WO2023149036A1 - Floating body and ammonia detoxification method - Google Patents

Floating body and ammonia detoxification method Download PDF

Info

Publication number
WO2023149036A1
WO2023149036A1 PCT/JP2022/040807 JP2022040807W WO2023149036A1 WO 2023149036 A1 WO2023149036 A1 WO 2023149036A1 JP 2022040807 W JP2022040807 W JP 2022040807W WO 2023149036 A1 WO2023149036 A1 WO 2023149036A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
ammonia
floating body
line
water
Prior art date
Application number
PCT/JP2022/040807
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 山田
伸 上田
祐輔 渡辺
宏幸 高波
雄一 山本
勇作 那須
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023149036A1 publication Critical patent/WO2023149036A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J1/00Arrangements of installations for producing fresh water, e.g. by evaporation and condensation of sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • TECHNICAL FIELD The present disclosure relates to a floating body and an ammonia abatement method. This application claims priority to Japanese Patent Application No. 2022-015611 filed in Japan on February 3, 2022, the contents of which are incorporated herein.
  • Patent Document 1 a sealed duct that communicates with the compartment is provided, water is sprayed in this duct, ammonia is absorbed by water in the duct, and the inside of the compartment is made negative pressure. Techniques have been proposed to prevent ammonia from leaking into the In Patent Document 1, the water in which ammonia has been absorbed is returned to the water tank and circulated through the sprinkler nozzle again, or is discharged to another treatment facility.
  • a method of detoxifying water that has absorbed ammonia for example, a method of decomposing ammonia using an oxidizing agent such as sulfuric acid or hydrochloric acid or a neutralizing agent is known.
  • an oxidizing agent such as sulfuric acid or hydrochloric acid or a neutralizing agent
  • Such chemicals may be difficult to obtain at ports of call, mooring sites, and the like, and using a large amount of chemicals may increase costs.
  • the present disclosure has been made in view of the above circumstances, and provides a floating body and an ammonia detoxification method that can easily detoxify ammonia while suppressing cost increases.
  • the floating body includes a floating body main body that floats on seawater, an ammonia line provided in the floating body main body through which ammonia water flows, and a water intake section that takes in the seawater into the floating body main body.
  • a seawater introduction line for introducing the seawater taken from the water intake section into the floating body body; and seawater containing sodium hypochlorite by subjecting the seawater introduced by the seawater introduction line to electrolysis.
  • An electrolysis unit that generates an electrolytic solution, a denitrification reaction unit that reacts a mixture of ammonia water flowing through the ammonia line and the seawater electrolyte generated in the electrolysis unit, and the denitrification reaction unit.
  • a discharge unit for discharging the treated liquid after reaction into the seawater surrounding the floating body.
  • an ammonia detoxification method is a method for detoxifying ammonia water of a floating body floating in seawater, wherein the seawater around the floating body is taken in and electrolyzed. and a denitrification reaction step of reacting the sodium hypochlorite in the seawater electrolyte with the ammonia in the ammonia water.
  • FIG. 1 is a side view of a floating body according to an embodiment of the present disclosure
  • FIG. 1 is a diagram showing a schematic configuration of an ammonia decomposition device in a floating body according to an embodiment of the present disclosure
  • FIG. 4 is a flow chart showing an ammonia detoxification method in an embodiment of the present disclosure
  • FIG. 3 is a diagram corresponding to FIG. 2 in a first modified example of the embodiment of the present disclosure
  • FIG. 4 is a diagram showing a schematic configuration of an ammonia decomposition device in a second modified example of the embodiment of the present disclosure
  • FIG. 1 is a side view of a floating body according to an embodiment of the present disclosure
  • FIG. Structure of floating body
  • the floating body 1 of this embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, a piping system 20, a compartment 30, an ammonia recovery section 60, A recovered ammonia water tank 70 and an ammonia decomposition device 80 are provided.
  • the floating body 1 of the present embodiment will be described as an example of a vessel that can be navigated by a main engine or the like.
  • the ship type of the floating body 1 is not limited to a specific ship type. Examples of ship types of the floating body 1 include liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships. In this embodiment, a case where the floating body 1 is a ship will be described, but the floating body 1 is not limited to a ship, and may be an FSU (Floating Storage Unit), an FSRU (Floating Storage and Regasification Unit), or the like that cannot be navigated by a main engine or the like. good too.
  • FSU Floating Storage Unit
  • FSRU Floating Storage and Regasification Unit
  • the floating body main body 2 is formed so as to float on seawater.
  • the floating body main body 2 has a pair of shipboard sides 5A and 5B and a ship bottom 6 that form its outer shell.
  • the shipboard sides 5A, 5B are provided with a pair of shipboard skins forming the starboard and port sides, respectively.
  • the ship's bottom 6 includes a ship's bottom shell plate that connects the sides 5A and 5B.
  • the pair of sides 5A and 5B and the ship bottom 6 form a U-shaped outer shell of the floating body 2 in a cross section perpendicular to the fore-aft direction FA.
  • the floating body body 2 further includes an upper deck 7 which is a through deck arranged in the uppermost layer.
  • the superstructure 4 is formed on this upper deck 7 .
  • a living quarter and the like are provided in the upper structure 4 .
  • a cargo space (not shown) for loading cargo is provided on the bow 3a side in the fore-aft direction FA from the superstructure 4. As shown in FIG.
  • the combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the floating body main body 2 described above.
  • Examples of the combustion device 8 include an internal combustion engine used as a main engine for propelling the floating body 1, an internal combustion engine used for power generation equipment that supplies electricity to the ship, a boiler that generates steam as a working fluid, and the like.
  • the combustion device 8 of this embodiment is also a heat generating device that generates heat by burning fuel.
  • the ammonia tank 10 is a tank that stores liquid ammonia (in other words, liquefied ammonia).
  • the ammonia tank 10 is installed on the upper deck 7 on the stern 3b side of the superstructure 4. As shown in FIG.
  • the arrangement of the ammonia tank 10 is an example, and is not limited to the upper deck 7 on the stern 3b side of the superstructure 4.
  • the ammonia tank 10 of this embodiment stores liquefied ammonia as fuel for the combustion device 8 .
  • the piping system 20 connects the combustion device 8 and the ammonia tank 10 and is configured to be able to supply at least ammonia stored in the ammonia tank 10 to the combustion device 8 .
  • the compartment 30 is a compartment that houses ammonia-related equipment.
  • the compartment 30 in this embodiment is provided on the upper deck 7 on the bow 3 a side of the superstructure 4 .
  • the piping system 20 described above connects the combustion device 8 and the ammonia tank 10 via the section 30 .
  • the ammonia-related equipment means all equipment that handles ammonia, and examples thereof include ammonia fuel equipment that handles ammonia and ammonia cargo equipment that handles ammonia as cargo.
  • compartment 30 containing ammonia-fueled equipment it may be compartment 30 containing ammonia cargo equipment.
  • the ammonia recovery unit 60 causes water to absorb the ammonia to be recovered and recovers it as recovered ammonia water (ammonia water).
  • the ammonia recovery unit 60 of this embodiment is arranged on the upper deck 7 on the stern 3b side of the ammonia tank 10 .
  • a so-called scrubber can be used, in which water is injected into a gas containing ammonia so that the water absorbs the ammonia.
  • Water for example, fresh water stored in a water tank (not shown) provided in the floating body 2 or water (for example, seawater) taken in from outside the floating body is supplied to the ammonia recovery unit 60. be.
  • ammonia recovered by the ammonia recovery unit 60 examples include ammonia that has leaked into the compartment 30 and ammonia discharged from the piping system 20 due to fuel purging. Note that the ammonia recovery unit 60 is not limited to the above configuration and arrangement as long as it can absorb ammonia into water and recover it as recovered ammonia water.
  • the recovered ammonia water tank 70 stores the recovered ammonia water recovered by the ammonia recovery unit 60 .
  • the recovered ammonia water tank 70 in this embodiment is arranged in the floating body main body 2 below the upper deck 7 where the ammonia recovery section 60 is installed.
  • the arrangement of the recovered ammonia water tank 70 is not limited to the above arrangement as long as the arrangement is such that the ammonia recovered by the ammonia recovery unit 60 can be recovered as recovered ammonia water.
  • FIG. 2 is a diagram showing a schematic configuration of an ammonia decomposition device in a floating body according to an embodiment of the present disclosure.
  • the ammonia decomposition device 80 is a device that decomposes ammonia contained in ammonia water to render it harmless.
  • the ammonia decomposition apparatus 80 includes an ammonia line 81, a water intake section 82, a seawater introduction line 83, an electrolysis section 84, a line mixer 85, a denitrification reaction tank (denitrification reaction section) 86, and a discharge section 87. , an exhaust heat recovery section 88 and a dilution line 89 .
  • the ammonia line 81 is provided inside the floating body main body 2 . Recovered ammonia water (ammonia water) flows through this ammonia line 81 .
  • the ammonia line 81 of the present embodiment is a pipe that guides the recovered ammonia water stored in the recovered ammonia water tank 70 described above to the electrolysis unit 84 .
  • the water intake section 82 takes seawater around the floating body 2 into the floating body 2 .
  • the water intake section 82 includes a water intake 90 , a seawater pump 91 , and a marine product adhesion prevention treatment device 92 .
  • the water intake 90 opens below the light cargo draft line (not shown) in the outer plate of the floating body body 2 . That is, the water intake 90 is always located below the sea surface.
  • the seawater pump 91 sends seawater from the water intake 90 into the floating body body 2 .
  • the seawater sent out by the seawater pump 91 is branched to the marine product adhesion prevention treatment device 92 and the seawater introduction line 83, respectively.
  • the marine product adhesion prevention treatment device 92 performs a marine product adhesion prevention treatment on the taken seawater.
  • seawater is electrolyzed to generate sodium hypochlorite or copper ions, and these hypochlorites are added to seawater taken from the water intake port 90.
  • Treatments that include acidic sodium or copper ions can be exemplified.
  • the seawater introduction line 83 introduces the seawater taken by the water intake section 82 into the floating body main body 2 .
  • the seawater introduction line 83 of the present embodiment is a pipe that supplies seawater to at least the electrolysis section 84 .
  • the seawater introduction line 83 has a plurality of branch lines 93 , and these branch lines 93 allow seawater to be supplied to equipment other than the ammonia decomposition device 80 .
  • the seawater supplied to the facilities other than the ammonia decomposition apparatus 80 via the plurality of branch lines 93 is used as cooling water or the like, and then is discharged from the discharge section 87 via the confluence line 94 and the dilution line 89 to be described later.
  • the water is discharged to the outside of the main body 2 .
  • An exhaust heat recovery section 88 is provided in the middle of the seawater introduction line 83 .
  • the exhaust heat recovery part 88 recovers the exhaust heat of the heat-generating equipment provided inside the floating body body 2 .
  • exhaust heat from the combustion device 8 as a heat generating device is recovered to heat the seawater flowing through the seawater introduction line 83 .
  • Cooling water (for example, fresh water) for the combustion device 8 and seawater flowing through the seawater introduction line 83 are heat-exchanged. As a result, the temperature of the seawater flowing through the seawater introduction line 83 does not drop below 10° C. regardless of the seawater temperature in the water intake section 82 .
  • a cooling water pump 102 is provided in a cooling water line 101 through which cooling water of the combustion device 8 flows, and the cooling water circulates between the exhaust heat recovery unit 88 and the combustion device 8 .
  • the cooling water line 101 is also connected to a cooling water branch line 103 for circulating cooling water to heat-generating equipment other than the combustion device 8, so that exhaust heat from other heat-generating equipment can also be recovered.
  • the electrolysis unit 84 electrolyzes the seawater introduced into the floating body main body 2 through the seawater introduction line 83 to generate a seawater electrolyte containing sodium hypochlorite.
  • the electrolyzer 84 of this embodiment includes an electrolytic device 95 , a storage tank 96 , a circulation line 97 and a circulation pump 98 .
  • the electrolytic device 95 electrolyzes seawater to generate a seawater electrolyte. Specifically, seawater is electrolyzed by disposing a positive electrode and a negative electrode (not shown) in seawater and applying a voltage between the positive electrode and the negative electrode. This electrolysis produces sodium hypochlorite from seawater. The seawater electrolyte electrolyzed by the electrolytic device 95 is introduced into the storage tank 96 .
  • the storage tank 96 is capable of storing the seawater electrolyte produced by the electrolytic device 95 .
  • the storage tank 96 of the present embodiment is connected to a seawater introduction line 83 and is injected with seawater from the seawater introduction line 83 in addition to the seawater electrolyte from the electrolytic device 95 .
  • the circulation line 97 circulates the seawater electrolyte between the electrolytic device 95 and the storage tank 96 . That is, the circulation line 97 guides the seawater electrolyte stored in the storage tank 96 to the electrolyzer 95 and guides the seawater electrolyte electrolyzed by the electrolyzer 95 to the storage tank 96 .
  • the electrolysis section 84 of this embodiment further includes an electrolyte line 99 for guiding the seawater electrolyte stored in the storage tank 96 to the line mixer 85 .
  • the electrolytic solution line 99 is branched and connected to the circulation line 97 .
  • the circulation pump 98 is provided in the middle of the circulation line 97 .
  • the circulation pump 98 sends out the seawater electrolyte in the circulation line 97 toward the electrolytic device 95 and the line mixer 85 .
  • part of the seawater electrolyte in the circulation line 97 circulates between the electrolytic device 95 and the storage tank 96, and the rest of the seawater electrolyte in the circulation line 97 is transferred to the electrolyte line 99.
  • a valve (not shown) whose opening degree can be adjusted from fully closed to fully opened is provided in the middle of the electrolyte line 99, and the flow rate of the seawater electrolyte supplied to the line mixer 85 can be adjusted. It's becoming
  • the seawater electrolyte stored in the storage tank 96 can be circulated to be electrolyzed again by the electrolysis device 95. Therefore, it is possible to obtain a seawater electrolyte with a higher concentration of sodium hypochlorite than the seawater electrolyte that has been electrolyzed by the electrolytic device 95 only once.
  • the configuration is not limited to this.
  • the seawater electrolyte stored in the storage tank 96 may be led to the line mixer 85 without passing through the circulation line 97 .
  • another pump may be provided in the electrolyte line 99 for sending the seawater electrolyte to the line mixer 85 .
  • the line mixer 85 stirs the mixed solution of the seawater electrolyte generated by the electrolysis unit 84 and the recovered ammonia water supplied by the ammonia line 81 .
  • the mixed liquid stirred by the line mixer 85 is introduced into the denitrification reaction tank 86 .
  • the denitrification reaction tank 86 causes the mixture of the recovered ammonia water flowing through the ammonia line 81 and the seawater electrolyte produced in the electrolysis unit 84 to react. More specifically, as shown in formula (1), the denitrification reaction tank 86 mixes ammonia (2NH 3 ) in the recovered ammonia water and sodium hypochlorite (3NaClO) in the seawater electrolyte with an acidic It decomposes into nitrogen (N 2 ), sodium chloride (3NaCl) and water (3H 2 O) by reacting under ambient conditions. That is, the denitrification reaction is performed in the denitrification reaction tank 86 . 2NH 3 +3NaClO ⁇ N 2 +3NaCl+3H 2 O (1)
  • Nitrogen generated by the denitrification reaction in the denitrification reaction tank 86 is released into the atmosphere via, for example, a vent post (not shown) extending from the upper deck 7 .
  • a vent post not shown
  • the sodium chloride and water produced by the denitrification reaction in the denitrification reaction tank 86 are discharged to the discharge section 87 as treated liquid.
  • the above-described denitrification reaction tank 86 may be connected to a chemical liquid tank 100 (a pH adjusting unit) for charging chemicals.
  • a chemical liquid tank 100 a pH adjusting unit
  • the operator may use a tank on hand to pour the chemical into the denitrification reaction tank 86.
  • FIG. The pH value of the mixed water in this embodiment is adjusted to a value at which the alkaline earth metal contained in the seawater does not precipitate.
  • calcium (Ca) and magnesium (Mg) can be exemplified as alkaline earth metals contained in seawater.
  • two types of intermediates chloramines
  • NH 2 Cl and NHC1 2 are produced in the intermediate process, and these NH 2 Cl and NHC1 2
  • the two intermediates react to form nitrogen gas (N 2 ) and hydrochloric acid (3HCl). That is, since hydrochloric acid is generated, it is possible to continue the denitrification reaction in an acidic environment without adding additional chemicals to the mixed water in the denitrification reaction tank 86 .
  • the dilution line 89 allows part of the seawater introduced into the floating body body 2 by the seawater introduction line 83 to join the treated liquid discharged from the denitrification reaction tank 86 . That is, the treated liquid is diluted with the seawater joined by the dilution line 89 .
  • the seawater flowing through the dilution line 89 of the present embodiment includes the seawater branched from the seawater introduction line 83 described above, and the seawater branched by the branch line 93 and supplied to other equipment other than the ammonia decomposition device 80 to be used for cooling. It is seawater that has been
  • the discharge part 87 discharges the treated liquid that has been reacted in the denitrification reaction tank 86 into the surrounding seawater on which the floating body main body 2 floats.
  • the discharge section 87 of the present embodiment discharges the treated liquid diluted with the seawater flowing through the dilution line 89 .
  • FIG. 3 is a flow chart showing an ammonia detoxification method in an embodiment of the present disclosure.
  • the ammonia detoxification method of this embodiment includes an exhaust heat recovery step S11, a generation step S12, and a denitrification reaction step S13.
  • the exhaust heat of the equipment inside the floating body 2 is recovered using the taken seawater. That is, in this embodiment, the temperature of the seawater introduced into the floating body main body 2 through the seawater introduction line 83 is raised by the exhaust heat recovery section 88 .
  • the seawater whose temperature has been raised in the exhaust heat recovery step S11 is electrolyzed to generate a seawater electrolyte containing sodium hypochlorite.
  • the seawater electrolyte is generated by the electrolysis unit 84 described above, and the seawater electrolyte is circulated between the storage tank 96 and the electrolyzer 95 to increase the concentration of sodium hypochlorite.
  • the denitrification reaction step S13 sodium hypochlorite in the seawater electrolyte and ammonia in the recovered ammonia water are reacted. Further, in the denitrification reaction step S13, the pH of the mixed solution of the seawater electrolyte and the ammonia water is lowered to a range in which the alkaline earth metal contained in the seawater does not precipitate. That is, in the present embodiment, a pH adjuster is added to the mixed liquid in the denitrification reaction tank 86 to adjust the pH value to a value suitable for the denitrification reaction, so that sodium hypochlorite and ammonia are mixed. The reaction is carried out in the denitrification reactor 86 . Then, in this embodiment, the treated liquid after the reaction in the denitrification reaction step S13 is diluted with the seawater introduced into the floating body 2 and discharged into the surrounding seawater where the floating body 2 floats.
  • seawater taken from the water intake section 82 is introduced into the floating body main body 2 floating on seawater through the seawater introduction line 83, and the seawater is electrolyzed by the electrolysis section 84 to produce hypochlorous acid. It produces a seawater electrolyte containing soda. Furthermore, the mixture of ammonia water and seawater electrolyte flowing through the ammonia line 81 is caused to react in the denitrification reaction tank 86, and the treated liquid after the reaction is discharged by the discharge part 87 to the surrounding area where the floating body 2 floats.
  • the seawater electrolyte produced by electrolyzing seawater as described above has an accelerated oxidation catalyst (Fenton catalyst) such as iron and manganese. Contains transition metal ions that are effective in increasing the nitrogen reaction rate. Therefore, by decomposing ammonia in the recovered ammonia water using a seawater electrolyte obtained by electrolyzing the taken seawater, ammonia can be decomposed more efficiently than when sodium hypochlorite is used alone.
  • the seawater introduced into the floating body main body 2 through the seawater introduction line 83 is heat-exchanged with the cooling water of the combustion device 8, which is a heat generating device, so that exhaust heat from the combustion device 8 is released. are collecting.
  • a seawater introduction line 83 guides the seawater heat-exchanged by the exhaust heat recovery unit 88 to the electrolysis unit 84 .
  • the temperature of the seawater taken from the water intake section 82 can be increased, so even if the temperature of the seawater around the floating body 2 is low, sodium hypochlorite is produced by the electrolysis section 84. A decrease in efficiency can be suppressed.
  • the water intake section 82 further includes the marine product adhesion prevention treatment device 92, and the seawater taken in by the marine product adhesion prevention treatment device 92 is contaminated with marine products. Adhesion prevention treatment is applied. As a result, it is possible to prevent marine products from adhering to the inner surface of the water intake 90 and the inner surface of the seawater introduction line 83 and clogging the flow path for taking in seawater.
  • the marine product adhesion prevention treatment device 92 is configured to prevent adhesion of marine products by sodium hypochlorite generated by electrolyzing seawater, it is intended to prevent adhesion of marine products. Since the concentration can be set to that of sodium hypochlorite, it is possible to suppress the occurrence of corrosion in piping for circulating seawater, such as the seawater introduction line 83 and the branch line 93, caused by sodium hypochlorite.
  • the electrolysis unit 84 uses the seawater electrolyte generated by electrolyzing seawater with the electrolyzer 95 as a storage tank capable of storing the seawater electrolyte through the circulation line and the circulation pump. It is circulated between the electrolytic device 95 and the electrolytic device 95 . Thereby, the concentration of sodium hypochlorite contained in the seawater electrolyte can be increased as necessary. Therefore, since a seawater electrolyte containing sodium hypochlorite having a concentration corresponding to the ammonia concentration of the recovered ammonia water can be generated, the denitrification reaction in the denitrification reaction tank 86 can be efficiently performed.
  • the line mixer 85 stirs the mixed liquid of the seawater electrolyte and the recovered ammonia water, and introduces the stirred mixed liquid into the denitrification reaction tank 86 .
  • the reaction speed of the denitrification reaction in the denitrification reaction tank 86 can be increased.
  • part of the seawater introduced into the floating body body 2 through the seawater introduction line 83 joins the treated liquid through the dilution line 89 .
  • the treated liquid can be diluted with the seawater in the dilution line 89 and then discharged. Therefore, even if ammonia unintentionally remains in the treated liquid, the impact on the surrounding environment can be reduced.
  • the pH of the liquid mixture stored in the denitrification reaction tank 86 can be adjusted to a lower side by the chemical liquid tank 100, which is the pH adjusting section. Moreover, the pH of the mixed solution of the seawater electrolyte and the recovered ammonia water is lowered to a range in which the alkaline earth metal ions contained in the seawater do not react with ammonia and precipitate as hydroxides. For example, when the seawater electrolyte and the recovered ammonia water are reacted in an alkaline environment, alkaline earth metal ions such as calcium and magnesium contained in the seawater react with ammonia to generate hydroxide scale, which leads to damage to the piping. Although there is a possibility of clogging, the generation of such hydroxide scale can be suppressed by adjusting the pH of the mixed liquid stored in the denitrification reaction tank 86 to a lower side.
  • FIG. 4 is a diagram corresponding to FIG. 2 in the first modified example of the embodiment of the present disclosure.
  • the cooling water of the combustion device 8 as a heat generating device and the seawater flowing through the seawater introduction line 83 are heat-exchanged by the exhaust heat recovery unit 88, thereby recovering the exhaust heat of the combustion device 8.
  • the case of collection was explained.
  • the heat-generating equipment is not limited to the combustion device 8 cooled by cooling water.
  • a cooling system 109 for the heat generating device 108 is connected in the middle of the seawater introduction line 83. Then, the seawater of the seawater introduction line 83 may be circulated through the cooling system 109 .
  • a seawater branch line 110 for supplying seawater to heat generating equipment (not shown) other than the heat generating equipment 108 is also connected to the seawater introduction line 83. This example shows a case where the waste heat of is also recoverable.
  • the cooling system 109 of the heat-generating equipment 108 constitutes the exhaust heat recovery section of the present disclosure.
  • FIG. 5 is a diagram showing a schematic configuration of an ammonia decomposition device in a second modified example of the embodiment of the present disclosure.
  • the denitrification reaction section for reacting the mixture of the recovered ammonia water and the seawater electrolyte is not limited to the denitrification reaction tank 86 .
  • the denitrification reaction tank 86 of the above embodiment can be omitted, the number of parts can be reduced, and the increase in size of the floating body 1 can be suppressed.
  • the recovered ammonia water and sodium hypochlorite in the seawater electrolyte stored in the storage tank 96 are reacted.
  • the place where it is made is not limited to the storage tank 96 as long as it is inside the electrolysis section 84 .
  • the recovered ammonia water may be supplied to the electrolytic device 95 and the recovered ammonia water and sodium hypochlorite may be reacted in the electrolytic device 95 .
  • ammonia water that has leaked into the section 30 and the ammonia water that is recovered when the piping system 20 is purged are exemplified as the ammonia water.
  • the ammonia water is not limited to the above-described recovered ammonia water, and any ammonia water may be used as long as it exists in the floating body main body 2 and has ammonia absorbed therein.
  • the exhaust heat generated within the floating body body 2 is used to raise the temperature of the seawater.
  • the temperature of the seawater may be raised without using the exhaust heat, such as by providing a dedicated heat source.
  • the marine product adhesion prevention processing device 92 may be provided as necessary. For example, if maintenance of adhering marine products is easy, the marine product adhesion prevention treatment device 92 may be omitted.
  • the line mixer 85 for stirring the mixture of seawater electrolyte and ammonia water is provided.
  • the line mixer 85 may be provided as required.
  • the line mixer 85 may be omitted if there is no need to perform stirring.
  • the electrolysis unit 84 circulates the seawater electrolyte with the circulation line 97 and the circulation pump 98, and repeats electrolysis, thereby increasing the concentration of sodium hypochlorite.
  • the configuration for increasing the concentration of sodium hypochlorite is not limited to repeated electrolysis.
  • the concentration of sodium hypochlorite may be increased by a configuration different from the configuration in which repeated electrolysis is performed, such as increasing the current (the amount of NaClO generated) by increasing the applied voltage.
  • seawater that has been used in the floating body body 2 is used to dilute the treated liquid.
  • the seawater that dilutes the treated liquid is not limited to the seawater that has been used within the floating body 2 .
  • seawater taken in from the water intake 90 may be directly combined with the treated liquid.
  • the floating body 1 includes a floating body body 2 floating in seawater, an ammonia line 81 provided in the floating body body 2 through which ammonia water flows, and the seawater in the floating body body 2.
  • a water intake section 82 for taking in water a seawater introduction line 83 for introducing the seawater taken from the water intake section 82 into the floating body main body 2, and subjecting the seawater introduced by the seawater introduction line 83 to electrolysis.
  • the electrolysis part 84 that generates a seawater electrolyte containing sodium hypochlorite, a mixture of ammonia water flowing through the ammonia line 81 and the seawater electrolyte generated in the electrolysis part 84 reacts.
  • the floating body 1 examples include ships such as liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships, FSUs (Floating Storage Units), FSRUs (Floating Storage and Regasification Units), and the like.
  • the floating body 1 is the floating body 1 of (1), in which the heat generating device 8 that is provided in the floating body body 2 and generates heat, and the seawater introduction line 83 connect the floating body body 2 and an exhaust heat recovery unit 88 that recovers exhaust heat from the heat-generating equipment 8 by exchanging heat with the seawater introduced therein, and the seawater introduction line 83 recovers exhaust heat in the exhaust heat recovery unit 88.
  • the seawater whose temperature has risen is guided to the electrolysis section 84 .
  • the heat-generating equipment 8 include combustion devices such as internal combustion engines and boilers.
  • the floating body 1 is the floating body 1 of (1) or (2), and the water intake section 82 performs a marine product adhesion prevention treatment on the seawater taken in.
  • a marine product adhesion prevention treatment device 92 is provided.
  • the floating body 1 is any one of (1) to (3), and the electrolysis unit 84 electrolyzes the seawater to produce the seawater electrolyte and a reservoir 96 capable of storing the seawater electrolyte produced by the electrolyzer 95, and the seawater electrolyte is circulated between the electrolyzer 95 and the reservoir 96.
  • a circulation line 97 and a circulation pump 98 provided in the circulation line 97 are provided. Thereby, the concentration of sodium hypochlorite contained in the seawater electrolyte can be increased as necessary.
  • the floating body 1 is any one of (1) to (4), wherein the seawater electrolyte produced by the electrolysis section 84 and the ammonia line A line mixer 85 is provided for stirring the mixed liquid with ammonia water supplied by 81 , and the mixed liquid stirred by the line mixer 85 is introduced into the denitrification reaction tank 86 . Thereby, the reaction speed of the denitrification reaction in the denitrification reaction tank 86 can be increased.
  • the floating body 1 is any one of (1) to (4), wherein the electrolysis section 84 includes the denitrification reaction section, and the ammonia line 81 supplies the ammonia water to the electrolysis section 84 .
  • the denitrification reaction section 86 is provided separately from the electrolysis section 84, it is possible to suppress an increase in the number of parts and to suppress an increase in the size of the floating body 1.
  • the floating body 1 is any one of (1) to (6), wherein the seawater introduced into the floating body main body 2 by the seawater introduction line 83 A dilution line 89 is provided, part of which joins the treated liquid. This allows the treated liquid to be diluted with the seawater in the dilution line 89 before being discharged.
  • the floating body 1 is any one of (1) to (7), and the pH of the mixed liquid in the denitrification reaction tank 86 is adjusted to the lower side.
  • a pH adjustment unit 100 is provided.
  • the pH adjuster 100 a chemical liquid tank can be exemplified. Thereby, it is possible to suppress the generation of hydroxide scale due to the reaction between the alkaline earth metal ions contained in the seawater electrolyte and the ammonia.
  • the method for removing ammonia harm is a method for removing ammonia water from a floating body 1 floating in seawater, and the seawater around the floating body 1 is taken in to generate electricity.
  • a generation step S12 of generating a seawater electrolyte containing sodium hypochlorite by decomposition, and a denitrification reaction step S13 of reacting the sodium hypochlorite of the seawater electrolyte with the ammonia of the ammonia water. include.
  • the ammonia removal method is the ammonia removal method of (9), in which exhaust heat is recovered from facilities in the floating body 1 using the intake seawater.
  • a step S11 is included, and in the generation step S12, the seawater from which exhaust heat is recovered in the exhaust heat recovery step S11 is electrolyzed.
  • the temperature of the seawater taken in can be raised using the exhaust heat of the equipment in the floating body 1, so that the seawater can be efficiently electrolyzed in the generation step S12.
  • the ammonia detoxification method is the ammonia detoxification method of (9) or (10), wherein in the denitrification reaction step, the seawater electrolyte and the ammonia water are mixed.
  • the pH of the liquid is lowered to a range in which the alkaline earth metal ions contained in the seawater do not react with the ammonia and precipitate as hydroxides.
  • alkaline earth metal ions contained in seawater react with ammonia to generate hydroxide scale, which may clog the pipes. can.
  • Dilution line 90 Water intake port 91 Seawater pump 92 Marine product adhesion prevention device 93 Branch line 95 Electrolysis device 96 Storage tank 97 Circulation line 98 Circulation pump 99 Electrolyte line 100 Chemical tank 101 Cooling water line 102 Cooling water pump 103 Cooling water branch line 108 Heat generating device 109 Cooling system 110 Seawater branch line 111 Treated liquid discharge line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A floating body according to the present disclosure is provided with: a floating body main body which floats on seawater; an ammonia line which is provided in the floating body main body and through which ammonia water passes; a water intake unit for taking the seawater into the floating body main body; a seawater guiding line for guiding the seawater taken from the water intake unit into the floating body main body; an electrolysis unit in which the seawater guided through the seawater guiding line is subjected to electrolysis to produce a seawater electrolysis solution containing sodium hypochlorite; a denitrification reaction unit in which a mixed solution of ammonia water that passes through the ammonia line and the seawater electrolysis solution produced in the electrolysis unit is reacted; and a discharge unit for discharging a treated liquid obtained after the reaction in the denitrification reaction unit into the surrounding seawater on which the floating body main body floats.

Description

浮体及びアンモニア除害方法Floating body and ammonia detoxification method
 本開示は、浮体及びアンモニア除害方法に関する。
 本願は、2022年2月3日に日本に出願された特願2022-015611号について優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present disclosure relates to a floating body and an ammonia abatement method.
This application claims priority to Japanese Patent Application No. 2022-015611 filed in Japan on February 3, 2022, the contents of which are incorporated herein.
 船舶等の浮体においては、発電所向け燃料としてのアンモニアを運搬及び供給する場合や、主機等の燃料としてアンモニアを用いる場合に、アンモニアを取扱う機器を収容する機器室などの区画でアンモニアの漏洩が生じる可能性がある。このような区画でアンモニア漏洩が生じた場合、漏洩したアンモニアが気化して区画外に漏出することが想定される。 In floating bodies such as ships, when transporting and supplying ammonia as fuel for power plants, or when using ammonia as fuel for main engines, etc., leakage of ammonia may occur in compartments such as equipment rooms that house equipment that handles ammonia. may occur. When ammonia leakage occurs in such a compartment, it is assumed that the leaked ammonia vaporizes and leaks out of the compartment.
 特許文献1には、区画内に連通する密閉されたダクトを設けて、このダクト内で水を散布し、ダクト内でアンモニアを水に吸収させて区画内を負圧にすることで、区画外へのアンモニアの漏出を防止する技術が提案されている。この特許文献1では、アンモニアを吸収させた水を、水槽に戻して再度散水ノズルに循環させるか、又は、他の処理施設に排出させている。 In Patent Document 1, a sealed duct that communicates with the compartment is provided, water is sprayed in this duct, ammonia is absorbed by water in the duct, and the inside of the compartment is made negative pressure. Techniques have been proposed to prevent ammonia from leaking into the In Patent Document 1, the water in which ammonia has been absorbed is returned to the water tank and circulated through the sprinkler nozzle again, or is discharged to another treatment facility.
日本国特許第4356939号公報Japanese Patent No. 4356939
 特許文献1のようにアンモニアを水に吸収させて取り除こうとすると、排出されるアンモニアの量が増大するにつれて必要な水量も増加してしまう。しかし、浮体内のスペースには限りがあるため、アンモニアを吸収した大量の水の貯留場所が確保できない場合がある。そして、アンモニアを吸収させた水は、環境へ影響を及ぼす可能性が有るため、浮体の浮かぶ周囲の水中にそのまま放出することはできない。そこで、浮体上においてアンモニアを吸収した水を除害処理することが望まれている。 When trying to remove ammonia by absorbing it with water as in Patent Document 1, the amount of water required increases as the amount of discharged ammonia increases. However, since the space inside the floating body is limited, it may not be possible to secure a place for storing a large amount of water that has absorbed ammonia. Since the water in which the ammonia has been absorbed may affect the environment, it cannot be discharged as it is into the water surrounding the floating body. Therefore, it is desired to detoxify the water that has absorbed ammonia on the floating body.
 アンモニアを吸収した水を除害する方法としては、例えば、硫酸や塩酸等の酸化剤や中和剤を用いてアンモニアを分解反応させる方法が知られている。しかし、このような薬品は、寄港地や係留場所等にて入手困難な場合があり、また大量の薬品を用いることでコストが上昇してしまう可能性があるという課題がある。
 本開示は、上記事情に鑑みてなされたものであり、コスト上昇を抑えつつ容易にアンモニアを除害可能な浮体及びアンモニア除害方法を提供するものである。
As a method of detoxifying water that has absorbed ammonia, for example, a method of decomposing ammonia using an oxidizing agent such as sulfuric acid or hydrochloric acid or a neutralizing agent is known. However, such chemicals may be difficult to obtain at ports of call, mooring sites, and the like, and using a large amount of chemicals may increase costs.
The present disclosure has been made in view of the above circumstances, and provides a floating body and an ammonia detoxification method that can easily detoxify ammonia while suppressing cost increases.
 上記の課題を解決するために以下の構成を採用する。
 本開示の第一態様によれば、浮体は、海水に浮かぶ浮体本体と、前記浮体本体内に設けられて、アンモニア水が流通するアンモニアラインと、前記浮体本体内に前記海水を取水する取水部と、前記取水部から取水された前記海水を前記浮体本体内へ導入する海水導入ラインと、前記海水導入ラインにより導入された前記海水に電気分解を施すことで、次亜塩素酸ソーダを含む海水電解液を生成する電気分解部と、前記アンモニアラインを流通するアンモニア水と前記電気分解部で生成された前記海水電解液との混合液を反応させる脱窒素反応部と、前記脱窒素反応部で反応させた後の処理済液体を前記浮体本体の浮かぶ周囲の前記海水の中に放流する放流部と、を備える。
In order to solve the above problems, the following configuration is adopted.
According to the first aspect of the present disclosure, the floating body includes a floating body main body that floats on seawater, an ammonia line provided in the floating body main body through which ammonia water flows, and a water intake section that takes in the seawater into the floating body main body. a seawater introduction line for introducing the seawater taken from the water intake section into the floating body body; and seawater containing sodium hypochlorite by subjecting the seawater introduced by the seawater introduction line to electrolysis. An electrolysis unit that generates an electrolytic solution, a denitrification reaction unit that reacts a mixture of ammonia water flowing through the ammonia line and the seawater electrolyte generated in the electrolysis unit, and the denitrification reaction unit. a discharge unit for discharging the treated liquid after reaction into the seawater surrounding the floating body.
 本開示の第二態様によれば、アンモニア除害方法は、海水に浮かぶ浮体のアンモニア水を除害するアンモニア除害方法であって、前記浮体の浮かぶ周囲の前記海水を取水して電気分解することで次亜塩素酸ソーダを含む海水電解液を生成する生成工程と、前記海水電解液の次亜塩素酸ソーダと前記アンモニア水のアンモニアとを反応させる脱窒素反応工程と、を含む。 According to the second aspect of the present disclosure, an ammonia detoxification method is a method for detoxifying ammonia water of a floating body floating in seawater, wherein the seawater around the floating body is taken in and electrolyzed. and a denitrification reaction step of reacting the sodium hypochlorite in the seawater electrolyte with the ammonia in the ammonia water.
 本開示に係る浮体及びアンモニア除害方法によれば、コスト上昇を抑えつつ容易にアンモニアを除害することができる。 According to the floating body and ammonia detoxification method according to the present disclosure, it is possible to easily detoxify ammonia while suppressing cost increases.
本開示の実施形態に係る浮体の側面図である。1 is a side view of a floating body according to an embodiment of the present disclosure; FIG. 本開示の実施形態の浮体におけるアンモニア分解装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of an ammonia decomposition device in a floating body according to an embodiment of the present disclosure; FIG. 本開示の実施形態におけるアンモニア除害方法を示すフローチャートである。4 is a flow chart showing an ammonia detoxification method in an embodiment of the present disclosure; 本開示の実施形態の第一変形例における図2に相当する図である。FIG. 3 is a diagram corresponding to FIG. 2 in a first modified example of the embodiment of the present disclosure; 本開示の実施形態の第二変形例におけるアンモニア分解装置の概略構成を示す図である。FIG. 4 is a diagram showing a schematic configuration of an ammonia decomposition device in a second modified example of the embodiment of the present disclosure;
[実施形態]
 以下、本開示の実施形態に係る浮体及びアンモニア除害方法について、図面を参照して説明する。図1は、本開示の実施形態に係る浮体の側面図である。
(浮体の構成)
 図1に示すように、この実施形態の浮体1は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、区画30と、アンモニア回収部60と、回収アンモニア水タンク70と、アンモニア分解装置80と、を備えている。なお、本実施形態の浮体1は、主機等により航行可能な船舶を一例として説明する。浮体1の船種は、特定の船種に限られない。浮体1の船種としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。本実施形態では浮体1が船舶である場合について説明するが、浮体1は船舶に限られず、主機等による航行が不能なFSU(Floating Storage Unit)、FSRU(Floating Storage and Regasification Unit)等であってもよい。
[Embodiment]
Hereinafter, a floating body and an ammonia abatement method according to embodiments of the present disclosure will be described with reference to the drawings. 1 is a side view of a floating body according to an embodiment of the present disclosure; FIG.
(Structure of floating body)
As shown in FIG. 1, the floating body 1 of this embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, a piping system 20, a compartment 30, an ammonia recovery section 60, A recovered ammonia water tank 70 and an ammonia decomposition device 80 are provided. Note that the floating body 1 of the present embodiment will be described as an example of a vessel that can be navigated by a main engine or the like. The ship type of the floating body 1 is not limited to a specific ship type. Examples of ship types of the floating body 1 include liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships. In this embodiment, a case where the floating body 1 is a ship will be described, but the floating body 1 is not limited to a ship, and may be an FSU (Floating Storage Unit), an FSRU (Floating Storage and Regasification Unit), or the like that cannot be navigated by a main engine or the like. good too.
 浮体本体2は、海水に浮かぶように形成されている。浮体本体2は、その外殻をなす一対の舷側5A,5Bと船底6とを有している。舷側5A,5Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底6は、これら舷側5A,5Bを接続する船底外板を備える。これら一対の舷側5A,5B及び船底6により、浮体本体2の外殻は、船首尾方向FAに直交する断面においてU字状を成している。 The floating body main body 2 is formed so as to float on seawater. The floating body main body 2 has a pair of shipboard sides 5A and 5B and a ship bottom 6 that form its outer shell. The shipboard sides 5A, 5B are provided with a pair of shipboard skins forming the starboard and port sides, respectively. The ship's bottom 6 includes a ship's bottom shell plate that connects the sides 5A and 5B. The pair of sides 5A and 5B and the ship bottom 6 form a U-shaped outer shell of the floating body 2 in a cross section perpendicular to the fore-aft direction FA.
 浮体本体2は、最も上層に配置される全通甲板である上甲板7を更に備えている。上部構造4は、この上甲板7上に形成されている。上部構造4内には、居住区等が設けられている。本実施形態の浮体1では、例えば、上部構造4よりも船首尾方向FAの船首3a側に、貨物を搭載するカーゴスペース(図示無し)が設けられている。 The floating body body 2 further includes an upper deck 7 which is a through deck arranged in the uppermost layer. The superstructure 4 is formed on this upper deck 7 . A living quarter and the like are provided in the upper structure 4 . In the floating body 1 of this embodiment, for example, a cargo space (not shown) for loading cargo is provided on the bow 3a side in the fore-aft direction FA from the superstructure 4. As shown in FIG.
 燃焼装置8は、燃料を燃焼させることで熱エネルギーを発生させる装置であり、上記の浮体本体2内に設けられている。燃焼装置8としては、浮体1を推進させるための主機に用いられる内燃機関、船内に電気を供給する発電設備に用いられる内燃機関、作動流体としての蒸気を発生させるボイラー等を例示できる。本実施形態の燃焼装置8は、燃料を燃焼させることで発熱する発熱機器でもある。 The combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the floating body main body 2 described above. Examples of the combustion device 8 include an internal combustion engine used as a main engine for propelling the floating body 1, an internal combustion engine used for power generation equipment that supplies electricity to the ship, a boiler that generates steam as a working fluid, and the like. The combustion device 8 of this embodiment is also a heat generating device that generates heat by burning fuel.
 アンモニアタンク10は、液体のアンモニア(言い換えれば、液化アンモニア)を貯留するタンクである。このアンモニアタンク10は、上部構造4よりも船尾3b側の上甲板7上に設置されている。なお、上記アンモニアタンク10の配置は一例であって、上部構造4よりも船尾3b側の上甲板7上に限られない。本実施形態のアンモニアタンク10は、燃焼装置8の燃料として液化アンモニアを貯留している。 The ammonia tank 10 is a tank that stores liquid ammonia (in other words, liquefied ammonia). The ammonia tank 10 is installed on the upper deck 7 on the stern 3b side of the superstructure 4. As shown in FIG. The arrangement of the ammonia tank 10 is an example, and is not limited to the upper deck 7 on the stern 3b side of the superstructure 4. The ammonia tank 10 of this embodiment stores liquefied ammonia as fuel for the combustion device 8 .
 配管系統20は、燃焼装置8とアンモニアタンク10とを接続し、少なくともアンモニアタンク10に貯留されたアンモニアを燃焼装置8へ供給可能に構成されている。 The piping system 20 connects the combustion device 8 and the ammonia tank 10 and is configured to be able to supply at least ammonia stored in the ammonia tank 10 to the combustion device 8 .
 区画30は、アンモニア関連機器を収容する区画である。本実施形態における区画30は、上部構造4よりも船首3a側の上甲板7上に設けられている。上述した配管系統20は、この区画30内を経由して燃焼装置8とアンモニアタンク10とを接続している。ここで、上記アンモニア関連機器とは、アンモニアを取扱う機器全般を意味しており、例えば、アンモニアを取扱うアンモニア燃料機器や、貨物としてのアンモニアを取扱うアンモニア貨物機器を挙げることができる。以下の説明では、アンモニア燃料機器が収容されている区画30について説明するが、アンモニア貨物機器が収容されている区画30であってもよい。 The compartment 30 is a compartment that houses ammonia-related equipment. The compartment 30 in this embodiment is provided on the upper deck 7 on the bow 3 a side of the superstructure 4 . The piping system 20 described above connects the combustion device 8 and the ammonia tank 10 via the section 30 . Here, the ammonia-related equipment means all equipment that handles ammonia, and examples thereof include ammonia fuel equipment that handles ammonia and ammonia cargo equipment that handles ammonia as cargo. Although the following description describes compartment 30 containing ammonia-fueled equipment, it may be compartment 30 containing ammonia cargo equipment.
(アンモニア回収部の構成)
 アンモニア回収部60は、回収対象のアンモニアを水に吸収させて回収アンモニア水(アンモニア水)として回収する。本実施形態のアンモニア回収部60は、アンモニアタンク10よりも船尾3b側の上甲板7上に配置されている。アンモニア回収部60としては、例えば、アンモニアを含む気体に対して水を噴射することでアンモニアを水に吸収させる、いわゆるスクラバーを用いることができる。このアンモニア回収部60には、浮体本体2内に設けられた水タンク(図示せず)に貯留された水(例えば、清水)または浮体外部より取り入れられた水(例えば、海水等)が供給される。アンモニア回収部60によって回収するアンモニアは、例えば、区画30内に漏洩したアンモニアや、燃料パージによって配管系統20から排出されるアンモニアを例示できる。なお、アンモニア回収部60は、アンモニアを水に吸収させて回収アンモニア水として回収できる構成であればよく、上記構成や配置に限られない。
(Configuration of ammonia recovery unit)
The ammonia recovery unit 60 causes water to absorb the ammonia to be recovered and recovers it as recovered ammonia water (ammonia water). The ammonia recovery unit 60 of this embodiment is arranged on the upper deck 7 on the stern 3b side of the ammonia tank 10 . As the ammonia recovering unit 60, for example, a so-called scrubber can be used, in which water is injected into a gas containing ammonia so that the water absorbs the ammonia. Water (for example, fresh water) stored in a water tank (not shown) provided in the floating body 2 or water (for example, seawater) taken in from outside the floating body is supplied to the ammonia recovery unit 60. be. Examples of the ammonia recovered by the ammonia recovery unit 60 include ammonia that has leaked into the compartment 30 and ammonia discharged from the piping system 20 due to fuel purging. Note that the ammonia recovery unit 60 is not limited to the above configuration and arrangement as long as it can absorb ammonia into water and recover it as recovered ammonia water.
 回収アンモニア水タンク70は、アンモニア回収部60で回収された回収アンモニア水を貯留する。本実施形態における回収アンモニア水タンク70は、アンモニア回収部60の設置された上甲板7よりも下方の浮体本体2内に配置されている。この回収アンモニア水タンク70の配置は、アンモニア回収部60で回収したアンモニアを回収アンモニア水として回収できる配置であれば上記配置に限られない。 The recovered ammonia water tank 70 stores the recovered ammonia water recovered by the ammonia recovery unit 60 . The recovered ammonia water tank 70 in this embodiment is arranged in the floating body main body 2 below the upper deck 7 where the ammonia recovery section 60 is installed. The arrangement of the recovered ammonia water tank 70 is not limited to the above arrangement as long as the arrangement is such that the ammonia recovered by the ammonia recovery unit 60 can be recovered as recovered ammonia water.
(アンモニア分解装置の構成)
 図2は、本開示の実施形態の浮体におけるアンモニア分解装置の概略構成を示す図である。
 図2に示すように、アンモニア分解装置80は、アンモニア水に含まれるアンモニアを分解して無害化する装置である。アンモニア分解装置80は、アンモニアライン81と、取水部82と、海水導入ライン83と、電気分解部84と、ラインミキサー85と、脱窒素反応槽(脱窒素反応部)86と、放流部87と、排熱回収部88と、希釈ライン89を備えている。
(Configuration of ammonia decomposition device)
FIG. 2 is a diagram showing a schematic configuration of an ammonia decomposition device in a floating body according to an embodiment of the present disclosure.
As shown in FIG. 2, the ammonia decomposition device 80 is a device that decomposes ammonia contained in ammonia water to render it harmless. The ammonia decomposition apparatus 80 includes an ammonia line 81, a water intake section 82, a seawater introduction line 83, an electrolysis section 84, a line mixer 85, a denitrification reaction tank (denitrification reaction section) 86, and a discharge section 87. , an exhaust heat recovery section 88 and a dilution line 89 .
 アンモニアライン81は、浮体本体2内に設けられている。このアンモニアライン81には、回収アンモニア水(アンモニア水)が流通している。本実施形態のアンモニアライン81は、上述した回収アンモニア水タンク70に貯留された回収アンモニア水を、電気分解部84に導く配管である。 The ammonia line 81 is provided inside the floating body main body 2 . Recovered ammonia water (ammonia water) flows through this ammonia line 81 . The ammonia line 81 of the present embodiment is a pipe that guides the recovered ammonia water stored in the recovered ammonia water tank 70 described above to the electrolysis unit 84 .
 取水部82は、浮体本体2の浮かぶ周囲の海水を浮体本体2内に取水する。取水部82は、取水口90と、海水ポンプ91と、海洋生成物付着防止処理装置92と、を備えている。取水口90は、浮体本体2の外板のうち軽荷喫水線(図示せず)よりも下方に開口している。つまり、取水口90は、常時、海面よりも下方に位置する。海水ポンプ91は、取水口90の海水を浮体本体2内に送り出す。海水ポンプ91により送り出された海水は、海洋生成物付着防止処理装置92と、海水導入ライン83とにそれぞれ分流される。 The water intake section 82 takes seawater around the floating body 2 into the floating body 2 . The water intake section 82 includes a water intake 90 , a seawater pump 91 , and a marine product adhesion prevention treatment device 92 . The water intake 90 opens below the light cargo draft line (not shown) in the outer plate of the floating body body 2 . That is, the water intake 90 is always located below the sea surface. The seawater pump 91 sends seawater from the water intake 90 into the floating body body 2 . The seawater sent out by the seawater pump 91 is branched to the marine product adhesion prevention treatment device 92 and the seawater introduction line 83, respectively.
 海洋生成物付着防止処理装置92は、取水された海水に対して海洋生成物の付着防止処理を行う。海洋生成物の付着防止処理としては、海水を電気分解して次亜塩素酸ソーダを生成したり、銅イオンを生成したりして、取水口90から取水される海水に対してこれら次亜塩素酸ソーダや銅イオンを含ませる処理を例示できる。この海洋生成物付着防止処理装置92による海洋生成物の付着防止処理によって、浮体本体2内で海水の流れる配管の内面や、取水口90の内面に海洋生成物が付着して閉塞されることを抑制することができる。 The marine product adhesion prevention treatment device 92 performs a marine product adhesion prevention treatment on the taken seawater. As a treatment to prevent adhesion of marine products, seawater is electrolyzed to generate sodium hypochlorite or copper ions, and these hypochlorites are added to seawater taken from the water intake port 90. Treatments that include acidic sodium or copper ions can be exemplified. By the marine product adhesion prevention treatment by the marine product adhesion prevention treatment device 92, the inner surface of the pipe through which seawater flows in the floating body body 2 and the inner surface of the water intake port 90 are prevented from being clogged with marine products. can be suppressed.
 海水導入ライン83は、取水部82によって取水された海水を浮体本体2内へ導入する。本実施形態の海水導入ライン83は、海水を少なくとも電気分解部84へと供給する配管である。ここで、海水導入ライン83は、複数の分岐ライン93を有しており、これら分岐ライン93によってアンモニア分解装置80以外の設備にも海水を供給することが可能となっている。これら複数の分岐ライン93を介してアンモニア分解装置80以外の設備へ供給された海水は、冷却水等として用いられた後に、合流ライン94及び、後述する希釈ライン89を介して放流部87から浮体本体2の外部へ放流される。 The seawater introduction line 83 introduces the seawater taken by the water intake section 82 into the floating body main body 2 . The seawater introduction line 83 of the present embodiment is a pipe that supplies seawater to at least the electrolysis section 84 . Here, the seawater introduction line 83 has a plurality of branch lines 93 , and these branch lines 93 allow seawater to be supplied to equipment other than the ammonia decomposition device 80 . The seawater supplied to the facilities other than the ammonia decomposition apparatus 80 via the plurality of branch lines 93 is used as cooling water or the like, and then is discharged from the discharge section 87 via the confluence line 94 and the dilution line 89 to be described later. The water is discharged to the outside of the main body 2 .
 上記の海水導入ライン83の途中には、排熱回収部88が設けられている。排熱回収部88は、浮体本体2内に設けられている発熱機器の排熱を回収する。本実施形態では、発熱機器としての燃焼装置8の排熱を回収して、海水導入ライン83を流通する海水を加熱している。燃焼装置8の冷却水(例えば、清水)と、海水導入ライン83を流通する海水とを熱交換している。これにより、取水部82における海水温に関わらず、海水導入ライン83を流通する海水の温度が10℃以下とならないようになっている。なお、本実施形態では、燃焼装置8の冷却水が流通する冷却水ライン101に冷却水ポンプ102が設けられて冷却水が排熱回収部88と燃焼装置8との間を循環している。また、冷却水ライン101には、燃焼装置8以外の他の発熱機器に冷却水を循環させるための冷却水分岐ライン103も接続されており、他の発熱機器の排熱も回収可能となっている。 An exhaust heat recovery section 88 is provided in the middle of the seawater introduction line 83 . The exhaust heat recovery part 88 recovers the exhaust heat of the heat-generating equipment provided inside the floating body body 2 . In this embodiment, exhaust heat from the combustion device 8 as a heat generating device is recovered to heat the seawater flowing through the seawater introduction line 83 . Cooling water (for example, fresh water) for the combustion device 8 and seawater flowing through the seawater introduction line 83 are heat-exchanged. As a result, the temperature of the seawater flowing through the seawater introduction line 83 does not drop below 10° C. regardless of the seawater temperature in the water intake section 82 . In this embodiment, a cooling water pump 102 is provided in a cooling water line 101 through which cooling water of the combustion device 8 flows, and the cooling water circulates between the exhaust heat recovery unit 88 and the combustion device 8 . In addition, the cooling water line 101 is also connected to a cooling water branch line 103 for circulating cooling water to heat-generating equipment other than the combustion device 8, so that exhaust heat from other heat-generating equipment can also be recovered. there is
 電気分解部84は、海水導入ライン83により浮体本体2内に導入された海水に電気分解を施すことで、次亜塩素酸ソーダを含む海水電解液を生成する。本実施形態の電気分解部84は、電解装置95と、貯留槽96と、循環ライン97と、循環ポンプ98と、を備えている。 The electrolysis unit 84 electrolyzes the seawater introduced into the floating body main body 2 through the seawater introduction line 83 to generate a seawater electrolyte containing sodium hypochlorite. The electrolyzer 84 of this embodiment includes an electrolytic device 95 , a storage tank 96 , a circulation line 97 and a circulation pump 98 .
 電解装置95は、海水を電気分解して海水電解液を生成する。具体的には、海水中に正極と負極(図示せず)とを配置して、これら正極と負極との間に電圧印加することで、海水を電気分解する。この電気分解により、海水から次亜塩素酸ソーダが生成される。電解装置95により電気分解された海水電解液は、貯留槽96へ導入される。 The electrolytic device 95 electrolyzes seawater to generate a seawater electrolyte. Specifically, seawater is electrolyzed by disposing a positive electrode and a negative electrode (not shown) in seawater and applying a voltage between the positive electrode and the negative electrode. This electrolysis produces sodium hypochlorite from seawater. The seawater electrolyte electrolyzed by the electrolytic device 95 is introduced into the storage tank 96 .
 貯留槽96は、電解装置95により生成された海水電解液を貯留可能とされている。本実施形態の貯留槽96は、海水導入ライン83に接続されており、電解装置95からの海水電解液に加えて、海水導入ライン83からの海水が注水される。 The storage tank 96 is capable of storing the seawater electrolyte produced by the electrolytic device 95 . The storage tank 96 of the present embodiment is connected to a seawater introduction line 83 and is injected with seawater from the seawater introduction line 83 in addition to the seawater electrolyte from the electrolytic device 95 .
 循環ライン97は、電解装置95と貯留槽96との間で、海水電解液を循環させる。つまり、循環ライン97は、貯留槽96に貯留されている海水電解液を電解装置95へ導くと共に、電解装置95によって電解された海水電解液を貯留槽96へ導く。本実施形態の電気分解部84は、貯留槽96に貯留されている海水電解液をラインミキサー85へ導くための電解液ライン99を更に備えている。この電解液ライン99は、上記循環ライン97に分岐接続されている。 The circulation line 97 circulates the seawater electrolyte between the electrolytic device 95 and the storage tank 96 . That is, the circulation line 97 guides the seawater electrolyte stored in the storage tank 96 to the electrolyzer 95 and guides the seawater electrolyte electrolyzed by the electrolyzer 95 to the storage tank 96 . The electrolysis section 84 of this embodiment further includes an electrolyte line 99 for guiding the seawater electrolyte stored in the storage tank 96 to the line mixer 85 . The electrolytic solution line 99 is branched and connected to the circulation line 97 .
 循環ポンプ98は、循環ライン97の途中に設けられている。循環ポンプ98は、循環ライン97内の海水電解液を、電解装置95及びラインミキサー85へ向けて送出する。この循環ポンプ98を駆動することで、循環ライン97の海水電解液の一部が電解装置95と貯留槽96との間を循環すると共に、循環ライン97の海水電解液の残部が電解液ライン99を介してラインミキサー85へ供給される。電解液ライン99の途中には、全閉から全開まで開度調整可能な弁(図示せず)が設けられており、ラインミキサー85へ供給される海水電解液の流量を調整することが可能となっている。 The circulation pump 98 is provided in the middle of the circulation line 97 . The circulation pump 98 sends out the seawater electrolyte in the circulation line 97 toward the electrolytic device 95 and the line mixer 85 . By driving the circulation pump 98, part of the seawater electrolyte in the circulation line 97 circulates between the electrolytic device 95 and the storage tank 96, and the rest of the seawater electrolyte in the circulation line 97 is transferred to the electrolyte line 99. is supplied to the line mixer 85 via the . A valve (not shown) whose opening degree can be adjusted from fully closed to fully opened is provided in the middle of the electrolyte line 99, and the flow rate of the seawater electrolyte supplied to the line mixer 85 can be adjusted. It's becoming
 上記電気分解部84によれば、貯留槽96に貯留されている海水電解液を循環させることで、再度、電解装置95によって電気分解することができる。そのため、電解装置95によって一度だけ電気分解された海水電解液よりも、次亜塩素酸ソーダの濃度を高めた海水電解液を得ることが可能となっている。なお、電解液ライン99が循環ライン97に分岐接続される場合について説明したが、この構成に限られない。例えば、貯留槽96に接続して、循環ライン97を介さずに貯留槽96に貯留されている海水電解液をラインミキサー85へ導くようにしてもよい。この場合、海水電解液をラインミキサー85へ送出するための別のポンプを電解液ライン99に設ければ良い。 According to the electrolysis unit 84, the seawater electrolyte stored in the storage tank 96 can be circulated to be electrolyzed again by the electrolysis device 95. Therefore, it is possible to obtain a seawater electrolyte with a higher concentration of sodium hypochlorite than the seawater electrolyte that has been electrolyzed by the electrolytic device 95 only once. Although the case where the electrolytic solution line 99 is branched and connected to the circulation line 97 has been described, the configuration is not limited to this. For example, by connecting to the storage tank 96 , the seawater electrolyte stored in the storage tank 96 may be led to the line mixer 85 without passing through the circulation line 97 . In this case, another pump may be provided in the electrolyte line 99 for sending the seawater electrolyte to the line mixer 85 .
 ラインミキサー85は、電気分解部84によって生成された海水電解液と、アンモニアライン81によって供給された回収アンモニア水との混合液を撹拌する。このラインミキサー85によって撹拌された混合液は、脱窒素反応槽86へ導入される。 The line mixer 85 stirs the mixed solution of the seawater electrolyte generated by the electrolysis unit 84 and the recovered ammonia water supplied by the ammonia line 81 . The mixed liquid stirred by the line mixer 85 is introduced into the denitrification reaction tank 86 .
 脱窒素反応槽86は、アンモニアライン81を流通する回収アンモニア水と電気分解部84で生成された海水電解液との混合液を反応させる。より具体的には、脱窒素反応槽86は、(1)式に示すように、回収アンモニア水のアンモニア(2NH)と、海水電解液の次亜塩素酸ソーダ(3NaClO)とを、酸性の環境下で反応させて、窒素(N)と塩化ナトリウム(3NaCl)と水(3HO)とに分解する。つまり、脱窒素反応槽86では、脱窒素反応が行われる。
 2NH+3NaClO⇒N+3NaCl+3HO・・・(1)
The denitrification reaction tank 86 causes the mixture of the recovered ammonia water flowing through the ammonia line 81 and the seawater electrolyte produced in the electrolysis unit 84 to react. More specifically, as shown in formula (1), the denitrification reaction tank 86 mixes ammonia (2NH 3 ) in the recovered ammonia water and sodium hypochlorite (3NaClO) in the seawater electrolyte with an acidic It decomposes into nitrogen (N 2 ), sodium chloride (3NaCl) and water (3H 2 O) by reacting under ambient conditions. That is, the denitrification reaction is performed in the denitrification reaction tank 86 .
2NH 3 +3NaClO⇒N 2 +3NaCl+3H 2 O (1)
 脱窒素反応槽86における脱窒素反応により生成された窒素は、例えば、上甲板7から延びるベントポスト(図示せず)等を介して大気中に放出される。その一方で、脱窒素反応槽86における脱窒素反応により生成された塩化ナトリウムと水とは、処理済液体として放流部87へ排出される。 Nitrogen generated by the denitrification reaction in the denitrification reaction tank 86 is released into the atmosphere via, for example, a vent post (not shown) extending from the upper deck 7 . On the other hand, the sodium chloride and water produced by the denitrification reaction in the denitrification reaction tank 86 are discharged to the discharge section 87 as treated liquid.
 ここで、脱窒素反応槽86における脱窒素反応では、反応開始時に回収アンモニア水と海水電解液との混合水のペーハー(pH)を下げるために、混合水に硫酸や塩酸などの酸化剤や中和剤が投入される。そのため、上述した脱窒素反応槽86には、薬品を投入するための薬液タンク100(ペーハー調整部)を接続するようにしてもよい。なお、薬液タンク100を接続せずに、例えば、作業者が手持ちのタンクで脱窒素反応槽86に薬品を投入するようにしてもよい。本実施形態における混合水のペーハーの値は、海水に含まれるアルカリ土類金属が析出しない値以下に調整される。ここで、海水に含まれるアルカリ土類金属としては、カルシウム(Ca)及びマグネシウム(Mg)を例示できる。上記の酸性の環境下における本実施形態の一例における脱窒素反応では、中間過程で、NHClとNHClという二種類の中間体(クロラミン)が生成され、これらNHClとNHClとの二つの中間体が反応することで、窒素ガス(N)と塩酸(3HCl)とになる。すなわち、塩酸が生成されるため、薬品を脱窒素反応槽86の混合水に追加投入することなく、酸性の環境下における脱窒素反応を継続することが可能となる。 Here, in the denitrification reaction in the denitrification reaction tank 86, in order to lower the pH of the mixed water of the recovered ammonia water and the seawater electrolyte at the start of the reaction, an oxidizing agent such as sulfuric acid or hydrochloric acid or an intermediate is added to the mixed water. A soothing agent is introduced. Therefore, the above-described denitrification reaction tank 86 may be connected to a chemical liquid tank 100 (a pH adjusting unit) for charging chemicals. Instead of connecting the chemical liquid tank 100, for example, the operator may use a tank on hand to pour the chemical into the denitrification reaction tank 86. FIG. The pH value of the mixed water in this embodiment is adjusted to a value at which the alkaline earth metal contained in the seawater does not precipitate. Here, calcium (Ca) and magnesium (Mg) can be exemplified as alkaline earth metals contained in seawater. In the denitrification reaction in one example of the present embodiment under the acidic environment described above, two types of intermediates (chloramines), NH 2 Cl and NHC1 2 , are produced in the intermediate process, and these NH 2 Cl and NHC1 2 The two intermediates react to form nitrogen gas (N 2 ) and hydrochloric acid (3HCl). That is, since hydrochloric acid is generated, it is possible to continue the denitrification reaction in an acidic environment without adding additional chemicals to the mixed water in the denitrification reaction tank 86 .
 希釈ライン89は、海水導入ライン83によって浮体本体2内に導入された海水の一部を、脱窒素反応槽86から排出された処理済液体に合流させる。すなわち、処理済液体は、希釈ライン89により合流された海水により希釈される。本実施形態の希釈ライン89を流通する海水は、上述した海水導入ライン83から分流した海水、及び、分岐ライン93によって分流してアンモニア分解装置80以外の他の設備に供給されて冷却等に利用された海水である。 The dilution line 89 allows part of the seawater introduced into the floating body body 2 by the seawater introduction line 83 to join the treated liquid discharged from the denitrification reaction tank 86 . That is, the treated liquid is diluted with the seawater joined by the dilution line 89 . The seawater flowing through the dilution line 89 of the present embodiment includes the seawater branched from the seawater introduction line 83 described above, and the seawater branched by the branch line 93 and supplied to other equipment other than the ammonia decomposition device 80 to be used for cooling. It is seawater that has been
 放流部87は、脱窒素反応槽86で反応させた後の処理済液体を浮体本体2の浮かぶ周囲の海水の中に放流する。本実施形態の放流部87は、希釈ライン89を流通する海水によって希釈された処理済液体を放流する。 The discharge part 87 discharges the treated liquid that has been reacted in the denitrification reaction tank 86 into the surrounding seawater on which the floating body main body 2 floats. The discharge section 87 of the present embodiment discharges the treated liquid diluted with the seawater flowing through the dilution line 89 .
(アンモニア除害方法)
 次に、本開示の実施形態におけるアンモニア除害方法について説明する。
 図3は、本開示の実施形態におけるアンモニア除害方法を示すフローチャートである。
 図3に示すように、本実施形態のアンモニア除害方法は、排熱回収工程S11と、生成工程S12と、脱窒素反応工程S13と、を含んでいる。
(Ammonia abatement method)
Next, the ammonia detoxification method in the embodiment of the present disclosure will be described.
FIG. 3 is a flow chart showing an ammonia detoxification method in an embodiment of the present disclosure.
As shown in FIG. 3, the ammonia detoxification method of this embodiment includes an exhaust heat recovery step S11, a generation step S12, and a denitrification reaction step S13.
 排熱回収工程S11では、取水した海水を用いて浮体本体2内の設備の排熱を回収する。すなわち、本実施形態では、上述した海水導入ライン83によって浮体本体2内に導入された海水を、排熱回収部88によって温度上昇させる。
 生成工程S12では、排熱回収工程S11によって温度上昇させた海水を電気分解して、次亜塩素酸ソーダを含む海水電解液を生成する。本実施形態では、上述した電気分解部84によって海水電解液を生成するとともに、海水電解液を貯留槽96と電解装置95との間を循環させて次亜塩素酸ソーダの濃度を高めている。
In the exhaust heat recovery step S11, the exhaust heat of the equipment inside the floating body 2 is recovered using the taken seawater. That is, in this embodiment, the temperature of the seawater introduced into the floating body main body 2 through the seawater introduction line 83 is raised by the exhaust heat recovery section 88 .
In the generation step S12, the seawater whose temperature has been raised in the exhaust heat recovery step S11 is electrolyzed to generate a seawater electrolyte containing sodium hypochlorite. In this embodiment, the seawater electrolyte is generated by the electrolysis unit 84 described above, and the seawater electrolyte is circulated between the storage tank 96 and the electrolyzer 95 to increase the concentration of sodium hypochlorite.
 脱窒素反応工程S13では、海水電解液の次亜塩素酸ソーダと回収アンモニア水のアンモニアとを反応させる。また、この脱窒素反応工程S13では、海水電解液とアンモニア水との混合液のペーハーを、海水に含まれるアルカリ土類金属が析出しない範囲まで低下させる。すなわち、本実施形態では、上述した脱窒素反応槽86の混合液にpH調製剤を投入してペーハーの値を脱窒素反応に適した値に調整して、次亜塩素酸ソーダとアンモニアとを脱窒素反応槽86内で反応させる。そして、本実施形態では、脱窒素反応工程S13による反応後の処理済液体を、浮体本体2内に導入された海水を用いて希釈して、浮体本体2の浮かぶ周囲の海水中へ放流する。 In the denitrification reaction step S13, sodium hypochlorite in the seawater electrolyte and ammonia in the recovered ammonia water are reacted. Further, in the denitrification reaction step S13, the pH of the mixed solution of the seawater electrolyte and the ammonia water is lowered to a range in which the alkaline earth metal contained in the seawater does not precipitate. That is, in the present embodiment, a pH adjuster is added to the mixed liquid in the denitrification reaction tank 86 to adjust the pH value to a value suitable for the denitrification reaction, so that sodium hypochlorite and ammonia are mixed. The reaction is carried out in the denitrification reactor 86 . Then, in this embodiment, the treated liquid after the reaction in the denitrification reaction step S13 is diluted with the seawater introduced into the floating body 2 and discharged into the surrounding seawater where the floating body 2 floats.
(作用効果)
 上記実施形態の浮体1によれば、海水に浮かぶ浮体本体2内に取水部82から取水した海水を海水導入ライン83により導入し、この海水を電気分解部84によって電気分解して次亜塩素酸ソーダを含む海水電解液を生成している。さらに、アンモニアライン81を流通するアンモニア水と海水電解液との混合液を脱窒素反応槽86で反応させて、この反応させた後の処理済液体を、放流部87により浮体本体2の浮かぶ周囲の海水の中に放流している。
 上記のように海水を電気分解して生成された海水電解液には、次亜塩素酸ソーダの原料となる塩化ナトリウム(NaCl)の他、鉄やマンガンなどの促進酸化触媒(フェントン触媒)として脱窒素反応速度を上げる効果のある遷移金属イオンが含まれる。そのため、取水した海水を電気分解した海水電解液を用いて回収アンモニア水のアンモニアを分解することで、次亜塩素酸ソーダを単体で用いる場合よりも、効率よくアンモニアを分解することができる。また、浮体本体2の内部に、アンモニアを分解するための強酸性の薬液を大量に搭載する必要が無くなるため、浮体本体2の大型化を抑制することができるとともに、作業員の安全性を向上できる。さらに、酸化剤として次亜塩素酸ソーダを寄港地や係留場所等で入手する必要が無くなるため、作業員の負担を軽減することができる。
 したがって、コスト上昇を抑え容易にアンモニアを除害することが可能となる。
(Effect)
According to the floating body 1 of the above embodiment, seawater taken from the water intake section 82 is introduced into the floating body main body 2 floating on seawater through the seawater introduction line 83, and the seawater is electrolyzed by the electrolysis section 84 to produce hypochlorous acid. It produces a seawater electrolyte containing soda. Furthermore, the mixture of ammonia water and seawater electrolyte flowing through the ammonia line 81 is caused to react in the denitrification reaction tank 86, and the treated liquid after the reaction is discharged by the discharge part 87 to the surrounding area where the floating body 2 floats. are released into the seawater of
In addition to sodium chloride (NaCl), which is a raw material for sodium hypochlorite, the seawater electrolyte produced by electrolyzing seawater as described above has an accelerated oxidation catalyst (Fenton catalyst) such as iron and manganese. Contains transition metal ions that are effective in increasing the nitrogen reaction rate. Therefore, by decomposing ammonia in the recovered ammonia water using a seawater electrolyte obtained by electrolyzing the taken seawater, ammonia can be decomposed more efficiently than when sodium hypochlorite is used alone. In addition, since there is no need to load a large amount of strongly acidic chemical solution for decomposing ammonia inside the floating body 2, it is possible to suppress the increase in size of the floating body 2 and improve the safety of workers. can. Furthermore, since there is no need to obtain sodium hypochlorite as an oxidizing agent at ports of call, mooring sites, etc., the burden on workers can be reduced.
Therefore, it becomes possible to suppress the increase in cost and easily remove the harm from ammonia.
 上記実施形態の浮体1によれば、海水導入ライン83によって浮体本体2内に導入された海水と、発熱装置である燃焼装置8の冷却水とを熱交換させることで燃焼装置8の排熱を回収している。そして、この排熱回収部88によって熱交換した海水を海水導入ライン83が電気分解部84へ導いている。
 これにより、取水部82から取水した海水の温度を上昇させることができるため、浮体本体2の浮かぶ周囲の海水の温度が低い場合であっても、電気分解部84による次亜塩素酸ソーダの製造効率が低下することを抑制できる。また、排熱を利用しているため、海水を温度上昇させるための専用の熱源を設ける場合と比較して、省エネルギー化を図ることが可能となる。さらに、海水電解液の温度を上昇させることができるため、脱窒素反応槽86内の混合液の温度が上昇して、混合液のペーハーを低下させることができるため、アルカリ土類金属イオンとアンモニアとの反応により水酸化物が析出することを抑制できる。
According to the floating body 1 of the above embodiment, the seawater introduced into the floating body main body 2 through the seawater introduction line 83 is heat-exchanged with the cooling water of the combustion device 8, which is a heat generating device, so that exhaust heat from the combustion device 8 is released. are collecting. A seawater introduction line 83 guides the seawater heat-exchanged by the exhaust heat recovery unit 88 to the electrolysis unit 84 .
As a result, the temperature of the seawater taken from the water intake section 82 can be increased, so even if the temperature of the seawater around the floating body 2 is low, sodium hypochlorite is produced by the electrolysis section 84. A decrease in efficiency can be suppressed. In addition, since exhaust heat is used, energy can be saved compared to the case of providing a dedicated heat source for raising the temperature of seawater. Furthermore, since the temperature of the seawater electrolyte can be increased, the temperature of the mixed solution in the denitrification reaction tank 86 can be increased, and the pH of the mixed solution can be lowered. It is possible to suppress the precipitation of hydroxide due to the reaction with.
 上記実施形態の浮体1によれば、更に、取水部82が海洋生成物付着防止処理装置92を備えており、この海洋生成物付着防止処理装置92によって取水された海水に対して海洋生成物の付着防止処理を行っている。
 これにより、海洋生成物が取水口90の内面や海水導入ライン83の内面に付着して海水を取水するための流路が閉塞することを抑制できる。また、海洋生成物付着防止処理装置92が海水を電気分解して生成した次亜塩素酸ソーダにより海洋生成物の付着を防止する構成である場合には、海洋生成物の付着防止を目的とした次亜塩素酸ソーダの濃度に設定することができるため、次亜塩素酸ソーダにより海水導入ライン83や分岐ライン93等の海水を流通するための配管に腐食が発生することを抑制できる。
According to the floating body 1 of the above-described embodiment, the water intake section 82 further includes the marine product adhesion prevention treatment device 92, and the seawater taken in by the marine product adhesion prevention treatment device 92 is contaminated with marine products. Adhesion prevention treatment is applied.
As a result, it is possible to prevent marine products from adhering to the inner surface of the water intake 90 and the inner surface of the seawater introduction line 83 and clogging the flow path for taking in seawater. In addition, when the marine product adhesion prevention treatment device 92 is configured to prevent adhesion of marine products by sodium hypochlorite generated by electrolyzing seawater, it is intended to prevent adhesion of marine products. Since the concentration can be set to that of sodium hypochlorite, it is possible to suppress the occurrence of corrosion in piping for circulating seawater, such as the seawater introduction line 83 and the branch line 93, caused by sodium hypochlorite.
 上記実施形態の浮体1によれば、電気分解部84は、電解装置95によって海水を電気分解して生成された海水電解液を、循環ライン及び循環ポンプによって海水電解液を貯留可能な貯留槽と電解装置95との間で循環させている。
 これにより、海水電解液に含まれる次亜塩素酸ソーダの濃度を、必要に応じて高めることができる。したがって、回収アンモニア水のアンモニア濃度に対応した濃度の次亜塩素酸ソーダを含む海水電解液を生成できるため、脱窒素反応槽86における脱窒素反応を効率よく行わせることが可能となる。
According to the floating body 1 of the above-described embodiment, the electrolysis unit 84 uses the seawater electrolyte generated by electrolyzing seawater with the electrolyzer 95 as a storage tank capable of storing the seawater electrolyte through the circulation line and the circulation pump. It is circulated between the electrolytic device 95 and the electrolytic device 95 .
Thereby, the concentration of sodium hypochlorite contained in the seawater electrolyte can be increased as necessary. Therefore, since a seawater electrolyte containing sodium hypochlorite having a concentration corresponding to the ammonia concentration of the recovered ammonia water can be generated, the denitrification reaction in the denitrification reaction tank 86 can be efficiently performed.
 上記実施形態の浮体1によれば、ラインミキサー85によって海水電解液と回収アンモニア水との混合液を撹拌して、この撹拌された混合液を脱窒素反応槽86に導入させている。
 これにより、脱窒素反応槽86における脱窒素反応の反応速度を高めることができる。
According to the floating body 1 of the above embodiment, the line mixer 85 stirs the mixed liquid of the seawater electrolyte and the recovered ammonia water, and introduces the stirred mixed liquid into the denitrification reaction tank 86 .
Thereby, the reaction speed of the denitrification reaction in the denitrification reaction tank 86 can be increased.
 上記実施形態の浮体1によれば、海水導入ライン83により浮体本体2内に導入された海水の一部を希釈ライン89により処理済液体に合流させている。
 これにより、処理済液体に意図せずアンモニアが残留してしまった場合であっても、希釈ライン89の海水によって処理済液体を希釈してから放流することができる。したがって、処理済液体に意図せずアンモニアが残留した場合であっても、周辺環境への影響を低減できる。
According to the floating body 1 of the above embodiment, part of the seawater introduced into the floating body body 2 through the seawater introduction line 83 joins the treated liquid through the dilution line 89 .
As a result, even if ammonia unintentionally remains in the treated liquid, the treated liquid can be diluted with the seawater in the dilution line 89 and then discharged. Therefore, even if ammonia unintentionally remains in the treated liquid, the impact on the surrounding environment can be reduced.
 上記実施形態の浮体1によれば、ペーハー調整部である薬液タンク100により、脱窒素反応槽86に貯留された混合液のペーハーを低下側に調整可能とされている。また、海水電解液と回収アンモニア水との混合液のペーハーは、海水に含まれるアルカリ土類金属イオンがアンモニアと反応して水酸化物として析出しない範囲まで低下させている。
 例えば、アルカリ性の環境下で海水電解液と回収アンモニア水とを反応させると、海水に含まれるカルシウムやマグネシウム等のアルカリ土類金属イオンがアンモニアと反応して水酸化物スケールを発生させて配管を閉塞させる可能性が有るが、脱窒素反応槽86に貯留された混合液のペーハーを低下側に調整することで、このような水酸化物スケールの発生を抑制することができる。
According to the floating body 1 of the above embodiment, the pH of the liquid mixture stored in the denitrification reaction tank 86 can be adjusted to a lower side by the chemical liquid tank 100, which is the pH adjusting section. Moreover, the pH of the mixed solution of the seawater electrolyte and the recovered ammonia water is lowered to a range in which the alkaline earth metal ions contained in the seawater do not react with ammonia and precipitate as hydroxides.
For example, when the seawater electrolyte and the recovered ammonia water are reacted in an alkaline environment, alkaline earth metal ions such as calcium and magnesium contained in the seawater react with ammonia to generate hydroxide scale, which leads to damage to the piping. Although there is a possibility of clogging, the generation of such hydroxide scale can be suppressed by adjusting the pH of the mixed liquid stored in the denitrification reaction tank 86 to a lower side.
(実施形態の第一変形例)
 図4は、本開示の実施形態の第一変形例における図2に相当する図である。
 上述した実施形態の浮体1では、発熱機器としての燃焼装置8の冷却水と、海水導入ライン83を流通する海水とを排熱回収部88によって熱交換することで、燃焼装置8の排熱を回収する場合について説明した。しかし、発熱機器は、冷却水によって冷却される燃焼装置8に限られない。
(First modification of the embodiment)
FIG. 4 is a diagram corresponding to FIG. 2 in the first modified example of the embodiment of the present disclosure.
In the floating body 1 of the embodiment described above, the cooling water of the combustion device 8 as a heat generating device and the seawater flowing through the seawater introduction line 83 are heat-exchanged by the exhaust heat recovery unit 88, thereby recovering the exhaust heat of the combustion device 8. The case of collection was explained. However, the heat-generating equipment is not limited to the combustion device 8 cooled by cooling water.
 図4に示す第一変形例のように、例えば、浮体1が海水によって冷却可能な発熱機器108を有している場合には、海水導入ライン83の途中に発熱機器108の冷却系統109を接続して、この冷却系統109に、海水導入ライン83の海水を流通させてもよい。この実施形態の第一変形例では、海水導入ライン83に、発熱機器108以外の他の発熱機器(図示せず)にも海水を供給させるための海水分岐ライン110も接続され、他の発熱機器の排熱も回収可能な場合を例示している。 As in the first modification shown in FIG. 4, for example, when the floating body 1 has a heat generating device 108 that can be cooled by seawater, a cooling system 109 for the heat generating device 108 is connected in the middle of the seawater introduction line 83. Then, the seawater of the seawater introduction line 83 may be circulated through the cooling system 109 . In the first modification of this embodiment, a seawater branch line 110 for supplying seawater to heat generating equipment (not shown) other than the heat generating equipment 108 is also connected to the seawater introduction line 83. This example shows a case where the waste heat of is also recoverable.
 この実施形態の第一変形例のようにすることで、海水が発熱機器108の冷却系統109を通過する際に、発熱機器108と熱交換して温度上昇することとなる。この実施形態の第一変形例では、発熱機器108の冷却系統109が、本開示の排熱回収部を構成する。 By adopting the first modified example of this embodiment, when seawater passes through the cooling system 109 of the heat-generating equipment 108, it exchanges heat with the heat-generating equipment 108 and the temperature rises. In the first modification of this embodiment, the cooling system 109 of the heat-generating equipment 108 constitutes the exhaust heat recovery section of the present disclosure.
(実施形態の第二変形例)
 図5は、本開示の実施形態の第二変形例におけるアンモニア分解装置の概略構成を示す図である。
 上述した実施形態の浮体1では、脱窒素反応槽86内で、アンモニアライン81を流通する回収アンモニア水と電気分解部84で生成された海水電解液との混合液を反応させる場合について説明した。しかし、回収アンモニア水と海水電解液との混合液を反応させる脱窒素反応部は、脱窒素反応槽86に限られるものでは無い。
(Second modification of the embodiment)
FIG. 5 is a diagram showing a schematic configuration of an ammonia decomposition device in a second modified example of the embodiment of the present disclosure.
In the floating body 1 of the above-described embodiment, the case where the mixed solution of the recovered ammonia water flowing through the ammonia line 81 and the seawater electrolyte generated in the electrolysis unit 84 is reacted in the denitrification reaction tank 86 has been described. However, the denitrification reaction section for reacting the mixture of the recovered ammonia water and the seawater electrolyte is not limited to the denitrification reaction tank 86 .
 例えば、図5に示す第二変形例のように、アンモニアライン81を流通する回収アンモニア水を貯留槽96に供給するなど、電気分解部84を、回収アンモニア水と海水電解液との混合液を反応させる脱窒素反応部として用いてもよい。この第二変形例の電気分解部84で脱窒素反応させた後の処理済液体は、処理済液体排出ライン111を介して放流部87へ排出される。
 このように構成することで、上記実施形態の脱窒素反応槽86を省略することが可能となり、部品点数を削減することが可能となり、浮体1の大型化を抑制できる。
 なお、回収アンモニア水と貯留槽96に貯留された海水電解液中の次亜塩素酸ソーダとを反応させる場合を例示したが、第二変形例における回収アンモニア水と次亜塩素酸ソーダとを反応させる場所は、電気分解部84内であれば貯留槽96に限られるものではない。例えば、電解装置95に回収アンモニア水を供給し、電解装置95内で回収アンモニア水と次亜塩素酸ソーダとを反応させるようにしてもよい。
For example, as in the second modified example shown in FIG. You may use as a denitrification reaction part to react. The treated liquid after the denitrification reaction in the electrolysis section 84 of the second modification is discharged to the discharge section 87 through the treated liquid discharge line 111 .
By configuring in this way, the denitrification reaction tank 86 of the above embodiment can be omitted, the number of parts can be reduced, and the increase in size of the floating body 1 can be suppressed.
Although the case where the recovered ammonia water and sodium hypochlorite in the seawater electrolyte stored in the storage tank 96 are reacted has been exemplified, the recovered ammonia water and sodium hypochlorite in the second modification are reacted. The place where it is made is not limited to the storage tank 96 as long as it is inside the electrolysis section 84 . For example, the recovered ammonia water may be supplied to the electrolytic device 95 and the recovered ammonia water and sodium hypochlorite may be reacted in the electrolytic device 95 .
〈他の実施形態〉
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上記の実施形態では、浮体1が主機等により航行可能な船舶である場合について説明したが、アンモニアを貯蔵可能な浮体であれば船舶に限られない。
<Other embodiments>
As described above, the embodiments of the present disclosure have been described in detail with reference to the drawings, but the specific configuration is not limited to these embodiments, and design changes etc. within the scope of the present disclosure are also included. .
For example, in the above-described embodiment, the case where the floating body 1 is a ship that can be navigated by a main engine or the like has been described, but the floating body is not limited to a ship as long as it can store ammonia.
 また、上述した実施形態では、アンモニア水として、区画30内に漏洩したアンモニアや、配管系統20をパージする際に排出されるアンモニアを回収した回収アンモニア水を例示した。しかし、アンモニア水は、上記回収アンモニア水に限られず、浮体本体2内に存在してアンモニアが吸収された水であれば、如何なるアンモニア水であってもよい。 In addition, in the above-described embodiment, the ammonia water that has leaked into the section 30 and the ammonia water that is recovered when the piping system 20 is purged are exemplified as the ammonia water. However, the ammonia water is not limited to the above-described recovered ammonia water, and any ammonia water may be used as long as it exists in the floating body main body 2 and has ammonia absorbed therein.
 さらに、上述した実施形態では、浮体本体2内で生じた排熱を利用して海水を温度上昇させる場合について説明した。しかし、排熱を利用する場合に限られず、例えば、専用の熱源を設ける等、排熱を利用せずに海水を温度上昇させてもよい。 Furthermore, in the above-described embodiment, the case where the exhaust heat generated within the floating body body 2 is used to raise the temperature of the seawater has been described. However, it is not limited to the case of using the exhaust heat, and for example, the temperature of the seawater may be raised without using the exhaust heat, such as by providing a dedicated heat source.
 また、上述した実施形態では、海洋生成物付着防止処理装置92を備える場合について説明した。しかし、海洋生成物付着防止処理装置92は、必要に応じて設ければ良い。例えば、付着した海洋生成物のメンテナンスが容易な場合等には、海洋生成物付着防止処理装置92を省略してもよい。 Also, in the above-described embodiment, the case where the marine product adhesion prevention processing device 92 is provided has been described. However, the marine product adhesion prevention processing device 92 may be provided as necessary. For example, if maintenance of adhering marine products is easy, the marine product adhesion prevention treatment device 92 may be omitted.
 上述した実施形態では、海水電解液とアンモニア水との混合液を撹拌するラインミキサー85を設ける場合について説明した。しかし、ラインミキサー85は、必要に応じて設ければ良い。例えば、撹拌まで行う必要が無い場合、ラインミキサー85は省略してもよい。 In the above-described embodiment, the case where the line mixer 85 for stirring the mixture of seawater electrolyte and ammonia water is provided. However, the line mixer 85 may be provided as required. For example, the line mixer 85 may be omitted if there is no need to perform stirring.
 さらに、上述した実施形態では、電気分解部84が循環ライン97及び循環ポンプ98により海水電解液を循環させて、繰り返し電気分解を行うことで、次亜塩素酸ソーダの濃度を高める構成を例示した。しかし、次亜塩素酸ソーダの濃度を高める構成は、繰り返し電気分解を行うものに限られない。例えば、印加電圧を高めることで電流(NaClO発生量)を増大させるなど、繰り返し電気分解を行う構成とは異なる他の構成により次亜塩素酸ソーダの濃度を高めるようにしてもよい。 Furthermore, in the above-described embodiment, the electrolysis unit 84 circulates the seawater electrolyte with the circulation line 97 and the circulation pump 98, and repeats electrolysis, thereby increasing the concentration of sodium hypochlorite. . However, the configuration for increasing the concentration of sodium hypochlorite is not limited to repeated electrolysis. For example, the concentration of sodium hypochlorite may be increased by a configuration different from the configuration in which repeated electrolysis is performed, such as increasing the current (the amount of NaClO generated) by increasing the applied voltage.
 また、上述した実施形態では、浮体本体2内で利用済みの海水を、処理済液体を希釈するために利用する場合について説明した。しかし、処理済液体を希釈する海水は、浮体本体2内で利用済みの海水に限られない。例えば、取水口90から取り込まれた海水を直接的に処理済液体に合流させるようにしてもよい。 Also, in the above-described embodiment, a case has been described in which the seawater that has been used in the floating body body 2 is used to dilute the treated liquid. However, the seawater that dilutes the treated liquid is not limited to the seawater that has been used within the floating body 2 . For example, seawater taken in from the water intake 90 may be directly combined with the treated liquid.
<付記>
 実施形態に記載の浮体1及びアンモニア除害方法は、例えば以下のように把握される。
<Appendix>
The floating body 1 and ammonia detoxification method described in the embodiment are grasped, for example, as follows.
(1)第1の態様によれば浮体1は、海水に浮かぶ浮体本体2と、前記浮体本体2内に設けられて、アンモニア水が流通するアンモニアライン81と、前記浮体本体2内に前記海水を取水する取水部82と、前記取水部82から取水された前記海水を前記浮体本体2内へ導入する海水導入ライン83と、前記海水導入ライン83により導入された前記海水に電気分解を施すことで、次亜塩素酸ソーダを含む海水電解液を生成する電気分解部84と、前記アンモニアライン81を流通するアンモニア水と前記電気分解部84で生成された前記海水電解液との混合液を反応させる脱窒素反応槽86と、前記脱窒素反応槽86で反応させた後の処理済液体を前記浮体本体2の浮かぶ周囲の前記海水の中に放流する放流部87と、を備える。
 浮体1の例としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等の船舶、FSU(Floating Storage Unit)、FSRU(Floating Storage and Regasification Unit)等が挙げられる。
(1) According to the first aspect, the floating body 1 includes a floating body body 2 floating in seawater, an ammonia line 81 provided in the floating body body 2 through which ammonia water flows, and the seawater in the floating body body 2. A water intake section 82 for taking in water, a seawater introduction line 83 for introducing the seawater taken from the water intake section 82 into the floating body main body 2, and subjecting the seawater introduced by the seawater introduction line 83 to electrolysis. In the electrolysis part 84 that generates a seawater electrolyte containing sodium hypochlorite, a mixture of ammonia water flowing through the ammonia line 81 and the seawater electrolyte generated in the electrolysis part 84 reacts. and a discharge unit 87 for discharging the treated liquid after reaction in the denitrification reaction tank 86 into the seawater around the floating body 2 floating.
Examples of the floating body 1 include ships such as liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships, FSUs (Floating Storage Units), FSRUs (Floating Storage and Regasification Units), and the like.
 これにより、アンモニアを分解するための強酸性の薬液を浮体本体2内に大量に搭載する必要が無くなるため、浮体本体2の大型化を抑制することができるとともに、作業員の安全性を向上できる。したがって、コスト上昇を抑え容易にアンモニアを除害することが可能となる。 As a result, it is not necessary to load a large amount of strongly acidic chemical liquid for decomposing ammonia into the floating body body 2, so that it is possible to suppress the increase in size of the floating body body 2 and improve the safety of workers. . Therefore, it becomes possible to suppress the increase in cost and easily remove the harm from ammonia.
(2)第2の態様によれば浮体1は、(1)の浮体1であって、前記浮体本体2内に設けられて発熱する発熱機器8と、前記海水導入ライン83によって前記浮体本体2内に導入された前記海水と熱交換させることで前記発熱機器8の排熱を回収する排熱回収部88と、を備え、前記海水導入ライン83は、前記排熱回収部88で排熱回収することによって温度上昇した前記海水を前記電気分解部84へ導く。
 発熱機器8の例としては、内燃機関、ボイラー等の燃焼装置が挙げられる。
(2) According to the second aspect, the floating body 1 is the floating body 1 of (1), in which the heat generating device 8 that is provided in the floating body body 2 and generates heat, and the seawater introduction line 83 connect the floating body body 2 and an exhaust heat recovery unit 88 that recovers exhaust heat from the heat-generating equipment 8 by exchanging heat with the seawater introduced therein, and the seawater introduction line 83 recovers exhaust heat in the exhaust heat recovery unit 88. By doing so, the seawater whose temperature has risen is guided to the electrolysis section 84 .
Examples of the heat-generating equipment 8 include combustion devices such as internal combustion engines and boilers.
 これにより、浮体本体2の浮かぶ周囲の海水の温度が低い場合であっても、電気分解部84による次亜塩素酸ソーダの製造効率が低下することを抑制できる。 As a result, even when the temperature of the seawater around which the floating body main body 2 floats is low, it is possible to suppress a decrease in the efficiency of manufacturing sodium hypochlorite by the electrolysis unit 84 .
(3)第3の態様によれば浮体1は、(1)又は(2)の浮体1であって、前記取水部82は、取水された前記海水に対して海洋生成物の付着防止処理を行う海洋生成物付着防止処理装置92を備える。
 これにより、海洋生成物が取水口90の内面や海水導入ライン83の内面に付着して海水を取水するための流路が閉塞することを抑制できる。
(3) According to the third aspect, the floating body 1 is the floating body 1 of (1) or (2), and the water intake section 82 performs a marine product adhesion prevention treatment on the seawater taken in. A marine product adhesion prevention treatment device 92 is provided.
As a result, it is possible to prevent marine products from adhering to the inner surface of the water intake 90 and the inner surface of the seawater introduction line 83 and clogging the flow path for taking in seawater.
(4)第4の態様によれば浮体1は、(1)から(3)の何れか一つの浮体1であって、前記電気分解部84は、前記海水を電気分解して前記海水電解液を生成する電解装置95と、前記電解装置95により生成された前記海水電解液を貯留可能な貯留槽96と、前記電解装置95と前記貯留槽96との間で、前記海水電解液を循環させる循環ライン97と、前記循環ライン97に設けられた循環ポンプ98と、を備える。
 これにより、海水電解液に含まれる次亜塩素酸ソーダの濃度を、必要に応じて高めることができる。
(4) According to the fourth aspect, the floating body 1 is any one of (1) to (3), and the electrolysis unit 84 electrolyzes the seawater to produce the seawater electrolyte and a reservoir 96 capable of storing the seawater electrolyte produced by the electrolyzer 95, and the seawater electrolyte is circulated between the electrolyzer 95 and the reservoir 96. A circulation line 97 and a circulation pump 98 provided in the circulation line 97 are provided.
Thereby, the concentration of sodium hypochlorite contained in the seawater electrolyte can be increased as necessary.
(5)第5の態様によれば浮体1は、(1)から(4)の何れか一つの浮体1であって、前記電気分解部84によって生成された前記海水電解液と、前記アンモニアライン81によって供給されたアンモニア水との混合液を撹拌するラインミキサー85を備え、前記ラインミキサー85よって撹拌された前記混合液を前記脱窒素反応槽86に導入させる。
 これにより、脱窒素反応槽86における脱窒素反応の反応速度を高めることができる。
(5) According to the fifth aspect, the floating body 1 is any one of (1) to (4), wherein the seawater electrolyte produced by the electrolysis section 84 and the ammonia line A line mixer 85 is provided for stirring the mixed liquid with ammonia water supplied by 81 , and the mixed liquid stirred by the line mixer 85 is introduced into the denitrification reaction tank 86 .
Thereby, the reaction speed of the denitrification reaction in the denitrification reaction tank 86 can be increased.
(6)第6の態様によれば浮体1は、(1)から(4)の何れか一つの浮体1であって、前記電気分解部84は、前記脱窒素反応部を含み、前記アンモニアライン81は、前記アンモニア水を前記電気分解部84へ供給する。
 これにより、脱窒素反応部86を電気分解部84とは別に設ける場合と比較して、部品点数の増加を抑制することが可能となり、浮体1の大型化を抑制できる。
(6) According to the sixth aspect, the floating body 1 is any one of (1) to (4), wherein the electrolysis section 84 includes the denitrification reaction section, and the ammonia line 81 supplies the ammonia water to the electrolysis section 84 .
As a result, compared to the case where the denitrification reaction section 86 is provided separately from the electrolysis section 84, it is possible to suppress an increase in the number of parts and to suppress an increase in the size of the floating body 1.
(7)第7の態様によれば浮体1は、(1)から(6)の何れか一つの浮体1であって、前記海水導入ライン83によって前記浮体本体2内に導入された前記海水の一部を前記処理済液体に合流させる希釈ライン89を備える。
 これにより、希釈ライン89の海水によって処理済液体を希釈してから放流することができる。
(7) According to the seventh aspect, the floating body 1 is any one of (1) to (6), wherein the seawater introduced into the floating body main body 2 by the seawater introduction line 83 A dilution line 89 is provided, part of which joins the treated liquid.
This allows the treated liquid to be diluted with the seawater in the dilution line 89 before being discharged.
(8)第8の態様によれば浮体1は、(1)から(7)の何れか一つの浮体1であって、前記脱窒素反応槽86の前記混合液のペーハーを低下側に調整するペーハー調整部100を備える。
 ペーハー調整部100の例としては、薬液タンクを例示できる。
 これにより、海水電解液に含まれるアルカリ土類金属イオンとアンモニアとの反応により水酸化物スケールが発生することを抑制できる。
(8) According to the eighth aspect, the floating body 1 is any one of (1) to (7), and the pH of the mixed liquid in the denitrification reaction tank 86 is adjusted to the lower side. A pH adjustment unit 100 is provided.
As an example of the pH adjuster 100, a chemical liquid tank can be exemplified.
Thereby, it is possible to suppress the generation of hydroxide scale due to the reaction between the alkaline earth metal ions contained in the seawater electrolyte and the ammonia.
(9)第9の態様によればアンモニア除害方法は、海水に浮かぶ浮体1のアンモニア水を除害するアンモニア除害方法であって、前記浮体1の浮かぶ周囲の前記海水を取水して電気分解することで次亜塩素酸ソーダを含む海水電解液を生成する生成工程S12と、前記海水電解液の次亜塩素酸ソーダと前記アンモニア水のアンモニアとを反応させる脱窒素反応工程S13と、を含む。
 これにより、海水から生成した次亜塩素酸ソーダを用いて、浮体1のアンモニア水に含まれるアンモニアを分解して除害することができる。
(9) According to the ninth aspect, the method for removing ammonia harm is a method for removing ammonia water from a floating body 1 floating in seawater, and the seawater around the floating body 1 is taken in to generate electricity. A generation step S12 of generating a seawater electrolyte containing sodium hypochlorite by decomposition, and a denitrification reaction step S13 of reacting the sodium hypochlorite of the seawater electrolyte with the ammonia of the ammonia water. include.
As a result, the ammonia contained in the ammonia water of the floating body 1 can be decomposed and detoxified using sodium hypochlorite generated from seawater.
(10)第10の態様によればアンモニア除害方法は、(9)のアンモニア除害方法であって、取水した前記海水を用いて前記浮体1内の設備の排熱を回収する排熱回収工程S11を含み、前記生成工程S12では、前記排熱回収工程S11により排熱回収した前記海水を電気分解する。
 これにより、浮体1内の設備の排熱を利用して取水した海水を温度上昇させることができるため、生成工程S12における海水の電気分解を効率よく行うことが可能となる。
(10) According to the tenth aspect, the ammonia removal method is the ammonia removal method of (9), in which exhaust heat is recovered from facilities in the floating body 1 using the intake seawater. A step S11 is included, and in the generation step S12, the seawater from which exhaust heat is recovered in the exhaust heat recovery step S11 is electrolyzed.
As a result, the temperature of the seawater taken in can be raised using the exhaust heat of the equipment in the floating body 1, so that the seawater can be efficiently electrolyzed in the generation step S12.
(11)第11の態様によればアンモニア除害方法は、(9)又は(10)のアンモニア除害方法であって、前記脱窒素反応工程では、前記海水電解液と前記アンモニア水との混合液のペーハーを、前記海水に含まれるアルカリ土類金属イオンが前記アンモニアと反応して水酸化物として析出しない範囲まで低下させる。
 これにより、海水に含まれるアルカリ土類金属イオンがアンモニアと反応して水酸化物スケールを発生させて配管を閉塞させる可能性が有るが、このような水酸化物スケールの発生を抑制することができる。
(11) According to the eleventh aspect, the ammonia detoxification method is the ammonia detoxification method of (9) or (10), wherein in the denitrification reaction step, the seawater electrolyte and the ammonia water are mixed. The pH of the liquid is lowered to a range in which the alkaline earth metal ions contained in the seawater do not react with the ammonia and precipitate as hydroxides.
As a result, alkaline earth metal ions contained in seawater react with ammonia to generate hydroxide scale, which may clog the pipes. can.
 本開示に係る浮体及びアンモニア除害方法によれば、コスト上昇を抑えつつ容易にアンモニアを除害することができる。 According to the floating body and ammonia detoxification method according to the present disclosure, it is possible to easily detoxify ammonia while suppressing cost increases.
1…浮体 2…浮体本体 3a…船首 3b…船尾 4…上部構造 5A,5B…舷側 6…船底 7…上甲板 8…燃焼装置 10…アンモニアタンク 20…配管系統 30…区画 60…アンモニア回収部 70…回収アンモニア水タンク 80…アンモニア分解装置 81…アンモニアライン 82…取水部 83…海水導入ライン 84…電気分解部 85…ラインミキサー 86…脱窒素反応槽 87…放流部 88…排熱回収部 89…希釈ライン 90…取水口 91…海水ポンプ 92…海洋生成物付着防止処理装置 93…分岐ライン 95…電解装置 96…貯留槽 97…循環ライン 98…循環ポンプ 99…電解液ライン 100…薬液タンク 101…冷却水ライン 102…冷却水ポンプ 103…冷却水分岐ライン 108…発熱機器 109…冷却系統 110…海水分岐ライン 111…処理済液体排出ライン 1... Floating body 2... Floating body main body 3a... Bow 3b... Stern 4... Superstructure 5A, 5B... Broadside 6... Ship bottom 7... Upper deck 8... Combustion device 10... Ammonia tank 20... Piping system 30... Compartment 60... Ammonia recovery section 70 ... Recovered ammonia water tank 80... Ammonia decomposition device 81... Ammonia line 82... Water intake part 83... Seawater introduction line 84... Electrolysis part 85... Line mixer 86... Denitrification reaction tank 87... Discharge part 88... Exhaust heat recovery part 89... Dilution line 90 Water intake port 91 Seawater pump 92 Marine product adhesion prevention device 93 Branch line 95 Electrolysis device 96 Storage tank 97 Circulation line 98 Circulation pump 99 Electrolyte line 100 Chemical tank 101 Cooling water line 102 Cooling water pump 103 Cooling water branch line 108 Heat generating device 109 Cooling system 110 Seawater branch line 111 Treated liquid discharge line

Claims (11)

  1.  海水に浮かぶ浮体本体と、
     前記浮体本体内に設けられて、アンモニア水が流通するアンモニアラインと、
     前記浮体本体内に前記海水を取水する取水部と、
     前記取水部から取水された前記海水を前記浮体本体内へ導入する海水導入ラインと、
     前記海水導入ラインにより導入された前記海水に電気分解を施すことで、次亜塩素酸ソーダを含む海水電解液を生成する電気分解部と、
     前記アンモニアラインを流通するアンモニア水と前記電気分解部で生成された前記海水電解液との混合液を反応させる脱窒素反応部と、
     前記脱窒素反応部で反応させた後の処理済液体を前記浮体本体の浮かぶ周囲の前記海水の中に放流する放流部と、
    を備える浮体。
    A floating body floating in seawater,
    an ammonia line provided in the floating body main body through which ammonia water flows;
    a water intake section for taking in the seawater into the floating body main body;
    a seawater introduction line for introducing the seawater taken from the water intake section into the floating body main body;
    an electrolysis unit that electrolyzes the seawater introduced through the seawater introduction line to generate a seawater electrolyte containing sodium hypochlorite;
    a denitrification reaction section for reacting a mixture of the ammonia water flowing through the ammonia line and the seawater electrolyte produced in the electrolysis section;
    a discharge section for discharging the treated liquid after reaction in the denitrification reaction section into the seawater surrounding the floating body;
    float.
  2.  前記浮体本体内に設けられて発熱する発熱機器と、
     前記海水導入ラインによって前記浮体本体内に導入された前記海水と熱交換させることで前記発熱機器の排熱を回収する排熱回収部と、
    を備え、
     前記海水導入ラインは、
     前記排熱回収部で排熱回収することによって温度上昇した前記海水を前記電気分解部へ導く
    請求項1に記載の浮体。
    a heat-generating device that is provided in the floating body body and generates heat;
    an exhaust heat recovery unit that recovers exhaust heat from the heat-generating equipment by exchanging heat with the seawater introduced into the floating body main body through the seawater introduction line;
    with
    The seawater introduction line is
    The floating body according to claim 1, wherein the seawater whose temperature has been raised by recovering exhaust heat in the exhaust heat recovery unit is guided to the electrolysis unit.
  3.  前記取水部は、
     取水された前記海水に対して海洋生成物の付着防止処理を行う海洋生成物付着防止処理装置を備える
    請求項1又は2に記載の浮体。
    The water intake section
    3. The floating body according to claim 1 or 2, further comprising a marine product adhesion prevention treatment device that performs a marine product adhesion prevention treatment on the taken-in seawater.
  4.  前記電気分解部は、
     前記海水を電気分解して前記海水電解液を生成する電解装置と、
     前記電解装置により生成された前記海水電解液を貯留可能な貯留槽と、
     前記電解装置と前記貯留槽との間で、前記海水電解液を循環させる循環ラインと、
     前記循環ラインに設けられた循環ポンプと、
    を備える
    請求項1又は2に記載の浮体。
    The electrolysis unit is
    an electrolytic device that electrolyzes the seawater to generate the seawater electrolyte;
    a storage tank capable of storing the seawater electrolyte generated by the electrolytic device;
    a circulation line for circulating the seawater electrolyte between the electrolytic device and the storage tank;
    a circulation pump provided in the circulation line;
    The floating body according to claim 1 or 2.
  5.  前記電気分解部によって生成された前記海水電解液と、前記アンモニアラインによって供給されたアンモニア水との混合液を撹拌するラインミキサーを備え、
     前記ラインミキサーよって撹拌された前記混合液を前記脱窒素反応部に導入させる
    請求項1又は2に記載の浮体。
    A line mixer for stirring a mixture of the seawater electrolyte generated by the electrolysis unit and the ammonia water supplied by the ammonia line,
    The floating body according to claim 1 or 2, wherein the mixed liquid stirred by the line mixer is introduced into the denitrification reaction section.
  6.  前記電気分解部は、前記脱窒素反応部を含み、
     前記アンモニアラインは、前記アンモニア水を前記電気分解部へ供給する
    請求項1又は2に記載の浮体。
    The electrolysis section includes the denitrification reaction section,
    The floating body according to claim 1 or 2, wherein the ammonia line supplies the ammonia water to the electrolysis unit.
  7.  前記海水導入ラインによって前記浮体本体内に導入された前記海水の一部を前記処理済液体に合流させる希釈ラインを備える
    請求項1又は2に記載の浮体。
    The floating body according to claim 1 or 2, further comprising a dilution line for allowing part of the seawater introduced into the floating body main body by the seawater introduction line to join the treated liquid.
  8.  前記脱窒素反応部の前記混合液のペーハーを低下側に調整するペーハー調整部を備える請求項1又は2に記載の浮体。 The floating body according to claim 1 or 2, further comprising a pH adjustment unit that adjusts the pH of the mixed liquid in the denitrification reaction unit to a lower side.
  9.  海水に浮かぶ浮体のアンモニア水を除害するアンモニア除害方法であって、
     前記浮体の浮かぶ周囲の前記海水を取水して電気分解することで次亜塩素酸ソーダを含む海水電解液を生成する生成工程と、
     前記海水電解液の次亜塩素酸ソーダと前記アンモニア水のアンモニアとを反応させる脱窒素反応工程と、
    を含む
    アンモニア除害方法。
    An ammonia detoxification method for detoxifying ammonia water of a floating body floating in seawater,
    a generating step of taking in the seawater around the floating body and electrolyzing it to generate a seawater electrolyte containing sodium hypochlorite;
    a denitrification reaction step of reacting sodium hypochlorite in the seawater electrolyte with ammonia in the ammonia water;
    Ammonia abatement method comprising:
  10.  取水した前記海水を用いて前記浮体内の設備の排熱を回収する排熱回収工程を含み、
     前記生成工程では、
     前記排熱回収工程により排熱回収した前記海水を電気分解する
    請求項9に記載のアンモニア除害方法。
    including an exhaust heat recovery step of recovering exhaust heat from equipment in the floating body using the taken seawater,
    In the generating step,
    10. The method for detoxifying ammonia according to claim 9, wherein the seawater from which exhaust heat is recovered in the exhaust heat recovery step is electrolyzed.
  11.  前記脱窒素反応工程では、
     前記海水電解液と前記アンモニア水との混合液のペーハーを、前記海水に含まれるアルカリ土類金属が析出しない範囲まで低下させる
    請求項9又は10に記載のアンモニア除害方法。
    In the denitrification reaction step,
    11. The ammonia removal method according to claim 9 or 10, wherein the pH of the mixed solution of the seawater electrolyte and the aqueous ammonia is lowered to a range in which alkaline earth metals contained in the seawater do not precipitate.
PCT/JP2022/040807 2022-02-03 2022-10-31 Floating body and ammonia detoxification method WO2023149036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022015611A JP2023113332A (en) 2022-02-03 2022-02-03 Float and ammonia detoxification method
JP2022-015611 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149036A1 true WO2023149036A1 (en) 2023-08-10

Family

ID=87552140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040807 WO2023149036A1 (en) 2022-02-03 2022-10-31 Floating body and ammonia detoxification method

Country Status (2)

Country Link
JP (1) JP2023113332A (en)
WO (1) WO2023149036A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180008813A (en) * 2018-01-04 2018-01-24 주식회사 세광마린텍 Electrolysis of tubular type for water waste and sweage treatment device including thereof
JP2018034763A (en) * 2016-09-02 2018-03-08 住友重機械マリンエンジニアリング株式会社 Cooling system for central fresh water of marine vessel
WO2019204857A1 (en) * 2018-04-26 2019-10-31 Renam Properties Pty Ltd Offshore energy generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034763A (en) * 2016-09-02 2018-03-08 住友重機械マリンエンジニアリング株式会社 Cooling system for central fresh water of marine vessel
KR20180008813A (en) * 2018-01-04 2018-01-24 주식회사 세광마린텍 Electrolysis of tubular type for water waste and sweage treatment device including thereof
WO2019204857A1 (en) * 2018-04-26 2019-10-31 Renam Properties Pty Ltd Offshore energy generation system

Also Published As

Publication number Publication date
JP2023113332A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
KR101803368B1 (en) Emissions control system and method
CN101810994B (en) Combined marine pollution-preventing system
US9216376B2 (en) Systems and methods for exhaust gas cleaning and/or ballast water treatment
WO2012029757A1 (en) Carbon dioxide fixation method and carbon dioxide fixation apparatus
WO2022249792A1 (en) Ship
KR102110617B1 (en) Apparatus for purifying marine exhaust gas
KR102110618B1 (en) Apparatus for purifying marine exhaust gas
KR102025559B1 (en) Method for treating ballast water and marine exhaust gas using electrolysis
WO2023149036A1 (en) Floating body and ammonia detoxification method
KR102204774B1 (en) Apparatus for purifying marine exhaust gas
KR20160012614A (en) Apparatus for purifying marine exhaust gas
KR20190069945A (en) Treatment system of hydrogen from sea water electrolyzer
KR102402334B1 (en) Selective catalytic reduction system and method for controlling a selective catalytic reduction system in a ship
KR20050104001A (en) Disposal method and apparatus of ballast water for a ship
KR20170030981A (en) Method for reducing water and air pollutant
WO2023162360A1 (en) Floating body, and method for treating floating body with ammonia
KR102432774B1 (en) Linkage system using seawater electrolysis module
KR102110619B1 (en) Apparatus for purifying marine exhaust gas
KR20190107360A (en) Power generation system using seawater electrolysis module
KR101815085B1 (en) Apparatus for reducing water and air pollutant
JP2022080219A (en) System and vessel
WO2016028231A1 (en) Ballast water treatment system and method of ballast water treatment
WO2024058060A1 (en) Ammonia treatment system, floating body
KR20170128992A (en) Pollution reduction equipment for FPSO
KR20160009350A (en) Apparatus for purifying marine exhaust gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924941

Country of ref document: EP

Kind code of ref document: A1