WO2023152455A1 - Multifunctional composite fibered structures - Google Patents

Multifunctional composite fibered structures Download PDF

Info

Publication number
WO2023152455A1
WO2023152455A1 PCT/FR2023/050184 FR2023050184W WO2023152455A1 WO 2023152455 A1 WO2023152455 A1 WO 2023152455A1 FR 2023050184 W FR2023050184 W FR 2023050184W WO 2023152455 A1 WO2023152455 A1 WO 2023152455A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
preform
fiber
glass transition
materials
Prior art date
Application number
PCT/FR2023/050184
Other languages
French (fr)
Inventor
Clément STRUTYNSKI
Frédéric SMEKTALA
Frédéric DESEVEDAVY
Bertrand KIBLER
Claire-Hélène BRACHAIS
Original Assignee
Centre National De La Recherche Scientifique
Université de Bourgogne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Université de Bourgogne filed Critical Centre National De La Recherche Scientifique
Publication of WO2023152455A1 publication Critical patent/WO2023152455A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/026Drawing fibres reinforced with a metal wire or with other non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/048Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the present invention relates to a process for preparing hybrid composite fibers as well as the hybrid composite fibers that can be obtained according to this process.
  • the invention also relates to the use of these fibers in optical devices.
  • T g amorphous polymers polyethersulfone (PES), polysulfones (PSU), etc.
  • PES polyethersulfone
  • PSU polysulfones
  • the glass/amorphous polymer combinations are therefore very limited according to this process.
  • molten core a process called "fluid fiber drawing”, commonly referred to as "molten core”.
  • molten core This process consists in inserting within an amorphous sheath, a material whose melting temperature is lower than the deformation/fibration temperature of the sheath.
  • a core material is inserted into a sheath to form the preform which is then fiberized in a conventional manner.
  • the core material forms a liquid pool whose fall is controlled by the sheath, which thus makes it possible to integrate it within the fiber.
  • the choice of core material is only limited by its melting temperature, and typically can be used metals, semiconductors, low melting point glasses, oxide crystals.
  • Application FR 2 996 563 discloses the preparation of glass/metal fibers according to such a process.
  • FIG. 2a shows the results of drawing a bar of semi-crystalline polymer, in this case of polyetheretherketone (PEEK), by conventional fiber drawing.
  • PEEK polyetheretherketone
  • the use of new polymer materials makes it possible to update the techniques for shaping the starting preform and in particular to take advantage of additive manufacturing.
  • the preform can then be totally or partially printed in 3D.
  • Composite fibers are also particularly advantageous in that they make it possible to combine the properties of an inorganic material on the one hand and an organic one on the other, thus opening up the development of new and original optical devices. In addition, they allow access to complex geometries thanks to 3D printing. Finally, these composite fibers advantageously have an evolutionary profile insofar as they offer the possibility of revealing post-fibration structures by selective dissolution. Indeed, these composite fibers implement organic and inorganic materials with very different chemical reactivities. Polymers, for example, have good resistance to acids, which is not the case with glasses. Conversely, glasses are inert with respect to organic solvents, which is not the case with polymers. This advantageously makes it possible to develop glass/polymer fibers of which certain parts can be structured selectively by dissolutions or specific chemical attacks. Such scalable fibers are advantageous for the development of distributed sensors.
  • the invention thus relates firstly to a process for preparing a composite fiber comprising the steps of: i. Supply of a preform comprising: o an amorphous material Mi consisting of a glass composition whose glass transition temperature T g M1 is less than 500°C; o a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ; o The materials Mi and M2 being directly in contact with each other; he. Fiber drawing of the preform at a fiber drawing temperature Tf, said temperature Tf being both between:
  • the method as defined above is a method in which:
  • the material M2 is surrounded in whole or in part by one or more materials M1;
  • the preform comprises a layer of material M2 interposed between at least two layers of material M1, the layers of material M1 being of identical or different natures,
  • the preform comprises a layer of material M1 forming a matrix, said matrix comprising one or more inclusions of material M2, the inclusions of material M2 being of identical or different nature;
  • the materials M1 and M2 extend longitudinally along the longitudinal axis of the preform
  • the preform has a circular, rectangular or square cross-section
  • the amorphous or semi-crystalline polymer composition comprises one or more fillers
  • the filler is chosen from metals, semiconductors, ceramics, glass fibers, carbon nanotubes, graphite, quantum dots, graphene, or a mixture thereof;
  • the glass composition of the material M1 is chosen from tellurite glasses, phosphate glasses, boro-phosphate glasses, germanate glasses, fluoride glasses, chalcogenide glasses, or mixtures thereof; the glass composition is a tellurite glass.
  • the glass transition temperature T g M1 of Mi is greater than 100°C, preferably is between 300 and 500°C.
  • the material M2 is a semi-crystalline polymer composition
  • the polymer is chosen from polyaryletherketones (PAEK), polycarbonate, glycosilated polyethylene terephthalate (PETG), polyamides (PA) or a mixture thereof;
  • the polymer is a polyaryletherketone (PAEK), preferably polyetheretherketone (PEEK), or polyetherketone (PEK);
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • PEK polyetherketone
  • the method comprises an additional step of coating the fiber obtained in step ii) with an organic or inorganic material M3;
  • the material M3 is chosen from polymers, metals or carbon;
  • step ii) the fiber obtained in step ii) is coated with an M3 material via a coating process by dipping (dip-coating), vapor phase deposition or by extrusion through a die;
  • the volume of material M2 represents between 0.02% and 90% of the total volume of the preform
  • the preform in step i) is prepared according to a process comprising the steps of: o Drilling a part in an M1 material by one or more holes along the longitudinal axis of the preform; o Inclusion inside each of the holes drilled in the M1 material of a piece of M2 material; and o Recovery of the preform obtained.
  • the preform in step i) is prepared according to a process comprising the steps of: o Association of layers of materials M1 and M2 so as to form a stack M1/M2/M1, the layer of material M2 being interposed between two layers of material M1; o Adhesion of the stacked layers M1/M2/M1 between them; and o Recovery of the preform obtained.
  • the adhesion of the stacked layers M1/M2/M1 is carried out by: o Heat treatment at a temperature between T g min and T g min + 50°C, T g min designating the lowest glass transition temperature of the three layers M1/M2/M1, and possibly o Application of mechanical pressure on the stacked layers M1/M2/M1 during the heat treatment step.
  • the part or layer made of material M1 and/or M2 is prepared by additive manufacturing, in particular by deposition of polymer filament for material M2;
  • step ii) the fiber drawing temperature in step ii) is between the temperature T g M1 and T g M1 +100° C.;
  • step ii) the fiber drawing temperature in step ii) is between T m M2 +50°C and Td M2 -50°C.
  • the invention relates to a composite fiber capable of being obtained according to the process of the invention.
  • the invention relates to a composite fiber comprising: o an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.; o a material M2 consisting of an amorphous or semi-crystalline polymer composition; o The materials M1 and M2 being directly in contact with each other.
  • the invention also relates to the use of composite fibers according to the invention, in optical components or devices, such as interferometers, sensors or laser sources.
  • the invention also relates to a preform for drawing composite fiber comprising:
  • an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.
  • a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ;
  • the invention also relates to the use of a preform according to the invention for the preparation of composite optical fibers.
  • FIG.1 is a description of the different methods of manufacturing multi-material fibers. Left: classic fiber drawing technique; right: “fluid fiber drawing” technique; in the center: deposit of coating on the surface of the fiber.
  • FIG .2 represents (a) a description of the direct drawing of a PEEK bar, (b) longitudinal view of the fiber obtained. It has many irregularities (uncontrolled variations in diameter) from which the images (c) were taken.
  • FIG. 3 is a description of the fabrication of a preform using the “stack-and-draw” method.
  • FIG. 4 represents a fiber drawing tower: (1) tower frames; (2) preform moving system; (3) gas inlet (N2); (4) hollow cane to attach the preform; (5) heat shield; (6) oven enclosure; (7) gas inlet (He); (8) silica rod; (9) preform to be fiberized; (10) heating elements; (11) iris; (12) diameter gauge; (13) optical fiber; (14) tensiometer; (15) winding system; (16) storage drum.
  • the invention relates to a method for preparing a composite fiber comprising the steps of: i. Supply of a preform comprising: o an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500°C; o a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ; o The materials M1 and M2 being directly in contact with each other; he. Fiber drawing of the preform at a fiber drawing temperature Tf, said temperature Tf being both between: . the glass transition temperature T g M1 and the melting temperature Tm M1 of Mi such that Mi is in the viscous state at the temperature Tf;
  • composite fiber is meant, within the meaning of the present description, a fiber made up of at least two materials: an inorganic material M1 and an organic material M2, amorphous or semi-crystalline.
  • Materials M1 and M2 are characterized by glass transition temperatures T g such that T g M2 ⁇ T g M1 ⁇ 500°C. The difference between these glass transition temperatures may in particular be greater than 50°C, ie Tg M1 - Tg M2 > 50°C.
  • fiberizing is meant a step of spinning by stretching the preform, hot, in particular at a fiberizing temperature Tf.
  • Tf a fiberizing temperature
  • the material M1 of the preform becomes viscous
  • the material M2, surrounded in whole or in part by the material Mi becomes liquid.
  • the composite preform is stretched and thinned homothetically to form a composite fiber. Homothetic stretching makes it possible to preserve the geometry of the preform.
  • the two materials M1 and M2 are thus co-fibered. After cooling, the materials M1 and M2 return to the solid state and the composite fiber can be recovered.
  • the material M2 is surrounded in whole or in part by one or more materials M1.
  • the preform comprises a layer of material M2 interposed between at least two layers of material M1, the layers of material M1 being of identical or different natures.
  • the preform comprises a layer of material M1 forming a matrix, said matrix comprising one or several inclusions of material M2, the inclusions of material M2 being of identical or different natures.
  • the materials M1 and M2 can extend longitudinally along the longitudinal axis of the preform.
  • the material can extend over all or part of the length of M1.
  • the preform may have a cross section of variable geometry.
  • the homothetic stretching of the preform will allow this geometry to be preserved. It may in particular be circular, rectangular or square.
  • the amorphous or semi-crystalline polymer composition of the material M2 can comprise one or more fillers, in particular in the form of solid particles.
  • the filler can be chosen from metals, semiconductors, ceramics, glass fibers, carbon nanotubes, graphite, quantum dots, graphene, or mixtures thereof.
  • the glass composition of the M1 material can be chosen from the inorganic glasses commonly used in the field of optics.
  • chalcogenides which are formed from chalcogen elements that are part of the sixteenth column of the periodic table (mainly Sulfur, Selenium and Tellurium). They are generally associated with Arsenic, Antimony, Germanium and Galium.
  • fluorides which, as its name suggests, include glasses based on fluorinated elements such as ZrF4, AIF3 or even lnF3.
  • fluorinated elements such as ZrF4, AIF3 or even lnF3.
  • ZBLAN composed of ZrF4, BaF2, LaF3, AIF3 and NaF.
  • oxide glasses which includes silicates.
  • SiO2 germanate
  • TeO2 tellurite
  • P2O5 phosphate
  • the glass composition of the material M1 can be chosen from oxide glasses, fluoride glasses and chalcogenide glasses or mixtures thereof.
  • the oxide glasses can be chosen in particular from silicate glasses, tellurite glasses, phosphate glasses, borophosphate glasses, germanate glasses, fluoride glasses, chalcogenide glasses, or mixtures of these.
  • the glass composition of the Mi material is a tellurite glass.
  • the glass transition temperature T g M1 of Mi can be greater than 100°C. Preferably, it is between 300 and 500°C.
  • the melting temperature Tm M1 of Mi may in particular be between 450 and 900°C.
  • the material M2 is a semi-crystalline polymer composition.
  • the polymer can be chosen from polyaryletherketones (PAEK), polycarbonate, glycosilated polyethylene terephthalate (PETG), polyamides (PA) or a mixture thereof.
  • PAEK polyaryletherketones
  • PETG glycosilated polyethylene terephthalate
  • PA polyamides
  • the polymer is a polyaryletherketone (PAEK), preferably polyetheretherketone (PEEK), or polyetherketone (PEK).
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • PEK polyetherketone
  • the glass transition temperature T g M2 of M2 may in particular be between 20 and 350°C, in particular between 75 and 250°C.
  • the melting temperature Tm M2 of M2 may in particular be between 100 and 450°C, in particular between 120 and 360°C.
  • the degradation temperature Td M2 of M2 can vary according to the nature of the material; it is generally not greater than 700°C and is in particular between 250 and 700°C.
  • the fiber-drawing temperature Tf may in particular be between 100 and 700°C, in particular between 300 and 500°C.
  • the preform may also include other materials such as a second glass composition and/or metals or semiconductors included in the matrix of material M1, provided that it can be co-fibred with M1 and M2 at the fiber-drawing temperature Tf.
  • other materials such as a second glass composition and/or metals or semiconductors included in the matrix of material M1, provided that it can be co-fibred with M1 and M2 at the fiber-drawing temperature Tf.
  • the method comprises an additional step of coating the fiber obtained in step ii) with an organic or inorganic material M3.
  • the material M3 can be chosen from polymers, metals or carbon.
  • the fiber obtained in step ii) can be coated with an M3 material via conventional methods well known to those skilled in the art, in particular via a dipping coating process (dip-coating), vapor phase deposition or by extrusion through a die.
  • a dipping coating process dip-coating
  • vapor phase deposition vapor phase deposition
  • extrusion through a die vapor phase deposition
  • the method can comprise a step of selective structuring of all or part of the material M1 or M2, by dissolution or selective chemical attack.
  • the volume of material M2 can represent between 0.02% and 90% of the total volume of the preform.
  • the preform in step i) can be prepared according to a process comprising the steps of: o Drilling a part in an M1 material by one or more holes along the longitudinal axis of the preform; o Inclusion inside each of the holes drilled in the M1 material of a piece of M2 material; and o Recovery of the preform obtained.
  • the piece of material M1 is in particular a solid piece.
  • it may be a solid piece of cylindrical shape, with a circular cross section. It may in particular have a length of 100 mm and a diameter of 20 mm.
  • Several holes, through or not, extending over a length of several centimeters along the longitudinal axis of the part can be drilled. The drilling is for example carried out mechanically or with a laser. Cylindrical rods of M2 material can then be inserted into the holes.
  • the diameters of the cylindrical bars M2 are preferably very close, in particular less than 5% less than those of the holes drilled in the material M1.
  • the preform in step i) can be prepared according to a method, commonly referred to as "stack-and-draw", comprising the steps of: o Association of layers of materials M1 and M2 so as to form a stack M1/M2/M1, the layer of material M2 being interposed between two layers of material M1; o Adhesion of the stacked layers M1/M2/M1 between them; and o Recovery of the preform obtained.
  • the adhesion of the stacked layers M1/M2/M1 can be achieved by: o Heat treatment at a temperature between T g min and T g min + 50°C, Tg min designating the lowest glass transition temperature of the three layers of materials M1/M2/M1, and possibly o Application of mechanical pressure on the stacked layers M1/M2/M1 during the heat treatment step.
  • the thickness of the layer of material M2 preferably represents 10% or less of the total thickness of the structure M1/M2/M1.
  • the part or the layer of material Mi and/or M2 can be prepared by additive manufacturing, in particular by deposition of polymer filament for the material M2.
  • the fiber drawing temperature Tf in step ii) can be between the temperature T g M1 and T g M1 +100°C and/or between Tm M2 +50°C and T d M2 -50°C.
  • the invention relates to a composite fiber capable of being obtained according to the process as defined above
  • the invention relates to a composite fiber comprising: o an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.; o a material M2 consisting of an amorphous or semi-crystalline polymer composition, whose glass transition temperature T g M2 is lower than T g M1 ; ; o The materials M1 and M2 being directly in contact with each other, and
  • the material M2 is a semi-crystalline polymer.
  • the material M1 forms a sheath surrounding a core made of material M2.
  • the smallest dimension of the composite fiber is greater than 20 ⁇ m and the largest dimension is less than 6 mm.
  • the invention relates to the use of composite fibers according to the invention, in optical devices or components, such as interferometers, sensors or laser sources.
  • the composite fibers according to the invention can be particularly useful for the preparation of Mach-Zehnder type interferometers.
  • the invention relates to a preform for drawing composite fiber comprising: • an amorphous material Mi consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.;
  • a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ;
  • Tg M1 - Tg M2 > 50°C.
  • the invention relates to the use of a preform according to the invention for the preparation of composite optical fibers.
  • the preform After the production of the preform, it is drawn in the form of a fiber.
  • This process requires a fiber drawing tower, made up of a preform lowering system, a fiber winding system, a diameter gauge, a tension gauge (tensiometer) and a tube furnace. It is possible to add to the device a system for external coating of the fiber with a protective polymer.
  • the oven is composed of at least one heating element wound around a jacket tube. The thermal profile of the oven is such that the heating zone is very limited (volume of the hot zone ⁇ 6 cm 3 ).
  • the jacket tube constitutes the fiber-drawing enclosure.
  • the upper opening of the jacket tube is closed by a metal rod and a heat shield.
  • the lower opening of the tube is closed by a diaphragm.
  • a flow of 1 to 5 L/min (preferably 3 L/min) of gas circulates inside the oven.
  • the gas chosen depends on the material to be fiberized and may be Argon (Ar), oxygen (O2), nitrogen (N2) or helium (He) (preferably helium).
  • the preform is attached to a hollow silica rod, itself attached to a hollow metal rod.
  • the rods are used to suspend the preform in the oven.
  • the preform is then positioned in the center of the oven and in such a way that the hottest point of the oven is located slightly above (10 to 30 mm) the lower end of the preform.
  • the preform is then heated from 5°C/min to 20°C/min (preferably 10°C/min) to its softening temperature (empirically ⁇ 100°C above the Tg). Arrived at this temperature, the preform begins to deform and under the effect of gravity, a drop appears and falls slowly, stretching the preform in its wake, so as to form the desired optical fiber (see Fig. [4]).
  • the fiber drawing process is initiated.
  • the “drop” is then separated from the fiber which is then attached to the storage drum which is set in rotation (speed between 0.1 and 50 m/min). Via the steel rod which is connected to a vertical translation system, the preform is also set in motion and descends slowly into the oven (speed between 0.1 and 3 mm/min).
  • the process is self-sustaining, it respects the volume conservation law, namely that the volume of fiber produced is equal to the volume of preform consumed:
  • Vfiber and Vpreform are respectively the volume of manufactured fiber and stretched preform. Over a given time interval and for a cylindrical preform, we will then have:
  • the dimensions of the fiber depend on the winding speeds of the fiber and the preform descent.
  • the preform descent speed is generally kept constant during drawing, and it is the rotation speed of the drum which is adjusted according to the target fiber dimensions.
  • the fibers then produced can have their smallest dimension greater than 20 ⁇ m and their largest dimension less than 6 mm.
  • Example of a fiber with a rectangular section the smallest dimension, i.e. the small side of the rectangle, can be greater than or equal to 20 ⁇ m and the largest dimension, i.e. the large side of the rectangle, can be less than or equal to 6 mm.
  • the adjustment of the fiber drawing temperature is made according to the tension measured by the tensiometer.
  • This tension measurement provides information on the state of viscosity of the material or the assembly of materials which is being fiberized.
  • a tension that is too low means that the material is not very viscous (material too soft because the temperature is too high) and the fiber risks in this case undergoing significant deformations of its structure because the fiber drawing process is then no longer controlled.
  • Too high a tension means that the material is too viscous (material too hard because the temperature is too low) and the fiber risks breaking in this case.
  • fiber drawing takes place at tensions between 3 and 100 g (ideally between 10 and 30 g).
  • the acceptable tension range can be located (estimated) between 10 and 75 g (ideally between 15 and 25 g).
  • An overpressure or a depression can be applied to the cavities and inclusions of the preform during drawing.
  • overpressure can be applied to swell hollow structures within the fiber (micro-structured fibers). It can in particular help the good flow of the polymers present within the preform (compared to pressure extrusion processes).
  • the overpressure range can be between 0.1 to 200 mbar (ideally 1 to 30 mbar).
  • vacuum can be applied to collapse hollow structures or voids within the fiber.
  • the hollow structures are considered as defects (bubbles and cavities) or are linked for example to the presence of interfaces between different assembled materials and it is necessary to eliminate them.
  • a depression can in particular help to improve the contact between the polymer parts and the glass parts present within the preform.
  • the vacuum range can be between 0.1 to 200 mbar (ideally 1 to 30 mbar).
  • the fiber can be coated with a material during the drawing process. On leaving the fiberizing oven, the fiber passes through a die allowing a coating to be deposited on the surface of the fiber. Additional steps can be added after the deposition of this coating to permanently fix it to the fiber (photopolymerization by UV lamp, thermal drying, etc.).
  • Example 1 Preparation of a tellurite/PEEK glass fiber
  • tellurite glass compositions were selected for the glass/polymer cofibration. They have in fact good thermomechanical and chemical stability required for fiber drawing. Furthermore, these materials have moderate fiber-drawing temperatures (-300 to 500°C, in comparison with the 2000°C of silica), in particular allowing their fiber-drawing with organic materials. Finally, tellurite glasses have interesting optical properties (transmission in the mid-infrared between -0.4 and 6.5 pm, nonlinear optical properties, etc.) for photonics applications.
  • the process begins with the development of a glass sheath tube.
  • the characteristic compositions and temperatures of the glasses considered in this example are given in Table 1.
  • a glass mass of approximately 50 g is first synthesized in the laboratory by fusion-casting.
  • the tube is made from this mass of glass either by molding or by drilling.
  • the “build-in casting” technique is used.
  • At the end of the synthesis of the glass it is poured into a cylindrical metal mold (typically brass) preheated to - Tg -100°C for its molding. During this tempering, the glass solidifies from the outside towards the inside of the mould, so that the central part of the glass bar remains liquid longer.
  • a cylindrical metal mold typically brass
  • a cylindrical preform (length 40 to 60 mm and diameter 8 to 20 mm) is drilled mechanically along its central axis (depth 20 to 30 mm and diameter 0.7 to 3mm). This method makes it possible to manufacture very thick tubes and therefore with a small internal diameter.
  • This assembly is then stretched on a fiber drawing tower at temperatures between approximately 300 and 500°C.
  • the strategy employed consists in keeping the viscosity of the glass as high as possible during the fiber drawing step (without exceeding the mechanical breaking point of the fiber) in order to allow the controlled flow of the polymer, then present in its liquid phase at the core. of the preform.
  • the manufacturing method used allows the homothetic transfer of the geometry of the preform to the fiber during drawing.
  • Example 2 Preparation of a tellurite/PES glass fiber according to a so-called “stack-and-draw” method
  • the preform consists of a stack of parts of different materials arranged to form the desired geometry.
  • the TZN75 material whose T g is equal to 308°C, is synthesized in the laboratory by fusion-casting and shaped into plates of dimensions 3 x 10 x 75 mm by cutting and polishing.
  • the PES whose T g is equal to 225° C., is purchased in the form of films 0.05 mm thick from GoodFellow.
  • the preform is then manufactured as follows:
  • Tg-min being the glass transition temperature of the material having the lowest glass transition temperature.
  • a pressure of a few kPa is applied to the assembly during the heat treatment to ensure good cohesion between the different parts. This pressure is applied using ceramic or graphite weights.
  • the thickness of the polymer layer does not exceed ⁇ 10% of the total thickness of the preform.
  • the preform made by this method is then stretched in the same way as the other preforms, as described in the fiber drawing protocol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a method for preparing a composite fiber comprising the steps of: i. providing a preform comprising: - an amorphous material M1 constituted of a glass composition, of which the glass transition temperature TgM1 is below 500°C; - a material M2 constituted of an amorphous or semicrystalline polymer composition, of which the glass transition temperature TgM2 is below TgM1; - the materials M1 and M2 being directly in contact with one another; ii. fiberizing the preform at a fiberizing temperature Tf, said temperature Tf being simultaneously between: - the glass transition temperature TgM1 and the melting temperature TmM1 of M1 so that M1 is in the viscous state at the temperature Tf; - the melting temperature TmM2 and the thermal degradation temperature TdM2 of M2 so that M2 is in the liquid state at the temperature Tf; whereby a composite fiber is obtained.

Description

Structures fibrées composites multifonctionnelles Multifunctional composite fiber structures
Domaine de l’invention Field of invention
La présente invention concerne un procédé de préparation de fibres composites hybrides ainsi que les fibres composites hybrides susceptibles d’être obtenues selon ce procédé. L’invention concerne également l’utilisation de ces fibres dans des dispositifs optiques. The present invention relates to a process for preparing hybrid composite fibers as well as the hybrid composite fibers that can be obtained according to this process. The invention also relates to the use of these fibers in optical devices.
Arrière-plan techniaue Technical background
Beaucoup d'efforts sont déployés aujourd'hui pour développer des structures multifonctionnelles fibrées à forte valeur ajoutée basées sur l'association de matériaux disparates, apportant chacun une propriété unique à la fibre finale. L'enjeu principal réside d'une part dans l'élaboration de la préforme de départ et d'autre part dans le contrôle précis des propriétés rhéologiques des matériaux qui la composent lors de l'étirage. En effet, l'intérêt du procédé de fibrage provient du fait que le profil macroscopique composite de la préforme de départ sera reproduit homothétiquement au sein de la fibre après étirage. Le fibrage peut en effet être considéré comme une homothétie qui permet in fine la mise en forme avancée de la matière à l'échelle micrométrique, et même nanométrique. Many efforts are being made today to develop multifunctional fiber structures with high added value based on the combination of disparate materials, each contributing a unique property to the final fiber. The main challenge lies on the one hand in the development of the starting preform and on the other hand in the precise control of the rheological properties of the materials that compose it during drawing. Indeed, the advantage of the fiber drawing process stems from the fact that the composite macroscopic profile of the starting preform will be reproduced homothetically within the fiber after drawing. Fiber drawing can in fact be considered as a dilation which ultimately allows the advanced shaping of the material at the micrometric, and even nanometric, scale.
A l'heure actuelle, il existe deux principales techniques de mise en forme pour la fabrication de fibres multimatériaux. At present, there are two main shaping techniques for the manufacture of multi-material fibers.
D’abord on trouve la méthode de fibrage classique qui concerne la grande majorité des fibres produites aujourd'hui. Dans ce cas, plusieurs matériaux peuvent être associés pour former la préforme. Cependant, ils doivent présenter une variation lente de leur viscosité avec la température (verres ou polymères amorphes) et posséder des températures de transitions vitreuses (Tg) proches (écart inférieur à ~30°C). Cette contrainte limite grandement les combinaisons de matériaux possibles et donc les potentielles applications de la fibre alors fabriquée. Seules des structures verre/verre, polymère/polymère ou verre/polymère amorphe peuvent être fabriquées par cette méthode. En effet, en ce qui concerne les associations verre/polymère classiques, seuls les polymères amorphes hautes Tg (polyéthersulfone (PES), polysulfones (PSU), etc.) peuvent être associés à des verres pour le co-fibrage direct, ce qui par ailleurs contraint à recourir à des verres présentant des Tg basses (< ~250°C), comme typiquement les verres de chalcogénures. Les associations verre/polymère amorphe sont donc très limitées selon ce procédé. First, there is the classic fiber drawing method which concerns the vast majority of fibers produced today. In this case, several materials can be combined to form the preform. However, they must show a slow variation in their viscosity with temperature (amorphous glasses or polymers) and have similar glass transition temperatures (T g ) (difference less than ~30°C). This constraint greatly limits the possible combinations of materials and therefore the potential applications of the fiber then manufactured. Only glass/glass, polymer/polymer or glass/amorphous polymer structures can be fabricated by this method. Indeed, with regard to conventional glass/polymer associations, only high T g amorphous polymers (polyethersulfone (PES), polysulfones (PSU), etc.) can be associated with glasses for direct co-fibration, which moreover forced to use lenses with T g low (< ~250°C), as typically chalcogenide glasses. The glass/amorphous polymer combinations are therefore very limited according to this process.
Il est cependant possible d'associer au sein de fibres optiques des matériaux dont les propriétés rhéologiques divergent fortement et ainsi former des structures multimatériaux en utilisant un procédé dit de « fibrage fluide », communément désigné « molten core » en anglais. Ce procédé consiste à insérer au sein d'une gaine amorphe, un matériau dont la température de fusion est inférieure à la température de déformation/fibrage de la gaine. Un matériau de cœur est inséré dans une gaine pour former la préforme qui est ensuite fibrée de manière classique. Lors du fibrage de cet assemblage composite, le matériau de cœur forme un bain liquide dont la chute est contrôlée par la gaine ce qui permet ainsi de l'intégrer au sein de la fibre. Le choix du matériau de cœur n'est limité que par sa température de fusion, et typiquement peuvent être utilisés des métaux, des semiconducteurs, des verres à bas point de fusion, des cristaux d'oxides. La demande FR 2 996 563 divulgue la préparation de fibres verre/métal selon un tel procédé. It is however possible to associate within optical fibers materials whose rheological properties diverge greatly and thus form multi-material structures by using a process called "fluid fiber drawing", commonly referred to as "molten core". This process consists in inserting within an amorphous sheath, a material whose melting temperature is lower than the deformation/fibration temperature of the sheath. A core material is inserted into a sheath to form the preform which is then fiberized in a conventional manner. During the drawing of this composite assembly, the core material forms a liquid pool whose fall is controlled by the sheath, which thus makes it possible to integrate it within the fiber. The choice of core material is only limited by its melting temperature, and typically can be used metals, semiconductors, low melting point glasses, oxide crystals. Application FR 2 996 563 discloses the preparation of glass/metal fibers according to such a process.
Résumé de l’invention Summary of the invention
Il a maintenant été découvert que le procédé de fibrage fluide, appliqué jusqu’ici dans l’état de la technique uniquement à des matériaux inorganiques, pouvait avantageusement permettre d’accéder à des à structures hybrides inorganiques/organique, de type verre/polymère, pour lesquelles le polymère organique se trouve entouré par un verre inorganique, notamment à l’intérieur d’une gaine vitreuse inorganique, ou intercalé entre deux couches de verre inorganique. It has now been discovered that the fluid fiber drawing process, applied so far in the state of the art only to inorganic materials, could advantageously provide access to hybrid inorganic/organic structures, of the glass/polymer type, for which the organic polymer is surrounded by an inorganic glass, in particular inside an inorganic vitreous sheath, or interposed between two layers of inorganic glass.
Afin d'illustrer les avantages du procédé, la Figure 2a montre les résultats de l'étirage d'un barreau de polymère semi-cristallin, en l’occurrence de polyétheréthercétone (PEEK), par fibrage classique. En observant un cliché en vue longitudinale de la fibre de polymère semi-cristallin présentée en Figure 2b, on constate de nombreuses irrégularités, principalement des variations de diamètre le long de la fibre. En effet la variation de la viscosité du PEEK avec la température est très abrupte, en comparaison avec des matériaux amorphes. Il est alors impossible de contrôler l'écoulement de ce matériau au cours du fibrage. La fabrication de fibres en PEEK par étirage classique est donc compromise. Le procédé de fibrage fluide permet précisément de contrôler l’écoulement du polymère en le gainant avec un matériau amorphe comme du verre, et d’intégrer ainsi le polymère au sein d’une structure en verre. In order to illustrate the advantages of the method, FIG. 2a shows the results of drawing a bar of semi-crystalline polymer, in this case of polyetheretherketone (PEEK), by conventional fiber drawing. By observing a shot in longitudinal view of the semi-crystalline polymer fiber presented in FIG. 2b, numerous irregularities are observed, mainly variations in diameter along the fiber. Indeed, the variation of the viscosity of PEEK with temperature is very abrupt, in comparison with amorphous materials. It is then impossible to control the flow of this material during drawing. The manufacture of PEEK fibers by conventional drawing is therefore compromised. The fluid fiber drawing process makes it possible precisely to control the flow of the polymer by sheathing it with an amorphous material such as glass, and thus to integrate the polymer within a glass structure.
Ce procédé présente plusieurs avantages. This process has several advantages.
Tout d’abord, il permet d'élargir à la fois le champ des polymères pouvant être intégrés à des fibres (extension aux polymères semi-cristallins), mais aussi celui des associations verres-polymères possibles. First of all, it makes it possible to broaden both the field of polymers that can be integrated into fibers (extension to semi-crystalline polymers), but also that of possible glass-polymer combinations.
De plus, l'utilisation de nouveaux matériaux polymères permet d'actualiser les techniques de mise en forme de la préforme de départ et notamment de profiter de la fabrication additive. La préforme pourra alors être totalement ou partiellement imprimée en 3D. In addition, the use of new polymer materials makes it possible to update the techniques for shaping the starting preform and in particular to take advantage of additive manufacturing. The preform can then be totally or partially printed in 3D.
Les fibres composites sont par ailleurs particulièrement avantageuses en ce qu’elles permettent de combiner les propriétés d’un matériau inorganique d’une part et organique d’autre part, ouvrant ainsi au développement de dispositifs optiques inédits et originaux. Par ailleurs, elles permettent d’accéder à des géométries complexes grâce à l’impression 3D. Enfin, ces fibres composites ont avantageusement un profil évolutif dans la mesure où elles offrent la possibilité de révéler des structures post-fibrage par dissolution sélective. En effet, ces fibres composites mettent en œuvre des matériaux organiques et inorganiques possédant des réactivités chimiques très différentes. Les polymères présentent par exemple une bonne résistance envers les acides, ce qui n'est pas le cas des verres. Inversement, les verres sont inertes vis-à-vis des solvants organiques, ce qui n'est pas le cas des polymères. Ceci permet de manière avantageuse, d’élaborer des fibres verres/polymères dont certaines parties peuvent être structurées de manière sélective par dissolutions ou attaques chimiques spécifiques. De telles fibres évolutives sont avantageuses pour le développement de capteurs distribués. Composite fibers are also particularly advantageous in that they make it possible to combine the properties of an inorganic material on the one hand and an organic one on the other, thus opening up the development of new and original optical devices. In addition, they allow access to complex geometries thanks to 3D printing. Finally, these composite fibers advantageously have an evolutionary profile insofar as they offer the possibility of revealing post-fibration structures by selective dissolution. Indeed, these composite fibers implement organic and inorganic materials with very different chemical reactivities. Polymers, for example, have good resistance to acids, which is not the case with glasses. Conversely, glasses are inert with respect to organic solvents, which is not the case with polymers. This advantageously makes it possible to develop glass/polymer fibers of which certain parts can be structured selectively by dissolutions or specific chemical attacks. Such scalable fibers are advantageous for the development of distributed sensors.
L’invention concerne ainsi en premier lieu un procédé de préparation d’une fibre composite comprenant les étapes de : i. Fourniture d’une préforme comprenant: o un matériau amorphe Mi constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; o un matériau M2 constitué d’une composition de polymère, amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à Tg M1 ; o Les matériaux Mi et M2 étant directement au contact l’un de l’autre ; il. Fibrage de la préforme à une température de fibrage Tf, ladite température Tf étant à la fois comprise entre : The invention thus relates firstly to a process for preparing a composite fiber comprising the steps of: i. Supply of a preform comprising: o an amorphous material Mi consisting of a glass composition whose glass transition temperature T g M1 is less than 500°C; o a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ; o The materials Mi and M2 being directly in contact with each other; he. Fiber drawing of the preform at a fiber drawing temperature Tf, said temperature Tf being both between:
. la température de transition vitreuse Tg M1 et la température de fusion TmM1 de M1 de sorte que M1 est à l’état visqueux à la température Tf ; . the glass transition temperature T g M1 and the melting temperature Tm M1 of M1 such that M1 is in the viscous state at the temperature Tf;
. la température de fusion Tm M2 et la température de dégradation thermique TdM2 de M2 de sorte que M2 est à l’état liquide à la température Tf ; ce par quoi on obtient une fibre composite. . the melting temperature T m M2 and the thermal degradation temperature Td M2 of M2 such that M2 is in the liquid state at the temperature Tf; by which we obtain a composite fiber.
Dans la suite, d’autres caractéristiques avantageuses du procédé de l’invention sont précisées. Ainsi, dans des modes de réalisation, le procédé tel que défini ci-dessus est un procédé dans lequel : In the following, other advantageous characteristics of the method of the invention are specified. Thus, in embodiments, the method as defined above is a method in which:
- le matériau M2 est entouré en tout ou partie par un ou plusieurs matériaux M1 ; - The material M2 is surrounded in whole or in part by one or more materials M1;
- la préforme comprend une couche de matériau M2 intercalée entre au moins deux couche de matériau M1, les couches de matériau M1 étant de natures identiques ou différentes, - the preform comprises a layer of material M2 interposed between at least two layers of material M1, the layers of material M1 being of identical or different natures,
- la préforme comprend une couche de matériau M1 formant matrice, ladite matrice comprenant une ou plusieurs inclusions de matériau M2, les inclusions de matériau M2 étant de nature identiques ou différentes ; - the preform comprises a layer of material M1 forming a matrix, said matrix comprising one or more inclusions of material M2, the inclusions of material M2 being of identical or different nature;
- les matériaux M1 et M2 s’étendent longitudinalement le long de l’axe longitudinal de la préforme ; - the materials M1 and M2 extend longitudinally along the longitudinal axis of the preform;
- la préforme a une section transversale circulaire, rectangulaire ou carrée ; - the preform has a circular, rectangular or square cross-section;
- la composition de polymère amorphe ou semi-cristallin comprend une ou plusieurs charges ; - the amorphous or semi-crystalline polymer composition comprises one or more fillers;
- la charge est choisie parmi les métaux, les semi-conducteurs, les céramiques, les fibres de verre, les nanotubes de carbone, le graphite, les quantum dots, le graphène, ou un mélange de celles- ci ; - the filler is chosen from metals, semiconductors, ceramics, glass fibers, carbon nanotubes, graphite, quantum dots, graphene, or a mixture thereof;
- la composition de verre du matériau M1 est choisie parmi les verres tellurite, les verres de phosphate, les verres de boro-phosphate, les verres de germanates, les verres de fluorures, les verres de chalcogénures, ou les mélanges de ceux-ci ; la composition de verre est un verre de tellurite. - la température de transition vitreuse Tg M1 de Mi est supérieure à 100°C, de préférence, est comprise entre 300 et 500°C. - the glass composition of the material M1 is chosen from tellurite glasses, phosphate glasses, boro-phosphate glasses, germanate glasses, fluoride glasses, chalcogenide glasses, or mixtures thereof; the glass composition is a tellurite glass. - the glass transition temperature T g M1 of Mi is greater than 100°C, preferably is between 300 and 500°C.
- le matériau M2 est une composition de polymère semi-cristallin ;- the material M2 is a semi-crystalline polymer composition;
- le polymère est choisi parmi les polyaryléthercétones (PAEK), le polycarbonate, le polyéthylène téréphtalate glycosilé (PETG), les polyamides (PA) ou un mélange de ceux-ci ; - the polymer is chosen from polyaryletherketones (PAEK), polycarbonate, glycosilated polyethylene terephthalate (PETG), polyamides (PA) or a mixture thereof;
- le polymère est un polyaryléthercétone (PAEK), de préférence le polyétheréthercétone (PEEK), ou le polyéthercétone (PEK) ; - the polymer is a polyaryletherketone (PAEK), preferably polyetheretherketone (PEEK), or polyetherketone (PEK);
- le procédé comprend une étape additionnelle de revêtement de la fibre obtenue à l’étape ii) par un matériau organique ou inorganique M3 ; - the method comprises an additional step of coating the fiber obtained in step ii) with an organic or inorganic material M3;
- le matériau M3 est choisi parmi les polymères, les métaux ou le carbone ; - the material M3 is chosen from polymers, metals or carbon;
- la fibre obtenue à l’étape ii) est revêtue par un matériau M3 via un procédé d’enduction par trempage (dip-coating), un dépôt en phase vapeur ou par extrusion par une filière ; - the fiber obtained in step ii) is coated with an M3 material via a coating process by dipping (dip-coating), vapor phase deposition or by extrusion through a die;
- le volume de matériau M2 représente entre 0,02% et 90% du volume total de la préforme ; - the volume of material M2 represents between 0.02% and 90% of the total volume of the preform;
- la préforme à l’étape i) est préparée selon un procédé comprenant les étapes de : o Perçage d’une pièce en un matériau M1 par un ou plusieurs trous suivant l’axe longitudinal de la préforme ; o Inclusion à l’intérieur de chacun des trous percés dans le matériau M1 d’une pièce de matériau M2; et o Récupération de la préforme obtenue. - the preform in step i) is prepared according to a process comprising the steps of: o Drilling a part in an M1 material by one or more holes along the longitudinal axis of the preform; o Inclusion inside each of the holes drilled in the M1 material of a piece of M2 material; and o Recovery of the preform obtained.
- la préforme à l’étape i) est préparée selon un procédé comprenant les étapes de : o Association de couches de matériaux M1 et M2 de manière à former un empilement M1/M2/M1, la couche de matériau M2 étant intercalée entre deux couches de matériau M1 ; o Adhésion des couches empilées M1/M2/M1 entre elles ; et o Récupération de la préforme obtenue. - the preform in step i) is prepared according to a process comprising the steps of: o Association of layers of materials M1 and M2 so as to form a stack M1/M2/M1, the layer of material M2 being interposed between two layers of material M1; o Adhesion of the stacked layers M1/M2/M1 between them; and o Recovery of the preform obtained.
- l’adhésion des couches empilées M1/M2/M1 est réalisée par : o Traitement thermique à une température comprise entre Tg min et Tg min + 50°C, Tg min désignant la température de transition vitreuse la plus faible des trois couches M1/M2/M1, et éventuellement o Application d’une pression mécanique sur les couches empilées M1/M2/M1 pendant l’étape de traitement thermique.- the adhesion of the stacked layers M1/M2/M1 is carried out by: o Heat treatment at a temperature between T g min and T g min + 50°C, T g min designating the lowest glass transition temperature of the three layers M1/M2/M1, and possibly o Application of mechanical pressure on the stacked layers M1/M2/M1 during the heat treatment step.
- la pièce ou couche en matériau M1 et/ou M2 est préparée par fabrication additive, notamment par dépôt de filament de polymère pour le matériau M2 ; - the part or layer made of material M1 and/or M2 is prepared by additive manufacturing, in particular by deposition of polymer filament for material M2;
- la température de fibrage à l’étape ii) est comprise entre la température Tg M1 et Tg M1 + 100°C ; - the fiber drawing temperature in step ii) is between the temperature T g M1 and T g M1 +100° C.;
- la température de fibrage à l’étape ii) est comprise entre Tm M2 + 50°C et TdM2 -50°C. - the fiber drawing temperature in step ii) is between T m M2 +50°C and Td M2 -50°C.
Selon un deuxième aspect, l’invention concerne une fibre composite susceptible d’être obtenue selon le procédé de l’invention. According to a second aspect, the invention relates to a composite fiber capable of being obtained according to the process of the invention.
Selon encore un autre aspect, l’invention concerne une fibre composite comprenant : o un matériau amorphe M1 constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; o un matériau M2 constitué d’une composition de polymère amorphe ou semi-cristallin ; o Les matériaux M1 et M2 étant directement au contact l’un de l’autre. According to yet another aspect, the invention relates to a composite fiber comprising: o an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.; o a material M2 consisting of an amorphous or semi-crystalline polymer composition; o The materials M1 and M2 being directly in contact with each other.
Selon encore un autre aspect, l’invention concerne également l’utilisation de fibres composites selon l’invention, dans des composants ou dispositifs optiques, tels que des interféromètres, des capteurs ou sources lasers. According to yet another aspect, the invention also relates to the use of composite fibers according to the invention, in optical components or devices, such as interferometers, sensors or laser sources.
Selon encore un autre aspect, l’invention concerne également une préforme pour le fibrage de fibre composite comprenant : According to yet another aspect, the invention also relates to a preform for drawing composite fiber comprising:
• un matériau amorphe M1 constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; • an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.;
• un matériau M2 constitué d’une composition de polymère, amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à Tg M1 ; • a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ;
• les matériaux M1 et M2 étant directement au contact l’un de l’autre. • the materials M1 and M2 being directly in contact with each other.
Selon encore un autre aspect, l’invention concerne également l’utilisation d’une préforme selon l’invention pour la préparation de fibres optiques composites. Brève description des figures According to yet another aspect, the invention also relates to the use of a preform according to the invention for the preparation of composite optical fibers. Brief description of figures
[Fig.1 ] est une description des différentes méthodes de fabrication de fibres multi-matériaux. A gauche : technique de fibrage classique ; à droite : technique de « fibrage fluide » ; au centre : dépôt de revêtement à la surface de la fibre. [Fig.1] is a description of the different methods of manufacturing multi-material fibers. Left: classic fiber drawing technique; right: “fluid fiber drawing” technique; in the center: deposit of coating on the surface of the fiber.
[Fig .2] représente (a) une description du fibrage direct d'un barreau de PEEK, (b) Vue longitudinale de la fibre obtenue. Elle présente de nombreuses irrégularités (variations de diamètre incontrôlées) à partir desquelles les clichés (c) ont été réalisés. [Fig .2] represents (a) a description of the direct drawing of a PEEK bar, (b) longitudinal view of the fiber obtained. It has many irregularities (uncontrolled variations in diameter) from which the images (c) were taken.
[Fig. 3] est une description de la fabrication d’une préforme selon la méthode du « stack-and-draw ». [Fig. 3] is a description of the fabrication of a preform using the “stack-and-draw” method.
[Fig. 4] représente une tour de fibrage : (1 ) bâtis de la tour ; (2) système de déplacement de la préforme ; (3) arrivée de gaz (N2) ; (4) canne creuse pour attacher la préforme ; (5) bouclier thermique ; (6) enceinte du four ; (7) arrivée de gaz (He) ; (8) canne en silice ; (9) préforme à fibrer ; (10) éléments chauffants ; (11 ) iris ; (12) mesureur de diamètre ; (13) fibre optique ; (14) tensiomètre ; (15) système d’enroulement ; (16) tambour de stockage. [Fig. 4] represents a fiber drawing tower: (1) tower frames; (2) preform moving system; (3) gas inlet (N2); (4) hollow cane to attach the preform; (5) heat shield; (6) oven enclosure; (7) gas inlet (He); (8) silica rod; (9) preform to be fiberized; (10) heating elements; (11) iris; (12) diameter gauge; (13) optical fiber; (14) tensiometer; (15) winding system; (16) storage drum.
Description détaillée detailed description
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. The invention is now described in more detail and in a non-limiting manner in the description which follows.
Procédé de préparation d’une fibre composite Process for preparing a composite fiber
Selon un premier aspect, l’invention concerne un procédé de préparation d’une fibre composite comprenant les étapes de : i. Fourniture d’une préforme comprenant: o un matériau amorphe M1 constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; o un matériau M2 constitué d’une composition de polymère, amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à Tg M1 ; o Les matériaux M1 et M2 étant directement au contact l’un de l’autre ; il. Fibrage de la préforme à une température de fibrage Tf, ladite température Tf étant à la fois comprise entre : . la température de transition vitreuse Tg M1 et la température de fusion TmM1 de Mi de sorte que Mi est à l’état visqueux à la température Tf ; According to a first aspect, the invention relates to a method for preparing a composite fiber comprising the steps of: i. Supply of a preform comprising: o an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500°C; o a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ; o The materials M1 and M2 being directly in contact with each other; he. Fiber drawing of the preform at a fiber drawing temperature Tf, said temperature Tf being both between: . the glass transition temperature T g M1 and the melting temperature Tm M1 of Mi such that Mi is in the viscous state at the temperature Tf;
. la température de fusion Tm M2 et la température de dégradation thermique TdM2 de M2 de sorte que M2 est à l’état liquide à la température Tf ; ce par quoi on obtient une fibre composite. . the melting temperature T m M2 and the thermal degradation temperature Td M2 of M2 such that M2 is in the liquid state at the temperature Tf; by which we obtain a composite fiber.
Par « fibre composite », on entend, au sens de la présente description, une fibre constituée d’au moins deux matériaux : un matériau M1 inorganique et un matériau organique M2, amorphe ou semi-cristallin. By "composite fiber" is meant, within the meaning of the present description, a fiber made up of at least two materials: an inorganic material M1 and an organic material M2, amorphous or semi-crystalline.
Les matériaux M1 et M2 se caractérisent par des températures de transition vitreuses Tg telles que Tg M2 <Tg M1< 500°C. L’écart entre ces températures de transition vitreuse peut être notamment supérieur à 50°C, soit TgM1 - TgM2 > 50°C. Materials M1 and M2 are characterized by glass transition temperatures T g such that T g M2 <T g M1 < 500°C. The difference between these glass transition temperatures may in particular be greater than 50°C, ie Tg M1 - Tg M2 > 50°C.
Par « fibrage », on entend une étape de filage par étirement de la préforme, à chaud, notamment à une température de fibrage Tf. Sous l'effet de la température de fibrage Tf, le matériau M1 de la préforme devient visqueux, tandis que le matériau M2, entouré en tout ou partie par le matériau Mi, devient liquide. La préforme composite est étirée et affinée de façon homothétique pour former une fibre composite. L'étirage homothétique permet de conserver la géométrie de la préforme. Les deux matériaux M1 et M2 sont ainsi co-fibrés. Après refroidissement, les matériaux M1 et M2 reviennent à l’état solide et la fibre composite peut être récupérée. By “fiberizing”, is meant a step of spinning by stretching the preform, hot, in particular at a fiberizing temperature Tf. Under the effect of the fiber drawing temperature Tf, the material M1 of the preform becomes viscous, while the material M2, surrounded in whole or in part by the material Mi, becomes liquid. The composite preform is stretched and thinned homothetically to form a composite fiber. Homothetic stretching makes it possible to preserve the geometry of the preform. The two materials M1 and M2 are thus co-fibered. After cooling, the materials M1 and M2 return to the solid state and the composite fiber can be recovered.
Selon un mode de réalisation lequel le matériau M2 est entouré en tout ou partie par un ou plusieurs matériaux M1. According to one embodiment, the material M2 is surrounded in whole or in part by one or more materials M1.
Par « entouré en tout ou partie », on entend que le matériau M2 est :By "surrounded in whole or in part", it is meant that the material M2 is:
- soit complètement entouré par un matériau M1, notamment inclus dans une matrice de matériau M1, - either completely surrounded by a material M1, in particular included in a matrix of material M1,
- soit partiellement entouré par un matériau M1, c’est-à-dire partiellement recouvert par un matériau M1, par exemple intercalé entre deux couches de matériau M1, formant ainsi une structure multicouche M1/M2/M1. - either partially surrounded by a material M1, that is to say partially covered by a material M1, for example interposed between two layers of material M1, thus forming a multilayer structure M1/M2/M1.
Selon un mode de réalisation, la préforme comprend une couche de matériau M2 intercalée entre au moins deux couche de matériau M1, les couches de matériau M1 étant de natures identiques ou différentes. According to one embodiment, the preform comprises a layer of material M2 interposed between at least two layers of material M1, the layers of material M1 being of identical or different natures.
Selon encore un mode de réalisation, la préforme comprend une couche de matériau M1 formant matrice, ladite matrice comprenant une ou plusieurs inclusions de matériau M2, les inclusions de matériau M2 étant de natures identiques ou différentes. According to yet another embodiment, the preform comprises a layer of material M1 forming a matrix, said matrix comprising one or several inclusions of material M2, the inclusions of material M2 being of identical or different natures.
Quel que soit le mode de réalisation, les matériaux M1 et M2 peuvent s’étendre longitudinalement le long de l’axe longitudinal de la préforme. Le matériau peut s’étendre sur tout ou partie de la longueur de M1. Whatever the embodiment, the materials M1 and M2 can extend longitudinally along the longitudinal axis of the preform. The material can extend over all or part of the length of M1.
De façon avantageuse, la préforme peut présenter une section transversale de géométrie variable. L’étirage homothétique de la préforme permettra de conserver cette géométrie. Elle peut notamment être circulaire, rectangulaire ou carrée. Advantageously, the preform may have a cross section of variable geometry. The homothetic stretching of the preform will allow this geometry to be preserved. It may in particular be circular, rectangular or square.
La composition de polymère amorphe ou semi-cristallin du matériau M2 peut comprendre une ou plusieurs charges, notamment sous forme de particules solides. La charge peut être choisie parmi les métaux, les semi- conducteurs, les céramiques, les fibres de verre, les nanotubes de carbone, le graphite, les quantum dots, le graphène, ou les mélanges de celles-ci. The amorphous or semi-crystalline polymer composition of the material M2 can comprise one or more fillers, in particular in the form of solid particles. The filler can be chosen from metals, semiconductors, ceramics, glass fibers, carbon nanotubes, graphite, quantum dots, graphene, or mixtures thereof.
La composition de verre du matériau M1 peut être choisie parmi les verres inorganiques communément utilisés dans le domaine de l’optique. The glass composition of the M1 material can be chosen from the inorganic glasses commonly used in the field of optics.
Parmi ceux-ci, on trouve les chalcogénures, qui sont formés à partir d’éléments chalcogènes faisant partie de la seizième colonne du tableau périodique (principalement le Soufre, le Sélénium et le Tellure). Ils sont généralement associés à l’Arsenic, l’Antimoine, le Germanium et le Galium. Among these are the chalcogenides, which are formed from chalcogen elements that are part of the sixteenth column of the periodic table (mainly Sulfur, Selenium and Tellurium). They are generally associated with Arsenic, Antimony, Germanium and Galium.
On trouve ensuite les fluorures, qui comme son nom l’indique, regroupent les verres à base d’éléments fluorés tels que ZrF4, AIF3 ou encore lnF3. L’exemple le plus connu est le ZBLAN, composé de ZrF4, BaF2, LaF3, AIF3 et NaF. Then there are fluorides, which, as its name suggests, include glasses based on fluorinated elements such as ZrF4, AIF3 or even lnF3. The best known example is ZBLAN, composed of ZrF4, BaF2, LaF3, AIF3 and NaF.
Enfin, on trouve la famille des verres d’oxydes (qui englobe les silicates). Hormis SiO2, d’autres oxydes, moins largement employés, peuvent former une matrice vitreuse comme le GeO2 (germanate), le TeO2 (tellurite), P2O5 (phosphate) etc. Finally, there is the family of oxide glasses (which includes silicates). Apart from SiO2, other oxides, less widely used, can form a vitreous matrix such as GeO2 (germanate), TeO2 (tellurite), P2O5 (phosphate) etc.
Tous ces verres possèdent des propriétés thermomécaniques et optiques différentes. All these glasses have different thermomechanical and optical properties.
Selon un mode de réalisation, la composition de verre du matériau M1 peut être choisie parmi les verres d’oxydes, les verres de fluorures et les verres de chalcogénures ou les mélanges de ceux-ci. According to one embodiment, the glass composition of the material M1 can be chosen from oxide glasses, fluoride glasses and chalcogenide glasses or mixtures thereof.
Les verres d’oxyde peuvent être en particulier choisis parmi les verres de silicate, verres de tellurite, les verres de phosphate, les verres de boro- phosphate, les verres de germanates, les verres de fluorures, les verres de chalcogénures, ou les mélanges de ceux-ci. De préférence, la composition de verre du matériau Mi est un verre de tellurite. The oxide glasses can be chosen in particular from silicate glasses, tellurite glasses, phosphate glasses, borophosphate glasses, germanate glasses, fluoride glasses, chalcogenide glasses, or mixtures of these. Preferably, the glass composition of the Mi material is a tellurite glass.
La température de transition vitreuse Tg M1 de Mi peut être supérieure à 100°C. De préférence, elle est comprise entre 300 et 500°C. La température de fusion TmM1 de Mi peut être notamment comprise entre 450 et 900 °C. The glass transition temperature T g M1 of Mi can be greater than 100°C. Preferably, it is between 300 and 500°C. The melting temperature Tm M1 of Mi may in particular be between 450 and 900°C.
Selon un mode de réalisation, le matériau M2 est une composition de polymère semi-cristallin. According to one embodiment, the material M2 is a semi-crystalline polymer composition.
En particulier, le polymère peut être choisi parmi les polyaryléthercétones (PAEK), le polycarbonate, le polyéthylène téréphtalate glycosilé (PETG), les polyamides (PA) ou un mélange de ceux-ci. In particular, the polymer can be chosen from polyaryletherketones (PAEK), polycarbonate, glycosilated polyethylene terephthalate (PETG), polyamides (PA) or a mixture thereof.
Selon un mode de réalisation, le polymère est un polyaryléthercétone (PAEK), de préférence le polyétheréthercétone (PEEK), ou le polyéthercétone (PEK). According to one embodiment, the polymer is a polyaryletherketone (PAEK), preferably polyetheretherketone (PEEK), or polyetherketone (PEK).
La température de transition vitreuse Tg M2 de M2 peut être notamment comprise entre 20 et 350 °C, en particulier entre 75 et 250 °C. The glass transition temperature T g M2 of M2 may in particular be between 20 and 350°C, in particular between 75 and 250°C.
La température de fusion TmM2 de M2 peut être notamment comprise entre 100 et 450 °C, en particulier entre 120 et 360 °C. The melting temperature Tm M2 of M2 may in particular be between 100 and 450°C, in particular between 120 and 360°C.
La température de dégradation TdM2 de M2 peut varier selon la nature du matériau ; elle est généralement non supérieure à 700 °C et est notamment comprise entre 250 et 700 °C. The degradation temperature Td M2 of M2 can vary according to the nature of the material; it is generally not greater than 700°C and is in particular between 250 and 700°C.
La température de fibrage Tf peut être notamment comprise entre 100 et 700 °C, en particulier entre 300 et 500°C. The fiber-drawing temperature Tf may in particular be between 100 and 700°C, in particular between 300 and 500°C.
La préforme peut inclure en outre d’autres matériaux comme une deuxième composition de verre et/ou des métaux ou semi-conducteurs inclus dans la matrice de matériau M1, à condition de pouvoir être co-fibrés avec M1 et M2 à la température de fibrage Tf. The preform may also include other materials such as a second glass composition and/or metals or semiconductors included in the matrix of material M1, provided that it can be co-fibred with M1 and M2 at the fiber-drawing temperature Tf.
Selon encore un mode réalisation, le procédé comprend une étape additionnelle de revêtement de la fibre obtenue à l’étape ii) par un matériau organique ou inorganique M3. According to yet another embodiment, the method comprises an additional step of coating the fiber obtained in step ii) with an organic or inorganic material M3.
Le matériau M3 peut être choisi parmi les polymères, les métaux ou le carbone. The material M3 can be chosen from polymers, metals or carbon.
La fibre obtenue à l’étape ii) peut être revêtue par un matériau M3 via des méthodes conventionnelles bien connues de l’homme du métier, en particulier via un procédé d’enduction par trempage (dip-coating), un dépôt en phase vapeur ou par extrusion par une filière. The fiber obtained in step ii) can be coated with an M3 material via conventional methods well known to those skilled in the art, in particular via a dipping coating process (dip-coating), vapor phase deposition or by extrusion through a die.
Selon une variante, le procédé peut comprendre une étape de structuration sélective de tout ou partie du matériau M1 ou M2, par dissolution ou attaque chimique sélective. Le volume de matériau M2 peut représenter entre 0,02% et 90% du volume total de la préforme. According to a variant, the method can comprise a step of selective structuring of all or part of the material M1 or M2, by dissolution or selective chemical attack. The volume of material M2 can represent between 0.02% and 90% of the total volume of the preform.
La préforme à l’étape i) peut être préparée selon un procédé comprenant les étapes de : o Perçage d’une pièce en un matériau M1 par un ou plusieurs trous suivant l’axe longitudinal de la préforme; o Inclusion à l’intérieur de chacun des trous percés dans le matériau M1 d’une pièce de matériau M2; et o Récupération de la préforme obtenue. The preform in step i) can be prepared according to a process comprising the steps of: o Drilling a part in an M1 material by one or more holes along the longitudinal axis of the preform; o Inclusion inside each of the holes drilled in the M1 material of a piece of M2 material; and o Recovery of the preform obtained.
La pièce de matériau M1 est notamment une pièce pleine. A titre d’exemple, il peut s’agir d’une pièce pleine de forme cylindrique, de section transversale circulaire. Elle peut notamment présenter une longueur de 100 mm et un diamètre de 20 mm. Plusieurs trous, débouchants ou non, s’étendant sur une longueur de plusieurs centimètres le long de l’axe longitudinal de la pièce peuvent être percés. Le perçage est par exemple réalisé mécaniquement ou avec un laser. Des barreaux cylindriques de matériau M2 peuvent ensuite être insérés dans les trous. Les diamètres des barreaux cylindriques M2 sont de préférence très proches, notamment moins de 5% inférieurs à ceux des trous percés dans le matériau M1. The piece of material M1 is in particular a solid piece. For example, it may be a solid piece of cylindrical shape, with a circular cross section. It may in particular have a length of 100 mm and a diameter of 20 mm. Several holes, through or not, extending over a length of several centimeters along the longitudinal axis of the part can be drilled. The drilling is for example carried out mechanically or with a laser. Cylindrical rods of M2 material can then be inserted into the holes. The diameters of the cylindrical bars M2 are preferably very close, in particular less than 5% less than those of the holes drilled in the material M1.
Selon une alternative, la préforme à l’étape i) peut être préparée selon un procédé, communément désigné « stack-and-draw », comprenant les étapes d’: o Association de couches de matériaux M1 et M2 de manière à former un empilement M1/M2/M1, la couche de matériau M2 étant intercalée entre deux couches de matériau M1 ; o Adhésion des couches empilées M1/M2/M1 entre elles ; et o Récupération de la préforme obtenue. According to an alternative, the preform in step i) can be prepared according to a method, commonly referred to as "stack-and-draw", comprising the steps of: o Association of layers of materials M1 and M2 so as to form a stack M1/M2/M1, the layer of material M2 being interposed between two layers of material M1; o Adhesion of the stacked layers M1/M2/M1 between them; and o Recovery of the preform obtained.
L’adhésion des couches empilées M1/M2/M1 peut être réalisée par : o Traitement thermique à une température comprise entre Tg min et Tg min + 50°C, Tg min désignant la température de transition vitreuse la plus faible des trois couches de matériaux M1/M2/M1, et éventuellement o Application d’une pression mécanique sur les couches empilées M1/M2/M1 pendant l’étape de traitement thermique.The adhesion of the stacked layers M1/M2/M1 can be achieved by: o Heat treatment at a temperature between T g min and T g min + 50°C, Tg min designating the lowest glass transition temperature of the three layers of materials M1/M2/M1, and possibly o Application of mechanical pressure on the stacked layers M1/M2/M1 during the heat treatment step.
L’épaisseur de la couche de matériau M2 représente de préférence 10% ou moins de l’épaisseur totale de la structure M1/M2/M1. Dans ces procédés de préparation de la préforme, la pièce ou la couche en matériau Mi et/ou M2 peut être préparée par fabrication additive, notamment par dépôt de filament de polymère pour le matériau M2. The thickness of the layer of material M2 preferably represents 10% or less of the total thickness of the structure M1/M2/M1. In these processes for preparing the preform, the part or the layer of material Mi and/or M2 can be prepared by additive manufacturing, in particular by deposition of polymer filament for the material M2.
La température de fibrage Tf à l’étape ii) peut être comprise entre la température Tg M1 et Tg M1 + 100°C et/ou entre TmM2 + 50°C et Td M2 - 50°C. The fiber drawing temperature Tf in step ii) can be between the temperature T g M1 and T g M1 +100°C and/or between Tm M2 +50°C and T d M2 -50°C.
Fibre composite composite fiber
Selon un deuxième aspect, l’invention concerne une fibre composite susceptible d’être obtenue selon le procédé tel que défini ci-dessusAccording to a second aspect, the invention relates to a composite fiber capable of being obtained according to the process as defined above
Selon un troisième aspect, l’invention concerne une fibre composite comprenant : o un matériau amorphe M1 constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; o un matériau M2 constitué d’une composition de polymère amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à Tg M1 ; ; o Les matériaux M1 et M2 étant directement au contact l’un de l’autre, et According to a third aspect, the invention relates to a composite fiber comprising: o an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.; o a material M2 consisting of an amorphous or semi-crystalline polymer composition, whose glass transition temperature T g M2 is lower than T g M1 ; ; o The materials M1 and M2 being directly in contact with each other, and
O TgM1 - TgM2 > 50°C. O Tg M1 - Tg M2 > 50°C.
De préférence, le matériau M2 est un polymère semi-cristallin. Preferably, the material M2 is a semi-crystalline polymer.
Selon un mode de réalisation, le matériau M1 forme une gaine entourant une âme en matériau M2. According to one embodiment, the material M1 forms a sheath surrounding a core made of material M2.
Selon encore un mode de réalisation, la plus petite dimension de la fibre composite est supérieure à 20 pm et la plus grande dimension est inférieure à 6 mm. According to yet another embodiment, the smallest dimension of the composite fiber is greater than 20 μm and the largest dimension is less than 6 mm.
Utilisation des fibres composites Use of composite fibers
Selon encore un autre aspect, l’invention concerne l’utilisation de fibres composites selon l’invention, dans des dispositifs ou composants optiques, tels que des interféromètres, des capteurs ou sources lasers. According to yet another aspect, the invention relates to the use of composite fibers according to the invention, in optical devices or components, such as interferometers, sensors or laser sources.
Les fibres composites selon l’invention peuvent être notamment utiles pour la préparation d’interféromètres de type Mach-Zehnder. The composite fibers according to the invention can be particularly useful for the preparation of Mach-Zehnder type interferometers.
Préforme et utilisation Preform and use
Selon encore un autre aspect, l’invention concerne une préforme pour le fibrage de fibre composite comprenant : • un matériau amorphe Mi constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; According to yet another aspect, the invention relates to a preform for drawing composite fiber comprising: • an amorphous material Mi consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.;
• un matériau M2 constitué d’une composition de polymère, amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à Tg M1 ; • a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ;
• les matériaux M1 et M2 étant directement au contact l’un de l’autre, et • the materials M1 and M2 being directly in contact with each other, and
• TgM1 - TgM2 > 50°C. • Tg M1 - Tg M2 > 50°C.
Selon encore un autre aspect, l’invention concerne l’utilisation d’une préforme selon l’invention pour la préparation de fibres optiques composites.
Figure imgf000014_0001
According to yet another aspect, the invention relates to the use of a preform according to the invention for the preparation of composite optical fibers.
Figure imgf000014_0001
Protocole de fibraqe Fibracing protocol
Après la réalisation de la préforme, on procède à son étirage sous forme de fibre. Ce procédé nécessite une tour de fibrage, composée d’un système de descente de la préforme, un système d’enroulement de la fibre, un mesureur de diamètre, un mesureur de tension (tensiomètre) ainsi qu’un four tubulaire. On peut adjoindre au dispositif un système d'enduction externe de la fibre par un polymère de protection. Le four est composé d’au moins un élément chauffant enroulé autour d’un tube chemise. Le profil thermique du four est tel que la zone de chauffe est très restreinte (volume de la zone chaude ~6 cm3). Le tube chemise constitue l’enceinte de fibrage. L’ouverture haute du tube chemise est fermée par une canne en métal et un bouclier thermique. L’ouverture basse du tube est fermée par un diaphragme. Un flux de 1 à 5 L/min (de préférence 3L/min) de gaz circule à l’intérieur du four. Le gaz choisi dépend du matériau à fibrer et peut-être de l’Argon (Ar), du dioxygène (O2), du diazote (N2) ou de l’Hélium (He) (de préférence l’Hélium). After the production of the preform, it is drawn in the form of a fiber. This process requires a fiber drawing tower, made up of a preform lowering system, a fiber winding system, a diameter gauge, a tension gauge (tensiometer) and a tube furnace. It is possible to add to the device a system for external coating of the fiber with a protective polymer. The oven is composed of at least one heating element wound around a jacket tube. The thermal profile of the oven is such that the heating zone is very limited (volume of the hot zone ~6 cm 3 ). The jacket tube constitutes the fiber-drawing enclosure. The upper opening of the jacket tube is closed by a metal rod and a heat shield. The lower opening of the tube is closed by a diaphragm. A flow of 1 to 5 L/min (preferably 3 L/min) of gas circulates inside the oven. The gas chosen depends on the material to be fiberized and may be Argon (Ar), oxygen (O2), nitrogen (N2) or helium (He) (preferably helium).
Dans un premier temps, la préforme est accrochée à une canne creuse en silice, elle-même accrochée à une canne creuse en métal. Les cannes servent à suspendre la préforme dans le four. La préforme est ensuite positionnée au centre du four et de telle manière à ce que le point le plus chaud du four soit situé légèrement au-dessus (de 10 à 30 mm) de l’extrémité basse de la préforme. Pour initier le fibrage, la préforme est alors chauffé de 5 °C/min à 20°C/min (de préférence 10°C/min) à sa température de ramollissement (empiriquement ~ 100 °C au-dessus de la Tg). Arrivée à cette température, la préforme commence à se déformer et sous l’effet de la gravité, une goutte apparait et tombe lentement, étirant à sa suite la préforme, de sorte à former la fibre optique souhaitée (voir Fig. [4]). A ce stade, le processus de fibrage est initié. First, the preform is attached to a hollow silica rod, itself attached to a hollow metal rod. The rods are used to suspend the preform in the oven. The preform is then positioned in the center of the oven and in such a way that the hottest point of the oven is located slightly above (10 to 30 mm) the lower end of the preform. To initiate the drawing, the preform is then heated from 5°C/min to 20°C/min (preferably 10°C/min) to its softening temperature (empirically ~100°C above the Tg). Arrived at this temperature, the preform begins to deform and under the effect of gravity, a drop appears and falls slowly, stretching the preform in its wake, so as to form the desired optical fiber (see Fig. [4]). At this stage, the fiber drawing process is initiated.
La « goutte » est ensuite séparée de la fibre qui est alors accrochée au tambour de stockage qui est mis en rotation (vitesse entre 0,1 et 50 m/min). Par l’intermédiaire de la canne en acier qui est reliée à un système de translation verticale, la préforme est elle aussi mise en mouvement et descend lentement dans le four (vitesse entre 0,1 et 3 mm/min). Le processus est autoentretenu, il respecte la loi de conservation du volume, à savoir que le volume de fibre produit est égal au volume de préforme consommé : The “drop” is then separated from the fiber which is then attached to the storage drum which is set in rotation (speed between 0.1 and 50 m/min). Via the steel rod which is connected to a vertical translation system, the preform is also set in motion and descends slowly into the oven (speed between 0.1 and 3 mm/min). The process is self-sustaining, it respects the volume conservation law, namely that the volume of fiber produced is equal to the volume of preform consumed:
[Math 1]
Figure imgf000015_0001
[Math 1]
Figure imgf000015_0001
Où Vfibre et Vpréforme sont respectivement le volume de fibre fabriquée et de préforme étirée. Sur un intervalle de temps donné et pour une préforme cylindrique on aura alors : Where Vfiber and Vpreform are respectively the volume of manufactured fiber and stretched preform. Over a given time interval and for a cylindrical preform, we will then have:
[Math 2]
Figure imgf000015_0002
ec d>fibre et Qpréforme, les diamètres respectivement de la fibre et de la préforme, et vfibre et vpreforme, les vitesses de descente préforme et d'enroulement de la fibre respectivement. Quelle que soit la forme de la préforme de départ, les dimensions de la fibre dépendent des vitesses d’enroulement de la fibre et de la descente préforme. En pratique, la vitesse de descente préforme est généralement gardée constante au cours du fibrage, et c’est la vitesse de rotation du tambour qui est ajustée en fonction des dimensions de la fibre visées. Les fibres alors fabriquées peuvent avoir leur plus petite dimension supérieure à 20 pm et leur plus grande dimension inférieure à 6 mm. Exemple d’une fibre à section circulaire : le diamètre peut être compris entre 20 pm et 6 mm. Exemple d’une fibre à section rectangulaire : la plus petite dimension, c’est-à-dire le petit côté du rectangle, peut être supérieure ou égale à 20 pm et la plus grande dimension, c’est-à- dire le grand côté du rectangle, peut être inférieure ou égale à 6 mm.
[Math 2]
Figure imgf000015_0002
ec d>fiber and Qpreform, the fiber and preform diameters respectively, and vfiber and vpreform, the preform descent and fiber winding speeds respectively. Whatever the shape of the starting preform, the dimensions of the fiber depend on the winding speeds of the fiber and the preform descent. In practice, the preform descent speed is generally kept constant during drawing, and it is the rotation speed of the drum which is adjusted according to the target fiber dimensions. The fibers then produced can have their smallest dimension greater than 20 μm and their largest dimension less than 6 mm. Example of a fiber with a circular section: the diameter can be between 20 μm and 6 mm. Example of a fiber with a rectangular section: the smallest dimension, i.e. the small side of the rectangle, can be greater than or equal to 20 μm and the largest dimension, i.e. the large side of the rectangle, can be less than or equal to 6 mm.
Par ailleurs, l’ajustement de la température de fibrage se fait en fonction de la tension mesurée par le tensiomètre. Cette mesure de tension renseigne sur l’état de viscosité du matériau ou de l'assemblage de matériaux qui est en train d’être fibré. Une tension trop faible signifie que le matériau est trop peu visqueux (matériau trop mou car température trop élevée) et la fibre risque dans ce cas de subir des déformations importantes de sa structure car le procédé de fibrage n’est alors plus maitrisé. Une tension trop élevée signifie que le matériau est trop visqueux (matériau trop dur car température trop faible) et la fibre risque dans ce cas de casser. En pratique, le fibrage se déroule à des tensions comprises entre 3 et 100 g (idéalement entre 10 et 30 g). La différence entre le fibrage classique et le fibrage fluide, dans lequel certains des matériaux constituant la préforme sont à l'état liquide, réside dans la nécessité d’un contrôle plus drastique de la tension de fibrage des matériaux qui demeurent à l'état visqueux. L’intervalle de tension acceptable peut être situé (estimation) entre 10 et 75 g (idéalement entre 15 et 25 g). In addition, the adjustment of the fiber drawing temperature is made according to the tension measured by the tensiometer. This tension measurement provides information on the state of viscosity of the material or the assembly of materials which is being fiberized. A tension that is too low means that the material is not very viscous (material too soft because the temperature is too high) and the fiber risks in this case undergoing significant deformations of its structure because the fiber drawing process is then no longer controlled. Too high a tension means that the material is too viscous (material too hard because the temperature is too low) and the fiber risks breaking in this case. In practice, fiber drawing takes place at tensions between 3 and 100 g (ideally between 10 and 30 g). The difference between conventional fiber drawing and fluid fiber drawing, in which some of the materials constituting the preform are in the liquid state, lies in the need for more drastic control of the drawing tension of the materials which remain in the viscous state. . The acceptable tension range can be located (estimated) between 10 and 75 g (ideally between 15 and 25 g).
Enfin, le fibrage est terminé lorsque la totalité de la préforme a été consommée. Finally, the fiber drawing is finished when all of the preform has been consumed.
[Etape optionnelle 1 : Application d’une dépression ou surpression sur la préforme] [Optional step 1: Application of a vacuum or overpressure on the preform]
Une surpression ou bien une dépression peuvent être appliquées aux cavités et inclusions de la préforme pendant le fibrage. An overpressure or a depression can be applied to the cavities and inclusions of the preform during drawing.
Généralement, une surpression peut être appliquée pour gonfler des structures creuses au sein de la fibre (fibres micro-structurées). Elle peut notamment aider au bon écoulement des polymères présents au sein de la préforme (comparablement aux procédés d’extrusion sous pression). La gamme de surpression peut être comprise entre 0,1 à 200 mbar (idéalement 1 à 30 mbar). Generally, overpressure can be applied to swell hollow structures within the fiber (micro-structured fibers). It can in particular help the good flow of the polymers present within the preform (compared to pressure extrusion processes). The overpressure range can be between 0.1 to 200 mbar (ideally 1 to 30 mbar).
Généralement, une dépression peut être appliquée pour collapser des structures creuses ou des espaces vides au sein de la fibre. Dans ce cas les structures creuses sont considérées comme des défauts (bulles et cavités) ou sont liées par exemple à la présence d'interfaces entre des matériaux différents assemblés et il est nécessaire de les éliminer. Une dépression peut notamment aider à améliorer le contact entre les parties en polymères et les parties en verres présentes au sein de la préforme. La gamme de dépression peut être comprise entre 0,1 à 200 mbar (idéalement 1 à 30 mbar). Generally, vacuum can be applied to collapse hollow structures or voids within the fiber. In this case the hollow structures are considered as defects (bubbles and cavities) or are linked for example to the presence of interfaces between different assembled materials and it is necessary to eliminate them. A depression can in particular help to improve the contact between the polymer parts and the glass parts present within the preform. The vacuum range can be between 0.1 to 200 mbar (ideally 1 to 30 mbar).
[Etape optionnelle 2 : Revêtement de la fibre] [Optional step 2: Fiber coating]
La fibre peut être revêtue d’un matériau au cours du procédé de fibrage. A la sortie du four de fibrage, la fibre passe par une filière permettant de déposer un revêtement sur la surface de la fibre. Des étapes supplémentaires peuvent être ajoutées après le dépôt de ce revêtement pour le fixer durablement à la fibre (photopolymérisation par lampe UV, séchage thermique, etc.). The fiber can be coated with a material during the drawing process. On leaving the fiberizing oven, the fiber passes through a die allowing a coating to be deposited on the surface of the fiber. Additional steps can be added after the deposition of this coating to permanently fix it to the fiber (photopolymerization by UV lamp, thermal drying, etc.).
Exemple 1 : Préparation d’une fibre verre de tellurite/PEEK Example 1: Preparation of a tellurite/PEEK glass fiber
Dans un premier temps, des compositions de verres de tellurite ont été sélectionnées pour le cofibrage verre/polymère. Elles possèdent en effet de bonnes stabilités thermomécanique et chimique requises pour le fibrage. Par ailleurs ces matériaux présentent des températures de fibrage modérées (-300 à 500 °C, en comparaison avec les 2000 °C de la silice), autorisant notamment leur fibrage avec des matériaux organiques. Enfin, les verres de tellurites possèdent des propriétés optiques intéressantes (transmission dans l'infrarouge moyen entre -0,4 et 6,5 pm, propriétés optiques non linéaires, etc.) pour des applications en photonique. First, tellurite glass compositions were selected for the glass/polymer cofibration. They have in fact good thermomechanical and chemical stability required for fiber drawing. Furthermore, these materials have moderate fiber-drawing temperatures (-300 to 500°C, in comparison with the 2000°C of silica), in particular allowing their fiber-drawing with organic materials. Finally, tellurite glasses have interesting optical properties (transmission in the mid-infrared between -0.4 and 6.5 pm, nonlinear optical properties, etc.) for photonics applications.
Plus précisément, le procédé commence par l'élaboration d'un tube de gaine en verre. Les compositions et températures caractéristiques des verres considérés dans cet exemple sont données dans le tableau 1 . Une masse de verre d’environ 50 g est d’abord synthétisée au laboratoire par fusion-coulée. Le tube est fabriqué à partir de cette masse de verre soit par moulage, soit par perçage. Pour la première méthode, la technique du « build-in casting » est employée. A la fin de la synthèse du verre, il est coulé dans un moule en métal (typiquement du laiton) cylindrique préchauffé à - Tg -100 °C pour son moulage. Au moment de cette trempe, le verre se solidifie de l'extérieur vers l'intérieur du moule, si bien que la partie centrale du barreau de verre reste liquide plus longtemps. Ainsi, en retournant le moule avant la solidification complète du barreau, il est possible d'évacuer la partie centrale de verre et ainsi former un tube. Cette méthode permet de fabriquer des tubes de faible épaisseur (1 à 5 mm) et donc avec un diamètre interne important (6 à 14 mm) et une longueur de 40 à 120 mm. More specifically, the process begins with the development of a glass sheath tube. The characteristic compositions and temperatures of the glasses considered in this example are given in Table 1. A glass mass of approximately 50 g is first synthesized in the laboratory by fusion-casting. The tube is made from this mass of glass either by molding or by drilling. For the first method, the “build-in casting” technique is used. At the end of the synthesis of the glass, it is poured into a cylindrical metal mold (typically brass) preheated to - Tg -100°C for its molding. During this tempering, the glass solidifies from the outside towards the inside of the mould, so that the central part of the glass bar remains liquid longer. Thus, by turning over the mold before the complete solidification of the bar, it is possible to evacuate the central part of glass and thus form a tube. This method makes it possible to manufacture tubes of low thickness (1 to 5 mm) and therefore with a large internal diameter (6 to 14 mm) and a length of 40 to 120 mm.
En ce qui concerne la deuxième technique de fabrication du tube, une préforme cylindrique (longueur 40 à 60 mm et diamètre 8 à 20 mm) est percée mécaniquement le long de son axe central (profondeur 20 à 30 mm et diamètre de 0,7 à 3 mm). Cette méthode permet de fabriquer des tubes de forte épaisseur et donc avec un diamètre interne faible. As regards the second technique for manufacturing the tube, a cylindrical preform (length 40 to 60 mm and diameter 8 to 20 mm) is drilled mechanically along its central axis (depth 20 to 30 mm and diameter 0.7 to 3mm). This method makes it possible to manufacture very thick tubes and therefore with a small internal diameter.
Un barreau de polymère (ici du TecaPEEK-naturel fourni par Ensinger, Tm = -350 °C) possédant les dimensions adéquates, c'est-à-dire correspondant à celles du tube est inséré dans le tube de verre de gaine fabriqué par l’une des deux méthodes décrites plus haut. A polymer bar (here TecaPEEK-natural supplied by Ensinger, Tm = -350°C) having the appropriate dimensions, i.e. corresponding to those of the tube, is inserted into the sheath glass tube manufactured by the one of the two methods described above.
[Table 1] [Table 1]
Composition Température Température de transition de moulageComposition Temperature Molding transition temperature
TeO2 ZnO Na2O La2O3 vitreuse (°C) (°C)TeO 2 ZnO Na 2 O Vitreous La 2 O 3 (°C) (°C)
80 10 10 - 285 18580 10 10 - 285 185
75 20 5 - 308 20875 20 5 - 308 208
70 25 - 5 365 26570 25 - 5 365 265
65 30 : 5 374 27465 30 : 5,374,274
Tableau 1 : Températures caractéristiques des verres considérés Table 1: Characteristic temperatures of the glasses considered
Cet assemblage est ensuite étiré sur une tour de fibrage à des températures comprises entre 300 et 500 °C environ. La stratégie employée consiste à maintenir la viscosité du verre aussi élevée que possible durant l'étape de fibrage (sans dépasser le seuil de rupture mécanique de la fibre) afin de permettre l'écoulement contrôlé du polymère, alors présent dans sa phase liquide au cœur de la préforme. La méthode de fabrication employée permet le transfert homothétique de la géométrie de la préforme vers la fibre au cours du fibrage. This assembly is then stretched on a fiber drawing tower at temperatures between approximately 300 and 500°C. The strategy employed consists in keeping the viscosity of the glass as high as possible during the fiber drawing step (without exceeding the mechanical breaking point of the fiber) in order to allow the controlled flow of the polymer, then present in its liquid phase at the core. of the preform. The manufacturing method used allows the homothetic transfer of the geometry of the preform to the fiber during drawing.
Exemple 2 : Préparation d’une fibre verre de tellurite/PES selon une méthode dite de « stack-and-draw » Example 2: Preparation of a tellurite/PES glass fiber according to a so-called “stack-and-draw” method
Dans le procédé stack-and-draw, la préforme consiste en un empilement de pièces de différents matériaux arrangées de manière à former la géométrie voulue. Dans ce cas, on considère un verre de tellurite de composition (en % molaires) 70 TeC - 20 ZnO - 5 Na2O (abrégé en TZN75) et du polyéther sulfone (abrégé en PES). Le matériau TZN75, dont la Tg est égale à 308 °C, est synthétisé au laboratoire par fusion-coulée et mis sous forme de plaques de dimensions 3 x 10 x 75 mm par découpe et polissage. Les PES, dont la Tg est égale à 225 °C, est acheté sous forme de films de 0,05 mm d’épaisseur chez GoodFellow. In the stack-and-draw process, the preform consists of a stack of parts of different materials arranged to form the desired geometry. In this case, we consider a tellurite glass of composition (in % molar) 70 TeC - 20 ZnO - 5 Na2O (abbreviated as TZN75) and polyether sulfone (abbreviated as PES). The TZN75 material, whose T g is equal to 308°C, is synthesized in the laboratory by fusion-casting and shaped into plates of dimensions 3 x 10 x 75 mm by cutting and polishing. The PES, whose T g is equal to 225° C., is purchased in the form of films 0.05 mm thick from GoodFellow.
La préforme est alors fabriquée de la manière suivante : The preform is then manufactured as follows:
(i) Les différentes pièces sont empilées les unes sur les autres pour former un assemblage macroscopique, en suivant l’ordre suivant : une plaque de TZN75, un film de PES, une plaque de TZN75. (i) The different parts are stacked on top of each other to form a macroscopic assembly, following the following order: a plate of TZN75, a film of PES, a plate of TZN75.
(ii) L’assemblage subit un traitement thermique à Tg-min + 50 °C = 275 °C pendant 2h afin que les pièces se collent entre elles. Tg-min étant la température de transition vitreuse du matériau possédant la température de transition vitreuse la plus faible. En général, on applique une pression de quelques kPa sur l’assemblage pendant le traitement thermique pour assurer la bonne cohésion entre les différentes pièces. Cette pression est appliquée à l’aide de poids en céramique ou en graphite. (ii) The assembly undergoes a heat treatment at T g -min + 50°C = 275°C for 2 hours so that the parts stick together. Tg-min being the glass transition temperature of the material having the lowest glass transition temperature. In general, a pressure of a few kPa is applied to the assembly during the heat treatment to ensure good cohesion between the different parts. This pressure is applied using ceramic or graphite weights.
L’épaisseur de la couche en polymère ne dépasse pas ~ 10 % de l’épaisseur totale de la préforme. The thickness of the polymer layer does not exceed ~10% of the total thickness of the preform.
La préforme fabriquée par cette méthode est ensuite étirée de la même manière que les autres préformes, comme décrit dans le protocole de fibrage. The preform made by this method is then stretched in the same way as the other preforms, as described in the fiber drawing protocol.

Claims

Revendications Claims
1. Procédé de préparation d’une fibre composite comprenant les étapes de : i. Fourniture d’une préforme comprenant: o un matériau amorphe Mi constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; o un matériau M2 constitué d’une composition de polymère, amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à T M1 ■ 1. Process for preparing a composite fiber comprising the steps of: i. Supply of a preform comprising: o an amorphous material Mi consisting of a glass composition whose glass transition temperature T g M1 is less than 500°C; o a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T M1 ■
1 g o Les matériaux M1 et M2 étant directement au contact l’un de l’autre et le matériau M2 étant entouré en tout ou partie par un ou plusieurs matériaux M1; il. Fibrage de la préforme à une température de fibrage Tf, ladite température Tf étant à la fois comprise entre : 1 go The materials M1 and M2 being directly in contact with each other and the material M2 being surrounded in whole or in part by one or more materials M1; he. Fiber drawing of the preform at a fiber drawing temperature Tf, said temperature Tf being both between:
. la température de transition vitreuse Tg M1 et la température de fusion TmM1 de M1 de sorte que M1 est à l’état visqueux à la température Tf ; . the glass transition temperature T g M1 and the melting temperature Tm M1 of M1 such that M1 is in the viscous state at the temperature Tf;
. la température de fusion Tm M2 et la température de dégradation thermique TdM2 de M2 de sorte que M2 est à l’état liquide à la température Tf ; ce par quoi on obtient une fibre composite. . the melting temperature T m M2 and the thermal degradation temperature Td M2 of M2 such that M2 is in the liquid state at the temperature Tf; by which we obtain a composite fiber.
2. Procédé selon la revendication 1 , dans lequel la préforme comprend une couche de matériau M2 intercalée entre au moins deux couche de matériau M1, les couches de matériau M1 étant de natures identiques ou différentes. 2. Method according to claim 1, in which the preform comprises a layer of material M2 interposed between at least two layers of material M1, the layers of material M1 being of identical or different natures.
3. Procédé selon la revendication 1 , dans lequel la préforme comprend une couche de matériau M1 formant matrice, ladite matrice comprenant une ou plusieurs inclusions de matériau M2, les inclusions de matériau M2 étant de nature identiques ou différentes. 3. Method according to claim 1, in which the preform comprises a layer of material M1 forming a matrix, said matrix comprising one or more inclusions of material M2, the inclusions of material M2 being of identical or different natures.
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel les matériaux M1 et M2 s’étendent longitudinalement le long de l’axe longitudinal de la préforme. Procédé selon l’une quelconque des revendications précédentes, dans lequel la composition de polymère amorphe ou semi-cristallin comprend une ou plusieurs charges. Procédé selon l’une quelconque des revendications précédentes, dans lequel la composition de verre du matériau Mi est choisie parmi les verres tellurite, les verres de phosphate, les verres de boro-phosphate, les verres de germanates, les verres de fluorures, les verres de chalcogénures, ou les mélanges de ceux-ci. Procédé selon l’une quelconque des revendications précédentes, dans lequel la température de transition vitreuse Tg M1 de Mi est supérieure à 100°C, de préférence, est comprise entre 300 et 500°C. Procédé selon l’une quelconque des revendications précédentes, dans lequel le matériau M2 est une composition de polymère semi-cristallin. Procédé selon l’une quelconque des revendications précédentes, dans lequel le polymère est choisi parmi les polyaryléthercétones (PAEK), le polycarbonate, le polyéthylène téréphtalate glycosilé (PETG), les polyamides (PA) ou un mélange de ceux-ci. Procédé selon l’une quelconque des revendications précédentes, dans lequel le procédé comprend une étape additionnelle de revêtement de la fibre obtenue à l’étape ii) par un matériau organique ou inorganique M3. Procédé selon l’une quelconque des revendications précédentes, dans lequel la température de fibrage à l’étape ii) est comprise entre la température Tg M1 et Tg M1 + 100°C. Procédé selon l’une quelconque des revendications précédentes, dans lequel la température de fibrage à l’étape ii) est comprise entre TmM2 + 50°C et TdM2 -50°C. Fibre composite susceptible d’être obtenue selon l’une quelconque des revendications 1 à 12. Fibre composite comprenant : o un matériau amorphe M1 constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; o un matériau M2 constitué d’une composition de polymère, amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à Tg M1 ; o Les matériaux M1 et M2 étant directement au contact l’un de l’autre et le matériau M2 étant entouré en tout ou partie par un ou plusieurs matériaux M1; et 4. Method according to any one of the preceding claims, in which the materials M1 and M2 extend longitudinally along the longitudinal axis of the preform. A method according to any preceding claim, wherein the amorphous or semi-crystalline polymer composition comprises one or more fillers. Process according to any one of the preceding claims, in which the glass composition of the Mi material is chosen from tellurite glasses, phosphate glasses, boro-phosphate glasses, germanate glasses, fluoride glasses, chalcogenides, or mixtures thereof. Process according to any one of the preceding claims, in which the glass transition temperature T g M1 of Mi is greater than 100°C, preferably is between 300 and 500°C. A method according to any preceding claim, wherein the material M2 is a semi-crystalline polymer composition. Process according to any one of the preceding claims, in which the polymer is chosen from polyaryletherketones (PAEK), polycarbonate, glycosilated polyethylene terephthalate (PETG), polyamides (PA) or a mixture thereof. Method according to any one of the preceding claims, in which the method comprises an additional step of coating the fiber obtained in step ii) with an organic or inorganic material M3. Process according to any one of the preceding claims, in which the fiber drawing temperature in stage ii) is between the temperature T g M1 and T g M1 + 100°C. Process according to any one of the preceding claims, in which the fiber drawing temperature in stage ii) is between Tm M2 + 50°C and Td M2 -50°C. Composite fiber obtainable according to any one of claims 1 to 12. Composite fiber comprising: o an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500°C; o a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ; o The materials M1 and M2 being directly in contact with each other and the material M2 being surrounded in whole or in part by one or more materials M1; And
O TgM1 - TgM2 > 50°C. O Tg M1 - Tg M2 > 50°C.
15. Fibre composite selon la revendication 14, dans laquelle le matériau M1 forme une gaine entourant une âme en matériau M2. 15. Composite fiber according to claim 14, in which the material M1 forms a sheath surrounding a core of material M2.
16. Utilisation de fibres composites selon l’une quelconque des revendications 13 à 15, dans des dispositifs optiques, tels que des capteurs ou sources lasers. 16. Use of composite fibers according to any one of claims 13 to 15, in optical devices, such as sensors or laser sources.
17. Préforme pour le fibrage de fibre composite comprenant : 17. Preform for drawing composite fiber comprising:
• un matériau amorphe M1 constitué d’une composition de verre dont la température de transition vitreuse Tg M1 est inférieure à 500°C ; • an amorphous material M1 consisting of a glass composition whose glass transition temperature T g M1 is less than 500° C.;
• un matériau M2 constitué d’une composition de polymère, amorphe ou semi-cristallin, dont la température de transition vitreuse Tg M2 est inférieure à Tg M1 ; • a material M2 consisting of a polymer composition, amorphous or semi-crystalline, whose glass transition temperature T g M2 is lower than T g M1 ;
• les matériaux M1 et M2 étant directement au contact l’un de l’autre et le matériau M2 étant entouré en tout ou partie par un ou plusieurs matériaux M1, et • the materials M1 and M2 being directly in contact with each other and the material M2 being surrounded in whole or in part by one or more materials M1, and
• TgM1 - TgM2 > 50°C. • Tg M1 - Tg M2 > 50°C.
18. Utilisation d’une préforme selon la revendication 17 pour la préparation de fibres optiques composites. 18. Use of a preform according to claim 17 for the preparation of composite optical fibers.
PCT/FR2023/050184 2022-02-14 2023-02-10 Multifunctional composite fibered structures WO2023152455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2201269A FR3132721B1 (en) 2022-02-14 2022-02-14 Multifunctional composite fiber structures
FRFR2201269 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023152455A1 true WO2023152455A1 (en) 2023-08-17

Family

ID=82020209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050184 WO2023152455A1 (en) 2022-02-14 2023-02-10 Multifunctional composite fibered structures

Country Status (2)

Country Link
FR (1) FR3132721B1 (en)
WO (1) WO2023152455A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996563A1 (en) 2012-10-08 2014-04-11 Univ Haute Alsace METHOD FOR WIREDING A COMPOSITE FIBER BASED ON POLYMER
US10875806B2 (en) * 2017-07-19 2020-12-29 Corning Incorporated Organic-inorganic composite fibers and methods thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996563A1 (en) 2012-10-08 2014-04-11 Univ Haute Alsace METHOD FOR WIREDING A COMPOSITE FIBER BASED ON POLYMER
US10875806B2 (en) * 2017-07-19 2020-12-29 Corning Incorporated Organic-inorganic composite fibers and methods thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGMING TAO: "Multimaterial fibers in photonics and nanotechnology Multimaterial fibers in photonics and nanotechnology STARS Citation STARS Citation", ELECTRONIC THESES AND DISSERTATIONS, 1 January 2014 (2014-01-01), pages 2004 - 2019, XP055963583, Retrieved from the Internet <URL:https://stars.library.ucf.edu/etd/4848> [retrieved on 20220922] *
VENTURA ANDREA ET AL: "Extruded tellurite antiresonant hollow core fiber for Mid-IR operation", OPTICS EXPRESS, vol. 28, no. 11, 18 May 2020 (2020-05-18), pages 16542, XP055963582, DOI: 10.1364/OE.390517 *

Also Published As

Publication number Publication date
FR3132721B1 (en) 2024-05-10
FR3132721A1 (en) 2023-08-18

Similar Documents

Publication Publication Date Title
EP0054495B2 (en) Optical waveguide with a fluor-doped core
EP0112222B1 (en) Device for producing a toroidal-shaped article starting from a pliable material
EP0161999B1 (en) Methods for making fibres and optical components in fluor glass and apparatus used therefor
FR2476058A1 (en) SEMI-PRODUCT FOR THE PRODUCTION OF OPTICAL FIBERS, PROCESS FOR PREPARING THE SEMICONDUCTOR AND OPTICAL FIBERS OBTAINED FROM THE SEMICONDUCTOR
EP0560638B1 (en) Process for manufacturing cylindrical glass piece, especially from fluoride glass
FR2741335A1 (en) Process and device for producing sheet of vitreous material
EP0693865B1 (en) Induction plasma torch
JP2010526756A5 (en)
EP0086132B1 (en) Method of making doped silica glass for processing a preform for an optical fibre
FR2475032A1 (en)
EP0320384B1 (en) Process of manufacturing optical fibres of high mechanical strength by drawing under high tension
FR2499722A1 (en) OPTICAL FIBER OR CRYSTALLINE HEART OPTIC FIBER PREFORM AND METHODS OF MAKING SAME
WO2023152455A1 (en) Multifunctional composite fibered structures
EP0250326A1 (en) Method for making preforms for optical fibres
FR2619561A1 (en) PROCESS FOR PREPARING FIBERS IN CHALCOGENIDE GLASSES
JPS62288127A (en) Manufacture of mother material for drawing glass fiber
FR2690435A1 (en) Process for forming a fluoride glass fiber preform
EP0579517A1 (en) Process for making a preform for optical fibre
FR3114536A1 (en) Method for winding a filament for an additive manufacturing device
Clarke et al. Manufacture of fluoride glass preforms
FR3064076A1 (en) METHOD FOR MANUFACTURING COMPOSITE OPTIC FIBER AND COMPOSITE OPTIC FIBER
JPH01108131A (en) Element containing multicomponent metal halide glass and manufacture
WO2006124596A2 (en) Core suction technique for the fabrication of optical fiber preforms
FR2861719A1 (en) Fabrication of a preformer with an optimized cone for entry into a fibre optic drawing installation
FR2604169A1 (en) Process and apparatus for the manufacture of a fluoride glass fibre which has a coating layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23709241

Country of ref document: EP

Kind code of ref document: A1