WO2023151593A1 - 预编码指示方法、装置、通信设备、***及存储介质 - Google Patents

预编码指示方法、装置、通信设备、***及存储介质 Download PDF

Info

Publication number
WO2023151593A1
WO2023151593A1 PCT/CN2023/075012 CN2023075012W WO2023151593A1 WO 2023151593 A1 WO2023151593 A1 WO 2023151593A1 CN 2023075012 W CN2023075012 W CN 2023075012W WO 2023151593 A1 WO2023151593 A1 WO 2023151593A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
information
indication
vector
target
Prior art date
Application number
PCT/CN2023/075012
Other languages
English (en)
French (fr)
Inventor
孙荣荣
刘昊
宋扬
塔玛拉卡拉盖施
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023151593A1 publication Critical patent/WO2023151593A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a precoding indication method, device, communication equipment, system and storage medium.
  • the UE can receive downlink control information (DCI) for scheduling a Physical Uplink Shared Channel (PUSCH) sent by the network side equipment.
  • DCI downlink control information
  • PUSCH Physical Uplink Shared Channel
  • the transmission precoding matrix indicator Transmit Pre-coding Matrix Indicator, TPMI
  • TPMI Transmit Pre-coding Matrix Indicator
  • the precoding matrix used to schedule PUSCH transmission, the transmission precoding matrix indication can also be indicated through the TPMI field, so that the UE can precode the uplink data according to the precoding matrix indicated by the DCI, and send the precoded uplink data Mapped to PUSCH resources for transmission.
  • the precoding design in the above method is applied to 4-antenna transmission, and for 6-antenna transmission or 8-antenna transmission, how the UE acquires transmission precoding is an urgent problem to be solved.
  • Embodiments of the present application provide a precoding indication method, device, communication device, system, and storage medium, which can solve the problem of how a UE acquires transmission precoding for 6-antenna transmission or 8-antenna transmission.
  • a precoding indication method includes: UE acquires target information, and the target information includes at least one of the following: first indication information indicating a precoding type, second indication indicating a precoding rank Information, third indication information indicating at least one first vector that constitutes precoding, fourth indication information indicating at least one second vector that constitutes precoding, fifth indication information indicating a target phase, and valid antenna port groups The sixth indication information; the second vector is determined according to the first vector; the UE determines the precoding of uplink data according to the target information.
  • a precoding indicating device in a second aspect, includes: an acquiring module and a determining module.
  • An acquisition module configured to acquire target information, where the target information includes at least one of the following: first indication information indicating the precoding type, second indication information indicating the rank of precoding, and at least one first vector indicating the composition of the precoding
  • the third indication information, the fourth indication information indicating at least one second vector constituting the precoding, the fifth indication information indicating the target phase, and the sixth indication information indicating a valid antenna port group; the second vector is based on the first vector determined.
  • the determining module is configured to determine the precoding of the uplink data according to the target information acquired by the acquiring module.
  • a precoding indication method includes: a network side device sends target information to a UE, and the target information includes at least one of the following: first indication information indicating a precoding type, indicating a precoding rank the second indication information indicating at least one first vector constituting the precoding, the third indicating information indicating at least one second vector constituting the precoding, the fourth indicating information indicating at least one second vector forming the precoding, the fifth indicating information indicating the target phase, and the valid
  • the sixth indication information of the antenna port group; the second vector is determined according to the first vector, and the target information is used to determine precoding of uplink data.
  • a device for indicating precoding includes: a sending module.
  • sending module with For sending the target information to the UE, the target information includes at least one of the following: first indication information indicating the precoding type, second indication information indicating the rank of the precoding, third indication information indicating at least one first vector constituting the precoding Indication information, fourth indication information indicating at least one second vector constituting the precoding, fifth indication information indicating the target phase, sixth indication information indicating a valid antenna port group; the second vector is determined according to the first vector , the target information is used to determine the precoding of uplink data.
  • a UE includes a processor and a memory
  • the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following steps are implemented: The steps of the method in one aspect.
  • a UE including a processor and a communication interface, wherein the processor is configured to obtain target information, and the target information includes at least one of the following: first indication information indicating a precoding type, indicating precoding The second indication information of rank, the third indication information indicating at least one first vector constituting the precoding, the fourth indication information indicating at least one second vector constituting the precoding, the fifth indication information indicating the target phase, indicating The sixth indication information of a valid antenna port group; the second vector is determined according to the first vector; and the precoding of uplink data is determined according to the target information.
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the third aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send target information to the UE, and the target information includes at least one of the following: a first indication indicating a precoding type information, second indication information indicating the rank of the precoding, third indication information indicating at least one first vector constituting the precoding, fourth indication information indicating at least one second vector constituting the precoding, and third indication information indicating the target phase Five indication information, sixth indication information indicating a valid antenna port group; the second vector is determined according to the first vector, and the target information is used to determine precoding of uplink data.
  • a communication system including: a UE and a network-side device, the UE can be used to perform the steps of the precoding indication method described in the first aspect, and the network-side device can be used to perform the steps of the third The steps of the precoding indication method described in the aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the third aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect. method, or implement the method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the precoding indication method, or the steps of realizing the precoding indication method according to the third aspect.
  • the UE may determine the precoding of uplink data when the UE transmits according to the target information.
  • the UE can determine the precoding of the uplink data through at least one item of indication information in the target information, that is, for the precoding of the uplink data that the UE is performing data transmission, it can be based on at least one item of indication information in the target information It is convenient for the network side equipment to schedule the UE, and also increases the flexibility of the UE's precoding for uplink data, thereby reducing the signaling overhead of the precoding indication.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is one of the schematic diagrams of a precoding indication method provided by an embodiment of the present application
  • Fig. 3 is the second schematic diagram of a precoding indication method provided by an embodiment of the present application.
  • Fig. 4 is the third schematic diagram of a precoding indication method provided by the embodiment of the present application.
  • Fig. 5 is a fourth schematic diagram of a precoding indication method provided by an embodiment of the present application.
  • FIG. 6 is one of the structural schematic diagrams of a precoding indicating device provided in an embodiment of the present application.
  • Fig. 7 is the second structural schematic diagram of a precoding indicating device provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a UE provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th Generation , 6G) communication system.
  • 6G 6th generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, radio transceiver, basic Service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Home Node B, Home Evolved Node B, Transmission Reception Point (Transmission Reception Point, TRP) or any other suitable in the field
  • the base station is not limited to specific technical terms. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example, and the specific type of the base station is not limited.
  • the transmission bandwidth of the uplink sounding reference signal (Sounding Reference Signal, SRS) is determined according to the configured Bsrs and Csrs.
  • Bsrs refers to a UE-specific parameter (UE-specific)
  • Csrs refers to a cell-specific parameter (cell-specific).
  • the UE can transmit uplink data through a codebook-based PUSCH transmission mode or a non-codebook-based PUSCH transmission mode.
  • the network side device configures for the UE an SRS resource set for codebook-based transmission, and each resource set includes at least one SRS resource. Therefore, the UE can send SRS according to at least one configured SRS resource, and the network side device can obtain the uplink channel by receiving the SRS, and based on this, determine the beam, precoding matrix, MCS, etc.
  • the TPMI field in the DCI selects a precoding matrix for the scheduled PUSCH transmission from a predefined codebook, so that the UE can perform uplink transmission according to the indicated TPMI After data is precoded, it is mapped to PUSCH resources for transmission.
  • Table 1 to Table 6 show different precoding matrix sets supported by the current protocol according to UE capabilities.
  • the base station can configure the precoding subset for the UE as a fully coherent subset set, partially coherent subset, and non-coherent subset.
  • the uplink precoding indication precoding information is 6 bits, where the rank (rank, that is, the number of data streams) of the uplink PUSCH and the precoding corresponding to the rank are indicated together. .
  • Non-codebook based PUSCH transmission mode
  • the network side device may configure SRS resource sets for the UE based on non-codebook transmission, and each resource set includes at least one SRS resource.
  • the UE can detect the NZP CSI-RS sent by the network side on the Non Zero Power Channel Status Information-Reference Signal (NZP CSI-RS) resource configured by the network side device to obtain the downlink channel status According to channel reciprocity, the downlink channel information can be approximately equivalent to uplink channel information.
  • NZP CSI-RS Non Zero Power Channel Status Information-Reference Signal
  • the UE calculates the candidate precoding matrix for uplink transmission according to the uplink channel information, precodes and sends the SRS, and the network side further determines the precoding matrix used for PUSCH transmission according to the measured precoded SRS, and schedules the PUSCH
  • the Schduling Request Indication (SRI) domain of the DCI selects a subset of the SRS resource index from a predefined SRI index table, that is, the SRI group, to notify the UE of the precoding adopted by the PUSCH precoding. encoding matrix.
  • SRI Schduling Request Indication
  • Table 7 shows the set of SRI indications used in the current protocol for non-codebook-based PUSCH transmission according to UE capabilities.
  • UE can support uplink transmission on 6 antennas or 8 antennas.
  • communication technology only performs precoding design for 4-antenna transmission
  • the TPMI field in the DCI can be from a predefined Select a precoding matrix for scheduling PUSCH transmission in the codebook, so that the UE can precode the uplink data according to the TPMI indicated by the DCI, and map the precoded uplink data to PUSCH resources for transmission, however , for 6-antenna transmission or 8-antenna transmission, how to obtain transmission precoding for the UE is an urgent problem to be solved.
  • the existing 4-antenna codebook design continues to be used, the signaling overhead will increase exponentially.
  • the UE may determine the precoding of uplink data when the UE transmits according to the target information.
  • the UE can determine the precoding of the uplink data through at least one item of indication information in the target information, that is, for the precoding of the uplink data that the UE is performing data transmission, it can be based on at least one item of indication information in the target information It is convenient for the network side equipment to schedule the UE, and also increases the flexibility of the UE's precoding for uplink data, thereby reducing the signaling overhead of the precoding indication.
  • FIG. 2 shows a flowchart of the precoding indication method provided in the embodiment of the present application.
  • the precoding indication method provided by the embodiment of the present application may include the following steps 201 and 202 .
  • Step 201 UE acquires target information.
  • the precoding indication method provided in the embodiment of the present application can be applied to UE performing uplink data transmission based on 6 antennas or 8 antennas.
  • the above target information includes at least one of the following: first indication information indicating the type of precoding, second indication information indicating the rank of precoding, and third indication indicating at least one first vector constituting the precoding Information, fourth indication information indicating at least one second vector that constitutes the precoding, fifth indication information indicating the target phase, sixth indication information indicating a valid antenna port group, the second vector is determined according to the first vector .
  • the above target information may be pre-configured, predefined, stipulated in a protocol, independently determined by the UE, or configured by a network-side device.
  • step 201 may be specifically implemented through the following steps 201a and 201b.
  • Step 201a the network side device sends the target information to the UE.
  • step 201b the UE receives the target information sent by the network side device.
  • the above-mentioned step 201a may be specifically implemented through the following step 201a1, and the above-mentioned step 201b may be specifically implemented through the following step 201b1.
  • Step 201a1 the network side device sends the first signaling to the UE.
  • the foregoing first signaling carries target information.
  • the above-mentioned first signaling is any of the following: DCI, Media Access Control-Control Element (MAC CE) signaling, radio resource control (Radio Resource Control , RRC) signaling.
  • DCI Media Access Control-Control Element
  • MAC CE Media Access Control-Control Element
  • RRC Radio Resource Control
  • whether the target information is included in the first signaling is determined by RRC configuration.
  • step 201b1 the UE receives the first signaling sent by the network side device.
  • the precoding indication method provided by the embodiment of the present application further includes the following steps 301 and 302 .
  • Step 301 the network side device sends the configuration information of the target information to the UE.
  • the configuration information includes at least one of the following: a first configuration indicating whether the DCI carries target information; a second configuration indicating the bit length required by the target information.
  • the network side device may send different configuration information based on the DCI format.
  • step 302 the UE receives the configuration information of the target information sent by the network side device.
  • the precoding indication method provided by the embodiment of the present application further includes the following steps 401 and 402 .
  • Step 401 the network side device sends first information to the UE.
  • the above-mentioned first information includes at least one of the following: a precoding type set, a precoding Code rank restriction information, at least one first vector group, at least one second vector group, a target phase set, and a valid antenna port group set.
  • the above-mentioned precoding rank limitation information is used to limit the number of precoding ranks, and by limiting the precoding ranks, the overhead indicated by the precoding ranks in the target information can be limited, or the precoding ranks can be restricted.
  • the encoding type set is used to limit the target precoding to be fully coherent precoding, partially coherent precoding or irrelevant precoding or a combination of fully coherent precoding, partially coherent precoding and non-correlated precoding.
  • fully coherent/partially coherent/non-coherent refers to the coherence between antenna ports.
  • the coherence type of a group of antenna ports is complete coherence, it means that the coherence between all antenna ports in the group of antenna ports The coherence among the antenna ports satisfies the preset coherence condition, for example, the correlation degree between all antenna ports in the group of antenna ports is greater than or equal to the preset correlation degree value; if the coherence type of a group of antenna ports is partial coherence, it means that the group The coherence between some of the antenna ports in the antenna ports meets the preset coherence condition, for example, the correlation degree between some of the antenna ports in the group of antenna ports is greater than or equal to the preset correlation degree value; if a group of antenna port coherence type If it is not coherent, it means that the coherence among all the antenna ports in the group of antenna ports does not meet the preset coherence condition, for example, the degree of correlation between all the antenna
  • the fully coherent precoding in this embodiment means that the phases of elements in each column in the precoding matrix, that is, elements corresponding to all antenna ports, satisfy a certain relationship.
  • the partially coherent precoding in this embodiment means that the phases of elements in each column in the precoding matrix and elements corresponding to the partially coherent antenna ports satisfy a certain relationship.
  • no interrelated precoding in this embodiment means that only one non-zero element in each column of the precoding matrix corresponds to one antenna port.
  • the network side device may indicate at least one first vector group through the first vector group index carried in the MAC CE signaling, and the first vector group is configured by RRC signaling.
  • the network side device can select a subset from the first vector set through MAC CE or RRC, and further indicate at least one first vector from the subset to the UE through DCI signaling, so that the cost of DCI signaling can be reduced. overhead.
  • Step 402 the UE receives first information sent by the network side device.
  • the above target information is determined from the first information.
  • the above-mentioned first information is determined by any of the following: RRC configuration, MAC CE indication, and protocol agreement.
  • the MAC CE in the case where the first information is indicated by the MAC CE, includes at least one of the following items: the index of the first vector; the bit that is one-to-one mapped with the first vector; the first vector The index of the group.
  • the index of the above-mentioned first vector group is used to indicate the first vector group; or the bit that is one-to-one mapped with the first vector is used to indicate the first vector.
  • the above-mentioned first vector group is formed based on a vector orthogonal to the first vector; or, all bits in the MAC CE signaling whose bit value is 1 correspond to the first vector composition The first vector group.
  • the network side device may indicate at least one first vector for the UE from the first vector group through DCI signaling.
  • Step 202 the UE determines precoding of uplink data according to the target information.
  • the second indication information is indicated by a rank indication field in the DCI.
  • the above-mentioned rank indication field may be a specific field or a specific bit of a certain field.
  • the bit length of the above-mentioned rank indication field is determined by the maximum rank; or, the bit length of the rank indication field is determined by the minimum value of the first value and the second value, and the first value is the largest Rank, the second value is determined by any of the following: predefined, preconfigured, agreed upon by the protocol, or configured by the network side device; or, the bit length of the rank indication field is determined by precoded rank restriction information.
  • the UE may determine the precoding matrix according to the target information.
  • each column of the precoding matrix consists of a vector and a phase
  • the UE may determine the first vector according to the third indication information, determine the second vector according to the fourth indication information, determine the target phase according to the fifth indication information, and determine the target phase according to the
  • the second indication information determines a precoding rank, and determines a precoding matrix according to the first vector, the second vector, the target phase, and the precoding rank.
  • Formula 1 gives a precoding matrix with rank 2 for precoding, the first column of the matrix is composed of the first vector v l,m and phase c, and the second column is composed of the second vector v l',m' and phase c form.
  • the UE may determine the precoding type according to the first indication information, and determine the precoding matrix according to the precoding type. For example, if the precoding type is full coherent precoding, the precoding rank is 2, the first vector is v l,m , the target phase is c, and the second vector is v l',m'.
  • the precoding matrix is as follows: 1. If the precoding type is partial coherent precoding, the precoding rank is 2, the first vector is v l,m , and the second vector is v l',m'.
  • the precoding matrix is as in formula 2, and the formula 2
  • the 0 in is a 0 vector with the same number of elements as in the first vector.
  • the above target information is indicated by one of the following indication methods: different indication information in the target information is indicated by different fields in DCI; Alternatively, different indication information in the target information is indicated through different bits of the target field in the DCI; and the different indication information in the target information is indicated through joint coding of the indication fields in the DCI.
  • the bit length of the above-mentioned rank indication field is determined by the maximum rank among the precoded ranks through a first algorithm, and the first algorithm is:
  • maxRank is the maximum rank among the precoded ranks.
  • the foregoing maximum rank is indicated by RRC signaling.
  • the bit length of the rank indication field is determined by the minimum value among the first value and the second value.
  • the first numerical value is equal to the maximum rank
  • the second numerical value is equal to 4
  • the bit length of the rank indication field is determined by a second algorithm, and the second algorithm is:
  • the second value is 4, RRC configures that uplink transmission can schedule a maximum of two codewords, and the maximum rank is 8, then
  • the length of the above-mentioned rank indication field is determined by the minimum value of 4 and 8, that is, 4, that is, the required bit length of the rank indication field is 2 bits.
  • Table 9 shows the bit length of the above-mentioned rank indication field when a maximum of two codeword transmissions are configured.
  • the second indication information is indicated by a rank indication field.
  • the above-mentioned single code word transmission is jointly enabled by the modulation and coding strategy (Modulation and Coding Scheme, MCS) indication field and the redundancy version (Redundancy Version, RV) indication field in the DCI .
  • MCS Modulation and Coding Scheme
  • RV Redundancy Version
  • the first MCS field takes the agreed value and the first RV indication field takes the agreed value, it means that only one codeword is enabled.
  • the foregoing second indication information is indicated by an antenna port indication field in the DCI.
  • the above-mentioned antenna port indication field is used to determine a group of DMRS port groups from DMRS port groups containing different numbers of demodulation reference signal (Demodulation Reference Signal, DMRS) ports, and the precoded rank is determined by a group of DMRS port groups. The number of DMRS ports in a port group is determined.
  • DMRS Demodulation Reference Signal
  • the second indication information is indicated by an antenna port indication field.
  • the above two codeword transmissions are jointly enabled by the MCS indication field and the RV indication field in the DCI.
  • the antenna port indication field is interpreted according to the first indication table, and the corresponding numbers of code points in the first indication table are 5, 6, and 7 respectively.
  • a DMRS port group of 8 when the value of the antenna indication field is mapped to a code point with 5 DMRS ports, the precoding rank output by the table is 5.
  • the above-mentioned second vector index is determined according to the first vector index and an offset value of the index, and the index offset value may be jointly encoded with the precoding rank.
  • the index of the first vector is superimposed with the index offset value to obtain the index of the second vector.
  • the indication fields or bits of the joint coding indication of the index offset value and the precoding rank are shown.
  • Table 11 shows the bit length when the second vector index and the precoded rank are jointly coded.
  • the offset value of the above index value can be predefined, or can be indicated by DCI.
  • the bit length required for jointly precoding the index offset value indication of the second vector for determining the rank sum is smaller than that required for separate indication, thereby saving DCI signaling overhead.
  • the fields or bit values indicating at least one first vector in the first signaling are respectively mapped to a group of first vectors in ascending order.
  • the first vector corresponding to the bits whose bit values are 1 in the MAC CE signaling, the first vector indication field is 0 or the bit value is 0 indicates that it is mapped to the MAC CE signaling indicating the first information
  • the effective antenna port group of the antenna is that all antenna ports in one polarization direction form an effective antenna port group.
  • the foregoing target information includes at least one first vector, and different groups of coherent antennas do not share at least one first vector.
  • the UE may use the precoding rank, at least one first vector constituting the precoding, at least one second vector constituting the precoding,
  • the target phase is used to determine the precoding for uplink transmission.
  • the indication information of the second vector is ⁇ (0,0),(O1,0),(0,O2),( O1,O2) ⁇ or ⁇ (0,0),(O1,0),(2O1,0),(3O1,0) ⁇ .
  • the indication information of the target phase is [1 0] or [0 1].
  • At least one second vector constituting the precoding may be indicated by two bits of the target field, or by Two different indication domain indications.
  • step 202 may be specifically implemented through the following steps 202a and 202b.
  • step 202a the UE determines a precoding generation rule according to the target information.
  • the precoding of the same polarization direction of the antenna is a group of coherent precoding, and the first vectors in different polarization directions are the same.
  • Rank1 indicates a first vector and an antenna group index related to the first vector to form a target precoding matrix
  • the precoding matrix indicated by Rank1 is:
  • V1 is the vector indicated by the first vector indication field, and 0 is a 0 vector;
  • Rank2 indicates a target precoding matrix composed of two identical first vectors or two independent first vectors, and the precoding matrix indicated by Rank2 is:
  • V1 and V2 are indicated by a first vector indication field or two first vector indication fields;
  • Rank3 indicates a target precoding matrix composed of two identical first vectors or two independent first vectors, and an orthogonal first vector, and the precoding matrix indicated by Rank3 is:
  • V1 and V2 are indicated by a first vector indication domain or two first vector indication domains, and V1' is indicated by a second vector indication domain;
  • Rank4 indicates a target precoding matrix composed of two identical first vectors or two independent first vectors, and two orthogonal first vectors, and the precoding matrix indicated by Rank4 is:
  • V1 and V2 are indicated by a first vector indication domain or two first vector indication domains, and V1' and V2' are indicated by a second vector or two second vector indication domains;
  • Rank5 indicates a target precoding matrix composed of two identical first vectors or two independent first vectors, and three orthogonal first vectors.
  • the precoding matrix indicated by Rank5 is:
  • V1 and V2 are indicated by a first vector indication field or two first vector indication fields; V1' and V2' are indicated by a second vector or two second vector indication fields, or, V1' and V2' are Predefined; V1" is predefined according to the indication of the second vector indication field when the second vector indication field indicates V1' and V2'; or, V1" is predefined;
  • Rank6 indicates a target precoding matrix composed of two identical first vectors or two independent first vectors, and four orthogonal first vectors.
  • the precoding matrix indicated by Rank6 is:
  • V1 and V2 are indicated by a first vector indication field or two first vector indication fields; V1' and V2' are indicated by a second vector or two second vector indication fields, or, V1' and V2' are Predefined; V1" and V2" are predefined according to the indication of the second vector indication field when the second vector indication field indicates V1' and V2'; or, V1" and V2" are predefined;
  • Rank7 indicates a target precoding matrix composed of two identical first vectors or two independent first vectors, and five orthogonal first vectors.
  • the precoding matrix indicated by Rank7 is:
  • V1 and V2 are indicated by a first vector indication field or two first vector indication fields; the orthogonal first vector does not indicate;
  • Rank8 indicates a target precoding matrix composed of two identical first vectors or two independent first vectors, and six orthogonal first vectors.
  • the precoding matrix indicated by Rank8 is:
  • V1 and V2 are indicated by one first vector indication field or two first vector indication fields; the orthogonal first vectors are not indicated, and are stipulated by the protocol.
  • the precoding of the same polarization direction of the antenna is a set of coherent precoding, and different polarization directions correspond to different first vectors.
  • Rank indicates a first vector and an antenna group index related to the first vector to form a target precoding matrix, and the precoding matrix indicated by Rank is:
  • W1 and W2 are the complete coherent precoding of two 4-port antennas, respectively.
  • RRC can indicate that the type of precoding is full coherent precoding or partial coherent precoding by setting the bit to 1; or RRC can pass Other fields to indicate the type of precoding.
  • the foregoing precoding matrix may be multiplied by a normalization coefficient, or the antenna ports are divided into two groups and multiplied by a normalization coefficient respectively.
  • the antenna grouping method is that coherent antenna ports are a group.
  • step 202b the UE determines the precoding of uplink data according to the precoding generation rule.
  • the UE may use the precoding corresponding to the precoding generation rule as the precoding of the uplink data.
  • the embodiment of the present application provides a precoding indication method, and the UE can determine the precoding of uplink data when the UE transmits according to the target information.
  • the UE can determine the precoding of the uplink data through at least one item of indication information in the target information, that is, for the precoding of the uplink data that the UE is performing data transmission, it can be based on at least one item of indication information in the target information It is convenient for the network side equipment to schedule the UE, and also increases the flexibility of the UE's precoding for uplink data, thereby reducing the signaling overhead of the precoding indication.
  • the execution subject of the precoding instruction method provided in the embodiment of the present application may also be a precoding instruction device, or a control module in the precoding instruction device for executing the precoding instruction method.
  • Fig. 6 shows a possible structural diagram of the precoding indicating device involved in the embodiment of the present application.
  • the precoding indicating device 40 may include: an acquiring module 41 and a determining module 42 .
  • the acquiring module 41 is configured to acquire target information, and the target information includes at least one of the following: first indication information indicating the type of precoding, second indication information indicating the rank of precoding, at least one The third indication information of a vector, the fourth indication information indicating at least one second vector constituting the precoding, the fifth indication information indicating the target phase, and the sixth indication information indicating a valid antenna port group; the second vector is Determined from the first vector.
  • the determination module 42 is configured to determine the precoding of uplink data according to the target information.
  • the acquisition module 41 is specifically configured to receive the first signaling sent by the network side device, the first signaling carries target information, and the first signaling is any of the following: downlink Control information DCI, medium access control control element MAC CE signaling, radio resource control RRC signaling.
  • the above target information is indicated by one of the following indication ways: different indication information in the target information is indicated by different fields in the DCI; or ,Target Different indication information in the information is indicated through different bits of the target field in the DCI; or, different indication information in the target information is indicated through joint coding of the indication fields in the DCI.
  • the second indication information is indicated by a rank indication field in the DCI; wherein, the bit length of the rank indication field is determined by the maximum rank; or, the bit length of the rank indication field is determined by the first value and the second The minimum value among the values is determined, the first value is the maximum rank, and the second value is determined by any of the following: predefined, pre-configured, agreed upon by the protocol, or configured by the network-side device; or, the bits of the rank indication field The length is determined by the restriction information of the precoded rank.
  • the bit length of the rank indication field is determined by the minimum value among the first value and the second value.
  • the second indication information is determined by a rank indication field.
  • the above single codeword transmission is jointly enabled by the MCS indication field and the RV indication field in the DCI.
  • the foregoing second indication information is indicated by an antenna port indication field in the DCI.
  • the second indication information is indicated by an antenna port indication field.
  • the above two codeword transmissions are jointly enabled by the MCS indication field and the RV indication field in the DCI.
  • the antenna port indication field is used to determine a group of DMRS port groups from DMRS port groups containing different numbers of DMRS ports, and the precoding rank is determined by the number of DMRS ports in a group of DMRS port groups .
  • the acquisition module 41 is further configured to receive the configuration information of the target information sent by the network side device before the UE acquires the target information, and the configuration information includes at least one of the following: indicating whether the DCI carries the target information A first configuration of the information; a second configuration indicating the required bit length of the target information.
  • the acquisition module 41 is further configured to receive the first information sent by the network side device before the UE acquires the target information, the first information includes at least one of the following: precoding type set, precoding Coded rank restriction information, at least one first vector group, at least one second vector group, target phase set, effective antenna port group set; the target information is determined from the first information.
  • the foregoing first information is determined by any of the following: RRC configuration, MAC CE indication, and protocol agreement.
  • the above precoding rank restriction information is used to limit the number of precoding ranks, or the precoding type set is used to restrict the target precoding to full coherent precoding or partial coherent precoding Or a combination of irrelevant precoding or fully correlated precoding, partly correlated precoding, and irrelevant precoding.
  • the MAC CE when the first information is indicated by a MAC CE, includes at least one of the following items: the index of the first vector; the bit that is one-to-one mapped with the first vector; the first vector The index of the group.
  • the determination module is specifically configured to determine a precoding generation rule according to the target information; and determine uplink data precoding according to the precoding generation rule.
  • An embodiment of the present application provides a precoding indicating device.
  • the precoding indicating device can determine the precoding of the uplink data through at least one item of indicating information in the target information, that is, the precoding indicating device is performing data transmission on the uplink data.
  • Precoding can be determined according to at least one item of indication information in the target information, which is convenient for the network side equipment to schedule the precoding indicating device, and also increases the flexibility of the precoding indicating device for precoding uplink data, thereby reducing the Signaling overhead for precoding indication.
  • the precoding indicating device in this embodiment of the present application may be a UE, such as a UE with an operating system, or a component in the UE, such as an integrated circuit or a chip.
  • the UE may be a terminal, or other equipment other than the terminal.
  • the UE may include but not limited to the types of UE11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the precoding indicating device provided in the embodiment of the present application can realize each process implemented by the UE in the above method embodiment, and achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • Fig. 7 shows a possible structural diagram of the precoding indicating device involved in the embodiment of the present application.
  • the precoding indicating device 50 may include: a sending module 51 .
  • the sending module 51 is configured to send the target information to the UE, the target information includes at least one of the following: first indication information indicating the precoding type, second indication information indicating the rank of the precoding, indicating at least The third indication information of a first vector, the fourth indication information indicating at least one second vector constituting the precoding, the fifth indication information indicating the target phase, and the sixth indication information indicating a valid antenna port group; the second The vector is determined according to the first vector, and the target information is used to determine precoding of uplink data.
  • the above-mentioned sending module 51 is specifically configured to send the first signaling to the UE, the first signaling carrying target information; the first signaling is any of the following: downlink control information DCI, Media Access Control Element MAC CE signaling, Radio Resource Control RRC signaling.
  • the above-mentioned sending module 51 is further configured to send configuration information of the target information to the UE before sending the target information to the UE, the configuration information includes at least one of the following: indicating whether the DCI carries the target information The first configuration of ; the second configuration indicating the bit length required by the target information.
  • the sending module 51 is further configured to send first information to the UE before sending the target information to the UE, the first information is used to determine the target information, and the first information includes at least one of the following: Items: precoding type set, at least one set of valid first vectors, precoded rank restriction information, at least one first vector set, at least one second vector set, target phase set, valid antenna port set set; the target The information is determined from the first information.
  • An embodiment of the present application provides a precoding indicating device.
  • the precoding indicating device can determine the precoding of the uplink data through at least one item of indicating information in the target information, that is, the precoding indicating device is performing data transmission on the uplink data.
  • Precoding can be determined according to at least one item of indication information in the target information, which is convenient for the network side equipment to schedule the precoding indicating device, and also increases the flexibility of the precoding indicating device for precoding uplink data, thereby reducing the Signaling overhead for precoding indication.
  • the precoding indicating device provided in the embodiment of the present application can realize each process implemented by the network side device in the above method embodiment, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a communication device 5000, including a processor 5001 and a memory 5002, and the memory 5002 stores programs or instructions that can run on the processor 5001, for example , when the communication device 5000 is a UE, when the program or instruction is executed by the processor 5001, each step of the above UE-side method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 5000 is a network-side device, when the program or instruction is executed by the processor 5001, each step of the above-mentioned network-side device method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a UE, including a processor and a communication interface, the processor is used to obtain target information, the target information includes at least one of the following: first indication information indicating the precoding type, indicating the precoding rank the second indication information indicating at least one first vector constituting the precoding, the third indicating information indicating at least one second vector constituting the precoding, the fourth indicating information indicating at least one second vector forming the precoding, the fifth indicating information indicating the target phase, and the valid The sixth indication information of the antenna port group; and according to the target information, determine the precoding of the uplink data.
  • the target information includes at least one of the following: first indication information indicating the precoding type, indicating the precoding rank the second indication information indicating at least one first vector constituting the precoding, the third indicating information indicating at least one second vector constituting the precoding, the fourth indicating information indicating at least one second vector forming the precoding, the fifth indicating information indicating the target phase, and the valid
  • FIG. 9 is a schematic diagram of a hardware structure of a UE implementing an embodiment of the present application.
  • the UE700 includes, but is not limited to: at least one of a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710. part parts.
  • the UE700 may also include a power supply (such as a battery) for supplying power to each component,
  • the power supply can be logically connected to the processor 710 through the power management system, so that functions such as charging, discharging, and power consumption management can be realized through the power management system.
  • the UE structure shown in FIG. 9 does not limit the UE, and the UE may include more or less components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the radio frequency unit 701 after the radio frequency unit 701 receives the downlink data from the network side device, it can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 709 may include volatile memory or nonvolatile memory, or, memory 709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, wherein the application processor mainly handles operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the processor 710 is configured to obtain target information, the target information including at least one of the following: first indication information indicating the precoding type, second indication information indicating the rank of the precoding, indicating at least one The third indication information of a vector, the fourth indication information indicating at least one second vector constituting the precoding, the fifth indication information indicating the target phase, and the sixth indication information indicating a valid antenna port group; and according to the target information, Determine the precoding of uplink data.
  • An embodiment of the present application provides a UE.
  • the UE can determine the precoding of uplink data through at least one item of indication information in the target information. Determining at least one piece of indication information is convenient for the network side equipment to schedule the UE, and also increases the flexibility of the UE's precoding of uplink data, thereby reducing the signaling overhead of the precoding indication.
  • the UE provided in the embodiment of the present application can implement each process implemented by the UE in the foregoing method embodiment, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the communication interface is used to send target information to the UE, the target information includes at least one of the following: first indication information indicating the precoding type, indicating the precoding type The second indication information of the coded rank, the third indication information indicating at least one first vector constituting the precoding, the fourth indication information indicating at least one second vector constituting the precoding, the fifth indication information indicating the target phase, Sixth indication information indicating a valid antenna port group, where the target information is used to determine precoding of uplink data.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 600 includes: an antenna 61 , a radio frequency device 62 , a baseband device 63 , a processor 64 and a memory 65 .
  • the antenna 61 is connected to the radio frequency device 62 .
  • the radio frequency device 62 receives information through the antenna 61, and sends the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be sent and sends it to the radio frequency device 62
  • the radio frequency device 62 processes the received information and sends it out through the antenna 61 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 63, where the baseband device 63 includes a baseband processor.
  • the radio frequency device 62 is configured to send target information to the UE, and the target information includes at least one of the following items: first indication information indicating the precoding type, second indication information indicating the rank of precoding, indicating at least The third indication information of a first vector, the fourth indication information indicating at least one second vector constituting the precoding, the fifth indication information indicating the target phase, and the sixth indication information indicating a valid antenna port group, the target information It is used to determine the precoding used to determine the uplink data.
  • An embodiment of the present application provides a network-side device.
  • the network-side device can determine the precoding of uplink data through at least one item of indication information in the target information, that is, for the precoding of uplink data that the network-side device is performing data transmission, It can be determined according to at least one item of indication information in the target information, which is convenient for the network side equipment to schedule the UE, and also increases the flexibility of the network side equipment for precoding the uplink data, thereby reducing the signaling overhead of the precoding indication .
  • the network-side device provided by the embodiment of the present application can implement the various processes implemented by the network-side device in the above method embodiments, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the baseband device 63 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 66, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 66 such as a common public radio interface (common public radio interface, CPRI).
  • the network side device 600 in the embodiment of the present invention further includes: instructions or programs stored in the memory 65 and operable on the processor 64, and the processor 64 invokes the instructions or programs in the memory 65 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above-mentioned precoding instruction method embodiment is realized, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the communication device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above method embodiments , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Embodiments of the present application further provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement each of the above method embodiments. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a communication system, including: a UE and a network side device, the UE can be used to perform the steps of the precoding indication method as described above, and the network side device can be used to perform the precoding indication method as described above Coding indicates the steps of the method.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种预编码指示方法、装置、通信设备、***及存储介质,属于通信技术领域。本申请实施例的预编码指示方法包括:UE获取目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;第二向量是根据第一向量确定的;并根据目标信息,确定上行数据的预编码。

Description

预编码指示方法、装置、通信设备、***及存储介质
相关申请的交叉引用
本申请主张在2022年02月09日在中国提交的中国专利申请号202210122392.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种预编码指示方法、装置、通信设备、***及存储介质。
背景技术
目前,用户设备(User Equipment,UE)在使用4天线传输上行数据时,UE可以接收网络侧设备发送的调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的下行控制信息(Downlink Control Information,DCI),该DCI中的预编码信息和层数指示域(Precoding information and number of layers)指示的传输预编码矩阵指示(Transmit Pre-coding Matrix Indicator,TPMI)可以从一个预定义的码本中选择一个用于调度PUSCH传输的预编码矩阵,该传输预编码矩阵指示也可以通过TPMI域指示,从而,UE可以根据DCI所指示的预编码矩阵对上行数据进行预编码,并将预编码后的上行数据映射到PUSCH资源上进行传输。
然而,上述方法中的预编码设计是应用在4天线传输中的,针对6天线传输或者8天线传输,UE如何获取传输预编码是亟待解决的问题。
发明内容
本申请实施例提供一种预编码指示方法、装置、通信设备、***及存储介质,能够解决针对6天线传输或者8天线传输,UE如何获取传输预编码的问题。
第一方面,提供了一种预编码指示方法,该方法包括:UE获取目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的;UE根据目标信息,确定上行数据的预编码。
第二方面,提供了一种预编码指示装置,该装置包括:获取模块和确定模块。获取模块,用于获取目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的。确定模块,用于根据获取模块获取的目标信息,确定上行数据的预编码。
第三方面,提供了一种预编码指示方法,该方法包括:网络侧设备向UE发送目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的,该目标信息用于确定上行数据的预编码。
第四方面,提供了一种预编码指示装置,该装置包括:发送模块。发送模块,用 于向UE发送目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的,该目标信息用于确定上行数据的预编码。
第五方面,提供了一种UE,该UE包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种UE,包括处理器及通信接口,其中,所述处理器用于获取目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的;并根据目标信息确定上行数据的预编码。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向UE发送目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的,该目标信息用于确定上行数据的预编码。
第九方面,提供了一种通信***,包括:UE及网络侧设备,所述UE可用于执行如第一方面所述的预编码指示方法的步骤,所述网络侧设备可用于执行如第三方面所述的预编码指示方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的预编码指示方法的步骤,或实现如第三方面所述的预编码指示方法的步骤。
在本申请实施例中,UE可以根据目标信息,确定UE进行传输时的上行数据的预编码。本方案中,UE可以通过目标信息中的至少一项指示信息,来确定上行数据的预编码,即对于UE在进行数据传输的上行数据的预编码,可以根据目标信息中的至少一项指示信息来确定,便于网络侧设备对UE进行调度,同时也增加了UE对上行数据的预编码的灵活性,从而降低了预编码指示的信令开销。
附图说明
图1是本申请实施例提供的一种无线通信***的架构示意图;
图2是本申请实施例提供的一种预编码指示方法的示意图之一;
图3是本申请实施例提供的一种预编码指示方法的示意图之二;
图4是本申请实施例提供的一种预编码指示方法的示意图之三;
图5是本申请实施例提供的一种预编码指示方法的示意图之四;
图6是本申请实施例提供的一种预编码指示装置的结构示意图之一;
图7是本申请实施例提供的一种预编码指示装置的结构示意图之二;
图8是本申请实施例提供的一种通信设备的硬件结构示意图;
图9是本申请实施例提供的一种UE的硬件结构示意图;
图10是本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本 服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
下面对本申请实施例提供的预编码指示方法、装置、通信设备、***及存储介质涉及的一些概念和/或术语做一下解释说明。
上行探测参考信号(Sounding Reference Signal,SRS)的发送带宽根据所配置的Bsrs和Csrs确定。其中,Bsrs是指UE专属参数(UE-specific),Csrs是指小区专属参数(cell-specific)。
UE可以通过基于码本的PUSCH传输模式或基于非码本的PUSCH传输模式进行上行数据的传输。
基于码本的PUSCH传输模式:
网络侧设备为UE配置用于基于码本传输的SRS资源集,每个资源集包含至少一个SRS资源。从而UE可以根据配置的至少一个SRS资源发送SRS,网络侧设备可以通过接收SRS来获得上行信道,并基于此来确定UE上行数据承载信道PUSCH传输的波束,预编码矩阵,MCS等,并通过DCI来通知UE,从而UE在接收调度PUSCH的DCI之后,DCI中的TPMI域从一个预定义的码本中选择一个用于所调度PUSCH传输的预编码矩阵,从而UE可以根据所指示的TPMI对上行数据进行预编码后映射到PUSCH资源上进行传输。
示例性地,如表格1至表格6,示出了目前协议根据UE能力支持的不同预编码矩阵集合。例如,UE能力为支持完全相干(fully-coherent)预编码、部分相干(partial-coherent)预编码和不相干(non-coherent)预编码,基站可以为UE配置的预编码子集为完全相干子集、部分相干子集和不相干子集,在这种情况下,上行预编码指示预编码信息为6比特,其中上行PUSCH的秩(rank,即数据流数)和秩对应的预编码一起指示。基站如果指示了预编码信息为“0”(表格1中第1列第1行)代表上行PUSCH的rank=1,并且预编码索引为“0”(表格2中第1行第1列的预编码矩阵);基站如果指示了预编码信息为“60”代表上行PUSCH的rank=4,并且预编码索引为“3”(表格5中第1行第4列的预编码矩阵)。
表格1

例如表格2,示出了4天线rank=1的预编码矩阵,即TPMI索引0至27对应的预编码矩阵,依次按照TPMI索引的递增顺序排序。
表格2
例如表格3,输出了示出了4天线rank=1的预编码矩阵,即TPMI索引0至2对应的预编码矩阵,依次按照TPMI索引的递增顺序排序。
表格3
例如表格4,示出了4天线rank=2的预编码矩阵,即TPMI索引0至21对应的预编码矩阵,依次按照TPMI索引的递增顺序排序。
表格4
例如表格5,示出了4天线rank=3的预编码矩阵,即TPMI索引0至6对应的预编码矩阵,依次按照TPMI索引的递增顺序排序。
表格5
例如表格6,示出了4天线rank=4的预编码矩阵,即TPMI索引0至4对应的预编码矩阵,依次按照TPMI索引的递增顺序排序。
表格6
基于非码本的PUSCH传输模式:
网络侧设备可以为UE配置用于基于非码本传输的SRS资源集,每个资源集包含至少一个SRS资源。UE可以在网络侧设备配置的非零功率信道状态信息-参考信号(Non Zero Power Channel Status Information-Reference Signa,NZP CSI-RS)资源上检测网络侧发送的NZP CSI-RS,来获得下行信道状态信息,根据信道互易性,该下行信道信息可以近似等效为上行信道信息。UE根据上行信道信息来计算候选的用于上行传输的预编码矩阵对SRS进行预编码并发送,网络侧根据测量预编码后的SRS来进一步确定PUSCH传输所使用的预编码矩阵,并通过调度PUSCH的DCI来通知UE,DCI的调度请求指示(Schduling Request Indication,SRI)域从一个预定义SRI索引表中选择一个SRS资源索引的一个子集即SRI组来通知UE的PUSCH的预编码采用的预编码矩阵。
示例性地,如表格7,示出了目前协议根据UE能力用于非基于码本的PUSCH传输的SRI指示集合。
表格7
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种预编码指示方法进行详细地说明。
随着通信技术的发展,UE可以支持在6天线或者8天线上进行上行传输,目前,由于通信技术只针对4天线传输进行了预编码设计,UE在使用4天线传输上行数据时,UE可以接收网络侧设备发送的调度PUSCH的DCI,该DCI中的TPMI域可以从一个预定义 的码本中选择一个用于调度PUSCH传输的预编码矩阵,从而,UE可以根据DCI所指示的TPMI对上行数据进行预编码,并将预编码后的上行数据映射到PUSCH资源上进行传输,然而,针对6天线传输或者8天线传输,UE如何获取传输预编码是亟待解决的问题,若继续沿用现有的4天线码本设计,信令开销将成倍增加。
在本申请实施例中,UE可以根据目标信息,确定UE进行传输时的上行数据的预编码。本方案中,UE可以通过目标信息中的至少一项指示信息,来确定上行数据的预编码,即对于UE在进行数据传输的上行数据的预编码,可以根据目标信息中的至少一项指示信息来确定,便于网络侧设备对UE进行调度,同时也增加了UE对上行数据的预编码的灵活性,从而降低了预编码指示的信令开销。
本申请实施例提供一种预编码指示方法,图2示出了本申请实施例提供的预编码指示方法的流程图。如图2所示,本申请实施例提供的预编码指示方法可以包括下述的步骤201和步骤202。
步骤201、UE获取目标信息。
需要说明的是,本申请实施例提供的预编码指示方法可以应用于UE基于6天线或8天线进行上行数据传输。
本申请实施例中,上述目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息,上述第二向量是根据第一向量确定的。
可选地,本申请实施例中,上述目标信息可以为预配置、预定义的、协议约定的、UE自主决定的或网络侧设备配置的等。
可选地,本申请实施例中,结合图2,如图3所示,上述步骤201具体可以通过下述的步骤201a和步骤201b实现。
步骤201a、网络侧设备向UE发送目标信息。
步骤201b、UE接收网络侧设备发送的目标信息。
可选地,本申请实施例中,上述步骤201a具体可以通过下述的步骤201a1实现,并且上述步骤201b具体可以通过下述的步骤201b1实现。
步骤201a1、网络侧设备向UE发送第一信令。
本申请实施例中,上述第一信令中携带有目标信息。
可选地,本申请实施例中,上述第一信令为以下任一项:DCI、媒体接入控制控制单元(Media Access Control-Control Element,MAC CE)信令、无线资源控制(Radio Resource Control,RRC)信令。
可选地,本申请实施例中,上述第一信令中是否包括目标信息由RRC配置确定。
步骤201b1、UE接收网络侧设备发送的第一信令。
可选地,本申请实施例中,结合图2,如图4所示,在上述步骤201之前,本申请实施例提供的预编码指示方法还包括下述的步骤301和步骤302。
步骤301、网络侧设备向UE发送目标信息的配置信息。
本申请实施例中,上述配置信息包括以下至少一项:指示DCI中是否携带目标信息的第一配置;指示目标信息所需要的比特长度的第二配置。
可选地,本申请实施例中,网络侧设备可以基于DCI格式发送不同地配置信息。
步骤302、UE接收网络侧设备发送的目标信息的配置信息。
可选地,本申请实施例中,结合图2,如图5所示,在上述步骤201之前,本申请实施例提供的预编码指示方法还包括下述的步骤401和步骤402。
步骤401、网络侧设备向UE发送第一信息。
可选地,本申请实施例中,上述第一信息包括以下至少一项:预编码类型集合、预编 码的秩的限制信息、至少一个第一向量组、至少一个第二向量组、目标相位集合、有效的天线端口组集合。
可选地,本申请实施例中,上述预编码的秩的限制信息用于限制预编码的秩的数量,通过限制预编码的秩达到限制目标信息中预编码的秩指示的开销,或者,预编码类型集合用于限制目标预编码为完全相干预编码、部分相干预编码或不相干预编码或完全相干预编码、部分相干预编码、不相干预编码的组合。
可选地,本实施例中,完全相干/部分相干/不相干指的是天线端口之间的相干,若一组天线端口相干类型为完全相干,则表示该组天线端口中的所有天线端口之间的相干性满足预设相干条件,例如该组天线端口中的所有天线端口之间的相关程度均大于或等于预设相关程度值;若一组天线端口相干类型为部分相干,则表示该组天线端口中的部分天线端口之间的相干性满足预设相干条件,例如该组天线端口中的部分天线端口之间的相关程度均大于或等于预设相关程度值;若一组天线端口相干类型为不相干,则表示该组天线端口中的所有天线端口之间的相干性不满足预设相干条件,例如该组天线端口中的所有天线端口之间的相关程度均小于预设相关程度值。
可选地,本实施例中完全相干预编码,指预编码矩阵中每列元素,即与所有天线端口对应的元素的相位满足一定的关系。
可选地,本实施例中部分相干预编码,指预编码矩阵中每列元素与部分相干天线端口对应的元素的相位满足一定的关系。
可选地,本实施例中不相干预编码,指预编码矩阵中每列元素仅有一个非零与一个天线端口对应。
可选地,本申请实施例中,网络侧设备可以通过MAC CE信令中携带的第一向量组索引指示至少一个第一向量组,所述第一向量组由RRC信令配置。
本申请实施例中,网络侧设备可以通过MAC CE或RRC从第一向量集合中选择子集,进一步通过DCI信令从该子集中为UE指示至少一个第一向量,从而可以缩减DCI信令的开销。
步骤402、UE接收网络侧设备发送的第一信息。
本申请实施例中,上述目标信息是从第一信息中确定的。
可选地,本申请实施例中,上述第一信息由以下任一项确定:RRC配置、MAC CE指示、协议约定。
可选地,本申请实施例中,在第一信息由MAC CE指示的情况下,MAC CE包含以下至少一项:第一向量的索引;与第一向量一一映射的比特位;第一向量组的索引。
可选地,本申请实施例中,上述第一向量组的索引用于指示第一向量组;或者与第一向量一一映射的比特位用于指示第一向量。
可选地,本申请实施例中,上述第一向量组是基于与第一向量正交的向量组成的;或者,MAC CE信令中所有比特位值为1的比特位对应的第一向量组成第一向量组。
可选地,本申请实施例中,网络侧设备可以通过DCI信令从第一向量组中为UE指示至少一个第一向量。
步骤202、UE根据目标信息,确定上行数据的预编码。
可选地,本申请实施例中,上述第二指示信息由DCI中的秩指示域指示。
可选地,本申请实施例中,上述秩指示域可以是一个特定的域也可以是某个域的特定比特位。
可选地,本申请实施例中,上述秩指示域的比特长度由最大秩确定;或者,秩指示域的比特长度由第一数值和第二数值中的最小值确定,该第一数值为最大秩,该第二数值由以下任一项确定:预定义的、预配置的、协议约定的或网络侧设备配置;或者,该秩指示域的比特长度由预编码的秩的限制信息确定。
可选地,本申请实施例中,UE可以根据目标信息确定预编码矩阵。
示例性的,预编码矩阵的每一列由一个向量和一个相位组成,UE可以根据第三指示信息确定第一向量,根据第四指示信息确定第二向量,根据第五指示信息确定目标相位,根据第二指示信息确定预编码的秩,并根据第一向量、第二向量、目标相位、预编码的秩确定预编码矩阵。例如公式一,给出了预编码的秩为2的预编码矩阵,该矩阵的第一列由第一向量vl,m和相位c构成,第二列由第二向量vl',m'和相位c构成。
又示例性地,UE可以根据第一指示信息确定预编码类型,根据预编码类型确定预编码矩阵。例如,若预编码类型为全相干预编码,则预编码的秩为2,第一向量为vl,m,目标相位为c,第二向量为vl',m'的预编码矩阵如公式一,若预编码类型为部分相干预编码,则预编码的秩为2,第一向量为vl,m,第二向量为vl',m'的预编码矩阵如公式二,该公式二中的0是一个0向量,元素的个数与第一向量中元素的个数相同。
可选地,本申请实施例中,在第一信令为DCI的情况下,上述目标信息通过以下指示方式中的一种指示:该目标信息中的不同指示信息通过DCI中的不同域指示;或者,目标信息中的不同指示信息通过DCI中的目标域的不同比特位指示;该目标信息中的不同指示信息通过DCI中的指示域联合编码指示。
示例性地,上述秩指示域的比特长度由预编码的秩中的最大秩通过第一算法确定,该第一算法为:
其中,maxRank为预编码的秩中的最大秩。
可选地,本申请实施例中,上述最大秩由RRC信令指示。
示例性地,如表8所示,示出了秩指示域所需的比特长度统计。
表格8
可选地,本申请实施例中,在配置了最大两个码字传输的情况下,上述秩指示域的比特长度由第一数值和第二数值中的最小值确定。
示例性地,第一数值等于最大秩,第二数值等于4,上述秩指示域的比特长度通过第二算法确定,该第二算法为:
例如,第二数值为4,RRC配置了上行传输最大可以调度两个码字,最大秩为8,则 上述秩指示域的长度由4和8中的最小值即4来确定,即秩指示域需要的比特长度为2比特。
又示例性地,如表9所示,示出了在配置了最大两个码字传输时,上述秩指示域的比特长度。
表格9
可选地,本申请实施例中,在使能单码字传输的情况下,上述第二指示信息由秩指示域指示。
可选地,本申请实施例中,上述单码字传输是由DCI中的调制与编码策略(Modulation and Coding Scheme,MCS)指示域和冗余版本(Redundancy Version,RV)指示域共同使能的。
示例性地,在第一MCS域取约定值且第一RV指示域取约定值的情况下,表示仅使能一个码字。
可选地,本申请实施例中,上述第二指示信息由DCI中的天线端口指示域指示。
本申请实施例中,上述天线端口指示域用于从包含不同数量解调参考信号(Demodulation Reference Sgnal,DMRS)端口的DMRS端口组中确定一组DMRS端口组,该预编码的秩由一组DMRS端口组中DMRS端口的数量确定。
可选地,本申请实施例中,在使能两个码字传输的情况下,上述第二指示信息由天线端口指示域指示。
可选地,本申请实施例中,上述两个码字传输是由DCI中的MCS指示域和RV指示域共同使能的。
示例性地,在第一码字和第二码字均使能的情况下,天线端口指示域根据第一指示表格解读,该第一指示表格中的码点分别对应数量为5,6,7,8的DMRS端口组,当天线指示域的取值映射到DMRS端口数量为5的码点则表输出的预编码的秩为5。
可选地,本申请实施例中,上述第二向量索引根据第一向量索引以及索引的偏移值确定,该索引偏移值可以与预编码的秩进行联合编码。
可选地,第一向量的索引叠加索引偏移值可以获得第二向量的索引。
示例性地,如表10所示,示出了上述索引偏移值与预编码的秩联合编码指示的指示域或比特位。
表格10

或者,
需要说明的是,上述O1为水平方向的过采样因子,上述O2为垂直方向的过采样因子。
示例性地,如表11所示,示出了第二向量索引与预编码的秩进行联合编码时的比特长度。
表格11
可选地,本申请实施例中,上述索引值的偏移值可以是预定义的,也可以由DCI指示,对于秩为1,5,6,7,8的预编码矩阵,是不需要第二向量的,从而将秩和确定第二向量的索引偏移值指示进行联合预编码比分别指示所需要的比特长度要小,进而能够节省DCI的信令开销。
可选地,本申请实施例中,上述第一信令中的指示至少一个第一向量的域或者比特位取值按照从小到大的顺序分别映射到一组第一向量。
示例性地,MAC CE信令中所有比特位值为1的比特位对应的第一向量,第一向量指示域为0或比特位取值为0表示映射到指示第一信息的MAC CE信令中取值为1的第一向量,例如‘0’对应第一个Bi=1对应的第一向量,‘1’对应第二个Bi=1对应的第一向量,依次类推,其中,Bi与第i个第一向量对应;或者,Bi与第i个第一向量的对应关系由RRC配置;或者,Bi对应第i个第一向量的向量索引;或者Bi对应的第一向量索引由协议约定。
可选地,本申请实施例中,上述天线的有效的天线端口组为一个极化方向的所有天线端口组成有效的天线端口组。
可选地,本申请实施例中,上述目标信息包括至少一个第一向量,不同组相干天线之间不共用至少一个第一向量。
可选地,本申请实施例中,在上述预编码类型为完全相干预编码时,UE可以通过预编码的秩、组成预编码的至少一个第一向量、组成预编码的至少一个第二向量、目标相位来确定进行上行传输的预编码。
示例性地,第四指示信息的域或比特位的比特长度为2比特的情况下,第二向量的指示信息为{(0,0),(O1,0),(0,O2),(O1,O2)}或者{(0,0),(O1,0),(2O1,0),(3O1,0)}。
又示例性地,在第五指示信息的域或者比特位的比特长度为2比特的情况下目标相位信息从c1,1={1,-1,j,-j}中确定,在第五指示信息的域或者比特位的比特长度为1比特的情况下目标相位信息从c1,1={1,j}中确定。
又示例性地,在第五指示信息的域或者比特位的比特长度为2比特的情况下目标相位信息从c1,1={1,-1,j,-j}中确定,在第五指示信息的域或者比特位的比特长度为1比特的情况下目标相位信息从c1,1={1,j}中确定。
又示例性地,在比特长度为1比特的情况下,目标相位的指示信息为[1 0]或者[0 1]。
可选地,在预编码类型为部分相干预编码,且DCI中的TPMI域指示上行数据的预编码时,组成预编码的至少一个第二向量可以由目标域的两个比特位指示,或者由两个不同的指示域指示。
可选地,本申请实施例中,上述步骤202具体可以通过下述的步骤202a和步骤202b实现。
步骤202a、UE根据目标信息,确定预编码生成规则。
可选地,本申请实施例中,在预编码类型为部分相干预编码时,天线的同一个极化方向的预编码为一组相干预编码、且不同极化方向上的第一向量相同。
示例性地,Rank1指示一个第一向量和与第一向量相干的天线组索引组成目标预编码矩阵,该Rank1指示的预编码矩阵为:
其中,V1为第一向量指示域指示的向量,0为0向量;
Rank2指示两个相同的第一向量或两个独立的第一向量组成的目标预编码矩阵,该Rank2指示的预编码矩阵为:
其中,V1和V2通过一个第一向量指示域或两个第一向量指示域指示;
Rank3指示两个相同的第一向量或两个独立的第一向量,以及一个正交的第一向量的组成的目标预编码矩阵,该Rank3指示的预编码矩阵为:
其中,V1和V2通过一个第一向量指示域或两个第一向量指示域指示,V1’由一个第二向量指示域指示;
Rank4指示两个相同的第一向量或两个独立的第一向量,以及两个正交的第一向量的组成的目标预编码矩阵,该Rank4指示的预编码矩阵为:
其中,V1和V2通过一个第一向量指示域或两个第一向量指示域指示,V1’和V2’由一个第二向量或两个第二向量指示域指示;
Rank5指示两个相同的第一向量或两个独立的第一向量,以及3个正交的第一向量的组成的目标预编码矩阵,该Rank5指示的预编码矩阵为:
其中,V1和V2通过一个第一向量指示域或两个第一向量指示域指示;V1’和V2’由一个第二向量或两个第二向量指示域指示,或者,V1’和V2’为预定义的;V1”在第二向量指示域指示V1’和V2’时,根据第二向量指示域的指示进行预定义;或者,V1”为预定义的;
Rank6指示两个相同的第一向量或两个独立的第一向量,以及4个正交的第一向量的组成的目标预编码矩阵,该Rank6指示的预编码矩阵为:
其中,V1和V2通过一个第一向量指示域或两个第一向量指示域指示;V1’和V2’由一个第二向量或两个第二向量指示域指示,或者,V1’和V2’为预定义的;V1”和V2”在第二向量指示域指示V1’和V2’时,根据第二向量指示域的指示进行预定义;或者,V1”和V2”为预定义的;
Rank7指示两个相同的第一向量或两个独立的第一向量,以及5个正交的第一向量的组成的目标预编码矩阵,该Rank7指示的预编码矩阵为:
其中,V1和V2通过一个第一向量指示域或两个第一向量指示域指示;正交的第一向量不指示;
Rank8指示两个相同的第一向量或两个独立的第一向量,以及6个正交的第一向量的组成的目标预编码矩阵,该Rank8指示的预编码矩阵为:
其中,V1和V2通过一个第一向量指示域或两个第一向量指示域指示;正交的第一向量不指示,由协议约定。
可选地,本申请实施例中,天线的同一个极化方向的预编码为一组相干预编码、且不同极化方向对应不同的第一向量。
示例性地,Rank指示一个第一向量和与第一向量相干的天线组索引组成目标预编码矩阵,该Rank指示的预编码矩阵为:
其中,W1和W2分别是两个4端口天线的完全相干预编码。
可选地,本申请实施例中,针对完全相干预编码和部分相干预编码组合,RRC可以通过比特位为1来指示预编码的类型为完全相干预编码或者部分相干预编码;或者RRC可以通过其他域来指示预编码的类型。
可选的,上述预编码矩阵可以乘以一个归一化系数,或者将天线端口进行分为两组,分别乘以一个归一化系数。该天线分组方式为,相干的天线端口为一组。
步骤202b、UE根据预编码生成规则,确定上行数据的预编码。
本申请实施例中,在UE根据目标信息中的至少一项确定预编码生成规则之后,UE可以将该预编码生成规则对应的预编码作为上行数据的预编码。
本申请实施例提供一种预编码指示方法,UE可以根据目标信息,确定UE进行传输时的上行数据的预编码。本方案中,UE可以通过目标信息中的至少一项指示信息,来确定上行数据的预编码,即对于UE在进行数据传输的上行数据的预编码,可以根据目标信息中的至少一项指示信息来确定,便于网络侧设备对UE进行调度,同时也增加了UE对上行数据的预编码的灵活性,从而降低了预编码指示的信令开销。
需要说明的是,本申请实施例提供的预编码指示方法,执行主体还可以为预编码指示装置,或者,该预编码指示装置中用于执行预编码指示方法的控制模块。
图6示出了本申请实施例中涉及的预编码指示装置的一种可能的结构示意图。如图6所示,预编码指示装置40可以包括:获取模块41和确定模块42。
其中,获取模块41,用于获取目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的。确定模块42,用于根据目标信息确定上行数据的预编码。
在一种可能的实现方式中,上述获取模块41,具体用于接收网络侧设备发送的第一信令,该第一信令中携带有目标信息,该第一信令为以下任一下:下行控制信息DCI、媒体接入控制控制单元MAC CE信令、无线资源控制RRC信令。
在一种可能的实现方式中,在第一信令为DCI的情况下,上述目标信息通过以下指示方式中的一种指示:该目标信息中的不同指示信息通过DCI中的不同域指示;或者,目标 信息中的不同指示信息通过DCI中的目标域的不同比特位指示;或者,目标信息中的不同指示信息通过DCI中的指示域联合编码指示。
在一种可能的实现方式中,第二指示信息由DCI中的秩指示域指示;其中,秩指示域的比特长度由最大秩确定;或者,秩指示域的比特长度由第一数值和第二数值中的最小值确定,该第一数值为最大秩,该第二数值由以下任一项确定:预定义的、预配置的、协议约定的或网络侧设备配置;或者,秩指示域的比特长度由预编码的秩的限制信息确定。
在一种可能的实现方式中,在配置了最大两个码字传输的情况下,该秩指示域的比特长度由第一数值和第二数值中的最小值确定。
在一种可能的实现方式中,在使能单码字传输的情况下,上述第二指示信息由秩指示域确定。
在一种可能的实现方式中,上述单码字传输是由DCI中的MCS指示域和RV指示域共同使能的。
在一种可能的实现方式中,上述第二指示信息由DCI中的天线端口指示域指示。
在一种可能的实现方式中,在使能两个码字传输的情况下,上述第二指示信息由天线端口指示域指示。
在一种可能的实现方式中,上述两个码字传输是由DCI中的MCS指示域和RV指示域共同使能的。
在一种可能的实现方式中,上述天线端口指示域用于从包含不同数量DMRS端口的DMRS端口组中确定一组DMRS端口组,预编码的秩由一组DMRS端口组中DMRS端口的数量确定。
在一种可能的实现方式中,上述获取模块41,还用于UE获取目标信息之前,接收网络侧设备发送的目标信息的配置信息,该配置信息包括以下至少一项:指示DCI中是否携带目标信息的第一配置;指示目标信息所需要的比特长度的第二配置。
在一种可能的实现方式中,上述获取模块41,还用于在UE获取目标信息之前,接收网络侧设备发送的第一信息,该第一信息包括以下至少一项:预编码类型集合、预编码的秩的限制信息、至少一个第一向量组、至少一个第二向量组、目标相位集合、有效的天线端口组集合;目标信息是从第一信息中确定的。
在一种可能的实现方式中,上述第一信息由以下任一项确定:RRC配置、MAC CE指示、协议约定。
在一种可能的实现方式中,上述预编码的秩的限制信息用于限制预编码的秩的数量,或者,该预编码类型集合用于限制目标预编码为完全相干预编码、部分相干预编码或不相干预编码或完全相干预编码、部分相干预编码、不相干预编码的组合。
在一种可能的实现方式中,在第一信息由MAC CE指示的情况下,该MAC CE包含以下至少一项:第一向量的索引;与第一向量一一映射的比特位;第一向量组的索引。
在一种可能的实现方式中,上述确定模块,具体用于根据目标信息,确定预编码生成规则;并根据该预编码生成规则,确定上行数据的预编码。
本申请实施例提供一种预编码指示装置,预编码指示装置可以通过目标信息中的至少一项指示信息,来确定上行数据的预编码,即对于预编码指示装置在进行数据传输的上行数据的预编码,可以根据目标信息中的至少一项指示信息来确定,便于网络侧设备对预编码指示装置进行调度,同时也增加了预编码指示装置对上行数据的预编码的灵活性,从而降低了预编码指示的信令开销。
本申请实施例中的预编码指示装置可以是UE,例如具有操作***的UE,也可以是UE中的部件,例如集成电路或芯片。该UE可以是终端,也可以为除终端之外的其他设备。示例性的,UE可以包括但不限于上述所列举的UE11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的预编码指示装置能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图7示出了本申请实施例中涉及的预编码指示装置的一种可能的结构示意图。如图7所示,预编码指示装置50可以包括:发送模块51。
其中,发送模块51,用于向UE发送目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;该第二向量是根据第一向量确定的,该目标信息用于确定上行数据的预编码。
在一种可能的实现方式中,上述发送模块51,具体用于向UE发送第一信令,该第一信令中携带有目标信息;该第一信令为以下任一项:下行控制信息DCI、媒体接入控制控制单元MAC CE信令、无线资源控制RRC信令。
在一种可能的实现方式中,上述发送模块51,还用于在向UE发送目标信息之前,向UE发送目标信息的配置信息,该配置信息包括以下至少一项:指示DCI中是否携带目标信息的第一配置;指示目标信息所需要的比特长度的第二配置。
在一种可能的实现方式中,上述发送模块51,还用于在向UE发送目标信息之前,向UE发送第一信息,该第一信息用于确定目标信息,该第一信息包括以下至少一项:预编码类型集合、至少一组有效第一向量、预编码的秩的限制信息、至少一个第一向量组、至少一个第二向量组、目标相位集合、有效的天线端口组集合;该目标信息是从第一信息中确定的。
本申请实施例提供一种预编码指示装置,预编码指示装置可以通过目标信息中的至少一项指示信息,来确定上行数据的预编码,即对于预编码指示装置在进行数据传输的上行数据的预编码,可以根据目标信息中的至少一项指示信息来确定,便于网络侧设备对预编码指示装置进行调度,同时也增加了预编码指示装置对上行数据的预编码的灵活性,从而降低了预编码指示的信令开销。
本申请实施例提供的预编码指示装置能够实现上述方法实施例中网络侧设备实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图8所示,本申请实施例还提供一种通信设备5000,包括处理器5001和存储器5002,存储器5002上存储有可在所述处理器5001上运行的程序或指令,例如,该通信设备5000为UE时,该程序或指令被处理器5001执行时实现上述UE侧方法实施例的各个步骤,且能达到相同的技术效果。该通信设备5000为网络侧设备时,该程序或指令被处理器5001执行时实现上述网络侧设备方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种UE,包括处理器和通信接口,处理器用于用于获取目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;并根据目标信息,确定上行数据的预编码。该UE实施例与上述UE侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该UE实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种UE的硬件结构示意图。
该UE700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本本领域技术人员可以理解,UE700还可以包括给各个部件供电的电源(比如电池), 电源可以通过电源管理***与处理器710逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图9中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选地,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710,用于获取目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;并根据目标信息,确定上行数据的预编码。
本申请实施例提供一种UE,UE可以通过目标信息中的至少一项指示信息,来确定上行数据的预编码,即对于UE在进行数据传输的上行数据的预编码,可以根据目标信息中的至少一项指示信息来确定,便于网络侧设备对UE进行调度,同时也增加了UE对上行数据的预编码的灵活性,从而降低了预编码指示的信令开销。
本申请实施例提供的UE能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向UE发送目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预 编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息,该目标信息用于确定上行数据的预编码。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络侧设备600包括:天线61、射频装置62、基带装置63、处理器64和存储器65。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置63中实现,该基带装置63包括基带处理器。
其中,射频装置62,用于向UE发送目标信息,该目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息,该目标信息用于确定用于确定上行数据的预编码。
本申请实施例提供一种网络侧设备,网络侧设备可以通过目标信息中的至少一项指示信息,来确定上行数据的预编码,即对于网络侧设备在进行数据传输的上行数据的预编码,可以根据目标信息中的至少一项指示信息来确定,便于网络侧设备对UE进行调度,同时也增加了网络侧设备对上行数据的预编码的灵活性,从而降低了预编码指示的信令开销。
本申请实施例提供的网络侧设备能够实现上述方法实施例中网络侧设备实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为基带处理器,通过总线接口与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口66,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备600还包括:存储在存储器65上并可在处理器64上运行的指令或程序,处理器64调用存储器65中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述预编码指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:UE及网络侧设备,所述UE可用于执行如上所述的预编码指示方法的步骤,所述网络侧设备可用于执行如上所述的预编码指示方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种预编码指示方法,所述方法包括:
    用户设备UE获取目标信息,所述目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;所述第二向量是根据所述第一向量确定的;
    所述UE根据所述目标信息,确定上行数据的预编码。
  2. 根据权利要求1所述的方法,其中,所述UE获取目标信息,包括:
    所述UE接收网络侧设备发送的第一信令,所述第一信令中携带有所述目标信息,所述第一信令为以下任一下:下行控制信息DCI、媒体接入控制控制单元MAC CE信令、无线资源控制RRC信令。
  3. 根据权利要求2所述的方法,其中,在所述第一信令为DCI的情况下,所述目标信息通过以下指示方式中的一种指示:
    所述目标信息中的不同指示信息通过所述DCI中的不同域指示;
    或者,
    所述目标信息中的不同指示信息通过所述DCI中的目标域的不同比特位指示;
    或者,
    所述目标信息中的不同指示信息通过所述DCI中的指示域联合编码指示。
  4. 根据权利要求2所述的方法,其中,所述第二指示信息由所述DCI中的秩指示域指示;其中,
    所述秩指示域的比特长度由最大秩确定;或者,
    所述秩指示域的比特长度由第一数值和第二数值中的最小值确定,所述第一数值为所述最大秩,所述第二数值由以下任一项确定:预定义的、预配置的、协议约定的或所述网络侧设备配置;或者,
    所述秩指示域的比特长度由预编码的秩的限制信息确定。
  5. 根据权利要求4所述的方法,其中,在配置了最大两个码字传输的情况下,所述秩指示域的比特长度由所述第一数值和所述第二数值中的最小值确定。
  6. 根据权利要求5所述的方法,其中,在使能单码字传输的情况下,所述第二指示信息由所述秩指示域指示。
  7. 根据权利要求6所述的方法,其中,所述单码字传输是由所述DCI中的调制与编码策略MCS指示域和冗余版本RV指示域共同使能的。
  8. 根据权利要求2所述的方法,其中,所述第二指示信息由所述DCI中的天线端口指示域指示。
  9. 根据权利要求8所述的方法,其中,在使能两个码字传输的情况下,所述第二指示信息由天线端口指示域指示。
  10. 根据权利要求9所述的方法,其中,所述两个码字传输是由DCI中的MCS指示域和RV指示域共同使能的。
  11. 根据权利要求8所述的方法,其中,所述天线端口指示域用于从包含不同数量解调参考信号DMRS端口的DMRS端口组中确定一组DMRS端口组,所述预编码的秩由所述一组DMRS端口组中DMRS端口的数量确定。
  12. 根据权利要求1至11任一项所述的方法,其中,所述UE获取目标信息之前,所述方法还包括:
    所述UE接收所述网络侧设备发送的所述目标信息的配置信息,所述配置信息包括以下至少一项:
    指示所述DCI中是否携带所述目标信息的第一配置;
    指示所述目标信息所需要的比特长度的第二配置。
  13. 根据权利要求1至11任一项所述的方法,其中,所述UE获取目标信息之前,所述方法还包括:
    所述UE接收所述网络侧设备发送的第一信息,所述第一信息包括以下至少一项:预编码类型集合、所述预编码的秩的限制信息、至少一个第一向量组、至少一个第二向量组、目标相位集合、有效的天线端口组集合;所述目标信息是从所述第一信息中确定的。
  14. 根据权利要求13所述的方法,其中,所述第一信息由以下任一项确定:RRC配置、MAC CE指示、协议约定。
  15. 根据权利要求13所述的方法,其中,所述预编码的秩的限制信息用于限制所述预编码的秩的数量,或者,所述预编码类型集合用于限制所述目标预编码为完全相干预编码、部分相干预编码或不相干预编码或完全相干预编码、部分相干预编码、不相干预编码的组合。
  16. 根据权利要求14所述的方法,其中,在第一信息由MAC CE指示的情况下,所述MAC CE包含以下至少一项:
    第一向量的索引;与第一向量一一映射的比特位;第一向量组的索引。
  17. 根据权利要求1所述的方法,其中,根据所述目标信息,确定上行数据的预编码的步骤包括:
    所述UE根据所述目标信息,确定预编码生成规则;
    所述UE根据所述预编码生成规则,确定上行数据的预编码。
  18. 一种预编码指示方法,所述方法包括:
    网络侧设备向用户设备UE发送目标信息,所述目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;所述第二向量是根据所述第一向量确定的,所述目标信息用于确定上行数据的预编码。
  19. 根据权利要求18述的方法,其中,所述网络侧设备向UE发送目标信息,包括:
    所述网络侧设备向UE发送第一信令,所述第一信令中携带有所述目标信息;所述第一信令为以下任一项:下行控制信息DCI、媒体接入控制控制单元MAC CE信令、无线资源控制RRC信令。
  20. 根据权利要求18或19所述的方法,其中,所述网络侧设备向UE发送目标信息之前,所述方法还包括:
    所述网络侧设备向UE发送所述目标信息的配置信息,所述配置信息包括以下至少一项:
    指示所述DCI中是否携带所述目标信息的第一配置;
    指示所述目标信息所需要的比特长度的第二配置。
  21. 根据权利要求18或19所述的方法,其中,所述网络侧设备向UE发送目标信息之前,所述方法还包括:
    所述网络侧设备向UE发送第一信息,所述第一信息用于确定所述目标信息,所述第一信息包括以下至少一项:预编码类型集合、至少一组有效第一向量、所述预编码的秩的限制信息、至少一个第一向量组、至少一个第二向量组、目标相位集合、有效的天线端口组集合;所述目标信息是从所述第一信息中确定的。
  22. 一种预编码指示装置,所述装置包括:获取模块和确定模块;
    所述获取模块,用于获取目标信息,所述目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息;所述第二向量是根据所述第一向量确定的;
    所述确定模块,用于根据所述获取模块获取的所述目标信息,确定上行数据的预编码。
  23. 一种预编码指示装置,所述装置包括:发送模块;
    所述发送模块,用于向用户设备UE发送目标信息,所述目标信息包括以下至少一项:指示预编码类型的第一指示信息、指示预编码的秩的第二指示信息、指示组成预编码的至少一个第一向量的第三指示信息、指示组成预编码的至少一个第二向量的第四指示信息、指示目标相位的第五指示信息、指示有效的天线端口组的第六指示信息,所述目标信息用于确定上行数据的预编码。
  24. 一种用户设备UE,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17中任一项所述的预编码指示方法的步骤。
  25. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求18至21中任一项所述的预编码指示方法的步骤。
  26. 一种通信***,所述通信***包括如权利要求22所述的传预编码指示装置和如权利要求23所述的预编码指示装置;或者,
    所述通信***包括如权利要求24所述的用户设备UE和如权利要求25所述的网络侧设备。
  27. 一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至17中任一项所述的预编码指示方法的步骤,或者实现如权利要求18至21中任一项所述的预编码指示方法的步骤。
PCT/CN2023/075012 2022-02-09 2023-02-08 预编码指示方法、装置、通信设备、***及存储介质 WO2023151593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210122392.3 2022-02-09
CN202210122392.3A CN116614162A (zh) 2022-02-09 2022-02-09 预编码指示方法、装置、通信设备、***及存储介质

Publications (1)

Publication Number Publication Date
WO2023151593A1 true WO2023151593A1 (zh) 2023-08-17

Family

ID=87563638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075012 WO2023151593A1 (zh) 2022-02-09 2023-02-08 预编码指示方法、装置、通信设备、***及存储介质

Country Status (2)

Country Link
CN (1) CN116614162A (zh)
WO (1) WO2023151593A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282207A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种预编码矩阵指示方法、装置和***
CN110582980A (zh) * 2017-04-03 2019-12-17 三星电子株式会社 用于移动通信***中基于分集的数据传输的方法和装置
CN110838856A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种数据传输方法、终端及网络设备
CN111064499A (zh) * 2018-10-16 2020-04-24 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
US20200367217A1 (en) * 2019-08-14 2020-11-19 Guotong Wang Nr dci configuration for uplink power transmission
CN113517913A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 预编码索引指示方法、设备及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282207A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种预编码矩阵指示方法、装置和***
CN110582980A (zh) * 2017-04-03 2019-12-17 三星电子株式会社 用于移动通信***中基于分集的数据传输的方法和装置
CN110838856A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种数据传输方法、终端及网络设备
CN111064499A (zh) * 2018-10-16 2020-04-24 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
US20200367217A1 (en) * 2019-08-14 2020-11-19 Guotong Wang Nr dci configuration for uplink power transmission
CN113517913A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 预编码索引指示方法、设备及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On Codebook Based UL Subband Precoding", 3GPP DRAFT; R1-1702192 ON CODEBOOK BASED UL SUBBAND PRECODING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051209350 *
INTEL CORPORATION: "On Codebook Based UL Transmission", 3GPP DRAFT; R1-1704719 ON CODEBOOK BASED UL TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051242857 *

Also Published As

Publication number Publication date
CN116614162A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
US20230362927A1 (en) Pusch transmission method and apparatus, device, and storage medium
JP7342869B2 (ja) 電子機器、無線通信方法及びコンピュータ読み取り可能な記録媒体
US20240205939A1 (en) Method for indicating downlink control information, method for determining uplink channel transmission rank, and apparatuses
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2023151593A1 (zh) 预编码指示方法、装置、通信设备、***及存储介质
CN115882909A (zh) 预编码方式的指示方法、装置、终端及网络侧设备
WO2023151592A1 (zh) 预编码的确定方法、装置、设备及可读存储介质
WO2023143361A1 (zh) 能力信息上报方法、装置及终端
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2024007918A1 (zh) 预编码矩阵指示、确定方法、装置、网络侧设备及终端
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2023241643A1 (zh) 联合传输的pmi参数反馈方法、终端及网络侧设备
WO2023160442A1 (zh) Csi上报方法、信道预测方法、终端和网络侧设备
WO2024061263A1 (zh) Pmi组合系数的发送方法、装置及终端
WO2023207898A1 (zh) 多trp传输的pmi的反馈方法、设备、终端及网络侧设备
CN117792446A (zh) 参数共享方法、装置、终端、网络侧设备及可读存储介质
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2023160597A1 (zh) Csi报告的cpu占用数量的确定方法、装置及终端
WO2023160456A1 (zh) 信道信息上报方法、装置、网络侧设备、终端及介质
WO2023125420A1 (zh) 参考信号端口指示方法、终端及网络侧设备
WO2024007949A1 (zh) Ai模型处理方法、装置、终端及网络侧设备
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023051539A1 (zh) 上行预编码信息确定方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752373

Country of ref document: EP

Kind code of ref document: A1