170 (manufactured by Nippon Steel Chemical & Material Co., Ltd., trade name), etc. are commercially available.
 エポキシ樹脂(a2)としては、下記式(V)で表される構造単位を有するトリフェノールメタン型エポキシ樹脂が好ましく挙げられる。このような構造単位を有するトリフェノールメタン型エポキシ樹脂としては、例えば、下記式(V’)で表されるトリフェノールメタン型エポキシ樹脂が挙げられる。 As the epoxy resin (a2), a triphenolmethane type epoxy resin having a structural unit represented by the following formula (V) is preferably used. Examples of triphenolmethane-type epoxy resins having such structural units include triphenolmethane-type epoxy resins represented by the following formula (V').
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(V)及び(V’)中、Yは水素原子又はグリシジル基を示し、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。式(V’)中、nは1以上の数を示す。 In formulas (V) and (V'), Y 7 represents a hydrogen atom or a glycidyl group, multiple Y 7 may be the same or different, and at least one Y 7 is a glycidyl group. In formula (V'), n3 represents a number of 1 or more.
 解像性及び絶縁信頼性をより向上する観点から、Yにおける水素原子であるYとグリシジル基であるYとのモル比が、0/100~30/70であってもよい。このモル比からも分かるように、Yの少なくとも一つはグリシジル基である。nは1以上であるが、10~100、15~80、又は15~70であってもよい。nが上記範囲内であると、解像性及び絶縁信頼性が向上し易くなる。 From the viewpoint of further improving resolution and insulation reliability, the molar ratio of Y 7 that is a hydrogen atom in Y 7 and Y 7 that is a glycidyl group may be 0/100 to 30/70. As can be seen from this molar ratio, at least one of Y 7 is a glycidyl group. n3 is 1 or more, but may be 10-100, 15-80, or 15-70. When n3 is within the above range, resolution and insulation reliability are likely to be improved.
 式(V’)で表されるトリフェノールメタン型エポキシ樹脂としては、例えば、FAE-2500、EPPN-501H、EPPN-502H(以上、日本化薬株式会社製、商品名)等が商業的に入手可能である。 As the triphenolmethane type epoxy resin represented by the formula (V'), for example, FAE-2500, EPPN-501H, EPPN-502H (manufactured by Nippon Kayaku Co., Ltd., trade names), etc. are commercially available. It is possible.
 エポキシ樹脂(a2)としては、下記式(VI)で表される構造単位を有するビフェニル型エポキシ樹脂が好ましく挙げられる。このような構造単位を有するビフェニル型エポキシ樹脂としては、例えば、下記式(VI’)で表されるビフェニル型エポキシ樹脂が挙げられる。 As the epoxy resin (a2), a biphenyl-type epoxy resin having a structural unit represented by the following formula (VI) is preferably used. Biphenyl-type epoxy resins having such structural units include, for example, biphenyl-type epoxy resins represented by the following formula (VI').
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(VI)及び(VI’)中、Yは水素原子又はグリシジル基を示し、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。式(V’)中、nは1以上の数を示す。 In formulas (VI) and (VI'), Y 8 represents a hydrogen atom or a glycidyl group, multiple Y 8 may be the same or different, and at least one Y 8 is a glycidyl group. In formula (V'), n4 represents a number of 1 or more.
 式(VI’)で表されるビフェニル型エポキシ樹脂としては、例えば、NC-3000、NC-3000-L、NC-3000-H、NC-3000-FH-75M、NC-3100、CER-3000-L(以上、日本化薬株式会社製、商品名)等が商業的に入手可能である。 Biphenyl-type epoxy resins represented by formula (VI′) include, for example, NC-3000, NC-3000-L, NC-3000-H, NC-3000-FH-75M, NC-3100, CER-3000- L (manufactured by Nippon Kayaku Co., Ltd., trade name) and the like are commercially available.
 エポキシ樹脂(a2)としては、式(III)で表される構造単位を有するノボラック型エポキシ樹脂、式(IV)で表される構造単位を有するビスフェノールA型エポキシ樹脂、及び式(IV)で表される構造単位を有するビスフェノールF型エポキシ樹脂からなる群より選ばれる少なくとも1種が好ましく、式(IV)で表される構造単位を有するビスフェノールF型エポキシ樹脂がより好ましい。 As the epoxy resin (a2), a novolak type epoxy resin having a structural unit represented by formula (III), a bisphenol A type epoxy resin having a structural unit represented by formula (IV), and a is preferably at least one selected from the group consisting of bisphenol F type epoxy resins having a structural unit represented by formula (IV), and more preferably a bisphenol F type epoxy resin having a structural unit represented by formula (IV).
 解像性及び絶縁信頼性をより向上する観点から、エポキシ樹脂(a1)として、式(II)で表される構造単位を有するビスフェノールノボラック型エポキシ樹脂を用いた(A1)成分と、エポキシ樹脂(a2)として、式(IV)で表される構造単位を有するビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂を用いた(A2)成分とを組み合わせて用いてもよい。 From the viewpoint of further improving the resolution and insulation reliability, the (A1) component using a bisphenol novolak type epoxy resin having a structural unit represented by formula (II) as the epoxy resin (a1), and the epoxy resin ( As a2), a component (A2) using a bisphenol A type epoxy resin or a bisphenol F type epoxy resin having a structural unit represented by formula (IV) may be used in combination.
 (b)成分としては、例えば、アクリル酸、アクリル酸の二量体、メタクリル酸、β-フルフリルアクリル酸、β-スチリルアクリル酸、桂皮酸、クロトン酸、α-シアノ桂皮酸等のアクリル酸誘導体;水酸基含有アクリレートと二塩基酸無水物との反応生成物である半エステル化合物;及びビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと二塩基酸無水物との反応生成物である半エステル化合物が挙げられる。(b)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。 Component (b) includes, for example, acrylic acid, dimers of acrylic acid, methacrylic acid, β-furfurylacrylic acid, β-styrylacrylic acid, cinnamic acid, crotonic acid, and α-cyanocinnamic acid. derivatives; semi-ester compounds that are the reaction products of hydroxyl-containing acrylates and dibasic anhydrides; Examples include ester compounds. Component (b) may be used singly or in combination of two or more.
 半エステル化合物は、例えば、水酸基含有アクリレート、ビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと、二塩基酸無水物とを反応させることで得られる。 A half ester compound can be obtained, for example, by reacting a hydroxyl group-containing acrylate, a vinyl group-containing monoglycidyl ether, or a vinyl group-containing monoglycidyl ester with a dibasic acid anhydride.
 水酸基含有アクリレート、ビニル基含有モノグリシジルエーテル、及びビニル基含有モノグリシジルエステルとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びグリシジル(メタ)アクリレートが挙げられる。 Examples of hydroxyl group-containing acrylates, vinyl group-containing monoglycidyl ethers, and vinyl group-containing monoglycidyl esters include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylates, trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and glycidyl (meth)acrylate.
 二塩基酸無水物としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、及び無水イタコン酸が挙げられる。 Examples of dibasic acid anhydrides include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. , ethylhexahydrophthalic anhydride, and itaconic anhydride.
 (a)成分と(b)成分との反応において、(a)成分のエポキシ基1当量に対して、(b)成分が0.6~1.05当量となる比率で反応させることが好ましく、0.8~1.0当量となる比率で反応させることがより好ましい。このような比率で反応させることで、光感度が大きくなり、レジストパターン輪郭の直線性に優れる傾向にある。 In the reaction of component (a) and component (b), it is preferable to react at a ratio of 0.6 to 1.05 equivalents of component (b) with respect to 1 equivalent of the epoxy group of component (a). It is more preferable to react at a ratio of 0.8 to 1.0 equivalents. By reacting in such a ratio, the photosensitivity is increased, and the linearity of the resist pattern contour tends to be excellent.
 (a)成分及び(b)成分は、有機溶剤に溶かして反応させることができる。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤が挙げられる。有機溶剤は、1種を単独で又は2種以上を組み合わせて用いてよい。 The components (a) and (b) can be dissolved in an organic solvent and reacted. Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, and dipropylene glycol. Glycol ethers such as monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate; Aliphatic hydrocarbons such as octane and decane; Petroleum Petroleum solvents such as ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha are included. You may use an organic solvent individually by 1 type or in combination of 2 or more types.
 (a)成分と(b)成分との反応を促進するための触媒を用いてもよい。触媒としては、例えば、トリエチルアミン、ベンジルメチルアミン、メチルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、及びトリフェニルホスフィンが挙げられる。触媒は、1種を単独で又は2種以上を組み合わせて用いてよい。 A catalyst may be used to promote the reaction between the (a) component and the (b) component. Catalysts include, for example, triethylamine, benzylmethylamine, methyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, and triphenylphosphine. A catalyst may be used individually by 1 type or in combination of 2 or more types.
 触媒の使用量は、(a)成分と(b)成分との反応を促進する観点から、(a)成分と(b)成分の合計100質量部に対して、0.01~10質量部、0.05~2質量部、又は0.1~1質量部であってもよい。 From the viewpoint of promoting the reaction between the components (a) and (b), the amount of the catalyst used is 0.01 to 10 parts by mass with respect to 100 parts by mass of the components (a) and (b). It may be 0.05 to 2 parts by mass, or 0.1 to 1 part by mass.
 (a)成分と(b)成分との反応には、反応中の重合を防止する目的で、重合禁止剤を用いてもよい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、及びピロガロールが挙げられる。重合禁止剤は、1種を単独で又は2種以上を組み合わせて用いてよい。 A polymerization inhibitor may be used in the reaction of components (a) and (b) for the purpose of preventing polymerization during the reaction. Polymerization inhibitors include, for example, hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, and pyrogallol. A polymerization inhibitor may be used individually by 1 type or in combination of 2 or more types.
 重合禁止剤の使用量は、安定性を向上させる観点から、(a)成分と(b)成分の合計100質量部に対して、0.01~1質量部、0.02~0.8質量部、又は0.04~0.5質量部であってもよい。 From the viewpoint of improving the stability, the amount of the polymerization inhibitor used is 0.01 to 1 part by mass and 0.02 to 0.8 part by mass with respect to the total 100 parts by mass of the components (a) and (b). parts, or 0.04 to 0.5 parts by mass.
 (a)成分と(b)成分との反応温度は、生産性の観点から、60~150℃、80~120℃、又は90~110℃であってもよい。 The reaction temperature of the components (a) and (b) may be 60 to 150°C, 80 to 120°C, or 90 to 110°C from the viewpoint of productivity.
 (a)成分と(b)成分とを反応させてなる(A’)成分は、(a)成分のエポキシ基と(b)成分のカルボキシル基との開環付加反応により形成される水酸基を有している。(A’)成分に、更に(c)成分を反応させることにより、(A’)成分の水酸基((a)成分中に元来存在する水酸基も含む)と(c)成分の酸無水物基とが半エステル化された、酸変性ビニル基含有樹脂が得られる。 Component (A') obtained by reacting component (a) and component (b) has a hydroxyl group formed by a ring-opening addition reaction between the epoxy group of component (a) and the carboxyl group of component (b). are doing. Component (A') is further reacted with component (c) to form hydroxyl groups of component (A') (including hydroxyl groups originally present in component (a)) and acid anhydride groups of component (c). A semi-esterified acid-modified vinyl group-containing resin is obtained.
 (c)成分としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、及び無水イタコン酸が挙げられる。これらの中でも、解像性の観点から、テトラヒドロ無水フタル酸が好ましい。(c)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。 Component (c) includes, for example, succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, Ethylhexahydrophthalic anhydride and itaconic anhydride are included. Among these, tetrahydrophthalic anhydride is preferred from the viewpoint of resolution. Component (c) may be used singly or in combination of two or more.
 (A’)成分と(c)成分との反応において、例えば、(A’)成分中の水酸基1当量に対して、(c)成分を0.1~1.0当量反応させることで、(A)成分の酸価を調整することができる。 In the reaction between the component (A') and the component (c), for example, 0.1 to 1.0 equivalent of the component (c) is reacted with respect to 1 equivalent of the hydroxyl group in the component (A'). A) The acid value of the component can be adjusted.
 (A’)成分と(c)成分との反応温度は、生産性の観点から、50~150℃、60~120℃、又は70~100℃であってもよい。 The reaction temperature of component (A') and component (c) may be 50 to 150°C, 60 to 120°C, or 70 to 100°C from the viewpoint of productivity.
 必要に応じて、(a)成分として、水添ビスフェノールA型エポキシ樹脂を一部併用してもよく、スチレン-無水マレイン酸共重合体のヒドロキシエチル(メタ)アクリレート変性物等のスチレン-マレイン酸系樹脂を一部併用してもよい。 If necessary, as the component (a), a hydrogenated bisphenol A type epoxy resin may be partially used in combination, and styrene-maleic acid such as hydroxyethyl (meth)acrylate modified styrene-maleic anhydride copolymer A part of the system resin may be used together.
 (A)成分は、解像性及び絶縁信頼性をより向上する観点から、(A1)成分を含むことが好ましい。(A)成分は、(A1)成分と(A2)成分とを含んでいてもよい。 From the viewpoint of further improving resolution and insulation reliability, the (A) component preferably contains the (A1) component. The (A) component may contain the (A1) component and the (A2) component.
 (A)成分の酸価は、特に限定されない。(A)成分の酸価は、未露光部のアルカリ水溶液への溶解性を向上する観点から、30mgKOH/g以上、40mgKOH/g以上、又は50mgKOH/g以上であってもよい。(A)成分の酸価は、硬化膜の電気特性を向上する観点から、150mgKOH/g以下、120mgKOH/g以下、又は100mgKOH/g以下であってもよい。 The acid value of component (A) is not particularly limited. The acid value of component (A) may be 30 mgKOH/g or more, 40 mgKOH/g or more, or 50 mgKOH/g or more from the viewpoint of improving the solubility of the unexposed area in an alkaline aqueous solution. The acid value of component (A) may be 150 mgKOH/g or less, 120 mgKOH/g or less, or 100 mgKOH/g or less from the viewpoint of improving the electrical properties of the cured film.
 (A)成分の重量平均分子量(Mw)は、特に限定されない。(A)成分のMwは、硬化膜の密着性及び絶縁信頼性を向上する観点から、3000以上、4000以上、又は5000以上であってもよい。(A)成分のMwは、感光層の解像性を向上する観点から、30000以下、25000以下、又は18000以下であってもよい。 The weight average molecular weight (Mw) of component (A) is not particularly limited. The Mw of component (A) may be 3000 or more, 4000 or more, or 5000 or more from the viewpoint of improving the adhesion and insulation reliability of the cured film. The Mw of component (A) may be 30,000 or less, 25,000 or less, or 18,000 or less from the viewpoint of improving the resolution of the photosensitive layer.
 Mwは、ゲルパーミエーションクロマトグラフィ(GPC)法により測定することができる。Mwは、例えば、下記のGPC条件で測定し、標準ポリスチレンの検量線を使用して換算した値をMwとすることができる。検量線の作成は、標準ポリスチレンとして5サンプルセット(「PStQuick MP-H」及び「PStQuick B」、東ソー株式会社製)を用いることができる。
GPC装置:高速GPC装置「HCL-8320GPC」(東ソー株式会社製)
検出器  :示差屈折計又はUV検出器(東ソー株式会社製)
カラム  :カラムTSKgel SuperMultipore HZ-H(カラム長さ:15cm、カラム内径:4.6mm)(東ソー株式会社製)
溶離液  :テトラヒドロフラン(THF)
測定温度 :40℃
流量   :0.35mL/分
試料濃度 :10mg/THF5mL
注入量  :20μL
Mw can be measured by a gel permeation chromatography (GPC) method. Mw can be measured under the following GPC conditions, for example, and converted using a standard polystyrene calibration curve to Mw. Five sample sets (“PStQuick MP-H” and “PStQuick B”, manufactured by Tosoh Corporation) can be used as standard polystyrene to prepare a calibration curve.
GPC apparatus: High-speed GPC apparatus "HCL-8320GPC" (manufactured by Tosoh Corporation)
Detector: Differential refractometer or UV detector (manufactured by Tosoh Corporation)
Column: Column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm) (manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran (THF)
Measurement temperature: 40°C
Flow rate: 0.35 mL/min Sample concentration: 10 mg/THF5 mL
Injection volume: 20 μL
 感光性樹脂組成物中における(A)成分の含有量は、永久レジストの耐熱性、電気特性及び耐薬品性を向上させる観点から、感光性樹脂組成物の固形分全量を基準として、20~70質量%、25~60質量%、又は30~50質量%であってもよい。 The content of component (A) in the photosensitive resin composition is 20 to 70 based on the total solid content of the photosensitive resin composition, from the viewpoint of improving the heat resistance, electrical properties and chemical resistance of the permanent resist. % by weight, 25-60% by weight, or 30-50% by weight.
((B)成分:光重合性化合物)
 (B)成分は、光重合可能な化合物、又は、光架橋可能な化合物であれば特に制限はなく、例えば、光重合性を示す官能基を有する化合物が好ましく挙げられる。光重合性を示す官能基としては、例えば、ビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリロイル基等のエチレン性不飽和結合を有する官能基が挙げられる。
((B) component: photopolymerizable compound)
The component (B) is not particularly limited as long as it is a photopolymerizable compound or a photocrosslinkable compound, and preferably includes, for example, a compound having a photopolymerizable functional group. Examples of photopolymerizable functional groups include ethylenically unsaturated bonds such as vinyl, allyl, propargyl, butenyl, ethynyl, phenylethynyl, maleimide, nadimide, and (meth)acryloyl groups. functional groups having
 (B)成分としては、光感度の観点から、分子量が1000以下の化合物が好ましく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール等のグリコールのモノ又はジ(メタ)アクリレート類;N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレート等の多価アルコール又はこれらのエチレンオキサイドあるいはプロピレンオキサイド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキサイドあるいはプロピレンオキサイド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルの(メタ)アクリレート類;メラミン(メタ)アクリレートなどが好ましく挙げられる。これらの(B)成分は、1種単独で、又は複数種を組み合わせて用いることができる。感度を向上させる観点から、(B)成分は、上記多価アルコール又はこれらのエチレンオキサイドあるいはプロピレンオキサイド付加物の多価(メタ)アクリレート類を含んでもよい。 From the viewpoint of photosensitivity, the component (B) is preferably a compound having a molecular weight of 1000 or less, for example, hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate. ; Ethylene glycol, methoxytetraethylene glycol, glycol mono- or di(meth)acrylates such as polyethylene glycol; N,N-dimethyl(meth)acrylamide, N-methylol(meth)acrylamide and other (meth)acrylamides; N , N-dimethylaminoethyl (meth)acrylate and other aminoalkyl (meth)acrylates; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tris-hydroxyethyl isocyanurate and other polyhydric alcohols or Polyvalent (meth)acrylates of these ethylene oxide or propylene oxide adducts; (meth)acrylates of ethylene oxide or propylene oxide adducts of phenols such as phenoxyethyl (meth)acrylate and polyethoxydi(meth)acrylate of bisphenol A; (meth)acrylates of glycidyl ethers such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, triglycidyl isocyanurate; and melamine (meth)acrylate. These (B) components can be used individually by 1 type or in combination of multiple types. From the viewpoint of improving the sensitivity, the component (B) may contain polyhydric (meth)acrylates of the above polyhydric alcohols or their ethylene oxide or propylene oxide adducts.
 また、光硬化による架橋密度を上げて、耐熱性及び電気絶縁信頼性を向上させるため、(B)成分として、分子内にエチレン性不飽和結合を3つ以上有する化合物を選択することができる。そのような化合物としては、上記多価(メタ)アクリレート類が挙げられ、感度が向上する観点から、ジペンタエリスリトールトリ(メタ)アクリレートを選択することができる。 In addition, in order to increase the crosslink density by photocuring and improve the heat resistance and electrical insulation reliability, a compound having three or more ethylenically unsaturated bonds in the molecule can be selected as the component (B). Examples of such compounds include the polyvalent (meth)acrylates described above, and from the viewpoint of improving sensitivity, dipentaerythritol tri(meth)acrylate can be selected.
 感光性樹脂組成物中における(B)成分の含有量は、感光性樹脂組成物中の固形分全量を基準として、2~50質量%、3~20質量%、又は、3~10質量%から適宜選択すればよい。(B)成分の含有量が2質量%以上であると、光感度が向上し、露光部が現像中に溶出しにくい傾向があり、50質量%以下であると耐熱性が向上する傾向がある。 The content of component (B) in the photosensitive resin composition is 2 to 50% by mass, 3 to 20% by mass, or 3 to 10% by mass, based on the total solid content in the photosensitive resin composition. It can be selected as appropriate. When the content of the component (B) is 2% by mass or more, the photosensitivity tends to be improved, and the exposed portion tends to be less eluted during development. When the content is 50% by mass or less, the heat resistance tends to be improved. .
((C)成分:光重合開始剤)
 (C)成分である光重合開始剤は、(A)成分及び(B)成分を重合させることができるものである。本実施形態に係る感光性樹脂組成物は、(C)成分としてチオキサントン系骨格を有する化合物を含む。(C)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。(C)成分がチオキサントン系骨格を有する化合物を含むことで、感光性樹脂組成物は優れた解像性を得ることができる。そのため、感光性樹脂組成物を用いて層間絶縁層又は表面保護層を作製した場合、これらの層に、より小径のビアホールを形成可能となる。
((C) component: photopolymerization initiator)
The photopolymerization initiator which is the component (C) is capable of polymerizing the components (A) and (B). The photosensitive resin composition according to this embodiment contains a compound having a thioxanthone-based skeleton as the component (C). (C) component may be used individually by 1 type or in combination of 2 or more types. The photosensitive resin composition can obtain excellent resolution because the component (C) contains a compound having a thioxanthone-based skeleton. Therefore, when an interlayer insulating layer or a surface protective layer is produced using a photosensitive resin composition, it becomes possible to form a via hole with a smaller diameter in these layers.
 チオキサントン系骨格を有する化合物としては、例えば、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン化合物が挙げられる。これらの中でも、より優れた解像性を得る観点から、チオキサントン系骨格を有する化合物は2,4-ジエチルチオキサントンを含んでいてもよい。 Examples of compounds having a thioxanthone skeleton include thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone. Among these, the compound having a thioxanthone skeleton may contain 2,4-diethylthioxanthone from the viewpoint of obtaining better resolution.
 (C)成分は、チオキサントン系骨格を有する化合物以外の他の光重合開始剤を含んでいてよい。他の光重合開始剤としては特に制限されないが、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン化合物;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン化合物;2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン化合物;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール化合物;ベンゾフェノン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ミヒラーズケトン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン化合物;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等のイミダゾール化合物;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド化合物;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)、1-フェニル-1,2-プロパンジオン-2-[O-(エトキシカルボニル)オキシム]等のオキシムエステル化合物;及びN,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン化合物が挙げられる。 The (C) component may contain a photopolymerization initiator other than the compound having a thioxanthone-based skeleton. Other photopolymerization initiators are not particularly limited, but examples include benzoin compounds such as benzoin, benzoin methyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2- Phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-methyl-[4-(methylthio)phenyl ]-Acetophenone compounds such as 2-morpholino-1-propane and N,N-dimethylaminoacetophenone; - anthraquinone compounds such as aminoanthraquinone; ketal compounds such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bis(diethylamino)benzophenone, Michler's ketone, 4-benzoyl- Benzophenone compounds such as 4′-methyldiphenyl sulfide; 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(o-chlorophenyl)-4,5-di(m-methoxyphenyl)imidazole mer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer, 2-(p-methoxyphenyl)- 4,5-diphenylimidazole dimer, 2,4-di(p-methoxyphenyl)-5-phenylimidazole dimer, 2-(2,4-dimethoxyphenyl)-4,5-diphenylimidazole dimer imidazole compounds such as; acridine compounds such as 9-phenylacridine and 1,7-bis(9,9′-acridinyl)heptane; acylphosphine oxide compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide; -octanedione-1-[4-(phenylthio)phenyl]-2-(O-benzoyloxime), 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone 1 -(O-acetyloxime), 1-phenyl-1,2-propanedione-2-[O-(ethoxycarbonyl)oxime] and other oxime ester compounds; and N,N-dimethylaminobenzoic acid ethyl ester, N, Examples include tertiary amine compounds such as N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, and triethanolamine.
 感光性樹脂組成物中におけるチオキサントン系骨格を有する化合物の含有量は、感光性樹脂組成物の固形分全量を基準として、0.01~15質量%、0.03~5質量%、又は0.05~0.5質量%であってもよい。この含有量が0.01質量%以上であると、より優れた解像性が得られる傾向がある。 The content of the compound having a thioxanthone skeleton in the photosensitive resin composition is 0.01 to 15% by mass, 0.03 to 5% by mass, or 0.03% to 5% by mass, based on the total solid content of the photosensitive resin composition. 05 to 0.5% by mass. When this content is 0.01% by mass or more, there is a tendency that better resolution is obtained.
 (C)成分中におけるチオキサントン系骨格を有する化合物の含有量は、(C)成分の固形分全量を基準として、5~100質量%、6~100質量%、又は7~100質量%であってもよい。この含有量が5質量%以上であると、より優れた解像性が得られる傾向がある。 The content of the compound having a thioxanthone-based skeleton in component (C) is 5 to 100% by mass, 6 to 100% by mass, or 7 to 100% by mass based on the total solid content of component (C). good too. When this content is 5% by mass or more, there is a tendency that better resolution is obtained.
 感光性樹脂組成物中における(C)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、0.2~15質量%、0.5~10質量%、0.5~5質量%、又は0.5~1質量%であってもよい。 The content of component (C) in the photosensitive resin composition is 0.2 to 15% by mass, 0.5 to 10% by mass, 0.5 to 5% by mass, based on the total solid content of the photosensitive resin composition. % by weight, or 0.5 to 1% by weight.
((D)成分:無機フィラー)
 本実施形態に係る感光性樹脂組成物は、(D)成分として無機フィラーを含有する。(D)成分を含有することで、永久レジストの接着強度及び硬度を向上することができる。(D)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
((D) component: inorganic filler)
The photosensitive resin composition according to this embodiment contains an inorganic filler as component (D). By containing the component (D), the adhesive strength and hardness of the permanent resist can be improved. (D) Component may be used individually by 1 type or in combination of 2 or more types.
 無機フィラーとしては、例えば、シリカ、アルミナ、チタニア、酸化タンタル、ジルコニア、窒化ケイ素、チタン酸バリウム、炭酸バリウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸鉛、チタン酸ジルコン酸鉛、チタン酸ジルコン酸ランタン鉛、酸化ガリウム、スピネル、ムライト、コーディエライト、タルク、チタン酸アルミニウム、イットリア含有ジルコニア、ケイ酸バリウム、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、チタン酸マグネシウム、ハイドロタルサイト、雲母、焼成カオリン、及びカーボンが挙げられる。 Examples of inorganic fillers include silica, alumina, titania, tantalum oxide, zirconia, silicon nitride, barium titanate, barium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, lead titanate, lead zirconate titanate, titanium Lead lanthanum zirconate, gallium oxide, spinel, mullite, cordierite, talc, aluminum titanate, yttria-containing zirconia, barium silicate, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, zinc oxide, magnesium titanate, Hydrotalcite, mica, calcined kaolin, and carbon.
 (D)成分は、永久レジストの耐熱性を向上する観点から、シリカを含んでもよく、永久レジストの耐熱性及び接着強度を向上する観点から、硫酸バリウムを含んでもよく、シリカと硫酸バリウムとを含んでもよい。無機フィラーの分散性を向上する観点から、予めアルミナ又は有機シラン化合物で表面処理された無機フィラーを用いてもよい。 Component (D) may contain silica from the viewpoint of improving the heat resistance of the permanent resist, and may contain barium sulfate from the viewpoint of improving the heat resistance and adhesive strength of the permanent resist. may contain. From the viewpoint of improving the dispersibility of the inorganic filler, an inorganic filler previously surface-treated with alumina or an organic silane compound may be used.
 無機フィラーの平均粒径は、解像性の観点から、0.01~5.0μm、0.05~3.0μm、0.1~2.0μm、又は0.15~1.0μmであってもよい。 The average particle size of the inorganic filler is 0.01 to 5.0 μm, 0.05 to 3.0 μm, 0.1 to 2.0 μm, or 0.15 to 1.0 μm from the viewpoint of resolution. good too.
 (D)成分の平均粒径は、感光性樹脂組成物中に分散した状態での無機フィラーの平均粒径であり、以下のように測定して得られる値とする。まず、感光性樹脂組成物をメチルエチルケトンで1000倍に希釈した後、サブミクロン粒子アナライザ(ベックマン・コールター株式会社製、商品名:N5)を用いて、国際標準規格ISO13321に準拠して、屈折率1.38で、溶剤中に分散した粒子を測定し、粒度分布における積算値50%(体積基準)での粒子径を平均粒径とする。 The average particle size of the component (D) is the average particle size of the inorganic filler dispersed in the photosensitive resin composition, and is a value obtained by measuring as follows. First, after diluting the photosensitive resin composition 1000 times with methyl ethyl ketone, using a submicron particle analyzer (manufactured by Beckman Coulter, Inc., trade name: N5), in accordance with the international standard ISO 13321, a refractive index of 1 38, the particles dispersed in the solvent are measured, and the particle diameter at 50% of the integrated value (based on volume) in the particle size distribution is defined as the average particle diameter.
 (D)成分の含有量は、感光性樹脂組成物の固形分全量を基準として5~70質量%、6~60質量%、又は10~50質量%であってもよい。(D)成分の含有量が上記範囲内であると、低熱膨張率、耐熱性、及び膜強度をより向上させることができる。 The content of component (D) may be 5 to 70% by mass, 6 to 60% by mass, or 10 to 50% by mass based on the total solid content of the photosensitive resin composition. (D) When the content of the component is within the above range, the low coefficient of thermal expansion, heat resistance, and film strength can be further improved.
 (D)成分としてシリカを用いる場合の、シリカの含有量は、感光性樹脂組成物の固形分全量を基準として、5~60質量%、10~55質量%、又は15~50質量%であってもよい。(D)成分として硫酸バリウムを用いる場合の、硫酸バリウムの含有量は、感光性樹脂組成物の固形分全量を基準として、5~30質量%、5~25質量%、又は10~20質量%であってよい。シリカ及び硫酸バリウムの含有量が上記範囲内であると、低熱膨張率、はんだ耐熱性、及び接着強度に優れる傾向にある。 When silica is used as component (D), the content of silica is 5 to 60% by mass, 10 to 55% by mass, or 15 to 50% by mass based on the total solid content of the photosensitive resin composition. may When barium sulfate is used as component (D), the content of barium sulfate is 5 to 30% by mass, 5 to 25% by mass, or 10 to 20% by mass, based on the total solid content of the photosensitive resin composition. can be When the contents of silica and barium sulfate are within the above ranges, the low coefficient of thermal expansion, solder heat resistance, and adhesive strength tend to be excellent.
((E)成分:熱硬化性樹脂)
 本実施形態に係る感光性樹脂組成物は、(E)成分として熱硬化性樹脂を含有し、当該(E)成分としてナフタレン環を有する樹脂を含有する。感光性樹脂組成物が(E)成分としてナフタレン環を有する樹脂を含有することで、感光性樹脂組成物から形成される硬化膜(永久レジスト)の絶縁信頼性、耐熱性、接着性、及び耐薬品性を向上させることができる。(E)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
((E) component: thermosetting resin)
The photosensitive resin composition according to the present embodiment contains a thermosetting resin as the (E) component, and contains a resin having a naphthalene ring as the (E) component. Since the photosensitive resin composition contains a resin having a naphthalene ring as the component (E), the insulation reliability, heat resistance, adhesiveness, and resistance of the cured film (permanent resist) formed from the photosensitive resin composition are improved. Chemical properties can be improved. (E) Component may be used individually by 1 type or in combination of 2 or more types.
 ナフタレン環を有する熱硬化性樹脂としては、ナフタレン型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン環を有するエポキシ樹脂等が挙げられる。 Examples of thermosetting resins having a naphthalene ring include epoxy resins having a naphthalene ring, such as naphthalene-type epoxy resins, naphthol novolak-type epoxy resins, naphthol-type epoxy resins, naphthol-aralkyl-type epoxy resins, and naphthylene ether-type epoxy resins. be done.
 (E)成分は、ナフタレン環を有する熱硬化性樹脂以外の他の熱硬化性樹脂(すなわち、ナフタレン環を有さない熱硬化性樹脂)を含んでいてよい。他の熱硬化性樹脂としては特に制限されないが、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、及びメラミン樹脂が挙げられる。 The (E) component may contain a thermosetting resin other than the thermosetting resin having a naphthalene ring (that is, a thermosetting resin not having a naphthalene ring). Other thermosetting resins are not particularly limited, but examples include epoxy resins, phenolic resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, Dicyclopentadiene resins, silicone resins, triazine resins, and melamine resins are included.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、トリグリシジルイソシアヌレート、及びビキシレノール型エポキシ樹脂が挙げられる。 Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, novolac type epoxy resin, and biphenyl type epoxy resin. , dicyclopentadiene-type epoxy resins, hydantoin-type epoxy resins, triglycidyl isocyanurate, and bixylenol-type epoxy resins.
 感光性樹脂組成物中におけるナフタレン環を有する熱硬化性樹脂の含有量は、感光性樹脂組成物の固形分全量を基準として、1~20質量%、1.5~10質量%、又は2~8質量%であってもよい。この含有量が1質量%以上であると、より優れた絶縁信頼性が得られる傾向があり、20質量%以下であると、より優れた解像性が得られる傾向がある。 The content of the thermosetting resin having a naphthalene ring in the photosensitive resin composition is 1 to 20% by mass, 1.5 to 10% by mass, or 2 to 2%, based on the total solid content of the photosensitive resin composition. It may be 8% by mass. When the content is 1% by mass or more, better insulation reliability tends to be obtained, and when it is 20% by mass or less, better resolution tends to be obtained.
 (E)成分中におけるナフタレン環を有する熱硬化性樹脂の含有量は、(E)成分の固形分全量を基準として、5~100質量%、8~80質量%、又は10~50質量%であってもよい。この含有量が5質量%以上であると、より優れた絶縁信頼性が得られる傾向がある。 The content of the thermosetting resin having a naphthalene ring in component (E) is 5 to 100% by mass, 8 to 80% by mass, or 10 to 50% by mass, based on the total solid content of component (E). There may be. When this content is 5% by mass or more, there is a tendency for better insulation reliability to be obtained.
 感光性樹脂組成物中における(E)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、2~30質量%、5~25質量%、又は8~20質量%であってもよい。(E)成分の含有量が上記範囲内であると、良好な現像性を維持しつつ、形成される硬化膜の絶縁信頼性及び耐熱性をより向上することができる。 The content of component (E) in the photosensitive resin composition is 2 to 30% by mass, 5 to 25% by mass, or 8 to 20% by mass based on the total solid content of the photosensitive resin composition. good too. When the content of the component (E) is within the above range, it is possible to further improve the insulation reliability and heat resistance of the formed cured film while maintaining good developability.
 本実施形態に係る感光性樹脂組成物は、(C)成分であるチオキサントン系骨格を有する化合物と、(E)成分であるナフタレン環を有する樹脂とを併用することにより、表面保護層及び層間絶縁層等の永久レジストに求められる優れた解像性及び優れた電気絶縁信頼性の両方を、高水準で両立させることができるという優れた効果を奏することができる。 The photosensitive resin composition according to the present embodiment uses a compound having a thioxanthone skeleton as the component (C) and a resin having a naphthalene ring as the component (E) in combination to form a surface protective layer and an interlayer insulation layer. It is possible to achieve an excellent effect that both excellent resolution and excellent electrical insulation reliability required for a permanent resist such as a layer can be achieved at high levels.
((F)成分:顔料)
 本実施形態に係る感光性樹脂組成物は、製造装置の識別性又は外観を向上させる観点から、(F)成分として顔料を更に含有してもよい。(F)成分としては、配線(導体パターン)を隠蔽する等の際に所望の色を発色する着色剤を用いることができる。(F)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
((F) component: pigment)
The photosensitive resin composition according to the present embodiment may further contain a pigment as the component (F) from the viewpoint of improving the identifiability or appearance of the manufacturing apparatus. As the component (F), a coloring agent that develops a desired color can be used when, for example, the wiring (conductor pattern) is hidden. Component (F) may be used singly or in combination of two or more.
 (F)成分としては、例えば、フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、及びナフタレンブラックが挙げられる。 The (F) component includes, for example, phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black.
 (F)成分の含有量は、製造装置を識別し易くし、配線をより隠蔽させる観点から、感光性樹脂組成物中の固形分全量を基準として、0.01~5.0質量%、0.03~3.0質量%、又は0.05~2.0質量%であってもよい。 The content of component (F) is 0.01 to 5.0% by mass, based on the total solid content in the photosensitive resin composition, from the viewpoint of facilitating identification of the manufacturing equipment and further concealing the wiring. 0.03 to 3.0 mass %, or 0.05 to 2.0 mass %.
((G)成分:エラストマー)
 本実施形態に係る感光性樹脂組成物は、(G)成分としてエラストマーを更に含有してもよい。(G)成分を含有することにより、(A)成分の硬化収縮による樹脂内部の歪み(内部応力)に起因する可とう性及び接着強度の低下を抑えることができる。
((G) component: elastomer)
The photosensitive resin composition according to this embodiment may further contain an elastomer as the (G) component. By containing the component (G), it is possible to suppress deterioration in flexibility and adhesive strength caused by distortion (internal stress) inside the resin due to cure shrinkage of the component (A).
 (G)成分としては、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、及びシリコーン系エラストマーが挙げられる。これらのエラストマーは、耐熱性及び強度に寄与するハードセグメント成分と、柔軟性及び強靭性に寄与するソフトセグメント成分から構成されている。これらの中でも、オレフィン系エラストマー、ポリエステル系エラストマーが好ましい。 Examples of component (G) include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, acrylic-based elastomers, and silicone-based elastomers. These elastomers are composed of a hard segment component that contributes to heat resistance and strength, and a soft segment component that contributes to flexibility and toughness. Among these, olefin-based elastomers and polyester-based elastomers are preferred.
 スチレン系エラストマーとしては、例えば、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、及びスチレン-エチレン-プロピレン-スチレンブロックコポリマーが挙げられる。スチレン系エラストマーを構成する成分としては、スチレンの他に、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体を用いることができる。 Styrenic elastomers include, for example, styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, and styrene-ethylene-propylene-styrene block copolymers. In addition to styrene, styrene derivatives such as α-methylstyrene, 3-methylstyrene, 4-propylstyrene and 4-cyclohexylstyrene can be used as components constituting the styrene-based elastomer.
 オレフィン系エラストマーとしては、例えば、エチレン-プロピレン共重合体、エチレン-α-オレフィン共重合体、エチレン-α-オレフィン-非共役ジエン共重合体、プロピレン-α-オレフィン共重合体、ブテン-α-オレフィン共重合体、エチレン-プロピレン-ジエン共重合体、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン、ブタジエン、イソプレン等の非共役ジエンとα-オレフィンとの共重合体、エポキシ変性ポリブタジエン、及びカルボン酸変性ブタジエン-アクリロニトリル共重合体が挙げられる。 Examples of olefinic elastomers include ethylene-propylene copolymers, ethylene-α-olefin copolymers, ethylene-α-olefin-nonconjugated diene copolymers, propylene-α-olefin copolymers, butene-α- Olefin copolymers, ethylene-propylene-diene copolymers, dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylenenorbornene, ethylidenenorbornene, butadiene, copolymerization of non-conjugated dienes such as isoprene with α-olefins coalesced, epoxy-modified polybutadiene, and carboxylic acid-modified butadiene-acrylonitrile copolymers.
 エポキシ変性ポリブタジエンは、分子末端に水酸基を有することが好ましく、分子両末端に水酸基を有することがより好ましく、分子両末端にのみ水酸基を有することが更に好ましい。エポキシ変性ポリブタジエンが有する水酸基の数は、1つ以上であってよく、好ましくは1~5、より好ましくは1又は2、更に好ましくは2である。 The epoxy-modified polybutadiene preferably has hydroxyl groups at the ends of the molecule, more preferably has hydroxyl groups at both ends of the molecule, and still more preferably has hydroxyl groups only at both ends of the molecule. The number of hydroxyl groups possessed by the epoxy-modified polybutadiene may be 1 or more, preferably 1 to 5, more preferably 1 or 2, still more preferably 2.
 ウレタン系エラストマーとして、低分子(短鎖)ジオール及びジイソシアネートからなるハードセグメントと、高分子(長鎖)ジオール及びジイソシアネートからなるソフトセグメントとから構成される化合物を用いることができる。 As the urethane-based elastomer, a compound composed of a hard segment composed of a low-molecular-weight (short-chain) diol and diisocyanate and a soft segment composed of a high-molecular-weight (long-chain) diol and diisocyanate can be used.
 短鎖ジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、及びビスフェノールAが挙げられる。短鎖ジオールの数平均分子量は、48~500が好ましい。 Examples of short-chain diols include ethylene glycol, propylene glycol, 1,4-butanediol, and bisphenol A. The number average molecular weight of the short-chain diol is preferably 48-500.
 長鎖ジオールとしては、例えば、ポリプロピレングリコール、ポリテトラメチレンオキサイド、ポリ(1,4-ブチレンアジペート)、ポリ(エチレン-1,4-ブチレンアジペート)、ポリカプロラクトン、ポリ(1,6-ヘキシレンカーボネート)、及びポリ(1,6-ヘキシレン-ネオペンチレンアジペート)が挙げられる。長鎖ジオールの数平均分子量は、500~10000が好ましい。 Examples of long-chain diols include polypropylene glycol, polytetramethylene oxide, poly(1,4-butylene adipate), poly(ethylene-1,4-butylene adipate), polycaprolactone, poly(1,6-hexylene carbonate). ), and poly(1,6-hexylene-neopentylene adipate). The number average molecular weight of the long-chain diol is preferably 500-10,000.
 ポリエステル系エラストマーとしては、ジカルボン酸又はその誘導体と、ジオール化合物又はその誘導体とを重縮合した化合物を用いることができる。 As the polyester-based elastomer, a compound obtained by polycondensing a dicarboxylic acid or its derivative and a diol compound or its derivative can be used.
 ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸;及びシクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。ジカルボン酸は、1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid; aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as adipic acid, sebacic acid and dodecanedicarboxylic acid; and cyclohexanedicarboxylic acid. and alicyclic dicarboxylic acids. A dicarboxylic acid can be used individually by 1 type or in combination of 2 or more types.
 ジオール化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール等の脂肪族ジオール;1,4-シクロヘキサンジオール等の脂環族ジオール;及びビスフェノールA、ビス-(4-ヒドロキシフェニル)メタン、ビス-(4-ヒドロキシ-3-メチルフェニル)プロパン、レゾルシン等の芳香族ジオールが挙げられる。 Examples of diol compounds include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and 1,10-decanediol; 1,4-cyclohexanediol, etc. and aromatic diols such as bisphenol A, bis-(4-hydroxyphenyl)methane, bis-(4-hydroxy-3-methylphenyl)propane and resorcinol.
 ポリエステル系エラストマーとして、芳香族ポリエステル(例えば、ポリブチレンテレフタレート)をハードセグメント成分に、脂肪族ポリエステル(例えば、ポリテトラメチレングリコール)をソフトセグメント成分にしたマルチブロック共重合体を用いることができる。ハードセグメント及びソフトセグメントの種類、比率、分子量の違いによりさまざまなグレードのポリエステル系エラストマーがある。 As the polyester-based elastomer, it is possible to use a multi-block copolymer having an aromatic polyester (eg, polybutylene terephthalate) as a hard segment component and an aliphatic polyester (eg, polytetramethylene glycol) as a soft segment component. There are various grades of polyester-based elastomers depending on the types, ratios, and molecular weights of hard segments and soft segments.
 ポリアミド系エラストマーは、ハードセグメントにポリアミドを、ソフトセグメントにポリエーテル又はポリエステルを用いた、ポリエーテルブロックアミド型とポリエーテルエステルブロックアミド型との2種類に大別される。ポリアミドとしては、例えば、ポリアミド-6、ポリアミド-11、及びポリアミド-12が挙げられる。ポリエーテルとしては、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、及びポリテトラメチレングリコールが挙げられる。 Polyamide-based elastomers are roughly divided into two types: polyether block amide type and polyether ester block amide type, which use polyamide for the hard segment and polyether or polyester for the soft segment. Polyamides include, for example, polyamide-6, polyamide-11, and polyamide-12. Polyethers include, for example, polyoxyethylene glycol, polyoxypropylene glycol, and polytetramethylene glycol.
 アクリル系エラストマーは、(メタ)アクリル酸エステルに基づく構成単位を主成分として含む化合物を用いることができる。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、及びエトキシエチル(メタ)アクリレートが挙げられる。アクリル系エラストマーは、(メタ)アクリル酸エステルと、アクリロニトリルとを共重合した化合物であってもよく、架橋点となる官能基を有するモノマーを更に共重合した化合物であってもよい。官能基を有するモノマーとしては、例えば、グリシジルメタクリレート及びアリルグリシジルエーテルが挙げられる。 For the acrylic elastomer, a compound containing a structural unit based on (meth)acrylic acid ester as a main component can be used. (Meth)acrylic acid esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, methoxyethyl (meth)acrylate, and ethoxyethyl (meth)acrylate. The acrylic elastomer may be a compound obtained by copolymerizing (meth)acrylic acid ester and acrylonitrile, or may be a compound obtained by further copolymerizing a monomer having a functional group serving as a cross-linking point. Monomers with functional groups include, for example, glycidyl methacrylate and allyl glycidyl ether.
 アクリル系エラストマーとしては、例えば、アクリロニトリル-ブチルアクリレート共重合体、アクリロニトリル-ブチルアクリレート-エチルアクリレート共重合体、メチルメタクリレート-ブチルアクリレート-メタクリル酸共重合体、及びアクリロニトリル-ブチルアクリレート-グリシジルメタクリレート共重合体が挙げられる。アクリル系エラストマーとして、アクリロニトリル-ブチルアクリレート-グリシジルメタクリレート共重合体又はメチルメタクリレート-ブチルアクリレート-メタクリル酸共重合体が好ましく、メチルメタクリレート-ブチルアクリレート-メタクリル酸共重合体がより好ましい。 Examples of acrylic elastomers include acrylonitrile-butyl acrylate copolymer, acrylonitrile-butyl acrylate-ethyl acrylate copolymer, methyl methacrylate-butyl acrylate-methacrylic acid copolymer, and acrylonitrile-butyl acrylate-glycidyl methacrylate copolymer. is mentioned. As the acrylic elastomer, acrylonitrile-butyl acrylate-glycidyl methacrylate copolymer or methyl methacrylate-butyl acrylate-methacrylic acid copolymer is preferable, and methyl methacrylate-butyl acrylate-methacrylic acid copolymer is more preferable.
 シリコーン系エラストマーは、オルガノポリシロキサンを主成分とする化合物である。オルガノポリシロキサンとしては、例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、及びポリジフェニルシロキサンが挙げられる。シリコーン系エラストマーは、オルガノポリシロキサンの一部をビニル基、アルコキシ基等で変性した化合物であってもよい。 A silicone elastomer is a compound whose main component is organopolysiloxane. Organopolysiloxanes include, for example, polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane. The silicone-based elastomer may be a compound obtained by partially modifying an organopolysiloxane with a vinyl group, an alkoxy group, or the like.
 (G)成分は、硬化膜の密着性を向上する観点から、カルボン酸変性ブタジエン-アクリロニトリル共重合体又は水酸基を有するポリエステル系エラストマーを含んでもよい。 The (G) component may contain a carboxylic acid-modified butadiene-acrylonitrile copolymer or a hydroxyl group-containing polyester elastomer from the viewpoint of improving the adhesion of the cured film.
 (G)成分の含有量は、(A)成分100質量部に対して、2~40質量部、4~30質量部、6~20質量部、又は10~15質量部であってもよい。(G)成分の含有量が上記範囲内であると、硬化膜の高温領域での弾性率が低くなり、かつ未露光部が現像液でより溶出し易くなる。 The content of component (G) may be 2 to 40 parts by mass, 4 to 30 parts by mass, 6 to 20 parts by mass, or 10 to 15 parts by mass with respect to 100 parts by mass of component (A). When the content of component (G) is within the above range, the elastic modulus of the cured film in the high temperature region becomes low, and the unexposed areas are more easily eluted with the developer.
((H)硬化剤)
 本実施形態の感光性樹脂組成物は、(H)成分として硬化剤を更に含有してもよい。(H)成分としては、それ自体が熱、紫外線等で硬化する化合物、又は(A)酸変性ビニル基含有樹脂のカルボキシ基、若しくは水酸基と、熱、紫外線等で反応して硬化する化合物が挙げられる。(H)成分を用いることで、絶縁信頼性、耐熱性、接着強度、耐薬品性等をより向上させることができる。(H)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
((H) curing agent)
The photosensitive resin composition of the present embodiment may further contain a curing agent as component (H). Component (H) includes a compound that itself cures with heat, ultraviolet rays, etc., or a compound that reacts with the carboxy group or hydroxyl group of the acid-modified vinyl group-containing resin (A) and cures with heat, ultraviolet rays, etc. be done. By using the component (H), insulation reliability, heat resistance, adhesive strength, chemical resistance, etc. can be further improved. Component (H) may be used singly or in combination of two or more.
 (H)成分としては、例えば、メラミン化合物、尿素化合物、オキサゾリン化合物、ブロック型イソシアネート等の熱硬化性化合物が挙げられる。メラミン化合物としては、例えば、トリアミノトリアジン、ヘキサメトキシメラミン、ヘキサブトキシ化メラミン等が挙げられる。尿素化合物としては、例えば、ジメチロール尿素等が挙げられる。 (H) component includes, for example, thermosetting compounds such as melamine compounds, urea compounds, oxazoline compounds, and blocked isocyanates. Melamine compounds include, for example, triaminotriazine, hexamethoxymelamine, hexabutoxylated melamine, and the like. Urea compounds include, for example, dimethylol urea.
 ブロック型イソシアネートとしては、ポリイソシアネート化合物とイソシアネートブロック剤との付加反応生成物が挙げられる。このポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ナフチレンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等のポリイソシアネート化合物、並びにこれらのアダクト体、ビューレット体及びイソシアヌレート体等が挙げられる。 Examples of blocked isocyanates include addition reaction products of polyisocyanate compounds and isocyanate blocking agents. Examples of the polyisocyanate compound include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, naphthylene diisocyanate, bis(isocyanatomethyl)cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, and the like. polyisocyanate compounds, and their adducts, burettes and isocyanurates.
 (H)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、0.01~20質量%、0.1~10質量%、又は、0.1~3質量%であってよい。(H)成分の含有量を上記範囲内にすることにより、良好な現像性を維持しつつ、形成される硬化膜の絶縁信頼性及び耐熱性をより向上することができる。 The content of component (H) is 0.01 to 20% by mass, 0.1 to 10% by mass, or 0.1 to 3% by mass based on the total solid content of the photosensitive resin composition. good. By setting the content of the component (H) within the above range, it is possible to further improve the insulation reliability and heat resistance of the formed cured film while maintaining good developability.
((I)成分:イオン捕捉剤)
 本実施形態に係る感光性樹脂組成物は、レジスト形状、密着性、流動性、及び信頼性を向上する観点から、(I)成分としてイオン捕捉剤を更に含有してもよい。(I)成分は、イオン捕捉剤中にイオンを捕捉できるものであって、陽イオン及び陰イオンの少なくとも一方を捕捉する機能を有するものであれば特に限定されない。
((I) component: ion scavenger)
The photosensitive resin composition according to the present embodiment may further contain an ion scavenger as component (I) from the viewpoint of improving resist shape, adhesion, fluidity and reliability. Component (I) is not particularly limited as long as it can trap ions in the ion trapping agent and has the function of trapping at least one of cations and anions.
 本実施形態において捕捉するイオンは、光、電子線等の照射により反応し溶剤に対する溶解度が変化する組成物に取り込まれている、例えば、ナトリウムイオン(Na)、塩素イオン(Cl)、臭素イオン(Br)、銅イオン(Cu、Cu2+)等のイオンである。これらのイオンを捕捉することにより、電気絶縁性、耐電食性等が向上する。 The ions to be captured in the present embodiment are incorporated in a composition that reacts with irradiation of light, electron beams, etc. and changes its solubility in a solvent . Ions such as ions (Br ) and copper ions (Cu + , Cu 2+ ). Capturing these ions improves electrical insulation, electrolytic corrosion resistance, and the like.
 (I)成分は、Zr(ジルコニウム)、Bi(ビスマス)、Mg(マグネシウム)及びAl(アルミニウム)からなる群から選ばれる少なくとも1種を有するイオン捕捉剤であることが好ましい。(I)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。 The component (I) is preferably an ion trapping agent containing at least one selected from the group consisting of Zr (zirconium), Bi (bismuth), Mg (magnesium) and Al (aluminum). (I) component may be used individually by 1 type or in combination of 2 or more types.
 (I)成分としては、陽イオンを捕捉する陽イオン捕捉剤、陰イオンを捕捉する陰イオン捕捉剤、並びに陽イオン及び陰イオンを捕捉する両イオン捕捉剤が挙げられる。 Components (I) include cation scavengers that capture cations, anion scavengers that capture anions, and both ion scavengers that capture cations and anions.
 陽イオン捕捉剤としては、例えば、リン酸ジルコニウム、タングステン酸ジルコニウム、モリブデン酸ジルコニウム、タングステン酸ジルコニウム、アンチモン酸ジルコニウム、セレン酸ジルコニウム、テルル酸ジルコニウム、ケイ酸ジルコニウム、リンケイ酸ジルコニウム、ポリリン酸ジルコニウム等の金属酸化物の無機イオン交換体が挙げられる。 Examples of cation scavengers include zirconium phosphate, zirconium tungstate, zirconium molybdate, zirconium tungstate, zirconium antimonate, zirconium selenate, zirconium tellurate, zirconium silicate, zirconium phosphosilicate, and zirconium polyphosphate. Inorganic ion exchangers of metal oxides may be mentioned.
 陰イオン捕捉剤としては、例えば、酸化ビスマス水和物、ハイドロタルサイト類等の無機イオン交換体が挙げられる。 Examples of anion scavengers include inorganic ion exchangers such as bismuth oxide hydrate and hydrotalcites.
 両イオン捕捉剤としては、例えば、酸化アルミニウム水和物、酸化ジルコニウム水和物等の金属含水酸化物などの無機イオン交換体が挙げられる。両イオン捕捉剤として、東亞合成株式会社製のIXE-1320(Mg,Al含有化合物)、IXE-600(Bi含有化合物)、IXE-633(Bi含有化合物)、IXE-680(Bi含有化合物)、IXE-6107(Zr,Bi含有化合物)、IXE-6136(Zr,Bi含有化合物)、IXEPLAS-A1(Zr,Mg,Al含有化合物)、IXEPLAS-A2(Zr,Mg,Al含有化合物)、IXEPLAS-B1(Zr,Bi含有化合物)等が商業的に入手可能である。 Examples of amphoteric ion scavengers include inorganic ion exchangers such as metal hydrates such as aluminum oxide hydrate and zirconium oxide hydrate. As both ion scavengers, Toagosei Co., Ltd. IXE-1320 (Mg, Al-containing compound), IXE-600 (Bi-containing compound), IXE-633 (Bi-containing compound), IXE-680 (Bi-containing compound), IXE-6107 (Zr, Bi-containing compound), IXE-6136 (Zr, Bi-containing compound), IXEPLAS-A1 (Zr, Mg, Al-containing compound), IXEPLAS-A2 (Zr, Mg, Al-containing compound), IXEPLAS- B1 (Zr, Bi-containing compound) and the like are commercially available.
 (I)成分は、粒状のものを用いることができ、絶縁性を向上させる観点から、(I)成分の平均粒径は、5μm以下、3μm以下、又は2μm以下であってもよく、0.1μm以上であってもよい。(I)成分の平均粒径は、感光性樹脂組成物中に分散した状態での粒子の粒子径であり、(D)成分の平均粒径の測定方法と同じ方法により測定することができる。 Component (I) may be in the form of particles, and from the viewpoint of improving insulation properties, the average particle size of component (I) may be 5 μm or less, 3 μm or less, or 2 μm or less. It may be 1 μm or more. The average particle size of the component (I) is the particle size of the particles dispersed in the photosensitive resin composition, and can be measured by the same method as for measuring the average particle size of the component (D).
 本実施形態の感光性樹脂組成物が(I)成分を含有する場合、その含有量は、特に限定されないが、電気絶縁性及び耐電食性を向上させる観点から、感光性樹脂組成物の固形分全量を基準として、0.05~10質量%、0.1~5質量%、又は0.2~1質量%であってもよい。 When the photosensitive resin composition of the present embodiment contains component (I), the content is not particularly limited, but from the viewpoint of improving electrical insulation and electrolytic corrosion resistance, the total solid content of the photosensitive resin composition may be 0.05 to 10% by mass, 0.1 to 5% by mass, or 0.2 to 1% by mass.
(その他の成分)
 本実施形態に係る感光性樹脂組成物には、必要に応じて、各種添加剤を更に含有してもよい。添加剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系、フッ素系、ビニル樹脂系の消泡剤;シランカップリング剤;及び臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アンチモン化合物、ホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等の難燃剤が挙げられる。
(other ingredients)
The photosensitive resin composition according to the present embodiment may further contain various additives as necessary. Additives include, for example, polymerization inhibitors such as hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, and pyrogallol; thickeners such as bentone and montmorillonite; antifoaming agents such as silicone, fluorine, and vinyl resin; ring agents; and flame retardants such as brominated epoxy compounds, acid-modified brominated epoxy compounds, antimony compounds, phosphate compounds, aromatic condensed phosphates, and halogen-containing condensed phosphates.
(溶剤)
 本実施形態に係る感光性樹脂組成物は、各成分を溶解・分散させるため溶剤を含有することにより、基板上への塗布を容易にし、均一な厚さの塗膜を形成できる。
(solvent)
The photosensitive resin composition according to the present embodiment contains a solvent for dissolving and dispersing each component, thereby facilitating coating on a substrate and forming a coating film of uniform thickness.
 溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル;オクタン、デカン等の脂肪族炭化水素;及び石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤が挙げられる。溶剤は、1種を単独で又は2種以上を組み合わせて用いてよい。 Examples of solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, and dipropylene glycol monoethyl. Glycol ethers such as ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate, carbitol acetate; aliphatic hydrocarbons such as octane and decane; and petroleum ether, petroleum. Petroleum solvents such as naphtha, hydrogenated petroleum naphtha, and solvent naphtha can be mentioned. A solvent may be used individually by 1 type or in combination of 2 or more types.
 溶剤の配合量は、特に限定されないが、感光性樹脂組成物中の溶剤の割合が10~50質量%、20~40質量%、又は25~35質量%であってもよい。 The blending amount of the solvent is not particularly limited, but the ratio of the solvent in the photosensitive resin composition may be 10 to 50% by mass, 20 to 40% by mass, or 25 to 35% by mass.
 本実施形態の感光性樹脂組成物は、上述の各成分をロールミル、ビーズミル等で均一に混合することにより調製することができる。 The photosensitive resin composition of the present embodiment can be prepared by uniformly mixing each of the above components with a roll mill, bead mill, or the like.
[感光性エレメント]
 本実施形態に係る感光性エレメントは、支持フィルムと、上述した感光性樹脂組成物を含む感光層とを備える。図1は、本実施形態に係る感光性エレメントを模式的に示す断面図である。図1に示されるように、感光性エレメント1は、支持フィルム10と、支持フィルム10上に形成された感光層20とを備えている。
[Photosensitive element]
The photosensitive element according to this embodiment includes a support film and a photosensitive layer containing the photosensitive resin composition described above. FIG. 1 is a cross-sectional view schematically showing a photosensitive element according to this embodiment. As shown in FIG. 1, the photosensitive element 1 comprises a support film 10 and a photosensitive layer 20 formed on the support film 10. As shown in FIG.
 感光性エレメント1は、本実施形態に係る感光性樹脂組成物を、リバースロールコート、グラビアロールコート、コンマコート、カーテンコート等の公知の方法で支持フィルム10上に塗布した後、塗膜を乾燥して感光層20を形成することで作製することができる。 For the photosensitive element 1, the photosensitive resin composition according to the present embodiment is coated on the support film 10 by a known method such as reverse roll coating, gravure roll coating, comma coating, or curtain coating, and then the coating is dried. can be produced by forming the photosensitive layer 20 by
 支持フィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルフィルム、ポリプロピレン、ポリエチレン等のポリオレフィンフィルムが挙げられる。支持フィルムの厚さは、例えば、5~100μmであってもよい。感光層の厚さは、例えば、5~50μm、5~40μm、又は10~30μmであってもよい。支持フィルムの表面粗さは特に限定されないが、算術平均粗さ(Ra)が1000nm以下、500nm以下、又は250nm以下であってもよい。 Examples of the support film include polyester films such as polyethylene terephthalate and polybutylene terephthalate, and polyolefin films such as polypropylene and polyethylene. The thickness of the support film may be, for example, 5-100 μm. The thickness of the photosensitive layer may be, for example, 5-50 μm, 5-40 μm, or 10-30 μm. The surface roughness of the support film is not particularly limited, but the arithmetic mean roughness (Ra) may be 1000 nm or less, 500 nm or less, or 250 nm or less.
 塗膜の乾燥は、熱風乾燥、遠赤外線又は近赤外線を用いた乾燥を用いることができる。乾燥温度は、60~120℃、70~110℃、又は80~100℃であってもよい。乾燥時間は、1~60分、2~30分、又は5~20分であってもよい。 For drying the coating film, hot air drying, drying using far infrared rays or near infrared rays can be used. The drying temperature may be 60-120°C, 70-110°C, or 80-100°C. The drying time may be 1-60 minutes, 2-30 minutes, or 5-20 minutes.
 感光層20上には、感光層20を被覆する保護フィルム30を更に備えていてもよい。感光性エレメント1は、感光層20の支持フィルム10と接する面とは反対側の面に保護フィルム30を積層することもできる。保護フィルム30としては、例えば、ポリエチレン、ポリプロピレン等の重合体フィルムを用いてもよい。 A protective film 30 covering the photosensitive layer 20 may be further provided on the photosensitive layer 20 . The photosensitive element 1 can also have a protective film 30 laminated on the surface of the photosensitive layer 20 opposite to the surface in contact with the support film 10 . As the protective film 30, for example, a polymer film such as polyethylene or polypropylene may be used.
[プリント配線板]
 本実施形態に係るプリント配線板は、本実施形態に係る感光性樹脂組成物の硬化物を含む永久レジストを具備する。
[Printed wiring board]
A printed wiring board according to the present embodiment comprises a permanent resist containing a cured product of the photosensitive resin composition according to the present embodiment.
 本実施形態に係るプリント配線板の製造方法は、基板上に、上述の感光性樹脂組成物又は感光性エレメントを用いて感光層を形成する工程と、感光層を露光及び現像してレジストパターンを形成する工程と、レジストパターンを硬化して永久レジストを形成する工程と、を備える。以下、各工程の一例について説明する。 The method for producing a printed wiring board according to the present embodiment includes the steps of forming a photosensitive layer on a substrate using the photosensitive resin composition or photosensitive element described above, and exposing and developing the photosensitive layer to form a resist pattern. and curing the resist pattern to form a permanent resist. An example of each step will be described below.
 まず、銅張積層板等の基板を準備し、該基板上に、感光層を形成する。感光層は、基板上に感光性樹脂組成物を塗布し乾燥することで形成してもよい。感光性樹脂組成物を塗布する方法としては、例えば、スクリーン印刷法、スプレー法、ロールコート法、カーテンコート法、及び静電塗装法が挙げられる。乾燥温度は、60~120℃、70~110℃、又は80~100℃であってもよい。乾燥時間は、1~7分間、1~6分間、又は2~5分間であってよい。 First, a substrate such as a copper clad laminate is prepared, and a photosensitive layer is formed on the substrate. The photosensitive layer may be formed by applying a photosensitive resin composition onto a substrate and drying the composition. Examples of methods for applying the photosensitive resin composition include screen printing, spraying, roll coating, curtain coating, and electrostatic coating. The drying temperature may be 60-120°C, 70-110°C, or 80-100°C. The drying time may be 1-7 minutes, 1-6 minutes, or 2-5 minutes.
 感光層は、基板上に、感光性エレメントから保護フィルムを剥離して感光層をラミネートすることで形成してもよい。感光層をラミネートする方法としては、例えば、ラミネータを用いて熱ラミネートする方法が挙げられる。 The photosensitive layer may be formed on the substrate by peeling off the protective film from the photosensitive element and laminating the photosensitive layer. As a method of laminating the photosensitive layer, for example, there is a method of thermal lamination using a laminator.
 次に、感光層にネガフィルムを直接接触又は支持フィルムを介して接触させて、活性光線を照射して露光する。活性光線としては,例えば、電子線、紫外線、及びX線が挙げられ、好ましくは紫外線である。光源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ等を使用することができる。露光量は、10~2000mJ/cm、100~1500mJ/cm、又は300~1000mJ/cmであってもよい。 Next, a negative film is brought into direct contact with the photosensitive layer or through a support film, and exposed to actinic rays. Actinic rays include, for example, electron beams, ultraviolet rays, and X-rays, preferably ultraviolet rays. Low-pressure mercury lamps, high-pressure mercury lamps, extra-high pressure mercury lamps, halogen lamps, and the like can be used as the light source. The exposure dose may be 10-2000 mJ/cm 2 , 100-1500 mJ/cm 2 , or 300-1000 mJ/cm 2 .
 露光後、未露光部を現像液で除去することにより、レジストパターンを形成する。現像方法としては、例えば、ディッピング法及びスプレー法が挙げられる。現像液としては、例えば、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、水酸化テトラメチルアンモニウム等のアルカリ水溶液が使用できる。 After exposure, a resist pattern is formed by removing the unexposed area with a developer. The developing method includes, for example, a dipping method and a spray method. As the developer, for example, alkaline aqueous solutions such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, and tetramethylammonium hydroxide can be used.
 レジストパターンに対して、後露光及び後加熱の少なくとも一方の処理することによって、パターン硬化膜(永久レジスト)を形成することができる。後露光の露光量は、100~5000mJ/cm、500~2000mJ/cm、又は700~1500J/cmであってもよい。後加熱の加熱温度は、100~200℃、120~180℃、又は135~165℃であってもよい。後加熱の加熱時間は、5分~12時間、10分~6時間、又は30分~2時間であってもよい。 A pattern cured film (permanent resist) can be formed by subjecting the resist pattern to at least one of post-exposure and post-heating. The exposure dose of the post-exposure may be 100-5000 mJ/cm 2 , 500-2000 mJ/cm 2 , or 700-1500 J/cm 2 . The heating temperature for post-heating may be 100 to 200°C, 120 to 180°C, or 135 to 165°C. The heating time for post-heating may be 5 minutes to 12 hours, 10 minutes to 6 hours, or 30 minutes to 2 hours.
 次に、本実施形態に係る感光性樹脂組成物の硬化物を層間絶縁層及び/又は表面保護層として備える多層プリント配線板の製造方法について説明する。 Next, a method for manufacturing a multilayer printed wiring board provided with a cured product of the photosensitive resin composition according to this embodiment as an interlayer insulating layer and/or a surface protective layer will be described.
 図2は、本実施形態の感光性樹脂組成物の硬化物を表面保護層及び層間絶縁層の少なくとも一方として備える多層プリント配線板の製造方法の一態様を示す模式図である。図2(f)に示す多層プリント配線板100Aは、表面及び内部に配線パターンを有する。多層プリント配線板100Aにおいて、複数の配線パターンは層状に設けられており、各層間には層間絶縁層が設けられ、表面には表面保護層が設けられている。表面保護層及び層間絶縁層の少なくとも一方は本実施形態の感光性樹脂組成物、又は本実施形態の感光性エレメントを用いて形成されている。多層プリント配線板100Aは、銅張積層体、層間絶縁層、金属箔等を積層すると共にエッチング法又はセミアディティブ法によって配線パターンを適宜形成することによって得られる。以下、図2に基づいて、多層プリント配線板100Aの製造方法を説明する。以下の説明では、表面保護層及び層間絶縁層の両方が、本実施形態の感光性樹脂組成物、又は本実施形態の感光性エレメントを用いて形成されている場合を説明する。 FIG. 2 is a schematic diagram showing one aspect of a method for manufacturing a multilayer printed wiring board comprising a cured product of the photosensitive resin composition of the present embodiment as at least one of a surface protective layer and an interlayer insulating layer. A multilayer printed wiring board 100A shown in FIG. 2(f) has wiring patterns on its surface and inside. In multilayer printed wiring board 100A, a plurality of wiring patterns are provided in layers, an interlayer insulating layer is provided between each layer, and a surface protective layer is provided on the surface. At least one of the surface protective layer and the interlayer insulating layer is formed using the photosensitive resin composition of the present embodiment or the photosensitive element of the present embodiment. The multilayer printed wiring board 100A is obtained by laminating a copper-clad laminate, an interlayer insulating layer, a metal foil, etc., and appropriately forming a wiring pattern by an etching method or a semi-additive method. A method for manufacturing multilayer printed wiring board 100A will be described below with reference to FIG. In the following description, both the surface protective layer and the interlayer insulating layer are formed using the photosensitive resin composition of the present embodiment or the photosensitive element of the present embodiment.
 まず、表面に配線パターン102を有する基材(銅張積層体等)101の両面に層間絶縁層103を形成する(図2(a)参照)。層間絶縁層103は、上記プリント配線板の製造方法で説明した方法、すなわち本実施形態の感光性樹脂組成物を塗布する、又は本実施形態の感光性エレメントをラミネータを用いて熱ラミネートすることにより、感光層を形成し、該感光層にネガフィルムを用いて、外部(他層の導体パターン)と電気的に接続することが必要な箇所以外の領域を露光し、硬化させて、更に未露光部を除去して形成される(図2(b)参照)。この層間絶縁層103は、開口部104を有する膜となっている。ここで、開口部104周辺に存在するスミア(残渣)は、デスミア処理により除去すればよい。 First, interlayer insulating layers 103 are formed on both sides of a substrate (copper-clad laminate, etc.) 101 having wiring patterns 102 on its surface (see FIG. 2(a)). The interlayer insulating layer 103 is formed by the method described in the printed wiring board manufacturing method, that is, by applying the photosensitive resin composition of the present embodiment or thermally laminating the photosensitive element of the present embodiment using a laminator. , forming a photosensitive layer, using a negative film on the photosensitive layer, exposing areas other than those required to be electrically connected to the outside (conductor patterns of other layers), curing, and further unexposed It is formed by removing the part (see FIG. 2(b)). This interlayer insulating layer 103 is a film having an opening 104 . Here, the smear (residue) existing around the opening 104 may be removed by desmear processing.
 次いで、無電解めっき法によりシード層105を形成する(図2(c)参照)。上記シード層105上に、感光性樹脂組成物(セミアディティブ用感光性樹脂組成物)を含む感光層を形成し、所定の箇所を露光及び現像処理して樹脂パターン106を形成する(図2(d)参照)。 Then, a seed layer 105 is formed by electroless plating (see FIG. 2(c)). A photosensitive layer containing a photosensitive resin composition (semi-additive photosensitive resin composition) is formed on the seed layer 105, and predetermined portions are exposed and developed to form a resin pattern 106 (FIG. 2 ( d) see).
 次いで、電解めっき法により、シード層105の樹脂パターン106が形成されていない部分に配線パターン107を形成し、はく離液により樹脂パターン106を除去した後、上記シード層105の配線パターン107が形成されていない部分をエッチングにより除去する(図2(e)参照)。 Next, a wiring pattern 107 is formed on a portion of the seed layer 105 where the resin pattern 106 is not formed by electroplating, and after removing the resin pattern 106 with a stripping solution, the wiring pattern 107 of the seed layer 105 is formed. The portions not exposed are removed by etching (see FIG. 2(e)).
 以上の操作を繰り返し行い、上述の感光性樹脂組成物の硬化物を含む表面保護層108を最表面に形成することで多層プリント配線板100Aを作製することができる(図2(f)参照)。このようにして得られた多層プリント配線板100Aは、対応する箇所に半導体素子が実装され、電気的な接続を確保することができる。 By repeating the above operation and forming a surface protective layer 108 containing a cured product of the above-described photosensitive resin composition on the outermost surface, multilayer printed wiring board 100A can be produced (see FIG. 2(f)). . In the multilayer printed wiring board 100A obtained in this manner, semiconductor elements are mounted at corresponding locations, and electrical connection can be ensured.
 本実施形態に係る多層プリント配線板は、本実施形態の感光性樹脂組成物又は感光性エレメントを用いて表面保護層及び/又は層間絶縁層が形成されているため、表面保護層及び/又は層間絶縁層は解像性及び電気絶縁信頼性に優れたものとなる。そのため、層間絶縁層の薄膜化が可能であると共に、層間接続用の開口部(ビアホール)の小径化が可能である。 Since the multilayer printed wiring board according to the present embodiment has a surface protective layer and/or an interlayer insulating layer formed using the photosensitive resin composition or the photosensitive element of the present embodiment, the surface protective layer and/or interlayer The insulating layer has excellent resolution and electrical insulation reliability. Therefore, the thickness of the interlayer insulating layer can be reduced, and the diameter of the opening (via hole) for interlayer connection can be reduced.
 本実施形態に係る感光性樹脂組成物によれば、解像性及び電気絶縁信頼性に優れた、半導体素子の層間絶縁層又は表面保護層等の永久レジストを形成することができ、上記層間絶縁層又は表面保護層等を備える半導体素子、該半導体素子を含む電子デバイスを提供することができる。半導体素子は、例えば、多層配線構造、再配線構造等を有する、メモリ、パッケージ等であってよい。電子デバイスとしては、例えば、携帯電話、スマートフォン、タブレット型端末、パソコン、及びハードディスクサスペンションが挙げられる。本実施形態に係る感光性樹脂組成物により形成されるパターン硬化膜を備えることで、電気絶縁信頼性に優れた、小型且つ高性能の半導体素子及び電子デバイスを提供することができる。 According to the photosensitive resin composition according to the present embodiment, it is possible to form a permanent resist such as an interlayer insulating layer or a surface protective layer of a semiconductor device, which has excellent resolution and electrical insulation reliability. A semiconductor element comprising a layer, a surface protective layer, or the like, and an electronic device including the semiconductor element can be provided. The semiconductor element may be, for example, a memory, a package, or the like having a multilayer wiring structure, a rewiring structure, or the like. Examples of electronic devices include mobile phones, smart phones, tablet terminals, personal computers, and hard disk suspensions. By providing the patterned cured film formed from the photosensitive resin composition according to the present embodiment, it is possible to provide a compact and high-performance semiconductor element and electronic device with excellent electrical insulation reliability.
 以下、実施例により本開示を更に詳細に説明するが、本開示はこれらの実施例に限定されるものではない。 Although the present disclosure will be described in more detail below with reference to examples, the present disclosure is not limited to these examples.
(合成例1)
 ビスフェノールFノボラック型エポキシ樹脂(DIC株式会社製、商品名「EXA-7376」、式(II)において、Y及びYがグリシジル基、R12が水素原子である構造単位を含有するビスフェノールFノボラック型エポキシ樹脂、エポキシ当量:186)350質量部、アクリル酸70質量部、メチルハイドロキノン0.5質量部、及びカルビトールアセテート120質量部を90℃で撹拌しながら混合した。混合液を60℃に冷却し、トリフェニルホスフィン2質量部を加え、100℃で溶液の酸価が1mgKOH/g以下になるまで反応させた。反応液に、テトラヒドロ無水フタル酸(THPAC)98質量部及びカルビトールアセテート85質量部を加え、80℃で6時間反応させた。その後、反応液を室温まで冷却し、(A)酸変性ビニル基含有樹脂としてのTHPAC変性ビスフェノールFノボラック型エポキシアクリレート(A-1)の溶液(固形分濃度:73質量%)を得た。
(Synthesis example 1)
Bisphenol F novolac type epoxy resin (manufactured by DIC Corporation, trade name "EXA-7376", bisphenol F novolak containing structural units in which Y 3 and Y 4 are glycidyl groups and R 12 is a hydrogen atom in formula (II) Type epoxy resin, epoxy equivalent: 186) 350 parts by mass, acrylic acid 70 parts by mass, methylhydroquinone 0.5 parts by mass, and carbitol acetate 120 parts by mass were mixed with stirring at 90°C. The mixed liquid was cooled to 60°C, 2 parts by mass of triphenylphosphine was added, and the mixture was reacted at 100°C until the acid value of the solution became 1 mgKOH/g or less. To the reaction solution, 98 parts by mass of tetrahydrophthalic anhydride (THPAC) and 85 parts by mass of carbitol acetate were added and reacted at 80° C. for 6 hours. Thereafter, the reaction solution was cooled to room temperature to obtain a solution (A) of THPAC-modified bisphenol F novolak-type epoxy acrylate (A-1) as an acid-modified vinyl group-containing resin (solid concentration: 73% by mass).
 (B)~(F)成分及び(H)成分として、以下の材料を準備した。
(B)光重合性化合物
DPHA:ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製)
The following materials were prepared as components (B) to (F) and component (H).
(B) Photopolymerizable compound DPHA: dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.)
(C)光重合開始剤
Omnirad DETX:2,4-ジエチルチオキサントン(IGM Resins B.V.製)
Omnirad 907:2-メチル-[4-(メチルチオ)フェニル]モルホリノ-1-プロパノン(IGM Resins B.V.製)
Omnirad 819:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IGM Resins B.V.製)
(C) Photopolymerization initiator Omnirad DETX: 2,4-diethylthioxanthone (manufactured by IGM Resins B.V.)
Omnirad 907: 2-methyl-[4-(methylthio)phenyl]morpholino-1-propanone (manufactured by IGM Resins B.V.)
Omnirad 819: Bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (manufactured by IGM Resins B.V.)
(D)無機フィラー
SC2050:シリカフィラー(アドマテックス株式会社製、平均粒径0.5μm)
(D) Inorganic filler SC2050: Silica filler (manufactured by Admatechs Co., Ltd., average particle size 0.5 μm)
(E)熱硬化性樹脂
NC-7000L:ナフトールアラルキルクレゾール共重合型エポキシ樹脂(日本化薬株式会社製)
HP-4032D:1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン(DIC株式会社製)
YX-4000:ビフェニル型エポキシ樹脂(三菱ケミカル社製)
(E) Thermosetting resin NC-7000L: naphthol aralkyl cresol copolymer epoxy resin (manufactured by Nippon Kayaku Co., Ltd.)
HP-4032D: 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene (manufactured by DIC Corporation)
YX-4000: biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation)
(F)顔料
フタロシアニン系顔料:山陽色素株式会社製
(F) Pigment Phthalocyanine pigment: manufactured by Sanyo Pigment Co., Ltd.
(H)硬化剤
メラミン:日産化学工業株式会社製
(H) Curing agent melamine: manufactured by Nissan Chemical Industries, Ltd.
[実施例1~8及び比較例1~3]
<感光性樹脂組成物の作製>
 表1に示す配合量(質量部、固形分換算量)で各成分を配合し、3本ロールミルで混練した。その後、固形分濃度が60質量%になるようにカルビトールアセテートを加えて、感光性樹脂組成物を調製した。
[Examples 1 to 8 and Comparative Examples 1 to 3]
<Preparation of photosensitive resin composition>
Each component was blended in the amounts shown in Table 1 (parts by mass, equivalent to solid content) and kneaded in a three-roll mill. After that, carbitol acetate was added so that the solid content concentration was 60% by mass to prepare a photosensitive resin composition.
<感光性エレメントの作製>
 16μm厚のポリエチレンテレフタレートフィルム(東洋紡フイルムソリューション株式会社製、商品名「G2-16」)を支持フィルムとして準備した。該支持フィルム上に、実施例及び比較例の感光性樹脂組成物を、乾燥後の膜厚が25μmとなるように均一に塗布し、熱風対流式乾燥機を用いて75℃で30分間乾燥し、感光層を形成した。続いて、感光層の支持フィルムと接している側とは反対側の表面上に、ポリエチレンフィルム(タマポリ(株)製、商品名「NF-15」)を保護フィルムとして貼り合わせ、感光性エレメントを作製した。
<Preparation of photosensitive element>
A 16 μm-thick polyethylene terephthalate film (manufactured by Toyobo Film Solution Co., Ltd., trade name “G2-16”) was prepared as a support film. The photosensitive resin compositions of Examples and Comparative Examples were uniformly coated on the support film so that the film thickness after drying was 25 μm, and dried at 75° C. for 30 minutes using a hot air convection dryer. , to form a photosensitive layer. Subsequently, a polyethylene film (manufactured by Tamapoly Co., Ltd., trade name "NF-15") is laminated as a protective film on the surface of the photosensitive layer opposite to the side in contact with the support film, thereby forming a photosensitive element. made.
(解像性の評価)
 厚さ1.0mmの銅張積層基板(昭和電工マテリアルズ株式会社製、商品名「MCL-E-67」)を準備した。感光性エレメントから保護フィルムを剥離除去しながら、銅張積層基板上に、プレス式真空ラミネータ(株式会社名機製作所製、商品名「MVLP-500」)を用いて、圧着圧力0.4MPa、プレス熱板温度80℃、真空引き時間40秒間、ラミネートプレス時間20秒間、気圧4kPa以下の条件で感光層をラミネートして、積層体を得た。次いで、所定サイズのビアパターン(開口径サイズ:30、40、50、60、70、80、90、100、110、120、150、200μmφ)を有するネガマスクを介して、i線露光装置(ウシオ(株)製、商品名「UX-2240SM―XJ-01」)を用いて露光量100~500mJ/cmの範囲で50mJ/cmずつ露光量を変化させながら露光した。下記の解像性の評価は、上記範囲内の露光量のうち、最も小さいサイズの開口部を形成できた露光量で露光した試験片を用いて評価した。その後、1質量%の炭酸ナトリウム水溶液を用いて、30℃での最短現像時間(感光層の未露光部が除去される最短時間)の2倍に相当する時間、1.765×10Paの圧力でスプレー現像し、未露光部を溶解現像した。次に、紫外線露光装置(株式会社オーク製作所製、商品名「OKM-2317」)を用いて、現像後の感光層を2000mJ/cmの露光量で露光し、170℃で1時間加熱して、銅張積層基板上に、所定サイズのビアパターン(開口部)が形成された感光層の硬化物を有する試験片を作製した。上記試験片を、金属顕微鏡を用いて観察し、以下の基準で解像性を評価した。評価結果を表1に示す。
A:開口部の最小径が30μm以下であった。
B:開口部の最小径が30μmを超え、100μm以下であった。
C:開口部の最小径が100μmを超えた。
(Evaluation of resolution)
A 1.0 mm-thick copper clad laminate (trade name “MCL-E-67” manufactured by Showa Denko Materials Co., Ltd.) was prepared. While peeling and removing the protective film from the photosensitive element, a press-type vacuum laminator (manufactured by Meiki Seisakusho Co., Ltd., trade name "MVLP-500") is used to press on the copper-clad laminate at a pressure of 0.4 MPa. The photosensitive layer was laminated under the conditions of a hot plate temperature of 80° C., a vacuum drawing time of 40 seconds, a lamination press time of 20 seconds, and an air pressure of 4 kPa or less to obtain a laminate. Next, an i-line exposure apparatus (Ushio (Ushio Co., Ltd., trade name "UX-2240SM-XJ-01"), exposure was performed while changing the exposure dose in steps of 50 mJ/cm 2 within the range of 100 to 500 mJ/cm 2 . The evaluation of resolution described below was performed using a test piece exposed to an exposure amount that enabled formation of the smallest size opening among the exposure amounts within the above range. After that, using a 1% by mass sodium carbonate aqueous solution, a time corresponding to twice the shortest development time at 30° C. (the shortest time for removing the unexposed portion of the photosensitive layer), 1.765×10 5 Pa Spray development was carried out with pressure, and unexposed areas were developed by dissolution. Next, using an ultraviolet exposure device (manufactured by Oak Manufacturing Co., Ltd., product name "OKM-2317"), the photosensitive layer after development is exposed at an exposure amount of 2000 mJ/cm 2 and heated at 170 ° C. for 1 hour. A test piece having a cured photosensitive layer having a via pattern (opening) of a predetermined size formed on a copper-clad laminate was prepared. The test piece was observed using a metallurgical microscope, and the resolution was evaluated according to the following criteria. Table 1 shows the evaluation results.
A: The minimum diameter of the opening was 30 μm or less.
B: The minimum diameter of the opening exceeded 30 μm and was 100 μm or less.
C: The minimum diameter of the opening exceeded 100 μm.
(絶縁信頼性の評価)
 厚さ1.0mmの銅張積層基板(昭和電工マテリアルズ株式会社製、商品名「MCL-E-67」)を準備した。感光性エレメントから保護フィルムを剥離除去しながら、銅張積層基板上に、プレス式真空ラミネータ(株式会社名機製作所製、商品名「MVLP-500」)を用いて、圧着圧力0.4MPa、プレス熱板温度80℃、真空引き時間25秒間、ラミネートプレス時間25秒間、気圧4kPa以下の条件で感光層をラミネートして、積層体を得た。得られた積層体について、超高圧水銀ランプを光源とした平行光露光機(株式会社オーク製作所製、商品名「EXM-1201」)を用いて、500mJ/cmの露光量で全面露光した。次に、紫外線露光装置(株式会社オーク製作所製、商品名「OKM-2317」)を用いて2,000mJ/cmの露光量で露光し、170℃で1時間加熱し、銅張積層基板上に感光層の硬化物を形成した。
(Evaluation of insulation reliability)
A 1.0 mm-thick copper clad laminate (trade name “MCL-E-67” manufactured by Showa Denko Materials Co., Ltd.) was prepared. While peeling and removing the protective film from the photosensitive element, a press-type vacuum laminator (manufactured by Meiki Seisakusho Co., Ltd., trade name "MVLP-500") is used to press on the copper-clad laminate at a pressure of 0.4 MPa. The photosensitive layer was laminated under the conditions of a hot plate temperature of 80° C., a vacuum drawing time of 25 seconds, a lamination pressing time of 25 seconds, and an air pressure of 4 kPa or less to obtain a laminate. The laminate thus obtained was entirely exposed at an exposure amount of 500 mJ/cm 2 using a parallel light exposure machine (manufactured by ORC Manufacturing Co., Ltd., product name "EXM-1201") using an ultra-high pressure mercury lamp as a light source. Next, using an ultraviolet exposure device (manufactured by Oak Manufacturing Co., Ltd., product name “OKM-2317”), the sample was exposed at an exposure amount of 2,000 mJ/cm 2 and heated at 170° C. for 1 hour to form a copper clad laminate. to form a cured product of the photosensitive layer.
 次いで、硬化物の表面を化学粗化するために、膨潤液としてジエチレングリコールモノブチルエーテル:200ml/L及び水酸化ナトリウム:5g/Lを含む水溶液を調製した。この膨潤液を70℃に加温して、硬化物を10分間浸漬処理した。次に、粗化液として、過マンガン酸カリウム:60g/L及び水酸化ナトリウム:40g/Lを含む水溶液を調製した。この粗化液を70℃に加温して、硬化物を15分間浸漬処理した。次いで、中和液として塩化スズ(SnCl):30g/L及び塩化水素:300ml/Lを含む水溶液を調製した。この中和液を40℃に加温して、硬化物を5分間浸漬処理し、過マンガン酸カリウムを還元した。 Next, in order to chemically roughen the surface of the cured product, an aqueous solution containing diethylene glycol monobutyl ether: 200 ml/L and sodium hydroxide: 5 g/L was prepared as a swelling liquid. This swelling liquid was heated to 70° C. and the cured product was immersed for 10 minutes. Next, an aqueous solution containing 60 g/L of potassium permanganate and 40 g/L of sodium hydroxide was prepared as a roughening solution. This roughening liquid was heated to 70° C. and the cured product was immersed for 15 minutes. Next, an aqueous solution containing 30 g/L of tin chloride (SnCl 2 ) and 300 ml/L of hydrogen chloride was prepared as a neutralizing solution. This neutralized solution was heated to 40° C. and the cured product was immersed for 5 minutes to reduce potassium permanganate.
 次に、化学粗化された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン株式会社製、商品名「クリーナーセキュリガント902」)で5分間脱脂洗浄した。洗浄後、化学粗化された硬化物を23℃のプリディップ液(アトテックジャパン株式会社製、商品名「プリディップネオガントB」)で1分間処理した。その後、上記硬化物を35℃のアクチベーター液(アトテックジャパン株式会社製、商品名「アクチベーターネオガント834」)で5分間処理し、次に、30℃の還元液(アトテックジャパン株式会社製、商品名「リデューサーネオガントWA」)により硬化物を5分間処理した。 Next, the surface of the chemically roughened cured product was degreased and washed with an alkaline cleaner (manufactured by Atotech Japan Co., Ltd., trade name "Cleaner Securigant 902") for 5 minutes. After washing, the chemically roughened cured product was treated with a pre-dip liquid (manufactured by Atotech Japan Co., Ltd., trade name "Pre-dip Neogant B") for 1 minute at 23°C. After that, the cured product was treated with an activator liquid (manufactured by Atotech Japan Co., Ltd., trade name "Activator Neogant 834") for 5 minutes at 35 ° C., and then treated with a reducing liquid (manufactured by Atotech Japan Co., Ltd., The cured product was treated for 5 minutes with a product name "Reducer Neogant WA").
 こうして得られた積層体を化学銅液(アトテックジャパン株式会社製、商品名「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」)に入れ、無電解めっきをめっき厚0.5μm程度になるまで実施した。該無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニールを行った。その後、硫酸銅電解めっきを行い、アニール処理を180℃で60分間行い、厚さ38μmの導体層を形成した。 The laminate obtained in this way is placed in a chemical copper solution (manufactured by Atotech Japan Co., Ltd., trade names "Basic Printgant MSK-DK", "Copper Printgant MSK", "Stabilizer Printgant MSK") and electroless plating is applied. This was carried out until the thickness reached about 0.5 μm. After the electroless plating, annealing was performed at a temperature of 120° C. for 30 minutes in order to remove residual hydrogen gas. Thereafter, copper sulfate electroplating was performed, and annealing treatment was performed at 180° C. for 60 minutes to form a conductor layer with a thickness of 38 μm.
 形成した導体層について、φ6mmの円形電極となるようにエッチングした。続いて電極及び硬化物上に、層の厚さが25μmとなるように感光性ソルダーレジストフィルム(昭和電工マテリアルズ株式会社製、商品名「FZ-2700GA」)を、プレス式真空ラミネータ(株式会社名機製作所製、商品名「MVLP-500」)を用いて、圧着圧力0.4MPa、プレス熱板温度80℃、真空引き時間25秒間、ラミネートプレス時間40秒間、気圧4kPa以下の条件でラミネートし、評価用積層体を得た。 The formed conductor layer was etched to form a circular electrode with a diameter of 6 mm. Subsequently, a photosensitive solder resist film (manufactured by Showa Denko Materials Co., Ltd., trade name “FZ-2700GA”) is placed on the electrodes and the cured product so that the layer thickness is 25 μm. Meiki Seisakusho, trade name “MVLP-500”), press pressure 0.4 MPa, press hot plate temperature 80 ° C., vacuum drawing time 25 seconds, lamination press time 40 seconds, pressure 4 kPa or less. , to obtain a laminate for evaluation.
 得られた評価用積層体について、超高圧水銀ランプを光源とした平行光露光機(株式会社オーク製作所製、商品名「EXM-1201」)を用いて500mJ/cmの露光量で全面露光した。次に、紫外線露光装置を用いて2,000mJ/cmの露光量で露光し、160℃で1時間加熱し、感光性ソルダーレジストフィルムの硬化膜を形成した。 The obtained laminate for evaluation was entirely exposed at an exposure amount of 500 mJ/cm 2 using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd., trade name “EXM-1201”) using an ultra-high pressure mercury lamp as a light source. . Next, it was exposed with an exposure dose of 2,000 mJ/cm 2 using an ultraviolet exposure device and heated at 160° C. for 1 hour to form a cured film of the photosensitive solder resist film.
 続いて、円形電極が+極、銅張積層基板の円形電極を形成した側の銅箔が一極となるように配線を行い、プレッシャークッカー(機種名「不飽和型超加速寿命試験装置PC-422RP」、株式会社平山製作所製)により、135℃、85%RH、5.5Vの条件下に200時間晒した。その後、電極間の抵抗値を測定し、下記評価基準に従って絶縁信頼性を評価した。結果を表1に示す。
A:200時間経過時の抵抗値が10×10Ω以上であった。
B:200時間経過時の抵抗値が10×10Ω未満、且つ、10×10Ω以上であった。
C:200時間経過時の抵抗値が10×10Ω未満であった。
Subsequently, wiring is performed so that the circular electrode is the + pole and the copper foil on the side where the circular electrode of the copper clad laminate is formed is the unipolar, and a pressure cooker (model name "unsaturated ultra-accelerated life test device PC- 422RP", manufactured by Hirayama Seisakusho Co., Ltd.), and exposed to conditions of 135°C, 85% RH, and 5.5 V for 200 hours. After that, the resistance value between the electrodes was measured, and the insulation reliability was evaluated according to the following evaluation criteria. Table 1 shows the results.
A: The resistance value after 200 hours was 10×10 7 Ω or more.
B: The resistance value after 200 hours was less than 10×10 7 Ω and 10×10 6 Ω or more.
C: The resistance value after 200 hours was less than 10×10 6 Ω.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 1…感光性エレメント、10…支持フィルム、20…感光層、30…保護フィルム、100A…多層プリント配線板、101…基材、102、107…配線パターン、103…層間絶縁層、104…開口部、105…シード層、106…樹脂パターン、108…表面保護層。 DESCRIPTION OF SYMBOLS 1... Photosensitive element 10... Support film 20... Photosensitive layer 30... Protective film 100A... Multilayer printed wiring board 101... Base material 102, 107... Wiring pattern 103... Interlayer insulating layer 104... Opening part , 105... seed layer, 106... resin pattern, 108... surface protective layer.

Claims (13)

  1.  (A)酸変性ビニル基含有樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラー、及び、(E)熱硬化性樹脂を含有し、
     前記(C)成分がチオキサントン系骨格を有する化合物を含み、
     前記(E)成分がナフタレン環を有する樹脂を含む、感光性樹脂組成物。
    (A) an acid-modified vinyl group-containing resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, and (E) a thermosetting resin,
    The component (C) contains a compound having a thioxanthone skeleton,
    A photosensitive resin composition, wherein the component (E) contains a resin having a naphthalene ring.
  2.  前記(A)成分が、ビスフェノールノボラック型エポキシ樹脂(a1)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A1)と、該エポキシ樹脂(a1)とは異なるエポキシ樹脂(a2)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A2)とを含有するものである、請求項1に記載の感光性樹脂組成物。 The component (A) comprises at least one acid-modified vinyl group-containing epoxy resin (A1) obtained by using a bisphenol novolac type epoxy resin (a1) and an epoxy resin (a2) different from the epoxy resin (a1). 2. The photosensitive resin composition according to claim 1, which contains at least one acid-modified vinyl group-containing epoxy resin (A2) used.
  3.  前記エポキシ樹脂(a2)が、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び、トリフェノールメタン型エポキシ樹脂からなる群より選ばれる少なくとも1種である、請求項2に記載の感光性樹脂組成物。 3. The epoxy resin (a2) according to claim 2, wherein the epoxy resin (a2) is at least one selected from the group consisting of novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and triphenolmethane type epoxy resins. The photosensitive resin composition of.
  4.  前記酸変性ビニル基含有エポキシ樹脂(A1)及び(A2)が、各々前記エポキシ樹脂(a1)及び(a2)と、エチレン性不飽和基含有有機酸(b)とを反応させてなる樹脂(A1’)及び(A2’)に、飽和基又は不飽和基含有多塩基酸無水物(c)を反応させてなる樹脂である、請求項2に記載の感光性樹脂組成物。 The acid-modified vinyl group-containing epoxy resins (A1) and (A2) are obtained by reacting the epoxy resins (a1) and (a2) with an ethylenically unsaturated group-containing organic acid (b) (A1 3. The photosensitive resin composition according to claim 2, which is a resin obtained by reacting ') and (A2') with a saturated or unsaturated group-containing polybasic acid anhydride (c).
  5.  前記エポキシ樹脂(a1)が、下記一般式(I)で表される構造単位、又は、下記一般式(II)で表される構造単位を有するものである、請求項2に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、R11は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR11は同一でも異なっていてもよく、Y及びYの少なくとも一方はグリシジル基を示す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、R12は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR12は同一でも異なっていてもよく、Y及びYの少なくとも一方はグリシジル基を示す。]
    3. The photosensitive resin according to claim 2, wherein the epoxy resin (a1) has a structural unit represented by the following general formula (I) or a structural unit represented by the following general formula (II). Composition.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (I), R 11 represents a hydrogen atom or a methyl group, and Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group. Plural R 11 may be the same or different, and at least one of Y 1 and Y 2 represents a glycidyl group. ]
    Figure JPOXMLDOC01-appb-C000002
    [In formula (II), R 12 represents a hydrogen atom or a methyl group, and Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group. Plural R 12 may be the same or different, and at least one of Y 3 and Y 4 represents a glycidyl group. ]
  6.  前記(B)成分が、分子内にエチレン性不飽和結合を3つ以上有する化合物を含む、請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the component (B) contains a compound having 3 or more ethylenically unsaturated bonds in the molecule.
  7.  更に、(F)顔料を含有する、請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, further comprising (F) a pigment.
  8.  前記(E)成分が、ナフタレン環を有するエポキシ樹脂を含む、請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the component (E) contains an epoxy resin having a naphthalene ring.
  9.  前記(A)成分の酸価が、30~150mgKOH/gである、請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the component (A) has an acid value of 30 to 150 mgKOH/g.
  10.  支持フィルムと、請求項1~9のいずれか一項に記載の感光性樹脂組成物を用いて形成された感光層とを備える、感光性エレメント。 A photosensitive element comprising a support film and a photosensitive layer formed using the photosensitive resin composition according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか一項に記載の感光性樹脂組成物の硬化物を含む永久レジストを具備する、プリント配線板。 A printed wiring board comprising a permanent resist containing a cured product of the photosensitive resin composition according to any one of claims 1 to 9.
  12.  基板上に、請求項1~9のいずれか一項に記載の感光性樹脂組成物を用いて感光層を形成する工程と、
     前記感光層を露光及び現像してレジストパターンを形成する工程と、
     前記レジストパターンを硬化して永久レジストを形成する工程と、
    を備える、プリント配線板の製造方法。
    A step of forming a photosensitive layer on a substrate using the photosensitive resin composition according to any one of claims 1 to 9;
    exposing and developing the photosensitive layer to form a resist pattern;
    curing the resist pattern to form a permanent resist;
    A method of manufacturing a printed wiring board.
  13.  基板上に、請求項10に記載の感光性エレメントを用いて感光層を形成する工程と、
     前記感光層を露光及び現像してレジストパターンを形成する工程と、
     前記レジストパターンを硬化して永久レジストを形成する工程と、
    を備える、プリント配線板の製造方法。
    forming a photosensitive layer on a substrate using the photosensitive element according to claim 10;
    exposing and developing the photosensitive layer to form a resist pattern;
    curing the resist pattern to form a permanent resist;
    A method of manufacturing a printed wiring board.
PCT/JP2022/048222 2022-02-09 2022-12-27 Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board WO2023153103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018912 2022-02-09
JP2022018912 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153103A1 true WO2023153103A1 (en) 2023-08-17

Family

ID=87564276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048222 WO2023153103A1 (en) 2022-02-09 2022-12-27 Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board

Country Status (2)

Country Link
TW (1) TW202332702A (en)
WO (1) WO2023153103A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044984A1 (en) * 2019-09-06 2021-03-11 太陽インキ製造株式会社 Curable resin composition, dry film and cured article comprising same, and electronic component equipped with said cured article
JP2021179520A (en) * 2020-05-13 2021-11-18 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board and semiconductor package, and method for manufacturing multilayer printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044984A1 (en) * 2019-09-06 2021-03-11 太陽インキ製造株式会社 Curable resin composition, dry film and cured article comprising same, and electronic component equipped with said cured article
JP2021179520A (en) * 2020-05-13 2021-11-18 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board and semiconductor package, and method for manufacturing multilayer printed wiring board

Also Published As

Publication number Publication date
TW202332702A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP7302645B2 (en) Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
WO2014136897A1 (en) Photosensitive resin composition, dry film using same, printed wiring board, and method for producing printed wiring board
JP5223207B2 (en) Photosensitive resin composition, resist pattern forming method using the same, and printed wiring board manufacturing method
JP2017116652A (en) Photosensitive resin composition, and dry film, printed wiring board and method for manufacturing printed wiring board using the composition
JP2024028474A (en) Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and method for producing multilayer printed wiring board
WO2020241595A1 (en) Photosensitive resin composition, photosensitive resin film, printed wiring board, semiconductor package, and method for producing printed wiring board
EP3979002A1 (en) Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and method for producing multilayer printed wiring board
JP6953758B2 (en) A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.
WO2022107380A1 (en) Photosensitive resin composition, photosensitive resin film, multilayered printed wiring board, semiconductor package, and method for producing multilayered printed wiring board
WO2023153103A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board
JP5556990B2 (en) Photosensitive resin composition and photosensitive element
KR20230047088A (en) Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board and semiconductor package, and manufacturing method of multilayer printed wiring board
WO2023120570A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board
WO2023139694A1 (en) Photosensitive resin composition, photosensitive element, printed circuit board, and method for manufacturing printed circuit board
JP5625721B2 (en) Photosensitive resin composition and photosensitive element using the same
WO2018179259A1 (en) Photosensitive resin composition, dry film using same, printed wiring board, and printed wiring board manufacturing method
WO2023214540A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for producing printed wiring board
WO2023119503A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for producing printed wiring board
WO2023139682A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board
JP7415443B2 (en) Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2024040191A (en) Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and method for producing multilayer printed wiring board
JP2024026529A (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926117

Country of ref document: EP

Kind code of ref document: A1