WO2023149453A1 - Laser machining apparatus - Google Patents

Laser machining apparatus Download PDF

Info

Publication number
WO2023149453A1
WO2023149453A1 PCT/JP2023/003161 JP2023003161W WO2023149453A1 WO 2023149453 A1 WO2023149453 A1 WO 2023149453A1 JP 2023003161 W JP2023003161 W JP 2023003161W WO 2023149453 A1 WO2023149453 A1 WO 2023149453A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
processing head
laser processing
emitted
Prior art date
Application number
PCT/JP2023/003161
Other languages
French (fr)
Japanese (ja)
Inventor
通雄 櫻井
龍幸 中川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023149453A1 publication Critical patent/WO2023149453A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material

Definitions

  • the present invention relates to laser processing equipment.
  • Patent Document 1 the joint surfaces of an aluminum material and a steel material are brought into direct contact with each other, and in a vacuum, an electron beam is irradiated parallel to the joint surface offset from the joint surface toward the aluminum material to melt only the aluminum material.
  • a dissimilar metal joining method is disclosed in which an intermetallic compound is generated at the welded joining interface.
  • Patent Document 1 in order to join dissimilar metals, a separate vacuum chamber must be prepared and the joining work must be performed in the vacuum chamber, which causes the problem of equipment costs and labor. be.
  • the present invention has been made in view of this point, and its purpose is to improve the quality of bonding between members made of different materials.
  • a first aspect is a laser processing apparatus that emits a laser beam to a first member and a second member that are arranged to face each other to join the first member and the second member,
  • the member is made of a member having a higher reflectance for the laser beam than the second member, and laser processing for emitting a first laser beam and a second laser beam having a longer wavelength than the first laser beam.
  • a head and a moving mechanism for relatively moving the laser processing head with respect to the first member and the second member along a predetermined movement direction, wherein the laser processing head moves toward the first member; The first laser beam is emitted to the second member, and the second laser beam is emitted to the second member.
  • the laser processing head is configured to be capable of emitting a short-wavelength first laser beam and a long-wavelength second laser beam.
  • the laser processing head moves relative to the first member and the second member along a predetermined moving direction.
  • the first member has a higher laser light reflectance than the second member.
  • the first laser beam is emitted to the first member.
  • the second laser beam is emitted to the second member.
  • intermetallic compounds may be formed on the joint surface, but since the anchor effect is obtained at the joint surface, sufficient joint strength is ensured as a whole. can do.
  • the short-wavelength first laser beam (for example, a laser beam with a wavelength of 600 nm or less) is applied to the first member (for example, a highly reflective material such as copper, which has a relatively high reflectance of laser light compared to iron or the like). high laser absorptivity for the material).
  • the long-wavelength second laser beam (for example, a laser beam with a wavelength of 800 nm or more) has a laser absorptance with respect to the second member (for example, a low reflectance material such as iron) that is higher than the laser absorptance with respect to the first member. is also expensive.
  • the output, beam diameter, and emission of the first laser beam and the second laser beam By adjusting the position, output waveform, etc. separately, it is possible to perform the joining work under the optimum welding conditions.
  • a second aspect is characterized in that, in the first aspect, the second laser beam is emitted to a position overlapping at least part of the first laser beam.
  • the second laser beam overlaps at least a portion of the first laser beam, so that the first member can be easily melted in the overlapping portion, and the welding speed can be increased.
  • At least part of the first laser beam is emitted forward in the moving direction relative to the second laser beam, and the second laser beam The light is emitted across the first member and the second member.
  • At least part of the first laser beam is emitted forward in the moving direction than the second laser beam.
  • a second laser beam is emitted across the first member and the second member.
  • the second laser beam is more likely to be absorbed by the first member.
  • FIG. 1 is a side view showing a schematic configuration of a laser processing apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a graph showing the relationship between the wavelength of laser light and reflectance.
  • FIG. 3 is a plan view showing a state before laser welding of the first member and the second member.
  • FIG. 4 is a plan view showing a state during laser welding of the first member and the second member.
  • FIG. 5 is a plan view showing a partially enlarged joint surface of the first member and the second member.
  • FIG. 6 is a plan view showing a state before laser welding of the first member and the second member according to the second embodiment.
  • FIG. 7 is a plan view showing a state during laser welding of the first member and the second member.
  • the laser processing apparatus 1 includes a first laser oscillator 11, a second laser oscillator 12, a first transmission fiber 15, a second transmission fiber 16, a laser processing head 20, and a robot 2 ( movement mechanism) and a control unit 5 .
  • the first laser oscillator 11 outputs the first laser beam L1 based on the command from the control unit 5.
  • the first laser beam L1 is a short wavelength laser beam.
  • the first laser light L1 is short-wave laser light with a wavelength of 600 nm or less (for example, 266 nm to 600 nm).
  • the first laser oscillator 11 and the laser processing head 20 are connected by the first transmission fiber 15 .
  • the first laser beam L1 is transmitted from the first laser oscillator 11 to the laser processing head 20 via the first transmission fiber 15 .
  • the second laser oscillator 12 outputs the second laser light L2 based on the command from the control unit 5.
  • the second laser beam L2 is a long-wavelength laser beam having a longer wavelength than the first laser beam L1.
  • the second laser light L2 is a long wavelength laser light with a wavelength of 800 nm or more (for example, about 800 nm to 10800 nm).
  • the second laser oscillator 12 and laser processing head 20 are connected by a second transmission fiber 16 .
  • the second laser beam L2 is transmitted from the second laser oscillator 12 to the laser processing head 20 via the second transmission fiber 16 .
  • the laser processing head 20 emits the first laser beam L1 and the second laser beam L2 incident from the first transmission fiber 15 and the second transmission fiber 16 to the workpiece W.
  • the laser processing head 20 has a first collimating lens 21, a second collimating lens 22, a first mirror 23, a second mirror 24, a biaxial MEMS mirror 25, a dichroic mirror 26, and an f ⁇ lens 27. .
  • the first collimator lens 21 collimates the first laser beam L1 emitted from the emission end of the first transmission fiber 15.
  • the first mirror 23 reflects the first laser beam L1 collimated by the first collimator lens 21, and is biaxial with a variable mirror angle so that the emission position of the first laser beam L1 with respect to the workpiece W can be changed.
  • the light is guided to the MEMS mirror 25 .
  • the beam diameters of the first laser beam L1 and the second laser beam L2 can be changed to be enlarged or reduced. can be done.
  • the second collimator lens 22 collimates the second laser beam L2 emitted from the emission end of the second transmission fiber 16.
  • the second mirror 24 reflects the second laser beam L2 collimated by the second collimator lens 22 and guides it to the dichroic mirror 26 .
  • the biaxial MEMS mirror 25 further reflects the first laser beam L1 reflected by the first mirror 23 and guides it to the dichroic mirror 26 .
  • the biaxial MEMS mirror 25 changes the incident position of the first laser beam L1 with respect to the dichroic mirror 26 by changing the mirror angle in two axial directions.
  • a configuration using a biaxial galvanometer may be used instead of the biaxial MEMS mirror 25 .
  • the dichroic mirror 26 transmits the second laser beam L2 and reflects the first laser beam L1.
  • the dichroic mirror 26 guides the first laser beam L1 and the second laser beam L2 to the f ⁇ lens 27 .
  • the dichroic mirror 26 transmits the second laser beam L2 and reflects the first laser beam L1.
  • the dichroic mirror 26 guides the first laser beam L1 and the second laser beam L2 to the f ⁇ lens 27 .
  • the f.theta Condensed so that The first laser beam L1 and the second laser beam L2 condensed by the f.theta.
  • the emission position of the first laser beam L1 with respect to the workpiece W can be changed by changing the angle of the biaxial MEMS mirror 25 to move the incident position of the first laser beam L1 with respect to the f ⁇ lens 27. ing.
  • the robot 2 has a robot arm 3.
  • a laser processing head 20 is attached to the tip of the robot arm 3 .
  • the robot arm 3 has multiple joints 4 .
  • the robot 2 moves the laser processing head 20 and changes the position of the laser processing head 20 with respect to the work W based on the command from the control unit 5 . As a result, the positions of the first laser beam L1 and the second laser beam L2 with respect to the workpiece W are moved to perform laser welding.
  • the control unit 5 is connected to the first laser oscillator 11, the second laser oscillator 12, the laser processing head 20, and the robot 2.
  • the control unit 5 controls operations of the first laser oscillator 11 , the second laser oscillator 12 , the laser processing head 20 and the robot 2 .
  • control unit 5 controls the output start and stop of the first laser beam L1 and the second laser beam L2, the output intensity of the first laser beam L1 and the second laser beam L2, and the like. It also has the function to
  • the work W has a first member W1 and a second member W2.
  • the first member W1 is made of a highly reflective material with a low laser absorptance.
  • the second member W2 is made of a low-reflection material with a higher laser absorptance than the first member W1.
  • the reflectance of the laser beam varies depending on the material of the workpiece W.
  • infrared laser light having a long wavelength of 800 nm or more is used as a reference
  • copper (Cu), aluminum (Al), gold (Au), and silver (Ag) are laser beams compared to iron (Fe).
  • the reflectance (%) of the wavelength of light is high, in other words, it is a highly reflective material with a low laser absorptance.
  • iron (Fe) is a low-reflection material with a relatively low reflectance (%) of the wavelength of the laser light and a high laser absorptivity.
  • the first member W1 is made of copper, which is a high reflectance material with a low laser absorption rate.
  • the second member W2 is made of iron, which is a low reflectance material with a high laser absorptance.
  • the first member W1 may be made of gold or silver.
  • the first member W1 and the second member W2 are plate-shaped.
  • the first member W1 and the second member W2 are arranged as a butt joint such that their side edges face each other.
  • the laser processing apparatus 1 includes a side edge portion of the first member W1 (a side edge portion (referred to as an upper edge portion) as a butting surface of the first member W1 in FIG. 3), and a second member By emitting a laser beam along the side edge portion of W2 (the side edge portion (referred to as the lower edge portion) as the abutting surface of the second member W2 in FIG. 3), the first member W1 and the second member W2 are separated. Weld.
  • the emission position of the first laser beam L1 is set at a position along the side edge (upper edge in FIG. 3) of the first member W1 facing the second member W2.
  • the emission position of the second laser beam L2 is set at a position along the side edge (lower edge in FIG. 3) of the second member W2 facing the first member W1.
  • the emission position of the second laser beam L2 is set so as to partially overlap the first laser beam L1.
  • the laser processing apparatus 1 applies a first laser beam L1 and a second laser beam L2 to the workpiece W while moving the laser processing head 20 in a predetermined welding direction (leftward in FIG. 4). is emitted.
  • the laser processing head 20 emits the first laser beam L1 to the first member W1, and emits the second laser beam L2 to the second member W2. That is, the short-wavelength first laser beam L1 is emitted to the first member W1, which is a high-reflectance material with a low laser absorptance, and the second member W2, which is a low-reflectance material with a high laser absorptance, is irradiated with the short-wavelength first laser beam L1. A long wavelength second laser beam is emitted. At this time, part of the second laser beam L2 is emitted while being superimposed on part of the first laser beam L1. In the portion where the second laser beam L2 overlaps the first laser beam L1, the first member W1 is easily melted, and the welding speed can be increased.
  • the melting time difference between the members can be eliminated. This makes it easier for the metals to mix with each other, and an anchor effect can be obtained at the joint surface.
  • a weld bead 30 is formed rearward in the welding direction.
  • the weld bead 30 is provided with a first anchor portion 31 and a second anchor portion 32 .
  • the first anchor portion 31 is a portion formed in a hook shape when the first member W1 is melted and mixed with the second member W2.
  • the second anchor portion 32 is a portion formed in a hook shape when the second member W2 melts and mixes with the first member W1.
  • first anchor portion 31 and the second anchor portion 32 are joined while being engaged with each other, so that an anchor effect can be obtained at the joint surface between the first member W1 and the second member W2. can. Thereby, the joining quality of the 1st member W1 and the 2nd member W2 can be improved.
  • the emission position of the first laser beam L1 is the side edge portion of the first member W1 facing the second member W2 (the side edge portion serving as the butting surface of the first member W1 in FIG. 6 (upper side edge portion). It is set at a position along the edge)).
  • the emission position of the second laser beam L2 is set at a position straddling the side edge portions of the first member W1 and the second member W2 (the side edge portions as abutting surfaces).
  • the emission position of the first laser beam L1 is set to a position forward of the second laser beam L2 in the welding direction (leftward in FIG. 6).
  • the laser processing apparatus 1 emits the first laser beam L1 and the second laser beam L2 to the workpiece W while moving the laser processing head 20 in a predetermined welding direction.
  • the laser processing head 20 emits the first laser beam L1 to at least the first member W1, while emitting the second laser beam L2 across both the first member W1 and the second member W2. emit.
  • the laser processing head 20 emits the first laser beam L1, which has a high laser absorptance with respect to the first member W1 made of a high reflectance material, prior to the surface of the first member W1.
  • Surface modification such as oxidizing the surface of the member W1 and partially melting the surface of the first member W1 first is performed.
  • the laser processing head 20 immediately follows the surface-modified portion of the first member W1 made of the high-reflectance material, followed by the second laser beam L2 having a high power density and a long wavelength.
  • the second laser beam L2 which has a low laser absorptance with respect to the first member W1 made of a high reflectance material, is easily absorbed by the first member W1 made of a high reflectance material.
  • the laser processing head 20 emits the first laser beam L1 further forward in the welding direction than the second laser beam L2, and the second laser beam L2 is arranged so as to facilitate absorption of the second laser beam L2.
  • the surface of the first member W1 is modified with the first laser beam L1
  • the surface of the first member W1 whose surface has been modified is further emitted with the second laser beam L2 for laser processing.
  • the first member W1 and the second member W2 are melted with the second laser beam L2. becomes easier to mix.
  • an anchor effect can be obtained at the joint surface, and the joint quality of the first member W1 and the second member W2 can be improved.
  • the robot 2 moves the laser processing head 20 to change the position of the laser processing head 20 with respect to the work W, but the present invention is not limited to this form.
  • the workpiece W may be mounted on a moving table (not shown), and the laser processing head 20 may be moved relative to the workpiece W.
  • the present invention is not limited to this configuration.
  • a configuration in which a laser processing head that emits the first laser beam L1 and a laser processing head that emits the second laser beam L2 are provided separately may be used.
  • the present invention is extremely useful and has high industrial applicability because it can provide a highly practical effect of being able to improve the quality of bonding between members made of different materials.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser machining head 20 is configured so as to be capable of emitting first laser light L1 having a small wavelength and second laser light L2 having a large wavelength. The laser machining head 20 moves relative to a first member W1 and a second member W2, along a prescribed movement direction. The first member W1 has a higher reflectance of laser light than the second member W2. The first laser light L1 is emitted to the first member W1. The second laser light L2 is emitted to the second member W2.

Description

レーザ加工装置Laser processing equipment
 本発明は、レーザ加工装置に関するものである。 The present invention relates to laser processing equipment.
 特許文献1には、アルミニウム材料と鉄鋼材料の接合面を直接密着させ、真空中で、接合面からアルミニウム材料側にオフセットし且つ接合面に平行に電子ビームを照射してアルミニウム材料のみを溶解し、溶着した接合界面に金属間化合物を生成する異種金属接合方法が開示されている。 In Patent Document 1, the joint surfaces of an aluminum material and a steel material are brought into direct contact with each other, and in a vacuum, an electron beam is irradiated parallel to the joint surface offset from the joint surface toward the aluminum material to melt only the aluminum material. , a dissimilar metal joining method is disclosed in which an intermetallic compound is generated at the welded joining interface.
特開2018-094619号公報JP 2018-094619 A
 しかしながら、特許文献1の発明では、異種金属同士を接合するために、真空チャンバを別途用意して、真空チャンバ内で接合作業を行わなければならず、設備コストや手間がかかってしまうという問題がある。 However, in the invention of Patent Document 1, in order to join dissimilar metals, a separate vacuum chamber must be prepared and the joining work must be performed in the vacuum chamber, which causes the problem of equipment costs and labor. be.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、異種材料の部材同士の接合品質を高めることにある。 The present invention has been made in view of this point, and its purpose is to improve the quality of bonding between members made of different materials.
 第1の態様は、互いに対向して配置された第1部材及び第2部材にレーザ光を出射して、該第1部材及び該第2部材を接合するレーザ加工装置であって、前記第1部材は、前記第2部材よりも前記レーザ光の反射率が高い部材で構成されており、第1レーザ光と、該第1レーザ光よりも波長の長い第2レーザ光とを出射するレーザ加工ヘッドと、所定の移動方向に沿って、前記第1部材及び前記第2部材に対して前記レーザ加工ヘッドを相対的に移動させる移動機構とを備え、前記レーザ加工ヘッドは、前記第1部材に対して前記第1レーザ光を出射する一方、前記第2部材に対して前記第2レーザ光を出射することを特徴とする。 A first aspect is a laser processing apparatus that emits a laser beam to a first member and a second member that are arranged to face each other to join the first member and the second member, The member is made of a member having a higher reflectance for the laser beam than the second member, and laser processing for emitting a first laser beam and a second laser beam having a longer wavelength than the first laser beam. a head and a moving mechanism for relatively moving the laser processing head with respect to the first member and the second member along a predetermined movement direction, wherein the laser processing head moves toward the first member; The first laser beam is emitted to the second member, and the second laser beam is emitted to the second member.
 第1の態様では、レーザ加工ヘッドは、短波長の第1レーザ光と、長波長の第2レーザ光とを出射可能に構成される。レーザ加工ヘッドは、所定の移動方向に沿って、第1部材及び第2部材に対して相対的に移動する。第1部材は、第2部材よりもレーザ光の反射率が高い。第1レーザ光は、第1部材に出射される。第2レーザ光は、第2部材に出射される。 In the first aspect, the laser processing head is configured to be capable of emitting a short-wavelength first laser beam and a long-wavelength second laser beam. The laser processing head moves relative to the first member and the second member along a predetermined moving direction. The first member has a higher laser light reflectance than the second member. The first laser beam is emitted to the first member. The second laser beam is emitted to the second member.
 このように、第1部材に対して第1レーザ光を出射し、第2部材に対して第2レーザ光を出射して、第1部材及び第2部材を両方とも溶融させることで、部材毎の溶融時間差を無くすようにしている。これにより、金属同士が混ざりやすくなり、接合面においてアンカー効果を得ることができ、異種材料の部材同士の接合品質を高めることができる。 Thus, by emitting the first laser beam to the first member and emitting the second laser beam to the second member to melt both the first member and the second member, to eliminate the difference in melting time. This makes it easier for the metals to mix with each other, so that an anchor effect can be obtained on the joint surface, and the joint quality between members made of different materials can be improved.
 なお、第1部材及び第2部材の材質の違いにより、接合面に金属間化合物が形成されるおそれがあるが、接合面においてアンカー効果が得られているので、全体として十分な接合強度を確保することができる。 Due to the difference in materials of the first member and the second member, intermetallic compounds may be formed on the joint surface, but since the anchor effect is obtained at the joint surface, sufficient joint strength is ensured as a whole. can do.
 ここで、短波長の第1レーザ光(例えば、波長が600nm以下のレーザ光)は、第1部材(例えば、レーザ光の反射率が鉄などに比べて相対的に高い、銅などの高反射率材料)に対するレーザ吸収率が高い。一方、長波長の第2レーザ光(例えば、波長が800nm以上のレーザ光)は、第2部材(例えば、鉄などの低反射率材料)に対するレーザ吸収率が、第1部材に対するレーザ吸収率よりも高い。 Here, the short-wavelength first laser beam (for example, a laser beam with a wavelength of 600 nm or less) is applied to the first member (for example, a highly reflective material such as copper, which has a relatively high reflectance of laser light compared to iron or the like). high laser absorptivity for the material). On the other hand, the long-wavelength second laser beam (for example, a laser beam with a wavelength of 800 nm or more) has a laser absorptance with respect to the second member (for example, a low reflectance material such as iron) that is higher than the laser absorptance with respect to the first member. is also expensive.
 そこで、第1部材に対して第1レーザ光を出射し、第2部材に対して第2レーザ光を出射するようにすれば、第1レーザ光及び第2レーザ光の出力、ビーム径、出射位置、出射波形などを別々に調整して、最適な溶接条件で接合作業を行うことができる。 Therefore, if the first laser beam is emitted to the first member and the second laser beam is emitted to the second member, the output, beam diameter, and emission of the first laser beam and the second laser beam By adjusting the position, output waveform, etc. separately, it is possible to perform the joining work under the optimum welding conditions.
 また、第1部材及び第2部材を同時に溶融させることで、レーザ吸収率の低い第1部材の溶融速度に合わせてレーザ加工ヘッドの移動速度を遅くする必要が無く、全体として溶接速度を高めることができる。 In addition, by simultaneously melting the first member and the second member, there is no need to reduce the moving speed of the laser processing head in accordance with the melting speed of the first member having a low laser absorption rate, and the welding speed can be increased as a whole. can be done.
 第2の態様は、第1の態様において、前記第2レーザ光は、前記第1レーザ光の少なくとも一部に重なり合う位置に出射されることを特徴とする。 A second aspect is characterized in that, in the first aspect, the second laser beam is emitted to a position overlapping at least part of the first laser beam.
 第2の態様では、第2レーザ光が第1レーザ光の少なくとも一部に重なり合うことで、重なり合う部分において第1部材が溶融しやすくなり、溶接速度を高めることができる。 In the second aspect, the second laser beam overlaps at least a portion of the first laser beam, so that the first member can be easily melted in the overlapping portion, and the welding speed can be increased.
 第3の態様は、第1又は2の態様において、前記第1レーザ光の少なくとも一部は、前記第2レーザ光よりも前記移動方向の前方に出射され、前記第2レーザ光は、前記第1部材及び前記第2部材に跨がって出射されることを特徴とする。 According to a third aspect, in the first or second aspect, at least part of the first laser beam is emitted forward in the moving direction relative to the second laser beam, and the second laser beam The light is emitted across the first member and the second member.
 第3の態様では、第1レーザ光の少なくとも一部が第2レーザ光よりも移動方向の前方に出射される。第1部材及び第2部材に跨がって第2レーザ光が出射される。 In the third aspect, at least part of the first laser beam is emitted forward in the moving direction than the second laser beam. A second laser beam is emitted across the first member and the second member.
 このように、第1レーザ光を第1部材の表面に少なくとも先行して出射することで、第1部材の表面を酸化させる、第1部材の表面を先に一部溶融させる等の表面改質を行い、表面改質が行われた部分に対して第2レーザ光を出射することで、第2レーザ光が第1部材に吸収されやすくなる。 In this way, by emitting the first laser light at least to the surface of the first member in advance, the surface of the first member is oxidized, the surface of the first member is partially melted first, and the like. and emitting the second laser beam to the surface-modified portion, the second laser beam is more likely to be absorbed by the first member.
 これにより、第1レーザ光で第1部材の表面を先行して溶融し、その後、第2レーザ光で第1部材及び第2部材を溶融することで、金属同士が混ざりやすくなり、接合面においてアンカー効果を得ることができる。 As a result, the surface of the first member is melted first with the first laser beam, and then the first and second members are melted with the second laser beam. Anchor effect can be obtained.
 本開示の態様によれば、異種材料の部材同士の接合品質を高めることができる。 According to the aspect of the present disclosure, it is possible to improve the joint quality between members made of dissimilar materials.
図1は、本実施形態1に係るレーザ加工装置の概略構成を示す側面図である。FIG. 1 is a side view showing a schematic configuration of a laser processing apparatus according to Embodiment 1. FIG. 図2は、レーザ光の波長と反射率との関係を示すグラフ図である。FIG. 2 is a graph showing the relationship between the wavelength of laser light and reflectance. 図3は、第1部材及び第2部材のレーザ溶接前の状態を示す平面図である。FIG. 3 is a plan view showing a state before laser welding of the first member and the second member. 図4は、第1部材及び第2部材のレーザ溶接中の状態を示す平面図である。FIG. 4 is a plan view showing a state during laser welding of the first member and the second member. 図5は、第1部材及び第2部材の接合面を一部拡大して示す平面図である。FIG. 5 is a plan view showing a partially enlarged joint surface of the first member and the second member. 図6は、本実施形態2に係る第1部材及び第2部材のレーザ溶接前の状態を示す平面図である。FIG. 6 is a plan view showing a state before laser welding of the first member and the second member according to the second embodiment. 図7は、第1部材及び第2部材のレーザ溶接中の状態を示す平面図である。FIG. 7 is a plan view showing a state during laser welding of the first member and the second member.
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described based on the drawings. It should be noted that the following description of preferred embodiments is essentially merely an example, and is not intended to limit the present invention, its applications, or its uses.
 《実施形態1》
 図1に示すように、レーザ加工装置1は、第1レーザ発振器11と、第2レーザ発振器12と、第1伝送ファイバ15と、第2伝送ファイバ16と、レーザ加工ヘッド20と、ロボット2(移動機構)と、制御部5とを備える。
<<Embodiment 1>>
As shown in FIG. 1, the laser processing apparatus 1 includes a first laser oscillator 11, a second laser oscillator 12, a first transmission fiber 15, a second transmission fiber 16, a laser processing head 20, and a robot 2 ( movement mechanism) and a control unit 5 .
 第1レーザ発振器11は、制御部5からの指令に基づいて、第1レーザ光L1を出力する。第1レーザ光L1は、短波長のレーザ光である。第1レーザ光L1は、波長が600nm以下(例えば、266nm~600nm)の短波長としてのレーザ光である。 The first laser oscillator 11 outputs the first laser beam L1 based on the command from the control unit 5. The first laser beam L1 is a short wavelength laser beam. The first laser light L1 is short-wave laser light with a wavelength of 600 nm or less (for example, 266 nm to 600 nm).
 第1レーザ発振器11とレーザ加工ヘッド20とは、第1伝送ファイバ15で接続される。第1レーザ光L1は、第1伝送ファイバ15を介して、第1レーザ発振器11からレーザ加工ヘッド20に伝送される。 The first laser oscillator 11 and the laser processing head 20 are connected by the first transmission fiber 15 . The first laser beam L1 is transmitted from the first laser oscillator 11 to the laser processing head 20 via the first transmission fiber 15 .
 第2レーザ発振器12は、制御部5からの指令に基づいて、第2レーザ光L2を出力する。第2レーザ光L2は、第1レーザ光L1よりも波長の長い、長波長のレーザ光である。第2レーザ光L2は、波長が800nm以上(例えば、800nm~10800nm程度)の長波長としてのレーザ光である。 The second laser oscillator 12 outputs the second laser light L2 based on the command from the control unit 5. The second laser beam L2 is a long-wavelength laser beam having a longer wavelength than the first laser beam L1. The second laser light L2 is a long wavelength laser light with a wavelength of 800 nm or more (for example, about 800 nm to 10800 nm).
 第2レーザ発振器12とレーザ加工ヘッド20とは、第2伝送ファイバ16で接続される。第2レーザ光L2は、第2伝送ファイバ16を介して、第2レーザ発振器12からレーザ加工ヘッド20に伝送される。 The second laser oscillator 12 and laser processing head 20 are connected by a second transmission fiber 16 . The second laser beam L2 is transmitted from the second laser oscillator 12 to the laser processing head 20 via the second transmission fiber 16 .
 レーザ加工ヘッド20は、第1伝送ファイバ15及び第2伝送ファイバ16から入射される第1レーザ光L1及び第2レーザ光L2をワークWに出射する。 The laser processing head 20 emits the first laser beam L1 and the second laser beam L2 incident from the first transmission fiber 15 and the second transmission fiber 16 to the workpiece W.
 レーザ加工ヘッド20は、第1コリメートレンズ21と、第2コリメートレンズ22と、第1ミラー23と、第2ミラー24と、2軸MEMSミラー25と、ダイクロイックミラー26と、fθレンズ27とを有する。 The laser processing head 20 has a first collimating lens 21, a second collimating lens 22, a first mirror 23, a second mirror 24, a biaxial MEMS mirror 25, a dichroic mirror 26, and an fθ lens 27. .
 第1コリメートレンズ21は、第1伝送ファイバ15の出射端から出射された第1レーザ光L1を平行化する。第1ミラー23は、第1コリメートレンズ21で平行化された第1レーザ光L1を反射して、ワークWに対する第1レーザ光L1の出射位置を変更可能に、ミラー角度を可変とする2軸MEMSミラー25に導光する。 The first collimator lens 21 collimates the first laser beam L1 emitted from the emission end of the first transmission fiber 15. The first mirror 23 reflects the first laser beam L1 collimated by the first collimator lens 21, and is biaxial with a variable mirror angle so that the emission position of the first laser beam L1 with respect to the workpiece W can be changed. The light is guided to the MEMS mirror 25 .
 なお、ここで、第1コリメートレンズ21及び第2コリメートレンズ22を光軸方向に移動することで、第1レーザ光L1及び第2レーザ光L2のビーム径を拡大または縮小するように変更することができる。 Here, by moving the first collimating lens 21 and the second collimating lens 22 in the optical axis direction, the beam diameters of the first laser beam L1 and the second laser beam L2 can be changed to be enlarged or reduced. can be done.
 第2コリメートレンズ22は、第2伝送ファイバ16の出射端から出射された第2レーザ光L2を平行化する。第2ミラー24は、第2コリメートレンズ22で平行化された第2レーザ光L2を反射して、ダイクロイックミラー26に導光する。 The second collimator lens 22 collimates the second laser beam L2 emitted from the emission end of the second transmission fiber 16. The second mirror 24 reflects the second laser beam L2 collimated by the second collimator lens 22 and guides it to the dichroic mirror 26 .
 2軸MEMSミラー25は、第1ミラー23で反射された第1レーザ光L1をさらに反射して、ダイクロイックミラー26に導光する。2軸MEMSミラー25は、ミラーの角度を2軸方向に変更することで、ダイクロイックミラー26に対する第1レーザ光L1の入射位置を変更する。なお、2軸MEMSミラー25の代わりに、2軸のガルバノメータを用いた構成としてもよい。 The biaxial MEMS mirror 25 further reflects the first laser beam L1 reflected by the first mirror 23 and guides it to the dichroic mirror 26 . The biaxial MEMS mirror 25 changes the incident position of the first laser beam L1 with respect to the dichroic mirror 26 by changing the mirror angle in two axial directions. A configuration using a biaxial galvanometer may be used instead of the biaxial MEMS mirror 25 .
 ダイクロイックミラー26は、第2レーザ光L2を透過するとともに、第1レーザ光L1を反射する。ダイクロイックミラー26は、第1レーザ光L1及び第2レーザ光L2をfθレンズ27に導光する。 The dichroic mirror 26 transmits the second laser beam L2 and reflects the first laser beam L1. The dichroic mirror 26 guides the first laser beam L1 and the second laser beam L2 to the fθ lens 27 .
 ダイクロイックミラー26は、第2レーザ光L2を透過するとともに、第1レーザ光L1を反射する。ダイクロイックミラー26は、第1レーザ光L1及び第2レーザ光L2をfθレンズ27に導光する。 The dichroic mirror 26 transmits the second laser beam L2 and reflects the first laser beam L1. The dichroic mirror 26 guides the first laser beam L1 and the second laser beam L2 to the fθ lens 27 .
 fθレンズ27は、第1レーザ光L1及び第2レーザ光L2の入射位置において、第1レーザ光L1及び第2レーザ光L2をそれぞれ、ワークWの面(像面)に対して垂直入射するビームとなるように集光する。fθレンズ27で集光された第1レーザ光L1及び第2レーザ光L2は、互いに平行光(言い換えると主光線が光軸に対して平行な平行光)としてワークWに向かって出射される。 The f.theta. Condensed so that The first laser beam L1 and the second laser beam L2 condensed by the f.theta.
 ここで、ワークWに対する第1レーザ光L1の出射位置は、2軸MEMSミラー25の角度を変更して、fθレンズ27に対する第1レーザ光L1の入射位置を移動させることで、変更可能となっている。 Here, the emission position of the first laser beam L1 with respect to the workpiece W can be changed by changing the angle of the biaxial MEMS mirror 25 to move the incident position of the first laser beam L1 with respect to the fθ lens 27. ing.
 ロボット2は、ロボットアーム3を有する。ロボットアーム3の先端部には、レーザ加工ヘッド20が取り付けられる。ロボットアーム3は、複数の関節部4を有する。 The robot 2 has a robot arm 3. A laser processing head 20 is attached to the tip of the robot arm 3 . The robot arm 3 has multiple joints 4 .
 ロボット2は、制御部5からの指令に基づいて、レーザ加工ヘッド20を移動させ、ワークWに対するレーザ加工ヘッド20の位置を変更する。これにより、ワークWに対する第1レーザ光L1及び第2レーザ光L2の位置を移動させ、レーザ溶接を行う。 The robot 2 moves the laser processing head 20 and changes the position of the laser processing head 20 with respect to the work W based on the command from the control unit 5 . As a result, the positions of the first laser beam L1 and the second laser beam L2 with respect to the workpiece W are moved to perform laser welding.
 制御部5は、第1レーザ発振器11、第2レーザ発振器12、レーザ加工ヘッド20、及びロボット2に接続される。制御部5は、第1レーザ発振器11、第2レーザ発振器12、レーザ加工ヘッド20、及びロボット2の動作を制御する。 The control unit 5 is connected to the first laser oscillator 11, the second laser oscillator 12, the laser processing head 20, and the robot 2. The control unit 5 controls operations of the first laser oscillator 11 , the second laser oscillator 12 , the laser processing head 20 and the robot 2 .
 制御部5は、レーザ加工ヘッド20の移動速度の他に、第1レーザ光L1及び第2レーザ光L2の出力開始や停止、第1レーザ光L1及び第2レーザ光L2の出力強度などを制御する機能も備える。 In addition to the moving speed of the laser processing head 20, the control unit 5 controls the output start and stop of the first laser beam L1 and the second laser beam L2, the output intensity of the first laser beam L1 and the second laser beam L2, and the like. It also has the function to
 ワークWは、第1部材W1と、第2部材W2とを有する。第1部材W1は、レーザ吸収率の低い高反射材料で構成される。第2部材W2は、第1部材W1に比べてレーザ吸収率の高い低反射材料で構成される。 The work W has a first member W1 and a second member W2. The first member W1 is made of a highly reflective material with a low laser absorptance. The second member W2 is made of a low-reflection material with a higher laser absorptance than the first member W1.
 具体的に、図2に示すように、レーザ光の反射率は、ワークWの材質によって異なる。例えば、波長が800nm以上の長波長としての赤外レーザ光を基準とした場合、銅(Cu)、アルミニウム(Al)、金(Au)、銀(Ag)は、鉄(Fe)に比べてレーザ光の波長の反射率(%)が高く、言い換えるとレーザ吸収率の低い高反射材料であることが分かる。一方、鉄(Fe)は、相対的にレーザ光の波長の反射率(%)が低く、レーザ吸収率の高い低反射材料であることが分かる。 Specifically, as shown in FIG. 2, the reflectance of the laser beam varies depending on the material of the workpiece W. For example, when infrared laser light having a long wavelength of 800 nm or more is used as a reference, copper (Cu), aluminum (Al), gold (Au), and silver (Ag) are laser beams compared to iron (Fe). It can be seen that the reflectance (%) of the wavelength of light is high, in other words, it is a highly reflective material with a low laser absorptance. On the other hand, it can be seen that iron (Fe) is a low-reflection material with a relatively low reflectance (%) of the wavelength of the laser light and a high laser absorptivity.
 そこで、本実施形態では、第1部材W1をレーザ吸収率の低い高反射率材料である銅で構成している。また、第2部材W2をレーザ吸収率の高い低反射率材料である鉄で構成している。なお、第1部材W1を金又は銀で構成してもよい。 Therefore, in this embodiment, the first member W1 is made of copper, which is a high reflectance material with a low laser absorption rate. In addition, the second member W2 is made of iron, which is a low reflectance material with a high laser absorptance. Note that the first member W1 may be made of gold or silver.
 第1部材W1及び第2部材W2は、板状に形成される。第1部材W1及び第2部材W2は、互いの側縁部が対向するように、突合せ継手として配置される。 The first member W1 and the second member W2 are plate-shaped. The first member W1 and the second member W2 are arranged as a butt joint such that their side edges face each other.
 〈レーザ加工装置の動作〉
 図3に示すように、レーザ加工装置1は、第1部材W1の側縁部(図3で第1部材W1の突合せ面としての側縁部(上縁部と呼ぶ))と、第2部材W2の側縁部(図3で第2部材W2の突合せ面としての側縁部(下縁部と呼ぶ))に沿ってレーザ光を出射することで、第1部材W1及び第2部材W2を溶接する。
<Operation of laser processing equipment>
As shown in FIG. 3, the laser processing apparatus 1 includes a side edge portion of the first member W1 (a side edge portion (referred to as an upper edge portion) as a butting surface of the first member W1 in FIG. 3), and a second member By emitting a laser beam along the side edge portion of W2 (the side edge portion (referred to as the lower edge portion) as the abutting surface of the second member W2 in FIG. 3), the first member W1 and the second member W2 are separated. Weld.
 具体的に、第1レーザ光L1の出射位置は、第1部材W1における第2部材W2に対向する側縁部(図3で上縁部)に沿った位置に設定される。第2レーザ光L2の出射位置は、第2部材W2における第1部材W1に対向する側縁部(図3で下縁部)に沿った位置に設定される。このとき、第2レーザ光L2の出射位置は、第1レーザ光L1の一部に重なり合うように設定される。 Specifically, the emission position of the first laser beam L1 is set at a position along the side edge (upper edge in FIG. 3) of the first member W1 facing the second member W2. The emission position of the second laser beam L2 is set at a position along the side edge (lower edge in FIG. 3) of the second member W2 facing the first member W1. At this time, the emission position of the second laser beam L2 is set so as to partially overlap the first laser beam L1.
 図4に示すように、レーザ加工装置1は、レーザ加工ヘッド20を所定の溶接方向(図4では左方向)に移動させながら、ワークWに対して第1レーザ光L1及び第2レーザ光L2を出射する。 As shown in FIG. 4, the laser processing apparatus 1 applies a first laser beam L1 and a second laser beam L2 to the workpiece W while moving the laser processing head 20 in a predetermined welding direction (leftward in FIG. 4). is emitted.
 レーザ加工ヘッド20は、第1部材W1に対して第1レーザ光L1を出射する一方、第2部材W2に対して第2レーザ光L2を出射する。つまり、レーザ吸収率の低い高反射率材料である第1部材W1に対して短波長の第1レーザ光L1を出射し、レーザ吸収率の高い低反射率材料である第2部材W2に対して長波長の第2レーザ光を出射する。このとき、第2レーザ光L2の一部を、第1レーザ光L1の一部に重ね合わせた状態で出射する。第2レーザ光L2が第1レーザ光L1に重なり合う部分において、第1部材W1が溶融しやすくなり、溶接速度を高めることができる。 The laser processing head 20 emits the first laser beam L1 to the first member W1, and emits the second laser beam L2 to the second member W2. That is, the short-wavelength first laser beam L1 is emitted to the first member W1, which is a high-reflectance material with a low laser absorptance, and the second member W2, which is a low-reflectance material with a high laser absorptance, is irradiated with the short-wavelength first laser beam L1. A long wavelength second laser beam is emitted. At this time, part of the second laser beam L2 is emitted while being superimposed on part of the first laser beam L1. In the portion where the second laser beam L2 overlaps the first laser beam L1, the first member W1 is easily melted, and the welding speed can be increased.
 このように、第1部材W1及び第2部材W2を同時に溶融させることで、部材毎の溶融時間差を無くすことができる。これにより、金属同士が混ざりやすくなり、接合面においてアンカー効果を得ることができる。 By melting the first member W1 and the second member W2 at the same time in this manner, the melting time difference between the members can be eliminated. This makes it easier for the metals to mix with each other, and an anchor effect can be obtained at the joint surface.
 具体的に、溶融した第1部材W1及び第2部材W2が凝固すると、溶接方向の後方に溶接ビード30が形成される。 Specifically, when the molten first member W1 and second member W2 solidify, a weld bead 30 is formed rearward in the welding direction.
 図5に示すように、溶接ビード30には、第1アンカー部31と、第2アンカー部32とが設けられる。第1アンカー部31は、第1部材W1が溶融して第2部材W2に混ざり合う際に、フック状に形成された部分である。第2アンカー部32は、第2部材W2が溶融して第1部材W1に混ざり合う際に、フック状に形成された部分である。 As shown in FIG. 5, the weld bead 30 is provided with a first anchor portion 31 and a second anchor portion 32 . The first anchor portion 31 is a portion formed in a hook shape when the first member W1 is melted and mixed with the second member W2. The second anchor portion 32 is a portion formed in a hook shape when the second member W2 melts and mixes with the first member W1.
 このように、第1アンカー部31と第2アンカー部32とが互いに係合した状態で接合されることで、第1部材W1と第2部材W2との接合面において、アンカー効果を得ることができる。これにより、第1部材W1及び第2部材W2の接合品質を高めることができる。 In this manner, the first anchor portion 31 and the second anchor portion 32 are joined while being engaged with each other, so that an anchor effect can be obtained at the joint surface between the first member W1 and the second member W2. can. Thereby, the joining quality of the 1st member W1 and the 2nd member W2 can be improved.
 《実施形態2》
 以下、前記実施形態1と同じ部分については同じ符号を付し、相違点についてのみ説明する。
<<Embodiment 2>>
In the following, the same reference numerals are given to the same parts as in the first embodiment, and only the points of difference will be described.
 図6に示すように、第1レーザ光L1の出射位置は、第1部材W1における第2部材W2に対向する側縁部(図6で第1部材W1の突合せ面としての側縁部(上縁部と呼ぶ))に沿った位置に設定される。第2レーザ光L2の出射位置は、第1部材W1及び第2部材W2の側縁部(突合せ面としてのそれぞれの側縁部)に跨がる位置に設定される。また、第1レーザ光L1の出射位置は、第2レーザ光L2よりも溶接方向(図6では左方向)の前方位置に設定される。 As shown in FIG. 6, the emission position of the first laser beam L1 is the side edge portion of the first member W1 facing the second member W2 (the side edge portion serving as the butting surface of the first member W1 in FIG. 6 (upper side edge portion). It is set at a position along the edge)). The emission position of the second laser beam L2 is set at a position straddling the side edge portions of the first member W1 and the second member W2 (the side edge portions as abutting surfaces). Also, the emission position of the first laser beam L1 is set to a position forward of the second laser beam L2 in the welding direction (leftward in FIG. 6).
 図7に示すように、レーザ加工装置1は、レーザ加工ヘッド20を所定の溶接方向に移動させながら、ワークWに対して第1レーザ光L1及び第2レーザ光L2を出射する。 As shown in FIG. 7, the laser processing apparatus 1 emits the first laser beam L1 and the second laser beam L2 to the workpiece W while moving the laser processing head 20 in a predetermined welding direction.
 具体的に、レーザ加工ヘッド20は、少なくとも第1部材W1に対して第1レーザ光L1を出射する一方、第1部材W1及び第2部材W2の両方に跨がって第2レーザ光L2を出射する。 Specifically, the laser processing head 20 emits the first laser beam L1 to at least the first member W1, while emitting the second laser beam L2 across both the first member W1 and the second member W2. emit.
 具体的に、レーザ加工ヘッド20は、高反射率材料である第1部材W1に対するレーザ吸収率の高い第1レーザ光L1を、第1部材W1の表面に先行して出射することで、第1部材W1の表面を酸化させる、第1部材W1の表面を先に一部溶融させる等の表面改質を行う。 Specifically, the laser processing head 20 emits the first laser beam L1, which has a high laser absorptance with respect to the first member W1 made of a high reflectance material, prior to the surface of the first member W1. Surface modification such as oxidizing the surface of the member W1 and partially melting the surface of the first member W1 first is performed.
 そして、レーザ加工ヘッド20は、高反射率材料の第1部材W1における表面改質が行われた部分に対して、その直後に追従して、パワー密度の高い、長波長の第2レーザ光L2を出射することで、高反射率材料の第1部材W1に対するレーザ吸収率の低い第2レーザ光L2が、高反射率材料の第1部材W1に吸収されやすくなる。 Then, the laser processing head 20 immediately follows the surface-modified portion of the first member W1 made of the high-reflectance material, followed by the second laser beam L2 having a high power density and a long wavelength. , the second laser beam L2, which has a low laser absorptance with respect to the first member W1 made of a high reflectance material, is easily absorbed by the first member W1 made of a high reflectance material.
 言い換えると、レーザ加工ヘッド20は、第1レーザ光L1を、第2レーザ光L2よりも溶接方向の前方に出射するし、第2レーザ光L2が吸収され易くするように、第2レーザ光L2に先行して第1レーザ光L1により第1部材W1の表面改質を行い、表面改質された第1部材W1の表面をさらに第2レーザ光L2により出射してレーザ加工する。 In other words, the laser processing head 20 emits the first laser beam L1 further forward in the welding direction than the second laser beam L2, and the second laser beam L2 is arranged so as to facilitate absorption of the second laser beam L2. , the surface of the first member W1 is modified with the first laser beam L1, and the surface of the first member W1 whose surface has been modified is further emitted with the second laser beam L2 for laser processing.
 これにより、第1レーザ光L1で第1部材W1の表面を先行して予熱又は溶融させた後、第2レーザ光L2で第1部材及W1及び第2部材W2を溶融することで、金属同士が混ざりやすくなる。その結果、接合面においてアンカー効果を得ることができ、第1部材W1及び第2部材W2の接合品質を高めることができる。 As a result, after preheating or melting the surface of the first member W1 with the first laser beam L1, the first member W1 and the second member W2 are melted with the second laser beam L2. becomes easier to mix. As a result, an anchor effect can be obtained at the joint surface, and the joint quality of the first member W1 and the second member W2 can be improved.
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
<<Other embodiments>>
The above embodiment may be configured as follows.
 本実施形態では、ロボット2でレーザ加工ヘッド20を移動させ、ワークWに対するレーザ加工ヘッド20の位置を変更するようにしたが、この形態に限定するものではない。例えば、ワークWを移動テーブル(図示省略)に搭載して、ワークWに対してレーザ加工ヘッド20を相対的に移動させる構成であってもよい。 In this embodiment, the robot 2 moves the laser processing head 20 to change the position of the laser processing head 20 with respect to the work W, but the present invention is not limited to this form. For example, the workpiece W may be mounted on a moving table (not shown), and the laser processing head 20 may be moved relative to the workpiece W.
 本実施形態では、1つのレーザ加工ヘッド20から第1レーザ光L1及び第2レーザ光L2を出射するようにした形態について説明したが、この形態に限定するものではない。例えば、第1レーザ光L1を出射するレーザ加工ヘッドと、第2レーザ光L2を出射するレーザ加工ヘッドとを別々に設けた構成であってもよい。 In the present embodiment, the configuration in which the first laser beam L1 and the second laser beam L2 are emitted from one laser processing head 20 has been described, but the present invention is not limited to this configuration. For example, a configuration in which a laser processing head that emits the first laser beam L1 and a laser processing head that emits the second laser beam L2 are provided separately may be used.
 以上説明したように、本発明は、異種材料の部材同士の接合品質を高めることができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 As described above, the present invention is extremely useful and has high industrial applicability because it can provide a highly practical effect of being able to improve the quality of bonding between members made of different materials.
  1  レーザ加工装置
  2  ロボット(移動機構)
 20  レーザ加工ヘッド
 L1  第1レーザ光
 L2  第2レーザ光
  W  ワーク
 W1  第1部材
 W2  第2部材
1 laser processing device 2 robot (moving mechanism)
20 laser processing head L1 first laser beam L2 second laser beam W workpiece W1 first member W2 second member

Claims (3)

  1.  互いに対向して配置された第1部材及び第2部材にレーザ光を出射して、該第1部材及び該第2部材を接合するレーザ加工装置であって、
     前記第1部材は、前記第2部材よりも前記レーザ光の反射率が高い部材で構成されており、
     第1レーザ光と、該第1レーザ光よりも波長の長い第2レーザ光とを出射するレーザ加工ヘッドと、
     所定の移動方向に沿って、前記第1部材及び前記第2部材に対して前記レーザ加工ヘッドを相対的に移動させる移動機構とを備え、
     前記レーザ加工ヘッドは、前記第1部材に対して前記第1レーザ光を出射する一方、前記第2部材に対して前記第2レーザ光を出射する
    ことを特徴とするレーザ加工装置。
    A laser processing device that emits a laser beam to a first member and a second member that are arranged to face each other to join the first member and the second member,
    The first member is made of a member having a higher reflectance of the laser beam than the second member,
    a laser processing head that emits a first laser beam and a second laser beam having a longer wavelength than the first laser beam;
    a moving mechanism that relatively moves the laser processing head with respect to the first member and the second member along a predetermined moving direction;
    A laser processing apparatus, wherein the laser processing head emits the first laser beam to the first member and emits the second laser beam to the second member.
  2.  請求項1において、
     前記第2レーザ光は、前記第1レーザ光の少なくとも一部に重なり合う位置に出射される
    ことを特徴とするレーザ加工装置。
    In claim 1,
    A laser processing apparatus, wherein the second laser beam is emitted to a position overlapping at least a part of the first laser beam.
  3.  請求項1又は2において、
     前記第1レーザ光の少なくとも一部は、前記第2レーザ光よりも前記移動方向の前方に出射され、
     前記第2レーザ光は、前記第1部材及び前記第2部材に跨がって出射される
    ことを特徴とするレーザ加工装置。
    In claim 1 or 2,
    at least part of the first laser beam is emitted forward in the moving direction relative to the second laser beam;
    A laser processing apparatus, wherein the second laser beam is emitted across the first member and the second member.
PCT/JP2023/003161 2022-02-02 2023-02-01 Laser machining apparatus WO2023149453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022014614 2022-02-02
JP2022-014614 2022-02-02

Publications (1)

Publication Number Publication Date
WO2023149453A1 true WO2023149453A1 (en) 2023-08-10

Family

ID=87552519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003161 WO2023149453A1 (en) 2022-02-02 2023-02-01 Laser machining apparatus

Country Status (1)

Country Link
WO (1) WO2023149453A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092944A (en) * 2009-10-27 2011-05-12 Panasonic Corp Fusion welding method and fusion welding apparatus
WO2016181695A1 (en) * 2015-05-11 2016-11-17 株式会社日立製作所 Welding device and welding quality inspection method
JP2021028072A (en) * 2019-08-09 2021-02-25 株式会社ナ・デックスプロダクツ Laser process system and measurement device
JP2021533999A (en) * 2018-08-14 2021-12-09 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Laser Machining Systems and Methods for Machining Workpieces Using Laser Beams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092944A (en) * 2009-10-27 2011-05-12 Panasonic Corp Fusion welding method and fusion welding apparatus
WO2016181695A1 (en) * 2015-05-11 2016-11-17 株式会社日立製作所 Welding device and welding quality inspection method
JP2021533999A (en) * 2018-08-14 2021-12-09 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Laser Machining Systems and Methods for Machining Workpieces Using Laser Beams
JP2021028072A (en) * 2019-08-09 2021-02-25 株式会社ナ・デックスプロダクツ Laser process system and measurement device

Similar Documents

Publication Publication Date Title
US20210046585A1 (en) Laser-beam welding method and laser-beam welding apparatus
US6603092B2 (en) Hybrid electric-arc/laser welding process, especially for the welding of pipes or motor-vehicle components
US20020008094A1 (en) Laser/arc hybrid welding process with appropriate gas mixture
KR20040073591A (en) Method and apparatus for increasing welding rates for high aspect ratio welds
JP4378634B2 (en) Butt laser welding method and butt laser welding apparatus
JP2009269036A (en) Laser welding method
JP6391412B2 (en) Laser welding method and laser welding apparatus
JP3293401B2 (en) Laser welding method
WO2023149453A1 (en) Laser machining apparatus
WO2020246504A1 (en) Laser welding device and laser welding method using same
JP2004525766A (en) Laser / arc hybrid welding method and apparatus using power diode laser
US20230013501A1 (en) Laser welding method and laser welding device
JPS57106489A (en) Laser joining method
JP3430834B2 (en) Welding method and welding apparatus using the same
JP5000982B2 (en) Laser welding method for differential thickness materials
JPH10225782A (en) Combined welding method by laser and arc
JP2023112731A (en) Laser machining device
JP2023112732A (en) Laser machining device
JP2023112734A (en) Laser machining method
JP2023112733A (en) Laser machining method
WO2023149451A1 (en) Laser processing method
JPH10202379A (en) Welding structure
KR20170073142A (en) Bonding method of sandwich plates
JP2002137077A (en) Method of joining aluminum material to iron material
WO2023149452A1 (en) Laser welding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749769

Country of ref document: EP

Kind code of ref document: A1