WO2023152909A1 - 信号処理方法、信号処理装置及び通信システム - Google Patents

信号処理方法、信号処理装置及び通信システム Download PDF

Info

Publication number
WO2023152909A1
WO2023152909A1 PCT/JP2022/005466 JP2022005466W WO2023152909A1 WO 2023152909 A1 WO2023152909 A1 WO 2023152909A1 JP 2022005466 W JP2022005466 W JP 2022005466W WO 2023152909 A1 WO2023152909 A1 WO 2023152909A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency domain
domain signal
frequency
polarization
Prior art date
Application number
PCT/JP2022/005466
Other languages
English (en)
French (fr)
Inventor
政則 中村
孝行 小林
福太郎 濱岡
裕 宮本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/005466 priority Critical patent/WO2023152909A1/ja
Publication of WO2023152909A1 publication Critical patent/WO2023152909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • the present invention relates to a signal processing method, a signal processing device and a communication system.
  • the adaptive equalization circuits of Patent Literature 1 and Non-Patent Literature 1 are different in configuration from the 2 ⁇ 2 MIMO (Multiple Input Multiple Output) adaptive equalization circuit of complex number input and complex number output generally used in conventional optical communication. different.
  • the generated tap coefficients and the like have no commonality or compatibility, and the total number of taps increases. Therefore, there is also the problem that the amount of calculation increases exponentially as the number of taps increases.
  • the present invention aims to provide a technology capable of performing equalization processing while reducing the amount of computation in digital coherent optical transmission.
  • An aspect of the present invention includes a conversion step of converting a real component and an imaginary component of each polarization of a polarization multiplexed received signal into a frequency domain signal; and the frequency domain signal after frequency inversion on the frequency axis for each of the frequency domain signal of the real component and the frequency domain signal of the imaginary component of each polarization, and the transformed frequency domain signal obtained by taking the complex conjugate as an input signal, and for each polarization, after multiplying the frequency domain signal of the real component and the frequency domain signal of the imaginary component of each polarization included in the input signal by a complex transfer function a first equalization process for adding and inversely transforming from a frequency domain signal to a time domain signal; a frequency domain signal after transforming the real component of each polarization included in the input signal; and a frequency after transforming the imaginary component.
  • a signal processing method comprising:
  • an addition processing step of performing addition processing for adding the real components of each polarization of the wave-multiplexed received signal a transforming step of transforming into a frequency domain signal, a computed frequency domain signal after computation has been performed on the frequency domain signal of each polarization, and a frequency inversion on the frequency axis for the frequency domain signal of each polarization and a signal input step of inputting as an input signal the transformed frequency domain signal after the complex conjugate has been performed on the transformed frequency domain signal and the transformed frequency domain signal after the computation is performed;
  • the calculated frequency domain signal of the real component and the calculated frequency domain signal of the imaginary component of each polarization included in the input signal are each multiplied by a complex transfer function and added, and the frequency domain signal is converted to the time domain signal.
  • One aspect of the present invention includes: a frequency conversion unit that converts a real component and an imaginary component of each polarization of a polarization-multiplexed received signal into a frequency domain signal; component frequency domain signal, and the frequency domain signal of the real component and the frequency domain signal of the imaginary component of each polarization are frequency-inverted on the frequency axis and complex conjugated.
  • the frequency domain signal of the real component and the frequency domain signal of the imaginary component of each polarization included in the input signal are each multiplied by a complex transfer function a first equalization process for adding and then inversely transforming the frequency domain signal into a time domain signal; an equalization unit that performs a second equalization process of multiplying each frequency domain signal by a complex transfer function and adding the complex transfer function, and inversely transforming the frequency domain signal into a time domain signal; performing phase rotation for frequency offset compensation on the time domain signal transformed by the process to generate a first addition signal, and frequency offset compensation on the time domain signal transformed by the second equalization process. generating a second addition signal by performing phase rotation opposite to the phase rotation for the first addition signal, and adding or subtracting the transmission data bias correction signal to or from the signal obtained by adding the first addition signal and the second addition signal.
  • a compensator and a signal processing device are each multiplied by a complex transfer function a first equalization process for adding and then inversely transforming the frequency domain signal into a time domain signal;
  • an addition unit that performs addition processing for adding the real components of each polarization of the wave-multiplexed received signal;
  • a frequency conversion unit that converts the frequency domain signal into a domain signal, a calculated frequency domain signal after calculation has been performed on the frequency domain signal of each polarization, and a frequency inversion on the frequency axis for the frequency domain signal of each polarization and a signal input unit for inputting, as an input signal, a transformed frequency domain signal after computation has been performed on the transformed frequency domain signal obtained by taking the complex conjugate, and for each polarization
  • the calculated frequency domain signal of the real component and the calculated frequency domain signal of the imaginary component of each polarization included in the input signal are each multiplied by a complex transfer function and added, and the frequency domain signal is converted to the time domain
  • One aspect of the present invention is a communication system comprising a transmitter that transmits a polarization multiplexed signal that is polarization multiplexed, and a receiver that includes the signal processing device described above.
  • FIG. 1 is a diagram illustrating a configuration example of a digital coherent optical transmission system according to a first embodiment
  • FIG. 4 is a diagram showing an example of the configuration of a demodulated digital signal processing section in the first embodiment
  • FIG. It is a figure which shows an example of a coefficient calculating part. It is a figure which shows an example of a coefficient calculating part. It is a figure which shows an example of a coefficient calculating part. It is a figure which shows an example of a coefficient calculating part. It is a figure which shows an example of a coefficient calculating part.
  • FIG. 10 is a diagram showing an example of the configuration of a demodulated digital signal processing section in a modified example of the first embodiment; It is a figure for demonstrating the effect in this invention. It is a figure for demonstrating the effect in this invention.
  • FIG. 10 is a diagram showing an example of the configuration of a demodulated digital signal processing section in a modified example of the first embodiment
  • FIG. 10 is a diagram showing an example of the configuration of a demodulated digital signal processing section in the second embodiment
  • FIG. 10 is a diagram showing an example of the configuration of a demodulated digital signal processing section in a modified example of the second embodiment
  • FIG. 11 is a diagram showing an example of the configuration of a demodulated digital signal processing section in the third embodiment
  • FIG. 1 is a diagram showing a configuration example of a digital coherent optical transmission system 1 according to the first embodiment.
  • a digital coherent optical transmission system 1 includes a transmitter 10 and a receiver 50 .
  • a transmitter 10 transmits a polarization multiplexed signal.
  • Receiver 50 receives the polarization multiplexed signal from transmitter 10 .
  • the transmitter 10 has at least one transmitter 100 .
  • the transmitter 100 outputs a polarization multiplexed signal of a designated wavelength to the optical fiber transmission line 30 .
  • An arbitrary number of optical amplifiers 31 are provided in the optical fiber transmission line 30 .
  • Each optical amplifier 31 receives a polarization multiplexed signal from the optical fiber transmission line 30 on the transmitter 10 side, amplifies it, and outputs it to the optical fiber transmission line 30 on the receiver 50 side.
  • Receiver 50 has at least one receiver 500 .
  • the receiver 500 receives a polarization multiplexed signal.
  • the transmitter 100 comprises a digital signal processor 110 , a modulator driver 120 , a light source 130 and an integrated module 140 .
  • the digital signal processing unit 110 includes an encoding unit 111, a mapping unit 112, a training signal insertion unit 113, a frequency conversion unit 114, a waveform shaping unit 115, a pre-equalization unit 116, and a digital-analog converter (DAC) 117-1 to 117-4.
  • DAC digital-analog converter
  • the encoding unit 111 outputs a transmission signal obtained by performing FEC (forward error correction) encoding on the transmission bit string.
  • FEC forward error correction
  • Mapping section 112 maps the transmission signal output from encoding section 111 to symbols.
  • the training signal inserting section 113 inserts a known training signal into the transmission signal symbol-mapped by the mapping section 112 .
  • the frequency conversion unit 114 performs upsampling by changing the sampling frequency for the transmission signal into which the training signal is inserted.
  • the waveform shaping section 115 limits the band of the sampled transmission signal.
  • the pre-equalization section 116 compensates for waveform distortion of the transmission signal band-limited by the waveform shaping section 115, and outputs it to the DACs 117-1 to 117-4.
  • the DAC 117 - 1 converts the I (in-phase) component of the X-polarized wave of the transmission signal input from the pre-equalization section 116 from a digital signal to an analog signal and outputs it to the modulator driver 120 .
  • DAC 117 - 2 converts the X-polarized Q (orthogonal) component of the transmission signal input from pre-equalization section 116 from a digital signal to an analog signal, and outputs the analog signal to modulator driver 120 .
  • DAC 117 - 3 converts the I component of the Y-polarized wave of the transmission signal input from pre-equalization section 116 from a digital signal to an analog signal, and outputs the analog signal to modulator driver 120 .
  • DAC 117 - 4 converts the Q component of the Y-polarized wave of the transmission signal input from pre-equalization section 116 from a digital signal to an analog signal, and outputs the analog signal to modulator driver 120 .
  • the modulator driver 120 has amplifiers 121-1 to 121-4.
  • Amplifier 121-i (i is an integer of 1 or more and 4 or less) amplifies the analog signal output from DAC 117-i and drives the modulator of integrated module 140 with the amplified analog signal.
  • the light source 130 is, for example, an LD (semiconductor laser).
  • Light source 130 outputs light of a designated wavelength.
  • the integrated module 140 includes IQ modulators 141 - 1 and 141 - 2 and a polarization combiner 142 .
  • the IQ modulator 141-1 converts the optical signal output from the light source 130 based on the I component of the X-polarized wave output from the amplifier 121-1 and the Q component of the X-polarized wave output from the amplifier 121-2. is modulated to generate an X-polarized optical signal.
  • the IQ modulator 141-2 converts the optical signal output from the light source 130 based on the Y-polarized I component output from the amplifier 121-3 and the Y-polarized Q component output from the amplifier 121-4. is modulated to generate a Y-polarized optical signal.
  • the polarization combiner 142 polarization-multiplexes the X-polarized optical signal generated by the IQ modulator 141-1 and the Y-polarized optical signal generated by the IQ modulator 141-2 to generate a polarization multiplexed signal. to generate The polarization combiner 142 outputs the generated polarization multiplexed signal to the optical fiber transmission line 30 .
  • the receiver 500 includes a local oscillator light source 510 , an optical front end 520 and a digital signal processor 530 .
  • Local oscillation light source 510 is, for example, an LD.
  • the local oscillation light source 510 outputs local oscillation light (LO: Local Oscillator).
  • the optical front end 520 converts the optical signal into an electrical signal while maintaining the phase and amplitude of the polarization multiplexed phase modulated signal.
  • the optical front end 520 includes a polarization splitter 521, optical 90-degree hybrid couplers 522-1 and 522-2, BPDs (Balanced Photo Diodes) 523-1 to 523-4, and an amplifier 524-1. 524-4.
  • the polarization separation unit 521 separates the input optical signal into an X-polarized optical signal and a Y-polarized optical signal.
  • the polarization splitter 521 outputs the X-polarized optical signal to the optical 90-degree hybrid coupler 522-1, and outputs the Y-polarized optical signal to the optical 90-degree hybrid coupler 522-2.
  • the optical 90-degree hybrid coupler 522-1 causes the X-polarized optical signal and the local oscillation light output from the local oscillation light source 510 to interfere with each other, resulting in an I-component optical signal and a Q-component optical signal of the received optical electric field. to extract The optical 90-degree hybrid coupler 522-1 outputs the extracted X-polarized I component optical signal and Q component optical signal to the BPDs 523-1 and 523-2.
  • the optical 90-degree hybrid coupler 522-2 causes interference between the Y-polarized optical signal and the local oscillation light output from the local oscillation light source 510, and extracts the I component and the Q component of the received optical electric field.
  • the optical 90-degree hybrid coupler 522-2 outputs the extracted I component and Q component of the Y polarized wave to the BPD 523-3 and BPD 523-4.
  • the BPDs 523-1 to 523-4 are differential input photoelectric converters.
  • the BPD 523-i outputs to the amplifier 524-i the difference value of the photocurrents respectively generated in the two photodiodes with the same characteristics.
  • the BPD 523-1 converts the I component of the X-polarized received signal into an electrical signal and outputs the electrical signal to the amplifier 524-1.
  • the BPD 523-2 converts the Q component of the X-polarized received signal into an electrical signal and outputs the electrical signal to the amplifier 524-2.
  • the BPD 523-3 converts the I component of the Y-polarized received signal into an electrical signal and outputs the electrical signal to the amplifier 524-3.
  • the BPD 523-4 converts the Q component of the Y-polarized received signal into an electrical signal and outputs the electrical signal to the amplifier 524-4.
  • Amplifier 524 - i (i is an integer of 1 or more and 4 or less) amplifies the electrical signal output from BPD 523 - i and outputs it to digital signal processing section 530 .
  • the digital signal processing unit 530 includes analog-to-digital converters (ADC) 531-1 to 531-4, a demodulation digital signal processing unit 532, a demapping unit 533, and a decoding unit 534.
  • ADC analog-to-digital converters
  • the ADC 531-i (i is an integer from 1 to 4) converts the electrical signal output from the amplifier 524-i from an analog signal to a digital signal, and outputs the digital signal to the demodulation digital signal processing section 532.
  • the demodulation digital signal processing unit 532 extracts the I component of the X-polarized received signal from ADC 531-1, the Q component of the X-polarized received signal from ADC 531-2, and the I component of the Y-polarized received signal from ADC 531-3. component and the Q component of the Y-polarized received signal from ADC 531-4.
  • the demodulation digital signal processing unit 532 performs signal processing such as at least equalization processing and compensation for frequency offset and phase noise on each input signal. Note that the demodulation digital signal processing unit 532 performs signal processing such as frequency characteristic compensation and chromatic dispersion compensation as necessary.
  • Demodulation digital signal processing section 532 is one aspect of a signal processing device.
  • the demapping unit 533 determines the symbol of the received signal output by the demodulation digital signal processing unit 532, and converts the determined symbol into binary data.
  • the decoding unit 534 performs error correction decoding processing such as FEC on the binary data demapped by the demapping unit 533 to obtain a received bit string.
  • FIG. 2 is a diagram showing an example of the configuration of the demodulated digital signal processing section 532 in the first embodiment.
  • the demodulation digital signal processing unit 532 shown in FIG. 2 performs signal processing such as equalization processing and compensation of frequency offset and phase noise. Note that the demodulated digital signal processing unit 532 shown in FIG. 2 does not perform signal processing such as frequency characteristic compensation and chromatic dispersion compensation.
  • the demodulated digital signal processor 532 includes an adaptive equalizer 54 and a frequency/phase offset compensator 55 .
  • the adaptive equalization unit 54 adaptively performs equalization processing on each input signal.
  • the frequency/phase offset compensator 55 performs processing such as frequency offset and phase noise compensation on the received signal that has been equalized by the adaptive equalizer 54 .
  • the adaptive equalization unit 54 of the demodulation digital signal processing unit 532 converts the real component XI and the imaginary component XQ of the X-polarized received signal converted into digital signals by the ADCs 531-1 to 531-4, and the Y-polarized received signal Input the real component YI and the imaginary component YQ of .
  • the adaptive equalization unit 54 stores the input real number component XI, imaginary number component XQ, real number component YI, and imaginary number component YQ in corresponding buffers.
  • the buffer corresponds to the buffer used in the Overlap Save method described in Reference 1 below. (Reference 1: JOHN J. SHYNK, “Frequency-Domain and Multirate Adaptive Filtering”, January 1992.)
  • the adaptive equalization unit 54 performs N (N is a natural number) discrete Fourier transform or fast Fourier transform on each of the real component XI, the imaginary component XQ, the real component YI and the imaginary component YQ stored in the buffer. (corresponding to "N-DFT" shown in FIG. 2). Thereby, the adaptive equalization unit 54 transforms the real number component and the imaginary number component of each polarized wave into signals in the frequency domain. That is, the adaptive equalization unit 54 generates a frequency domain signal of the real component XI, a frequency domain signal of the imaginary component XQ, a frequency domain signal of the real component YI, and a frequency domain signal of the imaginary component YQ.
  • N is a natural number
  • the frequency domain signal of the real number component XI, the frequency domain signal of the imaginary number component XQ, the frequency domain signal of the real number component YI, and the frequency domain signal of the imaginary number component YQ generated by the adaptive equalization unit 54 are each branched into four by the branch unit. be done. Of the four branched frequency domain signals, two frequency domain signals are input as they are to the coefficient calculator, and the remaining two frequency domain signals are converted into frequency domain signals obtained by inverting and complex conjugate, and are input to the coefficient calculator. is entered in
  • the frequency domain signal of the real number component XI is branched into four by the branching unit, and two frequency domain signals of the four branched frequency domain signals of the real number component XI are is input to the coefficient calculator as it is, and the remaining two frequency domain signals are converted to inverted and complex conjugated frequency domain signals by the inverting/complex conjugating unit and input to the coefficient calculator.
  • the branching unit takes the frequency domain signal of the real number component XI as an example, the frequency domain signal of the real number component XI is branched into four by the branching unit, and two frequency domain signals of the four branched frequency domain signals of the real number component XI are is input to the coefficient calculator as it is, and the remaining two frequency domain signals are converted to inverted and complex conjugated frequency domain signals by the inverting/complex conjugating unit and input to the coefficient calculator.
  • the frequency domain signal obtained by inverting and complex conjugate is DC (direct current) in the frequency domain in order to realize the generation of the complex conjugate signal in the time domain and the equivalent operation in the frequency domain. , frequency 0), and the complex conjugate is obtained by inverting the frequency domain signal.
  • a signal X(f) in a certain frequency domain a signal of X ⁇ ( ⁇ f) is output by the inversion/complex conjugation unit.
  • the real component frequency domain signal transformed by the inverting/complex conjugating unit will be referred to as "real component inverted complex conjugate signal”
  • the imaginary component frequency domain signal will be referred to as "imaginary component inverted complex conjugate signal”.
  • the coefficient calculator multiplies the input signal by the complex transfer functions of the impulse responses H 1 to H 16 .
  • FIG. 2 shows only the values of the impulse responses H 1 to H 16 as the coefficient calculator, the specific configuration of the coefficient calculator will be described with reference to FIGS. 3 to 6.
  • FIG. 2 shows only the values of the impulse responses H 1 to H 16 as the coefficient calculator, the specific configuration of the coefficient calculator will be described with reference to FIGS. 3 to 6.
  • the adaptive equalization unit 54 generates a real component XI(f) multiplied by the complex transfer function of the impulse response H1 and an imaginary component XQ(f) multiplied by the complex transfer function of the impulse response H5 .
  • the real component YI(f) multiplied by the complex transfer function of the impulse response H9 and the imaginary component YQ(f) multiplied by the complex transfer function of the impulse response H13 are added to obtain an addition signal to generate
  • the addition signal generated by the adaptive equalization unit 54 is subjected to folding processing in the frequency domain.
  • the folding process is a process of adding frequency components whose absolute value is larger than half the symbol rate (Nyquist frequency) by folding the Nyquist frequency line symmetrically. This process corresponds to the downsampling process in the time domain.
  • the adaptive equalization unit 54 performs M (M is a natural number, where N ⁇ M) inverse discrete Fourier transform or inverse fast Fourier transform on the folded addition signal (“M -IDFT"). Thereby, the adaptive equalization unit 54 transforms the frequency domain signal into a time domain signal. After that, the adaptive equalization unit 54 performs signal cutout processing in the Overlap Save method on the time domain signal (corresponding to “Cut” shown in FIG. 2).
  • M is a natural number, where N ⁇ M) inverse discrete Fourier transform or inverse fast Fourier transform on the folded addition signal (“M -IDFT").
  • M -IDFT inverse discrete Fourier transform or inverse fast Fourier transform on the folded addition signal
  • the adaptive equalization unit 54 includes a buffer, a Fourier transform unit, a branch unit, a coefficient calculation unit, an addition unit, a folding processing unit, an inverse Fourier transform unit, and a cut unit in order to realize the above processing.
  • the frequency/phase offset compensator 55 multiplies the addition signal extracted by the adaptive equalizer 54 as described above by the frequency offset exp(j ⁇ x (n)). n represents the symbol interval.
  • the adaptive equalization unit 54 generates a real component inverted complex conjugate signal XI ⁇ ( ⁇ f) multiplied by the complex transfer function of the impulse response H 2 and an imaginary conjugate signal XI ⁇ ( ⁇ f) multiplied by the complex transfer function of the impulse response H 6 .
  • An addition signal is generated by adding the multiplied imaginary component inverted complex conjugate signal YQ ⁇ ( ⁇ f). After that, the addition signal generated by the adaptive equalization unit 54 is subjected to folding, M-IDFT, and cut processing.
  • the frequency/phase offset compensator 55 multiplies the addition signal extracted by the adaptive equalizer 54 as described above by the frequency offset exp(-j ⁇ x (n)).
  • the frequency/phase offset compensator 55 adds the addition signal multiplied by the frequency offset exp(j ⁇ x (n)) and the addition signal multiplied by the frequency offset exp( ⁇ j ⁇ x (n)), and X A received signal of polarization components is obtained.
  • the demodulation digital signal processing unit 532 adds (or subtracts) a transmission data bias correction signal CX for canceling the bias deviation of the X polarization component to the obtained received signal of the X polarization component (or subtracts it) to correct distortion.
  • a received signal X Rsig (n) of the X polarization component is obtained.
  • the adaptive equalization unit 54 divides the real component XI(f) multiplied by the complex transfer function of the impulse response H3 and the imaginary component XQ(f) multiplied by the complex transfer function of the impulse response H7 ), the real component YI(f) multiplied by the complex transfer function of impulse response H11 , and the imaginary component YQ(f) multiplied by the complex transfer function of impulse response H15 , Generate summation signal.
  • the addition signal generated by the adaptive equalization unit 54 is subjected to folding, M-IDFT, and cut processing.
  • the frequency/phase offset compensator 55 multiplies the addition signal extracted by the adaptive equalizer 54 by the frequency offset exp(j ⁇ y (n)).
  • the adaptive equalization unit 54 generates a real component inverted complex conjugate signal XI ⁇ ( ⁇ f) multiplied by the complex transfer function of the impulse response H 4 and an imaginary conjugate signal XI ⁇ ( ⁇ f) multiplied by the complex transfer function of the impulse response H 12 .
  • An addition signal is generated by adding the multiplied imaginary component inverted complex conjugate signal YQ ⁇ ( ⁇ f). After that, the addition signal generated by the adaptive equalization unit 54 is subjected to folding, M-IDFT, and cut processing.
  • the frequency/phase offset compensator 55 multiplies the addition signal extracted by the adaptive equalizer 54 as described above by the frequency offset exp(-j ⁇ y (n)).
  • the frequency/phase offset compensation unit 55 adds the addition signal multiplied by the frequency offset exp(j ⁇ y (n)) and the addition signal multiplied by the frequency offset exp( ⁇ j ⁇ y (n)), A received signal of polarization components is obtained.
  • the demodulation digital signal processing unit 532 adds (or subtracts) a transmission data bias correction signal CY for canceling the bias shift of the Y polarization component to the obtained reception signal of the Y polarization component, thereby correcting the distortion.
  • a received signal Y Rsig (n) of the X polarization component is obtained.
  • N the value of N
  • M the value of M
  • impulse responses H 1 to H 16 impulse responses H 1 to H 16 , and frequency offsets exp(j ⁇ x (n)), exp( ⁇ j ⁇ x (n)), exp(j ⁇ y (n)), exp(-j ⁇ y (n)) is adaptively and dynamically changed.
  • Receiver 50 obtains these values by any method.
  • 3 to 6 are diagrams showing an example of the configuration of the coefficient calculator.
  • the coefficient calculator included in the demodulated digital signal processor 532 includes four coefficient calculators.
  • the coefficient calculator shown in FIG. 3 is a functional unit that calculates impulse responses H 1 , H 3 , H 5 and H 7 .
  • the coefficient calculator shown in FIG. 4 is a functional unit that calculates impulse responses H 2 , H 4 , H 6 and H 8 .
  • the coefficient calculator shown in FIG. 5 is a functional unit that calculates impulse responses H 9 , H 11 , H 13 and H 15 .
  • the coefficient calculator shown in FIG. 6 is a functional unit that calculates impulse responses H 10 , H 12 , H 14 and H 16 .
  • the coefficient calculator includes a coefficient updater.
  • the coefficient updating unit updates values of the impulse response.
  • the coefficient calculation unit shown in FIG. 3 is referred to as "first coefficient calculation unit”
  • the coefficient calculation unit illustrated in FIG. 4 is referred to as “second coefficient calculation unit”
  • the coefficient calculation unit illustrated in FIG. will be referred to as a “third coefficient calculator”
  • the coefficient calculator shown in FIG. 6 will be referred to as a "fourth coefficient calculator”. Note that when the first to fourth coefficient calculators are not particularly distinguished, they are simply referred to as coefficient calculators. The operation of the coefficient calculator will be described below.
  • the frequency domain signal of the real number component XI and the frequency domain signal of the imaginary number component XQ are input to the first coefficient calculator.
  • the frequency domain signal of the real number component XI and the frequency domain signal of the imaginary number component XQ input to the first coefficient calculator are branched to the first path and the second path, respectively.
  • the frequency domain signal of the real component XI and the frequency domain signal of the imaginary component XQ are multiplied by the complex transfer function updated by the coefficient updating unit.
  • the frequency domain signal of the real component XI and the frequency domain signal of the imaginary component XQ are converted into frequency domain signals that are inverted and complex conjugated by the inverting/complex conjugating unit.
  • the frequency domain signal of the real component XI input to the first coefficient calculator is converted into an inverted real component complex conjugate signal
  • the frequency domain signal of the imaginary component XQ is converted into an inverted complex conjugate signal of the imaginary component.
  • the real component inverted complex conjugate signal and the imaginary component inverted complex conjugate signal are multiplied by a signal based on the received signal.
  • the signal based on the received signal is a signal obtained based on the following processes (1) to (5).
  • a reference signal (eg, d x (n) or d y (n)) is a pilot signal inserted in advance on the transmitting side, or a received signal (eg, X Rsig (n) or Y Rsig (n)) is tentatively determined. values are used.
  • the process of adding zeros shown in (3) is a process of adding zeros to the input signal, the number of which is M/N times the signal length to be cut in the Overlap Save method described in reference 1. In the process of adding zeros, the number of zeros obtained by multiplying the signal length to be cut by M/N is continuously added to the input signal.
  • Copying in the frequency domain shown in (5) is a process of copying the frequency domain signal line-symmetrically with respect to the Nyquist frequency. The copying in the frequency domain shown in (5) corresponds to the upsampling process in the time domain.
  • the real component inverted complex conjugate signal and the imaginary component inverted complex conjugate signal multiplied by the signal based on the received signal are input to the coefficient updating unit.
  • the coefficient updating unit performs N-IDFT, Cut, zero addition, N-DFT, multiplication of step size ⁇ , and Addition of the previous impulse response value is performed.
  • step size ⁇ a normalized LMS (reference document 1) that normalizes the step size by the input signal power for each frequency bin may be used.
  • the process of updating the impulse response H1 will be described as an example of the processing of the first coefficient calculator.
  • the coefficient updating unit transforms the signal A1 in the frequency domain into the signal A1 in the time domain.
  • the coefficient updating unit performs signal clipping processing in the overlap save method on the time-domain signal A1.
  • the coefficient updating unit performs a process of adding zero to the time-domain signal A1 that has undergone the clipping process.
  • the coefficient updating unit multiplies the zero-padded time-domain signal A1 by a step size ⁇ 1 .
  • the coefficient updating unit updates the value of the impulse response H1 by adding the value of the impulse response H1 obtained immediately before to the time-domain signal A1 multiplied by the step size ⁇ 1 . .
  • the process of updating the impulse response H3 in the first coefficient calculator is the same as the process described above, except that the step size value is different. Furthermore, the process of updating the impulse responses H 5 and H 7 in the first coefficient calculation section is performed by inputting to the coefficient update section an imaginary component inverted complex conjugate signal multiplied by a signal based on the received signal, and by changing the step size.
  • the processing is the same as the processing described above, except that the values are different.
  • the second coefficient calculator receives the real component inverted complex conjugate signal of the real component XI and the imaginary component inverted complex conjugate signal of the imaginary component XQ.
  • the real component inverted complex conjugate signal of the real component XI and the imaginary component inverted complex conjugate signal of the imaginary component XQ input to the second coefficient calculator are branched to the first path and the second path, respectively.
  • the complex transfer function updated by the coefficient updating section is multiplied by the complex conjugate signal of the real component XI and the complex conjugate signal of the imaginary component XQ.
  • the real component inverted complex conjugate signal of the real component XI and the imaginary component inverted complex conjugate signal of the imaginary component XQ are inverted and complex conjugated by the inverting/complex conjugating section, resulting in a frequency domain signal. is converted to As a result, the real component inverted complex conjugate signal of the real component XI input to the second coefficient calculator is converted into a frequency signal of the real component XI, and the imaginary component inverted complex conjugate signal of the imaginary component XQ is converted to the frequency domain of the imaginary component XQ. converted to a signal.
  • the frequency signal of the real number component XI and the frequency domain signal of the imaginary number component XQ are multiplied by the above-described signal based on the received signal.
  • the signal obtained in the process (1) is multiplied by the frequency offset exp(j ⁇ x (n)) as the frequency offset.
  • the frequency signal of the real component XI and the frequency domain signal of the imaginary component XQ multiplied by the signal based on the received signal are input to the coefficient updating unit.
  • the coefficient updating unit performs N-IDFT, Cut, zero addition, N-DFT, and step size ⁇ multiplication on the frequency signal of the real component XI and the frequency domain signal of the imaginary component XQ multiplied by the signal based on the received signal. , add the value of the previous impulse response.
  • the processing performed by the coefficient updating unit is the same as the processing described with reference to FIG. 3, and thus description thereof is omitted.
  • the processing performed by the third coefficient calculation unit is that the input signal is a Y-polarized signal, the step size used in the coefficient update unit is different, and the frequency offset is used as the frequency offset in generating the signal based on the received signal. except that exp(j ⁇ y (n)) is multiplied with the signal obtained by subtracting the received signal (eg, Y Rsig (n)) from the reference signal (eg, d y (n)). , is the same as the processing performed by the first coefficient calculation unit.
  • the processing performed by the fourth coefficient calculation unit is that the input signal is a Y-polarized signal, the step size used in the coefficient update unit is different, and the frequency offset is used as the frequency offset in generating the signal based on the received signal. except that exp( ⁇ j ⁇ y (n)) is multiplied with the signal obtained by subtracting the received signal (eg, Y Rsig (n)) from the reference signal (eg, d y (n)). is the same as the processing performed by the second coefficient calculator.
  • the processing of Cut and zero addition in the coefficient updating unit corresponds to multiplication of rectangular window functions in the time domain.
  • the window function in the time domain to a Cosine window and processing as convolution in the frequency domain, the N-IDFT and N-DFT can be omitted and simplified.
  • the demodulation digital signal processing section 532 configured as described above, it is possible to reduce the amount of calculation because convolution calculation can be performed in the frequency domain. As a result, it becomes possible to realize power saving of the receiver of the digital coherent optical transmission system.
  • the demodulation digital signal processing unit 532 may be configured to perform signal processing such as frequency characteristic compensation and chromatic dispersion compensation.
  • FIG. 7 is a diagram showing an example of the configuration of the demodulated digital signal processing section 532a in the modification of the first embodiment.
  • the demodulated digital signal processor 532 a includes an adaptive equalizer 54 , a frequency/phase offset compensator 55 , and a front-end corrector and chromatic dispersion estimator 56 .
  • the demodulated digital signal processor 532a differs in configuration from the demodulated digital signal processor 532 in that a front-end correction and chromatic dispersion estimator 56 is provided between the functional units that make up the adaptive equalizer .
  • Other configurations of the demodulated digital signal processing section 532 a are the same as those of the demodulated digital signal processing section 532 . Differences will be described below.
  • the front-end correction and chromatic dispersion estimator 56 multiplies the frequency domain signal by the receiving side device characteristics and the chromatic dispersion compensation coefficient. For example, the front-end correction and chromatic dispersion estimator 56 multiplies the frequency domain signal of the real component XI by the receiving side device characteristic H RXI and the chromatic dispersion compensation coefficient H CD .
  • the frequency domain signal of the real number component XI multiplied by the receiving side device characteristic H RXI and the chromatic dispersion compensation coefficient H CD is split into four, and two signals out of the four split signals are directly subjected to coefficient calculation. The remaining two signals are inverted and converted into complex conjugated frequency domain signals and input to the coefficient calculator. Subsequent processing is the same as the processing described above.
  • the front-end correction and chromatic dispersion estimating unit 56 multiplies the frequency domain signal of the imaginary component XQ by the receiving side device characteristic H RXQ and the chromatic dispersion compensation coefficient H CD .
  • the signal in the frequency domain of the imaginary component XQ multiplied by the receiving side device characteristic H RXQ and the chromatic dispersion compensation coefficient H CD is split into four, and two signals out of the four split signals are directly subjected to coefficient calculation. The remaining two signals are inverted and converted into complex conjugated frequency domain signals and input to the coefficient calculator.
  • the front-end correction and chromatic dispersion estimator 56 multiplies the frequency domain signal of the real component YI by the receiving side device characteristic H RYI and the chromatic dispersion compensation coefficient H CD .
  • a signal in the frequency domain of the real component YI multiplied by the receiving side device characteristic H RYI and the chromatic dispersion compensation coefficient H CD is split into four, and two signals out of the four split signals are directly subjected to coefficient calculation. The remaining two signals are inverted and converted into complex conjugated frequency domain signals and input to the coefficient calculator.
  • the front-end correction and chromatic dispersion estimator 56 multiplies the frequency domain signal of the imaginary component YQ by the receiving side device characteristic H RYQ and the chromatic dispersion compensation coefficient H CD .
  • the signal in the frequency domain of the imaginary component YQ multiplied by the receiving side device characteristic H RYQ and the chromatic dispersion compensation coefficient H CD is split into four, and two signals out of the four split signals are directly subjected to coefficient calculation. The remaining two signals are inverted and converted into complex conjugated frequency domain signals and input to the coefficient calculator.
  • the front-end correction and chromatic dispersion estimator 56 it is also possible to pre-multiply the receiving side device characteristics and the chromatic dispersion compensation coefficient and set them, or shift the frequency bins of the main signal and the coefficient. may perform frequency offset compensation.
  • the front-end correction and chromatic dispersion estimation unit 56 may be provided before the buffer.
  • the demodulation digital signal processing unit 532a may perform frequency offset compensation by frequency-shifting the main signal and coefficients instead of including the front-end correction and chromatic dispersion estimation unit 56.
  • FIG. 8 is a diagram showing N-DFT size dependence (DFT calculated by FFT) of received SNR (Signal-Noise Ratio) of 128 GBaud and 256 QAM (Quadrature Amplitude Modulation) according to the configuration shown in FIG. As shown in FIG. 8, when the DFT size is increased, the time response (frequency resolution) that can be compensated increases, so it can be seen that the reception SNR (signal-to-noise ratio) is improved.
  • FIG. 9 is a diagram showing the result of comparison of the number of multiplications between a conventional configuration (for example, the configuration described in Patent Document 1) and the configuration shown in FIG.
  • input sampling rate 256 GSample/a, symbol rate: 128 GBaud
  • DFT size N
  • FFT and IDFT are fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT)
  • FFT and IDFT are fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT)
  • the overlap amount of the Overlap Save method is halved (in this case, the time response length that can be compensated is (N/2 x sampling interval), and has a tap length of N/2
  • the compensation performance is the same as that of the conventional configuration).
  • the amount of computation for the receiving-side device imperfection coefficient and the dispersion compensation coefficient is excluded (only the computation for the adaptive filter coefficient is considered).
  • the number of multiplications in fast Fourier transform is 4 ⁇ (N/2) ⁇ log 2 (N)
  • the number of multiplications in inverse fast Fourier transform is 4 ⁇ (N/4) ⁇ log 2 (N/2)
  • multiplication of adaptive filter coefficients The number is 16 ⁇ N.
  • the number of symbols that can be output from one block is N/4, so the number of multiplications per symbol is 2 ⁇ log 2 (N)+4 ⁇ log 2 (N/2)+64.
  • the number of multiplications of the convolution operation per symbol should be considered, so the number of taps L of the adaptive filter is 16L.
  • the second embodiment In the second embodiment, a configuration capable of reducing the number of discrete Fourier transforms or fast Fourier transforms compared to the first embodiment will be described.
  • the second embodiment differs from the first embodiment in the configuration of the adaptive equalization section included in the demodulation digital signal processing section. Therefore, only differences from the first embodiment will be described.
  • FIG. 10 is a diagram showing an example of the configuration of the demodulation digital signal processing section 532b in the second embodiment. Note that FIG. 10 omits the configuration after the frequency/phase offset compensator 55, which has the same configuration as in the first embodiment.
  • the adaptive equalization section 54b of the demodulation digital signal processing section 532b shown in FIG. 10 differs from the adaptive equalization section 54 in the configuration before the branching section.
  • the demodulation digital signal processing unit 532b does not perform signal processing such as frequency characteristic compensation and chromatic dispersion compensation.
  • the adaptive equalization unit 54b converts the real component XI and the imaginary component XQ of the X-polarized received signal converted into digital signals by the ADCs 531-1 to 531-4, and the real component YI and the imaginary component of the Y-polarized received signal. Enter YQ.
  • the adaptive equalization unit 54b multiplies the input imaginary component XQ by the imaginary unit j to generate the imaginary component jXQ.
  • the adaptive equalization unit 54b adds the real component XI and the imaginary component jXQ. As a result, the adaptive equalization unit 54b generates an addition signal of XI+jXQ.
  • the adaptive equalization unit 54b stores the generated addition signal in a buffer.
  • the adaptive equalization unit 54b performs N-point discrete Fourier transform or fast Fourier transform on the added signal stored in the buffer (corresponding to "N-DFT" shown in FIG. 10). As a result, the adaptive equalization unit 54b converts the X-polarized added signal into a signal in the frequency domain.
  • the added signal in the frequency domain generated by the adaptive equalization unit 54b is split into two.
  • One branched frequency domain sum signal is converted to an inverted and complex conjugated frequency domain signal.
  • the frequency-domain addition signal that is inverted after branching and transformed into a complex-conjugated frequency-domain signal in a stage before the branching unit is referred to as a "frequency-domain-transformed addition signal”.
  • a frequency domain addition signal that has not been transformed into an inverted and complex conjugated frequency domain signal is referred to as a "frequency domain pre-transformation addition signal".
  • the pre-transform addition signal in the frequency domain and the post-transform addition signal in the frequency domain are each branched into two, and the adaptive equalization unit 54b adds the pre-transform addition signal in the frequency domain and the post-transform addition signal in the frequency domain. Then multiply by 1/2.
  • This signal is equivalent to the frequency domain signal of the real component XI in the first embodiment.
  • the added signal multiplied by 1/2 (the frequency domain signal of the real number component XI) is branched into four by the branching unit, and two of the four branched signals are directly input to the coefficient calculation unit. and the remaining two signals are inverted and transformed into complex conjugated frequency domain signals and input to the coefficient calculator.
  • the adaptive equalization unit 54b subtracts the post-transform addition signal in the frequency domain from the pre-transform addition signal in the frequency domain, and then multiplies the result by 1/2j.
  • This signal is equivalent to the frequency domain signal of the imaginary component XQ in the first embodiment.
  • the signal multiplied by 1/2j (the frequency domain signal of the imaginary component XQ) is split into four by the splitter, and two of the four split signals are directly input to the coefficient calculator. , and the remaining two signals are inverted and transformed into complex conjugated frequency domain signals and input to the coefficient calculator.
  • 1/2j the frequency domain signal of the imaginary component XQ
  • the adaptive equalization unit 54b multiplies the input imaginary component YQ by the imaginary unit j to generate the imaginary component jYQ.
  • the adaptive equalizer 54b adds the real component YI and the imaginary component jYQ. As a result, the adaptive equalization unit 54b generates a sum signal of YI+jYQ.
  • the adaptive equalization unit 54b stores the generated addition signal in a buffer.
  • the adaptive equalization unit 54b performs N-point discrete Fourier transform or fast Fourier transform on the added signal stored in the buffer (corresponding to "N-DFT" shown in FIG. 10). As a result, the adaptive equalization unit 54b converts the Y-polarized added signal into a signal in the frequency domain.
  • the added signal in the frequency domain generated by the adaptive equalization unit 54b is split into two.
  • One branched frequency domain sum signal is converted to an inverted and complex conjugated frequency domain signal.
  • the pre-transform addition signal in the frequency domain and the post-transform addition signal in the frequency domain are each branched into two, and the adaptive equalization unit 54b adds the pre-transform addition signal in the frequency domain and the post-transform addition signal in the frequency domain. Then multiply by 1/2.
  • This signal is equivalent to the frequency domain signal of the real component YI in the first embodiment.
  • the added signal multiplied by 1/2 (the frequency domain signal of the real number component YI) is split into four by the splitter, and two of the four split signals are directly input to the coefficient calculator. and the remaining two signals are inverted and transformed into complex conjugated frequency domain signals and input to the coefficient calculator.
  • the adaptive equalization unit 54b subtracts the post-transform addition signal in the frequency domain from the pre-transform addition signal in the frequency domain, and then multiplies the result by 1/2j.
  • This signal is equivalent to the frequency domain signal of the imaginary component YQ in the first embodiment.
  • the signal multiplied by 1/2j (the frequency domain signal of the imaginary component YQ) is split into four by the splitter, and two of the four split signals are directly input to the coefficient calculator. , and the remaining two signals are inverted and transformed into complex conjugated frequency domain signals and input to the coefficient calculator.
  • 1/2j the frequency domain signal of the imaginary component YQ
  • the processing after the coefficient calculation unit is the same as in the first embodiment.
  • the number of discrete Fourier transforms or fast Fourier transforms can be reduced compared to the first embodiment.
  • the demodulated digital signal processing unit 532 in the second embodiment performs discrete Fourier transform or fast Fourier transform after adding the real number component XI and the imaginary number component XQ. This eliminates the need to perform a discrete Fourier transform or a fast Fourier transform on each of the real component XI and the imaginary component XQ. Therefore, the number of discrete Fourier transforms or fast Fourier transforms can be reduced compared to the first embodiment.
  • the adaptive equalization unit 54b may be configured to perform signal processing such as frequency characteristic compensation and chromatic dispersion compensation, as in the first embodiment.
  • FIG. 11 is a diagram showing an example of the configuration of the demodulated digital signal processing section 532c in the modified example of the second embodiment. Note that FIG. 11 omits the configuration after the frequency/phase offset compensator 55, which has the same configuration as in the first embodiment.
  • the demodulation digital signal processing unit 532c includes an adaptive equalization unit 54b, a frequency/phase offset compensation unit 55 (not shown in FIG. 11), and a front end correction and chromatic dispersion estimation unit 56.
  • the demodulated digital signal processor 532c differs from the configuration shown in FIG. 10 in that a front-end correction and chromatic dispersion estimator 56 is provided between the functional units that make up the adaptive equalizer 54b.
  • Other configurations of the demodulated digital signal processing unit 532c are the same as those shown in FIG. Differences will be described below.
  • the front-end correction and chromatic dispersion estimator 56 multiplies the 1/2-multiplied addition signal (signal in the frequency domain of the real component XI) by the receiving side device characteristic H RXI and the chromatic dispersion compensation coefficient H CD . do.
  • the real number component XI frequency domain signal multiplied by the receiver device characteristics H RXI and the chromatic dispersion compensation coefficient H CD is split into four by the splitter, and two of the four split signals are The signals are directly input to the coefficient calculator, and the remaining two signals are inverted and converted into complex-conjugated frequency domain signals and input to the coefficient calculator. Subsequent processing is the same as the processing described above.
  • the front-end correction and chromatic dispersion estimator 56 calculates the receiving side device characteristic H RXQ and the chromatic dispersion compensation coefficient H for the addition signal (signal in the frequency domain of the imaginary component XQ) multiplied by 1/2j. Multiply CD .
  • the signal in the frequency domain of the imaginary component XQ multiplied by the receiver-side device characteristic H RXQ and the chromatic dispersion compensation coefficient H CD is split into four by the splitter, and two of the four split signals are The signals are directly input to the coefficient calculator, and the remaining two signals are inverted and converted into complex-conjugated frequency domain signals and input to the coefficient calculator.
  • the front-end correction and chromatic dispersion estimating unit 56 calculates the receiving side device characteristic H RYI and the chromatic dispersion compensation coefficient H for the sum signal multiplied by 1/2 (the signal in the frequency domain of the real component YI).
  • Multiply CD The signal in the frequency domain of the real component YI multiplied by the receiving side device characteristic H RYI and the chromatic dispersion compensation coefficient H CD is split into four by the splitter, and two of the four split signals are The signals are directly input to the coefficient calculator, and the remaining two signals are inverted and converted into complex-conjugated frequency domain signals and input to the coefficient calculator.
  • the front-end correction and chromatic dispersion estimator 56 calculates the receiving side device characteristics H RYQ and the chromatic dispersion compensation coefficient H for the addition signal multiplied by 1/2j (signal in the frequency domain of the imaginary component YQ).
  • Multiply CD The signal in the frequency domain of the imaginary component YQ multiplied by the receiver-side device characteristic H RYQ and the chromatic dispersion compensation coefficient H CD is split into four by the splitter, and two of the four split signals are The signals are directly input to the coefficient calculator, and the remaining two signals are inverted and converted into complex-conjugated frequency domain signals and input to the coefficient calculator.
  • the demodulation digital signal processing unit 532c may perform frequency offset compensation by frequency-shifting the main signal and coefficients instead of including the front-end correction and chromatic dispersion estimation unit 56.
  • the third embodiment differs from the second embodiment in the configuration of the adaptive equalization section among the configurations included in the demodulation digital signal processing section. Therefore, differences from the second embodiment will be described.
  • FIG. 12 is a diagram showing an example of the configuration of the demodulation digital signal processing section 532d according to the third embodiment. Note that FIG. 12 omits the configuration after the frequency/phase offset compensator 55, which has the same configuration as the second embodiment (in particular, the demodulated digital signal processor 532c shown in FIG. 11).
  • the demodulated digital signal processor 532d includes an adaptive equalizer 54d and a frequency/phase offset compensator 55 (not shown in FIG. 12).
  • the adaptive equalization unit 54d calculates a value (1/2 ⁇ H CD * ) obtained by adding the receiving side device characteristic H RXI and the receiving side device characteristic H RXQ to the pre-conversion addition signal in the frequency domain of the X polarized wave. Multiply.
  • the adaptive equalization unit 54d subtracts the receiver device characteristics H RXQ from the receiver device characteristics H RXI (1/2 ⁇ H CD * ).
  • Each of the X-polarized frequency domain pre-transform summation signal multiplied by 1/2 ⁇ H CD * and the X - polarization frequency domain post-transform summation signal multiplied by 1/2 ⁇ H CD * branched into one.
  • the adaptive equalization unit 54d generates a pre-transform addition signal in the frequency domain of the X-polarized wave multiplied by 1/2 ⁇ H CD * and a frequency domain transform signal of the X-polarized wave multiplied by 1/2 ⁇ H CD * . and the post-addition signal. After that, this addition signal is branched into four by a branching section, two of the four branched signals are directly input to the coefficient calculating section, and the remaining two signals are inverted and complex conjugated. converted to a frequency domain signal and input to the coefficient calculator.
  • the adaptive equalization unit 54d converts the converted addition signal in the X-polarized frequency domain multiplied by 1/2 ⁇ H CD * into the X-polarized frequency domain multiplied by 1/2 ⁇ H CD * . Subtract the pre-transform sum signal. After that, the subtracted signal is branched into four by the branching unit, two of the four branched signals are directly input to the coefficient calculator, and the remaining two signals are inverted and complex conjugated. is converted into a frequency domain signal obtained by taking The above is the processing related to the X polarized wave.
  • the adaptive equalization unit 54d calculates a value (1/2 ⁇ H CD * ) obtained by adding the receiving side device characteristic H RYI and the receiving side device characteristic H RYQ to the pre-conversion addition signal in the frequency domain of the Y polarized wave. Multiply. Similarly, the adaptive equalization unit 54d obtains a value (1 / 2 ⁇ H CD * ). Each of the Y-polarization frequency domain pre-transform addition signal multiplied by 1/2 ⁇ H CD * and the Y - polarization frequency domain post-transform addition signal multiplied by 1/2 ⁇ H CD * branched into one.
  • the adaptive equalization unit 54d generates a pre-transform addition signal in the Y-polarized frequency domain multiplied by 1/2 ⁇ H CD * and a Y-polarized frequency-domain transform signal multiplied by 1/2 ⁇ H CD * . and the post-addition signal. After that, this addition signal is branched into four by a branching section, two of the four branched signals are directly input to the coefficient calculating section, and the remaining two signals are inverted and complex conjugated. converted to a frequency domain signal and input to the coefficient calculator.
  • the adaptive equalization unit 54d converts the Y-polarized wave frequency domain multiplied by 1/2 ⁇ H CD * into the Y-polarized wave frequency domain multiplied by 1/2 ⁇ H CD * after the conversion addition signal. Subtract the pre-transform sum signal. After that, the subtracted signal is branched into four by the branching unit, two of the four branched signals are directly input to the coefficient calculator, and the remaining two signals are inverted and complex conjugated. is converted into a frequency domain signal obtained by taking The above is the processing related to the Y polarized wave.
  • the processing after the coefficient calculation unit is the same as in the second embodiment.
  • the demodulation digital signal processing unit 532d of the third embodiment configured as described above, in a form different from that of the second embodiment, the number of discrete Fourier transforms or fast Fourier transforms is greater than that of the first embodiment. can be reduced. Note that in the configuration of the demodulated digital signal processing unit 532d in the third embodiment, if H RXI -H RXQ and H RYI -H RYQ are small, it is possible to reduce the bit precision.
  • the demodulation digital signal processing unit 532d may perform frequency offset compensation by frequency-shifting the main signal and coefficients in the stage before the branching unit after the N-DFT.
  • a configuration for performing wavelength division multiplexing may be combined in addition to polarization division multiplexing.
  • a difference from the digital coherent optical transmission system 1 shown in FIG. 1 when configured in this way is the following configuration.
  • the transmitter 10 further includes transmitters 100 for the number of WDM (Wavelength Division Multiplexing) channels. For example, if the number of WDM channels is 10, the transmitter 10 has 10 transmitters 100 . Each transmitter 100 outputs an optical signal with a different wavelength.
  • a WDM multiplexer, an optical fiber transmission line 30 and a WDM demultiplexer are provided between the transmitter 10 and the receiver 50 .
  • the WDM multiplexer multiplexes the optical signals output from the transmitters 100 and outputs the multiplexed signal to the optical fiber transmission line 30 .
  • the WDM demultiplexer demultiplexes the optical signal transmitted through the optical fiber transmission line 30 according to wavelength.
  • the receiver 50 further includes receivers 500 for the number of WDM channels. For example, if the number of WDM channels is 10, the receiver 50 has 10 receivers 500 .
  • Each receiver 500 receives the optical signal demultiplexed by the WDM demultiplexer 40 .
  • the wavelength of the optical signal received by each receiver 500 is different.
  • the processing executed in the receiving unit 500 is the same as the processing described above.
  • the adaptive equalization units 54, 54b, and 54d do not need to perform folding processing.
  • a part of the functional units of the receiver 50 in the above-described embodiment may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • “computer-readable recording medium” refers to portable media such as flexible disks, magneto-optical disks, ROM (Read Only Memory), CD-ROMs, and storage devices such as hard disks built into computer systems. say.
  • “computer-readable recording medium” refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case.
  • the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field-Programmable Gate Array).
  • FPGA Field-Programmable Gate Array
  • the present invention can be applied to technology for receiving single-carrier polarization multiplexed signals in digital coherent optical transmission.
  • Reference Signs List 1 Digital coherent optical transmission system 10 Transmitter 30 Optical fiber transmission line 31 Optical amplifier 50 Receivers 54, 54b, 54d Adaptive equalizer 55 Frequency/phase offset compensator 56 Front-end correction and wavelength Dispersion estimating section 100...transmitting section 110...digital signal processing section 111...encoding section 112...mapping section 113...training signal inserting section 114...frequency converting section 115...waveform shaping section 116...pre-equalizing section 117-1 to 117- 4 Digital-analog converter 120 Modulator driver 121-1 to 121-4 Amplifier 130 Light source 140 Integrated module 141-1, 141-2 IQ modulator 142 Polarization combiner 500 Receiver 510 ... Local oscillation light source 520 ...
  • Optical front end 521 Polarized wave separation units 522-1, 522-2 ...
  • BPD 524-1 to 524-4 amplifier 530 digital signal processing units 531-1 to 531-4 analog-digital converters 532, 532a, 532b, 532c, 532d demodulation digital signal processing unit 533 demapping unit 534 Decryptor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

偏波多重された受信信号の各偏波の実数成分及び虚数成分を周波数領域信号に変換し、各偏波の実数成分の周波数領域信号及び虚数成分の周波数領域信号と、各偏波の実数成分の周波数領域信号及び虚数成分の周波数領域信号それぞれについて周波数反転を行い、かつ、複素共役をとった信号とを入力信号として入力し、偏波毎に、各偏波の実数成分及び虚数成分それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、入力信号に含まれる各偏波の実数成分の周波数反転を行い、かつ、複素共役をとった実数成分の信号及び虚数成分の周波数反転を行い、かつ、複素共役をとった虚数成分の信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行い、第一加算信号と第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する信号処理方法。 

Description

信号処理方法、信号処理装置及び通信システム
 本発明は、信号処理方法、信号処理装置及び通信システムに関する。
 デジタルコヒーレント伝送では、光ファイバ伝送路中において生じる波形ひずみを補償するだけでなく、光送受信機におけるデバイス不完全性を適応的に補償することが求められる。一般的な信号処理で用いられる適応等価回路では、伝送路中で生じる波形ひずみの補償が主に行われ、送信機及び受信機におけるデバイス不完全性の補償は、後段の信号処理により別途行う必要があった。そこで、送信機及び受信機におけるデバイス不完全性を一括で補償する技術がある(例えば、特許文献1及び非特許文献1参照)。
特開2020-141294号公報
Takayuki Kobayashi, et. al., "35-Tb/s C-Band Transmission Over 800 km Employing 1-Tb/s PS-64QAM Signals Enhanced by Complex 8 × 2 MIMO Equalizer", Optical Fiber Communication Conference Postdeadline Papers 2019, Th4B.2
 特許文献1及び非特許文献1の適応等化回路は、従来の光通信において一般的に用いられている複素数入力及び複素数出力の2×2MIMO(Multiple Input Multiple Output)適応等化回路とは構成が異なる。特許文献1及び非特許文献1の適応等化回路では、生成されるタップ係数等に共通性や互換性がなく、合計のタップ数が増加する。そのため、タップ数の増加に伴い、演算量が指数関数的に増加してしまうという問題もあった。
 上記事情に鑑み、本発明は、デジタルコヒーレント光伝送において、演算量を低減しつつ、等化処理を行うことができる技術の提供を目的としている。
 本発明の一態様は、偏波多重された受信信号の各偏波の実数成分及び虚数成分を周波数領域信号に変換する変換ステップと、各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号と、各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれについて周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号とを入力信号として入力する信号入力ステップと、偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の周波数領域信号及び前記虚数成分の変換後の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化ステップと、各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償ステップと、を有する信号処理方法である。
 本発明の一態様は、偏波多重された受信信号の各偏波の虚数成分に虚数単位jを乗算する虚数単位乗算処理を行った後に、虚数単位jが乗算された前記虚数成分と、偏波多重された受信信号の各偏波の実数成分とを加算する加算処理を行う加算処理ステップと、前記虚数単位jが乗算された前記虚数成分と、前記実数成分との加算処理後の信号を周波数領域信号に変換する変換ステップと、各偏波の前記周波数領域信号に対して演算が施された後の演算済み周波数領域信号と、各偏波の前記周波数領域信号について周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号に対して演算が施された後の変換後の演算済み周波数領域信号とを入力信号として入力する信号入力ステップと、偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の演算済み周波数領域信号及び前記虚数成分の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の演算済み周波数領域信号及び前記虚数成分の変換後の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化ステップと、各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償ステップと、を有する信号処理方法である。
 本発明の一態様は、偏波多重された受信信号の各偏波の実数成分及び虚数成分を周波数領域信号に変換する周波数変換部と、各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号と、各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれについて周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号とを入力信号として入力する信号入力部と、偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の周波数領域信号及び前記虚数成分の変換後の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化部と、各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償部と、を備える信号処理装置である。
 本発明の一態様は、偏波多重された受信信号の各偏波の虚数成分に虚数単位jを乗算する虚数単位乗算処理を行った後に、虚数単位jが乗算された前記虚数成分と、偏波多重された受信信号の各偏波の実数成分とを加算する加算処理を行う加算部と、前記虚数単位jが乗算された前記虚数成分と、前記実数成分との加算処理後の信号を周波数領域信号に変換する周波数変換部と、各偏波の前記周波数領域信号に対して演算が施された後の演算済み周波数領域信号と、各偏波の前記周波数領域信号について周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号に対して演算が施された後の変換後の演算済み周波数領域信号とを入力信号として入力する信号入力部と、偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の演算済み周波数領域信号及び前記虚数成分の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の演算済み周波数領域信号及び前記虚数成分の変換後の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化部と、各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償部と、を備える信号処理装置である。
 本発明の一態様は、偏波多重を行った偏波多重信号を送信する送信機と、上記の信号処理装置を有する受信機とを備える通信システムである。
 本発明により、デジタルコヒーレント光伝送において、演算量を低減しつつ、等化処理を行うことが可能となる。
第1の実施形態におけるデジタルコヒーレント光伝送システムの構成例を示す図である。 第1の実施形態における復調デジタル信号処理部の構成の一例を示す図である。 係数演算部の一例を示す図である。 係数演算部の一例を示す図である。 係数演算部の一例を示す図である。 係数演算部の一例を示す図である。 第1の実施形態の変形例における復調デジタル信号処理部の構成の一例を示す図である。 本発明における効果を説明するための図である。 本発明における効果を説明するための図である。 第2の実施形態における復調デジタル信号処理部の構成の一例を示す図である。 第2の実施形態の変形例における復調デジタル信号処理部の構成の一例を示す図である。 第3の実施形態における復調デジタル信号処理部の構成の一例を示す図である。
 以下、本発明の一実施形態を、図面を参照しながら説明する。
(第1の実施形態)
 図1は、第1の実施形態におけるデジタルコヒーレント光伝送システム1の構成例を示す図である。デジタルコヒーレント光伝送システム1は、送信機10と受信機50とを備える。送信機10は、偏波多重信号を送信する。受信機50は、送信機10から偏波多重信号を受信する。
 送信機10は、少なくとも1つの送信部100を有する。送信部100は、指定された波長の偏波多重信号を光ファイバ伝送路30に出力する。光ファイバ伝送路30には、任意の台数の光増幅器31が備えられる。各光増幅器31は、送信機10側の光ファイバ伝送路30から偏波多重信号を入力して増幅し、受信機50側の光ファイバ伝送路30へ出力する。受信機50は、少なくとも1つの受信部500を有する。受信部500は、偏波多重信号を受信する。
 まず送信機10の構成について説明する。
 送信部100は、デジタル信号処理部110と、変調器ドライバ120と、光源130と、集積モジュール140とを備える。デジタル信号処理部110は、符号化部111と、マッピング部112と、トレーニング信号挿入部113と、周波数変換部114と、波形整形部115と、予等化部116と、デジタル-アナログ変換器(DAC)117-1~117-4とを備える。
 符号化部111は、送信ビット列にFEC(forward error correction:前方誤り訂正)符号化を行って得られた送信信号を出力する。
 マッピング部112は、符号化部111から出力された送信信号をシンボルにマッピングする。
 トレーニング信号挿入部113は、マッピング部112によりシンボルマッピングされた送信信号に既知のトレーニング信号を挿入する。
 周波数変換部114は、トレーニング信号が挿入された送信信号に対するサンプリング周波数を変更することにより、アップサンプリングを行う。
 波形整形部115は、サンプリングされた送信信号の帯域を制限する。
 予等化部116は、波形整形部115により帯域制限された送信信号の波形の歪みを補償し、DAC117-1~117-4に出力する。
 DAC117-1は、予等化部116から入力した送信信号のX偏波のI(同相)成分をデジタル信号からアナログ信号に変換し、変調器ドライバ120に出力する。DAC117-2は、予等化部116から入力した送信信号のX偏波のQ(直交)成分をデジタル信号からアナログ信号に変換し、変調器ドライバ120に出力する。DAC117-3は、予等化部116から入力した送信信号のY偏波のI成分をデジタル信号からアナログ信号に変換し、変調器ドライバ120に出力する。DAC117-4は、予等化部116から入力した送信信号のY偏波のQ成分をデジタル信号からアナログ信号に変換し、変調器ドライバ120に出力する。
 変調器ドライバ120は、アンプ121-1~121-4を有する。アンプ121-i(iは1以上4以下の整数)は、DAC117-iから出力されたアナログ信号を増幅し、増幅したアナログ信号により集積モジュール140の変調器を駆動する。 
 光源130は、例えばLD(半導体レーザ)である。光源130は、指定された波長の光を出力する。
 集積モジュール140は、IQ変調器141-1及び141-2と、偏波合成部142とを備える。IQ変調器141-1は、アンプ121-1から出力されたX偏波のI成分と、アンプ121-2から出力されたX偏波のQ成分とに基づいて、光源130が出力した光信号を変調してX偏波の光信号を生成する。IQ変調器141-2は、アンプ121-3から出力されたY偏波のI成分と、アンプ121-4から出力されたY偏波のQ成分とに基づいて、光源130が出力した光信号を変調してY偏波の光信号を生成する。偏波合成部142は、IQ変調器141-1が生成したX偏波の光信号と、IQ変調器141-2が生成したY偏波の光信号とを偏波多重して偏波多重信号を生成する。偏波合成部142は、生成した偏波多重信号を光ファイバ伝送路30に出力する。
 次に受信機50の構成について説明する。
 受信部500は、局部発振光源510と、光フロントエンド520と、デジタル信号処理部530とを備える。局部発振光源510は、例えばLDである。局部発振光源510は、局部発振光(LO:Local Oscillator)を出力する。
 光フロントエンド520は、偏波多重された位相変調信号の位相及び振幅を保ったまま光信号を電気信号に変換する。光フロントエンド520は、偏波分離部521と、光90度ハイブリッドカプラ522-1、522-2と、BPD(Balanced Photo Diode;バランスフォトダイオード)523-1~523-4と、アンプ524-1~524-4とを備える。
 偏波分離部521は、入力した光信号をX偏波の光信号とY偏波の光信号に分離する。偏波分離部521は、X偏波の光信号を光90度ハイブリッドカプラ522-1に出力し、Y偏波の光信号を光90度ハイブリッドカプラ522-2に出力する。
 光90度ハイブリッドカプラ522-1は、X偏波の光信号と、局部発振光源510から出力された局部発振光とを干渉させ、受信光電界のI成分の光信号とQ成分の光信号とを抽出する。光90度ハイブリッドカプラ522-1は、抽出したX偏波のI成分の光信号及びQ成分の光信号を、BPD523-1及び523-2へ出力する。
 光90度ハイブリッドカプラ522-2は、Y偏波の光信号と、局部発振光源510から出力された局部発振光とを干渉させ、受信光電界のI成分とQ成分とを抽出する。光90度ハイブリッドカプラ522-2は、抽出したY偏波のI成分及びQ成分を、BPD523-3及びBPD523-4に出力する。
 BPD523-1~523-4は、差動入力型の光電変換器である。BPD523-iは、特性の揃った2つのフォトダイオードにおいてそれぞれ発生する光電流の差分値を、アンプ524-iに出力する。BPD523-1は、X偏波の受信信号のI成分を電気信号に変換し、アンプ524-1に出力する。BPD523-2は、X偏波の受信信号のQ成分を電気信号に変換し、アンプ524-2に出力する。BPD523-3は、Y偏波の受信信号のI成分を電気信号に変換し、アンプ524-3に出力する。BPD523-4は、Y偏波の受信信号のQ成分を電気信号に変換し、アンプ524-4に出力する。アンプ524-i(iは1以上4以下の整数)は、BPD523-iから出力された電気信号を増幅し、デジタル信号処理部530に出力する。
 デジタル信号処理部530は、アナログ-デジタル変換器(ADC)531-1~531-4と、復調デジタル信号処理部532と、デマッピング部533と、復号部534とを備える。
 ADC531-i(iは1以上4以下の整数)は、アンプ524-iから出力された電気信号をアナログ信号からデジタル信号に変換し、復調デジタル信号処理部532に出力する。
 復調デジタル信号処理部532は、ADC531-1からX偏波の受信信号のI成分と、ADC531-2からX偏波の受信信号のQ成分と、ADC531-3からY偏波の受信信号のI成分と、ADC531-4からY偏波の受信信号のQ成分とを入力する。復調デジタル信号処理部532は、入力した各信号に対して、少なくとも等化処理、周波数オフセット及び位相ノイズの補償等の信号処理を行う。なお、復調デジタル信号処理部532は、必要に応じて、周波数特性の補償及び波長分散の補償等の信号処理を行う。
 復調デジタル信号処理部532において、周波数特性の補償及び波長分散の補償等の信号処理を行うか否かは、復調デジタル信号処理部532の構成に依存する。そのため、復調デジタル信号処理部532の構成を説明する際に具体的に説明する。復調デジタル信号処理部532は、信号処理装置の一態様である。
 デマッピング部533は、復調デジタル信号処理部532が出力した受信信号のシンボルを判定し、判定したシンボルをバイナリデータに変換する。
 復号部534は、デマッピング部533によりデマッピングされたバイナリデータにFECなどの誤り訂正復号処理を行い、受信ビット列を得る。
 なお、上記実施形態では1本の光ファイバ伝送路の例を記載しているが、空間的に多重された伝送系(例えば、マルチコアファイバ、マルチモードファイバ、及び自由空間伝送)でも同様である。
 次に、復調デジタル信号処理部532の構成について説明する。図2は、第1の実施形態における復調デジタル信号処理部532の構成の一例を示す図である。図2に示す復調デジタル信号処理部532は、等化処理、周波数オフセット及び位相ノイズの補償等の信号処理を行う。なお、図2に示す復調デジタル信号処理部532は、周波数特性の補償及び波長分散の補償等の信号処理を行わない。
 復調デジタル信号処理部532には、適応等化部54と、周波数/位相オフセット補償部55とが含まれる。適応等化部54は、入力した各信号に対して適応的に等化処理を行う。周波数/位相オフセット補償部55は、適応等化部54により等化処理が行われた受信信号に対して、周波数オフセット及び位相ノイズの補償等の処理を行う。
 次に、復調デジタル信号処理部532の動作について説明する。復調デジタル信号処理部532の適応等化部54は、ADC531-1~531-4によりデジタル信号に変換されたX偏波の受信信号の実数成分XI及び虚数成分XQと、Y偏波の受信信号の実数成分YI及び虚数成分YQとを入力する。適応等化部54は、入力した実数成分XI、虚数成分XQ、実数成分YI及び虚数成分YQのそれぞれを対応するバッファに保存する。バッファは、下記参考文献1に記載のOverlap Save法で用いるバッファに相当する。
(参考文献1:JOHN J. SHYNK, “Frequency-Domain and Multirate Adaptive Filtering”, January 1992.)
 適応等化部54は、バッファに保存されている実数成分XI、虚数成分XQ、実数成分YI及び虚数成分YQのそれぞれに対して、N(Nは自然数)点の離散フーリエ変換又は高速フーリエ変換を行う(図2に示す「N-DFT」に対応)。これにより、適応等化部54は、各偏波の実数成分及び虚数成分を周波数領域の信号に変換する。すなわち、適応等化部54は、実数成分XIの周波数領域信号、虚数成分XQの周波数領域信号、実数成分YIの周波数領域信号及び虚数成分YQの周波数領域信号を生成する。以下の説明において、数値を用いて説明する場合、N点の数が256である場合を例に説明する。
 適応等化部54により生成された実数成分XIの周波数領域信号、虚数成分XQの周波数領域信号、実数成分YIの周波数領域信号、虚数成分YQの周波数領域信号のそれぞれは分岐部により4つに分岐される。分岐された4つの周波数領域信号のうち、2つの周波数領域信号がそのまま係数演算部に入力され、残りの2つの周波数領域信号が反転及び複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 例えば、実数成分XIの周波数領域信号を例にすると、実数成分XIの周波数領域信号が分岐部により4つに分岐され、分岐された4つの実数成分XIの周波数領域信号のうち2つの周波数領域信号がそのまま係数演算部に入力され、残りの2つの周波数領域信号が反転・複素共役化部によって、反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力されることになる。
 ここで、反転及び複素共役をとった周波数領域信号とは、時間領域における複素共役信号の生成と等価演算を周波数領域上で実現するために、周波数領域上でDC(Direct current:直流成分であり、周波数0)を中心に周波数領域信号を反転して、複素共役をとった信号である。ある周波数領域の信号X(f)を考えると、反転・複素共役化部によりX(-f)の信号が出力される。以下、反転・複素共役化部により変換された実数成分の周波数領域信号を「実数成分反転複素共役信号」と記載し、虚数成分の周波数領域信号を「虚数成分反転複素共役信号」と記載する。
 係数演算部では、入力された信号に対してインパルス応答H~H16の複素伝達関数の乗算を行う。なお、図2では、係数演算部として、インパルス応答H~H16の値のみを示しているが、係数演算部の具体的な構成については図3~図6で説明する。
 適応等化部54は、インパルス応答Hの複素伝達関数の乗算が行われた実数成分XI(f)と、インパルス応答Hの複素伝達関数の乗算が行われた虚数成分XQ(f)と、インパルス応答Hの複素伝達関数の乗算が行われた実数成分YI(f)と、インパルス応答H13の複素伝達関数の乗算が行われた虚数成分YQ(f)とを加算して加算信号を生成する。その後、適応等化部54により生成された加算信号は、周波数領域上で折り畳み処理が行われる。折り畳み処理とは、シンボルレートの半分の周波数(ナイキスト周波数)より絶対値の大きい周波数の成分を、ナイキスト周波数を線対称に折り返して加算する処理である。この処理は、時間領域におけるダウンサンプリング処理に対応する。
 適応等化部54は、折り畳み処理が行われた加算信号に対してM(Mは自然数であり、N≧M)点の逆離散フーリエ変換又は逆高速フーリエ変換を行う(図2に示す「M-IDFT」に対応)。これにより、適応等化部54は、周波数領域の信号を時間領域の信号に変換する。その後、適応等化部54は、時間領域の信号に対してOverlap Save法における信号の切り出し処理を行う(図2に示す「Cut」に対応)。以下の説明において、数値を用いて説明する場合、M点の数が128である場合を例に説明する。M点の数が128である場合、Overlap Save法における信号の切り出し処理により得られるシンボル点は64になる。
 適応等化部54は、上記の処理を実現するために、バッファと、フーリエ変換部と、分岐部と、係数演算部と、加算部と、折り畳み処理部と、逆フーリエ変換部と、カット部とを有する。
 なお、上記では、折り畳み、M-IDFT、Cutの処理の順番で行われる構成を示したが、M-IDFT、Cut、ダウンサンプリングの順番で処理を行うように構成されてもよい。
 周波数/位相オフセット補償部55は、上記のように適応等化部54によって切り出された加算信号に対して周波数オフセットexp(jφ(n))を乗算する。nは、シンボル間隔を表す。
 適応等化部54は、インパルス応答Hの複素伝達関数の乗算が行われた実数成分反転複素共役信号XI(-f)と、インパルス応答Hの複素伝達関数の乗算が行われた虚数成分反転複素共役信号XQ(-f)と、インパルス応答H10の複素伝達関数の乗算が行われた実数成分反転複素共役信号YI(-f)と、インパルス応答H14の複素伝達関数の乗算が行われた虚数成分反転複素共役信号YQ(-f)とを加算して加算信号を生成する。その後、適応等化部54により生成された加算信号は、折り畳み、M-IDFT、Cutの処理が行われる。
 周波数/位相オフセット補償部55は、上記のように適応等化部54によって切り出された加算信号に対して周波数オフセットexp(-jφ(n))を乗算する。周波数/位相オフセット補償部55は、周波数オフセットexp(jφ(n))が乗算された加算信号と、周波数オフセットexp(-jφ(n))が乗算された加算信号とを加算し、X偏波成分の受信信号を得る。
 復調デジタル信号処理部532は、得られたX偏波成分の受信信号に、X偏波成分のバイアスずれをキャンセルするための送信データバイアス補正信号Cを加算(又は減算)し、歪み補正を行ったX偏波成分の受信信号XRsig(n)を得る。
 一方、適応等化部54は、インパルス応答Hの複素伝達関数の乗算が行われた実数成分XI(f)と、インパルス応答Hの複素伝達関数の乗算が行われた虚数成分XQ(f)と、インパルス応答H11の複素伝達関数の乗算が行われた実数成分YI(f)と、インパルス応答H15の複素伝達関数の乗算が行われた虚数成分YQ(f)とを加算して加算信号を生成する。その後、適応等化部54により生成された加算信号は、折り畳み、M-IDFT、Cutの処理が行われる。周波数/位相オフセット補償部55は、適応等化部54によって切り出された加算信号に対して周波数オフセットexp(jφ(n))を乗算する。
 適応等化部54は、インパルス応答Hの複素伝達関数の乗算が行われた実数成分反転複素共役信号XI(-f)と、インパルス応答H12の複素伝達関数の乗算が行われた虚数成分反転複素共役信号XQ(-f)と、インパルス応答H16の複素伝達関数の乗算が行われた実数成分反転複素共役信号YI(-f)と、インパルス応答H14の複素伝達関数の乗算が行われた虚数成分反転複素共役信号YQ(-f)とを加算して加算信号を生成する。その後、適応等化部54により生成された加算信号は、折り畳み、M-IDFT、Cutの処理が行われる。
 周波数/位相オフセット補償部55は、上記のように適応等化部54によって切り出された加算信号に対して周波数オフセットexp(-jφ(n))を乗算する。周波数/位相オフセット補償部55は、周波数オフセットexp(jφ(n))が乗算された加算信号と、周波数オフセットexp(-jφ(n))が乗算された加算信号とを加算し、Y偏波成分の受信信号を得る。
 復調デジタル信号処理部532は、得られたY偏波成分の受信信号に、Y偏波成分のバイアスずれをキャンセルするための送信データバイアス補正信号Cを加算(又は減算)し、歪み補正を行ったX偏波成分の受信信号YRsig(n)を得る。
 なお、Nの値、Mの値、インパルス応答H~H16、及び、周波数オフセットexp(jφ(n))、exp(-jφ(n))、exp(jφ(n))、exp(-jφ(n))は適応的かつ動的に変更される。受信機50は、これらの値を任意の方法により取得する。
 次に、係数演算部の構成及び動作について説明する。図3~図6は、係数演算部の構成の一例を示す図である。図3~図6に示すように、復調デジタル信号処理部532が備える係数演算部は、4つの係数演算部を含む。図3に示す係数演算部は、インパルス応答H,H,H,Hを算出する機能部である。図4に示す係数演算部は、インパルス応答H,H,H,Hを算出する機能部である。図5に示す係数演算部は、インパルス応答H,H11,H13,H15を算出する機能部である。図6に示す係数演算部は、インパルス応答H10,H12,H14,H16を算出する機能部である。係数演算部は、係数更新部を備える。係数更新部は、インパルス応答の値を更新する。
 以下の説明において、図3に示す係数演算部を「第1係数演算部」と記載し、図4に示す係数演算部を「第2係数演算部」と記載し、図5に示す係数演算部を「第3係数演算部」と記載し、図6に示す係数演算部を「第4係数演算部」と記載する。なお、第1係数演算部から第4係数演算部を特に区別しない場合には、単に係数演算部と記載する。以下、係数演算部の動作について説明する。
(第1係数演算部の動作)
 第1係数演算部には実数成分XIの周波数領域信号と、虚数成分XQの周波数領域信号とが入力される。第1係数演算部に入力された実数成分XIの周波数領域信号と、虚数成分XQの周波数領域信号とはそれぞれ、第1の経路と第2の経路に分岐される。第1の経路では、実数成分XIの周波数領域信号と、虚数成分XQの周波数領域信号に対して、係数更新部により更新された複素伝達関数の乗算が行われる。
 第2の経路では、実数成分XIの周波数領域信号と、虚数成分XQの周波数領域信号とが反転・複素共役化部によって、反転、かつ、複素共役をとった周波数領域信号に変換される。これにより、第1係数演算部に入力された実数成分XIの周波数領域信号は実数成分反転複素共役信号に変換され、虚数成分XQの周波数領域信号は虚数成分反転複素共役信号に変換される。
 第1係数演算部において実数成分反転複素共役信号及び虚数成分反転複素共役信号は、受信信号に基づく信号と乗算される。ここで、受信信号に基づく信号は、以下の処理(1)~(5)に基づいて得られる信号である。
(1):参照信号(例えば、d(n))から受信信号(例えば、XRsig(n))を減算
(2):(1)の処理で得られた信号に対して周波数オフセット(例えば、exp(-jφ(n)))を乗算
(3):(2)の処理で得られた信号に対してゼロを追加(図3に示す「ゼロ追加」に対応)
(4):(3)の処理で得られた信号をM点の逆離散フーリエ変換又は逆高速フーリエ変換(図3に示す「M-DFT」に対応)
(5):(4)の処理で得られた周波数領域の信号を周波数領域でコピー(図3に示す「折り返しコピー」に対応)
 参照信号(例えば、d(n)又はd(n))は、送信側で予め挿入したパイロット信号、又は、受信信号(例えば、XRsig(n)又はYRsig(n))を仮判定した値等が用いられる。(3)に示すゼロを追加する処理は、参考文献1に記載されているOverlap Save法においてCutされる信号長にM/N倍した個数のゼロを入力信号に追加する処理である。ゼロを追加する処理では、入力信号に対して、Cutされる信号長にM/N倍した個数のゼロが連続して追加される。(5)に示す周波数領域でコピーは、ナイキスト周波数を基準にして、線対称に周波数領域信号をコピーする処理である。(5)に示す周波数領域でコピーは、時間領域でのアップサンプリング処理に対応する。
 なお、上記では、ゼロ追加、M-DFT、折り返しコピーの処理を行う構成を示したが、代わりにアップサンプリング、N-DFTの処理を行ってもよい。
 受信信号に基づく信号が乗算された実数成分反転複素共役信号及び虚数成分反転複素共役信号は、係数更新部に入力される。係数更新部では、受信信号に基づく信号が乗算された実数成分反転複素共役信号及び虚数成分反転複素共役信号に対して、N-IDFT、Cut、ゼロ追加、N-DFT、ステップサイズμの乗算、1つ前のインパルス応答の値の加算の処理を行う。ステップサイズμとして、周波数ビン毎にステップサイズを入力信号電力で規格化する規格化LMS(参考文献1)が用いられてもよい。
 第1係数演算部の処理として、インパルス応答Hを更新する処理を例に説明すると、係数更新部は、まず受信信号に基づく信号が乗算された実数成分反転複素共役信号(ここでは信号A1とする)に対してN(例えば、N=256)点の逆離散フーリエ変換又は逆高速フーリエ変換を行う。これにより、係数更新部は、周波数領域の信号A1を時間領域の信号A1に変換する。次に、係数更新部は、時間領域の信号A1に対してOverlap Save法における信号の切り出し処理を行う。次に、係数更新部は、切り出し処理が行われた時間領域の信号A1に対してゼロを追加する処理を行う。次に、係数更新部は、ゼロを追加した時間領域の信号A1に、ステップサイズμを乗算する。次に、係数更新部は、ステップサイズμを乗算した時間領域の信号A1に、1つ前に得られたインパルス応答Hの値を加算することによって、インパルス応答Hの値を更新する。
 なお、第1係数演算部においてインパルス応答Hを更新する処理は、ステップサイズの値が異なる点を除けば上記で説明した処理と同様である。さらに、第1係数演算部においてインパルス応答H,Hを更新する処理は、受信信号に基づく信号が乗算された虚数成分反転複素共役信号が係数更新部に入力される点と、ステップサイズの値が異なる点とを除けば上記で説明した処理と同様である。
(第2係数演算部の動作)
 第2係数演算部には、実数成分XIの実数成分反転複素共役信号と、虚数成分XQの虚数成分反転複素共役信号とが入力される。第2係数演算部に入力された実数成分XIの実数成分反転複素共役信号と、虚数成分XQの虚数成分反転複素共役信号とはそれぞれ、第1の経路と第2の経路に分岐される。第1の経路では、実数成分XIの実数成分反転複素共役信号と、虚数成分XQの虚数成分反転複素共役信号に対して、係数更新部により更新された複素伝達関数の乗算が行われる。
 第2の経路では、実数成分XIの実数成分反転複素共役信号と、虚数成分XQの虚数成分反転複素共役信号とが反転・複素共役化部によって、反転、かつ、複素共役をとった周波数領域信号に変換される。これにより、第2係数演算部に入力された実数成分XIの実数成分反転複素共役信号は実数成分XIの周波数信号に変換され、虚数成分XQの虚数成分反転複素共役信号は虚数成分XQの周波数領域信号に変換される。
 第2係数演算部において実数成分XIの周波数信号及び虚数成分XQの周波数領域信号は、上述した受信信号に基づく信号と乗算される。ただし、第2係数演算部における受信信号に基づく信号では、周波数オフセットとして、周波数オフセットexp(jφ(n))が、(1)の処理で得られた信号に対して乗算される。受信信号に基づく信号が乗算された実数成分XIの周波数信号及び虚数成分XQの周波数領域信号は、係数更新部に入力される。係数更新部では、受信信号に基づく信号が乗算された実数成分XIの周波数信号及び虚数成分XQの周波数領域信号に対して、N-IDFT、Cut、ゼロ追加、N-DFT、ステップサイズμの乗算、1つ前のインパルス応答の値の加算の処理を行う。係数更新部が行う処理は、図3で説明した処理と同様であるため説明を省略する。
(第3係数演算部の動作)
 第3係数演算部が行う処理は、入力された信号がY偏波の信号である点、係数更新部で用いるステップサイズが異なる点及び受信信号に基づく信号の生成において、周波数オフセットとして、周波数オフセットexp(jφ(n))が、参照信号(例えば、d(n))から受信信号(例えば、YRsig(n))を減算して得られた信号に対して乗算される点以外は、第1係数演算部が行う処理と同様である。
(第4係数演算部の動作)
 第4係数演算部が行う処理は、入力された信号がY偏波の信号である点、係数更新部で用いるステップサイズが異なる点及び受信信号に基づく信号の生成において、周波数オフセットとして、周波数オフセットexp(-jφ(n))が、参照信号(例えば、d(n))から受信信号(例えば、YRsig(n))を減算して得られた信号に対して乗算される点以外は、第2係数演算部が行う処理と同様である。
 なお、係数更新部におけるCut及びゼロ追加の処理は、時間領域での矩形の窓関数の乗算に対応する。時間領域での窓関数をCosine窓に変更し、周波数領域の畳み込みとして処理することで、N-IDFT及びN-DFTを省略することができ、簡略化することも可能である。
 以上のように構成された復調デジタル信号処理部532によれば、周波数領域において畳み込み演算を行うことができるため演算量を低減することが可能になる。その結果、デジタルコヒーレント光伝送システムの受信機の省電力化を実現することが可能になる。
(第1の実施形態の変形例)
 復調デジタル信号処理部532は、周波数特性の補償及び波長分散の補償等の信号処理を行う構成を備えてもよい。図7は、第1の実施形態の変形例における復調デジタル信号処理部532aの構成の一例を示す図である。復調デジタル信号処理部532aには、適応等化部54と、周波数/位相オフセット補償部55と、フロントエンド補正及び波長分散推定部56が含まれる。復調デジタル信号処理部532aは、適応等化部54を構成する機能部の間に、フロントエンド補正及び波長分散推定部56が備えられている点で復調デジタル信号処理部532と構成が異なる。復調デジタル信号処理部532aのその他の構成については、復調デジタル信号処理部532と同様である。以下、相違点について説明する。
 フロントエンド補正及び波長分散推定部56は、周波数領域の信号に対して受信側デバイス特性及び波長分散の補償用係数を乗算する。例えば、フロントエンド補正及び波長分散推定部56は、実数成分XIの周波数領域の信号に対して受信側デバイス特性HRXI及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRXI及び波長分散の補償用係数HCDが乗算された実数成分XIの周波数領域の信号は、4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。以降の処理は、上述した処理と同様である。
 同様に、フロントエンド補正及び波長分散推定部56は、虚数成分XQの周波数領域の信号に対して受信側デバイス特性HRXQ及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRXQ及び波長分散の補償用係数HCDが乗算された虚数成分XQの周波数領域の信号は、4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 同様に、フロントエンド補正及び波長分散推定部56は、実数成分YIの周波数領域の信号に対して受信側デバイス特性HRYI及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRYI及び波長分散の補償用係数HCDが乗算された実数成分YIの周波数領域の信号は、4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 同様に、フロントエンド補正及び波長分散推定部56は、虚数成分YQの周波数領域の信号に対して受信側デバイス特性HRYQ及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRYQ及び波長分散の補償用係数HCDが乗算された虚数成分YQの周波数領域の信号は、4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 なお、フロントエンド補正及び波長分散推定部56において、受信側デバイス特性と波長分散の補償用係数を予め乗算したものを設定しておいても良いし、主信号および係数の周波数ビンをシフトさせることで周波数オフセット補償を行ってもよい。
 なお、復調デジタル信号処理部532aの構成において、フロントエンド補正及び波長分散推定部56は、バッファよりも前段に備えられてもよい。
 復調デジタル信号処理部532aは、フロントエンド補正及び波長分散推定部56を備えるのではなく、主信号および係数を周波数シフトさせることで周波数オフセット補償を行っても良い。
 図8は、図7に示す構成による、128GBaud、256QAM(Quadrature Amplitude Modulation)の受信SNR(Signal-Noise Ratio)のN-DFTサイズ依存性(DFTをFFTで演算)を表す図である。図8に示すように、DFTサイズを大きくすると補償可能な時間応答(周波数分解能)が増加するため、受信SNR(信号対雑音比)が改善していることがわかる。
 図9は、従来の構成(例えば、特許文献1に記載の構成)と、図7に示す構成の乗算数の比較結果を表す図である。なお、図9では、入力サンプリングレート:256GSample/a、シンボルレート:128GBaud、DFTサイズ:N、IDFTブロックサイズ:M=N/2(DFT及びIDFTは高速フーリエ変換(FFT)および逆高速フーリエ変換(IFFT)での演算を想定)、Overlap Save法のオーバーラップ量を1/2(この際、補償可能範囲な時間応答長は(N/2×サンプリング間隔)となり、N/2のタップ長を持つ従来構成と同一な補償性能となる)としている。ただし図9では、受信側デバイス不完全性係数および分散補償係数の演算量を除いている (適応フィルタ係数の演算のみ考える)。
 高速フーリエ変換において乗算数は4×(N/2)×log(N)、高速逆フーリエ変換の乗算数は4×(N/4)×log(N/2)、適応フィルタ係数の乗算数は16×Nである。本条件では1回のブロックから出力できるシンボル数はN/4であるため、シンボルあたりの乗算回数は2×log(N)+4×log(N/2)+64となる。従来の構成ではシンボルあたりの畳み込み演算の乗算回数を考えれば良いため、適応フィルタのタップ数Lに対して16Lとなる。
(第2の実施形態)
 第2の実施形態では、第1の実施形態よりも離散フーリエ変換又は高速フーリエ変換の回数を低減可能な構成について説明する。なお、第2の実施形態では、復調デジタル信号処理部に含まれる構成のうち適応等化部の構成が第1の実施形態と異なる。そのため、第1の実施形態の相違点についてのみ説明する。
 図10は、第2の実施形態における復調デジタル信号処理部532bの構成の一例を示す図である。なお、図10において、第1の実施形態と同様の構成である周波数/位相オフセット補償部55以降の構成については省略している。図10に示す復調デジタル信号処理部532bの適応等化部54bは、分岐部より前段の構成が適応等化部54と異なる。なお、復調デジタル信号処理部532bは、周波数特性の補償及び波長分散の補償等の信号処理を行わない。
 適応等化部54bは、ADC531-1~531-4によりデジタル信号に変換されたX偏波の受信信号の実数成分XI及び虚数成分XQと、Y偏波の受信信号の実数成分YI及び虚数成分YQとを入力する。適応等化部54bは、入力した虚数成分XQに対して虚数単位jを乗算して虚数成分jXQを生成する。適応等化部54bは、実数成分XIと、虚数成分jXQとを加算する。これにより、適応等化部54bは、XI+jXQの加算信号を生成する。適応等化部54bは、生成した加算信号をバッファに保存する。
 適応等化部54bは、バッファに保存されている加算信号に対して、N点の離散フーリエ変換又は高速フーリエ変換を行う(図10に示す「N-DFT」に対応)。これにより、適応等化部54bは、X偏波の加算信号を周波数領域の信号に変換する。
 適応等化部54bにより生成された周波数領域の加算信号は、2つに分岐される。分岐された1つの周波数領域の加算信号は、反転、かつ、複素共役をとった周波数領域信号に変換される。以下の説明では、分岐部より前段において、分岐後に反転、かつ、複素共役をとった周波数領域信号に変換された周波数領域の加算信号を「周波数領域の変換後加算信号」と記載し、分岐後に反転、かつ、複素共役をとった周波数領域信号に変換されなかった周波数領域の加算信号を「周波数領域の変換前加算信号」と記載する。
 周波数領域の変換前加算信号及び周波数領域の変換後加算信号のそれぞれは、2つに分岐され、適応等化部54bは周波数領域の変換前加算信号と周波数領域の変換後加算信号とを加算した後に、1/2を乗算する。この信号は、第1の実施形態における実数成分XIの周波数領域の信号と等価の信号である。その後、1/2が乗算された加算信号(実数成分XIの周波数領域の信号)は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 さらに、適応等化部54bは、周波数領域の変換前加算信号から周波数領域の変換後加算信号を減算した後に、1/2jを乗算する。この信号は、第1の実施形態における虚数成分XQの周波数領域の信号と等価の信号である。その後、1/2jが乗算された信号(虚数成分XQの周波数領域の信号)は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 以上がX偏波に関する処理である。
 同様に、適応等化部54bは、入力した虚数成分YQに対して虚数単位jを乗算して虚数成分jYQを生成する。適応等化部54bは、実数成分YIと、虚数成分jYQとを加算する。これにより、適応等化部54bは、YI+jYQの加算信号を生成する。適応等化部54bは、生成した加算信号をバッファに保存する。
 適応等化部54bは、バッファに保存されている加算信号に対して、N点の離散フーリエ変換又は高速フーリエ変換を行う(図10に示す「N-DFT」に対応)。これにより、適応等化部54bは、Y偏波の加算信号を周波数領域の信号に変換する。
 適応等化部54bにより生成された周波数領域の加算信号は、2つに分岐される。分岐された1つの周波数領域の加算信号は、反転、かつ、複素共役をとった周波数領域信号に変換される。周波数領域の変換前加算信号及び周波数領域の変換後加算信号のそれぞれは、2つに分岐され、適応等化部54bは周波数領域の変換前加算信号と周波数領域の変換後加算信号とを加算した後に、1/2を乗算する。この信号は、第1の実施形態における実数成分YIの周波数領域の信号と等価の信号である。その後、1/2が乗算された加算信号(実数成分YIの周波数領域の信号)は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 さらに、適応等化部54bは、周波数領域の変換前加算信号から周波数領域の変換後加算信号を減算した後に、1/2jを乗算する。この信号は、第1の実施形態における虚数成分YQの周波数領域の信号と等価の信号である。その後、1/2jが乗算された信号(虚数成分YQの周波数領域の信号)は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 以上がY偏波に関する処理である。
 なお、適応等化部54bにおいて、係数演算部以降の処理は、第1の実施形態と同様である。
 以上のように構成された第2の実施形態における復調デジタル信号処理部532bによれば、第1の実施形態に比べて離散フーリエ変換又は高速フーリエ変換の回数を減らすことができる。具体的には、第2の実施形態における復調デジタル信号処理部532では、実数成分XIと虚数成分XQとを加算した後に離散フーリエ変換又は高速フーリエ変換を行っている。これにより、実数成分XI及び虚数成分XQそれぞれで離散フーリエ変換又は高速フーリエ変換を行う必要がない。そのため、第1の実施形態に比べて離散フーリエ変換又は高速フーリエ変換の回数を減らすことができる。
(第2の実施形態の変形例)
 適応等化部54bは、第1の実施形態と同様に、周波数特性の補償及び波長分散の補償等の信号処理を行う構成を備えてもよい。図11は、第2の実施形態の変形例における復調デジタル信号処理部532cの構成の一例を示す図である。なお、図11において、第1の実施形態と同様の構成である周波数/位相オフセット補償部55以降の構成については省略している。
 復調デジタル信号処理部532cには、適応等化部54bと、周波数/位相オフセット補償部55(図11では省略)と、フロントエンド補正及び波長分散推定部56が含まれる。復調デジタル信号処理部532cは、適応等化部54bを構成する機能部の間に、フロントエンド補正及び波長分散推定部56が備えられている点で図10に示す構成と異なる。復調デジタル信号処理部532cのその他の構成については、図10に示す構成と同様である。以下、相違点について説明する。
 フロントエンド補正及び波長分散推定部56は、1/2が乗算された加算信号(実数成分XIの周波数領域の信号)に対して受信側デバイス特性HRXI及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRXI及び波長分散の補償用係数HCDが乗算された実数成分XIの周波数領域の信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。以降の処理は、上述した処理と同様である。
 同様に、フロントエンド補正及び波長分散推定部56は、1/2jが乗算された加算信号(虚数成分XQの周波数領域の信号)に対して受信側デバイス特性HRXQ及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRXQ及び波長分散の補償用係数HCDが乗算された虚数成分XQの周波数領域の信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 同様に、フロントエンド補正及び波長分散推定部56は、1/2が乗算された加算信号(実数成分YIの周波数領域の信号)に対して受信側デバイス特性HRYI及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRYI及び波長分散の補償用係数HCDが乗算された実数成分YIの周波数領域の信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 同様に、フロントエンド補正及び波長分散推定部56は、1/2jが乗算された加算信号(虚数成分YQの周波数領域の信号)に対して受信側デバイス特性HRYQ及び波長分散の補償用係数HCDを乗算する。受信側デバイス特性HRYQ及び波長分散の補償用係数HCDが乗算された虚数成分YQの周波数領域の信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 復調デジタル信号処理部532cは、フロントエンド補正及び波長分散推定部56を備えるのではなく、主信号および係数を周波数シフトさせることで周波数オフセット補償を行っても良い。
(第3の実施形態)
 第3の実施形態では、復調デジタル信号処理部に含まれる構成のうち適応等化部の構成が第2の実施形態と異なる。そのため、第2の実施形態との相違点について説明する。
 図12は、第3の実施形態における復調デジタル信号処理部532dの構成の一例を示す図である。なお、図12において、第2の実施形態(特に、図11に示す復調デジタル信号処理部532c)と同様の構成である周波数/位相オフセット補償部55以降の構成については省略している。復調デジタル信号処理部532dには、適応等化部54dと、周波数/位相オフセット補償部55(図12では省略)が含まれる。
 適応等化部54dは、X偏波の周波数領域の変換前加算信号に対して、受信側デバイス特性HRXIと受信側デバイス特性HRXQとを加算した値(1/2×HCD )を乗算する。
 同様に、適応等化部54dは、X偏波の周波数領域の変換後加算信号に対して、受信側デバイス特性HRXIから受信側デバイス特性HRXQを減算した値(1/2×HCD )を乗算する。1/2×HCD が乗算されたX偏波の周波数領域の変換前加算信号及び1/2×HCD が乗算されたX偏波の周波数領域の変換後加算信号のそれぞれは、2つに分岐される。
 適応等化部54dは、1/2×HCD が乗算されたX偏波の周波数領域の変換前加算信号と、1/2×HCD が乗算されたX偏波の周波数領域の変換後加算信号とを加算する。その後、この加算信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 さらに、適応等化部54dは、1/2×HCD が乗算されたX偏波の周波数領域の変換後加算信号から1/2×HCD が乗算されたX偏波の周波数領域の変換前加算信号を減算する。その後、この減算された信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 以上がX偏波に関する処理である。
 適応等化部54dは、Y偏波の周波数領域の変換前加算信号に対して、受信側デバイス特性HRYIと受信側デバイス特性HRYQとを加算した値(1/2×HCD )を乗算する。同様に、適応等化部54dは、Y偏波の周波数領域の変換後加算信号に対して、受信側デバイス特性HRYIから受信側デバイス特性HRYQを減算した値(1/2×HCD )を乗算する。1/2×HCD が乗算されたY偏波の周波数領域の変換前加算信号及び1/2×HCD が乗算されたY偏波の周波数領域の変換後加算信号のそれぞれは、2つに分岐される。
 適応等化部54dは、1/2×HCD が乗算されたY偏波の周波数領域の変換前加算信号と、1/2×HCD が乗算されたY偏波の周波数領域の変換後加算信号とを加算する。その後、この加算信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 さらに、適応等化部54dは、1/2×HCD が乗算されたY偏波の周波数領域の変換後加算信号から1/2×HCD が乗算されたY偏波の周波数領域の変換前加算信号を減算する。その後、この減算された信号は、分岐部により4つに分岐され、分岐された4つの信号のうち2つの信号がそのまま係数演算部に入力され、残りの2つの信号が反転、かつ、複素共役をとった周波数領域信号に変換されて係数演算部に入力される。
 以上がY偏波に関する処理である。
 なお、適応等化部54dにおいて、係数演算部以降の処理は、第2の実施形態と同様である。
 以上のように構成された第3の実施形態における復調デジタル信号処理部532dによれば、第2の実施形態と異なる形態で、第1の実施形態に比べて離散フーリエ変換又は高速フーリエ変換の回数を減らすことができる。なお、第3の実施形態における復調デジタル信号処理部532dの構成では、HRXI-HRXQ,HRYI-HRYQが小さければビット精度を低減することが可能である。
(第3の実施形態の変形例)
 復調デジタル信号処理部532dは、N-DFT以降であって、分岐部の前段において主信号および係数を周波数シフトさせることで周波数オフセット補償を行っても良い。
(第1の実施形態から第3の実施形態に共通する変形例)
 上記の各実施形態において、偏波分割多重に加えて、波長分割多重を行う構成が組み合わされてもよい。このように構成される場合の図1に示すデジタルコヒーレント光伝送システム1と異なる点として、以下の構成が挙げられる。
 送信機10は、WDM(Wavelength Division Multiplexing)のチャネル数分の送信部100をさらに有する。例えば、WDMのチャネル数が10である場合、送信機10は10台の送信部100を有することになる。各送信部100はそれぞれ、異なる波長の光信号を出力する。送信機10と受信機50との間には、WDM合波器と光ファイバ伝送路30とWDM分波器とが備えられる。WDM合波器は、各送信部100が出力した光信号を合波し、光ファイバ伝送路30に出力する。WDM分波器は、光ファイバ伝送路30を伝送した光信号を波長により分波する。受信機50は、WDMのチャネル数分の受信部500をさらに有する。例えば、WDMのチャネル数が10である場合、受信機50は10台の受信部500を有することになる。各受信部500は、WDM分波器40が分波した光信号を受信する。各受信部500が受信する光信号の波長はそれぞれ異なる。受信部500において実行される処理は、上述した処理と同様である。
 上記の各実施形態において、N=Mの場合、適応等化部54,54b,54dにおける折り畳みの処理は行わなくてよい。
 上述した実施形態における受信機50の一部の機能部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field-Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、デジタルコヒーレント光伝送において、シングルキャリアの偏波多重信号を受信する技術に適用できる。
1…デジタルコヒーレント光伝送システム
10…送信機
30…光ファイバ伝送路
31…光増幅器
50…受信機
54、54b、54d…適応等化部
55…周波数/位相オフセット補償部
56…フロントエンド補正及び波長分散推定部
100…送信部
110…デジタル信号処理部
111…符号化部
112…マッピング部
113…トレーニング信号挿入部
114…周波数変換部
115…波形整形部
116…予等化部
117-1~117-4…デジタル-アナログ変換器
120…変調器ドライバ
121-1~121-4…アンプ
130…光源
140…集積モジュール
141-1、141-2…IQ変調器
142…偏波合成部
500…受信部
510…局部発振光源
520…光フロントエンド
521…偏波分離部
522-1、522-2…光90度ハイブリッドカプラ
523-1~523-4…BPD
524-1~524-4…アンプ
530…デジタル信号処理部
531-1~531-4…アナログ-デジタル変換器
532、532a、532b、532c、532d…復調デジタル信号処理部
533…デマッピング部
534…復号部

Claims (7)

  1.  偏波多重された受信信号の各偏波の実数成分及び虚数成分を周波数領域信号に変換する変換ステップと、
     各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号と、各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれについて周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号とを入力信号として入力する信号入力ステップと、
     偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の周波数領域信号及び前記虚数成分の変換後の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化ステップと、
     各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償ステップと、
     を有する信号処理方法。
  2.  偏波多重された受信信号の各偏波の虚数成分に虚数単位jを乗算する虚数単位乗算処理を行った後に、虚数単位jが乗算された前記虚数成分と、偏波多重された受信信号の各偏波の実数成分とを加算する加算処理を行う加算処理ステップと、
     前記虚数単位jが乗算された前記虚数成分と、前記実数成分との加算処理後の信号を周波数領域信号に変換する変換ステップと、
     各偏波の前記周波数領域信号に対して演算が施された後の演算済み周波数領域信号と、各偏波の前記周波数領域信号について周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号に対して演算が施された後の変換後の演算済み周波数領域信号とを入力信号として入力する信号入力ステップと、
     偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の演算済み周波数領域信号及び前記虚数成分の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の演算済み周波数領域信号及び前記虚数成分の変換後の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化ステップと、
     各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償ステップと、
     を有する信号処理方法。
  3.  前記信号入力ステップにおいて、前記周波数領域信号を第1経路及び第2経路に分岐し、前記第1経路に分岐された前記周波数領域信号と、前記第2経路に分岐されて周波数反転かつ複素共役された周波数領域信号とを加算した後に1/2倍する第一信号処理と、前記第1経路に分岐された前記周波数領域信号から、前記第2経路に分岐されて周波数反転かつ複素共役された周波数領域信号を減算した後に1/2j倍する第二信号処理と、を偏波毎に行った後に前記入力信号を生成する、
     請求項2に記載の信号処理方法。
  4.  前記信号入力ステップにおいて、前記周波数領域信号を第1経路及び第2経路に分岐し、前記第1経路に分岐された前記周波数領域信号の周波数特性の補償及び波長分散補償を行った後の周波数領域信号と、前記第2経路に分岐されて周波数反転かつ複素共役されて周波数特性の補償及び波長分散補償を行った後の周波数領域信号とを加算する第一信号処理と、前記第1経路に分岐された前記周波数領域信号の周波数特性の補償及び波長分散補償を行った後の周波数領域信号から、前記第2経路に分岐されて周波数反転かつ複素共役されて周波数特性の補償及び波長分散補償を行った後の周波数領域信号を減算する第二信号処理と、を偏波毎に行った後に前記入力信号を生成する、
     請求項2に記載の信号処理方法。
  5.  偏波多重された受信信号の各偏波の実数成分及び虚数成分を周波数領域信号に変換する周波数変換部と、
     各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号と、各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれについて周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号とを入力信号として入力する信号入力部と、
     偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の周波数領域信号及び前記虚数成分の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の周波数領域信号及び前記虚数成分の変換後の周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化部と、
     各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償部と、
     を備える信号処理装置。
  6.  偏波多重された受信信号の各偏波の虚数成分に虚数単位jを乗算する虚数単位乗算処理を行った後に、虚数単位jが乗算された前記虚数成分と、偏波多重された受信信号の各偏波の実数成分とを加算する加算処理を行う加算部と、
     前記虚数単位jが乗算された前記虚数成分と、前記実数成分との加算処理後の信号を周波数領域信号に変換する周波数変換部と、
     各偏波の前記周波数領域信号に対して演算が施された後の演算済み周波数領域信号と、各偏波の前記周波数領域信号について周波数軸上における周波数反転を行い、かつ、複素共役をとった変換後の周波数領域信号に対して演算が施された後の変換後の演算済み周波数領域信号とを入力信号として入力する信号入力部と、
     偏波毎に、前記入力信号に含まれる各偏波の前記実数成分の演算済み周波数領域信号及び前記虚数成分の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第一等化処理と、前記入力信号に含まれる各偏波の前記実数成分の変換後の演算済み周波数領域信号及び前記虚数成分の変換後の演算済み周波数領域信号それぞれに複素伝達関数を乗算したのち加算し、周波数領域信号から時間領域信号に逆変換する第二等化処理とを行う等化部と、
     各偏波ごとに、前記第一等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の位相回転を施して第一加算信号を生成し、前記第二等化処理によって変換された前記時間領域信号に対して周波数オフセット補償用の前記位相回転とは逆の位相回転を施して第二加算信号を生成し、前記第一加算信号と前記第二加算信号とを加算した信号に、送信データバイアス補正信号を加算又は減算する補償部と、
     を備える信号処理装置。
  7.  偏波多重を行った偏波多重信号を送信する送信機と、請求項5又は6に記載の信号処理装置を有する受信機とを備える通信システム。
PCT/JP2022/005466 2022-02-10 2022-02-10 信号処理方法、信号処理装置及び通信システム WO2023152909A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005466 WO2023152909A1 (ja) 2022-02-10 2022-02-10 信号処理方法、信号処理装置及び通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005466 WO2023152909A1 (ja) 2022-02-10 2022-02-10 信号処理方法、信号処理装置及び通信システム

Publications (1)

Publication Number Publication Date
WO2023152909A1 true WO2023152909A1 (ja) 2023-08-17

Family

ID=87563944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005466 WO2023152909A1 (ja) 2022-02-10 2022-02-10 信号処理方法、信号処理装置及び通信システム

Country Status (1)

Country Link
WO (1) WO2023152909A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134321A1 (ja) * 2009-05-18 2010-11-25 日本電信電話株式会社 信号生成回路、光信号送信装置、信号受信回路、光信号同期確立方法、および光信号同期システム
JP2018152744A (ja) * 2017-03-14 2018-09-27 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
WO2020175014A1 (ja) * 2019-02-28 2020-09-03 日本電信電話株式会社 信号処理方法、信号処理装置及び通信システム
JP2021145171A (ja) * 2020-03-10 2021-09-24 富士通株式会社 伝送路監視装置及び伝送路監視方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134321A1 (ja) * 2009-05-18 2010-11-25 日本電信電話株式会社 信号生成回路、光信号送信装置、信号受信回路、光信号同期確立方法、および光信号同期システム
JP2018152744A (ja) * 2017-03-14 2018-09-27 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
WO2020175014A1 (ja) * 2019-02-28 2020-09-03 日本電信電話株式会社 信号処理方法、信号処理装置及び通信システム
JP2021145171A (ja) * 2020-03-10 2021-09-24 富士通株式会社 伝送路監視装置及び伝送路監視方法

Similar Documents

Publication Publication Date Title
JP7128420B2 (ja) 信号処理方法、信号処理装置及び通信システム
US7701842B2 (en) Low conversion rate digital dispersion compensation
JP5850041B2 (ja) 光受信器、偏波分離装置、および光受信方法
US8831081B2 (en) Digital filter device, digital filtering method and control program for the digital filter device
WO2018168061A1 (ja) 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
US9077455B2 (en) Optical receiver having a MIMO equalizer
JP5390607B2 (ja) 予等化伝送システム
US20150372764A1 (en) Optical receiver having an equalization filter with an integrated signal re-sampler
EP3048746B1 (en) Method and device for estimation of chromatic dispersion in optical coherent communication
US9369213B1 (en) Demultiplexing processing for a receiver
WO2013185845A1 (en) Method for adapting an equalizer to equalize a composite characteristic of an optical communication channel
WO2014155775A1 (ja) 信号処理装置、光通信システム、及び信号処理方法
US11539447B2 (en) Subcarrier based adaptive equalization of electrical filtering effects on sub-carrier multiplexed signals
Lagha et al. Blind Joint Polarization Demultiplexing and IQ Imbalance Compensation for $ M $-QAM Coherent Optical Communications
US10505641B2 (en) Clock recovery for band-limited optical channels
WO2014060031A1 (en) Method and apparatus for estimating channel coefficients of a mimo communications channel
Roudas Coherent optical communication systems
WO2023152909A1 (ja) 信号処理方法、信号処理装置及び通信システム
WO2023152904A1 (ja) 信号処理方法、信号処理装置及び通信システム
Liu et al. Blind I/Q imbalance and nonlinear ISI mitigation in Nyquist-SCM direct detection system with cascaded widely linear and Volterra equalizer
US11283527B2 (en) Optical transmitting system, optical transmitting apparatus, optical receiving apparatus and transfer function estimating method
WO2022259367A1 (ja) 信号処理方法、信号処理装置及び通信システム
WO2023248285A1 (ja) マルチキャリア信号波形等化回路及びマルチキャリア信号波形等化方法
WO2023131985A1 (ja) 推定方法、光受信装置及びコンピュータプログラム
WO2023135698A1 (ja) 特性計測装置、特性計測方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925930

Country of ref document: EP

Kind code of ref document: A1