WO2023151328A1 - 雾化器及电子雾化装置 - Google Patents

雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2023151328A1
WO2023151328A1 PCT/CN2022/131044 CN2022131044W WO2023151328A1 WO 2023151328 A1 WO2023151328 A1 WO 2023151328A1 CN 2022131044 W CN2022131044 W CN 2022131044W WO 2023151328 A1 WO2023151328 A1 WO 2023151328A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating chamber
heating
cavity
chamber
Prior art date
Application number
PCT/CN2022/131044
Other languages
English (en)
French (fr)
Inventor
李欢喜
杜红飞
周宏明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023151328A1 publication Critical patent/WO2023151328A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to the technical field of atomization, in particular to an atomizer and an electronic atomization device.
  • Aerosol is a colloidal dispersion system formed by dispersing small solid or liquid particles and suspending them in a gas medium. Since aerosol can be absorbed by the human body through the respiratory system, it provides users with a new alternative absorption method, such as herbal
  • the aerosol-like or cream-like aerosol-generating substrate is baked and heated to generate an aerosol atomizer, which is used in different fields to deliver inhalable aerosols to users, replacing conventional product forms and absorption methods.
  • Electronic atomization devices usually use resistive or electromagnetic induction to heat the aerosol-generating substrate.
  • resistive heating uses an external power supply to energize the resistive element to generate heat, and the heated resistive element then transfers heat to the aerosol-generating substrate through heat conduction.
  • the heat conduction takes time and there is a hysteresis, so it will cause the gas close to the resistive element
  • the sol-forming matrix is often overburned or even burnt, and the high temperature is overburned or burnt, resulting in poor consistency of taste.
  • the resistance heating element is heated in contact with the aerosol-generating substrate, the metal substance in the resistance heating element may enter into the aerosol formed by the atomization of the aerosol-generating substrate, affecting the taste of the atomization.
  • the first aspect of the present application provides an atomizer, which includes: a heating element with a heating cavity formed inside and an accommodating cavity that is thermally conductive with the heating cavity; an electrode assembly including an at least partially extended a first electrode and a second electrode inserted into the heating cavity; and a magnetic element, arranged outside the heating element, for applying a magnetic field to the heating cavity.
  • a magnetic rotating arc rotating around the axis of the heating chamber can be controlled and formed between the first electrode and the second electrode in the heating chamber.
  • both the first electrode and the second electrode at least partly protrude into the heating chamber, and after the high-voltage power is supplied to the first electrode and the second electrode, they can break down and form an arc in the heating chamber.
  • the magnetic part applies a magnetic field to the heating chamber, and applies an electric field force to the arc to make the arc rotate around the axis of the heating chamber, thereby forming a magnetic rotating arc.
  • the magnetic element includes a magnetic ring sheathed outside the heating element, and the orthographic projection of the magnetic ring toward the axial section of the heating chamber covers the heating chamber facing itself and the Orthographic projection of the axial section.
  • the first electrode includes a discharge ring located in the heating chamber, the discharge ring extends along the outer circumference of the heating chamber, and the second electrode is located in the heating chamber The inner discharge end is on the central axis of the discharge ring.
  • the discharge end of the second electrode is configured to have a cylinder or a ring shape.
  • the heating chamber is located at the bottom of the accommodating chamber in the axial direction, the discharge end of the second electrode is flush with the central point of the discharge ring, or the second The discharge end of the electrode is lowered by a preset distance in a direction away from the accommodating cavity relative to the central point of the discharge ring.
  • the heating element includes a pipe body, a baffle and a bottom plate, the baffle and the bottom plate are arranged at intervals in the pipe body along the axial direction of the pipe body, and the baffle
  • the heating chamber is defined between the tube body and the bottom plate, and the accommodating cavity is defined between a side of the partition plate facing away from the bottom plate and the tube body.
  • the heating cavity includes a first heating cavity and a second heating cavity communicating with each other, the first heating cavity surrounds the radially outer peripheral side of the accommodating cavity, and the second heating cavity
  • the heating cavity is located at the axial bottom of the accommodating cavity.
  • the discharge ring is located in the first heating chamber and is arranged around the periphery of the accommodating chamber, the discharge end of the second electrode is located in the second heating chamber and is connected to the center of the discharge ring There is a height difference between the points.
  • the first electrode further includes an electrical connection section connected to the discharge ring and at least partially located in the heating chamber.
  • the radial distance between the electrical connection section and the second electrode along the radial direction of the heating chamber is greater than the radial distance between the discharge ring and the second electrode.
  • the electrical connection section is relatively insulated from the second electrode.
  • the heating chamber includes a third heating chamber, and the third heating chamber surrounds the radially outer peripheral side of the accommodating chamber.
  • the first electrode includes a first discharge ring
  • the second electrode includes a second discharge ring
  • the first discharge ring and the second discharge ring are both located in the third heating chamber and surround the The outer circumference of the accommodating cavity is arranged at intervals along the axial direction.
  • the heating element is made of infrared radiation material.
  • the bottom wall of the accommodating cavity faces the heating cavity and is coated with an infrared radiation coating.
  • the second aspect of the present application provides an electronic atomization device.
  • the electronic atomization device includes the atomizer described in the first aspect above.
  • Fig. 1 is a sectional view of an atomizer according to an embodiment of the present application
  • Fig. 2 is an exploded schematic diagram of the atomizer shown in Fig. 1;
  • FIG. 3 is a schematic cross-sectional view of an atomizer according to another embodiment of the present application.
  • Fig. 4 is an exploded schematic diagram of the atomizer shown in Fig. 3 .
  • Electrode assembly 32. First electrode; 321. Discharge ring; 323. Electrical connection section; 34. Second electrode; 50. Magnetic part.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • FIG. 1 to FIG. 2 they illustrate an atomizer 100 according to an embodiment of the present application.
  • the nebulizer 100 heats the atomized aerosol-generating substrate by a plasma generated by a magnetic rotating arc.
  • the high energy density characteristics of plasma heating are used to realize instant and rapid heating atomization, which effectively shortens the preheating time, prevents burnt burns caused by too long preheating time, and improves the taste of atomization.
  • the plasma generated by the magnetic rotating arc is more uniform, which can form a more uniform temperature field to uniformly heat the atomized aerosol-generating substrate and further improve the taste of atomization.
  • the atomizer 100 includes a heating element 10, an electrode assembly 30, and a magnetic element 50.
  • a heating chamber 11 and an accommodating chamber 13 that is thermally conductive with the heating chamber 11 are formed inside the heating element 10 for accommodating Cavity 13 is used to accommodate an aerosol-generating substrate.
  • the electrode assembly 30 includes a first electrode 32 and a second electrode 34 at least partially protruding into the heating cavity 11
  • the magnetic element 50 is disposed outside the heating element 10 for applying a magnetic field to the heating cavity 11 .
  • a magnetic rotating arc rotating around the axis of the heating chamber 11 can be formed between the first electrode 32 and the second electrode 34 in the heating chamber 11 under control.
  • Both the first electrode 32 and the second electrode 34 at least partly protrude into the heating chamber 11 , and after the first electrode 32 and the second electrode 34 are powered by high voltage, they can break down and form an arc in the heating chamber 11 .
  • the magnetic element 50 applies a magnetic field to the heating chamber 11 , and applies an electric field force to the arc to rotate the arc around the axis of the heating chamber 11 , thereby forming a magnetic rotating arc.
  • the magnetic element 50 includes a magnetic ring sheathed on the heating element 10 , the magnetic ring faces the orthographic projection of the axial section of the heating chamber 11 , and covers the orthographic projection of the heating chamber 11 to itself on the same axial section. That is to say, the magnetic ring covers at least the outer circumference of the heating chamber 11 to apply an electric field force vertical to the heating chamber 11 to make the arc rotate around the axis of the heating chamber 11 under the action of the electric field force.
  • the magnetic ring is arranged coaxially with the heating chamber 11 to form a magnetic rotating arc that rotates around the axis of the heating chamber 11 in the heating chamber 11, so that the temperature field in the heating chamber 11 is uniform, and then the heat in the accommodation chamber 13 is evenly heated. Aerosol-generating substrates.
  • the heating chamber 11 and the accommodating chamber 13 are also arranged coaxially, so that the temperature field in the heating chamber 11 acts uniformly on the aerosol generating substrate in the accommodating chamber 13 .
  • the magnetic element 50 may also be configured to include a plurality of sub-magnets arranged along the circumferential direction of the heating element 10 .
  • the specific structure of the magnetic member 50 is not limited here, as long as the magnetic force of the vertical arc can be applied to the heating cavity 11 .
  • the first electrode 32 includes a discharge ring 321 located in the heating chamber 11, the discharge ring 321 extends along the outer circumference of the heating chamber 11, and the discharge end of the second electrode 34 located in the heating chamber 11 is located in the discharge ring 321. on the central axis of .
  • a discharge ring 321 is set in the heating chamber 11, and the extension direction of the discharge ring 321 is parallel to the outer circumferential direction of the heating chamber 11, which is equivalent to the coaxial arrangement of the discharge ring 321 and the heating chamber 11, and then the discharge end of the second electrode 34 is set On the central axis of the discharge ring 321, after the arc formed between the discharge end of the second electrode 34 and the discharge ring 321, the arc rotates along the extension circumferential direction of the discharge ring 321 under the action of the magnetic field to form a magnetic rotating arc, and then uniform Ground-heated atomized aerosol-generating substrates.
  • the discharge end of the second electrode 34 is configured to have a column shape or a ring shape, that is, a columnar element, or a ring-shaped element with a small diameter. Whether it is a columnar element or an annular element, it can break through and discharge with the discharge ring 321 in the first electrode 32.
  • the discharge distance is preferably in the range of 2 mm to 8 mm.
  • both the first electrode 32 and the second electrode 34 in the electrode assembly 30 are made of any one of tungsten alloy, carbon fiber, copper alloy and graphite or any combination thereof.
  • the diameters of the first electrode 32 and the second electrode 34 both range from 0.4 mm to 1.5 mm.
  • the radius of the discharge ring 321 is in the range of 3 mm to 6 mm.
  • the heating chamber 11 is filled with an inert gas, and after the arc is broken down between the first electrode 32 and the second electrode 34 in the heating chamber 11, the inert gas filled in the heating chamber 11 can be ionized to form a plasma and Heat is generated, and the generated heat can be efficiently transferred to the accommodating cavity 13 through the inert gas, thereby improving the heat transfer efficiency.
  • the heating chamber 11 is filled with gases such as helium, neon, and argon. Understandably, in some other embodiments, the heating chamber 11 may also be filled with air, which is not limited here.
  • the air pressure inside the heating chamber 11 is less than the standard atmospheric pressure, so that the pressure inside the heating chamber 11 can be kept at a relatively low level without excessive pressure on the wall of the heating chamber 11 (ie, the heating element 10 ), Furthermore, the wall thickness and strength of the heating element 10 can be reduced, and the heat transfer efficiency can be further improved.
  • the air pressure inside the heating chamber 11 is between 1/5 atmospheric pressure and 1 atmospheric pressure.
  • the air pressure in the heating chamber 11 is 1/5 to 1/3 atmospheric pressure. Understandably, in some other embodiments, the air pressure inside the heating chamber 11 may also be set to standard atmospheric pressure, which is not limited here.
  • the heating element 10 is made of an infrared radiating material.
  • the heating element 10 can form infrared rays radiating to the accommodating cavity 13, so that not only the plasma generated by the arc can be used to heat the atomized aerosol-generating substrate, but also through Infrared radiation heats the atomized aerosol-generating substrate to further enhance the heating effect.
  • the heating element 10 is made of any one of transparent quartz glass, milky quartz, black silicon quartz, silicon nitride, zirconia, and aluminum oxide or any combination thereof, and the above materials can generate infrared radiation after being heated, so as to The aerosol-generating substrate is heated by infrared radiation by the heating element 10 itself.
  • the bottom wall of the accommodating chamber 13 faces the heating chamber 11 and is coated with an infrared radiation layer, so that stronger infrared radiation heating can be achieved.
  • the material of the infrared radiation coating is iron-manganese-copper oxide, CrC, TiCN, diamond-like film (DLC), HBQ black silicon, cordierite, transition metal oxide series spinel, rare earth oxide, ion cobalt Doped with one or more of perovskite, silicon carbide, zircon and boron nitride.
  • the heating chamber 11 is located at the bottom of the accommodating chamber 13 in the axial direction, and the discharge end of the second electrode 34 is flush with the central point of the discharge ring 321 to form a
  • the arc extends toward the arc, and finally the arc rotates under the action of the magnetic field to form an arc surface covering the inside of the discharge ring 321 to uniformly heat the bottom of the accommodating cavity 13 and evenly heat the aerosol-generating substrate in the atomizing accommodating cavity 13 .
  • the discharge end of the second electrode 34 drops a predetermined distance away from the accommodating cavity 13 relative to the central point of the discharge ring 321, so that the arc forms a conical arc surface under the action of the magnetic field force, which is conducive to energy focusing upward, and further The uniformity of the temperature field in the heating chamber 11 is improved.
  • the preset distance by which the second electrode 34 descends is in the range of 0 mm to 1.0 mmm.
  • the heating element 10 includes a tube body 14, a partition plate 15 and a bottom plate 16, and the partition plate 15 and the bottom plate 16 are arranged in the tube body 14 at intervals along the axial direction of the tube body 14. Between the partition plate 15, the tube body 14 and the bottom plate 16 A heating cavity 11 is defined between the partitions 15 and a housing cavity 13 is defined between the side of the partition plate 15 facing away from the bottom plate 16 and the tube body 14, so that the housing cavity 13 and the tube body 14 are formed in the tube body 14 axially.
  • the heating chamber 11 is used to heat the aerosol-generating substrate in the top containing chamber 13 by the heat generated in the heating chamber 11 .
  • the thickness of the separator 15 is in the range of 0.5 mm to 1.0 mm, which not only meets the strength requirement but also conducts heat efficiently.
  • the separator 15 and the tube body 14 can be integrally formed, and the bottom plate 16 can be fixed in the tube body 14 through a melting process after the electrode assembly 30 is assembled.
  • the bottom plate 16 is made of a heat-resistant material, and the material of the bottom plate 16 can be the same as or different from that of the tube body 14 and the partition plate 15 , which is not limited here.
  • the heating chamber 11 includes a first heating chamber 112 and a second heating chamber 114 communicating with each other, the first heating chamber 112 surrounds the radially outer peripheral side of the housing chamber 13, and the second The second heating cavity 114 is located at the bottom of the accommodating cavity 13 in the axial direction.
  • the discharge ring 321 is located in the first heating chamber 112 and is disposed around the outer periphery of the accommodating chamber 13 .
  • the discharge end of the second electrode 34 is located in the second heating chamber 114 and has a height difference from the center of the discharge ring 321 . In this way, the heating chamber 11 is entirely surrounded outside the heating chamber 11, so that heating and atomization can be performed from the outer periphery of the aerosol-generating substrate.
  • an arc passing through the first heating chamber 112 and the second heating chamber 114 can be formed between the discharge ring 321 and the discharge end of the second electrode 34, and the arc rotates around the axis of the heating chamber 11 under the action of a magnetic field force, and the first heating A uniform temperature field can be formed in the cavity 112 and the second heating cavity 114 to uniformly heat the side and bottom surfaces of the aerosol-generating substrate, thereby improving the taste of atomization.
  • the first electrode 32 further includes an electrical connection section 323 connected to the discharge ring 321 and at least partially located in the heating cavity 11 .
  • the distance between the electrical connection section 323 and the second electrode 34 along the radial direction of the heating chamber 11 is greater than the radial distance between the discharge ring 321 and the second electrode 34, so that the electrical connection section 323 and the second electrode 34 is greater than the radial distance between the discharge ring 321 and the second electrode 34, ensuring that the discharge breakdown occurs between the discharge ring 321 and the second electrode 34 with a smaller distance, ensuring the location of the ionization breakdown reliability.
  • the electrical connection section 323 is relatively insulated from the second electrode 34 , which can further prevent ionization breakdown between the electrical connection section 323 and the second electrode 34 .
  • a heat-resistant insulating sleeve is sheathed on the electrical connection section 323 , and the heat-resistant insulating sleeve can be a ceramic tube, a quartz tube or a high-dielectric insulating film layer to effectively insulate the electrical connection end 323 from the second electrode 34 .
  • the requirement for the power supply for supplying power to the atomizer 100 is that the current provided by the power supply always flows from one of the first electrode 32 and the second electrode 34 to the other, and the voltage does not vary. commutation.
  • the direction of the current flow is from the second electrode 34 to the first electrode 32 , so as to reduce the ablation loss of the second electrode 34 at the center.
  • the heating cavity 11 includes a third heating cavity, and the third heating cavity surrounds the radially outer peripheral side of the accommodating cavity 13 .
  • the first electrode 32 and the second electrode 34 respectively include a first discharge ring and a second discharge ring, the first discharge ring and the second discharge ring are both located in the third heating chamber, and both surround the outer circumference of the accommodating chamber 13 along the axial direction interval. In this way, the heating chamber 11 is entirely surrounded outside the heating chamber 11, so that heating and atomization can be performed from the outer periphery of the aerosol-generating substrate.
  • an arc can be formed in the first heating chamber 112 between the first discharge ring and the second discharge ring, and the arc rotates along the circumferential direction of the first discharge ring and the second discharge ring under the action of the magnetic field force, that is, around the heating chamber
  • a uniform temperature field can be formed in the first heating chamber 112, so as to uniformly heat the side of the aerosol-generating substrate, thereby improving the taste of atomization.
  • an electronic atomization device includes the aforementioned atomizer 100.
  • the atomizer 100 includes a heating element 10, an electrode assembly 30, and a magnetic element 50.
  • the heating element 10 is formed with a heating chamber 11 and an accommodating chamber 13 that is thermally conductive with the heating chamber 11.
  • the accommodating chamber 13 is used to accommodate aerosol generation. matrix.
  • the electrode assembly 30 includes a first electrode 32 and a second electrode 34 at least partially protruding into the heating cavity 11
  • the magnetic element 50 is disposed outside the heating element 10 for applying a magnetic field to the heating cavity 11 .
  • a magnetic rotating arc rotating around the axis of the heating chamber 11 can be formed between the first electrode 32 and the second electrode 34 in the heating chamber 11 under control.
  • Both the first electrode 32 and the second electrode 34 at least partly protrude into the heating chamber 11 , and the first electrode 32 and the second electrode 34 can break down and form an arc in the heating chamber 11 after high-voltage power is supplied.
  • the magnetic element 50 applies a magnetic field to the heating chamber 11 , and applies an electric field force to the arc to rotate the arc around the axis of the heating chamber 11 , thereby forming a magnetic rotating arc.

Landscapes

  • Plasma Technology (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

一种雾化器(100)及电子雾化装置,雾化器(100)包括:加热件(10),内部形成有加热腔(11)及与加热腔(11)热传导设置的容置腔(13);电极组件(30),包括均至少部分伸入加热腔(11)内的第一电极(32)和第二电极(34);及磁性件(50),设于加热件(10)外,用于向加热腔(11)施加磁场;其中,通过磁场的作用,在加热腔内第一电极(32)和第二电极(34)之间能够受控形成绕加热腔(11)的轴线旋转的磁旋转电弧。通过对第一电极(32)和第二电极(34)高压供电能够在加热腔(11)内击穿形成电弧。磁性件(50)对加热腔(11)施加磁场,向电弧施加电场力使电弧绕加热腔(11)的轴线旋转,进而形成磁旋转电弧。

Description

雾化器及电子雾化装置
相关申请的交叉引用
本申请要求于2022年02月09日提交中国专利局、申请号为2022202663729、发明名称为“雾化器及电子雾化装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及雾化技术领域,特别是涉及雾化器及电子雾化装置。
背景技术
气溶胶是一种由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,由于气溶胶可通过呼吸***被人体吸收,为用户提供一种新型的替代吸收方式,例如可对草本类或膏类的气溶胶生成基质烘烤加热而产生气溶胶的雾化装置,应用于不同领域中,为用户递送可供吸入的气溶胶,替代常规的产品形态及吸收方式。电子雾化装置通常采用电阻式或者电磁感应的方式来加热气溶胶生成基质。
发明内容
在传统技术中,无论采用电阻式还是采用电磁感应的方式来加热气溶胶生成基质,所需的预热等待时间都较长,不便于用户使用。并且,电阻式加热是通过外部电源使电阻元件通电发热,发热的电阻元件再把热量通过热传导的方式传递给气溶胶生成基质,热传导需要时间,存在着滞后性,所以会导致靠近电阻元件的气溶胶生成基质往往过烧甚至烧焦,高温过烧或者烧焦,导致口感一致性差。而且,当电阻加热件与气溶胶生成基质接触进行加热时,可能会导致电阻加热件中的金属物质进入气溶胶生成基质雾化形成的气溶胶中,影响雾化口感。
基于此,有必要针对传统电子雾化装置雾化口感不佳的问题,提供一种雾化器及电子雾化装置。
本申请的第一方面提供了一种雾化器,所述雾化器包括:加热件,内部形成有加热腔及与所述加热腔热传导设置的容置腔;电极组件,包括均至少部分伸入所述加热腔内的第一电极和第二电极;及磁性件,设于所述加热件外,用于向所述加热腔施加磁场。通过所述磁场的作用,在所述加热腔内所述第一电极和所述第二电极之间能够受控形成绕所述加热腔的轴线旋转的磁旋转电弧。
在上述雾化器中,第一电极和第二电极均至少部分伸入加热腔内,对第一电极和第二电极高压供电后两者之间能够在加热腔内击穿形成电弧。同时,磁性件对加热腔施加磁场,向电弧施加电场力使电弧绕加热腔的轴线旋转,进而形成磁旋转电弧。如此,加热腔内不是仅在某个位置形成电弧而产生等离子体升温,而是整个加热腔内存在旋转的电弧,形成围绕加热腔的电弧面,可以使加热腔整体发热,形成均匀的温度场,以利用等离子体高效均匀地加热雾化气溶胶生成基质,进而提高雾化口感。
在本申请的第一方面中,所述磁性件包括套设于所述加热件外的磁性环,所述磁性环朝向所述加热腔轴截面的正投影覆盖所述加热腔朝向自身同一所述轴截面的正投影。
在本申请的第一方面中,所述第一电极包括位于所述加热腔内的放电环,所述放电环沿所述加热腔的外周向延伸设置,所述第二电极位于所述加热腔内的放电端处于所述放电环的中心轴线上。
在本申请的第一方面中,所述第二电极的所述放电端被构造为具有柱体或者环形。
在本申请的第一方面中,所述加热腔位于所述容置腔轴向的底部,所述第二电极的所述放电端与所述放电环的中心点平齐,或者所述第二电极的所述放电端相对所述放电环的中心点向远离所述容置腔的方向下降预设距离。
在本申请的第一方面中,所述加热件包括管体、隔板及底板,所述隔板 和所述底板沿所述管体的轴向间隔设置于所述管体内,所述隔板、所述管体及所述底板之间界定形成所述加热腔,所述隔板背向所述底板的一面与所述管体之间界定形成所述容置腔。
在本申请的第一方面中,所述加热腔包括相互连通的第一加热腔和第二加热腔,所述第一加热腔包围于所述容置腔径向的外周侧,所述第二加热腔位于所述容置腔轴向的底部。所述放电环位于所述第一加热腔内且围绕所述容置腔的外周设置,所述第二电极的所述放电端位于所述第二加热腔内,且与所述放电环的中心点之间具有高度差。
在本申请的第一方面中,所述第一电极还包括与所述放电环连接且至少部分位于所述加热腔内的电连接段。在所述加热腔内,所述电连接段与所述第二电极之间沿所述加热腔径向的距离大于所述放电环与所述第二电极之间的径向间距。
在本申请的第一方面中,所述电连接段与所述第二电极之间相对绝缘。
在本申请的第一方面中,所述加热腔包括第三加热腔,所述第三加热腔包围于所述容置腔径向的外周侧。所述第一电极包括第一放电环,所述第二电极包括第二放电环,所述第一放电环和所述第二放电环均位于所述第三加热腔内,且均围绕所述容置腔的外周沿轴向间隔设置。
在本申请的第一方面中,所述加热件由红外辐射材料制成。
在本申请的第一方面中,所述容置腔的底壁面向加热腔,且其上涂覆有红外辐射涂层。
本申请的第二方面提供了一种电子雾化装置。所述电子雾化装置包括如上述第一方面所述的雾化器。
附图说明
图1为根据本申请的一实施例的雾化器的截面图;
图2为图1所示雾化器的分解示意图;
图3为根据本申请的另一实施例的雾化器的截面示意图;
图4为图3所示雾化器的分解示意图。
附图标记:100、雾化器;10、加热件;11、加热腔;112、第一加热腔;114、第二加热腔;13、容置腔;14、管体;15、隔板;16、底板;30、电极组件;32、第一电极;321、放电环;323、电连接段;34、第二电极;50、磁性件。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接 相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1至图2,它们示出了根据本申请的一实施例的雾化器100。该雾化器100通过磁旋转电弧产生的等离子体加热雾化气溶胶生成基质。一方面,利用等离子体加热的高能量密度特点,实现即时的快速加热雾化,有效缩短预热时间,防止预热时间过长产生焦糊,提升雾化口感。另一方面,磁旋转电弧产生的等离子体更加均匀,能够形成更加均匀的温度场,以均匀加热雾化气溶胶生成基质,进一步提升雾化口感。
如图1和图2所示,雾化器100包括加热件10、电极组件30及磁性件50,加热件10内部形成有加热腔11及与加热腔11热传导设置的容置腔13,容置腔13用于容置气溶胶生成基质。电极组件30包括均至少部分伸入加热腔11内的第一电极32和第二电极34,磁性件50设于加热件10外,用于向加热腔11施加磁场。其中,通过磁场的作用,在加热腔11内第一电极32和第二电极34之间能够受控形成绕加热腔11的轴线旋转的磁旋转电弧。
第一电极32和第二电极34均至少部分伸入加热腔11内,对第一电极32 和第二电极34高压供电后两者之间能够在加热腔11内击穿形成电弧。同时,磁性件50对加热腔11施加磁场,向电弧施加电场力使电弧绕加热腔11的轴线旋转,进而形成磁旋转电弧。如此,加热腔11内不是仅在某个位置形成电弧而产生等离子体升温,而是整个加热腔11内存在旋转的电弧,形成围绕加热腔11的电弧面,可以使加热腔11整体发热,形成均匀的温度场,以利用等离子体高效均匀地加热雾化气溶胶生成基质,进而提高雾化口感。
在一些实施例中,磁性件50包括套设于加热件10为的磁性环,磁性环朝向加热腔11轴截面的正投影,覆盖加热腔11向自身同一轴截面的正投影。也就是说,磁性环至少覆盖加热腔11的外周,以向加热腔11内施加垂直电弧的电场力,使电弧在电场力的作用下绕加热腔11的轴线旋转。具体地,磁性环与加热腔11同轴设置,以在加热腔11内形成绕加热腔11轴线旋转的磁旋转电弧,使加热腔11内的温度场均匀,进而均匀加热容置腔13内的气溶胶生成基质。另外,加热腔11与容置腔13也同轴设置,使加热腔11内的温度场均匀作用于容置腔13内的气溶胶生成基质上。
可以理解地,在其他一些实施例中,磁性件50也可以设置为包括多个沿加热件10周向排布的子磁体等结构。对于磁性件50的具体结构在此不做限定,只要能够向加热腔11内施加垂直电弧的磁场力即可。
在一些实施例中,第一电极32包括位于加热腔11内的放电环321,放电环321沿加热腔11的外周向延伸设置,第二电极34位于加热腔11内的放电端处于放电环321的中心轴线上。如此,在加热腔11内设置放电环321,放电环321的延伸方向与加热腔11的外周向平行,相当于放电环321与加热腔11同轴设置,然后将第二电极34的放电端设于放电环321的中心轴线上,如此第二电极34的放电端与放电环321之间形成的电弧后,电弧在磁场作用下沿放电环321的延伸周向旋转,形成磁旋转电弧,进而均匀地加热雾化气溶胶生成基质。
进一步地,第二电极34的放电端被构造为具有柱状或者环形,即可以为一个柱状元件,也可以为一个小直径的环形元件。无论是柱状元件还是环形 元件,都能够与第一电极32中的放电环321击穿放电。其中,放电距离优选在2mm至8mm的范围内。
可选地,电极组件30中第一电极32及第二电极34均由钨合金、碳纤维、铜合金及石墨中的任意一种或它们的任意组合制成。第一电极32及第二电极34的直径范围均为0.4mm至1.5mm。还可选地,放电环321的半径在3mm至6mm的范围内。一些实施例中,加热腔11内填充有惰性气体,在加热腔11内第一电极32和第二电极34之间击穿产电弧后,可电离加热腔11内填充的惰性气体形成等离子体并产生热量,产生的热量可通过惰性气体高效地传递至容置腔13,提高传热效率。例如,加热腔11内填充氦气、氖气、氩气等气体。可以理解地,其他一些实施例中,加热腔11内也可以填充空气,在此不做限定。
在一些实施例中,加热腔11内部的气压小于标准大气压,使加热腔11内部的压力保持在较低水平,不会对加热腔11的腔壁(即加热件10)产生过大的压力,进而可以缩小加热件10的壁厚及强度,进一步提高热量传递效率。例如,加热腔11内部的气压为1/5大气压至1个大气压之间。优选地,加热腔11内的气压为1/5至1/3大气压。可以理解地,其他一些实施例中,加热腔11内部的气压也可以设置为标准大气压,在此不做限定。
在一些实施例中,加热件10由红外辐射材料制成。当加热腔11内产生的热量传递给加热件10后,加热件10便可形成向容置腔13辐射的红外线,如此不仅可利用电弧产生的等离子体加热雾化气溶胶生成基质,还可通过红外辐射加热雾化气溶胶生成基质,进一步提高加热效果。具体地,加热件10由透明石英玻璃,乳白石英,黑硅石英、氮化硅、氧化锆及氧化铝中的任意一种或它们的任意组合制成,上述材料受热后可产生红外辐射,以通过加热件10自身对气溶胶生成基质进行红外辐射加热。
可选地,容置腔13的底壁面向加热腔11,且其上涂覆有红外辐射层,如此可实现更强的红外辐射加热。具体地,红外辐射涂层的材料为铁锰铜的氧化物、CrC、TiCN、类金刚石薄膜(DLC),HBQ黑硅、堇青石、过渡金属氧化 物系列尖晶石、稀土氧化物、离子共掺杂钙钛矿、碳化硅、锆英石、氮化硼中的一种或两种以上。
参阅图1至图2,在一些实施例中,加热腔11位于容置腔13轴向的底部,第二电极34的放电端与放电环321的中心点平齐,以形成沿放电环321径向延伸的电弧,最终电弧在磁场作用下旋转形成覆盖放电环321内部的电弧面,以均匀加热容置腔13底部,均匀加热雾化容置腔13内的气溶胶生成基质。或者,第二电极34的放电端相对放电环321的中心点向远离容置腔13的方向下降预设距离,如此电弧在磁场力作用下形成锥形的电弧面,有利于能量聚焦向上,进一步提高加热腔11内温度场的均匀度。可选地,第二电极34下降的预设距离在0mm至1.0mmm的范围内。
进一步地,加热件10包括管体14、隔板15及底板16,隔板15和底板16沿管体14的轴向间隔设置于管体14内,隔板15、管体14及底板16之间界定形成加热腔11,隔板15背向底板16的一面与管体14之间界定形成容置腔13,如此在管体14内形成沿管体14轴向排布的容置腔13和加热腔11,通过加热腔11内产生的热量加热顶部容置腔13内的气溶胶生成基质。可选地,隔板15的厚度在0.5mm至1.0mm的范围内,即可以满足强度需求还可以高效导热。
具体在成型过程中,隔板15和管体14可一体成型,底板16可以将电极组件30装配好以后,通过熔融工艺固定在管体14内。另外,底板16由耐热材料制成,底板16的材质可以与管体14及隔板15相同,也可以不同,在此不做限定。
参阅图3至图4,另一些实施例中,加热腔11包括相互连通的第一加热腔112和第二加热腔114,第一加热腔112包围于容置腔13径向的外周侧,第二加热腔114位于容置腔13轴向的底部。放电环321位于第一加热腔112内且围绕容置腔13的外周设置,第二电极34的放电端位于第二加热腔114内,且与放电环321的中心点之间具有高度差。如此,加热腔11整体包围于加热腔11外,以从气溶胶生成基质的外周进行加热雾化。并且,放电环321 与第二电极34的放电端之间能够形成经过第一加热腔112和第二加热腔114的电弧,该电弧在磁场力作用下绕加热腔11的轴线旋转,第一加热腔112及第二加热腔114内均可形成均匀的温度场,以对气溶胶生成基质的侧面及底面进行均匀加热,进而提高雾化口感。
在上述任一实施例中,第一电极32还包括与放电环321连接且至少部分位于加热腔11内的电连接段323。在加热腔11内,电连接段323与第二电极34之间沿加热腔11径向的距离大于放电环321与第二电极34之间的径向间距,如此电连接段323与第二电极34之间的径向间距大于放电环321与第二电极34之间的径向间距,确保放电击穿发生在间距较小的放电环321与第二电极34之间,保证电离击穿位置的可靠性。
进一步地,电连接段323与第二电极34之间相对绝缘,这可以进一步防止电连接段323与第二电极34之间发生电离击穿。具体地,电连接段323上套设耐热绝缘套,耐热绝缘套可以为陶瓷管、石英管或者高介电绝缘膜层,以有效绝缘电连接端323与第二电极34。
在上述任一实施例中,对用于向雾化器100供电的电源的要求为,该电源提供的电流始终从第一电极32和第二电极34中的一者流向另一者,电压不换相。优选地,电流方向为第二电极34流向第一电极32,以减小位于中心处第二电极34的烧蚀损耗。
在又一些实施例中,加热腔11包括第三加热腔,第三加热腔包围于容置腔13径向的外周侧。第一电极32和第二电极34分别包括第一放电环和第二放电环,第一放电环和第二放电环均位于第三加热腔内,且均围绕容置腔13的外周沿轴向间隔。如此,加热腔11整体包围于加热腔11外,以从气溶胶生成基质的外周进行加热雾化。并且,第一放电环和第二放电环之间能够在第一加热腔112内形成电弧,该电弧在磁场力作用下沿第一放电环及第二放电环的周向旋转,即绕加热腔11的轴线旋转,第一加热腔112内可形成均匀的温度场,以对气溶胶生成基质的侧面进行均匀加热,进而提高雾化口感。
在本申请的一实施例中,还提供一种电子雾化装置。该电子雾化装置包 括上述雾化器100。雾化器100包括加热件10、电极组件30及磁性件50,加热件10内部形成有加热腔11及与加热腔11热传导设置的容置腔13,容置腔13用于容置气溶胶生成基质。电极组件30包括均至少部分伸入加热腔11内的第一电极32和第二电极34,磁性件50设于加热件10外,用于向加热腔11施加磁场。其中,通过磁场的作用,在加热腔11内第一电极32和第二电极34之间能够受控形成绕加热腔11的轴线旋转的磁旋转电弧。
第一电极32和第二电极34均至少部分伸入加热腔11内,对第一电极32和第二电极34高压供电后两者之间能够在加热腔11内击穿形成电弧。同时,磁性件50对加热腔11施加磁场,向电弧施加电场力使电弧绕加热腔11的轴线旋转,进而形成磁旋转电弧。如此,加热腔11内不是仅在某个位置形成电弧而产生等离子体升温,而是整个加热腔11内存在旋转的电弧,形成围绕加热腔11的电弧面,可以使加热腔11整体发热,形成均匀的温度场,以利用等离子体高效均匀地加热雾化气溶胶生成基质,进而提高雾化口感。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种雾化器,其特征在于,所述雾化器包括:
    加热件,内部形成有加热腔及与所述加热腔热传导设置的容置腔;
    电极组件,包括均至少部分伸入所述加热腔内的第一电极和第二电极;及
    磁性件,设于所述加热件外,用于向所述加热腔施加磁场;
    其中,通过所述磁场的作用,在所述加热腔内所述第一电极和所述第二电极之间能够受控形成绕所述加热腔的轴线旋转的磁旋转电弧。
  2. 根据权利要求1所述的雾化器,其特征在于,所述磁性件包括套设于所述加热件外的磁性环,所述磁性环朝向所述加热腔轴截面的正投影覆盖所述加热腔朝向自身同一所述轴截面的正投影。
  3. 根据权利要求1所述的雾化器,其特征在于,所述第一电极包括位于所述加热腔内的放电环,所述放电环沿所述加热腔的外周向延伸设置,所述第二电极位于所述加热腔内的放电端处于所述放电环的中心轴线上。
  4. 根据权利要求3所述的雾化器,其特征在于,所述第二电极的所述放电端被构造为具有柱体或者环形。
  5. 根据权利要求3所述的雾化器,其特征在于,所述加热腔位于所述容置腔轴向的底部,所述第二电极的所述放电端与所述放电环的中心点平齐,或者所述第二电极的所述放电端相对所述放电环的中心点向远离所述容置腔的方向下降预设距离。
  6. 根据权利要求5所述的雾化器,其特征在于,所述加热件包括管体、隔板及底板,所述隔板和所述底板沿所述管体的轴向间隔设置于所述管体内,所述隔板、所述管体及所述底板之间界定形成所述加热腔,所述隔板背向所述底板的一面与所述管体之间界定形成所述容置腔。
  7. 根据权利要求3所述的雾化器,其特征在于,所述加热腔包括相互连通的第一加热腔和第二加热腔,所述第一加热腔包围于所述容置腔径向的外 周侧,所述第二加热腔位于所述容置腔轴向的底部。
  8. 根据权利要求7所述的雾化器,其特征在于,所述放电环位于所述第一加热腔内且围绕所述容置腔的外周设置,所述第二电极的所述放电端位于所述第二加热腔内,且与所述放电环的中心点之间具有高度差。
  9. 根据权利要求3-8中任意一项所述的雾化器,其特征在于,所述第一电极还包括与所述放电环连接且至少部分位于所述加热腔内的电连接段;
    在所述加热腔内,所述电连接段与所述第二电极之间沿所述加热腔径向的距离大于所述放电环与所述第二电极之间的径向间距。
  10. 根据权利要求9所述的雾化器,其特征在于,所述电连接段与所述第二电极之间相对绝缘。
  11. 根据权利要求1所述的雾化器,其特征在于,所述加热腔包括第三加热腔,所述第三加热腔包围于所述容置腔径向的外周侧。
  12. 根据权利要求11所述的雾化器,其特征在于,所述第一电极包括第一放电环,所述第二电极包括第二放电环,所述第一放电环和所述第二放电环均位于所述第三加热腔内,且均围绕所述容置腔的外周沿轴向间隔设置。
  13. 根据权利要求1-8中任意一项所述的雾化器,其特征在于,所述加热件由红外辐射材料制成。
  14. 根据权利要求1-8中任意一项所述的雾化器,其特征在于,所述容置腔的底壁面向加热腔,且其上涂覆有红外辐射涂层。
  15. 一种电子雾化装置,其特征在于,包括上述权利要求1-14中任意一项所述的雾化器。
PCT/CN2022/131044 2022-02-09 2022-11-10 雾化器及电子雾化装置 WO2023151328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220266372.9U CN217117529U (zh) 2022-02-09 2022-02-09 雾化器及电子雾化装置
CN202220266372.9 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023151328A1 true WO2023151328A1 (zh) 2023-08-17

Family

ID=82622033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131044 WO2023151328A1 (zh) 2022-02-09 2022-11-10 雾化器及电子雾化装置

Country Status (2)

Country Link
CN (1) CN217117529U (zh)
WO (1) WO2023151328A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217117529U (zh) * 2022-02-09 2022-08-05 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置
CN115297602A (zh) * 2022-08-16 2022-11-04 海南摩尔兄弟科技有限公司 等离子体发热结构及等离子体雾化装置
CN218898365U (zh) * 2022-11-28 2023-04-25 深圳麦克韦尔科技有限公司 电极及电子雾化装置
CN219373809U (zh) * 2022-11-28 2023-07-21 深圳麦克韦尔科技有限公司 电子雾化装置
CN115736376A (zh) * 2022-11-30 2023-03-07 思摩尔国际控股有限公司 发热元件、电子雾化装置和雾化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302364A (ja) * 2008-09-25 2008-12-18 Panasonic Electric Works Co Ltd 静電霧化装置
CN203801738U (zh) * 2014-05-08 2014-09-03 梁艳明 电弧点火雾化器及电子烟
CN203952435U (zh) * 2014-05-27 2014-11-26 李述彦 电子烟雾化器和电子烟
CN106376973A (zh) * 2016-06-17 2017-02-08 深圳瀚星翔科技有限公司 一种电子雾化器及电子雾化装置
CN109010880A (zh) * 2018-08-28 2018-12-18 汤米环境解决方案公司 一种等离子雾化消毒喷嘴
CN209127017U (zh) * 2018-11-15 2019-07-19 深圳市优维尔科技有限公司 电弧雾化器装置
CN215603176U (zh) * 2021-01-14 2022-01-25 深圳麦克韦尔科技有限公司 电子雾化装置、电池组件及雾化器
CN217117529U (zh) * 2022-02-09 2022-08-05 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302364A (ja) * 2008-09-25 2008-12-18 Panasonic Electric Works Co Ltd 静電霧化装置
CN203801738U (zh) * 2014-05-08 2014-09-03 梁艳明 电弧点火雾化器及电子烟
CN203952435U (zh) * 2014-05-27 2014-11-26 李述彦 电子烟雾化器和电子烟
CN106376973A (zh) * 2016-06-17 2017-02-08 深圳瀚星翔科技有限公司 一种电子雾化器及电子雾化装置
CN109010880A (zh) * 2018-08-28 2018-12-18 汤米环境解决方案公司 一种等离子雾化消毒喷嘴
CN209127017U (zh) * 2018-11-15 2019-07-19 深圳市优维尔科技有限公司 电弧雾化器装置
CN215603176U (zh) * 2021-01-14 2022-01-25 深圳麦克韦尔科技有限公司 电子雾化装置、电池组件及雾化器
CN217117529U (zh) * 2022-02-09 2022-08-05 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置

Also Published As

Publication number Publication date
CN217117529U (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023151328A1 (zh) 雾化器及电子雾化装置
WO2023124534A1 (zh) 加热不燃烧气溶胶形成装置及其加热件
WO2023221652A1 (zh) 加热体及加热雾化装置
WO2023221653A1 (zh) 加热体及加热雾化装置
WO2023160128A1 (zh) 发热件及电子雾化装置
WO2023024812A1 (zh) 加热器件及电子雾化装置
WO2023165209A1 (zh) 微波加热组件及气溶胶产生装置和气溶胶生成***
WO2024114147A1 (zh) 发热元件、电子雾化装置和雾化方法
WO2023246370A1 (zh) 气溶胶产生装置及其加热组件
WO2024055731A1 (zh) 加热组件及气溶胶生成装置
WO2023035853A1 (zh) 加热组件及气溶胶产生装置
WO2023197756A1 (zh) 气溶胶产生装置及其雾化组件
WO2023168980A1 (zh) 气溶胶形成装置及其加热组件
WO2023000858A1 (zh) 加热组件和气溶胶产生装置
WO2024114108A1 (zh) 雾化器及电子雾化装置
WO2024114109A1 (zh) 电子雾化装置
CN220140823U (zh) 发热元件和电子雾化装置
WO2024055720A1 (zh) 加热组件及气溶胶生成装置
WO2024055732A1 (zh) 加热组件、气溶胶生成装置及气溶胶生成***
WO2024027386A1 (zh) 加热组件、雾化器及气溶胶生成装置
US11749517B2 (en) Ion source
WO2023134278A1 (zh) 雾化器及电子雾化装置
WO2023010999A1 (zh) 雾化芯、雾化组件及雾化器
WO2023116221A1 (zh) 雾化器及电子雾化装置
WO2023109399A1 (zh) 电子雾化装置及其发热组件和发热体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925679

Country of ref document: EP

Kind code of ref document: A1