WO2023150852A1 - Premix contendo nanopartículas, uso de um premix contendo um veículo e nanopartículas, processo para a incorporação de nanopartículas em material de matriz e metal - Google Patents

Premix contendo nanopartículas, uso de um premix contendo um veículo e nanopartículas, processo para a incorporação de nanopartículas em material de matriz e metal Download PDF

Info

Publication number
WO2023150852A1
WO2023150852A1 PCT/BR2023/050049 BR2023050049W WO2023150852A1 WO 2023150852 A1 WO2023150852 A1 WO 2023150852A1 BR 2023050049 W BR2023050049 W BR 2023050049W WO 2023150852 A1 WO2023150852 A1 WO 2023150852A1
Authority
WO
WIPO (PCT)
Prior art keywords
premix
nanoparticles
metal
aluminum
metals
Prior art date
Application number
PCT/BR2023/050049
Other languages
English (en)
French (fr)
Inventor
Joel Boaretto
Robinson Carlos Dudley CRUZ
Original Assignee
Instituto Hercílio Randon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Hercílio Randon filed Critical Instituto Hercílio Randon
Publication of WO2023150852A1 publication Critical patent/WO2023150852A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Definitions

  • PREMIX CONTAINING NANOPARTICLES USE OF A PREMIX CONTAINING A VEHICLE AND NANOPARTICLES, PROCESS FOR THE INCORPORATION OF NANOPARTICLES INTO MATRIX AND METAL MATERIAL
  • the present invention lies in the field of materials engineering and nanotechnology. More specifically, the invention provides a useful premix for the improved dispersion of nanoparticles in various materials, including but not limited to metals, transition metals, rare earths or combinations thereof. A use is also disclosed, an industrial process for facilitating the incorporation of nanoparticles into products of economic interest and a metal with improved mechanical properties.
  • the nanoparticle premix of the invention has a peculiar composition, purity and/or granulometric profile, being useful in a variety of applications and solving several technical problems, including facilitating dispersion in other substances, facilitating use in industrial processes, avoiding inadvertent dispersion of nanoparticles in the environment and contact with humans or animals.
  • the metal with improved mechanical properties of the present invention comprises said nanoparticles and, in sharp contrast to the prior art, has substantially increased hardness without loss of ductility, strength limit, yielding and/or elongation. This surprising result is counterintuitive and has great economic importance.
  • Nanotechnology is a rapidly expanding science and has generated many expectations due to the unusual properties of nanoparticles of various materials.
  • its large-scale use still faces multiple limitations, starting with the unavailability of preparations from nanoparticles with high concentration, purity, precise granulometric profile.
  • Nanoparticles obtained by bottom up processes are limited to certain chemical species that are reaction products and have low purity, not being technically and/or economically viable on large scales. These and other reasons contribute to the fact that no premix of nanoparticles that is stable, pure, with high concentration and/or with granulometric distribution of choice and fully in the nanometer range is still available on an industrial scale.
  • the present invention solves these problems.
  • US patent 4,084,965 discloses obtaining a Niobium powder (referred to as Columbium powder) with 5.1 microns. Said powder is obtained by hydrogenating and grinding a Niobium ingot, the grinding being assisted by the addition of a small amount of a phosphorus-containing material (between 5 and 600ppm of elemental phosphorus), preferably in the form of a liquid to facilitate mixing. It does not disclose a nanoparticle premix like the present invention.
  • the Brazilian patent PI 0105773-1 granted to CBMM, reveals a process for the production of Nb-Zr alloy powder, containing 0.1% to 10% of zirconium. Said process comprises the hydration, milling and dehydration of Niobium-Zirconium alloys (Nb-Zr) for the production of powder with controlled levels of impurities. It does not disclose a nanoparticle premix like the present invention.
  • Said process is characterized by two stages of reduction of niobium pentoxide (Nb20s), the first stage of reduction of niobium pentoxide (Nb20s) to niobium dioxide (NbC) conducted by a reducing gas, and the second stage, comprising the obtaining niobium monoxide (NbO) through the total or partial transfer of oxygen, referring to the transformation of NbÜ2 into NbO, for a fine powder of metallic niobium (Nb) with morphology and physical characteristics similar to that of NbO2. It does not disclose the nanoparticle premix of the present invention.
  • the Brazilian patent PI 0106058-9 filed by CBMM and transferred to IPT/SP, reveals a process for the production of high purity Niobium powder, high specific surface and controlled oxygen levels.
  • the patent also protects the niobium powder thus obtained. It does not disclose the nanoparticle premix of the present invention.
  • US patent US 6,375,704 B1 discloses a niobium powder preparation and a process for preparing niobium powder flakes for use in capacitors. Said process comprises grinding niobium chips to form flakes and then subject the flake obtained to a deoxidation step, preferably with magnesium. It does not disclose a nanoparticle premix like the present invention.
  • document CN105414497 details the technical difficulties of homogenizing additives in the manufacture of special steels.
  • Said document reveals a device developed specifically to solve this problem, and includes a pipe, a feeder with a valve welded on the side of one opening and a thin pipe sealed and welded, with the end directed towards the center of the opening of the other pipe, so that to enable the insufflation of air or argon to form negative pressure and then allow the addition of fine powders of the additive into the liquid medium of the (melted) steel.
  • the device provides adjustment of the uniform addition of additive. It does not disclose the nanoparticle premix of the present invention.
  • Document JP3321491 entitled “Method for adding rare earth element to molten steel and additive” reveals a safe way to add an additive to molten steel. containing rare earths, copper and aluminum.
  • the container is made of a hollow bar of carbon steel or stainless steel.
  • the way to add the additive is to continuously add said additive to the molten steel in the casting phase. It does not reveal the nanoparticle premix of the present invention.
  • Document US4892580 discloses an additive in the form of lead-containing filaments for obtaining modified steels.
  • Said additive is in the form of filaments consisting of a metallic coating and a finely divided material, which comprises metallic lead or alloys of lead, in addition to a material that gives off CO2 at the temperature of molten steel. It does not disclose the nanoparticle premix of the present invention.
  • Document RU2569621 discloses a method for producing steel containing Niobium. Said method includes a step of melting the steel and forming a 200mm thick layer in a receptacle. During the treatment of the metal outside the furnace, ferroniobium is added at a rate of 0.01 to 1 kg per ton of metal. It does not disclose the nanoparticle premix of the present invention.
  • Document US 3860777 discloses a process for welding low alloy steels containing Niobium.
  • weld deposits of improved resistance and hardness are obtained, when compared with congeners known until then.
  • the process involves the addition of controlled amounts of vanadium and/or titanium to the molten metal, together with other alloying elements in order to provide the formation of a deposit whose concentration is controlled in comparison with the concentration of Niobium present. It does not disclose the nanoparticle premix of the present invention.
  • WO 92226675 discloses a ferroniobium alloy and a niobium additive for steel, cast iron and other metal alloys.
  • the ferroniobium alloy has a microstructure comprising a eutectic matrix (E) and a primary constituent (N) as a niobium-rich solid solution, which requires the chemical composition to be 75 to 95% niobium, 5 to 25% iron , with maximum impurities defined below: tantalum 0.1%, silicon 3%, aluminum 1% and tin 0.15%.
  • This additive is useful for adding niobium to steels, cast iron, and other materials. It does not disclose the nanoparticle premix of the present invention.
  • Co-pending patent application BR 102020016774-0 published on Feb 20, 2022 and PCT BR 2021/050346 (published on Feb 24, 2022 as WO 2022/036427), with inventors in common with the present invention, disclose a preparation of nanoparticles of Niobium obtained by top down approach.
  • Said concomitantly prepared contemplates the following technical characteristics: particles fully in the granulometric range of nanometers; high purity; on an industrial scale, with adequate cost for economic viability.
  • Referred prepared in nanometric powder has very high purity, since the process does not add impurities or lead to the formation of reaction products, as is the case of state-of-the-art bottom up (or synthesis) processes. It does not disclose a premix of nanoparticles of the present invention.
  • Patent application JPH07292410A published on 07/1 1/1995 discloses a method for adding a rare earth element to a Fe-Cr-AI alloy, in which a powder of a rare earth element alloy and copper or aluminum and a carbon steel or stainless steel cladding material is added to a cast Fe-Cr-AI alloy.
  • the process of the present invention is different from the process of JPH07292410A, in addition to the fact that the patent application JPH07292410A aims at application in an alloy of Fe-Cr-AI.
  • the present invention solves several problems of the prior art and provides a premix counting nanoparticles of defined granulometric profile and/or chemically defined composition.
  • the premix of the invention is useful for the improved dispersion of nanoparticles in various materials of economic interest.
  • said premix comprises a vehicle; It is nanoparticles in the nanometer granulometric range.
  • the premix of the invention comprises nanoparticles with d50 to d99 in the nanometer granulometric range. In one embodiment, the premix of the invention comprises nanoparticles with d90 to d99 in the nanometer granulometric range.
  • the premix of the invention comprises Niobium nanoparticles with high purity and concentration.
  • the premix of the invention comprises a vehicle selected from a capsule, blade, container or composite composed of metallic, ceramic, vitreous, hydrocarbons, fatty acids, waxes, processing additives, polymeric material, composite material or combinations thereof.
  • Said vehicle is particularly useful for facilitating industrial use in metal preparation processes, reinforced/functionalized metals, metal alloys, ceramics, glasses, polymers, composites or combinations thereof.
  • Said materials are selected among metals, metal alloys, ceramics, glasses, polymers, composites or combinations thereof.
  • the use of a premix containing niobium nanoparticles for the preparation of improved steel is provided.
  • the use of a premix containing niobium nanoparticles for the preparation of improved aluminum is provided.
  • the process comprises at least one step of adding the premix of invention to said material.
  • said process provides for the incorporation of nanoparticles into matrix material and comprises:
  • said matrix material is selected from metals, reinforced/functionalized metals, metal alloys, ceramics, glasses, polymers, composites or combinations thereof.
  • the process of the invention comprises a step of adding the premix in liquid phases of metals or metal alloys, providing fast and effective dispersion and modulation/improvement of mechanical properties.
  • the process of the invention provides an in situ reaction of the premix in the metallic material, providing improved metals or metallic alloys.
  • the metal of the present invention comprises said nanoparticles and, in ample contrast to the state of the art, has substantially increased hardness without loss of ductility, resistance limit, flow and/or elongation, these properties which, together, are totally counterintuitive and have great economic importance.
  • said metal is improved steel.
  • said metal is enhanced aluminum.
  • Figure 1 illustrates the zeta potential of aluminum particles as a function of pH.
  • the magnitude of the zeta potential (mV) is an indication of the stability of the particles. The higher the magnitude of the zeta potential, the more stable the particles.
  • Figure 2 illustrates the zeta potential of Niobium Pentoxide particles as a function of pH.
  • Figure 3 illustrates the granulometry results for aluminum particles by the Cilas equipment.
  • Figure 4 illustrates a result of MeV (scanning electron microscopy) for the metallic mixture after 5h of mixing, with magnification of 3.1 1 kx and 2.01 kx at 10.0 kV.
  • FIG. 5 illustrates the result of EDS (Energy Dispersive Spectroscopy) for the metallic mixture after 5h of mixing.
  • the EDS shows the proportion of each element in the metallic mixture.
  • Figure 6A shows the result of chopped aluminum, which did not melt.
  • Figure 6B shows the cast aluminum billet, which was tested in view of the results illustrated in Figure 6A.
  • Figure 7 shows an embodiment of the invention in which aluminum ingots were obtained by melting the SAE 305 alloy, cut in the central region along the length and without metallographic preparation.
  • A) a photo of the aluminum ingot without the addition of premix is shown; in B) a photo of the ingot with the addition of premix containing Nb20s is shown.
  • Figure 8 shows an embodiment of the invention in which aluminum ingots were obtained by melting SAE 305 alloy, in section along the length, with and without the addition of premix containing niobium pentoxide nanoparticles.
  • A) a photo of the aluminum ingot without the addition of premix is shown, showing pores;
  • B) is shown a photo of the aluminum ingot with the addition of premix, showing pores.
  • Figure 9 shows photos of the appearance of the section in the region of the base of aluminum ingots after metallographic attack.
  • A) the aluminum ingot is shown without the addition of premix; in B) the aluminum ingot with the addition of premix containing niobium pentoxide.
  • Figure 10 shows an embodiment of the invention in which aluminum ingots were obtained by melting the SAE 305 alloy, cut in the central region along the length and without metallographic preparation.
  • A) a photo of the aluminum ingot without the addition of premix is shown; in B) a photo of the ingot with the addition of a premix containing FeNb is shown.
  • Figure 11 shows an embodiment of the invention in which aluminum ingots were obtained by melting the SAE 305 alloy, in section along the length, with and without the addition of premix containing niobium iron nanoparticles.
  • A) a photo of the aluminum ingot without the addition of premix is shown, showing pores;
  • B) is shown a photo of the aluminum ingot with the addition of premix, showing pores.
  • Figure 12 shows photos of the aspect of the section in the region of the base of aluminum ingots after metallographic attack.
  • A) the aluminum ingot is shown without the addition of premix; in B) the aluminum ingot is shown with the addition of premix containing Niobium iron.
  • Figure 13 shows the appearance of the central region sectioned along the length of steel ingots obtained by melting ASTM A36 steel, without metallographic preparation.
  • A) the reference ingot is shown, free of premix; in B) it is shown the ingot in which the addition, during the melting of the filler, of a premix containing Nb2Ü5 nanoparticles was made.
  • Figure 14 shows the appearance of the central region sectioned along the length of the steel ingots without metallographic preparation.
  • A) the reference ingot is shown, free of premix; in B) it is shown the ingot in which the addition, after melting the filler, of a premix containing 10g of nanoparticles of Nb20s; In C) it is shown the ingot in which the addition, after melting the filler, of a premix in the form of 18.6g aluminum foil containing 10g nanoparticles of Nb2Ü5.
  • Figure 15 shows photos of sections of the base of steel ingots after metallographic attack, for the evaluation of the crude structure of fusion. It's mom base section of reference ingot shown, no premix added; in B) the base section of the ingot is shown in which the addition, after melting the filler, of a premix containing 10g of Nb20s nanoparticles was made; In C) a section of the base of the ingot is shown in which the addition, after melting the filler, of a premix in the form of 18.6g aluminum foil containing 10g Nb2Ü5 nanoparticles was made.
  • Figure 16 shows a graph that indicates in the ordinate the content % of the elements P (Phosphorus), S (Sulphur), Al (Aluminium) and Nb (Niobium) in four steel ingots.
  • A) represents the reference steel ingot, without the addition of premix;
  • B) represents the steel ingot in which the addition, during the melting of the filler, of a premix containing 10 g of Nb20s nanoparticles was made;
  • C) represents the steel ingot in which the addition, after melting the filler, of a premix containing 10 g of Nb20s nanoparticles was made;
  • D) represents the steel ingot to which, after melting the filler, a premix in the form of 18.6g aluminum foil containing 10g Nb20s nanoparticles was added.
  • Figure 17 shows the appearance of the central region sectioned along the length of steel ingots without metallographic preparation.
  • A) the reference ingot is shown, free of premix; in B) it is shown the ingot in which the addition, after melting the filler, of a premix containing 10g of FeNb nanoparticles was made.
  • Figure 18 shows photos of sections of the base of steel ingots after metallographic attack, for the evaluation of the crude structure of fusion.
  • A) a section of the base of the reference ingot is shown, without the addition of premix; in B) is shown the base section of the ingot in which the addition, after melting the filler, of a premix containing 10g of FeNb nanoparticles was made.
  • Figure 19 shows a graph that indicates in the ordinate the content % of the elements P (Phosphorus), S (Sulphur), Al (Aluminum) and Nb (Niobium) in two steel ingots.
  • A) represents the reference steel ingot, without the addition of premix;
  • B) represents the steel ingot to which, after melting the filler, a premix containing 10 g of FeNb nanoparticles was added.
  • Figure 20 shows the hardness results on the Vickers scale (HVI kgf) in the ordinates, for the base (1), center (2) and top (3) sections of steel ingots in which A) is the reference ingot, without adding premix; B) is the ingot in which, after melting the filler, a premix containing 10g of Nb20s nanoparticles was added; C) is the ingot to which, after melting the filler, a premix in the form of 18.6g aluminum foil containing 10g Nb20s nanoparticles was added.
  • HVI kgf Vickers scale
  • Figure 21 shows the results of hardness on the Vickers scale (HVI kgf) in the ordinates, for the base (1), center (2) and top (3) sections of steel ingots in which A) is the reference ingot, without adding premix; B) is the ingot to which, after melting the filler, a premix containing 10g of FeNb nanoparticles was added.
  • Figure 22 is a photo of metal capsules to contain nanoparticles and serve as a premix for the manufacture of molten metals.
  • the present invention presents a premix comprising a vehicle; and nanoparticles in the nanometer granulometric range; wherein said nanoparticles are composed of metals, transition metals, rare earths, oxides thereof or combinations thereof.
  • the premix of the invention comprises nanoparticles with d10 to d99 in the nanometer granulometric range. In one embodiment, the premix of the invention comprises nanoparticles with d90 to d99 in the nanometer granulometric range.
  • said nanoparticles have a particle size distribution of indium from 0.16 pm to 2.29 pm, dso from 0.35 pm to 5.62 pm and dgo from 0.78 pm to 9.94 pm.
  • the premix of the invention comprises niobium nanoparticles with high purity and concentration.
  • said nanoparticles are composed of Niobium oxide, Iron Niobium or combinations thereof.
  • said niobium oxide is niobium pentoxide (Nb 2 O 5 ), niobium dioxide (NbO 2 ), niobium oxide (NbO), or combinations thereof.
  • the premix comprises Niobium Pentoxide nanoparticles. In one embodiment, the premix comprises Iron Niobium nanoparticles.
  • the premix of the invention comprises at least one vehicle selected from a capsule, blade, container or composite composed of metallic, ceramic, vitreous material, hydrocarbons, fatty acids, waxes, processing additives, polymeric material, material composite or combinations thereof.
  • Said vehicle is particularly useful for facilitating industrial use in metal preparation processes, reinforced/functionalized metals, metal alloys, ceramics, glasses, polymers, composites or combinations thereof.
  • said vehicle is selected from a capsule, blade, container or composite composed of metallic, ceramic, vitreous material, hydrocarbons, fatty acids, waxes, processing additives, polymeric material, composite material or combinations thereof .
  • said metallic material of the vehicle is aluminum or copper; said hydrocarbon is paraffin; said fatty acids are oleic acid, palmitic acid or erucic acid; said wax is beeswax or carnauba wax; said processing additive is sodium stearate or zinc stearate; said polymeric material is a thermoplastic polymer.
  • said thermoplastic polymer is polypropylene (PP).
  • said vehicle is selected from among substances that provide greater handling safety, such as: hydrocarbons such as paraffin; said fatty acids such as oleic acid, palmitic acid or erucic acid; said wax like beeswax or beeswax carnauba; said processing additive such as sodium stearate or zinc stearate; said polymeric material as a thermoplastic polymer, such as polypropylene (PP).
  • hydrocarbons such as paraffin
  • said fatty acids such as oleic acid, palmitic acid or erucic acid
  • said wax like beeswax or beeswax carnauba
  • said processing additive such as sodium stearate or zinc stearate
  • said polymeric material as a thermoplastic polymer, such as polypropylene (PP).
  • the premix of the present invention has a mass ratio between nanoparticles and vehicle in the range of 99:1 to 50:50, more preferably in the range of 95:5 to 55:45, more preferably in the range of 93:7 to 60:40, more preferably in the range of 92:8 to 65:35; more preferably in the range 91:9 to 69:31, even more preferably in the range 90.8:9.2 to 69.4:30.6.
  • the premix of the invention provides improved homogenization and dispersion of nanoparticles in products to which it is incorporated, including, without limitation, molten metals.
  • the premix of the invention is a material comprising a high amount/concentration of nanoparticles, being particularly useful for facilitating industrial use in processes for the preparation of metals, reinforced/functionalized metals, metal alloys, ceramics, glasses, polymers , composites or combinations thereof.
  • Said materials are selected among metals, metal alloys, ceramics, glasses, polymers, composites or combinations thereof.
  • the use of a premix containing niobium nanoparticles for the preparation of improved steel is provided.
  • the use of a premix containing niobium nanoparticles for the preparation of improved aluminum is provided.
  • the use of the premix of the invention also provides for the in situ reaction of the premix constituents with the liquid metal in metallic materials production processes.
  • the metal of the present invention comprises said nanoparticles and, in ample contrast to the state of the art, has substantially increased hardness without loss of ductility, resistance limit, flow and/or elongation, these properties which, together, are totally counterintuitive and have great economic importance.
  • said metal is improved steel.
  • said metal is improved aluminum.
  • said metal is free of or has a reduced amount of sinks and solidification voids.
  • said metal has a more refined and homogeneous structure.
  • said metal has modified chemical profile.
  • said metal has increased hardness without significantly impairing other mechanical properties (strength and yield strength) and ductility.
  • the present invention presents a process for the incorporation of nanoparticles in matrix material comprising:
  • said matrix material is selected from metals, reinforced/functionalized metals, metal alloys, ceramics, glasses, polymers, composites or combinations thereof. [0089] In one embodiment, said matrix material is selected from metals, reinforced/functionalized metals, metal alloys or combinations thereof.
  • the step of administering the premix is performed on molten phases of said metal, reinforced/functionalized metal or metal alloy.
  • the premix vehicle when said metal, reinforced/functionalized metal or metal alloy comprises steel, the premix vehicle is aluminum. In a further non-limiting embodiment, when said metal, reinforced/functionalized metal or metal alloy comprises aluminum, the premix carrier is copper.
  • the process of the invention comprises a step of adding the premix in liquid phases of metals or metal alloys, providing fast and effective dispersion and modulation or improvement of mechanical properties.
  • Premix containing nanoparticles comprising: a carrier; and nanoparticles in the granulometric range of nanometers, in which said nanoparticles are composed of metals, transition metals, rare earths, oxides thereof or combinations thereof.
  • nanoparticles Premix as defined above, in which said nanoparticles have a particle size distribution of indium from 0.16 pm to 2.29 pm, dso from 0.35 pm to 5.62 pm and dgo from 0.78 pm to 9.94 pm.
  • nanoparticles are Niobium oxide, Iron Niobium or combinations thereof.
  • Niobium oxide is Niobium Pentoxide (NbgOs), Niobium Dioxide (NbC), Niobium Oxide (NbO), or combinations thereof.
  • Premix as defined above in which said vehicle is selected from a capsule, blade, container or composite composed of metallic, ceramic, vitreous, hydrocarbons, fatty acids, waxes, processing additives, polymeric material, composite material or combinations of the same.
  • said metallic material is aluminum or copper
  • said hydrocarbon is paraffin
  • said fatty acids are oleic acid, palmitic acid, erucic acid;
  • said wax is beeswax or carnauba wax
  • said processing additive is sodium stearate or zinc stearate;
  • thermoplastic polymer is thermoplastic polymer
  • premix contains niobium nanoparticles and said material with improved mechanical properties is aluminum.
  • Process for incorporating nanoparticles into matrix material comprising: a step of administering the premix as defined above to a matrix material; and at least one subsequent in situ dispersion and/or reaction step between said premix components and said matrix material, wherein said matrix material is selected from metals, reinforced/functionalized metals, metal alloys, ceramics, glasses, polymers, composites or combinations thereof.
  • Metal with improved mechanical properties comprising nanoparticles of metals, transition metals, rare earths, oxides thereof or combinations thereof.
  • Metal as defined above wherein said metal is steel or aluminum.
  • Example 1 Premix comprising Niobium Pentoxide Nanoparticles and their incorporation into Steel. Preparation of AI/Nb 2 O 5 composite inoculant
  • Table 1 describes the mass ratio of NbgOs nanoparticles and vehicle (in this example, non-limiting, being Al):
  • the preferred mass ratio of nanoparticles:vehicle was from 90.8:9.2 to 69.4:30.6.
  • Example 2 Characterization of the premix
  • An embodiment of premix prepared as described in example 5 was characterized. For this purpose, the wet metallic mixture was separated using a sieve with an opening of 500 pm. An aliquot of the wet metallic mixture below 500 pm was taken to determine the zeta potential and particle size.
  • Figure 1 illustrates the zeta potential of aluminum particles as a function of pH.
  • the magnitude of the zeta potential (mV) is an indication of the stability of the particles. The higher the magnitude of the zeta potential, the more stable the particles.
  • Figure 2 illustrates the zeta potential of Niobium Pentoxide particles as a function of pH.
  • Figure 3 illustrates the granulometry results for aluminum particles by Cilas equipment.
  • Figure 4 illustrates a result of MeV (scanning electron microscopy) for the metallic mixture after 5h of mixing, with magnification of 3.1 kx and 2.01 kx at 10.0 kV.
  • Figure 5 illustrates the result of EDS (Energy Dispersive Spectroscopy) for the metallic mixture after 5h of mixing. The EDS shows the proportion of each element in the metallic mixture.
  • Example 3 Comparative test with melting chopped aluminum sheets in a crucible
  • Figure 6A shows the result of chopped aluminum, which did not melt.
  • Figure 6B shows the cast aluminum billet, which was tested in view of the results illustrated in Figure 6A.
  • Example 4 Premix comprising Niobium Pentoxide Nanoparticles and their incorporation in Aluminum.
  • Figure 7 shows photos of ingots thus prepared, cut along the length and without metallographic preparation.
  • the aluminum ingot is shown without the addition of premix; in B) the ingot with the addition of premix containing Nb2Ü5 is shown.
  • Figure 7 shows that a structure without sinks and/or solidification voids was obtained, indicating good distribution of niobium nanoparticles.
  • Figure 8 shows photos of aluminum ingots with and without the addition of premix containing niobium pentoxide nanoparticles.
  • A) the aluminum ingot is shown without the addition of premix, showing pores;
  • the aluminum ingot with the addition of premix is shown, showing pores. No differences were detected between the samples, indicating that the addition of the premix did not influence, under these conditions, the formation of pores, that is, the formation of pores seems inherent to the process used to obtain the ingots.
  • the macro and microstructural aspect of the ingots was also analyzed. Regarding the macrostructure observed at the base of the ingots, no significant differences were detected.
  • the microstructural aspect of the three regions of each ingot (base, center and top), along the length of the ingots, in the condition without metallographic etching, did not reveal significant differences both at 50x and 200x magnification, and can be described as a matrix with distributed cuboidal and acicular constituents.
  • Figure 9 shows photos of the appearance of the section in the region of the base of aluminum ingots after metallographic attack.
  • A) the aluminum ingot is shown without the addition of premix; in B) the aluminum ingot is shown with the addition of premix containing niobium pentoxide.
  • Example 5 Premix comprising Niobium Iron Nanoparticles and their incorporation in Aluminum.
  • Figure 10 shows photos of ingots thus prepared, cut along the length and without metallographic preparation.
  • Figure 4 shows ingots without sinks and/or solidification voids, indicating good distribution of niobium nanoparticles.
  • Figure 11 shows photos of aluminum ingots with and without the addition of premix containing nanoparticles of Iron Niobium.
  • A) the aluminum ingot is shown without the addition of premix, showing pores;
  • B) the aluminum ingot with the addition of premix is shown, showing pores. No differences were detected between the samples, indicating that the addition of this premix embodiment did not influence, under these conditions, the formation of pores, that is, the formation of pores is apparently inherent to the process used to obtain the ingots.
  • the macro and microstructural aspect of the ingots was also analyzed. Regarding the macrostructure observed at the base of the ingots, no significant differences were detected.
  • the microstructural aspect of the three regions of each ingot (base, center and top), along the length of the ingots, in the condition without metallographic etching, did not reveal significant differences both at 50x and 200x magnification, and can be described as a matrix with distributed cuboidal and acicular constituents.
  • Figure 12 shows photos of the appearance of the section in the region of the base of aluminum ingots after metallographic attack.
  • A) the aluminum ingot is shown without the addition of premix; in B) the aluminum ingot is shown with the addition of premix containing Iron Niobium.
  • Example 6 Premix comprising Niobium Pentoxide Nanoparticles and their incorporation into Steel.
  • This embodiment of the invention shows some of the technical effects related to the use of the premix of the invention to: (i) prepare steel ingots with improved properties, avoiding the formation of deep holes and large pores; (ii) prepare steel ingots with a more refined and homogeneous structure; and (iii) preparing steel ingots with a modified chemical profile.
  • steel ingots were prepared by melting ASTM A36 steel, with or without incorporating the premix containing nanoparticles.
  • Figure 13 shows the appearance of the central region sectioned along the length of the ingots without metallographic preparation.
  • A) the reference ingot is shown, free of premix; in B) it is shown the ingot in which the addition, during the melting of the filler, of a premix containing NbgOs nanoparticles was made. Pores and voids were observed in both cases, being more intense in the ingot to which the premix was added during the charge melting, with voids or pores at the base and along the entire length of the ingots.
  • Figure 14 shows the appearance of the central region sectioned along the length of the ingots without metallographic preparation.
  • the reference ingot is shown, free of premix; in B) it is shown the ingot in which the addition, after melting the filler, of a premix containing 10g of nanoparticles of Nb20s; In C) it is shown the ingot in which the addition, after melting the filler, of a premix in the form of 18.6g aluminum foil containing 10g nanoparticles of Nb2Ü5. This time, pores and voids were observed only in the reference ingot without the addition of premix. The ingots with the addition of premix did not show voids or pores at any point in the ingots.
  • Figure 15 shows photos of sections of the base of the ingots after metallographic attack, for the evaluation of the crude melting structure.
  • A) a section of the base of the reference ingot is shown, without the addition of premix; in B) the base section of the ingot is shown in which the addition, after melting the filler, of a premix containing 10g of Nb20s nanoparticles was made; In C) a section of the base of the ingot is shown in which the addition, after melting the filler, of a premix in the form of 18.6g aluminum foil containing 10g Nb2Ü5 nanoparticles was made. The ingots to which the premix was added showed a more refined and homogeneous structure than the reference ingot.
  • Figure 16 shows a graph that indicates in the ordinate the content % of the elements P (phosphorus), S (sulfur), Al (aluminum) and Nb (niobium) in four ingots prepared according to this example.
  • A) represents the reference steel ingot, without the addition of premix;
  • B) represents the steel ingot in which the addition, during the melting of the filler, of a premix containing 10 g of Nb20s nanoparticles was made;
  • C) represents the steel ingot in which the addition, after melting the filler, of a premix containing 10 g of Nb2Ü5 nanoparticles was made;
  • D) represents the steel ingot to which, after melting the filler, a premix in the form of 18.6g aluminum foil containing 10g Nb20s nanoparticles was added.
  • micrographic analysis of the microstructure of the ingots in three regions along the length showed that, in terms of constituents, the microstructure was similar in all ingots, being composed of ferrite and pearlite. On the other hand, morphology and granulometry of the constituents were visibly different.
  • Example 7 Premix comprising Niobium Iron Nanoparticles and their incorporation into Steel.
  • This embodiment of the invention shows some of the technical effects related to the use of the premix of the invention to: (i) prepare steel ingots with improved properties, avoiding the formation of large pores and sinkholes; (ii) prepare steel ingots with a more refined and homogeneous structure; and (iii) preparing steel ingots with a modified chemical profile.
  • steel ingots were prepared by melting ASTM A36 steel, with or without incorporating the premix containing nanoparticles.
  • Figure 17 shows the appearance of the central region sectioned along the length of the ingots without metallographic preparation.
  • the reference ingot is shown, free of premix; in B) it is shown the ingot in which the addition, after melting the filler, of a premix containing 10g of FeNb nanoparticles was made. Pores and voids were observed only in the reference ingot without premix addition. The ingot with the addition of premix did not show voids or pores at any point in the ingot.
  • Figure 18 shows photos of sections of the base of the ingots after metallographic attack, for the evaluation of the crude melting structure.
  • A) a section of the base of the reference ingot is shown, without the addition of premix; in B) is shown the base section of the ingot in which the addition, after melting the filler, of a premix containing 10g of FeNb nanoparticles was made.
  • the ingot to which the premix was added had a more refined and homogeneous structure than the reference ingot.
  • Figure 19 shows a graph that indicates in the ordinates the content % of the elements P (Phosphorus), S (Sulphur), Al (Aluminium) and Nb (Niobium) in two ingots prepared according to this example.
  • A) represents the reference steel ingot, without the addition of premix;
  • B) represents the steel ingot to which, after melting the filler, a premix containing 10g of FeNb nanoparticles was added.
  • Example 8 Aluminum Ingots with increased hardness through the use of premix containing nanoparticles of Niobium Pentoxide
  • the hardness values were evaluated in 3 sections of ingots in which metallographic analyzes were carried out, including the average value. Hardness impressions were randomly performed at 10 points on each ingot, using a load of 1 kgf on the Vickers scale. Significant differences were evidenced in global hardness, as evidenced by statistical analyzes (P-value less than a).
  • the incorporation of the premix of the invention did not harm other mechanical properties, which in itself is surprising.
  • the mechanical properties and ductility of the tensile specimens of aluminum ingots were not significantly different when comparing the reference ingot to the one to which the premix was added.
  • the strength limit, yield limit and elongation properties were also not significantly different.
  • Example 9 Aluminum Ingots with increased hardness through the use of premix containing nanoparticles of Iron Niobium
  • the hardness values were evaluated in 3 sections of ingots in which metallographic analyzes were carried out, including the average value. Hardness impressions were randomly performed at 10 points on each ingot, using a load of 1 kgf on the Vickers scale. Differences were evidenced significant in overall hardness, as evidenced by statistical analyzes (P-value less than a).
  • the incorporation of the premix of the invention did not impair other mechanical properties, which in itself is surprising.
  • the mechanical properties and ductility of the tensile specimens of aluminum ingots were not significantly different when comparing the reference ingot to the one to which the premix was added.
  • the strength limit, yield limit and elongation properties were not significantly different.
  • Example 10 Steel Ingots with increased hardness through the use of premix containing nanoparticles of Niobium Pentoxide
  • This embodiment of the invention shows some of the technical effects related to the use of the premix of the invention to: (i) prepare steel with increased by incorporating the premix; (ii) prepares steel with increased hardness without thereby reducing ductility, which would be expected under normal conditions. This surprising increase in hardness without decreasing ductility is a notable technical effect of the premix of the invention.
  • steel ingots were prepared by melting ASTM A36 steel, with or without incorporating the premix containing nanoparticles.
  • Figure 20 shows the results of hardness on the Vickers scale (HVI kgf) in the ordinates, for the base (1), center (2) and top (3) sections of steel ingots in which A) is the reference ingot, without adding premix; B) is the ingot in which, after melting the filler, a premix containing 10g of Nb20s nanoparticles was added; C) is the ingot to which, after melting the filler, a premix in the form of 18.6g aluminum foil containing 10g Nb20s nanoparticles was added.
  • HVI kgf Vickers scale
  • the ingot in which the addition, after melting the filler, of a premix containing 10g of Nb2Ü5 nanoparticles was added had an increase of 22.1% in hardness, compared to the steel ingot of reference, without the incorporation of the premix; and the ingot to which the addition, after melting the filler, of a premix in the form of 18.6g aluminum foil containing 10g nanoparticles of Nb2Ü5 was added, had an increase of 107.2% in hardness, compared to the ingot of reference steel, without the incorporation of the premix.
  • Example 11 Steel Ingots with increased hardness through the use of premix containing nanoparticles of Iron Niobium
  • This embodiment of the invention shows some of the technical effects related to the use of the premix of the invention to: (i) prepare steel with increased hardness by incorporating the premix; (ii) preparing steel with increased hardness without thereby reducing ductility, which would be expected under normal conditions. This surprising increase in hardness without decreasing ductility is a notable technical effect of the premix of the invention.
  • steel ingots were prepared by melting ASTM A36 steel, with or without the incorporation of the premix containing nanoparticles.
  • Figure 21 shows the results of hardness on the Vickers scale (HVI kgf) in the ordinates, for the base (1), center (2) and top (3) sections of steel ingots in which A) is the reference ingot, without adding premix; B) is the ingot to which, after melting the filler, a premix containing 10g of FeNb nanoparticles was added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

A presente invenção se situa no campo da engenharia de materiais e nanotecnologia. Mais especificamente, a invenção revela um premix útil para a melhorada dispersão de nanopartículas em variados materiais, incluindo, entre outros, metais, metais de transição, terras raras ou combinações dos mesmos. São também revelados um uso, um processo industrial para facilitada incorporação de nanopartículas a produtos de interesse econômico e um metal com melhoradas propriedades mecânicas. O premix de nanopartículas da invenção tem composição, pureza e/ou perfil granulométrico peculiares, sendo útil em uma variedade de aplicações e resolvendo diversos problemas técnicos, incluindo facilitar a dispersão em outras substâncias, facilitar o uso em processos industriais, evitar a dispersão inadvertida de nanopartículas no ambiente e o contato com humanos ou animais. O metal com melhoradas propriedades mecânicas da presente invenção compreende as referidas nanopartículas e, em amplo contraste ao estado da técnica, tem dureza substancialmente aumentada sem perda de ductilidade, de limite de resistência, de escoamento e/ou de alongamento. Esse surpreendente resultado é contraintuitivo e tem grande importância econômica.

Description

Relatório Descritivo de Patente de Invenção
PREMIX CONTENDO NANOPARTÍCULAS, USO DE UM PREMIX CONTENDO UM VEÍCULO E NANOPARTÍCULAS, PROCESSO PARA A INCORPORAÇÃO DE NANOPARTÍCULAS EM MATERIAL DE MATRIZ E METAL
Campo da Invenção
[0001] A presente invenção se situa no campo da engenharia de materiais e nanotecnologia. Mais especificamente, a invenção revela um premix útil para a melhorada dispersão de nanopartículas em variados materiais, incluindo, entre outros, metais, metais de transição, terras raras ou combinações dos mesmos. São também revelados um uso, um processo industrial para facilitada incorporação de nanopartículas a produtos de interesse econômico e um metal com melhoradas propriedades mecânicas. O premix de nanopartículas da invenção tem composição, pureza e/ou perfil granulométrico peculiares, sendo útil em uma variedade de aplicações e resolvendo diversos problemas técnicos, incluindo facilitar a dispersão em outras substâncias, facilitar o uso em processos industriais, evitar a dispersão inadvertida de nanopartículas no ambiente e o contato com humanos ou animais. O metal com melhoradas propriedades mecânicas da presente invenção compreende as referidas nanopartículas e, em amplo contraste ao estado da técnica, tem dureza substancialmente aumentada sem perda de ductilidade, de limite de resistência, de escoamento e/ou de alongamento. Esse surpreendente resultado é contraintuitivo e tem grande importância econômica.
Antecedentes da Invenção
[0002] A nanotecnologia é uma ciência em franca expansão e tem gerado muitas expectativas por conta das propriedades incomuns de nanopartículas de variados materiais. Entretanto, seu uso em larga escala ainda se defronta com múltiplas limitações, a começar pela indisponibilidade de preparados de nanopartículas com elevada concentração, pureza, perfil granulométrico preciso. Além disso, existem diversos outros problemas técnicos que limitam o uso industrial de nanopartículas, incluindo a tendência à agregação, a dificuldade de dispersão, os riscos associados à eventual dispersão no ar/ambiente e os ainda pouco conhecidos efeitos decorrentes do contato humano ou animal com as nanopartículas.
[0003] Nanopartículas obtidas por processos bottom up são limitadas a certas espécies químicas que são produtos de reação e têm baixa pureza, não sendo viáveis técnica- e/ou economicamente em grandes escalas. Estas e outras razões contribuem para que ainda não seja disponível em escala industrial nenhum premix de nanopartículas que seja estável, puro, com elevada concentração e/ou com distribuição granulométrica à escolha e integralmente na faixa dos nanômetros. A presente invenção resolve estes problemas.
[0004] Na busca pelo estado da técnica em literaturas científica e patentária, foram encontrados os seguintes documentos que se relacionam ao tema:
[0005] A patente US 4,084,965 revela a obtenção de um pó de Nióbio (referido como pó de Columbium) com 5,1 micra. Referido pó é obtido pela hidrogenação e moagem de um lingote de Nióbio, a moagem sendo assistida pela adição de uma pequena quantidade de um material contendo fósforo (entre 5 e 600ppm de fósforo elementar), preferencialmente na forma de um líquido para facilitar a mistura. Não revela um premix de nanopartículas como a presente invenção.
[0006] O pedido de patente brasileiro PI 0401882-6, depositado pela CBMM e arquivado, revela um processo de produção de pó de Nióbio e Tântalo metálicos de alta pureza química, elevada área superficial, morfologia e porosidade adequadas, e baixa densidade aparente. Referido processo compreende as etapas de: obtenção de pó fino; oxidação superficial de forma controlada; redução desta camada de óxido com metais alcalinos ou alcalino terrosos num banho de sais fundidos, ou no interior de uma mistura de sais fundidos; dissolução e lixiviação do bolo formado; filtragem, lavagem e secagem do produto obtido. Não revela ou antecipa a presente invenção. [0007] A patente brasileira PI 0105773-1 , concedida à CBMM, revela um processo para a produção de pó da liga Nb-Zr, contendo 0,1 % a 10% de zircônio. Referido processo compreende a hidretação, moagem e desidretação de ligas de Nióbio-Zircônio (Nb-Zr) para produção de pó com teores controlados de impurezas. Não revela um premix de nanopartículas como a presente invenção. [0008] O pedido de patente brasileiro PI 040261 1 -0, depositado pelo IPT/SP e indeferido, revela um processo de produção de pó de monóxido de Nióbio (NbO) de elevada pureza, elevada superfície específica, teores de oxigênio e nitrogênio controlados, com morfologia e porosidade adequada para ser usado na fabricação de capacitores. Referido processo é caracterizado por duas etapas de redução do pentóxido de Nióbio (Nb20s), sendo a primeira etapa de redução do pentóxido de Nióbio (Nb20s) para dióxido de Nióbio (NbC ) conduzida por um gás redutor e, a segunda etapa, compreendendo a obtenção de monóxido de Nióbio (NbO) através da transferência total ou parcial do oxigênio, referente a transformação do NbÜ2 em NbO, para um pó fino de Nióbio metálico (Nb) de morfologia e características físicas similares ao do NbO2. Não revela o premix de nanopartículas da presente invenção.
[0009] A patente brasileira PI 0106058-9, depositada pela CBMM e transferida ao IPT/SP, revela um processo para produção de pó de Nióbio de elevada pureza, elevada superfície específica e teores de oxigênio controlados. Referido processo compreende uma única etapa de redução de niobatos de metais alcalinos ou alcalino terrosos (MexNbOy, onde Me é o metal alcalino ou alcalino terroso, x=0,5 a 3 e y=2 a 4) com um metal de mesma natureza seguido de uma etapa de lixiviação ácida/lavagem para remoção dos óxidos de metais alcalinos ou alcalino terrosos (ou excesso de metal alcalino ou alcalino terroso empregado na redução) presentes no produto final. A patente protege também o pó de Nióbio assim obtido. Não revela o premix de nanopartículas da presente invenção.
[0010] A patente norte-americana US 6,375,704 B1 , de Cabot Corp., revela urn preparado em pó de Nióbio e um processo para preparar flocos de pó de Nióbio para uso em capacitores. Referido processo compreende moer chips de Nióbio para formar flocos e em seguida submeter o floco obtido a uma etapa de desoxidação, preferencialmente com magnésio. Não revela um premix de nanopartículas como a presente invenção.
[0011] O problema da dificuldade de mistura/dispersão/homogeneização de aditivos, particularmente aqueles contendo nanopartículas, no processamento de metais e aços especiais é conhecido há algum tempo, havendo diferentes abordagens para tentar resolvê-lo.
[0012] Neste contexto, o documento CN105414497 entra em detalhes sobre as dificuldades técnicas de homogeneizar aditivos na manufatura de aços especiais. Referido documento revela um dispositivo desenvolvido especificamente para resolver este problema, e inclui uma tubulação, um alimentador com uma válvula soldada na lateral de uma abertura e uma tubulação fina selada e soldada, com extremidade direcionada para o centro da abertura da outra tubulação, de modo a viabilizar a insuflação de ar ou argônio para formar pressão negativa e então permitir a adição de pós finos do aditivo no meio líquido do aço (derretido). O dispositivo proporciona o ajuste da adição uniforme de aditivo. Não revela o premix de nanopartículas da presente invenção.
[0013] O documento JP3321491 , intitulado “Method for adding rare earth element to molten steel and additive", revela uma maneira segura de adicionar um aditivo ao aço derretido. O referido aditivo é preparado pelo preenchimento de um recipiente com um pó de uma liga contendo terras raras, cobre e alumínio. O recipiente é feito de uma barra oca de aço carbono ou aço inoxidável. A forma de adicionar o aditivo consiste em adicionar continuamente o referido aditivo ao aço derretido na fase de casting. Não revela o premix de nanopartículas da presente invenção.
[0014] O documento US4892580 revela um aditivo na forma de filamentos contendo chumbo para a obtenção de aços modificados. O referido aditivo se apresenta na forma de filamentos consistindo de um revestimento metálico e um material finamente dividido, o qual compreende chumbo metálico ou ligas de chumbo, além de um material que desprende CO2 na temperatura do aço derretido. Não revela 0 premix de nanopartículas da presente invenção.
[0015] O documento RU2569621 revela um método para produzir aço contendo Nióbio. Referido método inclui uma etapa de derreter 0 aço e formar uma camada de 200mm de espessura em um receptáculo. Durante 0 tratamento do metal fora do forno é adicionado ferronióbio, na proporção de 0,01 a 1 kg por tonelada de metal. Não revela 0 premix de nanopartículas da presente invenção.
[0016] O documento US 3860777 revela um processo para soldar aços de baixa liga contendo Nióbio. No referido documento, depósitos de solda de resistência e dureza melhorada são obtidos, quando comparados com congêneres conhecidos até então. O processo envolve a adição de quantidades controladas de vanádio e/ou titânio ao metal derretido, em conjunto com outros elementos de liga de forma a proporcionar a formação de um depósito cuja concentração é controlada em comparação com a concentração de Nióbio presente. Não revela 0 premix de nanopartículas da presente invenção.
[0017] O documento WO 92226675 revela uma liga de ferronióbio e um aditivo de Nióbio para aço, ferro fundido e outras ligas metálicas. A liga de ferronióbio tem microestrutura compreendendo uma matriz eutética (E) e um constituinte primário (N) como uma solução sólida rica em Nióbio, a qual requer que a composição química seja de 75 a 95% de Nióbio, 5 a 25% de ferro, com os máximos de impureza definidos a seguir: tântalo 0,1 %, silício 3%, alumínio 1 % e estanho 0,15%. Esse aditivo é útil para adicionar Nióbio a aços, ferro fundido, e outros materiais. Não revela 0 premix de nanopartículas da presente invenção.
[0018] O pedido de patente co-pendente BR 102020016774-0, publicado em 20Fev2022 e 0 PCT BR 2021/050346 (publicado em 24Fev2022 como WO 2022/036427), com inventores em comum com a presente invenção, revelam um preparado de nanopartículas de Nióbio obtido por abordagem top down. Referido preparado concomitantemente contempla as seguintes características técnicas: partículas integralmente na faixa granulométrica de nanômetros; elevada pureza; em escala industrial, com custo adequado para viabilização econômica. Referido preparado em pó nanométrico tem muito elevada pureza, uma vez que o processo não acrescenta impurezas ou leva à formação de produtos de reação, como é o caso dos processos bottom up (ou de síntese) do estado da arte. Não revela um premix de nanopartículas da presente invenção.
[0019] O pedido de patente JPH07292410A publicado em 07/1 1/1995 revela um método para adicionar um elemento de terra rara a uma liga de Fe-Cr-AI, em que um pó de uma liga de elemento de terra rara e cobre ou alumínio e um material de revestimento de aço carbono ou aço inoxidável é adicionado a uma liga fundida de Fe-Cr-AI. O processo da presente invenção é diferente do processo de JPH07292410A, somado ao fato de que o pedido de patente JPH07292410A visa aplicação em uma liga de Fe-Cr-AI.
[0020] O pedido de patente WO2012/104306 publicado em 09/08/2012 apresenta um processo de produção de aço fortalecido com a adição de outros metais citando a adição de uma série de componentes na liga fundida, como Mn, P, terras raras, entre outros. Os materiais e o processo da presente invenção são diferentes dos revelados no WO2012/104306.
[0021] Do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção.
Sumário da Invenção
[0022] A presente invenção resolve vários problemas do estado da técnica e proporciona um premix contando nanopartículas de perfil granulométrico definido e/ou composição quimicamente definida. O premix da invenção é útil para a melhorada dispersão de nanopartículas em variados materiais de interesse econômico.
[0023] É um dos objetos da invenção proporcionar um premix contendo nanopartículas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos, referido premix compreendendo elevada concentração de nanopartículas na faixa granulométrica de nanômetros.
[0024] Em uma concretização, referido premix compreende um veículo; e nanopartículas na faixa granulométrica de nanômetros.
[0025] Em uma concretização, o premix da invenção compreende nanopartículas com d50 a d99 na faixa granulométrica de nanômetros. Em uma concretização, o premix da invenção compreende nanopartículas com d90 a d99 na faixa granulométrica de nanômetros.
[0026] Em uma concretização, o premix da invenção compreende nanopartículas de Nióbio com elevada pureza e concentração.
[0027] Em uma concretização, o premix da invenção compreende um veículo selecionado dentre uma cápsula, lâmina, recipiente ou compósito composto de material metálico, cerâmico, vítreo, hidrocarbonetos, ácidos graxos, ceras, aditivos de processamento, material polimérico, material compósito ou combinações dos mesmos. Referido veículo é particularmente útil para facilitar o uso industrial em processos de preparação de metais, metais reforçados/funcionalizados, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0028] É um dos objetos da invenção proporcionar o uso de um premix contendo nanopartículas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos para a preparação materiais com propriedades melhoradas. Referidos materiais são selecionados dentre metais, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0029] Em uma concretização, é provido o uso de um premix contendo nanopartículas de nióbio para a preparação de aço melhorado.
[0030] Em uma concretização, é provido o uso de um premix contendo nanopartículas de nióbio para a preparação de alumínio melhorado.
[0031] É um dos objetos da invenção proporcionar um processo industrial para a preparação de materiais com propriedades melhoradas. Referido processo proporciona melhorada dispersão de nanopartículas no material de interesse, mais segurança no processo industrial e facilidade de emprego em larga escala, O processo compreende ao menos uma etapa de acrescentar o premix da invenção ao referido material.
[0032] Em uma concretização, o referido processo proporciona a incorporação de nanopartículas em material de matriz e compreende:
- uma etapa de administrar o premix, conforme definido acima, a um material de matriz;
- pelo menos uma etapa subsequente de dispersão e/ou reação in situ entre os componentes do dito premix e o dito material de matriz; em que o dito material de matriz é selecionado dentre metais, metais reforçados/funcionalizados, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0033] Em uma concretização, o processo da invenção compreende uma etapa de adicionar o premix em fases líquidas de metais ou de ligas metálicas, proporcionando a rápida e eficaz dispersão e modulação/melhoria das propriedades mecânicas.
[0034] Em uma concretização, o processo da invenção proporciona uma reação in situ do premix no material metálico, proporcionando a obtenção de metais ou ligas metálicas melhoradas.
[0035] É um dos objetos da invenção proporcionar um metal com melhoradas propriedades mecânicas. O metal da presente invenção compreende as referidas nanopartículas e, em amplo contraste ao estado da técnica, tem dureza substancialmente aumentada sem perda de ductilidade, de limite de resistência, de escoamento e/ou de alongamento, propriedades estas que, em conjunto, são totalmente contraintuitivas e têm grande importância econômica.
[0036] Em uma concretização, o referido metal é aço melhorado.
[0037] Em uma concretização, o referido metal é alumínio melhorado.
[0038] Estes e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e serão descritos detalhadamente a seguir.
Breve Descrição das Figuras
[0039] São apresentadas as seguintes figuras: [0040] A figura 1 ilustra o potencial zeta das partículas de alumínio em função do pH. O módulo do potencial zeta (mV) é um indicativo da estabilidade das partículas. Quanto maior o módulo do potencial zeta, mais estáveis as partículas. [0041] A figura 2 ilustra o potencial zeta das partículas de Pentóxido de Nióbio em função do pH.
[0042] A figura 3 ilustra os resultados de granulometria para as partículas de alumínio pelo equipamento Cilas.
[0043] A figura 4 ilustra um resultado de MeV (microscopia eletrônica de varredura) para a mistura metálica após 5h de mistura, com magnificação de 3,1 1 kx e 2,01 kx em 10,0 kV.
[0044] A figura 5 ilustra o resultado de EDS (Espectroscopia por energia dispersiva) para a mistura metálica após 5h de mistura. O EDS mostra a proporção de cada elemento na mistura metálica.
[0045] A figura 6A mostra o resultado do alumínio picado, o qual não fundiu.
[0046] A figura 6B mostra o tarugo de alumínio fundido, o qual foi testado em vista dos resultados ilustrados na figura 6A.
[0047] A figura 7 mostra uma concretização da invenção na qual lingotes de alumínio foram obtidos mediante fusão da liga SAE 305, em corte na região central ao longo do comprimento e sem preparação metalográfica. Em A) é mostrada uma foto do lingote de alumínio sem a adição de premix; em B) é mostrada uma foto do lingote com a adição de premix contendo Nb20s.
[0048] A figura 8 mostra uma concretização da invenção na qual lingotes de alumínio foram obtidos mediante fusão da liga SAE 305, em corte ao longo do comprimento, com e sem a adição de premix contendo nanopartículas de pentóxido de Nióbio. Em A) é mostrada uma foto do lingote de alumínio sem adição de premix, evidenciando poros; Em B) é mostrada uma foto do lingote de alumínio com adição de premix, evidenciando poros.
[0049] A figura 9 mostra fotos do aspecto da seção na região da base dos lingotes de alumínio após ataque metalográfico. Em A) é mostrado o lingote de alumínio sem adição de premix; em B) é mostrado o lingote de alumínio com a adição de premix contendo pentóxido de Nióbio.
[0050] A figura 10 mostra uma concretização da invenção na qual lingotes de alumínio foram obtidos mediante fusão da liga SAE 305, em corte na região central ao longo do comprimento e sem preparação metalográfica. Em A) é mostrada uma foto do lingote de alumínio sem a adição de premix; em B) é mostrada uma foto do lingote com a adição de premix contendo FeNb.
[0051] A figura 1 1 mostra uma concretização da invenção na qual lingotes de alumínio foram obtidos mediante fusão da liga SAE 305, em corte ao longo do comprimento, com e sem a adição de premix contendo nanopartículas de ferro Nióbio. Em A) é mostrada uma foto do lingote de alumínio sem adição de premix, evidenciando poros; Em B) é mostrada uma foto do lingote de alumínio com adição de premix, evidenciando poros.
[0052] A figura 12 mostra fotos do aspecto da seção na região da base dos lingotes de alumínio após ataque metalográfico. Em A) é mostrado o lingote de alumínio sem adição de premix; em B) é mostrado o lingote de alumínio com a adição de premix contendo ferro Nióbio.
[0053] A figura 13 mostra o aspecto da região central seccionada ao longo do comprimento de lingotes de aço obtidos mediante fusão do aço ASTM A36, sem preparação metalográfica. Em A) é mostrado o lingote de referência, isento de premix; em B) é mostrado o lingote no qual foi feita a adição, durante a fusão da carga, de um premix contendo nanopartículas de Nb2Ü5.
[0054] A figura 14 mostra o aspecto da região central seccionada ao longo do comprimento dos lingotes de aço sem preparação metalográfica. Em A) é mostrado o lingote de referência, isento de premix; em B) é mostrado o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb20s; Em C) é mostrado o lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb2Ü5.
[0055] A figura 15 mostra fotos de seções da base dos lingotes de aço após ataque metalográfico, para a avaliação da estrutura bruta de fusão. Em A) é mostrada seção da base do lingote de referência, sem adição de premix; em B) é mostrada a seção da base do lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb20s; Em C) é mostrada seção da base do lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb2Ü5.
[0056] A figura 16 mostra um gráfico que indica nas ordenadas o teor % dos elementos P (Fósforo), S (Enxofre), Al (Alumínio) e Nb (Nióbio) em quatro lingotes de aço. A) representa o lingote de aço de referência, sem a adição de premix; B) representa o lingote de aço no qual foi feita a adição, durante a fusão da carga, de um premix contendo 10 g de nanopartículas de Nb20s; C) representa o lingote de aço no qual foi feita a adição, após a fusão da carga, de um premix contendo 10 g de nanopartículas de Nb20s; D) representa o lingote de aço no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb20s.
[0057] A figura 17 mostra o aspecto da região central seccionada ao longo do comprimento de lingotes de aço sem preparação metalográfica. Em A) é mostrado o lingote de referência, isento de premix; em B) é mostrado o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb.
[0058] A figura 18 mostra fotos de seções da base de lingotes de aço após ataque metalográfico, para a avaliação da estrutura bruta de fusão. Em A) é mostrada seção da base do lingote de referência, sem adição de premix; em B) é mostrada a seção da base do lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb.
[0059] A figura 19 mostra um gráfico que indica nas ordenadas o teor % dos elementos P (Fósforo), S (Enxofre), Al (Alumínio) e Nb (Nióbio) em dois lingotes de aço. A) representa o lingote de aço de referência, sem a adição de premix; B) representa o lingote de aço no qual foi feita a adição, após a fusão da carga, de um premix contendo 10 g de nanopartículas de FeNb. [0060] A figura 20 mostra os resultados de dureza na escala Vickers (HVI kgf) nas ordenadas, para as seções da base (1 ), do centro (2) e do topo (3) de lingotes de aço em que A) é o lingote de referência, sem acréscimo de premix; B) é o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb20s; C) é o lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb20s.
[0061] A figura 21 mostra os resultados de dureza na escala Vickers (HVI kgf) nas ordenadas, para as seções da base (1 ), do centro (2) e do topo (3) de lingotes de aço em que A) é o lingote de referência, sem acréscimo de premix; B) é o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb.
[0062] A figura 22 é uma foto de cápsulas de metal para conter nanopartículas e servir de premix para a fabricação de metais fundidos.
Descrição Detalhada da Invenção
[0063] Em um objeto, a presente invenção apresenta um premix compreendendo um veículo; e nanopartículas na faixa granulométrica de nanômetros; em que as referidas nanopartículas são compostas por metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos.
[0064] Em uma concretização, o premix da invenção compreende nanopartículas com d10 a d99 na faixa granulométrica de nanômetros. Em uma concretização, o premix da invenção compreende nanopartículas com d90 a d99 na faixa granulométrica de nanômetros.
[0065] Em uma concretização, as referidas nanopartículas têm distribuição granulométrica de dio a partir de 0,16 pm até 2,29 pm, dso a partir 0,35 pm até 5,62 pm e dgo a partir de 0,78 pm até 9,94 pm.
[0066] Em uma concretização, o premix da invenção compreende nanopartículas de Nióbio com elevada pureza e concentração. Em uma concretização, as ditas nanopartículas são compostas de óxido de Nióbio, Ferro Nióbio ou combinações das mesmas.
[0067] Em uma concretização, o dito óxido de Nióbio é pentóxido de Nióbio (Nb2O5), dióxido de Nióbio (NbO2), óxido de Nióbio (NbO), ou combinações dos mesmos.
[0068] Em uma concretização, o premix compreende nanopartículas de pentóxido de Nióbio. Em uma concretização, o premix compreende nanopartículas de Ferro Nióbio.
[0069] Em uma concretização, o premix da invenção compreende pelo menos um veículo selecionado dentre uma cápsula, lâmina, recipiente ou compósito composto de material metálico, cerâmico, vítreo, hidrocarbonetos, ácidos graxos, ceras, aditivos de processamento, material polimérico, material compósito ou combinações dos mesmos. Referido veículo é particularmente útil para facilitar o uso industrial em processos de preparação de metais, metais reforçados/funcionalizados, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0070] Em uma concretização, o dito veículo é selecionado dentre uma cápsula, lâmina, recipiente ou compósito composto de material metálico, cerâmico, vítreo, hidrocarbonetos, ácidos graxos, ceras, aditivos de processamento, material polimérico, material compósito ou combinações dos mesmos.
[0071] Em uma concretização, o dito material metálico do veículo é alumínio ou cobre; o dito hidrocarboneto é parafina; os ditos ácidos graxos são ácido oleico, ácido palmítico ou ácido erúcico; a dita cera é cera de abelha ou cera de carnaúba; o dito aditivo de processamento é estearato de sódio ou estearato de zinco; o dito material polimérico é um polímero termoplástico. Em uma concretização, o dito polímero termoplástico é polipropileno (PP).
[0072] Em uma concretização, o referido veículo é selecionado dentre substâncias que proporcionam maior segurança de manipulação, como por exemplo: hidrocarbonetos como parafina; os ditos ácidos graxos como ácido oleico, ácido palmítico ou ácido erúcico; a dita cera como cera de abelha ou cera de carnaúba; o dito aditivo de processamento como estearato de sódio ou estearato de zinco; o dito material polimérico como um polímero termoplástico, como por exemplo o polipropileno (PP).
[0073] Em uma concretização, o premix da presente invenção apresenta uma proporção em massa entre nanopartículas e veículo na faixa de 99:1 a 50:50, mais preferencialmente na faixa de 95:5 a 55:45, mais preferencialmente na faixa de 93:7 a 60:40, mais preferencialmente na faixa de 92:8 a 65:35; mais preferencialmente na faixa de 91 :9 a 69:31 , ainda mais preferencialmente na faixa de 90,8:9,2 até 69,4:30,6.
[0074] O premix da invenção proporciona melhorada homogeneização e dispersão de nanopartículas em produtos aos quais ele é incorporado, incluindo, sem limitar a, metais fundidos.
[0075] Em uma concretização, o premix da invenção é um material compreendendo elevada quantidade/concentração de nanopartículas, sendo particularmente útil para facilitar o uso industrial em processos de preparação de metais, metais reforçados/funcionalizados, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0076] É um dos objetos da invenção proporcionar o uso de um premix contendo nanopartículas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos para a preparação materiais com propriedades melhoradas. Referidos materiais são selecionados dentre metais, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0077] Em uma concretização, é provido o uso de um premix contendo nanopartículas de nióbio para a preparação de aço melhorado.
[0078] Em uma concretização, é provido o uso de um premix contendo nanopartículas de nióbio para a preparação de alumínio melhorado.
[0079] Em uma concretização, o uso do premix da invenção proporciona também a reação in situ dos constituintes do premix com o metal líquido em processos de produção de materiais metálicos. [0080] É um dos objetos da invenção proporcionar um metal com melhoradas propriedades mecânicas. O metal da presente invenção compreende as referidas nanopartículas e, em amplo contraste ao estado da técnica, tem dureza substancialmente aumentada sem perda de ductilidade, de limite de resistência, de escoamento e/ou de alongamento, propriedades estas que, em conjunto, são totalmente contraintuitivas e têm grande importância econômica.
[0081] Em uma concretização, o referido metal é aço melhorado.
[0082] Em uma concretização, o referido metal é alumínio melhorado.
[0083] Em uma concretização o referido metal é isento de ou tem reduzida quantidade de rechupes e vazios de solidificação.
[0084] Em uma concretização o referido metal tem estrutura mais refinada e homogênea.
[0085] Em uma concretização o referido metal tem modificado perfil químico.
[0086] Em uma concretização o referido metal tem aumentada dureza sem prejudicar significativamente outras propriedades mecânicas (limite de resistência e de escoamento) e ductilidade.
[0087] É um dos objetos da invenção proporcionar um processo industrial compreendendo o uso de premix contendo nanopartículas com características melhoradas, referido processo proporcionando maior facilidade de dispersão de nanopartículas na substância ou produto de interesse, mais segurança no processo industrial e facilidade de emprego em larga escala.
[0088] Em um outro objeto, a presente invenção apresenta um processo para a incorporação de nanopartículas em material de matriz compreendendo:
- uma etapa de administrar o premix, conforme definido acima, a um material de matriz;
- pelo menos uma etapa subsequente de dispersão e/ou reação in situ entre os componentes do dito premix e o dito material de matriz; em que o dito material de matriz é selecionado dentre metais, metais reforçados/funcionalizados, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos. [0089] Em uma concretização, o dito material de matriz é selecionado dentre metais, metais reforçados/funcionalizados, ligas metálicas ou combinações dos mesmos.
[0090] Em uma concretização, a etapa de administrar o premix é executada em fases fundidas do dito metal, metal reforçado/funcionalizado ou liga metálica.
[0091] Em uma concretização não limitante, quando o dito metal, metal reforçado/funcionalizado ou liga metálica compreende aço, o veículo do premix é alumínio. Em uma concretização não limitante adicional, quando o dito metal, metal reforçado/funcionalizado ou liga metálica compreende alumínio, o veículo do premix é cobre.
[0092] Em uma concretização, o processo da invenção compreende uma etapa de adicionar o premix em fases líquidas de metais ou ligas metálicas, proporcionando a rápida e eficaz dispersão e modulação ou melhoria das propriedades mecânicas.
[0093] O surpreendente aumento de dureza sem diminuição da ductilidade e outras propriedades mecânicas é um notável efeito técnico da invenção.
[0094] A invenção também é definida pelas seguintes cláusulas.
[0095] Premix contendo nanopartículas compreendendo: um veículo; e nanopartículas na faixa granulométrica de nanômetros, em que as referidas nanopartículas são compostas por metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos.
[0096] Premix conforme definido acima em que a proporção em massa entre nanopartículas e veículo está na faixa de 99:1 a 50:50.
[0097] Premix conforme definido acima em que as referidas nanopartículas têm distribuição granulométrica de dio a partir de 0,16 pm até 2,29 pm, dso a partir 0,35 pm até 5,62 pm e dgo a partir de 0,78 pm até 9,94 pm.
[0098] Premix conforme definido acima em que as ditas nanopartículas são de óxido de Nióbio, Ferro Nióbio ou combinações dos mesmos.
[0099] Premix conforme definido acima em que o dito óxido de Nióbio é pentóxido de Nióbio (NbgOs), dióxido de Nióbio (NbC ), óxido de Nióbio (NbO), ou combinações dos mesmos.
[0100] Premix conforme definido acima em que o dito veículo é selecionado dentre uma cápsula, lâmina, recipiente ou compósito composto de material metálico, cerâmico, vítreo, hidrocarbonetos, ácidos graxos, ceras, aditivos de processamento, material polimérico, material compósito ou combinações dos mesmos.
[0101] Premix conforme definido acima em que:
- o dito material metálico é alumínio ou cobre;
- o dito hidrocarboneto é parafina;
- os ditos ácidos graxos são ácido oleico, ácido palmítico, ácido erúcico;
- a dita cera é cera de abelha ou cera de carnaúba;
- o dito aditivo de processamento é estearato de sódio ou estearato de zinco; e/ou
- o dito material polimérico é polímero termoplástico.
[0102] Uso de um premix contendo nanopartículas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos, para a preparação materiais com propriedades mecânicas melhoradas.
[0103] Uso conforme definido acima em que os referidos materiais são selecionados dentre: metais, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0104] Uso conforme definido acima em que o referido premix contém nanopartículas de nióbio e o referido material com propriedades mecânicas melhoradas é aço.
[0105] Uso conforme definido acima em que o referido premix contém nanopartículas de nióbio e o referido material com propriedades mecânicas melhoradas é alumínio.
[0106] Processo para a incorporação de nanopartículas em material de matriz compreendendo: uma etapa de administrar o premix conforme definido acima a um material de matriz; e pelo menos uma etapa subsequente de dispersão e/ou reação in situ entre os componentes do dito premix e o dito material de matriz, em que o dito material de matriz é selecionado dentre metais, metais reforçados/funcionalizados, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
[0107] Processo conforme definido acima em que o dito material de matriz é selecionado dentre metais, metais reforçados/funcionalizados, ligas metálicas ou combinações dos mesmos.
[0108] Processo conforme definido acima em que a etapa de administrar o premix é executada em fases fundidas do dito metal, metal reforçado/funcionalizado ou liga metálica.
[0109] Processo conforme definido acima em que o dito metal, metal reforçado/funcionalizado ou liga metálica compreende aço ou alumínio.
[0110] Metal com melhoradas propriedades mecânicas, compreendendo nanopartículas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos.
[0111] Metal conforme definido acima em que o referido metal é aço ou alumínio. [0112] Metal conforme definido acima em que: o referido aço apresenta incremento de dureza de pelo menos 20% em comparação com aço de referência; ou o referido alumínio apresenta incremento de dureza de pelo menos 5% em comparação com alumínio de referência, em que o referido metal melhorado tem mesma ductilidade, limite de resistência, de escoamento e/ou de alongamento, quando comparados com o respectivo metal convencional.
[0113] Metal conforme definido acima em que: o referido aço apresenta incremento de dureza de pelo menos 22,1 % a 107,2% em comparação com aço de referência; ou o referido alumínio apresenta incremento de dureza de pelo menos 5,1 % a 6,1 % em comparação com alumínio de referência, em que o referido metal melhorado tem mesma ductilidade, limite de resistência, de escoamento e/ou de alongamento, quando comparados com o respectivo metal convencional.
[0114] Metal conforme definido acima em que: o referido aço e/ou alumínio apresenta dureza Vickers de até 380 HV em 1 kgf; em que o referido metal melhorado tem mesma ductilidade, limite de resistência, de escoamento e/ou de alongamento, quando comparados com o respectivo metal convencional.
[0115] Metal conforme definido acima em que: o referido aço e/ou alumínio melhorado apresenta dureza Vickers de 120 a 380 HV em 1 kgf, em que o referido metal melhorado tem mesma ductilidade, limite de resistência, de escoamento e/ou de alongamento, quando comparados com o respectivo metal convencional. [0116] Metal conforme definido acima, isento de ou com reduzida quantidade de rechupes e vazios de solidificação; e/ou com estrutura refinada e homogênea; e/ou com modificado perfil químico.
[0117] Exemplos
[0118] Os exemplos aqui mostrados têm o intuito somente de exemplificar algumas das várias maneiras de se realizar a invenção, contudo sem limitar o escopo da mesma.
[0119] Exemplo 1 - Premix compreendendo Nanopartículas de Pentóxido de Nióbio e sua incorporação em Aço. Preparação do inoculante compósito AI/Nb2O5
[0120] Para incorporação em aço, os seguintes materiais foram usados:
• Folhas de alumínio (80 g); e
• Liquidificador;
• Moinho Attritor com esferas de zircônia (d = 200-300 pm, m = 800 g).
[0121] O seguinte procedimento foi executado:
[0122] 80 g de folhas de papel alumínio foram trituradas em um liquidificador. As folhas trituradas (40 g) foram submetidas à moagem em moinho Attritor a 350 RPM com auxílio de esferas de zircônia (d = 200-300 pm, m = 800 g) em meio de etanol por 22h.
[0123] Foi feita separação da mistura metálica úmida com uma peneira de 500 pm de abertura. Foi retirada uma alíquota da mistura metálica úmida abaixo de 500 pm para determinação do potencial zeta e do tamanho de partícula.
[0124] Foi retirada também uma alíquota da mistura metálica úmida abaixo de 500 pm para determinação do tamanho de partícula em um equipamento Cilas. [0125] A mistura metálica úmida foi seca em estufa a 80 °C para obtenção do pó seco.
[0126] Para uma suspensão de Nb20s, o pH foi ajustado para 6 (conteúdo de sólidos medido experimentalmente: 26% m., volume: 440 ml_) com a utilização de solução aquosa de hidróxido de amónio (pH 14).
[0127] As nanopartículas de pentóxido de Nióbio utilizadas na preparação do premix tem distribuição granulométrica de dio = 0,16 pm, dso = 0,35 pm, dgo = 0,78 pm.
[0128] A dita suspensão de NbgOs foi agitada mecanicamente a 300 RPM e, aos poucos, foi adicionada a ela 23 g de pó de alumínio. Após a adição do pó de alumínio, a agitação foi mantida a 300 RPM por 5 h sob monitoramento de pH.
[0129] Foi observado aumento no valor de pH após 5 h de mistura. O pH da mistura final permaneceu em ~7,1 .
[0130] Após 2, 3, 4 e 5 h de agitação mecânica, alíquotas foram retiradas da suspensão-mãe e secas em estufa a vácuo a 80 °C para observação do estado da mistura íntima entre as partículas de Al e NbgOs no inoculante compósito.
[0131] A tabela 1 abaixo descreve a proporção em massa de nanopartículas de NbgOs e veículo (neste exemplo, não limitante, sendo Al):
[0132] Tabela 1 - Proporção em massa de nanopartículas e veículo
Figure imgf000022_0001
[0133] Em vista dos experimentos realizados, a proporção em massa preferencial de nanopartículas:veículo foi de 90,8:9,2 até 69,4:30,6.
[0134] Exemplo 2 - Caracterização do premix [0135] Uma concretização de premix preparado conforme descrito no exemplo 5 foi caracterizada. Para tanto, foi feita a separação da mistura metálica úmida com uma peneira de 500 pm de abertura. Foi retirada uma alíquota da mistura metálica úmida abaixo de 500 pm para determinação do potencial zeta e do tamanho de partícula.
[0136] A figura 1 ilustra o potencial zeta das partículas de alumínio em função do pH. O módulo do potencial zeta (mV) é um indicativo da estabilidade das partículas. Quanto maior o módulo do potencial zeta, mais estáveis as partículas. [0137] A figura 2 ilustra o potencial zeta das partículas de Pentóxido de Nióbio em função do pH.
[0138] Em vista dos resultados do potencial zeta em função do pH, o pH da mistura metálica foi ajustado para 6 no início do procedimento.
[0139] Conforme também mencionado no exemplo 5, foi retirada também uma alíquota da mistura metálica úmida abaixo de 500 pm para determinação do tamanho de partícula em um equipamento Cilas.
[0140] A figura 3 ilustra os resultados de granulometria para as partículas de alumínio pelo equipamento Cilas.
[0141] Os resultados do ensaio de granulometria feito no equipamento Cilas pode ser visto na Tabela 2 abaixo:
[0142] Tabela 2 - Dados de Granulometria
Figure imgf000023_0001
[0143] A figura 4 ilustra um resultado de MeV (microscopia eletrônica de varredura) para a mistura metálica após 5h de mistura, com magnificação de 3,1 1 kx e 2,01 kx em 10,0 kV. [0144] A figura 5 ilustra o resultado de EDS (Espectroscopia por energia dispersiva) para a mistura metálica após 5h de mistura. O EDS mostra a proporção de cada elemento na mistura metálica.
[0145] Exemplo 3 - Teste comparativo com fusão de folhas picadas de alumínio em cadinho
[0146] Como teste de mistura, realizou-se, em cadinho de ZAS e de metal, a fusão (900°C) de alumínio picado com nanopartículas. Como pode ser observado na figura 6, não houve fusão do alumínio picado. Em vista deste resultado e a fim de e avaliar a temperatura do forno, foi testada a fusão de um tarugo de alumínio na presença das nanopartículas. Este, por sua vez, fundiu. Ambas as rotas não foram consideradas promissoras, uma vez que não houve adequada dispersão/incorporação das nanopartículas no alumínio.
[0147] A figura 6A mostra o resultado do alumínio picado, o qual não fundiu.
[0148] A figura 6B mostra o tarugo de alumínio fundido, o qual foi testado em vista dos resultados ilustrados na figura 6A.
[0149] Exemplo 4 - Premix compreendendo Nanopartículas de Pentóxido de Nióbio e sua incorporação em Alumínio.
[0150] No preparo de lingotes de metais ou ligas após fusão, é frequente a ocorrência de rechupes e/ou vazios de solidificação. O presente exemplo evidencia que esse problema foi resolvido.
[0151] Lingotes de alumínio de 20 kg foram obtidos mediante fusão da liga SAE 305, com ou sem a adição de 20 g um premix compreendendo nanopartículas de pentóxido de Nióbio, com distribuição granulométrica de dio = 0,16 pm, dso = 0,35 pm, dgo = 0,78 pm.
[0152] A figura 7 mostra fotos de lingotes assim preparados, em corte ao longo do comprimento e sem preparação metalográfica. Em A) é mostrado o lingote de alumínio sem a adição de premix; em B) é mostrado o lingote com a adição de premix contendo Nb2Ü5. A figura 7 mostra que foi obtida uma estrutura sem rechupes e/ou vazios de solidificação, indicado boa distribuição das nanopartículas de nióbio. [0153] A figura 8 mostra fotos dos lingotes de alumínio com e sem a adição de premix contendo nanopartículas de pentóxido de Nióbio. Em A) é mostrado o lingote de alumínio sem adição de premix, evidenciando poros; Em B) é mostrado o lingote de alumínio com adição de premix, evidenciando poros. Não foram detectadas diferenças entre as amostras, indicando que a adição do premix não influenciou, nestas condições, na formação de poros, ou seja, a formação de poros parece inerente ao processo utilizado para a obtenção dos lingotes.
[0154] O aspecto macro e microestrutural dos lingotes foi também analisado. Em relação à macroestrutura observada na base dos lingotes, não foram detectadas diferenças significativas. O aspecto microestrutural das três regiões de cada lingote (base, centro e topo), ao longo do comprimento dos lingotes, na condição sem ataque metalográfico não revelou diferenças significativas tanto no aumento de 50x quanto no aumento de 200x, podendo ser descrito como uma matriz com constituintes cubóides e aciculares distribuídos.
[0155] A figura 9 mostra fotos do aspecto da seção na região da base dos lingotes de alumínio após ataque metalográfico. Em A) é mostrado o lingote de alumínio sem adição de premix; em B) é mostrado o lingote de alumínio com a adição de premix contendo pentóxido de Nióbio.
[0156] Exemplo 5 - Premix compreendendo Nanopartículas de Ferro Nióbio e sua incorporação em Alumínio.
[0157] No presente exemplo, lingotes de alumínio de 20 kg foram obtidos mediante fusão da liga SAE 305, com ou sem a adição de 20 g um premix compreendendo nanopartículas de Ferro Nióbio Tântalo, com distribuição granulométrica de dio = 2,29 pm, dso = 5,62 pm, dgo = 9,94 pm.
[0158] A figura 10 mostra fotos de lingotes assim preparados, em corte ao longo do comprimento e sem preparação metalográfica. Em A) é mostrado o lingote de alumínio sem a adição de premix; em B) é mostrado o lingote com a adição de premix contendo FeNb. A figura 4 mostra ligotes sem rechupes e/ou vazios de solidificação, indicando boa distribuição das nanopartículas de Nióbio. [0159] A figura 11 mostra fotos dos lingotes de alumínio com e sem a adição de premix contendo nanopartículas de Ferro Nióbio. Em A) é mostrado o lingote de alumínio sem adição de premix, evidenciando poros; Em B) é mostrado o lingote de alumínio com adição de premix, evidenciando poros. Não foram detectadas diferenças entre as amostras, indicando que a adição desta concretização de premix não influenciou, nestas condições, na formação de poros, ou seja, a formação de poros é aparentemente inerente ao processo utilizado para a obtenção dos lingotes.
[0160] O aspecto macro e microestrutural dos lingotes foi também analisado. Em relação à macroestrutura observada na base dos lingotes, não foram detectadas diferenças significativas. O aspecto microestrutural das três regiões de cada lingote (base, centro e topo), ao longo do comprimento dos lingotes, na condição sem ataque metalográfico não revelou diferenças significativas tanto no aumento de 50x quanto no aumento de 200x, podendo ser descrito como uma matriz com constituintes cubóides e aciculares distribuídos.
[0161] A figura 12 mostra fotos do aspecto da seção na região da base dos lingotes de alumínio após ataque metalográfico. Em A) é mostrado o lingote de alumínio sem adição de premix; em B) é mostrado o lingote de alumínio com a adição de premix contendo Ferro Nióbio.
[0162] Exemplo 6 - Premix compreendendo Nanopartículas de Pentóxido de Nióbio e sua incorporação em Aço.
[0163] Esta concretização da invenção evidencia alguns dos efeitos técnicos relacionados ao uso do premix da invenção para: (i) preparar lingotes de aço com melhoradas propriedades, evitando a formação de rechupes e poros grandes; (ii) preparar lingotes de aço com estrutura mais refinada e homogênea; e (iii) preparar lingotes de aço com modificado perfil químico.
[0164] Nesta concretização, lingotes de aço foram preparados mediante a fusão de aço ASTM A36, com ou sem a incorporação do premix contendo nanopartículas.
[0165] No presente exemplo, lingotes de aço de 50 kg foram obtidos mediante fusão do aço ASTM 36, com ou sem a adição um premix compreendendo 50 g de nanopartículas de pentóxido de Nióbio, com distribuição granulométrica de dio = 0,16 pm, dõo = 0,35 pm, dgo = 0,78 pm.
[0166] A figura 13 mostra o aspecto da região central seccionada ao longo do comprimento dos lingotes sem preparação metalográfica. Em A) é mostrado o lingote de referência, isento de premix; em B) é mostrado o lingote no qual foi feita a adição, durante a fusão da carga, de um premix contendo nanopartículas de NbgOs. Foram observados poros e vazios em ambas os casos, sendo mais intenso no lingote no qual foi adicionado o premix durante a fusão da carga, com vazios ou poros na base e em todo o comprimento dos lingotes.
[0167] A figura 14 mostra o aspecto da região central seccionada ao longo do comprimento dos lingotes sem preparação metalográfica. Em A) é mostrado o lingote de referência, isento de premix; em B) é mostrado o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb20s; Em C) é mostrado o lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb2Ü5. Desta feita, foram observados poros e vazios apenas no lingote de referência sem adição de premix. Os lingotes com a adição de premix não apresentaram vazios ou poros em nenhum ponto dos lingotes.
[0168] A figura 15 mostra fotos de seções da base dos lingotes após ataque metalográfico, para a avaliação da estrutura bruta de fusão. Em A) é mostrada seção da base do lingote de referência, sem adição de premix; em B) é mostrada a seção da base do lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb20s; Em C) é mostrada seção da base do lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb2Ü5. Os lingotes aos quais foi acrescentado o premix apresentaram estrutura mais refinada e homogênea do que o lingote de referência.
[0169] Testes foram realizados para avaliar a composição química dos lingotes preparados conforme descrito nesse exemplo. Os resultados mostram que não houve diferença significativa nos teores de Carbono, Manganês, Silício e Cobre. Por outro lado, houve significativa alteração dos teores de Fósforo, Enxofre, Alumínio e, mais pronunciadamente, Nióbio.
[0170] A figura 16 mostra um gráfico que indica nas ordenadas o teor % dos elementos P (fósforo), S (enxofre), Al (alumínio) e Nb (nióbio) em quatro lingotes preparados de acordo com o presente exemplo. A) representa o lingote de aço de referência, sem a adição de premix; B) representa o lingote de aço no qual foi feita a adição, durante a fusão da carga, de um premix contendo 10 g de nanopartículas de Nb20s; C) representa o lingote de aço no qual foi feita a adição, após a fusão da carga, de um premix contendo 10 g de nanopartículas de Nb2Ü5; D) representa o lingote de aço no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb20s.
[0171] A análise micrográfica da microestrutura dos lingotes em três regiões ao longo do comprimento demonstrou que, em termos de constituintes, a microestrutura foi similar em todos os lingotes, sendo composta por ferrita e perlita. Por outro lado, morfologia e granulometria dos constituintes foram visivelmente distintas.
[0172] Exemplo 7 - Premix compreendendo Nanopartículas de Ferro Nióbio e sua incorporação em Aço.
[0173] Esta concretização da invenção evidencia alguns dos efeitos técnicos relacionados ao uso do premix da invenção para: (i) preparar lingotes de aço com melhoradas propriedades, evitando a formação de rechupes e poros grandes; (ii) preparar lingotes de aço com estrutura mais refinada e homogênea; e (iii) preparar lingotes de aço com modificado perfil químico.
[0174] Nesta concretização, lingotes de aço foram preparados mediante a fusão de aço ASTM A36, com ou sem a incorporação do premix contendo nanopartículas.
[0175] No presente exemplo, lingotes de aço de 50 kg foram obtidos mediante fusão do aço ASTM 36, com ou sem a adição um premix compreendendo 50 g de nanopartículas de Ferro Nióbio Tântalo, com distribuição granulométrica de dio = 2,29 pm, dso = 5,62 pm, dgo = 9,94 pm.
[0176] A figura 17 mostra o aspecto da região central seccionada ao longo do comprimento dos lingotes sem preparação metalográfica. Em A) é mostrado o lingote de referência, isento de premix; em B) é mostrado o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb. Foram observados poros e vazios apenas no lingote de referência sem adição de premix. O lingote com a adição de premix não apresentaram vazios ou poros em nenhum ponto do lingote.
[0177] A figura 18 mostra fotos de seções da base dos lingotes após ataque metalográfico, para a avaliação da estrutura bruta de fusão. Em A) é mostrada seção da base do lingote de referência, sem adição de premix; em B) é mostrada a seção da base do lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb. O lingote ao qual foi acrescentado o premix apresentou estrutura mais refinada e homogênea do que o lingote de referência.
[0178] Testes foram realizados para avaliar a composição química dos lingotes preparados conforme descrito nesse exemplo. Os resultados mostram que não houve diferença significativa nos teores de Carbono, Manganês, Silício e Cobre. Por outro lado, houve significativa alteração dos teores de Fósforo, Enxofre, Alumínio e, mais pronunciadamente, Nióbio.
[0179] A figura 19 mostra um gráfico que indica nas ordenadas o teor % dos elementos P (Fósforo), S (Enxofre), Al (Alumínio) e Nb (Nióbio) em dois lingotes preparados de acordo com o presente exemplo. A) representa o lingote de aço de referência, sem a adição de premix; B) representa o lingote de aço no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb.
[0180] Exemplo 8 - Lingotes de Alumínio com aumentada dureza mediante o uso de premix contendo nanopartículas de pentóxido de Nióbio [0181] No presente exemplo, lingotes de alumínio de 20kg foram obtidos mediante fusão da liga SAE 305, com ou sem a adição de 20g um premix compreendendo nanopartículas de pentóxido de Nióbio, com distribuição granulométrica de dio = 0,16 pm, dso = 0,35 pm, dgo = 0,78 pm.
[0182] Foram avaliados os valores de dureza em 3 seções de lingotes em que foram efetuadas análises metalográficas, incluindo o valor médio. As impressões de dureza foram realizadas aleatoriamente em 10 pontos em cada lingote, empregando carga de 1 kgf da escala Vickers. Foram evidenciadas diferenças significativas na dureza global, conforme evidenciado pelas análises estatísticas (valor-P menor que a).
[0183] A incorporação do premix contendo 10g de pentóxido de nióbio resultou em um incremento de 5,1 % na dureza, em comparação com o lingote de alumínio de referência, sem a incorporação do premix.
[0184] Por outro lado, a incorporação do premix da invenção não prejudicou outras propriedades mecânicas, o que em si é surpreendente. As propriedades mecânicas e ductilidade dos corpos de prova de tração dos lingotes de alumínio não foram significativamente distintas quando comparados o lingote de referência a aquele ao qual o premix foi adicionado. As propriedades de limite de resistência, limite escoamento e de alongamento também não foram significativamente distintas.
[0185] Exemplo 9 - Lingotes de Alumínio com aumentada dureza mediante o uso de premix contendo nanopartículas de Ferro Nióbio
[0186] No presente exemplo, lingotes de alumínio de 20kg foram obtidos mediante fusão da liga SAE 305, com ou sem a adição de 20g um premix compreendendo nanopartículas de Ferro Nióbio, com distribuição granulométrica de dio = 2,29 pm, dso = 5,62 pm, dgo = 9,94 pm.
[0187] Foram avaliados os valores de dureza em 3 seções de lingotes em que foram efetuadas análises metalográficas, incluindo o valor médio. As impressões de dureza foram realizadas aleatoriamente em 10 pontos em cada lingote, empregando carga de 1 kgf da escala Vickers. Foram evidenciadas diferenças significativas na dureza global, conforme evidenciado pelas análises estatísticas (valor-P menor que a).
[0188] A incorporação do premix contendo 10g de Ferro Nióbio resultou em um incremento de 6,1 % na dureza, em comparação com o lingote de alumínio de referência, sem a incorporação do premix.
[0189] Novamente, a incorporação do premix da invenção não prejudicou outras propriedades mecânicas, o que em si é surpreendente. As propriedades mecânicas e ductilidade dos corpos de prova de tração dos lingotes de alumínio não foram significativamente distintas quando comparado o lingote de referência a aquele ao qual o premix foi adicionado. As propriedades de limite de resistência, limite escoamento e de alongamento não foram significativamente distintas.
[0190] Exemplo 10 - Lingotes de Aço com aumentada dureza mediante o uso de premix contendo nanopartículas de pentóxido de Nióbio
[0191] Esta concretização da invenção evidencia alguns dos efeitos técnicos relacionados ao uso do premix da invenção para: (i) preparar aço com aumentada mediante a incorporação do premix; (ii) prepara aço com aumentada da dureza sem com isso reduzir a ductilidade, o que seria esperado em condições normais. Esse surpreendente aumento de dureza sem diminuição da ductilidade é um notável efeito técnico do premix da invenção.
[0192] Nesta concretização, lingotes de aço foram preparados mediante a fusão de aço ASTM A36, com ou sem a incorporação do premix contendo nanopartículas.
[0193] No presente exemplo, lingotes de aço de 50kg foram obtidos mediante fusão do aço ASTM 36, com ou sem a adição um premix compreendendo 50g de nanopartículas de pentóxido de Nióbio, com distribuição granulométrica de dio = 0,16 pm, dõo = 0,35 pm, dgo = 0,78 pm.
[0194] Nas mesmas seções de lingotes de aço em que foram efetuadas as análises metalográficas do exemplo 3, foram realizados ensaios de dureza. As impressões de dureza foram aleatórias, totalizando 10 identações em cada amostra aplicando carga de 1 kgf da escala Vickers.
[0195] A figura 20 mostra os resultados de dureza na escala Vickers (HVI kgf) nas ordenadas, para as seções da base (1 ), do centro (2) e do topo (3) de lingotes de aço em que A) é o lingote de referência, sem acréscimo de premix; B) é o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb20s; C) é o lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb20s.
[0196] Os resultados mostram que: o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb2Ü5 teve um incremento de 22,1% na dureza, em comparação com o lingote de aço de referência, sem a incorporação do premix; e o lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb2Ü5 teve um incremento de 107,2% na dureza, em comparação com o lingote de aço de referência, sem a incorporação do premix.
[0197] As análises de variância (ANOVA), para um nível de significância de 95% (a = 5%) indicaram que o valor-P para o limite de escoamento e limite resistência foi menor que a, ou seja, confirma diferença entre as médias do limite de escoamento e limite de resistência dos lingotes aos quais foram acrescentados o premix nas duas condições (o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de Nb20s; e o lingote no qual foi feita a adição, após a fusão da carga, de um premix na forma de papel alumínio de 18,6g contendo 10g nanopartículas de Nb20s).
[0198] Por outro lado, a ductilidade dos corpos de prova de tração dos lingotes de aço não foi significativamente distinta quando comparado o lingote de referência a aqueles aos quais o premix foi adicionado. Esse surpreendente aumento de dureza e de propriedades mecânicas, sem diminuição da ductilidade, é um notável efeito técnico do premix da invenção.
[0199] Importante ressaltar também que os resultados são surpreendentes inclusive frente à incorporação de partículas na faixa micrométrica, evidenciando ainda mais o efeito técnico atingido pelo premix e processo desenvolvidos na presente invenção.
[0200] Exemplo 11 - Lingotes de Aço com aumentada dureza mediante o uso de premix contendo nanopartículas de Ferro Nióbio
[0201] Esta concretização da invenção evidencia alguns dos efeitos técnicos relacionados ao uso do premix da invenção para: (i) preparar aço com aumentada dureza mediante a incorporação do premix; (ii) preparar aço com aumentada dureza sem com isso reduzir a ductilidade, o que seria esperado em condições normais. Esse surpreendente aumento de dureza sem diminuição da ductilidade é um notável efeito técnico do premix da invenção.
[0202] Nesta concretização, lingotes de aço foram preparados mediante a fusão de aço ASTM A36, com ou sem a incorporação do premix contendo nanopartículas.
[0203] No presente exemplo, lingotes de aço de 50kg foram obtidos mediante fusão do aço ASTM 36, com ou sem a adição um premix compreendendo 50g de nanopartículas de Ferro Nióbio, com distribuição granulométrica de dio = 2,29 pm, dõo = 5,62 pm, dgo = 9,94 pm.
[0204] Nas mesmas seções de lingotes de aço em que foram efetuadas as análises metalográficas do exemplo 4, foram realizados ensaios de dureza. As impressões de dureza foram aleatórias, totalizando 10 identações em cada amostra aplicando carga de 1 kgf da escala Vickers.
[0205] A figura 21 mostra os resultados de dureza na escala Vickers (HVI kgf) nas ordenadas, para as seções da base (1 ), do centro (2) e do topo (3) de lingotes de aço em que A) é o lingote de referência, sem acréscimo de premix; B) é o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb.
[0206] Os resultados mostram que: o lingote no qual foi feita a adição, após a fusão da carga, de um premix contendo 10g de nanopartículas de FeNb teve um incremento de 68% na dureza, em comparação com o lingote de aço de referência, sem a incorporação do premix.
[0207] As análises de variância (ANOVA), para um nível de significância de 95% (a = 5%) indicaram que o valor-P para o limite de escoamento e limite resistência foi menor que a, ou seja, confirma diferença entre as médias do limite de escoamento e limite de resistência do lingotes ao qual foi acrescentado o premix contendo Ferro Nióbio, sendo ao aumento do limite de resistência e de escoamento mais pronunciando com a adição de premix contendo Ferro Nióbio do que com a adição de premix contendo pentóxido de Nióbio.
[0208] Por outro lado, a ductilidade dos corpos de prova de tração dos lingotes de aço não foi significativamente distinta quando comparado o lingote de referência a aqueles aos quais o premix foi adicionado. Esse surpreendente aumento de dureza e de propriedades mecânicas, sem diminuição da ductilidade, é um notável efeito técnico do premix da invenção.
[0209] Os versados na arte valorizarão os conhecimentos aqui apresentados e poderão reproduzir a invenção nas modalidades apresentadas e em outras variantes e alternativas, abrangidas pelo escopo das reivindicações a seguir.

Claims

Reivindicações
1 . Premix contendo nanopartículas caracterizado por compreender
- um veículo; e
- nanopartículas na faixa granulométrica de nanômetros compostas por metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos.
2. Premix de acordo com a reivindicação 1 caracterizado pelo fato de a proporção em massa entre nanopartículas e veículo está na faixa de 99:1 a 50:50.
3. Premix de acordo com a reivindicação 1 caracterizado pelo fato de que as referidas nanopartículas têm distribuição granulométrica de dio a partir de 0,16 pm até 2,29 pm, dso a partir 0,35 pm até 5,62 pm e dgo a partir de 0,78 pm até 9,94 pm.
4. Premix de acordo com a reivindicação 1 caracterizado pelo fato de as ditas nanopartículas serem compostas de óxido de Nióbio, Ferro Nióbio ou combinações dos mesmos.
5. Premix de acordo com a reivindicação 4 caracterizado pelo fato de o dito óxido de Nióbio ser pentóxido de Nióbio (NbgOs), dióxido de Nióbio (NbC ), óxido de Nióbio (NbO), ou combinações dos mesmos.
6. Premix de acordo com a reivindicação 1 caracterizado pelo fato de o dito veículo ser selecionado dentre uma cápsula, lâmina, recipiente ou compósito composto de material metálico, cerâmico, vítreo, hidrocarbonetos, ácidos graxos, ceras, aditivos de processamento, material polimérico, material compósito ou combinações dos mesmos.
7. Premix de acordo com a reivindicação 6 caracterizado pelo fato de que:
- o dito material metálico é alumínio ou cobre;
- o dito hidrocarboneto é parafina;
- os ditos ácidos graxos são ácido oleico, ácido palmítico, ácido erúcico;
- a dita cera é cera de abelha ou cera de carnaúba; - o dito aditivo de processamento é estearato de sódio ou estearato de zinco; e/ou
- o dito material polimérico é polímero termoplástico.
8. Uso de um premix contendo um veículo e nanopartículas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos caracterizado por ser para a preparação de materiais com propriedades mecânicas melhoradas.
9. Uso de acordo com a reivindicação 8 caracterizado pelo fato de que os referidos materiais são selecionados dentre: metais, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
10. Uso de acordo com a reivindicação 9 caracterizado pelo fato de que o referido premix contém nanopartículas de nióbio e o referido material com propriedades mecânicas melhoradas é aço.
11 . Uso de acordo com a reivindicação 9 caracterizado pelo fato de que o referido premix contém nanopartículas de nióbio e o referido material com propriedades mecânicas melhoradas é alumínio.
12. Processo para a incorporação de nanopartículas em material de matriz caraterizado por compreender:
- uma etapa de administrar o premix conforme definido na reivindicação 1 a um material de matriz;
- pelo menos uma etapa subsequente de dispersão e/ou reação in situ entre os componentes do dito premix e o dito material de matriz; em que o dito material de matriz é selecionado dentre metais, metais reforçados/funcionalizados, ligas metálicas, cerâmicas, vidros, polímeros, compósitos ou combinações dos mesmos.
13. Processo de acordo com a reivindicação 12 caracterizado pelo fato de que o dito material de matriz é selecionado dentre metais, metais reforçados/funcionalizados, ligas metálicas ou combinações dos mesmos.
14. Processo de acordo com a reivindicação 13 caracterizado pelo fato de que a etapa de administrar o premix é executada em fases fundidas do dito metal, metal reforçado/funcionalizado ou liga metálica.
15. Processo de acordo com a reivindicação 14 caracterizado pelo fato de que o dito metal, metal reforçado/funcionalizado ou liga metálica compreende aço ou alumínio.
16. Metal caracterizado por apresentar melhoradas propriedades mecânicas compreendendo nanopartículas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos.
17. Metal de acordo com a reivindicação 16 caracterizado pelo fato de que o referido metal é aço ou alumínio melhorado.
18. Metal de acordo com a reivindicação 17 caracterizado pelo fato de que:
- o referido aço apresenta incremento de dureza de pelo menos 20% em comparação com aço de referência; ou
- o referido alumínio apresenta incremento de dureza de pelo menos 5% em comparação com alumínio de referência, em que o referido metal melhorado tem mesma ductilidade, limite de resistência, de escoamento e/ou de alongamento, quando comparados com o respectivo metal convencional.
19. Metal de acordo com a reivindicação 17 caracterizado pelo fato de que:
- o referido aço e/ou alumínio apresenta dureza Vickers de até 380 HV em 1 kgf; em que o referido metal melhorado tem mesma ductilidade, limite de resistência, de escoamento e/ou de alongamento, quando comparados com o respectivo metal convencional.
20. Metal de acordo com a reivindicação 16 caracterizado pelo fato de que o metal:
- é isento de ou ter reduzida quantidade de rechupes e vazios de solidificação; e/ou
- tem estrutura refinada e homogênea; e/ou - tem modificado perfil químico.
PCT/BR2023/050049 2022-02-11 2023-02-10 Premix contendo nanopartículas, uso de um premix contendo um veículo e nanopartículas, processo para a incorporação de nanopartículas em material de matriz e metal WO2023150852A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102022002639 2022-02-11
BR1020220026394 2022-02-11

Publications (1)

Publication Number Publication Date
WO2023150852A1 true WO2023150852A1 (pt) 2023-08-17

Family

ID=87563295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2023/050049 WO2023150852A1 (pt) 2022-02-11 2023-02-10 Premix contendo nanopartículas, uso de um premix contendo um veículo e nanopartículas, processo para a incorporação de nanopartículas em material de matriz e metal

Country Status (1)

Country Link
WO (1) WO2023150852A1 (pt)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726639A (zh) * 2015-03-13 2015-06-24 北京科技大学 一种使钢中外加纳米粒子均匀弥散的方法
CN110669902A (zh) * 2019-09-30 2020-01-10 鞍钢股份有限公司 一种纳米粒子均匀分散铝基中间体及制备和应用方法
CN110791613A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种向钢中外加纳米粒子及其细化组织和强韧化钢材的方法
US11040395B2 (en) * 2016-03-31 2021-06-22 The Regents Of The University Of California Nanostructure self-dispersion and self-stabilization in molten metals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726639A (zh) * 2015-03-13 2015-06-24 北京科技大学 一种使钢中外加纳米粒子均匀弥散的方法
US11040395B2 (en) * 2016-03-31 2021-06-22 The Regents Of The University Of California Nanostructure self-dispersion and self-stabilization in molten metals
CN110669902A (zh) * 2019-09-30 2020-01-10 鞍钢股份有限公司 一种纳米粒子均匀分散铝基中间体及制备和应用方法
CN110791613A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种向钢中外加纳米粒子及其细化组织和强韧化钢材的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAJIZAMANI MOHSEN, BAHARVANDI HAMIDREZA: "Fabrication and Studying the Mechanical Properties of A356 Alloy Reinforced with Al2O3-10% Vol. ZrO2 Nano-particles through Stir Casting", ADVANCES IN MATERIALS PHYSICS AND CHEMISTRY, SCIENTIFIC RESEARCH PUBLISHING [CN], vol. 01, no. 02, 1 January 2011 (2011-01-01), pages 26 - 30, XP093084182, ISSN: 2162-531X, DOI: 10.4236/ampc.2011.12005 *
ZHU HONGWEI, LI HAONAN, XIAO FUREN, GAO ZHIXIANG: "Study on the Dissolution and Precipitation Behavior of Self-Designed (NbTi)C Nanoparticles Addition in 1045 Steel", METALS, vol. 11, no. 2, 1 January 2021 (2021-01-01), pages 184, XP093084183, DOI: 10.3390/met11020184 *

Similar Documents

Publication Publication Date Title
US9023128B2 (en) Methods of producing nanoparticle reinforced metal matrix nanocomposites from master nanocomposites
AU2015259108B2 (en) Production of substantially spherical metal powers
KR100583702B1 (ko) 가스상의 환원제로 산화물을 환원시켜 금속 분말을 제조하는 방법 및 그로부터 제조된 금속 분말
Nagarajan et al. Intermetallic Ti2Ni/TiNi nanocomposite by rapid solidification
Fan et al. Densification behavior of nanocrystalline W–Ni–Fe composite powders prepared by sol-spray drying and hydrogen reduction process
US9273380B2 (en) Aluminum-carbon compositions
DE19962015A1 (de) Pulvermischungen bzw. Verbundpulver, Verfahren zu ihrer Herstellung und ihre Verwendung in Verbundwerkstoffen
Kamrani et al. Effect of reinforcement volume fraction on mechanical alloying of Al–SiC nanocomposite powders
Mousavian et al. Manufacturing of cast A356 matrix composite reinforced with nano-to micrometer-sized SiC particles
Sun et al. An industrially feasible pathway for preparation of Mo nanopowder and its sintering behavior
Zou et al. A nano-micro dual-scale particulate-reinforced copper matrix composite with high strength, high electrical conductivity and superior wear resistance
Sivasankaran et al. Microstructure, cold workability and strain hardening behavior of trimodaled AA 6061–TiO2 nanocomposite prepared by mechanical alloying
WO2011091449A1 (en) A process for producing titanium-magnesium alloy powders and compacts
Butovsky et al. Air stable core–shell multilayer metallic nanoparticles synthesized by RAPET: fabrication, characterization and suggested applications
Wang et al. Extraction of titanium resources from the titanium-containing waste slag: Thermodynamic analysis and experimental verification
WO2023150852A1 (pt) Premix contendo nanopartículas, uso de um premix contendo um veículo e nanopartículas, processo para a incorporação de nanopartículas em material de matriz e metal
BR102023002615A2 (pt) Premix contendo nanopartículas, uso de um premix contendo um veículo e nanopartículas, processo para a incorporação de nanopartículas em material de matriz e metal
Suzuki et al. Formation of broccoli-like morphology of tantalum powder
Krasnowski et al. Nanocomposites obtained by mechanical alloying in Fe–Al–Ti–C system
Rao et al. Phase evolution in novel Y2O3 dispersed CrCuFeNiZn nanocrystalline multicomponent alloy prepared by mechanical alloying
AU2017221276B2 (en) Processes for producing tantalum alloys and niobium alloys
Sheibani et al. In situ preparation of Cu–MnO nanocomposite powder through mechanochemical synthesis
Chen et al. Investigation on the two-stage hierarchical phase separation in the laser cladded Cu–Mn–Fe coating
WO2023230694A1 (pt) Ferro fundido compreendendo partículas de nióbio e processo para a obtenção de um ferro fundido
BR102023011061A2 (pt) Ferro fundido compreendendo partículas de nióbio e processo para a obtenção de um ferro fundido

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752173

Country of ref document: EP

Kind code of ref document: A1