WO2023151270A1 - 一种光连接装置和电子设备 - Google Patents

一种光连接装置和电子设备 Download PDF

Info

Publication number
WO2023151270A1
WO2023151270A1 PCT/CN2022/118144 CN2022118144W WO2023151270A1 WO 2023151270 A1 WO2023151270 A1 WO 2023151270A1 CN 2022118144 W CN2022118144 W CN 2022118144W WO 2023151270 A1 WO2023151270 A1 WO 2023151270A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
connector
plano
light guide
medium
Prior art date
Application number
PCT/CN2022/118144
Other languages
English (en)
French (fr)
Inventor
罗昊
王国栋
曾刚
梁海斌
姚腾飞
Original Assignee
深南电路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深南电路股份有限公司 filed Critical 深南电路股份有限公司
Publication of WO2023151270A1 publication Critical patent/WO2023151270A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present disclosure relates to the technical field of optical interconnection, and in particular, to an optical connection device and electronic equipment.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • the present disclosure proposes an optical connection device and electronic equipment to solve the problem that the optical connection device in the prior art cannot be disassembled, which is extremely unfavorable for repairing, maintaining and upgrading the optical connection device.
  • the embodiment of the first aspect of the present disclosure provides an optical connection device, wherein the optical connection device includes: a first connector and a second connector, the first connector is connected to an external first light guide The medium, the second connector is connected to the second external light guide medium; the optical coupling, the optical coupling includes a vertical first side and a second side, and the angle between the first side and the second side is equal On the third side at 45°, a first plano-convex lens is formed on the first side, and a second plano-convex lens is formed on the second side, and the first connector is connected to the first side of the optical coupling so that the first light-guiding medium The extending direction of the first plano-convex lens is perpendicular to the extending direction of the first light-guiding medium, and the second connector is connected with the second side of the optical coupling so that the extending direction of the second light-guiding medium is in line with the extending direction of the first light-guiding medium.
  • the two sides are vertical and the second plano-convex lens is in the extension direction of the second light-guiding medium; wherein, when the light transmitted by the first light-guiding medium is incident on the inside of the optical coupling from the outside of the first plano-convex lens, the light will be in the third reflection on the side surface, so as to emerge from the outside of the second plano-convex lens and enter the second light-guiding medium for transmission.
  • the first connector is connected to the first external light-guiding medium
  • the second connector is connected to the second external light-guiding medium
  • the first optical coupling part thereof The side is perpendicular to the second side, the angle between the third side and the first side and the second side is 45°, the first plano-convex lens is formed on the first side, the second plano-convex lens is formed on the second side
  • the first The connector is connected to the first side of the optical coupling so that the extension direction of the first light guide medium is perpendicular to the first side and the first plano-convex lens is in the extension direction of the first light guide medium
  • the second connector is connected to the optical coupling
  • the second side of the component is connected so that the extension direction of the second light guide medium is perpendicular to the second side and the second plano-convex lens is on the extension direction of the second light guide medium, so that the light transmitted by the first light guide medium is When the outside of the first plano
  • the optical coupling member has a refractive index greater than ⁇ 2.
  • a reflective film is disposed on the third side.
  • the first side is formed with a first groove, and the first plano-convex lens is formed at the bottom of the first groove to be spaced from the first light guide medium; and/or the second side is formed with a second Two grooves, the second plano-convex lens is formed on the bottom of the second groove to be spaced apart from the second light guide medium.
  • the number of first plano-convex lenses is multiple, and the plurality of first plano-convex lenses are spaced from each other and arranged in an array at the bottom of the first groove; and/or the number of second plano-convex lenses is A plurality of second plano-convex lenses are spaced from each other and arranged in an array at the bottom of the second groove.
  • the numbers of the first plano-convex lenses and the second plano-convex lenses are the same.
  • the number of the first plano-convex lenses is a positive integer multiple of 4.
  • a protruding first guide post is formed on the first side, a first positioning hole corresponding to the first guide post is formed on one side of the first connector, and the first guide post is embedded In the first positioning hole, to realize the connection between the first connector and the optical coupler;
  • a protruding second guide post is formed on the second side, and a corresponding guide post is formed on one side of the second connector.
  • the second positioning hole, the second guide post is embedded in the second positioning hole, so as to realize the connection between the second connector and the optical coupler.
  • the first guide post and the second guide post are in the shape of a cylinder or a cube, and the first positioning hole and the second positioning hole are correspondingly in a shape of a cylinder or a cube.
  • the first light-guiding medium is optical fibers arranged side by side, and the first light-guiding medium is embedded in a corresponding through hole formed by the first connector, or the first light-guiding medium is a planar optical waveguide or a planar
  • the light guide medium, the first light guide medium is embedded in the groove corresponding to the first connector; and/or the second light guide medium is an optical fiber arranged side by side, and the second light guide medium is embedded in the corresponding groove of the second connector
  • the second light guiding medium is a planar optical waveguide or a planar light guiding medium, the second light guiding medium is embedded in a corresponding groove formed in the second connector.
  • the first connector and/or the second connector is a laser component, an optical fiber connector or a photodetector component.
  • a protruding first mounting plate with one side opening is formed on the outer edge of the first side, and the first connector is accommodated in a portion of the first mounting plate corresponding to the one side opening.
  • the first accommodating cavity is used to connect with the optical coupler; the outer edge of the second side is also formed with a protruding second mounting plate with one side opening, and the second connector is accommodated in the second mounting plate and the second mounting plate.
  • the second accommodating cavity corresponding to the opening on one side is connected to the optical coupling element.
  • the optical coupling element is made of optical glass or optical plastic.
  • the embodiment of the second aspect of the present disclosure provides an electronic device, including: the optical connection device according to the embodiment of the first aspect; and a circuit board connected to the optical connection device.
  • a groove is formed on the circuit board at a position corresponding to the optical connection device, and the optical connection device is embedded in the groove to connect with the circuit board.
  • FIG. 1 is a schematic structural diagram of an optical connection device according to an embodiment of the present disclosure
  • Fig. 2 is a schematic exploded view of the optical connection device in Fig. 1;
  • Fig. 3 is a cross-sectional view of an embodiment of an optical coupling member in the optical connection device in Fig. 2;
  • Figure 4 is a schematic diagram of light reflection
  • Fig. 5 is a cross-sectional view of another embodiment of an optical coupling member in the optical connection device in Fig. 2;
  • FIG. 6 is a schematic structural view of an embodiment of a first connector in the optical connection device in FIG. 1;
  • Fig. 7 is a schematic structural view of another embodiment of the first connector in the optical connection device in Fig. 1;
  • FIG. 8 is an exploded schematic diagram of an embodiment of the electronic device of the present disclosure.
  • first”, “second”, and “third” in the present disclosure are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the number of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present disclosure are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present disclosure.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • FIG. 1 is a schematic structural view of an optical connection device 10 according to an embodiment of the first aspect of the present disclosure
  • FIG. 2 is an exploded schematic view of the optical connection device 10 in FIG. 1
  • the optical connection device 10 includes a first connector 11 , a second connector 12 and an optical coupling 13 .
  • the optical connection device 10 is an embedded or surface-mounted connection device capable of deflecting light, which is proposed for the right-angle coupling requirement of the light emitted from the surface of the circuit board, including integrated collimation Reflective parts and optical connection parts.
  • the above-mentioned “integrated collimation and reflection component” is specifically an optical coupling element 13, which includes a lens array, a reflection slope, a guide structure, etc., to achieve collimation, reflection, and convergence of divergent light rays.
  • the above-mentioned “optical connection component” is a component with optical connection and optical transmission functions, specifically, it can be a connector with an optical transmission medium or a structural component with a light emitting/receiving device, that is, the first connector 11 and the second connector 12 .
  • light rays usually diverge during transmission, that is, two light rays that are initially adjacent will become farther and farther apart after propagation.
  • collimation is to keep the light rays parallel.
  • the first connector 11 is connected to an external first light-guiding medium 21, for example, a plurality of optical fibers arranged side by side, and one end of the plurality of optical fibers near the optical coupling member 13 is embedded in the first connector 11,
  • the plurality of optical fibers can be fixed and bundled by the first connector 11 .
  • the first light-guiding medium 21 can also be an optical waveguide packaged with multiple core layers, and the optical waveguide is embedded in a groove corresponding to the first connector 11 so as to be compatible with the first connector. 11 to achieve the connection.
  • the second connector 12 is connected to the external second light guide medium 22, for example, a plurality of optical fibers arranged side by side, or an optical waveguide packaged with multiple core layers, so that the second connector 12 can connect the second guide medium 22.
  • the optical medium 22 is fixed and bundled.
  • the optical coupling member 13 includes a first side 1301, a second side 1302 and a third side 1303, and the first side 1301 is perpendicular to the second side 1302, and the third side 1303 is connected to the first side 1301 and the second side 1302 The angle between them is 45°.
  • a first plano-convex lens 131 is formed on the first side 1301 of the optical coupling element 13, and the first connector 11 is connected to the first side 1301 of the optical coupling element 13, so that the first light guide medium 21
  • the extension direction is perpendicular to the first side surface 1301 and the first plano-convex lens 131 is located in the extension direction of the first light-guiding medium 21 .
  • the first light-guiding medium 21 and the first plano-convex lens 131 are spaced apart.
  • a second plano-convex lens 132 is formed on the second side 1302 of the optical coupling member 13, and the second connector 12 is connected to the second side 1302 of the optical coupling member 13, so that the extension direction of the second light guide medium 22 is consistent with the second
  • the side surface 1302 is vertical and the second plano-convex lens 132 is located in the extending direction of the second light-guiding medium 22 .
  • the second light-guiding medium 22 and the second plano-convex lens 132 are spaced apart.
  • the light transmitted in the first light-guiding medium 21 when the light transmitted in the first light-guiding medium 21 emits light to the optical coupling element 13, the light can enter the interior of the optical coupling element 13 from the outside of the first plano-convex lens 131, so that the light can be transmitted by the first plano-convex lens 131. After collimating and converging, they are reflected on the third side surface 1303 of the optical coupling element 13 , and then emitted from the outside of the second plano-convex lens 132 to respectively enter the second light guide medium 22 for transmission.
  • the first connector thereof is connected to the first external light guide medium
  • the second connector is connected to the second external light guide medium
  • the first side of the optical coupling member is perpendicular to the The second side, the angle between the third side and the first side and the second side are all 45°
  • a first plano-convex lens is formed on the first side
  • a second plano-convex lens is formed on the second side
  • the first connector It is connected with the first side of the optical coupling so that the extension direction of the first light guide medium is perpendicular to the first side and the first plano-convex lens is in the extension direction of the first light guide medium
  • the second connector and the optical coupler The second side is connected so that the extension direction of the second light guide medium is perpendicular to the second side and the second plano-convex lens is on the extension direction of the second light guide medium, so that the light transmitted by the first light guide medium is transmitted by the first light guide medium.
  • the light can be reflected on the third side, and exit from the outside of the second plano-convex lens and enter the second light guide medium for transmission, and the connector and waveguide in the optical connection device Allows for flexible disassembly for rework, maintenance, and upgrades of connectors and waveguides separately.
  • the number of optical paths included in the first light guide medium 21 may be multiple, and the number of optical paths included in the first plano-convex lens 131, the second plano-convex lens 132, and the second light guide medium 22 is multiple, and The numbers of these four are the same, and correspond to each other, so as to effectively collimate, reflect, and converge the light emitted by the first light-guiding medium 21 and incident into the optical coupling element 13, and then the light respectively enters into the second light-guiding medium 22 and continue to be transmitted by the second light-guiding medium 22 .
  • the number of optical paths may refer to the number of optical fibers, or the number of core layers of an optical waveguide.
  • Each group of corresponding first light guide medium 21, first plano-convex lens 131, second plano-convex lens 132, and second light guide medium 22 corresponds to an optical channel, and then an optical interconnection circuit logic can be realized. At this time, the optical path is connected Complete, the corresponding light can realize low-loss 90° reflection and transmission based on each optical channel.
  • the number of the first plano-convex lens 131 and the number of the second plano-convex lens 132 can be the same and greater than the number of light paths included in the first light guide medium 21, while the number of light paths included in the second light guide medium 22 is equal to The number of light paths included in the first light guide medium 21, so that when the first light guide medium 21 and the second light guide medium 22 including a larger number of light paths need to be replaced later, the optical coupling member 13 and its first plane can still be used.
  • the convex lens 131 and the second plano-convex lens 132 are optically interconnected, thereby effectively widening the application range of the first plano-convex lens 131 and the second plano-convex lens 132 .
  • the first light guide medium 21 is connected to the optical coupling element 13 through the first connector 11
  • the second light guide medium 22 is connected to the optical coupling element 13 through the second connector 12
  • the connector and the optical coupler 13 are disassembled, so that the connector and the waveguide can be reworked, maintained and upgraded more conveniently.
  • the optical connection device 10 can also be embedded in a corresponding circuit board to improve the integration of the circuit board, and the structure of the first connector 11 and the second connector 12 is relatively simpler and easy to form and manufacture. It also effectively reduces the manufacturing cost of the optical connection device 10 .
  • the optical coupling member 13 is integrally manufactured by a material having good transmittance to the transmitted light and having a specific refractive index.
  • the refractive index of the optical coupling element 13 is greater than ⁇ 2, so that when the light incident on the inside of the optical coupling element 13 from the outside of the first plano-convex lens 131 is projected onto the third side 1303 of the optical coupling element 13, full Reflected, and then can be emitted from the outside of the second plano-convex lens 132 to enter the second light guide medium 22 for transmission, thereby effectively reducing light loss.
  • the full name of the total reflection is total internal reflection, that is, when light enters a low refractive index medium from a high refractive index medium, the refracted light will disappear when the incident angle is greater than a certain critical angle, and all incident light will be reflected without entering the low refractive index medium.
  • FIG. 4 is a schematic diagram of light reflection, in which the first light guide medium 21 is used as a light emitting element, and the second light guide medium 22 is a light receiving element, and correspondingly realizes the collimation of light
  • the refractive index of the optical coupling member 13 with functions of reflection and converging is n1 (n1 is any reasonable positive number)
  • the third side 1303 of the optical coupling member 13 is away from the refractive index of the medium on the other side of the first light guide medium 21 Taking n2 as an example, it can be known that when the refractive index of the optical coupling element 13 satisfies n1>n2/sin ⁇ 1, due to the principle of total reflection, the third side 1303 can reflect the light entering from the first plano-convex lens 131 at one end to the other end.
  • the lens that is, the second plano-convex lens 132, emits light.
  • ⁇ 1 is the incident angle of the light, and the angle between the reflective slope and the light, that is, the incident angle ⁇ 1 is generally 45°, and can also be adjusted according to specific usage scenarios.
  • n2 is usually the refractive index of air, and its value can be 1.
  • the optical coupling member 13 is specifically made of optical glass or optical plastic.
  • the optical plastic is specifically PMMA (polymethylmethacrylate), TPX (polymethylpentene), PS (polystyrene), PC (polycarbonate) or PEI (polyetherimide) Any reasonable optical plastic, which is not limited in this disclosure.
  • a reflective film (not shown) is provided on the side of the third side 1303 of the optical coupling member 13 away from the first side 1301, so that the light transmitted in the first optical waveguide is transmitted by the first
  • the light can be reflected on the third side surface 1303, and exit from the outside of the second plano-convex lens 132 and enter the second optical waveguide for transmission.
  • the optical coupling member 13 The refractive index of can not be considered to correspond to the setting conditions that can achieve total reflection, because specular reflection occurs at this time.
  • a first groove 133 is formed on the first side 1301 of the optical coupling member 13 , and the first plano-convex lens 131 is formed at the bottom of the first groove 133 to be spaced apart from the first light guide medium 21 .
  • the first plano-convex lens 131 can be spaced apart from the first light guide medium 21 and the first connector 11.
  • a first groove 133 is formed on the side surface 1301 so that the first plano-convex lens 131 does not exceed the plane where the first side surface 1301 is located.
  • a second groove 134 is formed on the second side 1302 of the optical coupling member 13 , and the second plano-convex lens 132 is formed at the bottom of the second groove 134 to be spaced from the second light guide medium 22 .
  • the number of the first plano-convex lenses 131 is specifically multiple, and the plurality of first plano-convex lenses 131 are spaced from each other and arranged in an array at the bottom of the first groove 133 .
  • the number of the second plano-convex lenses 132 is multiple, and the plurality of second plano-convex lenses 132 are spaced from each other and arranged in an array at the bottom of the second groove 134 .
  • the number of first plano-convex lenses 131 is a positive integer multiple of 4.
  • the lens array that is, the first plano-convex lens 131 array and the second plano-convex lens 132 array is specifically an array composed of lenses with a clear aperture and a relief depth of micron, which not only has the focusing and imaging capabilities of traditional lenses And other basic functions, and has the characteristics of small unit size and high integration, so that it can complete the functions that traditional optical components cannot complete, and can also form many new optical systems.
  • the number of the first plano-convex lens 131 and the second plano-convex lens 132 is specifically 12 respectively, and in other embodiments, as shown in Figure 5, Figure 5 is another embodiment of the optical coupling element 13 in Figure 2 sectional view, the number of the first plano-convex lens 131 and the second plano-convex lens 132 can be the same, and can be any other reasonable number such as 8, 16, 24 or 48, which is not limited in the present disclosure.
  • the above-mentioned lens arrays that is, the number and positions of the first plano-convex lens array 131 and the second plano-convex lens array 132 are specifically corresponding to the first connector 11 and the second connector 12, so that from the first The light emitted from the light guide medium 21 can be correspondingly converged into parallel light, and after the parallel light is converged, it enters into the array of second plano-convex lenses 132 .
  • a protruding first guide post 135 is formed on the first side 1301 of the optical coupling member 13, and a first guide post 135 corresponding to the first guide post 135 is formed on one side of the first connector 11.
  • the positioning hole 111 and the first guide post 135 can be embedded in the first positioning hole 111 to realize the connection between the first connector 11 and the optical coupler 13 .
  • a protruding second guide post 136 is also formed on the second side 1302 of the optical coupler 13 , and a second positioning hole 121 corresponding to the second guide post 136 is formed on one side of the second connector 12 .
  • the second guide post 136 can be embedded in the second positioning hole 121 to realize the connection between the second connector 12 and the optical coupler 13 .
  • first guide column 135 and the second guide column 136 are arranged in any suitable column such as a cylinder or a cube, and the corresponding first positioning hole 111 and the second positioning hole 121 are also corresponding to the cylinder
  • the outer edge of the first side 1301 of the optical coupling member 13 is further formed with a protruding first mounting plate 137 with one side opening, and the first connector 11 is accommodated in the first mounting plate 137 The side is opened into the corresponding first accommodation cavity to be connected with the optical coupling element 13 .
  • the outer edge of the second side 1302 of the optical coupler 13 is also formed with a protruding second mounting plate 138 with one side open, and the second connector 12 is accommodated on the second mounting plate 138 and the second mounting plate 138.
  • the second accommodating cavity corresponding to the side opening is used to connect with the optical coupler 13 .
  • FIG. 6 is a schematic structural view of an embodiment of the first connector 11 in the optical connection device 10 in FIG. 1, the first optical medium connected to the first connector 11 21 is specifically an optical fiber arranged side by side, and the optical fiber is embedded in the through hole 113 formed by the first connector 11, and is placed on the side of the first connector 11 away from the optical coupling member 13 by means of a curing glue 112 (generally epoxy resin). One side of the fiber optic is fixed.
  • a curing glue 112 generally epoxy resin
  • one end of the optical fiber embedded in the through hole 113 of the first connector 11 does not exceed the side of the first connector 11 facing the optical coupler 13, and can emit light along the channel extending direction of the through hole 113, so that the light is transmitted by The outside of the first plano-convex lens 131 is incident to the inside of the optical coupling element 13 .
  • the second light guide medium 22 connected to the second connector 12 may also be optical fibers arranged side by side, and the corresponding structure and connection arrangement of the second connector 12 are the same as those of the first connector 11 .
  • the second light-guiding medium 22 connected to the second connector 12 is specifically an optical fiber arranged side by side, and the optical fiber is embedded in a through hole (not shown) formed by the second connector 12, and is connected with a curing glue. (generally epoxy resin) to fix the optical fiber on the side of the second connector 12 facing away from the optical coupler 13 .
  • one end of the optical fiber embedded in the through hole of the second connector 12 does not exceed the side of the second connector 12 facing the optical coupler 13, and can emit light along the channel extending direction of the through hole, so that the light is transmitted by the second connector 12.
  • the output from the two plano-convex lenses 132 enters the second light guide medium 22 for transmission.
  • FIG. 7 is a schematic structural view of another embodiment of the first connector 11 in the optical connection device 10 in FIG.
  • the optical medium 21 is specifically a planar light guide medium, that is, a planar optical waveguide, and the planar optical waveguide is embedded in a corresponding groove (not shown) formed in the first connector 11 to connect with the first connector 11 .
  • the second light guide medium 22 connected to the second connector 12 may also be a planar optical waveguide, and the corresponding structure and connection arrangement of the second connector 12 are the same as those of the first connector.
  • the planar optical waveguide is embedded in a groove (not shown) corresponding to the second connector 12 to be connected to the second connector 12 .
  • first connector 11-optical coupling 13-second connector 12 can also be correspondingly transformed into “laser component-optical coupling 13-fiber connector", “optical fiber Connector-optical coupling element 13-photodetector component”, etc., which are not limited in this disclosure.
  • the present disclosure also provides the electronic device of the embodiment of the second aspect.
  • the present disclosure provides a schematic structural diagram of an embodiment of an electronic device 40 .
  • the electronic device 40 includes: a circuit board 41 and an optical connection device 42, the circuit board 41 is connected to the optical connection device 42, wherein a groove 43 is formed on the circuit board 41, and the optical connection device 42 is embedded in the groove 43 to connect with the circuit board 41.
  • the electronic device 40 also includes a first light guide medium 44 and a second light guide medium 45
  • the optical connection device 42 further includes a first connector 421, a second connector 422 and an optical coupling member 423, the first connection
  • the connector 421 is connected to the first light guide medium 44
  • the second connector 422 is connected to the second light guide medium 45
  • the first light guide medium 44 is embedded in the inside of the circuit board 41 to communicate with the corresponding conductive or light guide inside the circuit board 41.
  • the logic circuit is connected, and then the light emitted by the first light-guiding medium 44 can be reflected and transmitted at 90° with low loss through the optical connection device 42, and then the light is incident on the second light-guiding medium 45 and continues to be transmitted, thereby realizing light transmission. 90° deflection.
  • the optical connection device 42 is the above-mentioned optical connection device 10 according to any embodiment of the first aspect of the present disclosure.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present disclosure.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

公开了一种光连接装置(10)和电子设备(40),该光连接装置(10)包括:第一连接器(11)和第二连接器(12),第一连接器(11)连接至外部的第一导光介质(21),第二连接器(12)连接至外部的第二导光介质(22);光耦合件(13),光耦合件(13)包括相垂直的第一侧面(1301)和第二侧面(1302)以及与第一侧面(1301)和第二侧面(1302)之间的夹角均呈45°的第三侧面(1303),第一侧面(1301)上形成有第一平凸透镜(131),第二侧面(1302)形成有第二平凸透镜(132),第一连接器(11)与光耦合件(13)的第一侧面(1301)连接,以使第一导光介质(21)的延伸方向与第一侧面(1301)垂直且第一平凸透镜(131)在第一导光介质(21)的延伸方向上,第二连接器(12)与光耦合件(13)的第二侧面(1302)连接,以使第二导光介质(22)的延伸方向与第二侧面(1302)垂直且第二平凸透镜(132)在第二导光介质(22)的延伸方向上。

Description

一种光连接装置和电子设备 技术领域
本公开涉及光互联技术领域,具体而言,涉及一种光连接装置和电子设备。
背景技术
现今,由于传统的电互联,也即使用金属线条(一般为铜)实现电路板和芯片之间的信号连接,在高频高速电子产品中面临着信号延迟、信号串扰、功耗激增等问题,使得光互联,也即使用导光介质(光纤等)实现电路板和芯片之间的信号连接,以其独特的优势例如可以实现电路板的板间/板内功耗低、速率高、信号完整的数据传输特性,而逐渐有取代电互联的趋势。
然而,现有的实现光互联的相关装置通常固定连接在相应电路板上,而无法进行拆解,以致极不利于光互联装置的返修、维护以及升级。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。
为此,本公开提出一种光连接装置和电子设备,以能够解决现有技术中的光连接装置无法进行拆解,以致极不利于对光连接装置进行返修、维护以及升级的问题。
为解决上述技术问题,本公开第一方面实施例提供一种光连接装置,其中,该光连接装置包括:第一连接器和第二连接器,第一连接器连接至外部的第一导光介质,第二连接器连接至外部的第二导光介质;光耦合件,光耦合件包括相垂直的第一侧面和第二侧面,以及与第一侧面和第二侧面之间的夹角均呈45°的第三侧面,第一侧面上形成有第一平凸透镜,第二侧面形成有第二平凸透镜,第一连接器与光耦合件的第一侧面连接,以使第一导光介质的延伸方向与第一侧面垂直且第一平凸透镜在第一导光介质的延伸方向上,第二连接器与光耦合件的第二侧面连接,以使第二导光介质的延伸方向与第二侧面垂直且第二平凸透镜在第二导光介质的延伸方向上;其中,第一导光介质对应传输的光线在由第一平凸透镜外侧入射至光耦合件内部时,光线将在第三侧面上进行反射,以由第二平凸透镜外侧出射而进入到第二导光介质进行传输。
根据本公开第一方面实施例提供的光连接装置,第一连接器连接至外部的第一导光介质,第二连接器连接至外部的第二导光介质,且其光耦合件的第一侧面垂直第二侧面,第三侧面与第一侧面和第二侧面之间的夹角均呈45°,第一侧面上形成有第一平凸透镜,第二侧面形成有第二平凸透镜,第一连接器与光耦合件的第一侧面连接,以使第一导光介质的延伸方向与第一侧面垂直且第一平凸透镜在第一导光介质的延伸方向上,第二连接器与光耦合件的第二侧面连接,以使第二导光介质的延伸方向与第二侧面垂直且第二平凸透镜在第二导光介质的延伸方向上,以在第一导光介质对应传输的光线由第一平凸透镜外侧入射至光耦合件内部时,光线能够在第三侧面上进行反射,而由第二平凸透镜外侧出射而进入到第二导光介质进行传输,且光连接装置中的连接器和光耦合件能够灵活 地进行拆解,以分别对连接器和光耦合件行返修、维护以及升级处理。
根据本公开的一些实施例,光耦合件的折射率大于√2。
根据本公开的一些实施例,第三侧面上设置有反射膜。
根据本公开的一些实施例,第一侧面形成有第一凹槽,第一平凸透镜形成在第一凹槽的底部,以与第一导光介质间隔设置;和/或第二侧面形成有第二凹槽,第二平凸透镜形成在第二凹槽的底部,以与第二导光介质间隔设置。
根据本公开的一些实施例,第一平凸透镜的数量为多个,且多个第一平凸透镜相互间隔且呈阵列排布于第一凹槽的底部;和/或第二平凸透镜的数量为多个,且多个第二平凸透镜相互间隔且呈阵列排布于所述第二凹槽的底部。
根据本公开的一些实施例,第一平凸透镜和第二平凸透镜的数量相同。
根据本公开的一些实施例,第一平凸透镜的数量为4的正整数倍。
根据本公开的一些实施例,第一侧面上形成有凸出的第一导向柱,第一连接器的一侧面上形成有与第一导向柱对应的第一定位孔,第一导向柱嵌设于第一定位孔内,以实现第一连接器与光耦合件的连接;第二侧面上形成有凸出的第二导向柱,第二连接器的一侧面上形成有与第二导向柱对应的第二定位孔,第二导向柱嵌设于第二定位孔内,以实现第二连接器与光耦合件的连接。
根据本公开的一些实施例,第一导向柱和第二导向柱呈圆柱体或方体形状,且第一定位孔和第二定位孔相应地呈圆柱体或方体形状。
根据本公开的一些实施例,第一导光介质为并排设置的光纤,第一导光介质嵌设在第一连接器对应形成的通孔中,或第一导光介质为平面光波导或平面导光介质,第一导光介质嵌设在第一连接器对应形成的凹槽中;和/或第二导光介质为并排设置的光纤,第二导光介质嵌设在第二连接器对应形成的通孔中,或第二导光介质为平面光波导或平面导光介质,第二导光介质嵌设在第二连接器对应形成的凹槽中。
根据本公开的一些实施例,第一连接器和/或第二连接器为激光器组件、光纤连接器或光探测器组件。
根据本公开的一些实施例,第一侧面的外侧边缘还形成有凸出的、一侧开口的第一安装板,第一连接器容置于第一安装板的与所述一侧开口对应的第一容置腔中,以与光耦合件连接;第二侧面的外侧边缘还形成有凸出的、一侧开口的第二安装板,第二连接器容置于第二安装板的与所述一侧开口对应的第二容置腔中,以与光耦合件连接。
根据本公开的一些实施例,光耦合件是采用光学玻璃或光学塑料制成。
本公开第二方面实施例提供一种电子设备,包括:根据前述第一方面实施例所述的光连接装置;以及电路板,电路板连接至光连接装置。
根据本公开的一些实施例,电路板上对应光连接装置的位置形成有凹槽,光连接装置嵌设于凹槽中,以与电路板连接。本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开实施例的光连接装置的结构示意图;
图2是图1中的光连接装置的***示意图;
图3是图2中的光连接装置中的光耦合件的一实施例的剖视图;
图4是光线反射原理图;
图5是图2中的光连接装置中的光耦合件的又一实施例的剖视图;
图6是图1中的光连接装置中的第一连接器的一实施例的结构示意图;
图7是图1中的光连接装置中的第一连接器的又一实施例的结构示意图;
图8是本公开的电子设备的一实施例的***示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本公开中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本公开实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本公开的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本公开进行详细的说明。
参考图1-图3,其中,图1是本公开第一方面实施例的光连接装置10的结构示意图,图2是图1中的光连接装置10的***示意图,图3是图2中的光连接装置10中的光耦合件13的一实施例的剖视图。根据本公开的一实施例,光连接装置10包括第一连接器11、第二连接器12以及光耦合件13。
其中,根据本公开实施例的光连接装置10具体是针对电路板面出光的直角耦合需求而提出的一种嵌入式或表面贴装式的能够使光线进行偏转的连接装置,包含一体化准直反射部件和光学连接部件。
需说明的是,在本实施例中,上述“一体化准直反射部件”具体为光耦合件13,包含透镜阵列、反射斜面、导向结构等,以实现发散光线的准直、反射、汇聚。而上述“光学连接部件”为一种具有光连接和光传输功能的部件,具体可以是带有光传输介质的连接头或带有发光/收光器件的结构件,也即第一连接器11和第二连接器12。
其中,光线在传输过程中通常是发散的,即开始相邻的两条光线经传播后会相离越来越远。而准直通俗来说就是保持光线之间是平行的。
具体地,第一连接器11连接至外部的第一导光介质21,例如,多个并排设置的光纤,且该多个光纤靠近光耦合件13的一端嵌设于第一连接器11中,以由第一连接器11对该多个光纤进行固定和集束。在其它实施例中,第一导光介质21还可以为封装有多个芯层的光波导,且该光波导嵌设于第一连接器11对应形成的凹槽中,以与第一连接器11实现连接。
同理,第二连接器12连接至外部的第二导光介质22,例如,多个并排设置的光纤,或封装有多个芯层的光波导,以通过第二连接器12对第二导光介质22进行固定和集束。
进一步地,光耦合件13包括第一侧面1301、第二侧面1302以及第三侧面1303,且第一侧面1301与第二侧面1302相垂直,第三侧面1303与第一侧面1301和第二侧面1302之间的夹角均呈45°。
又进一步地,光耦合件13的第一侧面1301上还形成有第一平凸透镜131,第一连接器11与光耦合件13的第一侧面1301相连接,以使第一导光介质21的延伸方向与第一侧面1301垂直且第一平凸透镜131位于第一导光介质21的延伸方向上,此时第一导光介质21与第一平凸透镜131间隔设置。
光耦合件13的第二侧面1302上形成有第二平凸透镜132,第二连接器12与光耦合件13的第二侧面1302相连接,以使第二导光介质22的延伸方向与第二侧面1302垂直且第二平凸透镜132位于第二导光介质22的延伸方向上,此时第二导光介质22与第二平凸透镜132间 隔设置。
其中,在第一导光介质21中传输的光线向光耦合件13发出光线时,该光线能够由第一平凸透镜131的外侧入射至光耦合件13的内部,以由第一平凸透镜131进行准直和汇聚后,在光耦合件13的第三侧面1303上进行反射,进而由第二平凸透镜132的外侧出射,以分别对应进入到第二导光介质22进行传输。
根据本公开实施例的光连接装置,其第一连接器连接至外部的第一导光介质,第二连接器连接至外部的第二导光介质,且其光耦合件的第一侧面垂直于第二侧面,第三侧面与第一侧面和第二侧面之间的夹角均呈45°,第一侧面上形成有第一平凸透镜,第二侧面形成有第二平凸透镜,第一连接器与光耦合件的第一侧面连接,以使第一导光介质的延伸方向与第一侧面垂直且第一平凸透镜在第一导光介质的延伸方向上,第二连接器与光耦合件的第二侧面连接,以使第二导光介质的延伸方向与第二侧面垂直且第二平凸透镜在第二导光介质的延伸方向上,以在第一导光介质对应传输的光线由第一平凸透镜外侧入射至光耦合件内部时,光线能够在第三侧面上进行反射,且由第二平凸透镜外侧出射而进入到第二导光介质进行传输,且光连接装置中的连接器和波导能够灵活地进行拆解,以分别对连接器和波导行返修、维护以及升级处理。
可理解的是,第一导光介质21包括的光路的数量可以是多个,第一平凸透镜131、第二平凸透镜132以及第二导光介质22包括的光路的数量均为多个,且这四者的数量均相同,并一一对应,以能够有效地对由第一导光介质21发出、并入射至光耦合件13中的光线进行准直、反射、汇聚,之后光线分别对应进入到第二导光介质22中,并由第二导光介质22继续进行传输。在本文中,光路的数量可以指光纤的数量,或光波导的芯层的数量。每一组相互对应的第一导光介质21、第一平凸透镜131、第二平凸透镜132以及第二导光介质22均对应一光通道,进而能够实现一光互联线路逻辑,此时光路连接完成,相应光线能够基于每一光通道对应实现低损耗的90°反射及传输。
在另一实施例中,第一平凸透镜131和第二平凸透镜132的数量可以相同,且大于第一导光介质21包括的光路的数量,而第二导光介质22包括的光路的数量等于第一导光介质21包括的光路的数量,以在后续需要更换包括更多数量光路的第一导光介质21和第二导光介质22时,仍能采用光耦合件13及其第一平凸透镜131和第二平凸透镜132进行光互联,从而有效地扩宽了第一平凸透镜131和第二平凸透镜132的适用范围。
上述方式,因第一导光介质21通过第一连接器11与光耦合件13实现连接,第二导光介质22通过第二连接器12与光耦合件13实现连接,能够在后续灵活地对连接器和光耦合件13进行拆解,进而更便捷地分别对连接器和波导行返修、维护以及升级处理。另外,通过光耦合件13的第一侧面1301、第二侧面1302以及第三侧面1303与第一导光介质21和第二导光介质22的对应设置,实现相应光线的90°反射及传输,相较于在弯曲光路(如弯曲光纤或弯曲光介质)中在自由空间中的传输,光的损耗也更小。此外,光连接装置10具体还可以内嵌 于相应的电路板中,以提高电路板的集成度,且第一连接器11和第二连接器12的结构也相较更简单,易于成型制造,也有效降低了光连接装置10的制造成本。
在一实施例中,光耦合件13由对所传输的光线有良好的透过性、且具有特定折射率的材料一体成型制造而成。
可选地,光耦合件13的折射率大于√2,以在由第一平凸透镜131外侧入射至光耦合件13的内部的光线投射到光耦合件13的第三侧面1303时,能够发生全反射,进而能够由第二平凸透镜132的外侧出射,以进入到第二导光介质22进行传输,从而能够有效降低光的损耗。
需说明的是,该全反射的全称为全内反射,也即当光线从高折射率介质进入低折射率介质时,入射角大于某一临界角时折射光线将消失,所有入射光线将发生反射而不进入低折射率介质。
可理解的是,如图4所示,图4是光线反射原理图,其中,以第一导光介质21为发光元件,第二导光介质22为收光元件,且对应实现光线的准直、反射、汇聚功能的光耦合件13的折射率为n1(n1为任一合理的正数),光耦合件13的第三侧面1303背离第一导光介质21的另一侧介质的折射率为n2为例,可知在光耦合件13的折射率满足n1>n2/sinθ1时,由于全反射原理,该第三侧面1303可以使从一端透镜即第一平凸透镜131进入的光线反射至另一端透镜即第二平凸透镜132中出射。
其中,θ1为光线的入射角,反射斜面与光线的夹角即入射角θ1一般为45°,也可根据具体的使用场景进行调整。而且,n2通常为空气的折射率,数值可取1。
由此可知,在光耦合件13的折射率满足n1>1/sin45°,也即n1>√2时,进入到光耦合件13内的光线能够在其第三侧面1303发生全发射。
可选地,光耦合件13具体是采用光学玻璃或光学塑料制成。
可选地,该光学塑料具体为PMMA(聚甲基丙烯酸甲酯)、TPX(聚甲基戊烯)、PS(聚苯乙烯)、PC(聚碳酸酯)或PEI(聚醚酰亚胺)等任一合理的光学塑料,本公开对此不做限定。
在一实施例中,光耦合件13的第三侧面1303背离其第一侧面1301的一侧上还设置有反射膜(图未示出),以在第一光波导对应传输的光线由第一平凸透镜131外侧入射至光耦合件13内部时,该光线能够在第三侧面1303上进行反射,且由第二平凸透镜132外侧出射而进入到第二光波导进行传输,且此时光耦合件13的折射率可不考虑能够对应实现全反射的设定条件,因为此时发生镜面反射。
在一实施例中,光耦合件13的第一侧面1301形成有第一凹槽133,且第一平凸透镜131形成在第一凹槽133的底部,以与第一导光介质21间隔设置。
可理解的是,为保证第一连接器11的一侧在贴设于第一侧面1301时,第一平凸透镜131能够与第一导光介质21及第一连接器11间隔设置,在第一侧面1301上形成第一凹槽133,以使第一平凸透镜131不超出第一侧面1301所在的平面。
同理,光耦合件13的第二侧面1302还形成有第二凹槽134,而第二平凸透镜132形成在第二凹槽134的底部,以与第二导光介质22间隔设置。
在一实施例中,第一平凸透镜131的数量具体为多个,且多个第一平凸透镜131相互间隔并呈阵列排布于第一凹槽133的底部。
同理,第二平凸透镜132的数量具体为多个,且多个第二平凸透镜132相互间隔并呈阵列排布于第二凹槽134的底部。
可选地,第一平凸透镜131的数量为4的正整数倍。
可理解的是,透镜阵列,也即第一平凸透镜131阵列及第二平凸透镜132阵列具体是由通光孔径及浮雕深度为微米级的透镜组成的阵列,它不仅具有传统透镜的聚焦、成像等基本功能,而且具有单元尺寸小、集成度高的特点,使得它能够完成传统光学元件无法完成的功能,并还能构成许多新型的光学***。
其中,第一平凸透镜131和第二平凸透镜132的数量分别具体为12个,而在其它实施例中,如图5所示,图5是图2中的光耦合件13的又一实施例的剖视图,第一平凸透镜131和第二平凸透镜132的数量可以相同,且为8、16、24或48等其他任一合理的数量,本公开对此不做限定。
可理解的是,上述透镜阵列,也即第一平凸透镜131阵列及第二平凸透镜132阵列的数量和位置具体分别与第一连接器11和第二连接器12相对应,以使从第一导光介质21出射的光线能够对应汇聚成平行光,且使平行光汇聚后,射入到第二平凸透镜132阵列中。
在一实施例中,光耦合件13的第一侧面1301上还形成有凸出的第一导向柱135,且第一连接器11的一侧面上形成有与第一导向柱135对应的第一定位孔111,第一导向柱135能够嵌设于第一定位孔111内,以实现第一连接器11与光耦合件13的连接。
同理,光耦合件13的第二侧面1302上也形成有凸出的第二导向柱136,第二连接器12的一侧面上形成有与第二导向柱136对应的第二定位孔121,第二导向柱136能够嵌设于第二定位孔121内,以实现第二连接器12与光耦合件13的连接。
可选地,第一导向柱135和第二导向柱136呈圆柱体或方体等任一合适的柱体设置,且相应的第一定位孔111和第二定位孔121也相应地针对圆柱体或方体等任一合适的柱体设置,本公开对此不做限定。
在一实施例中,光耦合件13的第一侧面1301的外侧边缘还形成有凸出的、一侧开口的第一安装板137,且第一连接器11容置于第一安装板137的该一侧开口对应的第一容置腔中,以与光耦合件13连接。
同理,光耦合件13的第二侧面1302的外侧边缘也形成有凸出的、一侧开口的第二安装板138,且第二连接器12容置于第二安装板138的与该一侧开口对应的第二容置腔中,以与光耦合件13连接。
在一实施例中,如图6所示,图6是图1中的光连接装置10中的第一连接器11的一实施 例的结构示意图,第一连接器11连接的第一导光介质21具体为并排设置的光纤,且该光纤嵌设在第一连接器11形成的通孔113中,并借助固化胶112(一般为环氧树脂)在第一连接器11的背离光耦合件13的一侧面对光纤进行固定。而且,该光纤嵌入第一连接器11的通孔113中的一端不超出第一连接器11面向光耦合件13的一侧面,并能够沿通孔113的通道延伸方向发出光线,进而使光线由第一平凸透镜131外侧入射至光耦合件13内部。
同理,第二连接器12连接的第二导光介质22也可以是并排设置的光纤,且第二连接器12的相应结构和连接设置同于第一连接器11。具体地,第二连接器12连接的第二导光介质22具体为并排设置的光纤,且该光纤嵌设在第二连接器12形成的通孔(图未示出)中,并借助固化胶(一般为环氧树脂)在第二连接器12的背离光耦合件13的一侧面对光纤进行固定。而且,该光纤嵌入第二连接器12的通孔中的一端不超出第二连接器12面向光耦合件13的一侧面,并能够沿该通孔的通道延伸方向发出光线,进而使光线由第二平凸透镜132出射而进入到第二导光介质22进行传输。
在另一实施例中,如图7所示,图7是图1中的光连接装置10中的第一连接器11的又一实施例的结构示意图,第一连接器11连接的第一导光介质21具体为平面导光介质,也即平面光波导,且该平面光波导嵌设在第一连接器11对应形成的凹槽(图未标出)中,以与第一连接器11连接。
同理,第二连接器12连接的第二导光介质22也可以是平面光波导,且第二连接器12的相应结构和连接设置同于第一连接器。具体地,该平面光波导嵌设在第二连接器12对应形成的凹槽(图未标出)中,以与第二连接器12连接。
可理解的是,上述“第一连接器11-光耦合件13-第二连接器12”的光互联架构,还可以对应变形为“激光器组件-光耦合件13-光纤连接器”、“光纤连接器-光耦合件13-光探测器组件”等,本公开对此不做限定。
本公开还提供了第二方面实施例的电子设备。例如,参考图8,本公开提供了电子设备40的一实施例的结构示意图。
在本实施例中,电子设备40包括:电路板41和光连接装置42,电路板41连接至光连接装置42,其中,电路板41上形成有凹槽43,光连接装置42嵌设于凹槽43中,以与电路板41连接。
可理解的是,电子设备40还包括第一导光介质44和第二导光介质45,光连接装置42进一步包括第一连接器421、第二连接器422以及光耦合件423,第一连接器421连接第一导光介质44,第二连接器422连接第二导光介质45,且第一导光介质44嵌设在电路板41内部,以与电路板41的内部的相应导电或光导逻辑线路实现连接,进而能够通过光连接装置42对第一导光介质44发出的光线进行低损耗的90°反射及传输,之后使光线入射至第二导光介质45中继续传输,从而实现光线的90°偏转。
其中,光连接装置42为上述根据本公开第一方面任一实施例的光连接装置10,具体请参 阅图1-图7及相关描述,在此不再赘述。
以上仅为本公开的实施例,并非因此限制本公开的专利范围,凡是利用本公开说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本公开的专利保护范围内。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (15)

  1. 一种光连接装置,其特征在于,所述光连接装置包括:
    第一连接器,所述第一连接器连接至外部的第一导光介质;
    第二连接器,所述第二连接器连接至外部的第二导光介质;以及
    光耦合件,所述光耦合件包括相垂直的第一侧面和第二侧面,以及与所述第一侧面和所述第二侧面之间的夹角均呈45°的第三侧面,所述第一侧面上形成有第一平凸透镜,所述第二侧面形成有第二平凸透镜,所述第一连接器与所述光耦合件的所述第一侧面连接以使所述第一导光介质的延伸方向与所述第一侧面垂直且所述第一平凸透镜在所述第一导光介质的延伸方向上,所述第二连接器与所述光耦合件的所述第二侧面连接以使所述第二导光介质的延伸方向与所述第二侧面垂直且所述第二平凸透镜在所述第二导光介质的延伸方向上;
    其中,所述第一导光介质传输的光线在由所述第一平凸透镜外侧入射至所述光耦合件内部时,将在所述第三侧面上进行反射,以由所述第二平凸透镜外侧出射而进入到所述第二导光介质进行传输。
  2. 根据权利要求1所述的光连接装置,其特征在于,
    所述光耦合件的折射率大于√2。
  3. 根据权利要求1或2所述的光连接装置,其特征在于,
    所述第三侧面上设置有反射膜。
  4. 根据权利要求1-3中任一项所述的光连接装置,其特征在于,
    所述第一侧面形成有第一凹槽,所述第一平凸透镜形成在所述第一凹槽的底部,以与所述第一导光介质间隔设置;和/或
    所述第二侧面形成有第二凹槽,所述第二平凸透镜形成在所述第二凹槽的底部,以与所述第二导光介质间隔设置。
  5. 根据权利要求4所述的光连接装置,其特征在于,
    所述第一平凸透镜的数量为多个,且多个所述第一平凸透镜相互间隔且呈阵列排布于所述第一凹槽的底部;和/或
    所述第二平凸透镜的数量为多个,且多个所述第二平凸透镜相互间隔且呈阵列排布于所述第二凹槽的底部。
  6. 根据权利要求5所述的光连接装置,其特征在于,
    所述第一平凸透镜和所述第二平凸透镜的数量相同。
  7. 根据权利要求1-6中任一项所述的光连接装置,其特征在于,第一平凸透镜的数量为4的正整数倍。
  8. 根据权利要求1-7中任一项所述的光连接装置,其特征在于,
    所述第一侧面上形成有凸出的第一导向柱,所述第一连接器的一侧面上形成有与所述第一导向 柱对应的第一定位孔,所述第一导向柱嵌设于所述第一定位孔内,以实现所述第一连接器与所述光耦合件的连接;
    所述第二侧面上形成有凸出的第二导向柱,所述第二连接器的一侧面上形成有与所述第二导向柱对应的第二定位孔,所述第二导向柱嵌设于所述第二定位孔内,以实现所述第二连接器与所述光耦合件的连接。
  9. 根据权利要求8所述的光连接装置,其特征在于,
    所述第一导向柱和所述第二导向柱呈圆柱体或方体形状,且所述第一定位孔和所述第二定位孔相应地呈圆柱体或方体形状。
  10. 根据权利要求1-9中任一项所述的光连接装置,其特征在于,
    所述第一导光介质为并排设置的光纤,所述第一导光介质嵌设在所述第一连接器对应形成的通孔中,或所述第一导光介质为平面光波导或平面导光介质,所述第一导光介质嵌设在所述第一连接器对应形成的凹槽中;和/或
    所述第二导光介质为并排设置的光纤,所述第二导光介质嵌设在所述第二连接器对应形成的通孔中,或所述第二导光介质为平面光波导或平面导光介质,所述第二导光介质嵌设在所述第二连接器对应形成的凹槽中。
  11. 根据权利要求1-10中任一项所述的光连接装置,其特征在于,
    所述第一连接器和/或所述第二连接器为激光器组件、光纤连接器或光探测器组件。
  12. 根据权利要求1-11中任一项所述的光连接装置,其特征在于,
    所述第一侧面的外侧边缘还形成有凸出的、一侧开口的第一安装板,所述第一连接器容置于所述第一安装板的与所述一侧开口对应的第一容置腔中,以与所述光耦合件连接;
    所述第二侧面的外侧边缘还形成有凸出的、一侧开口的第二安装板,所述第二连接器容置于所述第二安装板的与所述一侧开口对应的第二容置腔中,以与所述光耦合件连接。
  13. 根据权利要求1-12中任一项所述的光连接装置,其特征在于,
    所述光耦合件是采用光学玻璃或光学塑料制成。
  14. 一种电子设备,其特征在于,所述电子设备包括:
    光连接装置,其中,所述光连接装置为如权利要求1-13中任一项所述的光连接装置;以及
    电路板,所述电路板连接至所述光连接装置。
  15. 根据权利要求14所述的电子设备,其特征在于,所述电路板上对应所述光连接装置的位置形成有凹槽,所述光连接装置嵌设于所述凹槽中,以与所述电路板连接。
PCT/CN2022/118144 2022-02-11 2022-09-09 一种光连接装置和电子设备 WO2023151270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210133155.7A CN116626814A (zh) 2022-02-11 2022-02-11 一种光连接装置和电子设备
CN202210133155.7 2022-02-11

Publications (1)

Publication Number Publication Date
WO2023151270A1 true WO2023151270A1 (zh) 2023-08-17

Family

ID=87563512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118144 WO2023151270A1 (zh) 2022-02-11 2022-09-09 一种光连接装置和电子设备

Country Status (2)

Country Link
CN (1) CN116626814A (zh)
WO (1) WO2023151270A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281492A (ja) * 2000-03-31 2001-10-10 Oki Electric Ind Co Ltd 光路変換型光結合素子
CN1820215A (zh) * 2003-07-10 2006-08-16 欧姆龙株式会社 光路转换型光学耦合元件
JP2013037096A (ja) * 2011-08-05 2013-02-21 Seiko Epson Corp 結像光学素子および画像読取装置
CN103777287A (zh) * 2012-10-24 2014-05-07 鸿富锦精密工业(深圳)有限公司 光电转换模组
CN103869430A (zh) * 2012-12-14 2014-06-18 鸿富锦精密工业(深圳)有限公司 光纤连接器
JP2015031814A (ja) * 2013-08-02 2015-02-16 住友電気工業株式会社 レンズ部品および光モジュール。

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281492A (ja) * 2000-03-31 2001-10-10 Oki Electric Ind Co Ltd 光路変換型光結合素子
CN1820215A (zh) * 2003-07-10 2006-08-16 欧姆龙株式会社 光路转换型光学耦合元件
JP2013037096A (ja) * 2011-08-05 2013-02-21 Seiko Epson Corp 結像光学素子および画像読取装置
CN103777287A (zh) * 2012-10-24 2014-05-07 鸿富锦精密工业(深圳)有限公司 光电转换模组
CN103869430A (zh) * 2012-12-14 2014-06-18 鸿富锦精密工业(深圳)有限公司 光纤连接器
JP2015031814A (ja) * 2013-08-02 2015-02-16 住友電気工業株式会社 レンズ部品および光モジュール。

Also Published As

Publication number Publication date
CN116626814A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US7184617B2 (en) Portable device
US8876401B2 (en) Optical device and method of manufacturing optical device including transparent member between optical waveguide core and optical waveguide insertion hole
CN112444923A (zh) 一种光模块
EP1887395B1 (en) Optical connector
US9366832B2 (en) Optical connection structure
US10209458B2 (en) Optical module with multiple lenses including dummy lens
JP6271013B2 (ja) マルチコアファイバ用光カプラ
WO2013101112A1 (en) Two-dimensional, high-density optical connector
US9097859B2 (en) Optical coupler
US8891919B2 (en) Optical device, optical connector, and optical module
US10133016B2 (en) Optical module
WO2022057621A1 (zh) 一种光模块
US6978058B2 (en) Multi-layer PCB and method for coupling block type multichannel optical signals
US20140086532A1 (en) Optical Coupling Device, Optical Communication System and Method of Manufacture
JP2004226584A (ja) 光信号伝送装置、及び信号処理装置
WO2023151270A1 (zh) 一种光连接装置和电子设备
WO2018042984A1 (ja) 光接続構造
JPWO2020121770A1 (ja) 光コネクタ、光ケーブルおよび電子機器
KR100696210B1 (ko) 광경로 변경기 및 이를 이용한 광백플레인 장치
WO2019230638A1 (ja) 光レセプタクル本体の支持部材用金型、支持部材及びその製造方法、光レセプタクル並びに光モジュール
JP4524390B2 (ja) 光接続装置の製造方法
JP2020030340A (ja) 光コネクタ部、及び、光接続構造体
US10976507B2 (en) Optical module
JP2019105798A (ja) 光モジュール、光トランシーバ、及び光モジュールの製造方法
US20140205242A1 (en) Optical module assembly with connecting mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925629

Country of ref document: EP

Kind code of ref document: A1