WO2023146233A1 - Method for manufacturing euv pellicle on basis of multilayer membrane structure containing capping layer comprising metal nano-islands - Google Patents

Method for manufacturing euv pellicle on basis of multilayer membrane structure containing capping layer comprising metal nano-islands Download PDF

Info

Publication number
WO2023146233A1
WO2023146233A1 PCT/KR2023/001044 KR2023001044W WO2023146233A1 WO 2023146233 A1 WO2023146233 A1 WO 2023146233A1 KR 2023001044 W KR2023001044 W KR 2023001044W WO 2023146233 A1 WO2023146233 A1 WO 2023146233A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film layer
layer
etching
wafer
Prior art date
Application number
PCT/KR2023/001044
Other languages
French (fr)
Korean (ko)
Inventor
한희
안치원
이용희
이상익
변태석
전상용
권용희
이상찬
Original Assignee
한국과학기술원
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, (주)디엔에프 filed Critical 한국과학기술원
Publication of WO2023146233A1 publication Critical patent/WO2023146233A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Definitions

  • the present invention relates to a method for manufacturing an EUV pellicle based on a multilayer membrane structure containing a capping layer containing metal nanoislands, and more particularly, a pellicle capable of minimizing light source loss while having thermal and durability characteristics. It relates to a method for manufacturing a membrane.
  • the pellicle is a protective film to improve the defect rate by protecting the photomask from contaminants during the photo process.
  • the light source changes from exposure equipment such as argon fluoride to EUV, the demand for new materials and processes for the pellicle is also increasing.
  • the pellicle In the EUV exposure process, the pellicle has technical difficulties in that it must have excellent thermal characteristics because it is heated and cooled instantaneously when light passes through it, and it must be able to withstand both pressure differences and mechanical shocks generated during high-speed transportation.
  • an extreme ultraviolet (EUV) transmission layer an extreme ultraviolet (EUV) transmission layer; a first out-of-band (OOB) filter layer disposed on a first surface of the EUV transmission layer; a second out-of-band (OOB) filter layer disposed on a second surface opposite to the first surface of the EUV transmission layer; a third OoB filter layer including zirconium (Zr) between the EUV transmission layer and the first OoB filter layer; And a fourth OoB filter layer including zirconium (Zr) between the EUV transmission layer and the second OoB filter layer, wherein the first and second OoB filter layers include zirconium oxide.
  • EUV pellicle structure is disclosed.
  • An object of the present invention to solve the above problems is to provide a pellicle membrane capable of minimizing light source loss while having thermal characteristics and durability characteristics.
  • an object of the present invention is to form a ruthenium structure stably bonded to the pellicle membrane.
  • the configuration of the present invention for achieving the above object is a first step in which a silicon wafer is prepared, a first thin film layer is formed on the upper surface of the wafer and a second thin film layer is formed on the lower surface of the wafer; a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer; a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer; a fourth step of depositing a metal precursor on the upper surface of the third thin film layer to form a metal pattern layer having a predetermined pattern; a fifth step of forming a capping layer on top of the metal pattern layer to reduce reflectance of extreme ultraviolet rays incident on the core layer; a sixth step of forming a fifth thin film layer on an upper surface of the capping layer and a sixth thin film layer on a lower surface of the fourth thin film layer; a seventh step in which patterning is performed
  • a metal pattern in which a plurality of protrusions formed by depositing the metal precursor are distributed and disposed may be formed.
  • the metal precursor may be a ruthenium (Ru)-containing precursor.
  • each of the first thin film layer, the second thin film layer, the third thin film layer, and the fourth thin film layer is a low-stress nitride (LSN) thin film layer and may be deposited using LPCVD.
  • LSN low-stress nitride
  • the core layer in the second step, may be deposited using CVD.
  • the core layer may be formed of SiC or poly-Si.
  • the capping layer in the fifth step, may be deposited using ALD (Atomic Layer Deposition) or sputtering.
  • the capping layer may be formed of metal silicide.
  • patterning of the thin film layer assembly may be performed by a photolithography process.
  • the etching of the wafer may be performed by wet etching.
  • the ninth step may include a 9-1 step of etching a portion of the first thin film layer; and a 9-2 step of etching the fifth thin film layer and the sixth thin film layer.
  • wet etching for etching a portion of the first thin film layer may be performed using phosphoric acid (H 3 PO 4 ).
  • step 9-2 the etching of the fifth thin film layer and the sixth thin film layer may be performed by wet etching or dry etching.
  • the configuration of the present invention for achieving the above object is a first step in which a silicon wafer is prepared, a first thin film layer is formed on the upper surface of the wafer and a second thin film layer is formed on the lower surface of the wafer; a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer; a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer; a fourth step of forming a capping layer on an upper surface of the third thin film layer to reduce reflectance of extreme ultraviolet rays incident on the core layer; a fifth step of depositing a metal precursor on the upper surface of the capping layer to form a metal pattern layer having a predetermined pattern; a sixth step in which a fifth thin film layer is formed on the metal pattern layer and a sixth thin film layer is formed on the lower surface of the fourth thin film layer; a seventh step in which patterning is performed
  • a metal pattern in which a plurality of protrusions formed by depositing the metal precursor are distributedly disposed may be formed.
  • the metal precursor may be a ruthenium (Ru)-containing precursor.
  • the effect of the present invention according to the configuration as described above is that the pellicle membrane manufactured by the manufacturing method of the present invention is formed as a multilayer film while preserving 88% or more of the initial amount of extreme ultraviolet light, so that it can have high durability and thermal characteristics. that there is
  • a metal pattern layer having a predetermined pattern on the pellicle membrane in particular, a ruthenium (Ru) pattern layer, it is possible to improve the durability of the pellicle membrane against high temperatures by improving thermal emissivity.
  • ruthenium (Ru) pattern layer it is possible to improve the durability of the pellicle membrane against high temperatures by improving thermal emissivity.
  • FIG. 1 is a schematic diagram of a process sequence of a manufacturing method according to an embodiment of the present invention.
  • 2 to 6 are cross-sectional views of products of each step of the manufacturing method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a process sequence of a manufacturing method according to another embodiment of the present invention.
  • 8 to 12 are cross-sectional views of products in each step of a manufacturing method according to another embodiment of the present invention.
  • FIG. 13 is a TEM image of a state in which a metal pattern layer is formed by depositing a metal precursor according to an embodiment of the present invention.
  • FIGS. 2 to 6 are cross-sectional views of products of each step of the manufacturing method according to an embodiment of the present invention.
  • FIG. 2(a) is a cross-sectional view of the wafer 130
  • FIG. 2(b) is a cross-sectional view of the product after performing the first step
  • (a) of FIG. 3 is a cross-sectional view of the product after performing the second step
  • (b) of FIG. 3 is a cross-sectional view of the product after performing the third step.
  • FIG. 4 is a cross-sectional view of the product after performing the fourth step
  • (b) of FIG. 4 is a cross-sectional view of the product after performing the fifth step
  • 5(a) is a cross-sectional view of the product after performing the sixth step
  • FIG. 5(b) is a cross-sectional view of the product after performing the seventh step
  • FIG. 6 (a) is a cross-sectional view of the product after performing the eighth step
  • FIG. 6 (b) is a cross-sectional view of the product after performing the ninth step.
  • a silicon wafer 130 is prepared, and a first low-stress nitride (LSN) thin film layer
  • the thin film layer 210 may be formed on the upper surface of the wafer 130 and the second thin film layer 220 which is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the wafer 130 .
  • LSN low-stress nitride
  • the wafer 130 may be formed of silicon (Si), and may be formed in a disk shape with a diameter of 8 inches (in) or more.
  • a plurality of pellicle membranes according to the manufacturing method of the present invention can be formed using the wafer 130 as described above, and accordingly, by manufacturing a plurality of pellicle membranes with one wafer 130, a large amount of pellicles production can be made possible.
  • Each of the first thin film layer 210 and the second thin film layer 220 may be deposited using low pressure chemical vapor deposition (LPCVD).
  • LPCVD low pressure chemical vapor deposition
  • the LPCVD process which is a chemical vapor deposition method that proceeds at a low pressure, can be performed at a higher temperature than the CVD process.
  • the first thin film layer 210 may act as a stop layer (etch stop layer) to prevent damage to the core layer 110 during wet etching of the wafer 130 in the seventh step described below. That is, since the low-stress nitride (LSN) thin film layer is etch-resistant to KOH, only silicon (core layer 110) is etched with KOH, and the etching may stop when it meets the LSN thin film layer.
  • LSN low-stress nitride
  • each of the first thin film layer 210 and the second thin film layer 220 may be formed as a thin film layer, and the thickness of the first thin film layer 210 may be formed to 20 nm or less, and the thickness of the first thin film layer 210 may be formed to 20 nm or less.
  • the EUV transmittance of each thin film layer can be increased.
  • etching efficiency by phosphoric acid (H 3 PO 4 ) may be increased during wet etching of a portion of the first thin film layer 210 .
  • a core layer 110 transparently formed so that extreme ultraviolet rays can pass through is formed on the upper portion of the first thin film layer 210.
  • the core layer 110 may be deposited using CVD.
  • CVD chemical vapor deposition
  • CVD is a chemical vapor deposition method, which supplies a gas containing elements constituting the thin film material to be formed onto a substrate to cause a chemical reaction of either oxidation-reduction reaction, thermal decomposition, photolysis, or substitution on the surface of the substrate or vapor phase.
  • the reaction may form a thin film on the substrate surface.
  • the core layer 110 may be formed of SiC (silicon carbide) or poly-Si (polysilicon).
  • the core layer 110 is a main support layer of the pellicle membrane of the present invention, and may have high transmittance to extreme ultraviolet (EUV), high durability, and phosphoric acid selectivity.
  • EUV extreme ultraviolet
  • the extreme ultraviolet transmittance of the core layer 110 may be formed to be 88% or more, and the thickness of the core layer 110 may be formed to be 50 nm or less in order to have high durability as described above. Accordingly, EUV transmission efficiency of the core layer 110 may be increased.
  • a third thin film layer 230 which is a low-stress nitride (LSN) thin film layer
  • a fourth thin film layer 240 that is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the second thin film layer 220 .
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be deposited using LPCVD (Low Pressure Chemical Vapor Deposition).
  • the core layer 110 is protected from the environment of extreme ultraviolet rays, and the residual stress in the pellicle membrane of the present invention is applied to the third thin film layer 230.
  • the aforementioned residual stress may be controlled by controlling the ratio of silicon (Si) to nitrogen (N) in the third thin film layer 230 .
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be formed as a thin film layer, the thickness of the third thin film layer 230 may be formed to 20 nm or less, and the thickness of the fourth thin film layer 240 may be formed to 20 nm or less. In this way, by forming the thickness of each of the third thin film layer 230 and the fourth thin film layer 240, the EUV transmittance of each thin film layer can be increased.
  • a metal precursor is deposited on the upper surface of the third thin film layer 230 to form a metal pattern layer 140 having a predetermined pattern. It can be.
  • a metal pattern in which a plurality of protrusions 141 formed by deposition of a metal precursor are distributedly disposed may be formed.
  • the metal precursor may be a ruthenium (Ru)-containing precursor.
  • the metal pattern layer 140 may have a structure in which a plurality of ruthenium nano-islands are formed.
  • the metal pattern layer 140 as described above may be deposited on the upper surface of the third thin film layer 230 using ALD (Atomic Layer Deposition).
  • ALD Advanced Deposition
  • a metal precursor for example, a ruthenium (Ru)-containing precursor does not form a ruthenium-containing thin film and changes ALD process conditions such as cycle, process temperature, substrate surface treatment method, or precursor type of the ALD process for forming ruthenium nanoislands. can make it
  • the metal precursor may be a ruthenium (Ru)-containing precursor, specifically, as a precursor, selected from the group consisting of a zero-valent ruthenium precursor, a divalent ruthenium precursor (Ru-2), and a tetravalent ruthenium precursor (Ru-4). It may be one or more, and more specific examples include tricarbonylcyclohexadiene ruthenium, butadiene ruthenium tricarbonyl, dimethyl butadiene ruthenium tricarbonyl, ruthenium tricarbonyl, Ru(MeCp) 2 , Ru(EtCp) 2 , Ru( At least one selected from i-PrCp) 2 and RuCp 2 may be used. However, it is not limited thereto.
  • Ru ruthenium
  • the number of cycles can be controlled, and the number of cycles can be varied depending on the type of precursor.
  • the process temperature of the ALD process for forming the metal pattern layer 140 can be controlled as described above, and the process temperature can be varied according to the type of the precursor or the number of cycles.
  • the metal pattern layer having a predetermined metal pattern without the metal precursor forming a thin film by performing surface treatment on the upper surface of the third thin film layer 230 ( 140) can be controlled to form.
  • surface treatment may be performed on the upper surface of the third thin film layer 230 .
  • buffered oxide etching BOE
  • NH 3 plasma treatment N 2 plasma treatment, etc.
  • N 2 plasma treatment etc.
  • the metal precursor that is, the ruthenium (Ru)-containing precursor does not form a thin film and forms a plurality of protrusions 141 on the upper surface of the third thin film layer 230, the metal pattern layer 140 can form
  • the thermal emissivity of the metal (ruthenium (Ru)) increases rapidly, and the metal (ruthenium (Ru)) ))
  • the temperature of the pellicle membrane of the present invention can be reduced by 1,000 ° C or more. Accordingly, heat radiation efficiency of the pellicle membrane of the present invention may be increased, and thus durability against heat may be improved.
  • the capping layer 120 reducing the reflectance of the extreme ultraviolet rays incident on the core layer 110 is formed by the metal pattern layer 140 can be formed on top.
  • the capping layer 120 may have optical characteristics of high emissivity and low reflectance for extreme ultraviolet rays, and may have a phosphoric acid selectivity.
  • the capping layer 120 may have an emissivity of 0.1 or more and a reflectance of 0.05 or less with respect to extreme ultraviolet rays.
  • the capping layer 120 may have performance such as an EUV transmittance of 88% or more. Accordingly, the utilization rate of extreme ultraviolet rays irradiated with the pellicle membrane of the present invention is remarkably increased, and the loss rate of extreme ultraviolet rays can be reduced.
  • the capping layer 120 may be deposited using ALD (Atomic Layer Deposition) or sputtering. Of course, other physical vapor deposition (PVD) processes other than sputtering may be used to form the capping layer 120 .
  • ALD Atomic Layer Deposition
  • PVD physical vapor deposition
  • the capping layer 120 may be formed of metal silicide.
  • the capping layer 120 may be formed of MoSiO 2 (silicon molybdenum dioxide).
  • the material forming the capping layer 120 is not limited thereto, and among the materials that satisfy EUV high transmittance, high emissivity, and low reflectance performance and are resistant to hydrogen plasma, all materials having a selectivity to phosphoric acid can be used. can
  • heat treatment may be performed on the capping layer 120 .
  • the capping layer 120 formed as described above may be used without heat treatment, but heat treatment may be performed to improve durability and EUV optical characteristics.
  • the heat treatment temperature may be 800° C. or higher.
  • the heat treatment of the capping layer 120 may be performed in equipment where the above deposition process (ALD, sputtering, etc.) of the capping layer 120 has been performed, or may be performed by an external heater. .
  • ruthenium (Ru) pattern with the metal pattern layer 140 as described above, by combining the metal silicide and the ruthenium (Ru) pattern layer, tin (Tin) and hydrogen diffusion (hydrogen diffusion) in the EUVL environment It is possible to prevent blistering of the ruthenium (Ru) layer. Accordingly, durability of the pellicle membrane of the present invention can be improved.
  • a fifth thin film layer 250 which is a low-stress nitride (LSN) thin film layer
  • a sixth thin film layer 260 that is a low-stress nitride (LSN) thin film layer may be formed on a lower surface of the fourth thin film layer 240 .
  • the capping layer 120 is protected during patterning of the thin film layer assembly in the seventh step described below or wet etching in the eighth step described below can be formed to
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a low-stress nitride (LSN) thin film layer, a silver (Ag) coating layer, or a polymer film such as Parylene.
  • LSN low-stress nitride
  • Ag silver
  • polymer film such as Parylene
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is LPCVD (Low Pressure Chemical Vapor Deposition) can be used.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed as a thin film layer, the thickness of the fifth thin film layer 250 may be formed to 20 nm or less, and the thickness of the sixth thin film layer 260 may be formed to 20 nm or less. As the thicknesses of the fifth thin film layer 250 and the sixth thin film layer 260 are formed in this way, the etching efficiency of the fifth thin film layer 250 and the sixth thin film layer 260 can be increased during wet etching or dry etching. .
  • the thin film layer assembly which is a combination of the second thin film layer 220, the fourth thin film layer 240, and the sixth thin film layer 260 Patterning may be performed.
  • patterning of the thin film layer assembly may be performed through a photolithography process.
  • a pattern designed on the mask may be implemented in the thin film layer assembly, and specifically, first, a photoresist coating step of coating a photoresist on the lower surface of the thin film layer assembly may be performed.
  • a mask placement step of disposing a patterned mask on the photoresist-coated surface may be performed, and then an exposure step of exposing the exposed photoresist-coated surface to light according to the pattern of the mask. can be performed
  • a developing step may be performed, which is a process of removing portions where photosensitizer is not needed.
  • the thin film layer assembly is divided into a portion that receives light and a portion that does not receive light.
  • a positive resist is used as a photoresist
  • the portion that receives light is removed and the portion that does not receive light remains.
  • a negative resist is used as a photoresist, It could be the other way around.
  • an etching step of performing etching for patterning the thin film layer assembly using dry etching or wet etching may be performed.
  • a photoresist removal step of removing the photoresist remaining on the surface of the thin film layer assembly may be performed.
  • a sulfuric acid (H 2 SO 4 ) solution or the like may be used, but is not limited thereto.
  • the wafer 130 may be etched according to the patterning shape of the thin film layer assembly. Specifically, in the eighth step, the etching of the wafer 130 may be performed by wet etching. Here, wet etching of the wafer 130 may be performed using potassium hydroxide (KOH).
  • KOH potassium hydroxide
  • a portion of the wafer 130 is exposed along with the patterning of the thin film layer assembly, and etching may be performed on the exposed pattern of the wafer 130.
  • the etching of a portion of the wafer 130 which is a shape corresponding to the patterning shape of the thin film layer assembly, is described as wet etching using potassium hydroxide (KOH)
  • the material used for wet etching is hydroxide It is not limited to potassium (KOH), and hydrochloric acid (HCl), nitric acid (HNO 3 ), hydrogen fluoride (HF), and the like may also be used.
  • an etchant is prepared by dissolving 30 wt% of potassium in a solvent that is water at a temperature of 80 ° C. Wet etching may be performed by contacting one part.
  • a portion of the first thin film layer 210 is etched along the shape of the etched portion on the lower surface of the wafer 130, and the etching
  • a pellicle membrane formed to expose the metal pattern layer 140 may be formed.
  • the ninth step includes a 9-1 step in which etching is performed on a portion of the first thin film layer 210; and a 9-2 step of etching the fifth thin film layer 250 and the sixth thin film layer 260 .
  • steps 9-1 and 9-2 may be performed simultaneously or separately.
  • the etching of a part of the first thin film layer 210 and the etching removal of the fifth thin film layer 250 and the sixth thin film layer 260 are performed by wet etching.
  • wet etching for etching a portion of the first thin film layer 210 and etching and removing the fifth thin film layer 250 and the sixth thin film layer 260 may be performed using phosphoric acid (H 3 PO 4 ). .
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the first thin film layer 210 is wet-etched using phosphoric acid (H 3 PO 4 ) as described above. Etching may be performed on a portion.
  • step 9-2 wet etching or dry etching may be performed on the fifth thin film layer 250 and the sixth thin film layer 260.
  • the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a material that is resistant to an etchant (ex. KOH) of wet etching in the eighth step and can be removed by dry etching or wet etching.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a silver (Ag) coating and can be easily removed by nitric acid (HNO 3 ) in the 9-2 step.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a polymer film such as Parylene, and can be easily removed by a DRIE method in the 9-2 step.
  • a plurality of protrusions 141 are formed on the inside of the capping layer 120 It may be in the form of being formed.
  • FIG. 7 is a schematic diagram of a process sequence of a manufacturing method according to another embodiment of the present invention.
  • 8 to 12 are cross-sectional views of products in each step of a manufacturing method according to another embodiment of the present invention.
  • FIG. 8(a) is a cross-sectional view of the wafer 130
  • FIG. 8(b) is a cross-sectional view of the product after performing the first step
  • FIG. 9 (a) is a cross-sectional view of the product after performing the second step
  • FIG. 9 (b) is a cross-sectional view of the product after performing the third step.
  • FIG. 10 (a) is a cross-sectional view of the product after performing the fourth step
  • FIG. 10 (b) is a cross-sectional view of the product after performing the fifth step
  • FIG. 11 (a) is a cross-sectional view of the product after performing the sixth step
  • FIG. 11 (b) is a cross-sectional view of the product after performing the seventh step
  • FIG. 11 (a) is a cross-sectional view of the product after performing the eighth step
  • FIG. 11 (b) is a cross-sectional view of the product after performing the ninth step.
  • a silicon wafer 130 is prepared, and a first low-stress nitride (LSN) thin film layer
  • the thin film layer 210 may be formed on the upper surface of the wafer 130 and the second thin film layer 220 which is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the wafer 130 .
  • LSN low-stress nitride
  • the wafer 130 may be formed of silicon (Si), and may be formed in a disk shape with a diameter of 8 inches (in) or more.
  • a plurality of pellicle membranes according to the manufacturing method of the present invention can be formed using the wafer 130 as described above, and accordingly, by manufacturing a plurality of pellicle membranes with one wafer 130, a large amount of pellicles production can be made possible.
  • Each of the first thin film layer 210 and the second thin film layer 220 may be deposited using low pressure chemical vapor deposition (LPCVD).
  • LPCVD low pressure chemical vapor deposition
  • the LPCVD process which is a chemical vapor deposition method that proceeds at a low pressure, can be performed at a higher temperature than the CVD process.
  • the first thin film layer 210 may act as a stop layer (etch stop layer) to prevent damage to the core layer 110 during wet etching of the wafer 130 in the seventh step described below. That is, since the low-stress nitride (LSN) thin film layer is etch-resistant to KOH, only silicon (core layer 110) is etched with KOH, and the etching may stop when it meets the LSN thin film layer.
  • LSN low-stress nitride
  • each of the first thin film layer 210 and the second thin film layer 220 may be formed as a thin film layer, and the thickness of the first thin film layer 210 may be formed to 20 nm or less, and the thickness of the first thin film layer 210 may be formed to 20 nm or less.
  • the EUV transmittance of each thin film layer can be increased.
  • etching efficiency by phosphoric acid (H 3 PO 4 ) may be increased during wet etching of a portion of the first thin film layer 210 .
  • a core layer 110 transparently formed so as to transmit extreme ultraviolet rays is formed on the upper surface of the first thin film layer 210. It can be.
  • the core layer 110 may be deposited using CVD.
  • CVD chemical vapor deposition
  • CVD is a chemical vapor deposition method, which supplies a gas containing elements constituting the thin film material to be formed onto a substrate to cause a chemical reaction of either oxidation-reduction reaction, thermal decomposition, photolysis, or substitution on the surface of the substrate or vapor phase.
  • the reaction may form a thin film on the substrate surface.
  • the core layer 110 may be formed of SiC (silicon carbide) or poly-Si (polysilicon).
  • the core layer 110 is a main support layer of the pellicle membrane of the present invention, and may have high transmittance to extreme ultraviolet (EUV), high durability, and phosphoric acid selectivity.
  • EUV extreme ultraviolet
  • the extreme ultraviolet transmittance of the core layer 110 may be formed to be 88% or more, and the thickness of the core layer 110 may be formed to be 50 nm or less in order to have high durability as described above. Accordingly, EUV transmission efficiency of the core layer 110 may be increased.
  • a third thin film layer 230 which is a low-stress nitride (LSN) thin film layer
  • a fourth thin film layer 240 that is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the second thin film layer 220 .
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be deposited using LPCVD (Low Pressure Chemical Vapor Deposition).
  • the core layer 110 is protected from the environment of extreme ultraviolet rays, and the residual stress in the pellicle membrane of the present invention is applied to the third thin film layer 230.
  • the aforementioned residual stress may be controlled by controlling the ratio of silicon (Si) to nitrogen (N) in the third thin film layer 230 .
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be formed as a thin film layer, the thickness of the third thin film layer 230 may be formed to 20 nm or less, and the thickness of the fourth thin film layer 240 may be formed to 20 nm or less. In this way, by forming the thickness of each of the third thin film layer 230 and the fourth thin film layer 240, the EUV transmittance of each thin film layer can be increased.
  • the capping layer 120 reducing the reflectance of the extreme ultraviolet rays incident on the core layer 110 is formed by the third thin film layer 230 It may be formed on the upper surface.
  • the capping layer 120 may have optical characteristics of high emissivity and low reflectance for extreme ultraviolet rays, and may have a phosphoric acid selectivity.
  • the capping layer 120 may have an emissivity of 0.1 or more and a reflectance of 0.05 or less with respect to extreme ultraviolet rays.
  • the capping layer 120 may have performance such as an EUV transmittance of 88% or more. Accordingly, the utilization rate of extreme ultraviolet rays irradiated with the pellicle membrane of the present invention is remarkably increased, and the loss rate of extreme ultraviolet rays can be reduced.
  • the capping layer 120 may be deposited using ALD (Atomic Layer Deposition) or sputtering. Of course, other physical vapor deposition (PVD) processes other than sputtering may be used to form the capping layer 120 .
  • ALD Atomic Layer Deposition
  • PVD physical vapor deposition
  • the capping layer 120 may be formed of metal silicide.
  • the capping layer 120 may be formed of MoSiO 2 (silicon molybdenum dioxide).
  • the material forming the capping layer 120 is not limited thereto, and among the materials that satisfy EUV high transmittance, high emissivity, and low reflectance performance and are resistant to hydrogen plasma, all materials having a selectivity to phosphoric acid can be used. can
  • heat treatment may be performed on the capping layer 120 .
  • the capping layer 120 formed as described above may be used without heat treatment, but heat treatment may be performed to improve durability and EUV optical characteristics.
  • the heat treatment temperature may be 800° C. or higher.
  • heat treatment of the capping layer 120 may be performed. ) may be performed in equipment where the deposition process (ALD, sputtering, etc.) has been performed, or may be performed by an external heater.
  • a metal precursor is deposited on the upper surface of the capping layer 120 to form a metal pattern layer 140 having a predetermined pattern.
  • a metal pattern in which a plurality of protrusions 141 formed by deposition of a metal precursor are distributed and disposed may be formed.
  • the metal precursor may be a ruthenium (Ru)-containing precursor.
  • the metal pattern layer 140 may have a structure in which a plurality of ruthenium nano-islands are formed.
  • the metal pattern layer 140 as described above may be deposited on the upper surface of the capping layer 120 using ALD (Atomic Layer Deposition).
  • ALD Advanced Deposition
  • a metal precursor for example, a ruthenium (Ru)-containing precursor does not form a ruthenium-containing thin film and changes ALD process conditions such as cycle, process temperature, substrate surface treatment method, or precursor type of the ALD process for forming ruthenium nanoislands. can make it
  • the metal precursor may be a ruthenium (Ru)-containing precursor, specifically, as a precursor, selected from the group consisting of a zero-valent ruthenium precursor, a divalent ruthenium precursor (Ru-2), and a tetravalent ruthenium precursor (Ru-4). It may be one or more, and more specific examples include tricarbonylcyclohexadiene ruthenium, butadiene ruthenium tricarbonyl, dimethyl butadiene ruthenium tricarbonyl, ruthenium tricarbonyl, Ru(MeCp) 2 , Ru(EtCp) 2 , Ru( At least one selected from i-PrCp) 2 and RuCp 2 may be used. However, it is not limited thereto.
  • Ru ruthenium
  • the number of cycles can be controlled, and the number of cycles can be varied depending on the type of precursor.
  • the process temperature of the ALD process for forming the metal pattern layer 140 can be controlled as described above, and the process temperature can be varied according to the type of the precursor or the number of cycles.
  • the metal precursor does not form a thin film and has a metal pattern layer having a predetermined metal pattern ( 140) can be controlled to form.
  • surface treatment may be performed on the upper surface of the capping layer 120 .
  • buffered oxide etching BOE
  • NH 3 plasma treatment NH 3 plasma treatment
  • N 2 plasma treatment etc.
  • the metal precursor that is, the ruthenium (Ru)-containing precursor does not form a thin film and forms a plurality of protrusions 141 on the upper surface of the capping layer 120, the metal pattern layer 140.
  • the metal precursor that is, the ruthenium (Ru)-containing precursor does not form a thin film and forms a plurality of protrusions 141 on the upper surface of the capping layer 120, the metal pattern layer 140.
  • the thermal emissivity of the metal (ruthenium (Ru)) increases rapidly, and the metal (ruthenium (Ru)) ))
  • the temperature of the pellicle membrane of the present invention can be reduced by 1,000 ° C or more. Accordingly, heat radiation efficiency of the pellicle membrane of the present invention may be increased, and thus durability against heat may be improved.
  • ruthenium (Ru) pattern with the metal pattern layer 140 as described above, by combining the metal silicide and the ruthenium (Ru) pattern layer, tin (Tin) and hydrogen diffusion (hydrogen diffusion) in the EUVL environment It is possible to prevent blistering of the ruthenium (Ru) layer. Accordingly, durability of the pellicle membrane of the present invention can be improved.
  • the fifth thin film layer 250 is formed on the metal pattern layer 140, and the sixth thin film layer 260 is formed on the fourth step. It may be formed on the lower surface of the thin film layer 240 .
  • the capping layer 120 is protected during patterning of the thin film layer assembly in the seventh step described below or wet etching in the eighth step described below can be formed to
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a low-stress nitride (LSN) thin film layer, a silver (Ag) coating layer, or a polymer film such as Parylene.
  • LSN low-stress nitride
  • Ag silver
  • polymer film such as Parylene
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is LPCVD (Low Pressure Chemical Vapor Deposition) can be used.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed as a thin film layer, the thickness of the fifth thin film layer 250 may be formed to 20 nm or less, and the thickness of the sixth thin film layer 260 may be formed to 20 nm or less. As the thicknesses of the fifth thin film layer 250 and the sixth thin film layer 260 are formed in this way, the etching efficiency of the fifth thin film layer 250 and the sixth thin film layer 260 can be increased during wet etching or dry etching. .
  • the thin film layer assembly which is a combination of the second thin film layer 220, the fourth thin film layer 240, and the sixth thin film layer 260 Patterning may be performed.
  • patterning of the thin film layer assembly may be performed through a photolithography process.
  • a pattern designed on the mask may be implemented in the thin film layer assembly, and specifically, first, a photoresist coating step of coating a photoresist on the lower surface of the thin film layer assembly may be performed.
  • a mask placement step of disposing a patterned mask on the photoresist-coated surface may be performed, and then an exposure step of exposing the exposed photoresist-coated surface to light according to the pattern of the mask. can be performed
  • a developing step may be performed, which is a process of removing portions where photosensitizer is not needed.
  • the thin film layer assembly is divided into a portion that receives light and a portion that does not receive light.
  • a positive resist is used as a photoresist
  • the portion that receives light is removed and the portion that does not receive light remains.
  • a negative resist is used as a photoresist, It could be the other way around.
  • an etching step of performing etching for patterning the thin film layer assembly using dry etching or wet etching may be performed.
  • a photoresist removal step of removing the photoresist remaining on the surface of the thin film layer assembly may be performed.
  • a sulfuric acid (H 2 SO 4 ) solution or the like may be used, but is not limited thereto.
  • the wafer 130 may be etched according to the patterning shape of the thin film layer assembly. Specifically, in the eighth step, the etching of the wafer 130 may be performed by wet etching. Here, wet etching of the wafer 130 may be performed using potassium hydroxide (KOH).
  • KOH potassium hydroxide
  • a portion of the wafer 130 is exposed along with the patterning of the thin film layer assembly, and etching may be performed on the exposed pattern of the wafer 130.
  • the etching of a portion of the wafer 130 which is a shape corresponding to the patterning shape of the thin film layer assembly, is described as wet etching using potassium hydroxide (KOH)
  • the material used for wet etching is hydroxide It is not limited to potassium (KOH), and hydrochloric acid (HCl), nitric acid (HNO 3 ), hydrogen fluoride (HF), and the like may also be used.
  • an etchant is prepared by dissolving 30 wt% of potassium in a solvent that is water at a temperature of 80 ° C. Wet etching may be performed by contacting one part.
  • a portion of the first thin film layer 210 is etched along the shape of the etched portion on the lower surface of the wafer 130, and the etching
  • a pellicle membrane formed to expose the metal pattern layer 140 may be formed.
  • the ninth step includes a 9-1 step in which etching is performed on a portion of the first thin film layer 210; and a 9-2 step of etching the fifth thin film layer 250 and the sixth thin film layer 260 .
  • steps 9-1 and 9-2 may be performed simultaneously or separately.
  • the etching of a part of the first thin film layer 210 and the etching removal of the fifth thin film layer 250 and the sixth thin film layer 260 are performed by wet etching.
  • wet etching for etching a portion of the first thin film layer 210 and etching and removing the fifth thin film layer 250 and the sixth thin film layer 260 may be performed using phosphoric acid (H 3 PO 4 ). .
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the first thin film layer 210 is wet-etched using phosphoric acid (H 3 PO 4 ) as described above. Etching may be performed on a portion.
  • step 9-2 wet etching or dry etching may be performed on the fifth thin film layer 250 and the sixth thin film layer 260.
  • the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a material that is resistant to an etchant (ex. KOH) of wet etching in the eighth step and can be removed by dry etching or wet etching.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a silver (Ag) coating and can be easily removed by nitric acid (HNO 3 ) in the 9-2 step.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a polymer film such as Parylene, and can be easily removed by a DRIE method in the 9-2 step.
  • the metal pattern layer 140 formed on the upper surface of the capping layer 120 is exposed upward. shape can be provided.
  • the pellicle frame may be formed along the edge shape of the pellicle membrane to fixally support the pellicle membrane.
  • the pellicle membrane of the present invention manufactured by the manufacturing method of the present invention as described above is formed as a multilayer film while preserving 88% or more of the initial amount of extreme ultraviolet light, so it can have high durability and thermal characteristics.
  • FIG. 13 is a TEM image of a state in which the metal pattern layer 140 is formed by depositing a metal precursor according to an embodiment of the present invention.
  • FIG. 13 shows a metal pattern combined with the capping layer 120, and as shown in FIG. 13, in the case of using the manufacturing method of the present invention, a metal precursor, specifically a precursor containing ruthenium (Ru) It can be confirmed that the deposited ruthenium nano-islands structure formed of the plurality of protrusions 141 is combined with the capping layer 120 .
  • ruthenium ruthenium
  • a SiN substrate subjected to buffered oxide etching (BOE) and NH 3 plasma treatment is prepared, the precursor is Ru(EtCp) 2 , and the cycle This is a TEM image taken on the substrate after performing the ALD process with the number of cycles as 200 and the process temperature as 350°C.
  • a SiN substrate subjected to N 2 plasma treatment is prepared, the precursor is Ru(EtCp) 2 , the number of cycles is 200 cycles, and the process temperature is 350°C. This is a TEM image taken of the substrate after performing the ALD process.
  • a SiN substrate subjected to buffered oxide etching (BOE) and N 2 plasma treatment is prepared, the precursor is Ru(EtCp) 2 , and the number of cycles is 200 cycles, and the process temperature is 350 °C to perform the ALD process, and then the TEM image of the substrate.
  • 15(a) is a TEM image taken of the substrate after preparing a SiN substrate, using Ru-2 as the precursor, setting the number of cycles to 300 cycles, and performing the ALD process at a process temperature of 350 ° C. .
  • a naturally oxidized Si substrate (Native Ox/Si) is prepared, Ru-2 is used, the number of cycles is set to 300 cycles, and the ALD process is performed at a process temperature of 350 ° C.
  • Substrate This is a TEM image taken for .
  • the ruthenium pattern formed by depositing a metal precursor containing ruthenium (Ru) on the substrate is different depending on the surface treatment of the substrate, so that the substrate surface treatment is controlled through the substrate. It can be seen that the shape of the ruthenium pattern formed can be controlled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

Provided in one embodiment of the present invention is a pellicle membrane capable of minimizing light loss while having thermal and durability properties. A method for manufacturing an EUV pellicle on the basis of a multilayer membrane structure containing a capping layer comprising metal nano-islands, according to an embodiment of the present invention, comprises: a first step of preparing a silicon wafer, forming a first thin film layer on the upper surface of the wafer, and forming a second thin film layer on the lower surface of the wafer; a second step of forming, on the upper surface of the first thin film layer, a core layer, which is transparent so that extreme ultraviolet rays can pass therethrough; a third step of forming a third thin film layer on the upper surface of the core layer, and forming a fourth thin film layer on the lower surface of the second thin film layer; a fourth step of depositing a metal precursor on the upper surface of the third thin film layer, thereby forming a metal pattern layer, which has a predetermined pattern; a fifth step of forming, on the metal pattern layer, a capping layer, which reduces the reflectance of extreme ultraviolet rays incident on the core layer; a sixth step of forming a fifth thin film layer on the upper surface of the capping layer, and forming a sixth thin film layer on the lower surface of the fourth thin film layer; a seventh step of patterning a thin film layer-coupled body, which is a coupled body of the second thin film layer, the fourth thin film layer and the sixth thin film layer; an eighth step of etching the wafer in the patterned shape of the thin film layer-coupled body; and a ninth step of etching one region of the first thin film layer in the shape of the etched region on the lower surface of the wafer, and removing, by means of etching, the fifth thin film layer and the sixth thin film layer, thereby forming a pellicle membrane.

Description

금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법Manufacturing method of EUV pellicle based on multilayer membrane structure containing capping layer containing metal nanoislands
본 발명은 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법에 관한 것으로, 더욱 상세하게는, 열적 특성 및 내구성 특성을 구비하부면서도, 광원 손실을 최소화할 수 있는 펠리클 멤브레인의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an EUV pellicle based on a multilayer membrane structure containing a capping layer containing metal nanoislands, and more particularly, a pellicle capable of minimizing light source loss while having thermal and durability characteristics. It relates to a method for manufacturing a membrane.
펠리클은 포토공정 중 포토마스크를 오염물질로부터 보호하여 불량률을 개선하기 위한 보호막으로 기존 불화아르곤 등의 노광장비에서 EUV로 광원이 바뀜에 따라 펠리클도 새로운 소재와 공정에 대한 요구가 증가하고 있다.The pellicle is a protective film to improve the defect rate by protecting the photomask from contaminants during the photo process. As the light source changes from exposure equipment such as argon fluoride to EUV, the demand for new materials and processes for the pellicle is also increasing.
기존 렌즈 투과방식에서는 빛이 한 번만 펠리클을 투과하면 되었으나, 반사 구조인 EUV 장비에서는 빛이 들어왔다가 다시 반사되어 빠져나가 광원 손실이 커질 수 있어, EUV 펠리클은 빛이 2번 통과된 후에도 초기 광량의 88% 이상을 보존할 수 있어야 하고 높은 내구적 특성도 요구된다. In the existing lens penetration method, light only needs to pass through the pellicle once, but in EUV equipment, which has a reflective structure, light enters and is reflected again and exits, which can increase light source loss. It should be able to preserve more than 88% and high durability properties are also required.
EUV 노광과정에서 펠리클은 빛이 통과 시 순간적으로 가열, 냉각이 반복되기 때문에 열적 특성이 우수해야 하며, 압력 차이 또는 고속이송 과정에서 발생하는 기계적인 충격도 모두 견딜 수 있어야 하는 기술적 어려움을 가지고 있다.In the EUV exposure process, the pellicle has technical difficulties in that it must have excellent thermal characteristics because it is heated and cooled instantaneously when light passes through it, and it must be able to withstand both pressure differences and mechanical shocks generated during high-speed transportation.
대한민국 등록특허 제10-1726125호(발명의 명칭: EUV 펠리클 구조체, 및 그 제조방법)에서는, EUV(Extreme Ultraviolet) 투과층; 상기 EUV 투과층의 제1 면 상에 배치된 제1 OoB(out-of-band) 필터층; 상기 EUV 투과층의 제1 면에 대향하는 제2 면 상에 배치된 제2 OoB(out-of-band) 필터층; 상기 EUV 투과층과 상기 제1 OoB 필터층 사이에 지르코늄(Zr)을 포함하는 제3 OoB 필터층; 및 상기 EUV 투과층과 상기 제2 OoB 필터층 사이에 지르코늄(Zr)을 포함하는 제4 OoB 필터층을 포함하되, 상기 제1 및 제2 OoB 필터층은 산화지르코늄을 포함하는 EUV 펠리클 구조체가 개시되어 있다.In Korean Patent Registration No. 10-1726125 (title of invention: EUV pellicle structure, and manufacturing method thereof), an extreme ultraviolet (EUV) transmission layer; a first out-of-band (OOB) filter layer disposed on a first surface of the EUV transmission layer; a second out-of-band (OOB) filter layer disposed on a second surface opposite to the first surface of the EUV transmission layer; a third OoB filter layer including zirconium (Zr) between the EUV transmission layer and the first OoB filter layer; And a fourth OoB filter layer including zirconium (Zr) between the EUV transmission layer and the second OoB filter layer, wherein the first and second OoB filter layers include zirconium oxide. An EUV pellicle structure is disclosed.
<선행기술문헌><Prior art literature>
대한민국 등록특허 제10-1726125호Republic of Korea Patent No. 10-1726125
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 열적 특성 및 내구성 특성을 구비하부면서도, 광원 손실을 최소화할 수 있는 펠리클 멤브레인을 제공하는 것이다.An object of the present invention to solve the above problems is to provide a pellicle membrane capable of minimizing light source loss while having thermal characteristics and durability characteristics.
그리고, 본 발명이 목적은, 펠리클 멤브레인에 안정적으로 결합된 루테늄 구조체를 형성시키도록 하는 것이다.And, an object of the present invention is to form a ruthenium structure stably bonded to the pellicle membrane.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계; 극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계; 제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계; 상기 제3박막층 상부면에 금속 전구체가 증착되어 소정의 패턴을 가지는 금속패턴층이 형성되는 제4단계; 상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제5단계; 제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제6단계; 상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제7단계; 상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제8단계; 및 상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제9단계를 포함한다.The configuration of the present invention for achieving the above object is a first step in which a silicon wafer is prepared, a first thin film layer is formed on the upper surface of the wafer and a second thin film layer is formed on the lower surface of the wafer; a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer; a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer; a fourth step of depositing a metal precursor on the upper surface of the third thin film layer to form a metal pattern layer having a predetermined pattern; a fifth step of forming a capping layer on top of the metal pattern layer to reduce reflectance of extreme ultraviolet rays incident on the core layer; a sixth step of forming a fifth thin film layer on an upper surface of the capping layer and a sixth thin film layer on a lower surface of the fourth thin film layer; a seventh step in which patterning is performed on a thin film layer assembly, which is a combination of the second thin film layer, the fourth thin film layer, and the sixth thin film layer; An eighth step of etching the wafer according to the patterning shape of the thin film layer assembly; and a ninth step of etching a portion of the first thin film layer along the shape of the etched portion of the lower surface of the wafer and removing the fifth thin film layer and the sixth thin film layer by etching to form a pellicle membrane.
본 발명의 실시 예에 있어서, 상기 제4단계에서, 상기 금속 전구체의 증착으로 형성된 복수 개의 돌기가 분산 배치되는 금속패턴이 형성될 수 있다.In an embodiment of the present invention, in the fourth step, a metal pattern in which a plurality of protrusions formed by depositing the metal precursor are distributed and disposed may be formed.
본 발명의 실시 예에 있어서, 상기 금속 전구체는 루테늄(Ru) 함유 전구체일 수 있다.In an embodiment of the present invention, the metal precursor may be a ruthenium (Ru)-containing precursor.
본 발명의 실시 예에 있어서, 상기 제1박막층, 상기 제2박막층, 상기 제3박막층 및 상기 제4박막층 각각은, LSN(Low-Stress nitirde) 박막층으로써 LPCVD를 이용하여 증착될 수 있다.In an embodiment of the present invention, each of the first thin film layer, the second thin film layer, the third thin film layer, and the fourth thin film layer is a low-stress nitride (LSN) thin film layer and may be deposited using LPCVD.
본 발명의 실시 예에 있어서, 상기 제2단계에서, 상기 코어층은 CVD를 이용하여 증착될 수 있다.In an embodiment of the present invention, in the second step, the core layer may be deposited using CVD.
본 발명의 실시 예에 있어서, 상기 코어층은 SiC 또는 poly-Si로 형성될 수 있다.In an embodiment of the present invention, the core layer may be formed of SiC or poly-Si.
본 발명의 실시 예에 있어서, 상기 제5단계에서, 상기 캐핑층은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착될 수 있다.In an embodiment of the present invention, in the fifth step, the capping layer may be deposited using ALD (Atomic Layer Deposition) or sputtering.
본 발명의 실시 예에 있어서, 상기 캐핑층은 Metal silicide로 형성될 수 있다.In an embodiment of the present invention, the capping layer may be formed of metal silicide.
본 발명의 실시 예에 있어서, 상기 제7단계에서, 상기 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행될 수 있다.In an embodiment of the present invention, in the seventh step, patterning of the thin film layer assembly may be performed by a photolithography process.
본 발명의 실시 예에 있어서, 상기 제8단계에서, 상기 웨이퍼에 대한 식각은 습식식각으로 수행될 수 있다.In an embodiment of the present invention, in the eighth step, the etching of the wafer may be performed by wet etching.
본 발명의 실시 예에 있어서, 상기 제9단계는, 상기 제1박막층의 일 부위에 대한 식각이 수행되는 제9-1단계; 및 상기 제5박막층과 상기 제6박막층에 대한 식각이 수행되는 제9-2단계를 포함할 수 있다.In an embodiment of the present invention, the ninth step may include a 9-1 step of etching a portion of the first thin film layer; and a 9-2 step of etching the fifth thin film layer and the sixth thin film layer.
본 발명의 실시 예에 있어서, 상기 제9-1단계에서, 상기 제1박막층의 일 부위에 대한 식각을 위한 습식식각은 인산(H3PO4)을 이용하여 수행될 수 있다.In an embodiment of the present invention, in step 9-1, wet etching for etching a portion of the first thin film layer may be performed using phosphoric acid (H 3 PO 4 ).
본 발명의 실시 예에 있어서, 상기 제9-2단계에서, 상기 제5박막층 및 상기 제6박막층에 대한 식각은 습식식각 또는 건식식각으로 수행될 수 있다.In an embodiment of the present invention, in step 9-2, the etching of the fifth thin film layer and the sixth thin film layer may be performed by wet etching or dry etching.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계; 극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층의 상부면에 형성되는 제2단계; 제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계; 상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 제3박막층 상부면에 형성되는 제4단계; 상기 캐핑층 상부면에 금속 전구체가 증착되어 소정의 패턴을 가지는 금속패턴층이 형성되는 제5단계; 제5박막층이 상기 금속패턴층 상부에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제6단계; 상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제7단계; 상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제8단계; 및 상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어, 상기 금속패턴층이 노출되게 형성된 펠리클 멤브레인이 형성되는 제9단계를 포함한다.The configuration of the present invention for achieving the above object is a first step in which a silicon wafer is prepared, a first thin film layer is formed on the upper surface of the wafer and a second thin film layer is formed on the lower surface of the wafer; a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer; a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer; a fourth step of forming a capping layer on an upper surface of the third thin film layer to reduce reflectance of extreme ultraviolet rays incident on the core layer; a fifth step of depositing a metal precursor on the upper surface of the capping layer to form a metal pattern layer having a predetermined pattern; a sixth step in which a fifth thin film layer is formed on the metal pattern layer and a sixth thin film layer is formed on the lower surface of the fourth thin film layer; a seventh step in which patterning is performed on a thin film layer assembly, which is a combination of the second thin film layer, the fourth thin film layer, and the sixth thin film layer; An eighth step of etching the wafer according to the patterning shape of the thin film layer assembly; And a portion of the first thin film layer is etched along the shape of the etched area on the lower surface of the wafer, and the fifth thin film layer and the sixth thin film layer are removed by etching to form a pellicle membrane formed to expose the metal pattern layer. It includes the ninth step to become
본 발명의 실시 예에 있어서, 상기 제5단계에서, 상기 금속 전구체의 증착으로 형성된 복수 개의 돌기가 분산 배치되는 금속패턴이 형성될 수 있다.In an embodiment of the present invention, in the fifth step, a metal pattern in which a plurality of protrusions formed by depositing the metal precursor are distributedly disposed may be formed.
본 발명의 실시 예에 있어서, 상기 금속 전구체는 루테늄(Ru) 함유 전구체일 수 있다.In an embodiment of the present invention, the metal precursor may be a ruthenium (Ru)-containing precursor.
상기와 같은 구성에 따른 본 발명의 효과는, 본 발명의 제조방법에 의해 제조된 펠리클 멤브레인이 극자외선 초기 광량의 88% 이상을 보존하부면서도 다층막으로 형성되어 높은 내구적, 열적 특성을 구비할 수 있다는 것이다.The effect of the present invention according to the configuration as described above is that the pellicle membrane manufactured by the manufacturing method of the present invention is formed as a multilayer film while preserving 88% or more of the initial amount of extreme ultraviolet light, so that it can have high durability and thermal characteristics. that there is
또한, 대면적의 웨이퍼를 이용하여 펠리클을 복수 개 제조할 수 있음으로써, 웨이퍼를 이용한 펠리클 대량 생산에 용이하게 적용될 수 있다는 것이다.In addition, since a plurality of pellicles can be manufactured using a large-area wafer, it can be easily applied to mass production of pellicles using a wafer.
그리고, 펠리클 멤브레인에 소정의 패턴을 구비하는 금속패턴층, 특히 루테늄(Ru) 패턴층을 형성시킴으로써 열방사율을 향상시켜, 고온에 대한 펠리클 멤브레인의 내구성을 향상시킬 수 있다는 것이다.And, by forming a metal pattern layer having a predetermined pattern on the pellicle membrane, in particular, a ruthenium (Ru) pattern layer, it is possible to improve the durability of the pellicle membrane against high temperatures by improving thermal emissivity.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the detailed description of the present invention or the configuration of the invention described in the claims.
도 1은 본 발명의 일 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이다.1 is a schematic diagram of a process sequence of a manufacturing method according to an embodiment of the present invention.
도 2 내지 도 6은 본 발명의 일 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.2 to 6 are cross-sectional views of products of each step of the manufacturing method according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이다.7 is a schematic diagram of a process sequence of a manufacturing method according to another embodiment of the present invention.
도 8 내지 도 12는 본 발명의 다른 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.8 to 12 are cross-sectional views of products in each step of a manufacturing method according to another embodiment of the present invention.
도 13은 본 발명의 일 실시 예에 따른 금속 전구체가 증착되어 금속패턴층을 형성한 상태에 대한 TEM이미지이다.13 is a TEM image of a state in which a metal pattern layer is formed by depositing a metal precursor according to an embodiment of the present invention.
도 14와 도 15는 본 발명의 일 실시 예에 따른 제조방법와 관련된 실험 결과에 대한 TEM이미지이다.14 and 15 are TEM images of experimental results related to a manufacturing method according to an embodiment of the present invention.
본 발명에 따른 가장 바람직한 일 실시예는, 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계; 극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계; 제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계; 상기 제3박막층 상부면에 금속 전구체가 증착되어 소정의 패턴을 가지는 금속패턴층이 형성되는 제4단계; 상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제5단계; 제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제6단계; 상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제7단계; 상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제8단계; 및 상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제9단계를 포함하는 것을 특징으로 한다.The most preferred embodiment according to the present invention, a first step in which a silicon wafer is prepared, a first thin film layer is formed on the upper surface of the wafer and a second thin film layer is formed on the lower surface of the wafer; a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer; a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer; a fourth step of depositing a metal precursor on the upper surface of the third thin film layer to form a metal pattern layer having a predetermined pattern; a fifth step of forming a capping layer on top of the metal pattern layer to reduce reflectance of extreme ultraviolet rays incident on the core layer; a sixth step of forming a fifth thin film layer on an upper surface of the capping layer and a sixth thin film layer on a lower surface of the fourth thin film layer; a seventh step in which patterning is performed on a thin film layer assembly, which is a combination of the second thin film layer, the fourth thin film layer, and the sixth thin film layer; An eighth step of etching the wafer according to the patterning shape of the thin film layer assembly; and a ninth step of etching a portion of the first thin film layer along the shape of the etched portion of the lower surface of the wafer and removing the fifth and sixth thin film layers by etching to form a pellicle membrane. to be
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention can be implemented in many different forms, and therefore is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다. Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this is not only "directly connected", but also "indirectly connected" with another member in between. "Including cases where In addition, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "include" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
이하, 본 발명의 일 실시 예에 따른 제조방법에 대해서 설명하기로 한다. Hereinafter, a manufacturing method according to an embodiment of the present invention will be described.
도 1은 본 발명의 일 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이고, 도 2 내지 도 6은 본 발명의 일 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.1 is a schematic diagram of a process sequence of a manufacturing method according to an embodiment of the present invention, and FIGS. 2 to 6 are cross-sectional views of products of each step of the manufacturing method according to an embodiment of the present invention.
도 2의 (a)는 웨이퍼(130)의 단면도이고, 도 2의 (b)는 제1단계 수행 후 생성물의 단면도이다. 그리고, 도 3의 (a)는 제2단계 수행 후 생성물의 단면도이고, 도 3의 (b)는 제3단계 수행 후 생성물의 단면도이다.FIG. 2(a) is a cross-sectional view of the wafer 130, and FIG. 2(b) is a cross-sectional view of the product after performing the first step. And, (a) of FIG. 3 is a cross-sectional view of the product after performing the second step, and (b) of FIG. 3 is a cross-sectional view of the product after performing the third step.
또한, 도 4의 (a)는 제4단계 수행 후 생성물의 단면도이고, 도 4의 (b)는 제5단계 수행 후 생성물의 단면도이다. 또한, 도 5의 (a)는 제6단계 수행 후 생성물의 단면도이고, 도 5의 (b)는 제7단계 수행 후 생성물의 단면도이다. 그리고, 도 6의 (a)는 제8단계 수행 후 생성물의 단면도이고, 도 6의 (b)는 제9단계 수행 후 생성물의 단면도이다.In addition, (a) of FIG. 4 is a cross-sectional view of the product after performing the fourth step, and (b) of FIG. 4 is a cross-sectional view of the product after performing the fifth step. 5(a) is a cross-sectional view of the product after performing the sixth step, and FIG. 5(b) is a cross-sectional view of the product after performing the seventh step. And, FIG. 6 (a) is a cross-sectional view of the product after performing the eighth step, and FIG. 6 (b) is a cross-sectional view of the product after performing the ninth step.
본 발명의 일 실시 예에 따른 제조방법에서는, 도 1의 (a)에서 보는 바와 같이, 먼저, 제1단계에서, 실리콘 웨이퍼(130)가 준비되고, LSN(Low-Stress nitirde) 박막층인 제1박막층(210)이 웨이퍼(130)의 상부면에 형성되고 LSN(Low-Stress nitirde) 박막층인 제2박막층(220)이 웨이퍼(130)의 하부면에 형성될 수 있다.In the manufacturing method according to an embodiment of the present invention, as shown in (a) of FIG. 1, first, in a first step, a silicon wafer 130 is prepared, and a first low-stress nitride (LSN) thin film layer The thin film layer 210 may be formed on the upper surface of the wafer 130 and the second thin film layer 220 which is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the wafer 130 .
상기와 같이 웨이퍼(130)는 실리콘(Si)으로 형성될 수 있으며, 웨이퍼(130)는 원판형으로 직경이 8인치(in) 이상으로 형성될 수 있다. 그리고, 본 발명의 제조방법에 의한 펠리클 멤브레인은 상기와 같은 웨이퍼(130)를 이용하여 복수 개 형성시킬 수 있으며, 이에 따라, 하나의 웨이퍼(130)로 복수 개의 펠리클 멤브레인을 제조함으로써, 펠리클의 대량 생산이 가능하도록 할 수 있다.As described above, the wafer 130 may be formed of silicon (Si), and may be formed in a disk shape with a diameter of 8 inches (in) or more. In addition, a plurality of pellicle membranes according to the manufacturing method of the present invention can be formed using the wafer 130 as described above, and accordingly, by manufacturing a plurality of pellicle membranes with one wafer 130, a large amount of pellicles production can be made possible.
제1박막층(210)과 제2박막층(220) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다. 저압력에서 진행하는 화학기상 증착방법인 LPCVD 공정은 CVD 공정에 비해 고온에서 수행될 수 있다.Each of the first thin film layer 210 and the second thin film layer 220 may be deposited using low pressure chemical vapor deposition (LPCVD). The LPCVD process, which is a chemical vapor deposition method that proceeds at a low pressure, can be performed at a higher temperature than the CVD process.
여기서, 제1 박막층(210)은, 하기된 제7단계에서 웨이퍼(130)에 대한 습식식각 중 코어층(110)의 손상을 방지하는 stop layer(식각저지층)로써 작용할 수 있다. 즉, LSN(Low-Stress nitirde) 박막층은 KOH에 대해 식각내성이 있어서 KOH로 실리콘(코어층(110))만 식각이 되고 LSN 박막층을 만나면 식각이 멈추게 될 수 있다.Here, the first thin film layer 210 may act as a stop layer (etch stop layer) to prevent damage to the core layer 110 during wet etching of the wafer 130 in the seventh step described below. That is, since the low-stress nitride (LSN) thin film layer is etch-resistant to KOH, only silicon (core layer 110) is etched with KOH, and the etching may stop when it meets the LSN thin film layer.
상기와 같이 제1박막층(210)과 제2박막층(220) 각각은 박막층으로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제1박막층(210)과 제2박막층(220) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다. 그리고, 하기된 바와 같이 제1박막층(210)의 일 부위에 대한 습식식각 시 인산(H3PO4)에 의한 식각 효율이 증대될 수 있다.As described above, each of the first thin film layer 210 and the second thin film layer 220 may be formed as a thin film layer, and the thickness of the first thin film layer 210 may be formed to 20 nm or less, and the thickness of the first thin film layer 210 may be formed to 20 nm or less. In this way, by forming the thickness of each of the first thin film layer 210 and the second thin film layer 220, the EUV transmittance of each thin film layer can be increased. In addition, as described below, etching efficiency by phosphoric acid (H 3 PO 4 ) may be increased during wet etching of a portion of the first thin film layer 210 .
도 1의 (b)에서 보는 바와 같이, 상기된 제1단계 수행 후 제2단계에서, 극자외선이 투과 가능하도록 투명하게 형성되는 코어층(core layer)(110)이 제1박막층(210) 상부면에 형성될 수 있다. 여기서, 코어층(110)은 CVD를 이용하여 증착될 수 있다.As shown in (b) of FIG. 1, in the second step after performing the above-described first step, a core layer 110 transparently formed so that extreme ultraviolet rays can pass through is formed on the upper portion of the first thin film layer 210. can be formed on the surface. Here, the core layer 110 may be deposited using CVD.
CVD(chemical vapor deposition)는 화학기상증착법으로, 형성하고자 하는 박막 재료를 구성하는 원소를 포함하는 가스를 기판 위에 공급하여 기상 또는 기판 표면에서의 산화환원반응, 열분해, 광분해 또는 치환 중 어느 하나의 화학적 반응으로 박막을 기판 표면에 형성할 수 있다.CVD (chemical vapor deposition) is a chemical vapor deposition method, which supplies a gas containing elements constituting the thin film material to be formed onto a substrate to cause a chemical reaction of either oxidation-reduction reaction, thermal decomposition, photolysis, or substitution on the surface of the substrate or vapor phase. The reaction may form a thin film on the substrate surface.
코어층(110)은 SiC(탄화규소) 또는 poly-Si(폴리규소, polysilicon)로 형성될 수 있다. 코어층(110)은 본 발명의 펠리클 멤브레인의 주요 지지층으로써, 극자외선(EUV)에 대한 고투과율을 구비하고, 고내구성을 구비하며, 인산(phosphoric acid) 선택비를 구비할 수 있다.The core layer 110 may be formed of SiC (silicon carbide) or poly-Si (polysilicon). The core layer 110 is a main support layer of the pellicle membrane of the present invention, and may have high transmittance to extreme ultraviolet (EUV), high durability, and phosphoric acid selectivity.
코어층(110)의 극자외선 투과율은 88% 이상으로 형성될 수 있으며, 상기와 같은 고내구성을 구비하기 위하여 코어층(110)의 두께는 50nm이하로 형성될 수 있다. 이에 따라, 코어층(110) EUV 투과 효율이 증대될 수 있다.The extreme ultraviolet transmittance of the core layer 110 may be formed to be 88% or more, and the thickness of the core layer 110 may be formed to be 50 nm or less in order to have high durability as described above. Accordingly, EUV transmission efficiency of the core layer 110 may be increased.
도 1의 (c)에서 보는 바와 같이, 상기된 제2단계 수행 후 제3단계에서, LSN(Low-Stress nitirde) 박막층인 제3박막층(230)이 코어층(110) 상부면에 형성되고, LSN(Low-Stress nitirde) 박막층인 제4박막층(240)이 제2박막층(220) 하부면에 형성될 수 있다. 여기서, 제3박막층(230)과 제4박막층(240) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.As shown in (c) of FIG. 1, in the third step after the second step described above, a third thin film layer 230, which is a low-stress nitride (LSN) thin film layer, is formed on the upper surface of the core layer 110, A fourth thin film layer 240 that is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the second thin film layer 220 . Here, each of the third thin film layer 230 and the fourth thin film layer 240 may be deposited using LPCVD (Low Pressure Chemical Vapor Deposition).
상기와 같이 제3박막층(230)과 제4박막층(240)이 형성됨으로써, 극자외선의 환경으로부터 코어층(110)이 보호되며, 본 발명의 펠리클 멤브레인 내 잔류 응력이 제3박막층(230)에 의해 제어될 수 있다. 여기서, 제3박막층(230)에서 규소(Si)와 질소(N)의 비율을 제어하여 상기된 잔류 응력을 제어할 수 있다.By forming the third thin film layer 230 and the fourth thin film layer 240 as described above, the core layer 110 is protected from the environment of extreme ultraviolet rays, and the residual stress in the pellicle membrane of the present invention is applied to the third thin film layer 230. can be controlled by Here, the aforementioned residual stress may be controlled by controlling the ratio of silicon (Si) to nitrogen (N) in the third thin film layer 230 .
상기와 같이 제3박막층(230)과 제4박막층(240) 각각은 박막층으로 형성될 수 있으며, 제3박막층(230)의 두께는 20nm이하로 형성될 수 있으며, 제4박막층(240)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제3박막층(230)과 제4박막층(240) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다.As described above, each of the third thin film layer 230 and the fourth thin film layer 240 may be formed as a thin film layer, the thickness of the third thin film layer 230 may be formed to 20 nm or less, and the thickness of the fourth thin film layer 240 may be formed to 20 nm or less. In this way, by forming the thickness of each of the third thin film layer 230 and the fourth thin film layer 240, the EUV transmittance of each thin film layer can be increased.
도 1의 (d)에서 보는 바와 같이, 상기된 제3단계 수행 후 제4단계에서, 제3박막층(230) 상부면에 금속 전구체가 증착되어 소정의 패턴을 가지는 금속패턴층(140)이 형성될 수 있다. 구체적으로, 제4단계에서, 금속 전구체의 증착으로 형성된 복수 개의 돌기(141)가 분산 배치되는 금속패턴이 형성될 수 있다. 여기서, 금속 전구체는 루테늄(Ru) 함유 전구체일 수 있다. 이에 따라, 금속패턴층(140)은 복수 개의 루테늄 나노섬(nano-islands)이 형성된 구조일 수 있다.As shown in (d) of FIG. 1, in the fourth step after the third step described above, a metal precursor is deposited on the upper surface of the third thin film layer 230 to form a metal pattern layer 140 having a predetermined pattern. It can be. Specifically, in the fourth step, a metal pattern in which a plurality of protrusions 141 formed by deposition of a metal precursor are distributedly disposed may be formed. Here, the metal precursor may be a ruthenium (Ru)-containing precursor. Accordingly, the metal pattern layer 140 may have a structure in which a plurality of ruthenium nano-islands are formed.
상기와 같은 금속패턴층(140)은 제3박막층(230) 상부면에 ALD(Atomic Layer Deposition)를 이용하여 증착될 수 있다. 그리고, 금속 전구체, 일례로 루테늄(Ru) 함유 전구체가 루테늄 함유 박막을 형성하지 않고 루테늄 나노섬의 형성을 위한 ALD 공정의 cycle, 공정 온도, 기판 표면처리 방법 또는 전구체 종류와 같은 ALD 공정 조건을 변화시킬 수 있다.The metal pattern layer 140 as described above may be deposited on the upper surface of the third thin film layer 230 using ALD (Atomic Layer Deposition). In addition, a metal precursor, for example, a ruthenium (Ru)-containing precursor does not form a ruthenium-containing thin film and changes ALD process conditions such as cycle, process temperature, substrate surface treatment method, or precursor type of the ALD process for forming ruthenium nanoislands. can make it
여기서, 금속 전구체는 루테늄(Ru) 함유 전구체일 수 있으며, 구체적으로, 전구체로써, 0가 루테늄 전구체, 2가 루테늄 전구체(Ru-2) 및 4가 루테늄 전구체(Ru-4)로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 보다 구체적인 일례로 트리카르보닐시클로헥사디엔 루테늄, 부타디엔 루테늄 트리카르보닐, 디메틸 부타디엔 루테늄 트리카르보닐, 루테늄 트리카르보닐, Ru(MeCp)2, Ru(EtCp)2, Ru(i-PrCp)2 및 RuCp2에서 선택되는 하나 이상이 이용될 수 있다. 다만, 이에 한정되는 것은 아니다.Here, the metal precursor may be a ruthenium (Ru)-containing precursor, specifically, as a precursor, selected from the group consisting of a zero-valent ruthenium precursor, a divalent ruthenium precursor (Ru-2), and a tetravalent ruthenium precursor (Ru-4). It may be one or more, and more specific examples include tricarbonylcyclohexadiene ruthenium, butadiene ruthenium tricarbonyl, dimethyl butadiene ruthenium tricarbonyl, ruthenium tricarbonyl, Ru(MeCp) 2 , Ru(EtCp) 2 , Ru( At least one selected from i-PrCp) 2 and RuCp 2 may be used. However, it is not limited thereto.
상기와 같이 cycle 수를 제어할 수 있으며, cycle 수는 전구체의 종류에 따라 가변될 수 있다. 또한, 상기와 같이 금속패턴층(140)의 형성을 위한 ALD 공정의 공정 온도를 제어할 수 있으며, 공정 온도는 상기와 같은 전구체의 종류 또는 cycle 수에 따라 가변될 수 있다.As described above, the number of cycles can be controlled, and the number of cycles can be varied depending on the type of precursor. In addition, the process temperature of the ALD process for forming the metal pattern layer 140 can be controlled as described above, and the process temperature can be varied according to the type of the precursor or the number of cycles.
그리고, 상기와 같이 기판 표면처리, 즉, 본 발명의 제조방법에서는 제3박막층(230) 상부면에 대한 표면처리를 수행함으로써 금속 전구체가 박막을 형성하지 않고 소정의 금속패턴을 가지는 금속패턴층(140)을 형성할 수 있도록 제어할 수 있다.And, as described above, in the manufacturing method of the present invention, the metal pattern layer having a predetermined metal pattern without the metal precursor forming a thin film by performing surface treatment on the upper surface of the third thin film layer 230 ( 140) can be controlled to form.
즉, 이러한 제어의 일례로 제4단계에서, 제3박막층(230) 상부면에 대한 표면처리를 수행할 수 있다. 구체적으로, 제3박막층(230) 상부면에 대해 완충산화물식각(BOE, Buffered Oxide Etchant), NH3 플라즈마 처리(NH3 Plasma treatment), N2 플라즈마 처리(N2 Plasma treatment) 등이 이용될 수 있다.That is, as an example of such control, in the fourth step, surface treatment may be performed on the upper surface of the third thin film layer 230 . Specifically, buffered oxide etching (BOE), NH 3 plasma treatment, N 2 plasma treatment, etc. may be used for the upper surface of the third thin film layer 230. there is.
상기와 같은 ALD 공정 조건들의 조절에 의해 금속 전구체, 즉, 루테늄(Ru) 함유 전구체는 박막을 형성하지 않고 복수 개의 돌기(141) 형상으로 제3박막층(230) 상부면에 금속패턴층(140)을 형성할 수 있다.By adjusting the ALD process conditions as described above, the metal precursor, that is, the ruthenium (Ru)-containing precursor does not form a thin film and forms a plurality of protrusions 141 on the upper surface of the third thin film layer 230, the metal pattern layer 140 can form
상기와 같이 돌기(141)(나노섬) 형상으로 형성되는 금속(루테늄(Ru))의 너비가 100nm이하인 경우, 금속(루테늄(Ru))의 열방사율은 급격히 증가하게 되며, 금속(루테늄(Ru))의 두께가 3nm로 적용되는 경우에는, 본 발명의 펠리클 멤브레인의 온도를 1,000℃ 이상 감소시킬 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 열방사 효율이 증대되어 열에 대한 내구성이 향상될 수 있다.As described above, when the width of the metal (ruthenium (Ru)) formed in the shape of the protrusion 141 (nano island) is 100 nm or less, the thermal emissivity of the metal (ruthenium (Ru)) increases rapidly, and the metal (ruthenium (Ru)) )) When the thickness of 3 nm is applied, the temperature of the pellicle membrane of the present invention can be reduced by 1,000 ° C or more. Accordingly, heat radiation efficiency of the pellicle membrane of the present invention may be increased, and thus durability against heat may be improved.
도 1의 (e)에서 보는 바와 같이, 상기된 제4단계 수행 후 제5단계에서, 코어층(110)으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층(120)이 금속패턴층(140) 상부에 형성될 수 있다. 캐핑층(120)은 극자외선에 대해 고방사율 및 저반사율의 광학적 특성을 구비하고, 인산(phosphoric acid) 선택비를 구비할 수 있다.As shown in (e) of FIG. 1, in the fifth step after the fourth step described above, the capping layer 120 reducing the reflectance of the extreme ultraviolet rays incident on the core layer 110 is formed by the metal pattern layer 140 can be formed on top. The capping layer 120 may have optical characteristics of high emissivity and low reflectance for extreme ultraviolet rays, and may have a phosphoric acid selectivity.
구체적으로, 캐핑층(120)은 극자외선에 대해 0.1 이상의 방사율을 구비하고 0.05 이하의 반사율을 구비할 수 있다. 그리고, 캐핑층(120)은 EUV투과율 88%이상 등의 성능을 구비할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인으로 조사되는 극자외선의 이용률이 현저히 증가되어 극자외선의 손실률을 감소시킬 수 있다.Specifically, the capping layer 120 may have an emissivity of 0.1 or more and a reflectance of 0.05 or less with respect to extreme ultraviolet rays. In addition, the capping layer 120 may have performance such as an EUV transmittance of 88% or more. Accordingly, the utilization rate of extreme ultraviolet rays irradiated with the pellicle membrane of the present invention is remarkably increased, and the loss rate of extreme ultraviolet rays can be reduced.
캐핑층(120)은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착될 수 있다. 캐핑층(120)을 형성하기 위하여 Sputtering 외 다른 PVD(Physical Vapor Deposition) 공정을 이용할 수 있음은 물론이다.The capping layer 120 may be deposited using ALD (Atomic Layer Deposition) or sputtering. Of course, other physical vapor deposition (PVD) processes other than sputtering may be used to form the capping layer 120 .
여기서, 캐핑층(120)은 Metal silicide로 형성될 수 있다. 구체적으로, 캐핑층(120)은 MoSiO2(이산화규소몰리브덴)으로 형성될 수 있다. 다만, 캐핑층(120)을 형성하는 소재가 이에 한정되는 것은 아니고, EUV 고투과율, 고방사율, 저반사율 성능을 만족하고 수소플라즈마에 내성이 있는 소재중에 인산에 선택비를 갖는 소재는 모두 이용될 수 있다.Here, the capping layer 120 may be formed of metal silicide. Specifically, the capping layer 120 may be formed of MoSiO 2 (silicon molybdenum dioxide). However, the material forming the capping layer 120 is not limited thereto, and among the materials that satisfy EUV high transmittance, high emissivity, and low reflectance performance and are resistant to hydrogen plasma, all materials having a selectivity to phosphoric acid can be used. can
제5단계에서, 캐핑층(120)에 대해 열처리가 수행될 수 있다. 상기와 같이 형성된 캐핑층(120)은 열처리 없이 이용될 수도 있으나, 내구성 및 EUV 광학 특성을 개선시키기 위해 열처리를 수행할 수 있다.In a fifth step, heat treatment may be performed on the capping layer 120 . The capping layer 120 formed as described above may be used without heat treatment, but heat treatment may be performed to improve durability and EUV optical characteristics.
이 때, 캐핑층(120)에 대해 열처리가 수행되는 경우, 열처리 온도는 800℃ 이상일 수 있다. 상기와 같이 금속패턴층(140) 상부 및 금속패턴층(140)이 형성되지 않은 제3박막층(230) 상부면 일 부위에 캐핑층(120)이 형성된 후에 캐핑층(120)에 대한 열처리가 수행될 수 있으며, 캐핑층(120)에 대한 열처리는 상기와 같은 캐핑층(120)의 증착 공정(ALD, Sputtering 등)이 수행된 장비 내에서 수행될 수도 있고, 외부의 히터에 의해 수행될 수도 있다.In this case, when heat treatment is performed on the capping layer 120, the heat treatment temperature may be 800° C. or higher. As described above, after the capping layer 120 is formed on the top of the metal pattern layer 140 and on a portion of the upper surface of the third thin film layer 230 on which the metal pattern layer 140 is not formed, heat treatment is performed on the capping layer 120. The heat treatment of the capping layer 120 may be performed in equipment where the above deposition process (ALD, sputtering, etc.) of the capping layer 120 has been performed, or may be performed by an external heater. .
그리고, 상기와 같은 금속패턴층(140)으로 루테늄(Ru) 패턴을 형성시킴으로써, Metal silicide과 루테늄(Ru)패턴층을 결합시켜, EUVL환경에서 주석(Tin)과 수소 확산(hydrogen diffusion)에 의한 루테늄(Ru) 층의 부풀림(blistering) 현상 발생을 방지할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 내구성을 향상시킬 수 있다.In addition, by forming a ruthenium (Ru) pattern with the metal pattern layer 140 as described above, by combining the metal silicide and the ruthenium (Ru) pattern layer, tin (Tin) and hydrogen diffusion (hydrogen diffusion) in the EUVL environment It is possible to prevent blistering of the ruthenium (Ru) layer. Accordingly, durability of the pellicle membrane of the present invention can be improved.
도 1의 (f)에서 보는 바와 같이, 상기된 제5단계 수행 후 제6단계에서, LSN(Low-Stress nitirde) 박막층인 제5박막층(250)이 캐핑층(120) 상부면에 형성되고, LSN(Low-Stress nitirde) 박막층인 제6박막층(260)이 제4박막층(240) 하부면에 형성될 수 있다.As shown in (f) of FIG. 1, in the sixth step after the fifth step described above, a fifth thin film layer 250, which is a low-stress nitride (LSN) thin film layer, is formed on the upper surface of the capping layer 120, A sixth thin film layer 260 that is a low-stress nitride (LSN) thin film layer may be formed on a lower surface of the fourth thin film layer 240 .
상기와 같이 제5박막층(250)과 제6박막층(260)이 형성됨으로써, 하기된 제7단계에서의 박막층결합체에 대한 패터닝 또는 하기된 제8단계에서의 습식식각 중에 캐핑층(120)을 보호하기 위하여 형성될 수 있다.By forming the fifth thin film layer 250 and the sixth thin film layer 260 as described above, the capping layer 120 is protected during patterning of the thin film layer assembly in the seventh step described below or wet etching in the eighth step described below can be formed to
여기서, 제5박막층(250)과 제6박막층(260) 각각은 LSN(Low-Stress nitirde) 박막층, 은(Ag) 코팅층 또는 Parylene(패럴린)같은 고분자막 등으로 형성될 수 있다. 그리고, 제5박막층(250)과 제6박막층(260)이 LSN(Low-Stress nitirde) 박막층으로 형성되는 경우, 제5박막층(250)과 제6박막층(260) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.Here, each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a low-stress nitride (LSN) thin film layer, a silver (Ag) coating layer, or a polymer film such as Parylene. In addition, when the fifth thin film layer 250 and the sixth thin film layer 260 are formed as LSN (Low-Stress Nitirde) thin film layers, each of the fifth thin film layer 250 and the sixth thin film layer 260 is LPCVD (Low Pressure Chemical Vapor Deposition) can be used.
상기와 같이 제5박막층(250)과 제6박막층(260) 각각은 박막층으로 형성될 수 있으며, 제5박막층(250)의 두께는 20nm이하로 형성될 수 있으며, 제6박막층(260)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제5박막층(250)과 제6박막층(260) 각각의 두께가 형성됨으로써, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각 시 식각 효율이 증대될 수 있다.As described above, each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed as a thin film layer, the thickness of the fifth thin film layer 250 may be formed to 20 nm or less, and the thickness of the sixth thin film layer 260 may be formed to 20 nm or less. As the thicknesses of the fifth thin film layer 250 and the sixth thin film layer 260 are formed in this way, the etching efficiency of the fifth thin film layer 250 and the sixth thin film layer 260 can be increased during wet etching or dry etching. .
도 1의 (g)에서 보는 바와 같이, 상기된 제6단계 수행 후 제7단계에서, 제2박막층(220)과 제4박막층(240) 및 제6박막층(260)의 결합체인 박막층결합체에 대해 패터닝이 수행될 수 있다. 여기서, 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행될 수 있다.As shown in (g) of FIG. 1, in the seventh step after the sixth step described above, for the thin film layer assembly, which is a combination of the second thin film layer 220, the fourth thin film layer 240, and the sixth thin film layer 260 Patterning may be performed. Here, patterning of the thin film layer assembly may be performed through a photolithography process.
포토리소그래피 공정에 의하여, 마스크 상에 설계된 패턴을 박막층결합체에 구현하게 될 수 있으며, 구체적으로, 먼저, 박막층결합체의 하부면에 감광제를 코팅하는 감광제 코팅 단계가 수행될 수 있다.By the photolithography process, a pattern designed on the mask may be implemented in the thin film layer assembly, and specifically, first, a photoresist coating step of coating a photoresist on the lower surface of the thin film layer assembly may be performed.
그리고, 감광제 코팅 단계 수행 후, 패턴이 형성된 마스크를 감광제 코팅면 상에 배치시키는 마스크 배치 단계가 수행될 수 있고, 다음으로, 마스크의 패턴에 따라 노출된 감광제 코팅면을 광에 노출시키는 노광 단계가 수행될 수 있다.Then, after performing the photoresist coating step, a mask placement step of disposing a patterned mask on the photoresist-coated surface may be performed, and then an exposure step of exposing the exposed photoresist-coated surface to light according to the pattern of the mask. can be performed
그 후, 감광제가 필요없는 부분을 제거하는 과정인 현상 단계가 수행될 수 있다. 여기서, 박막층결합체는 광을 받은 부분과 받지 않은 부분으로 구분되는데, 포지티브 레지스트를 감광제로 사용한 경우 광을 받은 부분은 제거되고 광을 받지 않은 부분은 그래도 남게 되며, 네거티브 레지시트를 감광제로 사용한 경우에는 그 반대일 수 있다.After that, a developing step may be performed, which is a process of removing portions where photosensitizer is not needed. Here, the thin film layer assembly is divided into a portion that receives light and a portion that does not receive light. When a positive resist is used as a photoresist, the portion that receives light is removed and the portion that does not receive light remains. In the case of using a negative resist as a photoresist, It could be the other way around.
다음으로, 건식식각 또는 습식식각을 이용하여 박막층결합체에 대한 패터닝을 위한 식각을 수행하는 식각 단계가 수행될 수 있다. 상기와 같은 식각 단계 이 후, 박막층결합체의 표면에 남아 있는 감광제를 제거하는 감광제 제거 단계가 수행될 수 있다. 감광제의 제거를 위해 황산(H2SO4) 용액 등이 이용될 수 있으나, 이에 한정되는 것은 아니다.Next, an etching step of performing etching for patterning the thin film layer assembly using dry etching or wet etching may be performed. After the above etching step, a photoresist removal step of removing the photoresist remaining on the surface of the thin film layer assembly may be performed. For the removal of the photosensitizer, a sulfuric acid (H 2 SO 4 ) solution or the like may be used, but is not limited thereto.
도 1의 (h)에서 보는 바와 같이, 상기된 제7단계 수행 후 제8단계에서, 박막층결합체의 패터닝 형상을 따라 웨이퍼(130)에 대한 식각이 수행될 수 있다. 구체적으로, 제8단계에서, 웨이퍼(130)에 대한 식각은 습식식각으로 수행될 수 있다. 여기서, 웨이퍼(130)에 대한 습식식각은 수산화칼륨(KOH)을 이용하여 수행될 수 있다.As shown in (h) of FIG. 1 , in the eighth step after the above-described seventh step, the wafer 130 may be etched according to the patterning shape of the thin film layer assembly. Specifically, in the eighth step, the etching of the wafer 130 may be performed by wet etching. Here, wet etching of the wafer 130 may be performed using potassium hydroxide (KOH).
상기와 같은 제7단계의 수행에 따라, 박막층결합체의 패터닝을 따라 웨이퍼(130)의 일 부위가 노출되게 되며, 이와 같은 노출된 웨이퍼(130)의 패턴에 대해 식각이 수행될 수 있다.As the seventh step is performed, a portion of the wafer 130 is exposed along with the patterning of the thin film layer assembly, and etching may be performed on the exposed pattern of the wafer 130.
본 발명의 실시 예에서는, 박막층결합체의 패터닝 형상에 대응되는 형상인 웨이퍼(130)의 일 부위에 대한 식각이 수산화칼륨(KOH)을 이용한 습식식각이라고 설명하고 있으나, 습식식각에 이용되는 물질이 수산화칼륨(KOH)에 한정되는 것은 아니고, 염산(HCl), 질산(HNO3), 플루오르화수소(HF) 등도 이용될 수 있다.In the embodiment of the present invention, although the etching of a portion of the wafer 130, which is a shape corresponding to the patterning shape of the thin film layer assembly, is described as wet etching using potassium hydroxide (KOH), the material used for wet etching is hydroxide It is not limited to potassium (KOH), and hydrochloric acid (HCl), nitric acid (HNO 3 ), hydrogen fluoride (HF), and the like may also be used.
웨이퍼(130)의 일 부위에 대한 식각에 수산화칼륨(KOH)이 이용되는 경우, 온도 80℃의 물인 용매에 칼륨 30wt%를 용해시켜 식각액을 제조하고, 이와 같은 식각액과 상기된 웨이퍼(130)의 일 부위를 접촉시켜 습식식각을 수행할 수 있다.When potassium hydroxide (KOH) is used for etching a portion of the wafer 130, an etchant is prepared by dissolving 30 wt% of potassium in a solvent that is water at a temperature of 80 ° C. Wet etching may be performed by contacting one part.
도 1의 (i)에서 보는 바와 같이, 상기된 제8단계 수행 후 제9단계에서, 웨이퍼(130) 하부면의 식각 부위 형상을 따라 제1박막층(210)의 일 부위가 식각되고, 식각에 의해 제5박막층(250)과 제6박막층(260)이 제거되어, 금속패턴층(140)이 노출되게 형성된 펠리클 멤브레인이 형성될 수 있다.As shown in (i) of FIG. 1, in the ninth step after the eighth step described above, a portion of the first thin film layer 210 is etched along the shape of the etched portion on the lower surface of the wafer 130, and the etching By removing the fifth thin film layer 250 and the sixth thin film layer 260, a pellicle membrane formed to expose the metal pattern layer 140 may be formed.
구체적으로, 제9단계는, 제1박막층(210)의 일 부위에 대한 식각이 수행되는 제9-1단계; 및 제5박막층(250) 및 제6박막층(260)에 대한 식각이 수행되는 제9-2단계를 포함할 수 있다.Specifically, the ninth step includes a 9-1 step in which etching is performed on a portion of the first thin film layer 210; and a 9-2 step of etching the fifth thin film layer 250 and the sixth thin film layer 260 .
여기서, 상기된 제9-1단계와 제9-2단계는, 동시 또는 별도로 수행될 수 있다.Here, the above-described steps 9-1 and 9-2 may be performed simultaneously or separately.
제9-1단계와 제9-2단계가 동시에 수행되는 경우, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거는 습식식각으로 수행될 수 있다. 여기서, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거를 위한 습식식각은 인산(H3PO4)을 이용하여 수행될 수 있다.When the 9-1 and 9-2 steps are performed simultaneously, the etching of a part of the first thin film layer 210 and the etching removal of the fifth thin film layer 250 and the sixth thin film layer 260 are performed by wet etching. can be performed Here, wet etching for etching a portion of the first thin film layer 210 and etching and removing the fifth thin film layer 250 and the sixth thin film layer 260 may be performed using phosphoric acid (H 3 PO 4 ). .
여기서, 인산의 농도는 80~90wt%일 수 있으며, 바람직하게는, 인산의 농도는 85wt%일 수 있다. 이와 같은 인산을 이용한 습식식각이 수행되는 경우, 상기와 같이 캐핑층(120)의 상부면과 코어층(110)의 하부면 각각이 인산에 선택비를 가지기 때문에 stop layer로 사용될 수 있다.Here, the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%. When such wet etching is performed using phosphoric acid, since the top surface of the capping layer 120 and the bottom surface of the core layer 110 each have a selectivity to phosphoric acid, they can be used as a stop layer.
제9-1단계와 제9-2단계가 각각 별도로 수행되는 경우, 먼저, 제9-1단계에서, 상기된 바와 같이 인산(H3PO4)을 이용한 습식식각으로 제1박막층(210)의 일 부위에 대한 식각이 수행될 수 있다.When the 9-1 step and the 9-2 step are separately performed, first, in the 9-1 step, the first thin film layer 210 is wet-etched using phosphoric acid (H 3 PO 4 ) as described above. Etching may be performed on a portion.
다음으로, 제9-2단계에서, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각이 수행될 수 있다. 제5박막층(250)과 제6박막층(260)은 제8단계에서의 습식식각의 식각액(ex. KOH)에 내성이 있으면서 건식식각 또는 습식식각으로 제거 가능한 소재로 형성될 수 있다.Next, in step 9-2, wet etching or dry etching may be performed on the fifth thin film layer 250 and the sixth thin film layer 260. The fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a material that is resistant to an etchant (ex. KOH) of wet etching in the eighth step and can be removed by dry etching or wet etching.
구체적으로, 제5박막층(250)과 제6박막층(260) 각각은 은(Ag) 코팅으로 형성되어 제9-2단계에서 질산(HNO3)에 의해 용이하게 제거될 수 있다. 또는, 제5박막층(250)과 제6박막층(260) 각각은 Parylene(패럴린)같은 고분자막으로 형성되고, 제9-2단계에서 DRIE 방법으로 용이하게 제거될 수 있다.Specifically, each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a silver (Ag) coating and can be easily removed by nitric acid (HNO 3 ) in the 9-2 step. Alternatively, each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a polymer film such as Parylene, and can be easily removed by a DRIE method in the 9-2 step.
이와 같이, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거가 수행됨으로써, 최종적으로 펠리클 멤브레인이 형성될 수 있다.In this way, a portion of the first thin film layer 210 is etched and the fifth thin film layer 250 and the sixth thin film layer 260 are etched away, thereby finally forming a pellicle membrane.
상기와 같이 본 발명의 일 실시 예에 따른 제조방법에 의해 본 발명의 펠리클 멤브레인이 형성되는 경우, 캐핑층(120)의 내부에 금속(Ru)으로 형성된 복수 개의 돌기(141)(나노섬)가 형성되는 형태일 수 있다.As described above, when the pellicle membrane of the present invention is formed by the manufacturing method according to an embodiment of the present invention, a plurality of protrusions 141 (nano islands) formed of metal (Ru) are formed on the inside of the capping layer 120 It may be in the form of being formed.
이하, 본 발명의 다른 실시 예에 따른 제조방법에 대해서 설명하기로 한다.Hereinafter, a manufacturing method according to another embodiment of the present invention will be described.
도 7은 본 발명의 다른 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이다. 그리고, 도 8 내지 도 12는 본 발명의 다른 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.7 is a schematic diagram of a process sequence of a manufacturing method according to another embodiment of the present invention. 8 to 12 are cross-sectional views of products in each step of a manufacturing method according to another embodiment of the present invention.
도 8의 (a)는 웨이퍼(130)의 단면도이고, 도 8의 (b)는 제1단계 수행 후 생성물의 단면도이다. 그리고, 도 9의 (a)는 제2단계 수행 후 생성물의 단면도이고, 도 9의 (b)는 제3단계 수행 후 생성물의 단면도이다.8(a) is a cross-sectional view of the wafer 130, and FIG. 8(b) is a cross-sectional view of the product after performing the first step. And, FIG. 9 (a) is a cross-sectional view of the product after performing the second step, and FIG. 9 (b) is a cross-sectional view of the product after performing the third step.
또한, 도 10의 (a)는 제4단계 수행 후 생성물의 단면도이고, 도 10의 (b)는 제5단계 수행 후 생성물의 단면도이다. 또한, 도 11의 (a)는 제6단계 수행 후 생성물의 단면도이고, 도 11의 (b)는 제7단계 수행 후 생성물의 단면도이다. 그리고, 도 11의 (a)는 제8단계 수행 후 생성물의 단면도이고, 도 11의 (b)는 제9단계 수행 후 생성물의 단면도이다.In addition, FIG. 10 (a) is a cross-sectional view of the product after performing the fourth step, and FIG. 10 (b) is a cross-sectional view of the product after performing the fifth step. In addition, FIG. 11 (a) is a cross-sectional view of the product after performing the sixth step, and FIG. 11 (b) is a cross-sectional view of the product after performing the seventh step. And, FIG. 11 (a) is a cross-sectional view of the product after performing the eighth step, and FIG. 11 (b) is a cross-sectional view of the product after performing the ninth step.
본 발명의 일 실시 예에 따른 제조방법에서는, 도 7의 (a)에서 보는 바와 같이, 먼저, 제1단계에서, 실리콘 웨이퍼(130)가 준비되고, LSN(Low-Stress nitirde) 박막층인 제1박막층(210)이 웨이퍼(130)의 상부면에 형성되고 LSN(Low-Stress nitirde) 박막층인 제2박막층(220)이 웨이퍼(130)의 하부면에 형성될 수 있다.In the manufacturing method according to an embodiment of the present invention, as shown in (a) of FIG. 7, first, in a first step, a silicon wafer 130 is prepared, and a first low-stress nitride (LSN) thin film layer The thin film layer 210 may be formed on the upper surface of the wafer 130 and the second thin film layer 220 which is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the wafer 130 .
상기와 같이 웨이퍼(130)는 실리콘(Si)으로 형성될 수 있으며, 웨이퍼(130)는 원판형으로 직경이 8인치(in) 이상으로 형성될 수 있다. 그리고, 본 발명의 제조방법에 의한 펠리클 멤브레인은 상기와 같은 웨이퍼(130)를 이용하여 복수 개 형성시킬 수 있으며, 이에 따라, 하나의 웨이퍼(130)로 복수 개의 펠리클 멤브레인을 제조함으로써, 펠리클의 대량 생산이 가능하도록 할 수 있다.As described above, the wafer 130 may be formed of silicon (Si), and may be formed in a disk shape with a diameter of 8 inches (in) or more. In addition, a plurality of pellicle membranes according to the manufacturing method of the present invention can be formed using the wafer 130 as described above, and accordingly, by manufacturing a plurality of pellicle membranes with one wafer 130, a large amount of pellicles production can be made possible.
제1박막층(210)과 제2박막층(220) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다. 저압력에서 진행하는 화학기상 증착방법인 LPCVD 공정은 CVD 공정에 비해 고온에서 수행될 수 있다.Each of the first thin film layer 210 and the second thin film layer 220 may be deposited using low pressure chemical vapor deposition (LPCVD). The LPCVD process, which is a chemical vapor deposition method that proceeds at a low pressure, can be performed at a higher temperature than the CVD process.
여기서, 제1 박막층(210)은, 하기된 제7단계에서 웨이퍼(130)에 대한 습식식각 중 코어층(110)의 손상을 방지하는 stop layer(식각저지층)로써 작용할 수 있다. 즉, LSN(Low-Stress nitirde) 박막층은 KOH에 대해 식각내성이 있어서 KOH로 실리콘(코어층(110))만 식각이 되고 LSN 박막층을 만나면 식각이 멈추게 될 수 있다.Here, the first thin film layer 210 may act as a stop layer (etch stop layer) to prevent damage to the core layer 110 during wet etching of the wafer 130 in the seventh step described below. That is, since the low-stress nitride (LSN) thin film layer is etch-resistant to KOH, only silicon (core layer 110) is etched with KOH, and the etching may stop when it meets the LSN thin film layer.
상기와 같이 제1박막층(210)과 제2박막층(220) 각각은 박막층으로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제1박막층(210)과 제2박막층(220) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다. 그리고, 하기된 바와 같이 제1박막층(210)의 일 부위에 대한 습식식각 시 인산(H3PO4)에 의한 식각 효율이 증대될 수 있다.As described above, each of the first thin film layer 210 and the second thin film layer 220 may be formed as a thin film layer, and the thickness of the first thin film layer 210 may be formed to 20 nm or less, and the thickness of the first thin film layer 210 may be formed to 20 nm or less. In this way, by forming the thickness of each of the first thin film layer 210 and the second thin film layer 220, the EUV transmittance of each thin film layer can be increased. In addition, as described below, etching efficiency by phosphoric acid (H 3 PO 4 ) may be increased during wet etching of a portion of the first thin film layer 210 .
도 7의 (b)에서 보는 바와 같이, 상기된 제1단계 수행 후 제2단계에서, 극자외선이 투과 가능하도록 투명하게 형성되는 코어층(110)이 제1박막층(210)의 상부면에 형성될 수 있다. 여기서, 코어층(110)은 CVD를 이용하여 증착될 수 있다.As shown in (b) of FIG. 7, in the second step after performing the above-described first step, a core layer 110 transparently formed so as to transmit extreme ultraviolet rays is formed on the upper surface of the first thin film layer 210. It can be. Here, the core layer 110 may be deposited using CVD.
CVD(chemical vapor deposition)는 화학기상증착법으로, 형성하고자 하는 박막 재료를 구성하는 원소를 포함하는 가스를 기판 위에 공급하여 기상 또는 기판 표면에서의 산화환원반응, 열분해, 광분해 또는 치환 중 어느 하나의 화학적 반응으로 박막을 기판 표면에 형성할 수 있다.CVD (chemical vapor deposition) is a chemical vapor deposition method, which supplies a gas containing elements constituting the thin film material to be formed onto a substrate to cause a chemical reaction of either oxidation-reduction reaction, thermal decomposition, photolysis, or substitution on the surface of the substrate or vapor phase. The reaction may form a thin film on the substrate surface.
코어층(110)은 SiC(탄화규소) 또는 poly-Si(폴리규소, polysilicon)로 형성될 수 있다. 코어층(110)은 본 발명의 펠리클 멤브레인의 주요 지지층으로써, 극자외선(EUV)에 대한 고투과율을 구비하고, 고내구성을 구비하며, 인산(phosphoric acid) 선택비를 구비할 수 있다.The core layer 110 may be formed of SiC (silicon carbide) or poly-Si (polysilicon). The core layer 110 is a main support layer of the pellicle membrane of the present invention, and may have high transmittance to extreme ultraviolet (EUV), high durability, and phosphoric acid selectivity.
코어층(110)의 극자외선 투과율은 88% 이상으로 형성될 수 있으며, 상기와 같은 고내구성을 구비하기 위하여 코어층(110)의 두께는 50nm이하로 형성될 수 있다. 이에 따라, 코어층(110) EUV 투과 효율이 증대될 수 있다.The extreme ultraviolet transmittance of the core layer 110 may be formed to be 88% or more, and the thickness of the core layer 110 may be formed to be 50 nm or less in order to have high durability as described above. Accordingly, EUV transmission efficiency of the core layer 110 may be increased.
도 7의 (c)에서 보는 바와 같이, 상기된 제2단계 수행 후 제3단계에서, LSN(Low-Stress nitirde) 박막층인 제3박막층(230)이 코어층(110) 상부면에 형성되고, LSN(Low-Stress nitirde) 박막층인 제4박막층(240)이 제2박막층(220) 하부면에 형성될 수 있다. 여기서, 제3박막층(230)과 제4박막층(240) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.As shown in (c) of FIG. 7, in the third step after the second step described above, a third thin film layer 230, which is a low-stress nitride (LSN) thin film layer, is formed on the upper surface of the core layer 110, A fourth thin film layer 240 that is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the second thin film layer 220 . Here, each of the third thin film layer 230 and the fourth thin film layer 240 may be deposited using LPCVD (Low Pressure Chemical Vapor Deposition).
상기와 같이 제3박막층(230)과 제4박막층(240)이 형성됨으로써, 극자외선의 환경으로부터 코어층(110)이 보호되며, 본 발명의 펠리클 멤브레인 내 잔류 응력이 제3박막층(230)에 의해 제어될 수 있다. 여기서, 제3박막층(230)에서 규소(Si)와 질소(N)의 비율을 제어하여 상기된 잔류 응력을 제어할 수 있다.By forming the third thin film layer 230 and the fourth thin film layer 240 as described above, the core layer 110 is protected from the environment of extreme ultraviolet rays, and the residual stress in the pellicle membrane of the present invention is applied to the third thin film layer 230. can be controlled by Here, the aforementioned residual stress may be controlled by controlling the ratio of silicon (Si) to nitrogen (N) in the third thin film layer 230 .
상기와 같이 제3박막층(230)과 제4박막층(240) 각각은 박막층으로 형성될 수 있으며, 제3박막층(230)의 두께는 20nm이하로 형성될 수 있으며, 제4박막층(240)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제3박막층(230)과 제4박막층(240) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다.As described above, each of the third thin film layer 230 and the fourth thin film layer 240 may be formed as a thin film layer, the thickness of the third thin film layer 230 may be formed to 20 nm or less, and the thickness of the fourth thin film layer 240 may be formed to 20 nm or less. In this way, by forming the thickness of each of the third thin film layer 230 and the fourth thin film layer 240, the EUV transmittance of each thin film layer can be increased.
도 7의 (d)에서 보는 바와 같이, 상기된 제3단계 수행 후 제4단계에서, 코어층(110)으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층(120)이 제3박막층(230) 상부면에 형성될 수 있다. 캐핑층(120)은 극자외선에 대해 고방사율 및 저반사율의 광학적 특성을 구비하고, 인산(phosphoric acid) 선택비를 구비할 수 있다.As shown in (d) of FIG. 7 , in the fourth step after the third step described above, the capping layer 120 reducing the reflectance of the extreme ultraviolet rays incident on the core layer 110 is formed by the third thin film layer 230 It may be formed on the upper surface. The capping layer 120 may have optical characteristics of high emissivity and low reflectance for extreme ultraviolet rays, and may have a phosphoric acid selectivity.
구체적으로, 캐핑층(120)은 극자외선에 대해 0.1 이상의 방사율을 구비하고 0.05 이하의 반사율을 구비할 수 있다. 그리고, 캐핑층(120)은 EUV투과율 88%이상 등의 성능을 구비할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인으로 조사되는 극자외선의 이용률이 현저히 증가되어 극자외선의 손실률을 감소시킬 수 있다.Specifically, the capping layer 120 may have an emissivity of 0.1 or more and a reflectance of 0.05 or less with respect to extreme ultraviolet rays. In addition, the capping layer 120 may have performance such as an EUV transmittance of 88% or more. Accordingly, the utilization rate of extreme ultraviolet rays irradiated with the pellicle membrane of the present invention is remarkably increased, and the loss rate of extreme ultraviolet rays can be reduced.
캐핑층(120)은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착될 수 있다. 캐핑층(120)을 형성하기 위하여 Sputtering 외 다른 PVD(Physical Vapor Deposition) 공정을 이용할 수 있음은 물론이다.The capping layer 120 may be deposited using ALD (Atomic Layer Deposition) or sputtering. Of course, other physical vapor deposition (PVD) processes other than sputtering may be used to form the capping layer 120 .
여기서, 캐핑층(120)은 Metal silicide로 형성될 수 있다. 구체적으로, 캐핑층(120)은 MoSiO2(이산화규소몰리브덴)으로 형성될 수 있다. 다만, 캐핑층(120)을 형성하는 소재가 이에 한정되는 것은 아니고, EUV 고투과율, 고방사율, 저반사율 성능을 만족하고 수소플라즈마에 내성이 있는 소재중에 인산에 선택비를 갖는 소재는 모두 이용될 수 있다.Here, the capping layer 120 may be formed of metal silicide. Specifically, the capping layer 120 may be formed of MoSiO 2 (silicon molybdenum dioxide). However, the material forming the capping layer 120 is not limited thereto, and among the materials that satisfy EUV high transmittance, high emissivity, and low reflectance performance and are resistant to hydrogen plasma, all materials having a selectivity to phosphoric acid can be used. can
제4단계에서, 캐핑층(120)에 대해 열처리가 수행될 수 있다. 상기와 같이 형성된 캐핑층(120)은 열처리 없이 이용될 수도 있으나, 내구성 및 EUV 광학 특성을 개선시키기 위해 열처리를 수행할 수 있다.In a fourth step, heat treatment may be performed on the capping layer 120 . The capping layer 120 formed as described above may be used without heat treatment, but heat treatment may be performed to improve durability and EUV optical characteristics.
이 때, 캐핑층(120)에 대해 열처리가 수행되는 경우, 열처리 온도는 800℃ 이상일 수 있다. 상기와 같이 제3박막층(230) 상부면에 캐핑층(120)이 형성된 후에 캐핑층(120)에 대한 열처리가 수행될 수 있으며, 캐핑층(120)에 대한 열처리는 상기와 같은 캐핑층(120)의 증착 공정(ALD, Sputtering 등)이 수행된 장비 내에서 수행될 수도 있고, 외부의 히터에 의해 수행될 수도 있다.In this case, when heat treatment is performed on the capping layer 120, the heat treatment temperature may be 800° C. or higher. After the capping layer 120 is formed on the upper surface of the third thin film layer 230 as described above, heat treatment of the capping layer 120 may be performed. ) may be performed in equipment where the deposition process (ALD, sputtering, etc.) has been performed, or may be performed by an external heater.
도 7의 (e)에서 보는 바와 같이, 상기된 제4단계 수행 후 제5단계에서, 캐핑층(120) 상부면에 금속 전구체가 증착되어 소정의 패턴을 가지는 금속패턴층(140)이 형성될 수 있다. 구체적으로, 제5단계에서, 금속 전구체의 증착으로 형성된 복수 개의 돌기(141)가 분산 배치되는 금속패턴이 형성될 수 있다. 여기서, 금속 전구체는 루테늄(Ru) 함유 전구체일 수 있다. 이에 따라, 금속패턴층(140)은 복수 개의 루테늄 나노섬(nano-islands)이 형성된 구조일 수 있다.As shown in (e) of FIG. 7, in the fifth step after the fourth step described above, a metal precursor is deposited on the upper surface of the capping layer 120 to form a metal pattern layer 140 having a predetermined pattern. can Specifically, in the fifth step, a metal pattern in which a plurality of protrusions 141 formed by deposition of a metal precursor are distributed and disposed may be formed. Here, the metal precursor may be a ruthenium (Ru)-containing precursor. Accordingly, the metal pattern layer 140 may have a structure in which a plurality of ruthenium nano-islands are formed.
상기와 같은 금속패턴층(140)은 캐핑층(120) 상부면에 ALD(Atomic Layer Deposition)를 이용하여 증착될 수 있다. 그리고, 금속 전구체, 일례로 루테늄(Ru) 함유 전구체가 루테늄 함유 박막을 형성하지 않고 루테늄 나노섬의 형성을 위한 ALD 공정의 cycle, 공정 온도, 기판 표면처리 방법 또는 전구체 종류와 같은 ALD 공정 조건을 변화시킬 수 있다.The metal pattern layer 140 as described above may be deposited on the upper surface of the capping layer 120 using ALD (Atomic Layer Deposition). In addition, a metal precursor, for example, a ruthenium (Ru)-containing precursor does not form a ruthenium-containing thin film and changes ALD process conditions such as cycle, process temperature, substrate surface treatment method, or precursor type of the ALD process for forming ruthenium nanoislands. can make it
여기서, 금속 전구체는 루테늄(Ru) 함유 전구체일 수 있으며, 구체적으로, 전구체로써, 0가 루테늄 전구체, 2가 루테늄 전구체(Ru-2) 및 4가 루테늄 전구체(Ru-4)로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 보다 구체적인 일례로 트리카르보닐시클로헥사디엔 루테늄, 부타디엔 루테늄 트리카르보닐, 디메틸 부타디엔 루테늄 트리카르보닐, 루테늄 트리카르보닐, Ru(MeCp)2, Ru(EtCp)2, Ru(i-PrCp)2 및 RuCp2에서 선택되는 하나 이상이 이용될 수 있다. 다만, 이에 한정되는 것은 아니다.Here, the metal precursor may be a ruthenium (Ru)-containing precursor, specifically, as a precursor, selected from the group consisting of a zero-valent ruthenium precursor, a divalent ruthenium precursor (Ru-2), and a tetravalent ruthenium precursor (Ru-4). It may be one or more, and more specific examples include tricarbonylcyclohexadiene ruthenium, butadiene ruthenium tricarbonyl, dimethyl butadiene ruthenium tricarbonyl, ruthenium tricarbonyl, Ru(MeCp) 2 , Ru(EtCp) 2 , Ru( At least one selected from i-PrCp) 2 and RuCp 2 may be used. However, it is not limited thereto.
상기와 같이 cycle 수를 제어할 수 있으며, cycle 수는 전구체의 종류에 따라 가변될 수 있다. 또한, 상기와 같이 금속패턴층(140)의 형성을 위한 ALD 공정의 공정 온도를 제어할 수 있으며, 공정 온도는 상기와 같은 전구체의 종류 또는 cycle 수에 따라 가변될 수 있다.As described above, the number of cycles can be controlled, and the number of cycles can be varied depending on the type of precursor. In addition, the process temperature of the ALD process for forming the metal pattern layer 140 can be controlled as described above, and the process temperature can be varied according to the type of the precursor or the number of cycles.
그리고, 상기와 같이 기판 표면처리, 즉, 본 발명의 제조방법에서는 캐핑층(120) 상부면에 대한 표면처리를 수행함으로써, 금속 전구체가 박막을 형성하지 않고 소정의 금속패턴을 가지는 금속패턴층(140)을 형성할 수 있도록 제어할 수 있다.And, as described above, in the manufacturing method of the present invention, by performing surface treatment on the upper surface of the capping layer 120, the metal precursor does not form a thin film and has a metal pattern layer having a predetermined metal pattern ( 140) can be controlled to form.
즉, 이러한 제어의 일례로 제4단계에서, 캐핑층(120) 상부면에 대한 표면처리를 수행할 수 있다. 구체적으로, 캐핑층(120) 상부면에 대해 완충산화물식각(BOE, Buffered Oxide Etchant), NH3 플라즈마 처리(NH3 Plasma treatment), N2 플라즈마 처리(N2 Plasma treatment) 등이 이용될 수 있다.That is, as an example of such control, in the fourth step, surface treatment may be performed on the upper surface of the capping layer 120 . Specifically, buffered oxide etching (BOE), NH 3 plasma treatment, N 2 plasma treatment, etc. may be used for the upper surface of the capping layer 120 . .
상기와 같은 ALD 공정 조건들의 조절에 의해 금속 전구체, 즉, 루테늄(Ru) 함유 전구체는 박막을 형성하지 않고 복수 개의 돌기(141) 형상으로 캐핑층(120) 상부면에 금속패턴층(140)을 형성할 수 있다.By adjusting the ALD process conditions as described above, the metal precursor, that is, the ruthenium (Ru)-containing precursor does not form a thin film and forms a plurality of protrusions 141 on the upper surface of the capping layer 120, the metal pattern layer 140. can form
상기와 같이 돌기(141)(나노섬) 형상으로 형성되는 금속(루테늄(Ru))의 너비가 100nm이하인 경우, 금속(루테늄(Ru))의 열방사율은 급격히 증가하게 되며, 금속(루테늄(Ru))의 두께가 3nm로 적용되는 경우에는, 본 발명의 펠리클 멤브레인의 온도를 1,000℃ 이상 감소시킬 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 열방사 효율이 증대되어 열에 대한 내구성이 향상될 수 있다.As described above, when the width of the metal (ruthenium (Ru)) formed in the shape of the protrusion 141 (nano island) is 100 nm or less, the thermal emissivity of the metal (ruthenium (Ru)) increases rapidly, and the metal (ruthenium (Ru)) )) When the thickness of 3 nm is applied, the temperature of the pellicle membrane of the present invention can be reduced by 1,000 ° C or more. Accordingly, heat radiation efficiency of the pellicle membrane of the present invention may be increased, and thus durability against heat may be improved.
그리고, 상기와 같은 금속패턴층(140)으로 루테늄(Ru) 패턴을 형성시킴으로써, Metal silicide과 루테늄(Ru)패턴층을 결합시켜, EUVL환경에서 주석(Tin)과 수소 확산(hydrogen diffusion)에 의한 루테늄(Ru) 층의 부풀림(blistering) 현상 발생을 방지할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 내구성을 향상시킬 수 있다.In addition, by forming a ruthenium (Ru) pattern with the metal pattern layer 140 as described above, by combining the metal silicide and the ruthenium (Ru) pattern layer, tin (Tin) and hydrogen diffusion (hydrogen diffusion) in the EUVL environment It is possible to prevent blistering of the ruthenium (Ru) layer. Accordingly, durability of the pellicle membrane of the present invention can be improved.
도 7의 (f)에서 보는 바와 같이, 상기된 제5단계 수행 후 제6단계에서, 제5박막층(250)이 금속패턴층(140) 상부에 형성되고, 제6박막층(260)이 제4박막층(240) 하부면에 형성될 수 있다.As shown in (f) of FIG. 7, in the sixth step after the fifth step described above, the fifth thin film layer 250 is formed on the metal pattern layer 140, and the sixth thin film layer 260 is formed on the fourth step. It may be formed on the lower surface of the thin film layer 240 .
상기와 같이 제5박막층(250)과 제6박막층(260)이 형성됨으로써, 하기된 제7단계에서의 박막층결합체에 대한 패터닝 또는 하기된 제8단계에서의 습식식각 중에 캐핑층(120)을 보호하기 위하여 형성될 수 있다.By forming the fifth thin film layer 250 and the sixth thin film layer 260 as described above, the capping layer 120 is protected during patterning of the thin film layer assembly in the seventh step described below or wet etching in the eighth step described below can be formed to
여기서, 제5박막층(250)과 제6박막층(260) 각각은 LSN(Low-Stress nitirde) 박막층, 은(Ag) 코팅층 또는 Parylene(패럴린)같은 고분자막 등으로 형성될 수 있다. 그리고, 제5박막층(250)과 제6박막층(260)이 LSN(Low-Stress nitirde) 박막층으로 형성되는 경우, 제5박막층(250)과 제6박막층(260) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.Here, each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a low-stress nitride (LSN) thin film layer, a silver (Ag) coating layer, or a polymer film such as Parylene. In addition, when the fifth thin film layer 250 and the sixth thin film layer 260 are formed as LSN (Low-Stress Nitirde) thin film layers, each of the fifth thin film layer 250 and the sixth thin film layer 260 is LPCVD (Low Pressure Chemical Vapor Deposition) can be used.
상기와 같이 제5박막층(250)과 제6박막층(260) 각각은 박막층으로 형성될 수 있으며, 제5박막층(250)의 두께는 20nm이하로 형성될 수 있으며, 제6박막층(260)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제5박막층(250)과 제6박막층(260) 각각의 두께가 형성됨으로써, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각 시 식각 효율이 증대될 수 있다.As described above, each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed as a thin film layer, the thickness of the fifth thin film layer 250 may be formed to 20 nm or less, and the thickness of the sixth thin film layer 260 may be formed to 20 nm or less. As the thicknesses of the fifth thin film layer 250 and the sixth thin film layer 260 are formed in this way, the etching efficiency of the fifth thin film layer 250 and the sixth thin film layer 260 can be increased during wet etching or dry etching. .
도 7의 (g)에서 보는 바와 같이, 상기된 제6단계 수행 후 제7단계에서, 제2박막층(220)과 제4박막층(240) 및 제6박막층(260)의 결합체인 박막층결합체에 대해 패터닝이 수행될 수 있다. 여기서, 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행될 수 있다.As shown in (g) of FIG. 7, in the seventh step after the sixth step described above, for the thin film layer assembly, which is a combination of the second thin film layer 220, the fourth thin film layer 240, and the sixth thin film layer 260 Patterning may be performed. Here, patterning of the thin film layer assembly may be performed through a photolithography process.
포토리소그래피 공정에 의하여, 마스크 상에 설계된 패턴을 박막층결합체에 구현하게 될 수 있으며, 구체적으로, 먼저, 박막층결합체의 하부면에 감광제를 코팅하는 감광제 코팅 단계가 수행될 수 있다.By the photolithography process, a pattern designed on the mask may be implemented in the thin film layer assembly, and specifically, first, a photoresist coating step of coating a photoresist on the lower surface of the thin film layer assembly may be performed.
그리고, 감광제 코팅 단계 수행 후, 패턴이 형성된 마스크를 감광제 코팅면 상에 배치시키는 마스크 배치 단계가 수행될 수 있고, 다음으로, 마스크의 패턴에 따라 노출된 감광제 코팅면을 광에 노출시키는 노광 단계가 수행될 수 있다.Then, after performing the photoresist coating step, a mask placement step of disposing a patterned mask on the photoresist-coated surface may be performed, and then an exposure step of exposing the exposed photoresist-coated surface to light according to the pattern of the mask. can be performed
그 후, 감광제가 필요없는 부분을 제거하는 과정인 현상 단계가 수행될 수 있다. 여기서, 박막층결합체는 광을 받은 부분과 받지 않은 부분으로 구분되는데, 포지티브 레지스트를 감광제로 사용한 경우 광을 받은 부분은 제거되고 광을 받지 않은 부분은 그래도 남게 되며, 네거티브 레지시트를 감광제로 사용한 경우에는 그 반대일 수 있다.After that, a developing step may be performed, which is a process of removing portions where photosensitizer is not needed. Here, the thin film layer assembly is divided into a portion that receives light and a portion that does not receive light. When a positive resist is used as a photoresist, the portion that receives light is removed and the portion that does not receive light remains. In the case of using a negative resist as a photoresist, It could be the other way around.
다음으로, 건식식각 또는 습식식각을 이용하여 박막층결합체에 대한 패터닝을 위한 식각을 수행하는 식각 단계가 수행될 수 있다. 상기와 같은 식각 단계 이 후, 박막층결합체의 표면에 남아 있는 감광제를 제거하는 감광제 제거 단계가 수행될 수 있다. 감광제의 제거를 위해 황산(H2SO4) 용액 등이 이용될 수 있으나, 이에 한정되는 것은 아니다.Next, an etching step of performing etching for patterning the thin film layer assembly using dry etching or wet etching may be performed. After the above etching step, a photoresist removal step of removing the photoresist remaining on the surface of the thin film layer assembly may be performed. For the removal of the photosensitizer, a sulfuric acid (H 2 SO 4 ) solution or the like may be used, but is not limited thereto.
도 7의 (h)에서 보는 바와 같이, 상기된 제7단계 수행 후 제8단계에서, 박막층결합체의 패터닝 형상을 따라 웨이퍼(130)에 대한 식각이 수행될 수 있다. 구체적으로, 제8단계에서, 웨이퍼(130)에 대한 식각은 습식식각으로 수행될 수 있다. 여기서, 웨이퍼(130)에 대한 습식식각은 수산화칼륨(KOH)을 이용하여 수행될 수 있다.As shown in (h) of FIG. 7 , in the eighth step after performing the above-described seventh step, the wafer 130 may be etched according to the patterning shape of the thin film layer assembly. Specifically, in the eighth step, the etching of the wafer 130 may be performed by wet etching. Here, wet etching of the wafer 130 may be performed using potassium hydroxide (KOH).
상기와 같은 제7단계의 수행에 따라, 박막층결합체의 패터닝을 따라 웨이퍼(130)의 일 부위가 노출되게 되며, 이와 같은 노출된 웨이퍼(130)의 패턴에 대해 식각이 수행될 수 있다.As the seventh step is performed, a portion of the wafer 130 is exposed along with the patterning of the thin film layer assembly, and etching may be performed on the exposed pattern of the wafer 130.
본 발명의 실시 예에서는, 박막층결합체의 패터닝 형상에 대응되는 형상인 웨이퍼(130)의 일 부위에 대한 식각이 수산화칼륨(KOH)을 이용한 습식식각이라고 설명하고 있으나, 습식식각에 이용되는 물질이 수산화칼륨(KOH)에 한정되는 것은 아니고, 염산(HCl), 질산(HNO3), 플루오르화수소(HF) 등도 이용될 수 있다.In the embodiment of the present invention, although the etching of a portion of the wafer 130, which is a shape corresponding to the patterning shape of the thin film layer assembly, is described as wet etching using potassium hydroxide (KOH), the material used for wet etching is hydroxide It is not limited to potassium (KOH), and hydrochloric acid (HCl), nitric acid (HNO 3 ), hydrogen fluoride (HF), and the like may also be used.
웨이퍼(130)의 일 부위에 대한 식각에 수산화칼륨(KOH)이 이용되는 경우, 온도 80℃의 물인 용매에 칼륨 30wt%를 용해시켜 식각액을 제조하고, 이와 같은 식각액과 상기된 웨이퍼(130)의 일 부위를 접촉시켜 습식식각을 수행할 수 있다.When potassium hydroxide (KOH) is used for etching a portion of the wafer 130, an etchant is prepared by dissolving 30 wt% of potassium in a solvent that is water at a temperature of 80 ° C. Wet etching may be performed by contacting one part.
도 7의 (i)에서 보는 바와 같이, 상기된 제8단계 수행 후 제9단계에서, 웨이퍼(130) 하부면의 식각 부위 형상을 따라 제1박막층(210)의 일 부위가 식각되고, 식각에 의해 제5박막층(250)과 제6박막층(260)이 제거되어, 금속패턴층(140)이 노출되게 형성된 펠리클 멤브레인이 형성될 수 있다.As shown in (i) of FIG. 7, in the ninth step after the eighth step described above, a portion of the first thin film layer 210 is etched along the shape of the etched portion on the lower surface of the wafer 130, and the etching By removing the fifth thin film layer 250 and the sixth thin film layer 260, a pellicle membrane formed to expose the metal pattern layer 140 may be formed.
구체적으로, 제9단계는, 제1박막층(210)의 일 부위에 대한 식각이 수행되는 제9-1단계; 및 제5박막층(250) 및 제6박막층(260)에 대한 식각이 수행되는 제9-2단계를 포함할 수 있다.Specifically, the ninth step includes a 9-1 step in which etching is performed on a portion of the first thin film layer 210; and a 9-2 step of etching the fifth thin film layer 250 and the sixth thin film layer 260 .
여기서, 상기된 제9-1단계와 제9-2단계는, 동시 또는 별도로 수행될 수 있다.Here, the above-described steps 9-1 and 9-2 may be performed simultaneously or separately.
제9-1단계와 제9-2단계가 동시에 수행되는 경우, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거는 습식식각으로 수행될 수 있다. 여기서, 제1박막층(210)의 일 부위에 대한 식각 및 제5박막층(250) 및 제6박막층(260)의 식각 제거를 위한 습식식각은 인산(H3PO4)을 이용하여 수행될 수 있다.When the 9-1 and 9-2 steps are performed simultaneously, the etching of a part of the first thin film layer 210 and the etching removal of the fifth thin film layer 250 and the sixth thin film layer 260 are performed by wet etching. can be performed Here, wet etching for etching a portion of the first thin film layer 210 and etching and removing the fifth thin film layer 250 and the sixth thin film layer 260 may be performed using phosphoric acid (H 3 PO 4 ). .
여기서, 인산의 농도는 80~90wt%일 수 있으며, 바람직하게는, 인산의 농도는 85wt%일 수 있다. 이와 같은 인산을 이용한 습식식각이 수행되는 경우, 상기와 같이 캐핑층(120)의 상부면과 코어층(110)의 하부면 각각이 인산에 선택비를 가지기 때문에 stop layer로 사용될 수 있다.Here, the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%. When such wet etching is performed using phosphoric acid, since the top surface of the capping layer 120 and the bottom surface of the core layer 110 each have a selectivity to phosphoric acid, they can be used as a stop layer.
제9-1단계와 제9-2단계가 각각 별도로 수행되는 경우, 먼저, 제9-1단계에서, 상기된 바와 같이 인산(H3PO4)을 이용한 습식식각으로 제1박막층(210)의 일 부위에 대한 식각이 수행될 수 있다.When the 9-1 step and the 9-2 step are separately performed, first, in the 9-1 step, the first thin film layer 210 is wet-etched using phosphoric acid (H 3 PO 4 ) as described above. Etching may be performed on a portion.
다음으로, 제9-2단계에서, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각이 수행될 수 있다. 제5박막층(250)과 제6박막층(260)은 제8단계에서의 습식식각의 식각액(ex. KOH)에 내성이 있으면서 건식식각 또는 습식식각으로 제거 가능한 소재로 형성될 수 있다.Next, in step 9-2, wet etching or dry etching may be performed on the fifth thin film layer 250 and the sixth thin film layer 260. The fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a material that is resistant to an etchant (ex. KOH) of wet etching in the eighth step and can be removed by dry etching or wet etching.
구체적으로, 제5박막층(250)과 제6박막층(260) 각각은 은(Ag) 코팅으로 형성되어 제9-2단계에서 질산(HNO3)에 의해 용이하게 제거될 수 있다. 또는, 제5박막층(250)과 제6박막층(260) 각각은 Parylene(패럴린)같은 고분자막으로 형성되고, 제9-2단계에서 DRIE 방법으로 용이하게 제거될 수 있다.Specifically, each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a silver (Ag) coating and can be easily removed by nitric acid (HNO 3 ) in the 9-2 step. Alternatively, each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a polymer film such as Parylene, and can be easily removed by a DRIE method in the 9-2 step.
이와 같이, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거가 수행됨으로써, 최종적으로 펠리클 멤브레인이 형성될 수 있다.In this way, a portion of the first thin film layer 210 is etched and the fifth thin film layer 250 and the sixth thin film layer 260 are etched away, thereby finally forming a pellicle membrane.
상기와 같이 본 발명의 다른 실시 예에 따른 제조방법에 따라 본 발명의 펠리클 멤브레인이 형성되는 경우, 본 발명의 펠리클 멤브레인은 캐핑층(120) 상부면에 형성된 금속패턴층(140)이 상부로 노출된 형태를 구비할 수 있다.As described above, when the pellicle membrane of the present invention is formed according to the manufacturing method according to another embodiment of the present invention, in the pellicle membrane of the present invention, the metal pattern layer 140 formed on the upper surface of the capping layer 120 is exposed upward. shape can be provided.
상기와 같은 본 발명의 일 실시 예 또는 다른 실시 예에 따른 제조방법에 따른 공정에 의해 형성된 펠리클 멤브레인; 및 펠리클 멤브레인과 결합하고 펠리클 멤브레인을 지지하는 펠리클 프레임을 포함하는 펠리클을 제조할 수 있다. 펠리클 프레임은 펠리클 멤브레인의 가장자리 형상을 따라 형성되어 펠리클 멤브레인을 고정 지지할 수 있다.A pellicle membrane formed by a process according to a manufacturing method according to one embodiment or another embodiment of the present invention as described above; And it is possible to manufacture a pellicle including a pellicle frame coupled to the pellicle membrane and supporting the pellicle membrane. The pellicle frame may be formed along the edge shape of the pellicle membrane to fixally support the pellicle membrane.
상기와 같은 본 발명의 제조방법에 의해 제조된 본 발명의 펠리클 멤브레인은 극자외선 초기 광량의 88% 이상을 보존하면서도 다층막으로 형성되어 높은 내구적, 열적 특성을 구비할 수 있다.The pellicle membrane of the present invention manufactured by the manufacturing method of the present invention as described above is formed as a multilayer film while preserving 88% or more of the initial amount of extreme ultraviolet light, so it can have high durability and thermal characteristics.
또한, 대면적의 웨이퍼(130)를 이용하여 펠리클을 복수 개 제조할 수 있음으로써, 웨이퍼(130)를 이용한 펠리클 대량 생산에 용이하게 적용될 수 있다.In addition, since a plurality of pellicles can be manufactured using the large-area wafer 130, it can be easily applied to mass production of pellicles using the wafer 130.
도 13은 본 발명의 일 실시 예에 따른 금속 전구체가 증착되어 금속패턴층(140)을 형성한 상태에 대한 TEM이미지이다. 구체적으로, 도 13에서는 캐핑층(120)과 결합된 금속패턴을 나타내고 있으며, 도 13에서 보는 바와 같이, 본 발명의 제조방법을 이용하는 경우, 금속 전구체, 구체적으로 루테늄(Ru)을 함유한 전구체가 증착되어, 복수 개의 돌기(141)로 형성된 루테늄 나노섬(nano-islands) 구조가 캐핑층(120)과 결합된 것을 확인할 수 있다.13 is a TEM image of a state in which the metal pattern layer 140 is formed by depositing a metal precursor according to an embodiment of the present invention. Specifically, FIG. 13 shows a metal pattern combined with the capping layer 120, and as shown in FIG. 13, in the case of using the manufacturing method of the present invention, a metal precursor, specifically a precursor containing ruthenium (Ru) It can be confirmed that the deposited ruthenium nano-islands structure formed of the plurality of protrusions 141 is combined with the capping layer 120 .
도 14와 도 15는 본 발명의 일 실시 예에 따른 제조방법와 관련된 실험 결과에 대한 TEM이미지이다.14 and 15 are TEM images of experimental results related to a manufacturing method according to an embodiment of the present invention.
구체적으로, 도 14의 (a)는, 완충산화물식각(BOE, Buffered Oxide Etchant)과 NH3 플라즈마 처리(NH3 Plasma treatment)된 SiN 기판을 마련하고, 전구체를 Ru(EtCp)2로 하고, cycle 수를 200cycle로 하며, 공정 온도를 350℃로 하여 ALD 공정을 수행한 후 기판에 대해 촬상한 TEM이미지이다.Specifically, in (a) of FIG. 14, a SiN substrate subjected to buffered oxide etching (BOE) and NH 3 plasma treatment is prepared, the precursor is Ru(EtCp) 2 , and the cycle This is a TEM image taken on the substrate after performing the ALD process with the number of cycles as 200 and the process temperature as 350°C.
또한, 도 14의 (b)는, N2 플라즈마 처리(N2 Plasma treatment)된 SiN 기판을 마련하고, 전구체를 Ru(EtCp)2로 하고, cycle 수를 200cycle로 하며, 공정 온도를 350℃로 하여 ALD 공정을 수행한 후 기판에 대해 촬상한 TEM이미지이다.In (b) of FIG. 14, a SiN substrate subjected to N 2 plasma treatment is prepared, the precursor is Ru(EtCp) 2 , the number of cycles is 200 cycles, and the process temperature is 350°C. This is a TEM image taken of the substrate after performing the ALD process.
그리고, 도 14의 (c)는, 완충산화물식각(BOE, Buffered Oxide Etchant)과 N2 플라즈마 처리(N2 Plasma treatment)된 SiN 기판을 마련하고, 전구체를 Ru(EtCp)2로 하고, cycle 수를 200cycle로 하며, 공정 온도를 350℃로 하여 ALD 공정을 수행한 후 기판에 대해 촬상한 TEM이미지이다.In (c) of FIG. 14, a SiN substrate subjected to buffered oxide etching (BOE) and N 2 plasma treatment is prepared, the precursor is Ru(EtCp) 2 , and the number of cycles is 200 cycles, and the process temperature is 350 ℃ to perform the ALD process, and then the TEM image of the substrate.
도 14의 (a)에서는 루테늄(Ru)을 함유한 금속 전구체가 증착되어 복수 개로 돌기(141) 형상으로 각각 독립되어 나노섬(nano-islands)를 형성함을 확인할 수 있고, 도 14의 (b)와 (c)에서는 각각의 루테늄(Ru) 나노섬이 연결된 형상인 것을 확인할 수 있다.In (a) of FIG. 14, it can be confirmed that a plurality of metal precursors containing ruthenium (Ru) are deposited and independently form nano-islands in the shape of a plurality of protrusions 141, and in FIG. 14 (b) ) and (c), it can be confirmed that each ruthenium (Ru) nanoisland is connected.
도 15의 (a)는, SiN 기판을 마련하고, 전구체를 Ru-2로 하고, cycle 수를 300cycle로 하며, 공정 온도를 350℃로 하여 ALD 공정을 수행한 후 기판에 대해 촬상한 TEM이미지이다.15(a) is a TEM image taken of the substrate after preparing a SiN substrate, using Ru-2 as the precursor, setting the number of cycles to 300 cycles, and performing the ALD process at a process temperature of 350 ° C. .
도 15의 (b)는, 자연 산화시킨 Si 기판(Native Ox/Si)을 마련하고, Ru-2로 하고, cycle 수를 300cycle로 하며, 공정 온도를 350℃로 하여 ALD 공정을 수행한 후 기판에 대해 촬상한 TEM이미지이다.In (b) of FIG. 15, a naturally oxidized Si substrate (Native Ox/Si) is prepared, Ru-2 is used, the number of cycles is set to 300 cycles, and the ALD process is performed at a process temperature of 350 ° C. Substrate This is a TEM image taken for .
도 14에서 보는 바와 같이, 다른 공정 조건을 동일하게 하더라도 기판의 표면처리에 따라 기판 상 루테늄(Ru)을 함유한 금속 전구체가 증착되어 형성하는 루테늄 패턴이 상이하여, 기판의 표면처리 제어를 통해 기판 상 형성되는 루테늄 패턴 모양을 조절할 수 있음을 확인할 수 있다.As shown in FIG. 14, even if other process conditions are the same, the ruthenium pattern formed by depositing a metal precursor containing ruthenium (Ru) on the substrate is different depending on the surface treatment of the substrate, so that the substrate surface treatment is controlled through the substrate. It can be seen that the shape of the ruthenium pattern formed can be controlled.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.
<부호의 설명><Description of codes>
110 : 코어층110: core layer
120 : 캐핑층120: capping layer
130 : 웨이퍼130: wafer
140 : 금속패턴층140: metal pattern layer
141 : 돌기141: protrusion
210 : 제1박막층210: first thin film layer
220 : 제2박막층220: second thin film layer
230 : 제3박막층230: third thin film layer
240 : 제4박막층240: fourth thin film layer
250 : 제5박막층250: fifth thin film layer
260 : 제6박막층260: sixth thin film layer

Claims (16)

  1. 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계;A first step in which a silicon wafer is prepared, a first thin film layer is formed on an upper surface of the wafer, and a second thin film layer is formed on a lower surface of the wafer;
    극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계;a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer;
    제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계;a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer;
    상기 제3박막층 상부면에 금속 전구체가 증착되어 소정의 패턴을 가지는 금속패턴층이 형성되는 제4단계;a fourth step of depositing a metal precursor on the upper surface of the third thin film layer to form a metal pattern layer having a predetermined pattern;
    상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제5단계;a fifth step of forming a capping layer on top of the metal pattern layer to reduce reflectance of extreme ultraviolet rays incident on the core layer;
    제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제6단계;a sixth step of forming a fifth thin film layer on an upper surface of the capping layer and a sixth thin film layer on a lower surface of the fourth thin film layer;
    상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제7단계;a seventh step in which patterning is performed on a thin film layer assembly, which is a combination of the second thin film layer, the fourth thin film layer, and the sixth thin film layer;
    상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제8단계; 및An eighth step of etching the wafer according to the patterning shape of the thin film layer assembly; and
    상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제9단계를 포함하는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.A ninth step of etching a portion of the first thin film layer along the shape of the etched portion of the lower surface of the wafer and removing the fifth thin film layer and the sixth thin film layer by etching to form a pellicle membrane. A method for manufacturing an EUV pellicle based on a multilayer membrane structure containing a capping layer containing metal nanoislands.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 제4단계에서, 상기 금속 전구체의 증착으로 형성된 복수 개의 돌기가 분산 배치되는 금속패턴이 형성되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In the fourth step, a multilayer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands, characterized in that a metal pattern in which a plurality of protrusions formed by the deposition of the metal precursor is distributedly arranged is formed.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 금속 전구체는 루테늄(Ru) 함유 전구체인 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.The metal precursor is a multilayer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands, characterized in that the ruthenium (Ru)-containing precursor.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 제1박막층, 상기 제2박막층, 상기 제3박막층 및 상기 제4박막층 각각은, LSN(Low-Stress nitirde) 박막층으로써 LPCVD를 이용하여 증착되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.Each of the first thin film layer, the second thin film layer, the third thin film layer, and the fourth thin film layer is a low-stress nitride (LSN) thin film layer and is deposited using LPCVD. A capping layer containing metal nanoislands A method for manufacturing an EUV pellicle based on a multilayer membrane structure containing
  5. 청구항 1에 있어서,The method of claim 1,
    상기 제2단계에서, 상기 코어층은 CVD를 이용하여 증착되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In the second step, the core layer is a multilayer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands, characterized in that deposited using CVD.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 코어층은 SiC 또는 poly-Si로 형성되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.The core layer is a multilayer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands, characterized in that formed of SiC or poly-Si.
  7. 청구항 1에 있어서,The method of claim 1,
    상기 제5단계에서, 상기 캐핑층은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In the fifth step, the capping layer is a multilayer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands, characterized in that deposited using ALD (Atomic Layer Deposition) or sputtering.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 캐핑층은 Metal silicide로 형성되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.The capping layer is a multilayer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands, characterized in that formed of metal silicide.
  9. 청구항 1에 있어서,The method of claim 1,
    상기 제7단계에서, 상기 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In the seventh step, the patterning of the thin film layer assembly is performed by a photolithography process, characterized in that the multi-layer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands.
  10. 청구항 1에 있어서,The method of claim 1,
    상기 제8단계에서, 상기 웨이퍼에 대한 식각은 습식식각으로 수행되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In the eighth step, the etching of the wafer is performed by wet etching.
  11. 청구항 1에 있어서,The method of claim 1,
    상기 제9단계는, In the ninth step,
    상기 제1박막층의 일 부위에 대한 식각이 수행되는 제9-1단계; 및a 9-1 step of etching a portion of the first thin film layer; and
    상기 제5박막층과 상기 제6박막층에 대한 식각이 수행되는 제9-2단계를 포함하는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.A multi-layer membrane structure-based EUV pellicle manufacturing method comprising a capping layer containing metal nanoislands, characterized in that it comprises a 9-2 step in which etching is performed on the fifth thin film layer and the sixth thin film layer.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 제9-1단계에서, 상기 제1박막층의 일 부위에 대한 식각을 위한 습식식각은 인산(H3PO4)을 이용하여 수행되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In the step 9-1, the wet etching for etching a portion of the first thin film layer is performed using phosphoric acid (H 3 PO 4 ) Containing a capping layer containing metal nanoislands, characterized in that A method for manufacturing an EUV pellicle based on a multilayer membrane structure.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 제9-2단계에서, 상기 제5박막층 및 상기 제6박막층에 대한 식각은 습식식각 또는 건식식각으로 수행되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In step 9-2, the etching of the fifth thin film layer and the sixth thin film layer is performed by wet etching or dry etching. Pellicle manufacturing method.
  14. 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계;A first step in which a silicon wafer is prepared, a first thin film layer is formed on an upper surface of the wafer, and a second thin film layer is formed on a lower surface of the wafer;
    극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층의 상부면에 형성되는 제2단계;a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer;
    제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계;a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer;
    상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 제3박막층 상부면에 형성되는 제4단계;a fourth step of forming a capping layer on an upper surface of the third thin film layer to reduce reflectance of extreme ultraviolet rays incident on the core layer;
    상기 캐핑층 상부면에 금속 전구체가 증착되어 소정의 패턴을 가지는 금속패턴층이 형성되는 제5단계;a fifth step of depositing a metal precursor on the upper surface of the capping layer to form a metal pattern layer having a predetermined pattern;
    제5박막층이 상기 금속패턴층 상부에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제6단계;a sixth step in which a fifth thin film layer is formed on the metal pattern layer and a sixth thin film layer is formed on the lower surface of the fourth thin film layer;
    상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제7단계;a seventh step in which patterning is performed on a thin film layer assembly, which is a combination of the second thin film layer, the fourth thin film layer, and the sixth thin film layer;
    상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제8단계; 및An eighth step of etching the wafer according to the patterning shape of the thin film layer assembly; and
    상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어, 상기 금속패턴층이 노출되게 형성된 펠리클 멤브레인이 형성되는 제9단계를 포함하는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.A portion of the first thin film layer is etched along the shape of the etched portion of the lower surface of the wafer, and the fifth thin film layer and the sixth thin film layer are removed by etching to form a pellicle membrane formed to expose the metal pattern layer. A method for manufacturing an EUV pellicle based on a multilayer membrane structure containing a capping layer containing metal nanoislands, characterized in that it comprises a ninth step.
  15. 청구항 14에 있어서,The method of claim 14,
    상기 제5단계에서, 상기 금속 전구체의 증착으로 형성된 복수 개의 돌기가 분산 배치되는 금속패턴이 형성되는 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.In the fifth step, a multilayer membrane structure-based EUV pellicle structure containing a capping layer containing metal nanoislands, characterized in that a metal pattern in which a plurality of protrusions formed by the deposition of the metal precursor is distributedly arranged is formed.
  16. 청구항 15에 있어서,The method of claim 15
    상기 금속 전구체는 루테늄(Ru) 함유 전구체인 것을 특징으로 하는 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 EUV 펠리클 제조방법.The metal precursor is a multilayer membrane structure-based EUV pellicle manufacturing method containing a capping layer containing metal nanoislands, characterized in that the ruthenium (Ru)-containing precursor.
PCT/KR2023/001044 2022-01-25 2023-01-20 Method for manufacturing euv pellicle on basis of multilayer membrane structure containing capping layer comprising metal nano-islands WO2023146233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220010709A KR20230114484A (en) 2022-01-25 2022-01-25 A method for manufacturing an euv pellicle based on a multilayer membrane structure containing a capping layer containing metal nanoislands
KR10-2022-0010709 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023146233A1 true WO2023146233A1 (en) 2023-08-03

Family

ID=87471884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001044 WO2023146233A1 (en) 2022-01-25 2023-01-20 Method for manufacturing euv pellicle on basis of multilayer membrane structure containing capping layer comprising metal nano-islands

Country Status (2)

Country Link
KR (1) KR20230114484A (en)
WO (1) WO2023146233A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180103505A (en) * 2017-03-10 2018-09-19 삼성전자주식회사 Pellicle for photomask, reticle including the same and exposure apparatus for lithography
KR20180109498A (en) * 2017-03-28 2018-10-08 삼성전자주식회사 Pellicle for exposure to extreme ultraviolet light, photomask assembly and method of manufacturing the pellicle
JP2018194838A (en) * 2017-05-15 2018-12-06 アイメック・ヴェーゼットウェーImec Vzw Method for forming pellicle
US20190137865A1 (en) * 2017-11-08 2019-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Structure of pellicle-mask structure with vent structure
KR20210072774A (en) * 2018-10-15 2021-06-17 에이에스엠엘 네델란즈 비.브이. How to manufacture a membrane assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726125B1 (en) 2016-02-04 2017-04-13 한양대학교 산학협력단 EUV pellicle structure, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180103505A (en) * 2017-03-10 2018-09-19 삼성전자주식회사 Pellicle for photomask, reticle including the same and exposure apparatus for lithography
KR20180109498A (en) * 2017-03-28 2018-10-08 삼성전자주식회사 Pellicle for exposure to extreme ultraviolet light, photomask assembly and method of manufacturing the pellicle
JP2018194838A (en) * 2017-05-15 2018-12-06 アイメック・ヴェーゼットウェーImec Vzw Method for forming pellicle
US20190137865A1 (en) * 2017-11-08 2019-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Structure of pellicle-mask structure with vent structure
KR20210072774A (en) * 2018-10-15 2021-06-17 에이에스엠엘 네델란즈 비.브이. How to manufacture a membrane assembly

Also Published As

Publication number Publication date
KR20230114484A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2011162542A2 (en) Conductive film with high transmittance having a number of anti reflection coatings, touch panel using the same and manufacturing method thereof
WO2017188785A1 (en) Pressurization type method for manufacturing metal monoatomic layer, metal monoatomic layer structure, and pressurization type apparatus for manufacturing metal monoatomic layer
WO2018212604A1 (en) Method for manufacturing extreme ultraviolet pellicle by using organic sacrificial layer substrate
WO2010038963A4 (en) Apparatus for manufacturing a stratified structure
WO2013100365A1 (en) Monomer for hardmask composition, hardmask composition including monomer, and pattern forming method using hardmask composition
WO2014065500A1 (en) Hard mask composition and method for forming pattern using same
WO2011081316A2 (en) Composition for the bottom layer of a resist, and method using same to manufacture a semiconductor integrated circuit device
WO2016171514A1 (en) Pellicle and manufacturing method therefor
WO2016043572A1 (en) Cover glass and method for manufacturing same
WO2019083247A1 (en) Diffractive light guide plate and method for manufacturing diffractive light guide plate
WO2011081321A2 (en) Composition for the bottom layer of a resist, and method using same to manufacture a semiconductor integrated circuit device
WO2023146233A1 (en) Method for manufacturing euv pellicle on basis of multilayer membrane structure containing capping layer comprising metal nano-islands
WO2017119764A1 (en) Film touch sensor and manufacturing method therefor
WO2023146179A1 (en) Method for forming capping layer through selective growth of ruthenium and preparing euv pellicle with multilayer structure through same
WO2020213836A1 (en) Sic edge ring
WO2020130244A1 (en) Organic light-emitting display device, and method for manufacturing organic light-emitting display device
WO2022245014A1 (en) Spin-on carbon hard mask composition having low evaporation loss, and patterning method using same
WO2023195636A1 (en) Spin-on carbon hard mask composition with high planarization performance and patterning method using same
WO2016043476A1 (en) Method for protecting micropattern and depositing metal layer using backside illumination technology
WO2020189912A1 (en) Mask for extreme ultraviolet lithography and method for manufacturing same
WO2019117559A1 (en) Transition metal-dichalcogenide thin film and manufacturing method therefor
WO2019093761A1 (en) Composition for hard mask
WO2022182157A1 (en) Photosensitive resin composition for forming partition walls, partition wall structure manufactured using same, and display device comprising partition walls
WO2013141442A1 (en) Anti-reflective substrate and manufacturing method therefor
WO2020122370A1 (en) Method for manufacturing transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747275

Country of ref document: EP

Kind code of ref document: A1