WO2023145754A1 - Primers and probe for detecting presence of bladder cancer - Google Patents

Primers and probe for detecting presence of bladder cancer Download PDF

Info

Publication number
WO2023145754A1
WO2023145754A1 PCT/JP2023/002178 JP2023002178W WO2023145754A1 WO 2023145754 A1 WO2023145754 A1 WO 2023145754A1 JP 2023002178 W JP2023002178 W JP 2023002178W WO 2023145754 A1 WO2023145754 A1 WO 2023145754A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
promoter
plekhs1
primers
mutations
Prior art date
Application number
PCT/JP2023/002178
Other languages
French (fr)
Japanese (ja)
Inventor
茂大 塚原
崇 松元
真己 塩田
正俊 江藤
東天 康
啓輔 兒玉
Original Assignee
デンカ株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 国立大学法人九州大学 filed Critical デンカ株式会社
Publication of WO2023145754A1 publication Critical patent/WO2023145754A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the present invention broadly relates to primers, probes, etc. for detecting the presence of bladder cancer.
  • Liquid biopsy which detects tumor-derived genetic mutations in blood-circulating DNA (cell-free DNA: cfDNA), is a minimally invasive test, and has been reported in recent years to be effective in postoperative follow-up and assessment of therapeutic effects.
  • cfDNA analysis methods include the use of next-generation sequencing (NGS) and digital PCR.
  • NGS next-generation sequencing
  • Digital PCR has the advantage that it can be analyzed at a lower cost than NGS.
  • TERT telomerase reverse transcriptase
  • a primer set for detecting the presence of bladder cancer in a specimen comprising: a pair of primers, which are oligonucleotides with a length of 16 bases or more and 21 bases or less, targeting mutations in the PLEKHS1 promoter; one or more pairs of primers that target mutations in the TERT promoter; A primer set, including (2)
  • the PLEKHS1 promoter mutation is a G to A substitution at chromosome 10, position 115,511,590, a C to T substitution at chromosome 10, position 115,511,593, or both (1) Primer set described in .
  • a kit comprising the primer set according to any one of (1) to (4).
  • the kit according to (7) further comprising the probe according to (5) or (6).
  • a method for detecting the presence of bladder cancer in a specimen wherein the primer set according to any one of (1) to (4) or the probe according to (5) or (6) is used to detect the PLEKHS1 promoter.
  • the method according to (9), wherein the nucleic acid amplification method used in the detection step is digital PCR.
  • (11) The method according to (9) or (10), wherein the specimen is a liquid specimen.
  • Mutations in the PLEKHS1 promoter include G to A substitution at position 115,511,590 of chromosome 10 and C to T substitution at position 115,511,593 of chromosome 10.
  • the present inventors set the positions corresponding to these mutations near the center of the probe so as to maximize the Tm value.
  • the probe is usually designed as a 20-mer, 18-mer at the shortest, and 25-mer at the longest. bottom.
  • the primer was also designed with a different concept than usual.
  • the length of primers is designed to be about 20-25 mers. If the length of the primer is less than 20-mer, there is a possibility that the sequence that non-specifically binds to the base sequence other than the target increases, but the forward primer that detects the mutation of the PLEKHS1 promoter is a 16-mer. designed. This is in consideration of the need to lower the Tm value compared to wild-type/mutant probes.
  • the region containing the hotspot of the PLEKHS1 promoter region is an AT-rich sequence, but the primer design region is a sequence that cannot be said to be AT-rich, so the Tm value becomes high, and it is necessary to shorten the sequence. There is Furthermore, trying to avoid GC, for example, designing an A or T at the 3' end of the primer may reduce specificity for the template DNA. However, by conducting verification experiments, it was possible to design a shorter length with a lower Tm value than general designs.
  • the Tm value of the mutant probe is lower than that of the forward primer.
  • the annealing order is wild-type probe (53.92), forward primer (52.61), mutant probe (52.28), reverse primer (50.66).
  • the size of the amplicon to be amplified was designed to be less than 200 bp.
  • primers that target mutations in the PLEKHS1 promoter that are designed under a different concept as described above can be used to detect bladder cancer. It will be possible to cover patients who did not have it.
  • FIG. 2 shows the results of quantification of positive/negative droplets in mutation-positive patients.
  • Ch1 indicates Mut droplets
  • Ch2 indicates WT droplets
  • the lower left frame is WT and Mut negative droplets
  • the lower right frame is WT positive droplets
  • the upper left frame is Mut positive droplets
  • the upper right frame is WT. and Mut-positive droplets.
  • FIG. 1 shows detection accuracy (upper) and mutation rate (lower) of validation plasmids (wild-type (WT) and mutant-type (Mut)).
  • FIG. 2 shows the results of quantification of positive/
  • FIG. 3 shows changes over time in MAF: Mutation Allele Frequency after initial treatment (transurethral bladder tumor resection) of mutation-positive patients.
  • the arrows in the figure indicate mutations (or indicates the specific stage of the sample containing it).
  • the left figure shows the results of patient number 03 (Pt03), and the right figure shows the results of patient number 21 (Pt21).
  • Pt03 the results of patient number 03
  • Pt21 patient number 21
  • FIG. 4 illustrates the coverage of bladder cancer patients by the primers/probes of the present invention.
  • a primer set for detecting the presence of bladder cancer in a specimen comprising: a pair of primers, which are oligonucleotides with a length of 16 bases or more and 21 bases or less, targeting mutations in the PLEKHS1 promoter; one or more pairs of primers that target mutations in the TERT promoter;
  • a primer set comprising:
  • the specimen is not particularly limited as long as it can detect PLEKHS1 promoter mutation and TERT promoter mutation suggesting the presence of bladder cancer.
  • Fluid specimens containing cfDNA are preferred, such as blood or other bodily fluids. More specifically, the specimen is preferably blood, serum, plasma, urine, stool, saliva, sputum, interstitial fluid, cerebrospinal fluid, bodily fluids such as swabs, or dilutions thereof, particularly plasma.
  • Specimens are collected from subjects suspected of having bladder cancer.
  • Bladder cancer may be non-muscle invasive or muscle invasive.
  • the sample may be collected once or multiple times for purposes such as prognosis observation after bladder cancer treatment.
  • ctDNA bladder cancer-derived DNA
  • the PLEKHS1 promoter mutation is a G to A substitution (hereinafter also referred to as “590G>A”) at position 115,511,590 on chromosome 10, 115,511,593 on chromosome 10. It may be a C to T substitution at the position (hereinafter also referred to as “593C>T”) or both.
  • a primer is an oligonucleotide with a length of 16 bases or more and no more than 21 bases. Among them, those having a low Tm value are preferable. Specifically, by setting the Tm value of the reverse primer to be 1 to 3° C. higher than that of the probe, the probe is annealed to the template DNA first, and then the reverse primer is annealed.
  • the primers can be designed so that the amplicon size to be amplified is less than 200 bp.
  • SEQ ID NO: 1 having a base length of 16 bases
  • examples include the forward primer (gacctcttggcttcca) described above and the reverse primer (ctgcaaattttccatttcca) described in SEQ ID NO: 2, which has a base length of 21 bases. It is preferable to use a primer set consisting of the sequences set forth in SEQ ID NOS: 1 and 2. These primers may be combined with known primer sets that amplify the PLEKHS1 promoter region.
  • the TERT promoter mutation is a C to T substitution (hereinafter also referred to as “228C>T”) at position 1,295,228 on chromosome 5, 1,295,250 on chromosome 5 It may be a C to T substitution at the position (hereinafter also referred to as “250C>T”) or both.
  • 228C>T is known to be highly detectable in bladder cancer and 250C>T in non-muscle invasive bladder cancer.
  • Primers that amplify sequences containing probes that detect both the 228C>T and 250C>T mutations should be within 113 bp upstream or downstream of each mutation, i.e., primers targeting the former mutation. and within the region of positions 1,295,115 to 1,295,341 for the probe and within the region of positions 1,295,237 to 1,295,363 for primers and probes targeting the latter mutation. can be designed.
  • sequence shown in SEQ ID NO: 7 is obtained by converting the sequence into the sequence on the sense strand side and reflecting both the 228C>T and 250C>T mutations.
  • primers and probes that detect 228C>T the 227 bp sequence from positions 1,295,341 to 1,295,115 corresponding to positions 1,295,115 to 1,295,341 in SEQ ID NO: 7
  • Desired primers and probes can be appropriately designed from (SEQ ID NO: 8).
  • primers and probes for detecting 250C>T which can be designed from the 127 bp sequence (SEQ ID NO: 9) from positions 1,295,363 to 1,295,237.
  • a primer made by BioRad (TERT C228T_113: DHSAEXD72405942, TERT C250T_113: DHSAEXD466675715) (Ampuri Conto) (J Mol Diagn. 2019 MAR. 2019 MAR. See 21 (2) 274-285 ).
  • Such primers may be combined with known primer sets that amplify the TERT promoter region.
  • SEQ ID NO:6 GCCGGGGCCAGGGCTTCCCACGTGCAGCAGGACGCAGCGCTGCCTGAAACTCGCGCCGCGAGGAGAGGGCGGGGCCGCGGAAAGGAAGGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTGGGCCGGGGACCCGGGAGGGGTCGGGACGGGGGGCGGGGTCCGCGCGGAGGAGGCGGAGCTGGAAGGTGAAGGGGCAGGACGGGTGCCCGGGTCCCCAGTCCCTCCGCCACGTGGGAAGCGCGGT CCTGGGMore SEQ ID NO: 7 CCCAGGACCGCGCTTCCCACGTGGCGGAGGGACTGGGGACCCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCCGTCCCGGGTCCCCCCTCCGGGCCCTCCCTCCTCCGGGCCCTCCCTCCTCCGGGCCCTCCCTCCCCTCCGGGCCCTCCCTCCCCTCCGGGCCCTCCCTCCCCTCCGGGCCCTCCCTCCCTCCTCCGGGCCCTCCCTCCCTCCTCCGGGCCCTCC
  • the nucleotides that make up the base sequences of primers and the like may be either ribonucleotides or deoxyribonucleotides. These oligonucleotides can be synthesized by known methods, for example, by any nucleic acid synthesis method such as solid-phase phosphoramidite method and triester method, according to the base sequence.
  • a nucleic acid amplification reaction using the above primers makes it possible to amplify sequences containing hotspot regions associated with bladder cancer.
  • Nucleic acid amplification methods include PCR methods, and in addition to normal PCR, digital PCR, multiplex PCR, LAMP (Loop-mediated isothermal amplification) method, ICAN (Isothermal and Chimeric primer-initiated amplification of nucleic acids) method, RCA ( Rolling Circle Amplification) method, LCR (Ligase Chain Reaction) method, SDA (Strand Displacement Amplification) method, and the like.
  • the nucleic acid amplification method is preferably digital PCR.
  • digital PCR it is possible to determine the ratio of mutant to normal types (MAF: Mutation Allele Frequency) for oncogenes.
  • Digital PCR may be droplet digital PCR.
  • a probe for detecting the presence of bladder cancer in a specimen is provided, the probe targeting mutations in the PLEKHS1 promoter.
  • the sequence that constitutes the probe is not limited as long as it can detect mutations in the PLEKHS1 promoter.
  • probes that can detect the 590G>A mutation or the 593C>T mutation are preferred.
  • the probe that detects the 590G>A mutation has the sequence set forth in SEQ ID NO: 4 (tgcaattgtttaattgcaaaaagc).
  • the probe consists of the sequence set forth in SEQ ID NO:4.
  • the probe that detects the 593C>T mutation has the sequence set forth in SEQ ID NO:5.
  • the probe preferably consists of the sequence (tgcaattattcaattgcaaaaagc) set forth in SEQ ID NO:5.
  • the probe may be partially modified, examples of which include those whose ends are aminated and those whose bases are partially modified with linker bases.
  • another base may be inserted into part of the base sequence, a part of the base sequence may be deleted, replaced with another base, or substituted with a substance other than a base. .
  • the probe may be modified with a labeling substance or the like, and may have, for example, a fluorescent dye and its quencher.
  • a fluorescent dye and its quencher Commercially available products can be used as such labeling substances.
  • the quencher is not particularly limited as long as it can quench the fluorescence from the fluorescent dye.
  • the nucleotide residues constituting the probe may themselves be modified, for example, substituted with artificially modified nucleotide residues.
  • kits in a second aspect, includes a primer set for detecting the presence of bladder cancer in a specimen.
  • the primer set described above can be used.
  • the kit may further contain probes targeting mutations in the PLEKHS1 promoter.
  • Probes for detecting the 590G>A and 593C>T mutations include those having the base sequences of SEQ ID NOS: 4 and 5, respectively.
  • the kit may further include one or more pairs of primers and probes targeting mutations in the TERT promoter.
  • Mutations in the TERT promoter include 228C>T and 250C>T. within the region of positions 1,295,115 to 1,295,341 for primers and probes targeting 228C>T; It can be designed within the region of 295,363 positions.
  • a reaction solution containing the above primer set, probe, sample, and DNA polymerase is prepared. After being distributed to wells or droplets, the reaction solution is subjected to an amplification reaction.
  • a labeling substance that can specifically recognize the amplification product may be used to detect the amplification product obtained in the nucleic acid amplification reaction.
  • labeling substances include fluorescent dyes, biotin, digoxigenin and the like.
  • fluorescence can be detected using a fluorescence microscope, a fluorescence plate reader, or the like.
  • a substance that intercalates with the amplification product can also be used as a labeling substance.
  • the intercalator is not particularly limited as long as it is a substance that intercalates with the double-stranded DNA and emits fluorescence.
  • detection may be performed by known methods such as electrophoresis using polyacrylamide or agarose gel.
  • electrophoresis the presence of an amplification product can be identified from the mobility of the amplification product relative to the mobility of a marker of known molecular weight.
  • Detection method In a third aspect, a method for detecting the presence of bladder cancer in a specimen is provided, comprising detecting mutations in the PLEKHS1 promoter using the primer set or kit described above.
  • the primer set includes primers that target mutations in the TERT promoter, and that mutations in the TERT promoter are also detected in the detection process.
  • Other steps may be included before or after the detection step, for example, a specimen may be obtained from a subject suspected of having bladder cancer. The detection step may be performed multiple times, for example, specimens derived from the same subject may be collected periodically and subjected to the detection step each time they are collected.
  • a mutation in the PLEKHS1 promoter is detected, it is determined that bladder cancer is present in the specimen. This can assist doctors in diagnosing bladder cancer and determining subsequent treatment methods.
  • surgery such as transurethral bladder tumor resection, radical cystectomy, preoperative chemotherapy, postoperative chemotherapy, chemotherapy such as recurrent chemotherapy (anti-cancer drug therapy) and radiotherapy can be performed.
  • transurethral bladder tumor resection it will be possible to diagnose muscle invasion from the results of transurethral bladder tumor resection. If the tumor does not invade the muscle layer, treatment is completed with only transurethral resection of the bladder tumor, followed by follow-up.
  • preoperative chemotherapy will be started, and if recurrence or metastasis is found after completion of treatment, recurrent chemotherapy will be introduced.
  • Preoperative chemotherapy can improve the prognosis, but it may not be given depending on the histology of the tumor and the patient's wishes.
  • Postoperative chemotherapy is often added when intraoperative findings suggest residual disease. If radical cystectomy is considered difficult due to age or general condition, radiation may be performed instead.
  • primer dimer evaluation is performed by PCR electrophoresis, PCR efficiency for each primer pair was confirmed by quantitative PCR. Since cfDNA was the target, the amplicon was within the range of 80 to 150 mers, and the Tm value calculated from the probe was taken into consideration for the sequence and number of bases of the primers. Taking into account PCR efficiency, primer dimers, and non-specific bands, the most efficient primer pair was determined, and correct amplification of the target region was confirmed by Sanger sequencing.
  • tDNA tumor tissue-derived DNA
  • gDNA tumor tissue-derived DNA
  • gDNA tumor tissue-derived DNA
  • gDNA tumor tissue-derived DNA
  • gDNA tumor tissue-derived DNA
  • plasmids for validation were prepared in the following order.
  • the vector is introduced into Escherichia coli, and about 10 to 20 colonies are isolated and cultured in large quantities.
  • Vectors were recovered by mini prep, and whether each vector was WT or Mutant was confirmed by Sanger sequencing.
  • the primer/probe detection accuracy was confirmed using the validation plasmid in the following order.
  • the forward primer for detecting wild-type PLEKHS1 and mutant PLEKHS1 consists of the sequence (gacctcttggcttcca) set forth in SEQ ID NO: 1, and the reverse primer consists of the sequence set forth in SEQ ID NO: 2 (ctgcaaaattttccatttcca). used something.
  • a probe consisting of the sequence (tgcaattgttcaattgcaaaaagc) set forth in SEQ ID NO: 3 was used as a probe for detecting wild-type PLEKHS1.
  • the 590G>A mutant probe consists of the sequence (tgcaattgtttaattgcaaaaagc) set forth in SEQ ID NO: 4, and the probe for detecting the 593C>T mutation consists of the sequence set forth in SEQ ID NO: 5 (tgcaattattcaattgcaaaaagc). It was used.
  • (ii) Generation of 0.1% mutant plasmids at a ratio of wild-type:mutant 999:1.
  • primers and probes exist within a range of 113 bp upstream or downstream from C228 or C250. It may be designed within the range of 50 to 200 bp upstream or downstream from the mutation site.
  • Method 1. Prepare ⁇ 50 ng/well (up to 7 ⁇ L) DNA solution (15 ng can be added for 10-50 copies) 2. Thaw at room temperature, vortex, centrifuge, and protect from light. 3. Prepare Mix (restriction enzyme undiluted solution 10 U/ ⁇ L) 4. Vortex/centrifuge and leave at room temperature for 3 minutes5. Add 20 ⁇ L of mix to the sample well of the DG8® cartridge and 70 ⁇ L of Droplet Generation Oil to the oil well. 6. 7. Place in Droplet Generator to create droplets in solution. Put 40 ⁇ L of Droplet into PCR 96well and seal (aluminum foil) 8. Analysis with Droplet Reader
  • dPCR was used to detect tumor DNA from 26 specimens, and the TERT promoter and PLEKHS1 promoter were positive in 50.0% (13/26) and 42.3% (11/26) of the patients, respectively. rice field.
  • one patient with multiple PLEKHS1 promoter mutations was counted. With the TERT promoter alone, 50.0% of target patients could be observed, whereas the addition of the PLEKHS1 promoter improved to 57.7% (15/26). Also, multiple mutations could not be observed in the same patient with the TERT promoter alone, i.e., 0.0% (0/26), compared to 34.6% (9/26) with the addition of the PLEKHS1 promoter. Patients can now be observed with multiple mutations.
  • the advantage of being able to analyze mutations by dPCR not only in the TERT promoter but also in the PLEKHS1 promoter is that the number of patients who can be analyzed with the same assay increases. Since tumor mutations in bladder cancer are diverse, the mainstream method is to analyze mutations that differ from patient to patient over time. Compared to this method, hotspot detection is advantageous in terms of reducing analysis costs. Second, by analyzing multiple MAFs, it is possible to more accurately assess the disease state of the patient. Multiple events in which MAF could not be detected were observed despite the diagnosis of systemic metastasis, suggesting the risk of being judged as false negative when follow-up is performed for a single mutation. be. It is believed that observing multiple MAFs can reduce the possibility of a false negative evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Plant Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides a primer set for detecting the presence of bladder cancer in a specimen, said primer set containing a pair of primers that are oligonucleotides targeting a PLEKHS1 promoter mutation and having a length of 16-21 bases inclusive, and one or more pairs of primers targeting a TERT promoter mutation.

Description

膀胱癌の存在を検出するためのプライマー及びプローブPrimers and probes for detecting the presence of bladder cancer
 本発明は広く、膀胱癌の存在を検出するためのプライマー及びプローブ等に関する。 The present invention broadly relates to primers, probes, etc. for detecting the presence of bladder cancer.
 腫瘍由来の遺伝子変異を血中循環DNA(cell-free DNA:cfDNA)で検出するリキッドバイオプシーは低侵襲な検査であり、術後の経過観察や治療効果判定において有効であることが近年報告されている。 Liquid biopsy, which detects tumor-derived genetic mutations in blood-circulating DNA (cell-free DNA: cfDNA), is a minimally invasive test, and has been reported in recent years to be effective in postoperative follow-up and assessment of therapeutic effects. there is
 cfDNAの分析手法として、次世代シーケンサー(NGS)とデジタルPCRの利用が挙げられる。デジタルPCRはNGSよりも低いコストで分析できるという利点がある。 cfDNA analysis methods include the use of next-generation sequencing (NGS) and digital PCR. Digital PCR has the advantage that it can be analyzed at a lower cost than NGS.
 膀胱癌等の多くの癌では、TERT(telomerase reverse transcriptase)のプロモーター領域に点変異が起きており、そのような点変異を検出するためのプライマーが知られている。 In many cancers such as bladder cancer, point mutations occur in the TERT (telomerase reverse transcriptase) promoter region, and primers for detecting such point mutations are known.
 膀胱癌では、TERTのみならずPLEKHS1(pleckstrin homology domain-containing S1)のプロモーター領域の遺伝子変異がホットスポット、つまり複数の患者に共通で見られる変異である可能性があるが、cfDNAを検体としたとき、定量PCRでの検出は難しい。また、従来のプライマーやプローブではcfDNAを十分な精度で検出できないという問題もあった。 In bladder cancer, genetic mutations in the promoter region of PLEKHS1 (pleckstrin homology domain-containing S1) as well as TERT may be hotspots, that is, mutations common to multiple patients, but cfDNA was used as a sample. Sometimes detection by quantitative PCR is difficult. There is also the problem that conventional primers and probes cannot detect cfDNA with sufficient accuracy.
 膀胱癌の存在を検出するために、TERTプロモーターの変異に加え、PLEKHS1プロモーターの変異を標的とするプライマー等を、通常とは異なる思想で設計した結果、従来のTERTプロモーター変異を対象とした検出では40%程度であった検出カバー率が増大した。 In order to detect the presence of bladder cancer, in addition to mutations in the TERT promoter, primers that target mutations in the PLEKHS1 promoter were designed with a different concept. The detection coverage, which was about 40%, increased.
 すなわち、本願は以下の発明を包含する。
(1)
 検体における膀胱癌の存在を検出するためのプライマーセットであって、
 PLEKHS1プロモーターの変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドである1対のプライマーと、
 TERTプロモーターの変異を標的とする、1又は複数の対のプライマーと、
を含む、プライマーセット。
(2)
 PLEKHS1プロモーターの変異が、10番染色体の115,511,590位におけるGからAへの置換、10番染色体の115,511,593位におけるCからTへの置換又はその両方である、(1)に記載のプライマーセット。
(3)
 PLEKHS1プロモーターの変異を標的とするプライマーが配列番号1及び/又は2に記載の塩基配列を有する、(1)又は(2)に記載のプライマーセット。
(4)
 TERTプロモーターの変異を標的とするプライマーが、5番染色体の1,295,228位におけるCからTへの置換、5番染色体の1,295,250位におけるCからTへの置換又はその両方である、(1)~(3)のいずれかに記載のプライマーセット。
(5)
 検体における膀胱癌の存在を検出するためのプローブであって、PLEKHS1プロモーターの変異を標的とする、プローブ。
(6)
 プローブが配列番号4又は5に記載の塩基配列を有する、(5)に記載のプローブ。
(7)
 (1)~(4)のいずれかに記載のプライマーセットを含む、キット。
(8)
 (5)又は(6)に記載のプローブを更に含む、(7)に記載のキット。
(9)
 検体における膀胱癌の存在を検出するための方法であって、(1)~(4)のいずれかに記載のプライマーセット、あるいは(5)又は(6)に記載のプローブを用いてPLEKHS1プロモーターの変異を検出する工程を含む、方法。
(10)
 検出工程で使用される核酸増幅法がデジタルPCRである、(9)に記載の方法。
(11)
 検体が液性検体である、(9)又は(10)に記載の方法。
(12)
 検体が血中循環DNA(cfDNA)を含む、(9)~(11)のいずれかに記載の方法。
That is, the present application includes the following inventions.
(1)
A primer set for detecting the presence of bladder cancer in a specimen, comprising:
a pair of primers, which are oligonucleotides with a length of 16 bases or more and 21 bases or less, targeting mutations in the PLEKHS1 promoter;
one or more pairs of primers that target mutations in the TERT promoter;
A primer set, including
(2)
The PLEKHS1 promoter mutation is a G to A substitution at chromosome 10, position 115,511,590, a C to T substitution at chromosome 10, position 115,511,593, or both (1) Primer set described in .
(3)
The primer set according to (1) or (2), wherein the primers targeting mutations in the PLEKHS1 promoter have the nucleotide sequences of SEQ ID NOs: 1 and/or 2.
(4)
A primer targeting a mutation in the TERT promoter with a C to T substitution at chromosome 5 at position 1,295,228, a C to T substitution at chromosome 5 at position 1,295,250, or both A primer set according to any one of (1) to (3).
(5)
A probe for detecting the presence of bladder cancer in a specimen, the probe targeting mutations in the PLEKHS1 promoter.
(6)
The probe according to (5), wherein the probe has the nucleotide sequence set forth in SEQ ID NO:4 or 5.
(7)
A kit comprising the primer set according to any one of (1) to (4).
(8)
The kit according to (7), further comprising the probe according to (5) or (6).
(9)
A method for detecting the presence of bladder cancer in a specimen, wherein the primer set according to any one of (1) to (4) or the probe according to (5) or (6) is used to detect the PLEKHS1 promoter. A method comprising detecting a mutation.
(10)
The method according to (9), wherein the nucleic acid amplification method used in the detection step is digital PCR.
(11)
The method according to (9) or (10), wherein the specimen is a liquid specimen.
(12)
The method of any one of (9)-(11), wherein the specimen comprises circulating DNA (cfDNA).
 PLEKHS1プロモーターの変異として、10番染色体の115,511,590位におけるGからAへの置換や10番染色体の115,511,593位におけるCからTへの置換がある。本発明者らは、プローブの設計にあたり、これらの変異に相当する位置がプローブの中心付近となるようにし、最もTm値が高くなるようにした。具体的には、プローブは通常20量体で設計され、短くても18量体であり、長くても25量体であるところ、本願発明ではTm値が最大限高値となるよう25量体とした。 Mutations in the PLEKHS1 promoter include G to A substitution at position 115,511,590 of chromosome 10 and C to T substitution at position 115,511,593 of chromosome 10. In designing the probe, the present inventors set the positions corresponding to these mutations near the center of the probe so as to maximize the Tm value. Specifically, the probe is usually designed as a 20-mer, 18-mer at the shortest, and 25-mer at the longest. bottom.
 プライマーも通常とは異なる思想で設計した。一般的に、プライマーの長さは20~25量体程度となるよう設計される。プライマーの長さを20量体未満とすると標的以外の塩基配列に対する非特異的に結合してしまう配列が増える可能性があるが、PLEKHS1プロモーターの変異を検出するフォワードプライマーは16量体のものを設計した。これは、野生型・変異体用のプローブよりTm値を下げる必要があることを考慮したものである。PLEKHS1プロモーター領域のホットスポットを含む領域がATリッチな配列となっているがプライマー設計領域はATリッチとはいえない配列であることからTm値が高くなってしまい、通常よりも配列を短くする必要がある。さらにGCを避けようとすると、例えば、プライマーの3’末端にAまたはTを設計すると、鋳型DNAに対する特異性が落ちる可能性がある。しかしながら、検証実験をすることで、一般的な設計よりもTm値が低く、短い長さで設計することを達成した。 The primer was also designed with a different concept than usual. In general, the length of primers is designed to be about 20-25 mers. If the length of the primer is less than 20-mer, there is a possibility that the sequence that non-specifically binds to the base sequence other than the target increases, but the forward primer that detects the mutation of the PLEKHS1 promoter is a 16-mer. designed. This is in consideration of the need to lower the Tm value compared to wild-type/mutant probes. The region containing the hotspot of the PLEKHS1 promoter region is an AT-rich sequence, but the primer design region is a sequence that cannot be said to be AT-rich, so the Tm value becomes high, and it is necessary to shorten the sequence. There is Furthermore, trying to avoid GC, for example, designing an A or T at the 3' end of the primer may reduce specificity for the template DNA. However, by conducting verification experiments, it was possible to design a shorter length with a lower Tm value than general designs.
 なお、フォワードプライマーのTm値より変異体プローブのTm値の方が低い。その結果、アニーリングの順番は野生型プローブ(53.92)、フォワードプライマー(52.61)、変異体プローブ(52.28)、リバースプライマー(50.66)となる。 The Tm value of the mutant probe is lower than that of the forward primer. As a result, the annealing order is wild-type probe (53.92), forward primer (52.61), mutant probe (52.28), reverse primer (50.66).
 更に、cfDNAの断片は200bp未満とされていることから、増幅するアンプリコンのサイズが200bp未満になるように工夫して設計した。 Furthermore, since the cfDNA fragment is said to be less than 200 bp, the size of the amplicon to be amplified was designed to be less than 200 bp.
 TERTプロモーターの変異を標的とする従来のプライマーに加え、上記のとおり通常とは異なる思想のもと設計したPLEKHS1プロモーターの変異を標的とするプライマー等を用いることにより、膀胱癌の検出において従来カバーできなかった患者についてもカバーすることができるようになる。 In addition to conventional primers that target mutations in the TERT promoter, primers that target mutations in the PLEKHS1 promoter that are designed under a different concept as described above can be used to detect bladder cancer. It will be possible to cover patients who did not have it.
図1は、バリデーション用のプラスミド(野生型(WT)、変異型(Mut))の検出精度(上)と、変異率(下)を示す。変異率はプラスミド(WT/Mut)を999:1に混合して算出した(n=3)。FIG. 1 shows detection accuracy (upper) and mutation rate (lower) of validation plasmids (wild-type (WT) and mutant-type (Mut)). The mutation rate was calculated by mixing plasmids (WT/Mut) at 999:1 (n=3). 図2は、変異型陽性である患者について陽性・陰性ドロップレットを定量した結果を示す。各図のCh1はMutのドロップレット、Ch2はWTのドロップレットを示し、左下枠はWT及びMut陰性ドロップレット、右下枠はWT陽性ドロップレット、左上枠はMut陽性ドロップレット、右上枠はWT及びMut陽性ドロップレットを示す。FIG. 2 shows the results of quantification of positive/negative droplets in mutation-positive patients. In each figure, Ch1 indicates Mut droplets, Ch2 indicates WT droplets, the lower left frame is WT and Mut negative droplets, the lower right frame is WT positive droplets, the upper left frame is Mut positive droplets, and the upper right frame is WT. and Mut-positive droplets. 図3は、変異型陽性である患者の初回治療(経尿道的膀胱腫瘍切除術)以降についてのMAF:Mutation Allele Frequencyの経時的な変化を示す。図中の矢印は、再発している段階、つまり「ctDNA:circulating tumor DNAがあり他変異で陽性と判定できる」にもかかわらず、MAFが0.00%と検出されてしまっている変異(又はそれを含む試料)の特定の段階を示す。左図は患者番号03(Pt03)の結果を、右図は患者番号21(Pt21)の結果を示す。参考として膀胱癌で変異を示すことがある遺伝子DCC(左図)又はFGFR3(右図)の経時的な変化も併せて示す。FIG. 3 shows changes over time in MAF: Mutation Allele Frequency after initial treatment (transurethral bladder tumor resection) of mutation-positive patients. The arrows in the figure indicate mutations (or indicates the specific stage of the sample containing it). The left figure shows the results of patient number 03 (Pt03), and the right figure shows the results of patient number 21 (Pt21). For reference, changes over time in genes DCC (left) or FGFR3 (right), which may show mutations in bladder cancer, are also shown. 図4は、本発明のプライマー/プローブによる膀胱癌患者のカバー率を図示したものである。FIG. 4 illustrates the coverage of bladder cancer patients by the primers/probes of the present invention.
 以下、本発明の実施の形態(以下、「本実施形態」という。)について説明するが、本発明の範囲は以下の実施形態に限定して解釈されない。 Embodiments of the present invention (hereinafter referred to as "present embodiments") will be described below, but the scope of the present invention should not be construed as being limited to the following embodiments.
(プライマーセット)
 第一の態様において、検体における膀胱癌の存在を検出するためのプライマーセットであって、
 PLEKHS1プロモーターの変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドである1対のプライマーと、
 TERTプロモーターの変異を標的とする、1又は複数の対のプライマーと、
を含む、プライマーセットが提供される。
(primer set)
In a first embodiment, a primer set for detecting the presence of bladder cancer in a specimen, comprising:
a pair of primers, which are oligonucleotides with a length of 16 bases or more and 21 bases or less, targeting mutations in the PLEKHS1 promoter;
one or more pairs of primers that target mutations in the TERT promoter;
A primer set is provided comprising:
 検体は、膀胱癌の存在を示唆するPLEKHS1プロモーターの変異とTERTプロモーターの変異を検出できるものであれば特に限定されないが、本発明のプライマーセット等はリキッドバイオプシーにおいて好適に使用されるため、検体はcfDNAを含む液性検体、例えば血液やその他の体液であることが好ましい。より具体的には、検体は血液、血清、血漿、尿、便、唾液、喀痰、組織液、髄液、ぬぐい液等の体液等又はその希釈物等、特に血漿であることが好ましい。 The specimen is not particularly limited as long as it can detect PLEKHS1 promoter mutation and TERT promoter mutation suggesting the presence of bladder cancer. Fluid specimens containing cfDNA are preferred, such as blood or other bodily fluids. More specifically, the specimen is preferably blood, serum, plasma, urine, stool, saliva, sputum, interstitial fluid, cerebrospinal fluid, bodily fluids such as swabs, or dilutions thereof, particularly plasma.
 検体は、膀胱癌を有すると疑われる被験者から採取される。膀胱癌は筋層非浸潤性又は筋層浸潤性のいずれでもよい。採取回数は1回でもよいし、膀胱癌治療後の予後観察等の目的のために複数回であってもよい。 Specimens are collected from subjects suspected of having bladder cancer. Bladder cancer may be non-muscle invasive or muscle invasive. The sample may be collected once or multiple times for purposes such as prognosis observation after bladder cancer treatment.
 リキッドバイオプシーで得られるcfDNA中に含まれる膀胱癌由来のDNA(ctDNA)の割合は非常に少ないため、検体の種類によって、核酸増幅前に検体からctDNAを抽出する工程や、夾雑物等を除去する工程を実施してもよい。血液を例に説明すると、血漿分離交換法等の公知の手段を行うによりctDNAの回収率を増大させることができる。 Since the percentage of bladder cancer-derived DNA (ctDNA) contained in cfDNA obtained by liquid biopsy is very small, depending on the type of specimen, a process to extract ctDNA from the specimen before nucleic acid amplification, or to remove contaminants, etc. steps may be performed. Taking blood as an example, the recovery rate of ctDNA can be increased by performing known means such as plasmapheresis.
 一実施形態において、PLEKHS1プロモーターの変異は、10番染色体の115,511,590位におけるGからAへの置換(以下、「590G>A」ともいう。)、10番染色体の115,511,593位におけるCからTへの置換(以下、「593C>T」ともいう。)又はその両方であってもよい。 In one embodiment, the PLEKHS1 promoter mutation is a G to A substitution (hereinafter also referred to as “590G>A”) at position 115,511,590 on chromosome 10, 115,511,593 on chromosome 10. It may be a C to T substitution at the position (hereinafter also referred to as “593C>T”) or both.
 プライマーは16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドである。中でも、Tm値が低いものが好ましい。具体的には、リバースプライマーのTm値をプローブより1~3℃高く設定することで、鋳型DNAに対して先にプローブがアニールし、その後、リバースプライマーがアニールするようになる。 A primer is an oligonucleotide with a length of 16 bases or more and no more than 21 bases. Among them, those having a low Tm value are preferable. Specifically, by setting the Tm value of the reverse primer to be 1 to 3° C. higher than that of the probe, the probe is annealed to the template DNA first, and then the reverse primer is annealed.
 更に、プライマーは増幅するアンプリコンのサイズが200bp未満になるように設計され得る。 Furthermore, the primers can be designed so that the amplicon size to be amplified is less than 200 bp.
 上記のような設計思想に基づくプライマーであって、590G>Aと593C>Tの両方の変異を検出するプローブを含む配列を増幅するプライマーの例として、塩基長が16塩基である配列番号1に記載のフォワードプライマー(gacctcttggcttcca)、塩基長が21塩基である配列番号2に記載のリバースプライマー(ctgcaaaattttccatttcca)が挙げられる。プライマーセットは、配列番号1及び2に記載の配列から成るものを使用することが好ましい。これらのプライマーを、PLEKHS1プロモーター領域を増幅する公知のプライマーセットと組み合わせてもよい。 As an example of a primer based on the above design concept, which amplifies a sequence containing a probe that detects both 590G>A and 593C>T mutations, SEQ ID NO: 1 having a base length of 16 bases Examples include the forward primer (gacctcttggcttcca) described above and the reverse primer (ctgcaaaattttccatttcca) described in SEQ ID NO: 2, which has a base length of 21 bases. It is preferable to use a primer set consisting of the sequences set forth in SEQ ID NOS: 1 and 2. These primers may be combined with known primer sets that amplify the PLEKHS1 promoter region.
 一実施形態において、TERTプロモーターの変異は、5番染色体の1,295,228位におけるCからTへの置換(以下、「228C>T」ともいう。)、5番染色体の1,295,250位におけるCからTへの置換(以下、「250C>T」ともいう。)又はその両方であってもよい。228C>Tは膀胱癌において、そして250C>Tは筋層非浸潤性膀胱癌において検出率が高いことが知られている。 In one embodiment, the TERT promoter mutation is a C to T substitution (hereinafter also referred to as “228C>T”) at position 1,295,228 on chromosome 5, 1,295,250 on chromosome 5 It may be a C to T substitution at the position (hereinafter also referred to as “250C>T”) or both. 228C>T is known to be highly detectable in bladder cancer and 250C>T in non-muscle invasive bladder cancer.
 228C>Tと250C>Tの両方の変異を検出するプローブを含む配列を増幅するプライマーは、、それぞれの変異を起点として、その上流もしくは下流に113bp内、つまり、前者の変異を標的とするプライマー及びプローブについては1,295,115位から1,295,341位の領域内、後者の変異を標的とするプライマー及びプローブについては1,295,237位から1,295,363位の領域内で設計され得る。GenBankに開示されているTERTプロモーター領域のコーディング鎖の5’上流にある配列(配列番号6)(ref|NC_000005.9|:1295115-1295374 Homo sapiens chromosome 5, GRCh37.p13 Primary Assembly)を参照して設計方法の例について説明すると、当該配列をセンス鎖側の配列に変換し、また、228C>Tと250C>Tの両方の変異を反映させると配列番号7に示す配列となる。228C>Tを検出するプライマー、プローブについては、配列番号7における、1,295,115位から1,295,341位に対応する1,295,341位~1,295,115位の227bpの配列(配列番号8)から適宜所望とするプライマー、プローブを設計することができる。250C>Tを検出するプライマー、プローブについても同様であり、1,295,363から1,295,237位の127bpの配列(配列番号9)から設計され得る。そのようなプライマーの例として、BioRad社製のプライマー(TERT C228T_113:dHsaEXD72405942,TERT C250T_113:dHsaEXD46675715)(アンプリコンサイズ:113bp)(J Mol Diagn. 2019 Mar;21(2)274-285も参照のこと。)が挙げられる。このようなプライマーを、TERTプロモーター領域を増幅する公知のプライマーセットと組み合わせてもよい。 Primers that amplify sequences containing probes that detect both the 228C>T and 250C>T mutations should be within 113 bp upstream or downstream of each mutation, i.e., primers targeting the former mutation. and within the region of positions 1,295,115 to 1,295,341 for the probe and within the region of positions 1,295,237 to 1,295,363 for primers and probes targeting the latter mutation. can be designed. See the sequence 5′ upstream of the coding strand of the TERT promoter region disclosed in GenBank (SEQ ID NO: 6) (ref|NC_000005.9|:1295115-1295374 Homo sapiens chromosome 5, GRCh37.p13 Primary Assembly) To explain an example of the design method, the sequence shown in SEQ ID NO: 7 is obtained by converting the sequence into the sequence on the sense strand side and reflecting both the 228C>T and 250C>T mutations. For primers and probes that detect 228C>T, the 227 bp sequence from positions 1,295,341 to 1,295,115 corresponding to positions 1,295,115 to 1,295,341 in SEQ ID NO: 7 Desired primers and probes can be appropriately designed from (SEQ ID NO: 8). The same applies to primers and probes for detecting 250C>T, which can be designed from the 127 bp sequence (SEQ ID NO: 9) from positions 1,295,363 to 1,295,237. As an example of such a primer, a primer made by BioRad (TERT C228T_113: DHSAEXD72405942, TERT C250T_113: DHSAEXD466675715) (Ampuri Conto) (J Mol Diagn. 2019 MAR. 2019 MAR. See 21 (2) 274-285 ). Such primers may be combined with known primer sets that amplify the TERT promoter region.
 配列番号6~9の配列を以下に示す。
配列番号6:
GCCGGGGCCAGGGCTTCCCACGTGCGCAGCAGGACGCAGCGCTGCCTGAAACTCGCGCCGCGAGGAGAGGGCGGGGCCGCGGAAAGGAAGGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTGGGCCGGGGACCCGGGAGGGGTCGGGACGGGGCGGGGTCCGCGCGGAGGAGGCGGAGCTGGAAGGTGAAGGGGCAGGACGGGTGCCCGGGTCCCCAGTCCCTCCGCCACGTGGGAAGCGCGGTCCTGGG
配列番号:7
CCCAGGACCGCGCTTCCCACGTGGCGGAGGGACTGGGGACCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCCTCCGCGCGGACCCCGCCCCGTCCCGACCCCTCCCGGGTCCCCGGCCCAGCCCCCTCCGGGCCCTCCCAGCCCCTCCCCTTCCTTTCCGCGGCCCCGCCCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGGC
配列番号8:
GGCGGAGGGACTGGGGACCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCCTCCGCGCGGACCCCGCCCCGTCCCGACCCCTCCCGGGTCCCCGGCCCAGCCCCCTCCGGGCCCTCCCAGCCCCTCCCCTTCCTTTCCGCGGCCCCGCCCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGGC
配列番号9:
CCCAGGACCGCGCTTCCCACGTGGCGGAGGGACTGGGGACCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCCTCCGCGCGGACCCCGCCCCGTCCCGACCCCTC CCGGGTCCCCGGC
The sequences of SEQ ID NOS: 6-9 are shown below.
SEQ ID NO:6:
GCCGGGGCCAGGGCTTCCCACGTGCGCAGCAGGACGCAGCGCTGCCTGAAACTCGCGCCGCGAGGAGAGGGCGGGGCCGCGGAAAGGAAGGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTGGGCCGGGGACCCGGGAGGGGTCGGGACGGGGCGGGGTCCGCGCGGAGGAGGCGGAGCTGGAAGGTGAAGGGGCAGGACGGGTGCCCGGGTCCCCAGTCCCTCCGCCACGTGGGAAGCGCGGT CCTGGGMore
SEQ ID NO: 7
CCCAGGACCGCGCTTCCCACGTGGCGGAGGGACTGGGGACCCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCCTCCGCGCGGACCCCGCCCCGTCCCGACCCCTCCCGGGTCCCCGGCCCAGCCCCCTCCGGGCCCTCCCAGCCCCTCCCCTTCCTTTCCGCGGCCCCGCCCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGG C.
SEQ ID NO:8:
GGCGGAGGGACTGGGGACCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCTCCTCCGCGCGGACCCCGCCCCGTCCCGACCCCTCCCGGGTCCCCGGCCCAGCCCCCTCCGGGCCCTCCCAGCCCCTCCCCTTCCTTTCCGCGGCCCCGCCCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGGGC
SEQ ID NO:9:
CCCAGGACCGCGCTTCCCACGTGGCGGAGGGACTGGGGACCCCGGGCACCCGTCCTGCCCCTTCACCTTCCAGCTCCGCCTCCTCCGCGCGGACCCCGCCCCGTCCCGACCCCTC CCGGGTCCCCCGGC
 プライマー等の塩基配列を構成するヌクレオチドは、リボヌクレオチド又はデオキシリボヌクレオチドのいずれでもよい。これらのオリゴヌクレオチドは、既知の方法で合成することができ、例えば、塩基配列に従って、固相ホスホルアミダイト法及びトリエステル法等の任意の核酸合成法により合成され得る。 The nucleotides that make up the base sequences of primers and the like may be either ribonucleotides or deoxyribonucleotides. These oligonucleotides can be synthesized by known methods, for example, by any nucleic acid synthesis method such as solid-phase phosphoramidite method and triester method, according to the base sequence.
 上記プライマーを用いる核酸増幅反応により、膀胱癌に関連するホットスポット領域を含む配列を増幅することが可能になる。 A nucleic acid amplification reaction using the above primers makes it possible to amplify sequences containing hotspot regions associated with bladder cancer.
 核酸増幅法としてはPCR法があり、通常のPCRに加え、デジタルPCR、マルチプレックスPCR、LAMP(Loop-mediated isothermal AMPlification)法、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法、RCA(Rolling Circle Amplification)法、LCR(Ligase Chain Reaction)法、SDA(Strand Displacement Amplification)法等を挙げることができる。 Nucleic acid amplification methods include PCR methods, and in addition to normal PCR, digital PCR, multiplex PCR, LAMP (Loop-mediated isothermal amplification) method, ICAN (Isothermal and Chimeric primer-initiated amplification of nucleic acids) method, RCA ( Rolling Circle Amplification) method, LCR (Ligase Chain Reaction) method, SDA (Strand Displacement Amplification) method, and the like.
 cfDNA中の変異を対象とする場合、核酸増幅方法はデジタルPCRであることが好ましい。デジタルPCRを使用することで、癌遺伝子について変異型と正常型の割合(MAF:Mutation Allele Frequency)を決定することができる。デジタルPCRはドロップレットデジタルPCRであってもよい。 When targeting mutations in cfDNA, the nucleic acid amplification method is preferably digital PCR. By using digital PCR, it is possible to determine the ratio of mutant to normal types (MAF: Mutation Allele Frequency) for oncogenes. Digital PCR may be droplet digital PCR.
(プローブ)
 第二の態様において、検体における膀胱癌の存在を検出するためのプローブであって、PLEKHS1プロモーターの変異を標的とする、プローブ、が提供される。
(probe)
In a second aspect, a probe for detecting the presence of bladder cancer in a specimen is provided, the probe targeting mutations in the PLEKHS1 promoter.
 プローブを構成する配列はPLEKHS1プロモーターの変異を検出できるものであれば限定されず、例えば590G>Aの変異又は593C>Tの変異を検出できるプローブが好ましい。 The sequence that constitutes the probe is not limited as long as it can detect mutations in the PLEKHS1 promoter. For example, probes that can detect the 590G>A mutation or the 593C>T mutation are preferred.
 一実施形態において、590G>Aの変異を検出するプローブは配列番号4に記載の配列(tgcaattgtttaattgcaaaaaagc)を有する。プローブは配列番号4に記載の配列から成るものが好ましい。 In one embodiment, the probe that detects the 590G>A mutation has the sequence set forth in SEQ ID NO: 4 (tgcaattgtttaattgcaaaaaagc). Preferably, the probe consists of the sequence set forth in SEQ ID NO:4.
 一実施形態において、593C>Tの変異を検出するプローブは配列番号5に記載の配列を有する。プローブは配列番号5に記載の配列(tgcaattattcaattgcaaaaaagc)から成るものが好ましい。 In one embodiment, the probe that detects the 593C>T mutation has the sequence set forth in SEQ ID NO:5. The probe preferably consists of the sequence (tgcaattattcaattgcaaaaaagc) set forth in SEQ ID NO:5.
 プローブはその一部が修飾されていてもよく、その例として、末端がアミノ化されたものや、一部の塩基がリンカーとなる塩基で修飾されたもの等が挙げられる。また、塩基配列の一部へ別の塩基を挿入したり、その塩基配列の一部の塩基を欠失させたり、又は別の塩基に置換したり、あるいは塩基以外の物質に置換してもよい。 The probe may be partially modified, examples of which include those whose ends are aminated and those whose bases are partially modified with linker bases. In addition, another base may be inserted into part of the base sequence, a part of the base sequence may be deleted, replaced with another base, or substituted with a substance other than a base. .
 更に、プローブは標識物質等で修飾されていてもよく、例えば蛍光色素とそのクエンチャーを有してもよい。そのような標識物質は市販のものを使用することができる。クエンチャーは蛍光色素からの蛍光をクエンチできるものであれば特に制限されない。プローブを構成するヌクレオチド残基自体に修飾が施されていてもよく、例えば、人工的に修飾されたヌクレオチド残基に置換されていてもよい。 Furthermore, the probe may be modified with a labeling substance or the like, and may have, for example, a fluorescent dye and its quencher. Commercially available products can be used as such labeling substances. The quencher is not particularly limited as long as it can quench the fluorescence from the fluorescent dye. The nucleotide residues constituting the probe may themselves be modified, for example, substituted with artificially modified nucleotide residues.
(キット)
 第二の態様において、検体における膀胱癌の存在を検出するためのプライマーセットを含むキットが提供される。プライマーセットは上述したものを使用することができる。
(kit)
In a second aspect, a kit is provided that includes a primer set for detecting the presence of bladder cancer in a specimen. The primer set described above can be used.
 キットはPLEKHS1プロモーターの変異を標的とするプローブを更に含んでもよい。590G>A及び593C>Tの変異を検出するプローブとして、それぞれ配列番号4及び5に記載の塩基配列を有するものが挙げられる。 The kit may further contain probes targeting mutations in the PLEKHS1 promoter. Probes for detecting the 590G>A and 593C>T mutations include those having the base sequences of SEQ ID NOS: 4 and 5, respectively.
 キットは更に、TERTプロモーターの変異を標的とする、1又は複数の対のプライマーとプローブを含んでもよい。TERTプロモーターの変異としては228C>Tと250C>Tがある。228C>Tを標的とするプライマー及びプローブについては1,295,115位から1,295,341位の領域内、250C>Tを標的とするプライマー及びプローブについては1,295,237位から1,295,363位の領域内で設計され得る。 The kit may further include one or more pairs of primers and probes targeting mutations in the TERT promoter. Mutations in the TERT promoter include 228C>T and 250C>T. within the region of positions 1,295,115 to 1,295,341 for primers and probes targeting 228C>T; It can be designed within the region of 295,363 positions.
 デジタルPCRで核酸を増幅する場合、上記プライマーセット、プローブ、検体、及びDNAポリメラーゼを含む反応溶液が調製される。反応溶液は、ウェルやドロップレットに分配された後、増幅反応にかけられる。 When amplifying nucleic acids by digital PCR, a reaction solution containing the above primer set, probe, sample, and DNA polymerase is prepared. After being distributed to wells or droplets, the reaction solution is subjected to an amplification reaction.
 核酸増幅反応で得られる増幅産物の検出には、増幅産物を特異的に認識することができる標識物質を利用してもよい。そのような標識物質としては蛍光色素、ビオチン、ジゴキシゲニン等が挙げられる。標識体として蛍光を用いた場合には、その蛍光を蛍光顕微鏡、蛍光プレートリーダー等を用いて検出することができる。 A labeling substance that can specifically recognize the amplification product may be used to detect the amplification product obtained in the nucleic acid amplification reaction. Such labeling substances include fluorescent dyes, biotin, digoxigenin and the like. When fluorescence is used as the label, the fluorescence can be detected using a fluorescence microscope, a fluorescence plate reader, or the like.
 標識物質として、増幅産物にインターカレートする物質を使用することもできる。インターカレーターは、二本鎖DNAにインターカレートして蛍光を発する物質であれば特に限定されない。 A substance that intercalates with the amplification product can also be used as a labeling substance. The intercalator is not particularly limited as long as it is a substance that intercalates with the double-stranded DNA and emits fluorescence.
 あるいは、ポリアクリルアミド又はアガロースゲルを用いた電気泳動法など、既知の方法で検出を行ってもよい。例えば、電気泳動では、分子量が既知のマーカーの移動度に対する増幅産物の移動度から、増幅産物の存在を同定することができる。 Alternatively, detection may be performed by known methods such as electrophoresis using polyacrylamide or agarose gel. For example, in electrophoresis, the presence of an amplification product can be identified from the mobility of the amplification product relative to the mobility of a marker of known molecular weight.
(検出方法)
 第三の態様において、検体における膀胱癌の存在を検出するための方法であって、上記プライマーセット、あるいは上記キットを用いてPLEKHS1プロモーターの変異を検出する工程を含む、方法、が提供される。
(Detection method)
In a third aspect, a method for detecting the presence of bladder cancer in a specimen is provided, comprising detecting mutations in the PLEKHS1 promoter using the primer set or kit described above.
 プライマーセットにはTERTプロモーターの変異を標的とするプライマーを含め、検出工程においてTERTプロモーターの変異も併せて検出することが好ましい。検出工程の前後に他の工程を含んでもよく、例えば、検体は、膀胱癌を有すると疑われる被験者から採取され得る。検出工程は複数回行ってもよく、例えば同一の被験者に由来する検体を定期的に採取して、それらを採取の都度検出工程にかけることもできる。 It is preferable that the primer set includes primers that target mutations in the TERT promoter, and that mutations in the TERT promoter are also detected in the detection process. Other steps may be included before or after the detection step, for example, a specimen may be obtained from a subject suspected of having bladder cancer. The detection step may be performed multiple times, for example, specimens derived from the same subject may be collected periodically and subjected to the detection step each time they are collected.
 PLEKHS1プロモーターの変異が検出された場合、検体において膀胱癌が存在することが決定される。これにより、医師等による膀胱癌の診断やその後の治療方法の決定を補助することができる。膀胱癌と診断された被験者に対しては、経尿道的膀胱腫瘍切除術、根治的膀胱摘出術等の手術(外科治療)、術前化学療法、術後化学療法、再発化学療法等の化学療法(抗癌剤治療)、放射線治療を行うことができる。 If a mutation in the PLEKHS1 promoter is detected, it is determined that bladder cancer is present in the specimen. This can assist doctors in diagnosing bladder cancer and determining subsequent treatment methods. For subjects diagnosed with bladder cancer, surgery (surgical treatment) such as transurethral bladder tumor resection, radical cystectomy, preoperative chemotherapy, postoperative chemotherapy, chemotherapy such as recurrent chemotherapy (anti-cancer drug therapy) and radiotherapy can be performed.
 例えば、経尿道的膀胱腫瘍切除術の結果から筋層浸潤かどうかの診断が可能になる。筋層非浸潤であれば経尿道的膀胱腫瘍切除術のみで治療は終了し、その後経過観察となる。 For example, it will be possible to diagnose muscle invasion from the results of transurethral bladder tumor resection. If the tumor does not invade the muscle layer, treatment is completed with only transurethral resection of the bladder tumor, followed by follow-up.
 経尿道的膀胱腫瘍切除術の手術結果より筋層浸潤と診断されると術前化学療法に進み、治療完遂後に再発転移を認められた場合、再発化学療法が導入される。 If muscle invasion is diagnosed as a result of transurethral resection of the bladder tumor, preoperative chemotherapy will be started, and if recurrence or metastasis is found after completion of treatment, recurrent chemotherapy will be introduced.
 術前化学療法を行うことで予後が改善され得るが、腫瘍の組織型や患者の希望次第で行わない場合もある。術後化学療法は術中の所見から残存病変が疑われる際に追加される場合が多い。年齢や全身状態によって根治的膀胱摘出術が難しいと考えられる場合、代わりに放射線照射が行われる場合もある。 Preoperative chemotherapy can improve the prognosis, but it may not be given depending on the histology of the tumor and the patient's wishes. Postoperative chemotherapy is often added when intraoperative findings suggest residual disease. If radical cystectomy is considered difficult due to age or general condition, radiation may be performed instead.
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these.
1.1.プライマー/プローブの設計
1)プローブの認識部位の決定
 PLEKHS1 115,511,590及び115,511,593周辺の塩基配列をNCBI等で取得し、変異を含む箇所に検出用プローブの認識部位を設定した。プローブの認識位置・塩基長は、GC含有率とTm値を考慮して決定した。
1.1. Primer/probe design
1) Determination of Probe Recognition Sites The base sequences around PLEKHS1 115,511,590 and 115,511,593 were obtained by NCBI or the like, and recognition sites for detection probes were set at sites containing mutations. The recognition position and base length of the probe were determined in consideration of the GC content and Tm value.
2)プライマー設計
 プローブを含む配列を増幅するようなプライマーペアを複数設計し、gDNA、cfDNAにおける非特異的なアンプリコン形成の有無、プライマーダイマー評価をPCRの電気泳動で、プライマーペアごとのPCR効率を定量PCRで確認した。cfDNAを対象とするため、アンプリコンは80~150量体の範囲内とし、プライマーの配列・塩基数はプローブから算出されるTm値を考慮した。PCR効率、プライマーダイマー、非特異的なバンドを考慮し最も効率的なプライマーペアを決定し、ターゲットとしている領域が正しく増幅されていることをサンガーシーケンシングによって確認した。
2) Primer design Multiple primer pairs that amplify the sequence containing the probe are designed, the presence or absence of non-specific amplicon formation in gDNA and cfDNA, primer dimer evaluation is performed by PCR electrophoresis, PCR efficiency for each primer pair was confirmed by quantitative PCR. Since cfDNA was the target, the amplicon was within the range of 80 to 150 mers, and the Tm value calculated from the probe was taken into consideration for the sequence and number of bases of the primers. Taking into account PCR efficiency, primer dimers, and non-specific bands, the most efficient primer pair was determined, and correct amplification of the target region was confirmed by Sanger sequencing.
3)プローブ配列の決定
 それぞれのプライマーのTm値とプローブのTm値を比較し、センス鎖側に結合させるかアンチセンス鎖側に結合させるかプローブの塩基配列を決定した。
3) Determination of Probe Sequence The Tm value of each primer and the Tm value of the probe were compared to determine the base sequence of the probe to bind to the sense strand side or to the antisense strand side.
 上記の手順で決定した配列を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
The sequences determined by the above procedure are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
2.検体の調製
 膀胱癌(筋層非浸潤・筋層浸潤を問わない)患者における腫瘍組織・血液検体を対象検体として採取した(26検体)。なお、膀胱癌は治療既往のない初発のものを対象とした。筋層浸潤性膀胱癌と診断された患者においては治療後も血液検体を3ヶ月毎に採取した。
2. Preparation of Specimens Tumor tissue and blood specimens from patients with bladder cancer (whether non-muscle invasion or muscle invasion) were collected as subject specimens (26 specimens). For bladder cancer, first-onset patients with no history of treatment were included. Blood samples were collected every 3 months after treatment in patients diagnosed with muscle-invasive bladder cancer.
 血液検体のサンプリングは、通常採血(EDTA採血管)にて末梢白血球、血漿を回収することで行った。腫瘍組織は手術にて摘出された腫瘍組織を冷凍保存した。いずれのサンプルも抽出・解析まで-80℃で冷凍保存とした。 Sampling of blood specimens was performed by collecting peripheral white blood cells and plasma using normal blood collection (EDTA blood collection tubes). The tumor tissue was cryopreserved from the surgically excised tumor tissue. All samples were stored frozen at -80°C until extraction and analysis.
 得られたサンプルについて、腫瘍組織由来のDNAをtDNA(tumor DNA)、体細胞(末梢白血球)由来のDNAをgDNA(genome DNA)、血漿中の血中循環DNAをcfDNAとしてそれぞれ解析を行なった。 The obtained samples were analyzed using tumor tissue-derived DNA as tDNA (tumor DNA), somatic cell (peripheral leukocyte)-derived DNA as gDNA (genome DNA), and plasma circulating DNA as cfDNA.
3.実験方法
3.1.実験のフロー
 以下の順序で設計したプライマーの妥当性をチェックした。
(i) PCRによる断片の増幅。
(ii) DNA精製。
(iii) 電気泳動による目的断片の確認とプライマーダイマーの確認。
(iv) 断片のサンガーシーケンシングによる配列確認。
3. experimental method
3.1. The validity of the designed primers was checked in the following order of the experimental flow .
(i) Amplification of fragments by PCR.
(ii) DNA purification.
(iii) Confirmation of target fragment and confirmation of primer dimer by electrophoresis.
(iv) Sequence confirmation by Sanger sequencing of fragments.
 続いて、以下の順序でバリデーション用プラスミドを作製した。
(i) 患者の腫瘍サンプルからゲノムDNAの抽出。
(ii) 野生型PLEKHS1の115,511,590~115,511,593領域を含むDNA断片のPCRによる増幅。
(iii) ベクターへPLEKHS1断片の挿入。
(iv) ベクターを大腸菌に導入し、10~20程度のコロニーを分離し大量培養。
(v) ベクターをmini prepで回収し、それぞれのベクターがWTかMutantかサンガーシーケンシングで確認。
(vi) WTのみ回収された場合、野生型PLEKHS1導入プラスミドを鋳型にしたMutagenesisキットによる590G>A及び593C>T変異の導入。
(vii) 変異型PLEKHS1導入プラスミドの取得。
Subsequently, plasmids for validation were prepared in the following order.
(i) Extraction of genomic DNA from patient tumor samples.
(ii) PCR amplification of a DNA fragment containing the 115,511,590-115,511,593 region of wild-type PLEKHS1.
(iii) Insertion of the PLEKHS1 fragment into the vector.
(iv) The vector is introduced into Escherichia coli, and about 10 to 20 colonies are isolated and cultured in large quantities.
(v) Vectors were recovered by mini prep, and whether each vector was WT or Mutant was confirmed by Sanger sequencing.
(vi) Introduction of 590G>A and 593C>T mutations by Mutagenesis kit using wild-type PLEKHS1 transfer plasmid as template when only WT was recovered.
(vii) Obtaining mutant PLEKHS1-introduced plasmids.
 以下の順序によりバリデーション用プラスミドを用いてプライマー/プローブの検出精度を確認した。
(i) 野生型PLEKHS1導入プラスミドと変異型PLEKHS1導入プラスミドそれぞれに対し、野生型プライマー/プローブセット、並びに変異型プライマー/プローブセットを用いたdPCRによる検出精度の確認。
 なお、野生型PLEKHS1及び変異型PLEKHS1を検出するためのフォワードプライマーとして、配列番号1に記載の配列(gacctcttggcttcca)から成るものを、そして、リバースプライマーとして配列番号2に記載の配列(ctgcaaaattttccatttcca)から成るものを使用した。野生型PLEKHS1を検出するためのプローブとして、配列番号3に記載の配列(tgcaattgttcaattgcaaaaaagc)から成るものを使用した。590G>Aの変異型のプローブとしては配列番号4に記載の配列(tgcaattgtttaattgcaaaaaagc)から成るものを、そして、593C>Tの変異を検出するプローブは配列番号5に記載の配列(tgcaattattcaattgcaaaaaagc)から成るものを使用した。(ii) 野生型:変異型=999:1の割合での0.1%変異プラスミドの作製。
(iii) 0.1%変異プラスミドの検出精度の確認。
The primer/probe detection accuracy was confirmed using the validation plasmid in the following order.
(i) Confirmation of detection accuracy by dPCR using wild-type primer/probe set and mutant primer/probe set for wild-type PLEKHS1-introduced plasmid and mutant-type PLEKHS1-introduced plasmid, respectively.
The forward primer for detecting wild-type PLEKHS1 and mutant PLEKHS1 consists of the sequence (gacctcttggcttcca) set forth in SEQ ID NO: 1, and the reverse primer consists of the sequence set forth in SEQ ID NO: 2 (ctgcaaaattttccatttcca). used something. A probe consisting of the sequence (tgcaattgttcaattgcaaaaaagc) set forth in SEQ ID NO: 3 was used as a probe for detecting wild-type PLEKHS1. The 590G>A mutant probe consists of the sequence (tgcaattgtttaattgcaaaaaagc) set forth in SEQ ID NO: 4, and the probe for detecting the 593C>T mutation consists of the sequence set forth in SEQ ID NO: 5 (tgcaattattcaattgcaaaaaagc). It was used. (ii) Generation of 0.1% mutant plasmids at a ratio of wild-type:mutant=999:1.
(iii) Confirmation of detection accuracy of 0.1% mutant plasmid.
 患者サンプルを用いて、dPCRによりTERT及びPLEKHS1変異を検出した。
(i) 検証済み野生型PLEKHS1プライマー/プローブ及び変異型PLEKHS1プライマー/プローブを用いた、tDNAおよびgDNA(各26検体)をサンプルとした変異検出確認。
(ii) 同様にTERTのプライマー/プローブを用いた、tDNAおよびgDNA(各26検体)をサンプルとした変異検出確認。なお、TERTのプライマー/プローブは市販品(BioRad社製のプライマー/プローブのセット(TERT C228T_113:dHsaEXD72405942,TERT C250T_113:dHsaEXD46675715)(アンプリコンサイズ:113bp))を使用した。それらの配列は不明であるが、アンプリコンサイズが2種とも113bpとなっており、また、一般的には変異箇所を中心にプライマーを設計し、変異箇所にプローブが当たるようにプローブを設計することから、C228もしくはC250を起点にして、上流もしくは下流の113bpの範囲内にプライマーとプローブがあると考えられる。上記変異箇所から上流もしくは下流に50~200bpの範囲内で設計を行ってもよい。
(iii) tDNAにおいて変異型陽性かつgDNAで変異型陰性であることが確認できた症例において、cfDNAをサンプルとした変異検出・MAFの算出。腫瘍において低頻度である場合、血中での検出が困難であることが予想されたため、tDNAにおいて変異率が10%以上のものを変異型陽性とした。
Patient samples were used to detect TERT and PLEKHS1 mutations by dPCR.
(i) Confirmation of mutation detection using validated wild-type PLEKHS1 primers/probes and mutant PLEKHS1 primers/probes in tDNA and gDNA (26 samples each) as samples.
(ii) Mutation detection confirmation using tDNA and gDNA (26 specimens each) as samples, similarly using TERT primers/probes. Commercially available TERT primers/probes (BioRad primer/probe set (TERT C228T_113: dHsaEXD72405942, TERT C250T_113: dHsaEXD46675715) (amplicon size: 113 bp)) were used. Their sequences are unknown, but the amplicon size of both species is 113 bp. In general, primers are designed around the mutation sites, and probes are designed so that the probes hit the mutation sites. Therefore, it is considered that primers and probes exist within a range of 113 bp upstream or downstream from C228 or C250. It may be designed within the range of 50 to 200 bp upstream or downstream from the mutation site.
(iii) Mutation detection and calculation of MAF using cfDNA as a sample in a case confirmed to be mutation-positive in tDNA and mutation-negative in gDNA. Since it was expected that detection in blood would be difficult if the frequency was low in tumors, tDNA with a mutation rate of 10% or more was defined as mutation-positive.
 デジタルPCRに用いた材料と方法を以下に記載する。
材料:
サンプルDNA(-20℃) 
2x ddPCR Supermix for Probes(No dUTP) (4℃)
20x プライマー/プローブ:
制限酵素: HaeIII
Materials and methods used for digital PCR are described below.
material:
Sample DNA (-20°C)
2x ddPCR Supermix for Probes (No dUTP) (4°C)
20x primer/probe:
Restriction enzyme: HaeIII
方法:
1.<50ng/ウェル(7μLまで)のDNA溶液を調整(10-50コピーの場合は15ng追加可)
2.室温で溶解し、ボルテックスし、遠心し、遮光しておく。
3.Mixを調製(制限酵素は原液10U/μL)
Figure JPOXMLDOC01-appb-T000002
4.Vortex・遠心し室温で3分放置
5.DG8(登録商標)カートリッジのサンプルウェルに20μLのmixを、オイルウェルに70μLのDroplet Generation Oilを添加。
6.Droplet Generatorに入れて溶液中のドロップレットを作成する
7.Droplet 40μLをPCR 96wellに入れてシーリング(アルミホイル)
Figure JPOXMLDOC01-appb-T000003
8.Droplet Readerで解析
Method:
1. Prepare <50 ng/well (up to 7 μL) DNA solution (15 ng can be added for 10-50 copies)
2. Thaw at room temperature, vortex, centrifuge, and protect from light.
3. Prepare Mix (restriction enzyme undiluted solution 10 U/μL)
Figure JPOXMLDOC01-appb-T000002
4. Vortex/centrifuge and leave at room temperature for 3 minutes5. Add 20 μL of mix to the sample well of the DG8® cartridge and 70 μL of Droplet Generation Oil to the oil well.
6. 7. Place in Droplet Generator to create droplets in solution. Put 40 μL of Droplet into PCR 96well and seal (aluminum foil)
Figure JPOXMLDOC01-appb-T000003
8. Analysis with Droplet Reader
4.結果
 バリデーション用のプラスミド(WT、Mut)を作成し検出精度を確認した。結果を図1に示す。PLEKHS1 590G>Aの検出に関してはWTとMutの検出精度はそれぞれ99.98%、100.00%だった。PLEKHS1 593C>Tの検出に関してはWTとMutの検出精度はそれぞれ99.99%、100.00%だった。また、WTでMutを1000倍希釈したDNA溶液を検出したところ有意に0.1%の変異を検出できた(590G>A:p=0.0031、593C>T:p<0.001)。
4. Plasmids (WT, Mut) for result validation were prepared and the detection accuracy was confirmed. The results are shown in FIG. Regarding the detection of PLEKHS1 590G>A, the detection accuracies of WT and Mut were 99.98% and 100.00%, respectively. Regarding the detection of PLEKHS1 593C>T, the detection accuracies of WT and Mut were 99.99% and 100.00%, respectively. Further, when a DNA solution in which Mut was diluted 1000 times with WT was detected, a significant 0.1% mutation could be detected (590G>A: p=0.0031, 593C>T: p<0.001).
 変異型陽性患者サンプル(tDNA、cfDNA)を対象にdPCRを試行したところWT、Mutとも検出シグナルは良好であり、いずれのサンプルでも陽性ドロップレットと陰性ドロップレットを明確に分離できた(図2)。 When dPCR was performed on mutation-positive patient samples (tDNA, cfDNA), good detection signals were obtained for both WT and Mut, and positive droplets and negative droplets could be clearly separated in both samples (Fig. 2). .
 図3に示すとおり、変異型陽性である患者のcfDNAのMAFを経時的に解析したところ、画像による転移診断より前にMAFの増加を検出できた。また、同じ検体をPLEKHS1以外にTERTプロモーターでも解析したところ変異によって異なる変動を見ることがあった。例えば、図3中の矢印は、再発している段階、つまり「ctDNAがあり他変異で陽性と判定できる」にもかかわらず、MAFが0.00%と検出されてしまっている変異(又はそれを含む試料)の特定の段階を示しており、この結果から、膀胱癌の術後を経過観察においては複数の変異の経過を観察する必要があることが分かる。 As shown in Figure 3, when the MAF of mutation-positive patients' cfDNA was analyzed over time, an increase in MAF could be detected prior to diagnosis of metastasis by imaging. In addition, when the same sample was analyzed with the TERT promoter as well as PLEKHS1, different changes were sometimes observed depending on the mutation. For example, the arrows in FIG. 3 indicate mutations (or The results demonstrate the need to track multiple mutations in postoperative follow-up of bladder cancer.
 図4に示すとおり、26検体の腫瘍DNAをdPCRで検出したところ、TERTプロモーターとPLEKHS1プロモーターはそれぞれ50.0%(13/26)、42.3%(11/26)の患者が陽性であった。なお、PLEKHS1プロモーターの変異が重複している患者は1とカウントした。TERTプロモーターのみでは50.0%の対象患者を観察できるのに対し、PLEKHS1プロモーターの追加によって57.7%(15/26)に改善した。また、TERTプロモーターのみでは同一患者において複数の変異を観察できなかった、つまり0.0%(0/26)であったのに対し、PLEKHS1プロモーターの追加によって34.6%(9/26)の患者を複数の変異で観察できるようになった。 As shown in Figure 4, dPCR was used to detect tumor DNA from 26 specimens, and the TERT promoter and PLEKHS1 promoter were positive in 50.0% (13/26) and 42.3% (11/26) of the patients, respectively. rice field. In addition, one patient with multiple PLEKHS1 promoter mutations was counted. With the TERT promoter alone, 50.0% of target patients could be observed, whereas the addition of the PLEKHS1 promoter improved to 57.7% (15/26). Also, multiple mutations could not be observed in the same patient with the TERT promoter alone, i.e., 0.0% (0/26), compared to 34.6% (9/26) with the addition of the PLEKHS1 promoter. Patients can now be observed with multiple mutations.
5.考察
 従来の方法で検出できるTERTプロモーターと同様に、今回検出したPLEKHS1プロモーターの変異も複数の患者で陽性であり、ホットスポットとして有用であった。これをcfDNAのMAFとして検出することにより患者の病勢を評価できることが可能であると考えられる。PLEKHS1プロモーターの変異検出精度はWT、Mutとも高精度でありcfDNAのMAF解析のような低頻度の解析においても利用可能である。
5. Discussion Similar to the TERT promoter that can be detected by conventional methods, mutations in the PLEKHS1 promoter detected this time were also positive in multiple patients and were useful as hotspots. By detecting this as MAF of cfDNA, it is possible to evaluate the disease state of the patient. Mutation detection accuracy of PLEKHS1 promoter is high for both WT and Mut, and can be used even in low-frequency analysis such as MAF analysis of cfDNA.
 WTで軽微なミスアニーリングが起こる原因としては、変異によってGC%が変動しプローブのTm値が変わることが原因であると考えられる。患者サンプルを用いた検討でもtDNAとcfDNAは類似したシグナル検出能でありcfDNAを対象とした解析にも有用であると判断できた。  The cause of slight mis-annealing in WT is thought to be that the GC% fluctuates due to mutation and the Tm value of the probe changes. tDNA and cfDNA have similar signal detectability in studies using patient samples, and it could be determined that cfDNA is also useful for analysis.
 TERTプロモーターだけでなくPLEKHS1プロモーターにおいてもdPCRでの変異解析ができる利点として、第一に同一アッセイで解析可能な患者が増えることが挙げられる。膀胱癌の腫瘍変異は多岐に富むため患者ごとに異なる変異を経時的に解析する方法が主流であり、この方法に比してホットスポットを検出することは解析コストの改善において有利である。第二に複数のMAFを解析することによって患者の病勢評価をより正確に行うことが可能となる。全身転移が診断されているにも関わらずMAFが検出できない事象を複数回認めたが、これは単一の変異で経過観察を行なった場合に偽陰性と判断される危険性を示唆するものである。複数のMAFを観察することで偽陰性と評価される可能性を減少させることができると考えられる。  The advantage of being able to analyze mutations by dPCR not only in the TERT promoter but also in the PLEKHS1 promoter is that the number of patients who can be analyzed with the same assay increases. Since tumor mutations in bladder cancer are diverse, the mainstream method is to analyze mutations that differ from patient to patient over time. Compared to this method, hotspot detection is advantageous in terms of reducing analysis costs. Second, by analyzing multiple MAFs, it is possible to more accurately assess the disease state of the patient. Multiple events in which MAF could not be detected were observed despite the diagnosis of systemic metastasis, suggesting the risk of being judged as false negative when follow-up is performed for a single mutation. be. It is believed that observing multiple MAFs can reduce the possibility of a false negative evaluation.
 複数検出による臨床的な意義としては、安価にモニタリングができるため病勢の早期評価に有用だが、NGSと異なり単一の変異をみるdPCRにおいては偽陰性による誤った病勢評価の影響を受けやすく、いずれの変異検出においても単一変異での評価は誤評価の危険性を伴うため、複数での検出評価が望ましい。 As for the clinical significance of multiple detection, it is useful for early assessment of disease activity because it can be monitored inexpensively. Even in the detection of mutations in , evaluation with a single mutation is accompanied by the risk of misjudgment, so detection and evaluation with multiple mutations is desirable.

Claims (12)

  1.  検体における膀胱癌の存在を検出するためのプライマーセットであって、
     PLEKHS1プロモーターの変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドである1対のプライマーと、
     TERTプロモーターの変異を標的とする、1又は複数の対のプライマーと、
    を含む、プライマーセット。
    A primer set for detecting the presence of bladder cancer in a specimen, comprising:
    a pair of primers, which are oligonucleotides with a length of 16 bases or more and 21 bases or less, targeting mutations in the PLEKHS1 promoter;
    one or more pairs of primers that target mutations in the TERT promoter;
    A primer set, including
  2.  PLEKHS1プロモーターの変異が、10番染色体の115,511,590位におけるGからAへの置換、10番染色体の115,511,593位におけるCからTへの置換又はその両方である、請求項1に記載のプライマーセット。 1. The PLEKHS1 promoter mutation is a G to A substitution at position 115,511,590 on chromosome 10, a C to T substitution at position 115,511,593 on chromosome 10, or both. Primer set described in .
  3.  PLEKHS1プロモーターの変異を標的とするプライマーが配列番号1及び/又は2に記載の塩基配列を有する、請求項1又は2に記載のプライマーセット。 3. The primer set according to claim 1 or 2, wherein the primers targeting mutations in the PLEKHS1 promoter have the nucleotide sequences set forth in SEQ ID NOs: 1 and/or 2.
  4.  TERTプロモーターの変異を標的とするプライマーが、5番染色体の1,295,228位におけるCからTへの置換、5番染色体の1,295,250位におけるCからTへの置換又はその両方である、請求項1~3のいずれか一項に記載のプライマーセット。 A primer targeting a mutation in the TERT promoter with a C to T substitution at chromosome 5 at position 1,295,228, a C to T substitution at chromosome 5 at position 1,295,250, or both A primer set according to any one of claims 1 to 3.
  5.  検体における膀胱癌の存在を検出するためのプローブであって、PLEKHS1プロモーターの変異を標的とする、プローブ。 A probe for detecting the presence of bladder cancer in a specimen, the probe targeting mutations in the PLEKHS1 promoter.
  6.  プローブが配列番号4又は5に記載の塩基配列を有する、請求項5に記載のプローブ。 The probe according to claim 5, wherein the probe has the base sequence of SEQ ID NO: 4 or 5.
  7.  請求項1~4のいずれか一項に記載のプライマーセットを含む、キット。 A kit comprising the primer set according to any one of claims 1 to 4.
  8.  請求項5又は6に記載のプローブを更に含む、請求項7に記載のキット。 The kit according to claim 7, further comprising the probe according to claim 5 or 6.
  9.  検体における膀胱癌の存在を検出するための方法であって、請求項1~4のいずれか一項に記載のプライマーセット、あるいは請求項5又は6に記載のプローブを用いてPLEKHS1プロモーターの変異を検出する工程を含む、方法。 A method for detecting the presence of bladder cancer in a specimen, wherein the primer set according to any one of claims 1 to 4 or the probe according to claim 5 or 6 is used to detect mutations in the PLEKHS1 promoter. A method comprising the step of detecting.
  10.  検出工程で使用される核酸増幅法がデジタルPCRである、請求項9に記載の方法。 The method according to claim 9, wherein the nucleic acid amplification method used in the detection step is digital PCR.
  11.  検体が液性検体である、請求項9又は10に記載の方法。 The method according to claim 9 or 10, wherein the specimen is a liquid specimen.
  12.  検体が血中循環DNA(cfDNA)を含む、請求項9~11のいずれか一項に記載の方法。 The method according to any one of claims 9 to 11, wherein the specimen comprises circulating DNA (cfDNA).
PCT/JP2023/002178 2022-01-26 2023-01-25 Primers and probe for detecting presence of bladder cancer WO2023145754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022009850 2022-01-26
JP2022-009850 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145754A1 true WO2023145754A1 (en) 2023-08-03

Family

ID=87471454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002178 WO2023145754A1 (en) 2022-01-26 2023-01-25 Primers and probe for detecting presence of bladder cancer

Country Status (2)

Country Link
TW (1) TW202338101A (en)
WO (1) WO2023145754A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAXTER L., GORDON N. S., OTT S., WANG J., PATEL P., GOEL A., PIECHOCKI K., SILCOCK L., SALE C., ZEEGERS M. P., CHENG K. K., JAMES : "Properties of non-coding mutation hotspots as urinary biomarkers for bladder cancer detection", SCIENTIFIC REPORTS, vol. 13, no. 1, XP093080486, DOI: 10.1038/s41598-023-27675-4 *
WU SONG, OU TONG, XING NIANZENG, LU JIANG, WAN SHENGQING, WANG CHANGXI, ZHANG XI, YANG FEIYA, HUANG YI, CAI ZHIMING: "Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer", NATURE COMMUNICATIONS, vol. 10, no. 1, XP093080485, DOI: 10.1038/s41467-019-08576-5 *

Also Published As

Publication number Publication date
TW202338101A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
Jakupciak et al. Mitochondrial DNA as a cancer biomarker
JP5531367B2 (en) Target sequence enrichment
JP2012005500A (en) Identification of marker in esophageal cancer, colon cancer, head and neck cancer, and melanoma
US20020058265A1 (en) Detection of microsatellite instability and its use in diagnosis of tumors
US20200263259A1 (en) Ctnnb1 mutation detection kit, method, and use in hcc detection and management
JP3844996B2 (en) Melting curve analysis method for repetitive PCR products
JP6438119B2 (en) A method for rapid and sensitive detection of hot spot mutations
US20100184015A1 (en) Method for detection of xmrv
Nishikawa et al. A simple method of detecting K-ras point mutations in stool samples for colorectal cancer screening using one-step polymerase chain reaction/restriction fragment length polymorphism analysis
CN104805206A (en) Kit for detecting TERT (telomerase reverse transcriptase) gene promoter mutation, and detection method of kit
JP2013516984A (en) Method for ensuring amplification of abnormal nucleic acids in a sample
KR101825117B1 (en) Methods and kits for the BRAF mutant detection using PNA mediated Real-time PCR clamping
US11535897B2 (en) Composite epigenetic biomarkers for accurate screening, diagnosis and prognosis of colorectal cancer
WO2023145754A1 (en) Primers and probe for detecting presence of bladder cancer
US9074247B2 (en) P53 assay for a urine test for HCC screening
US9920376B2 (en) Method for determining lymph node metastasis in cancer or risk thereof and rapid determination kit for the same
US11542559B2 (en) Methylation-based biomarkers in breast cancer screening, diagnosis, or prognosis
JP4359497B2 (en) Nucleic acid amplification primer, nucleic acid amplification primer set, and cancer testing method using the same
KR101860547B1 (en) Use of Cell-Free DNA for Diagnosing the Disease of Cancer
KR101930818B1 (en) Non-Invasive Diagnosis of Bladder Cancer
US20120220487A1 (en) Determination of 17q Gain in Neuroblastoma Patients by Analysis of Circulating DNA
JP3336230B2 (en) Method for detecting telomerase activity
CN117587125A (en) Application of reagent for detecting methylation in preparation of pancreatic cancer diagnosis product
CN117587121A (en) Use of markers for diagnosing breast cancer or predicting breast cancer risk
CN117363729A (en) Kit for in vitro detection of liver cancer and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746965

Country of ref document: EP

Kind code of ref document: A1