WO2023145499A1 - Sputtering target - Google Patents

Sputtering target Download PDF

Info

Publication number
WO2023145499A1
WO2023145499A1 PCT/JP2023/000905 JP2023000905W WO2023145499A1 WO 2023145499 A1 WO2023145499 A1 WO 2023145499A1 JP 2023000905 W JP2023000905 W JP 2023000905W WO 2023145499 A1 WO2023145499 A1 WO 2023145499A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection member
sputtering target
substrate protection
substrate
target
Prior art date
Application number
PCT/JP2023/000905
Other languages
French (fr)
Japanese (ja)
Inventor
享祐 寺村
賢太郎 廣藤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2023521469A priority Critical patent/JP7403718B1/en
Publication of WO2023145499A1 publication Critical patent/WO2023145499A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to sputtering targets.
  • TFTs thin film transistors
  • FPDs flat panel displays
  • IGZO Oxide semiconductors typified by -Zn composite oxides (hereinafter also referred to as “IGZO”) have attracted attention and are being put to practical use.
  • IGZO has the advantage of exhibiting high field effect mobility and low leakage current.
  • FPDs have become more sophisticated, a material that exhibits a field effect mobility higher than that of IGZO has been desired.
  • Patent Literatures 1 and 2 propose oxide semiconductors for TFTs made of In--Zn--X composite oxides composed of indium (In) element, zinc (Zn) element, and arbitrary element X.
  • this oxide semiconductor is formed by sputtering using a target material composed of an In--Zn--X composite oxide.
  • the oxide semiconductor sputtering target used for sputtering is made of ceramics, it is difficult to form a large-area target from a single sheet of target material. Therefore, a large-area oxide semiconductor sputtering target is manufactured by preparing a plurality of target materials having a certain size and bonding them to a substrate having a desired area (see, for example, Patent Document 3).
  • Cu, Ti, SUS, etc. are usually used for the base material of the sputtering target, and a bonding material with good thermal conductivity, for example, a metal such as In, is used for bonding the base material and the target material.
  • a bonding material with good thermal conductivity for example, a metal such as In
  • a bonding material with good thermal conductivity for example, a metal such as In
  • a bonding material with good thermal conductivity for example, a metal such as In
  • the base material and the target material is usually used for bonding the base material and the target material.
  • a bonding material with good thermal conductivity for example, a metal such as In
  • the adjacent target materials are arranged so that a gap of 0.1 mm to 1.0 mm is formed at room temperature.
  • the present invention can effectively prevent the constituent materials of the substrate from being mixed into the thin film to be formed, even in a large-area sputtering target obtained by bonding a plurality of target materials. , the purpose of which is to provide a sputtering target.
  • the present inventors have found that by arranging a substrate protection member in a gap formed between a plurality of sputtering target materials, the constituent materials of the substrate are not sputtered, and the It has been found that it is possible to effectively prevent the constituent materials from being mixed into the thin film to be formed.
  • the present invention comprises an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X),
  • the additive element (X) consists of at least one element selected from tantalum (Ta) and niobium (Nb),
  • the atomic ratio of each element satisfies all of the formulas (1) to (3) (X in the formula is the sum of the content ratios of the additive elements).
  • a sputtering target formed by bonding 0.4 ⁇ (In+X)/(In+Zn+X) ⁇ 0.75 (1) 0.25 ⁇ Zn/(In+Zn+X) ⁇ 0.6 (2) 0.001 ⁇ X/(In+Zn+X) ⁇ 0.015 (3)
  • a sputtering target is provided which has a substrate protection member arranged in a gap formed between the plurality of sputtering target materials.
  • FIG. 1 is a schematic diagram which shows the cross-sectional schematic of one Embodiment of the sputtering target of this invention.
  • FIG. 2 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention.
  • FIG. 3 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention.
  • FIG. 4 is a schematic diagram showing a schematic cross-sectional view of still another embodiment of the sputtering target of the present invention.
  • FIG. 5 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention.
  • FIG. 1 is a schematic diagram which shows the cross-sectional schematic of one Embodiment of the sputtering target of this invention.
  • FIG. 2 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention.
  • FIG. 3 is a
  • FIG. 6 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention.
  • FIG. 7 is a schematic diagram showing the structure of an embodiment of a TFT element produced using the sputtering target of the present invention.
  • 8 is a graph showing the XRD measurement results of the target material obtained in Example 1.
  • the present invention relates to a sputtering target (hereinafter also referred to as "target”).
  • the sputtering target material (hereinafter also referred to as “target material”) used for the target of the present invention is composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X).
  • the additive element (X) consists of at least one element selected from tantalum (Ta) and niobium (Nb).
  • the target material of the present invention contains In, Zn, and an additive element (X) as metallic elements constituting the target material. In principle, it may contain trace elements.
  • Trace elements include, for example, elements contained in organic additives described later and media raw materials such as ball mills that are mixed during the production of the target material.
  • Examples of trace elements in the target material of the present invention include Fe, Cr, Ni, Al, Si, W, Zr, Na, Mg, K, Ca, Ti, Y, Ga, Sn, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Pb and the like.
  • Their content is usually 100 ppm by mass (hereinafter also referred to as "ppm") with respect to the total mass of oxides containing In, Zn and X contained in the target material of the present invention.
  • the total mass includes the trace element mass.
  • the target material of the present invention is preferably composed of a sintered body containing the oxides described above.
  • the shape of the sintered body and the sputtering target material is not particularly limited, and conventionally known shapes such as a flat plate shape and a cylindrical shape can be adopted.
  • the atomic ratio of the metal elements constituting the target material that is, In, Zn and X, is within a specific range, because the performance of the oxide semiconductor device formed from the target material is improved. preferable.
  • the atomic ratio represented by the following formula (1) is satisfied (X in the formula is the sum of the content ratios of the additive elements.
  • Zn preferably satisfies the atomic ratio represented by the following formula (2).
  • X preferably satisfies the atomic ratio represented by the following formula (3). 0.001 ⁇ X/(In+Zn+X) ⁇ 0.015 (3)
  • a semiconductor device having an oxide thin film formed by sputtering using the target material of the present invention can withstand a high electric field. It exhibits effective mobility, low leakage current and threshold voltage close to 0V. From the viewpoint of making these advantages more remarkable, it is more preferable that In and X satisfy the following formulas (1-2) to (1-5).
  • the additive element (X) one or more selected from Ta and Nb are used as described above. Each of these elements can be used alone, or two of them can be used in combination. In particular, it is preferable to use Ta as the additive element (X) from the viewpoint of the overall performance of the oxide semiconductor device manufactured from the target material of the present invention and the economical efficiency in manufacturing the target material.
  • the target material of the present invention satisfies the following formula (4) with respect to the atomic ratio of In and X. It is preferable in terms of further increasing the field effect mobility of the oxide semiconductor device and exhibiting a threshold voltage close to 0V. 0.970 ⁇ In/(In+X) ⁇ 0.999 (4)
  • the atomic ratio of In and X is the following formula (4-2) to ( 4-4) is more preferably satisfied. 0.980 ⁇ In/(In+X) ⁇ 0.997 (4-2) 0.990 ⁇ In/(In+X) ⁇ 0.995 (4-3) 0.990 ⁇ In/(In+X) ⁇ 0.993 (4-4)
  • the field effect mobility (cm 2 /Vs) of the TFT including the oxide semiconductor element formed from the target material is preferably 45 cm 2 /Vs or more, and more preferably 50 cm 2 /Vs or more. more preferably 60 cm 2 /Vs or more, still more preferably 70 cm 2 /Vs or more, even more preferably 80 cm 2 /Vs or more, and 90 cm 2 /Vs or more is more preferable, and 100 cm 2 /Vs or more is particularly preferable.
  • a higher value of the field effect mobility is preferable from the standpoint of improving the functionality of the FPD.
  • the proportion of each metal contained in the target material of the present invention is measured, for example, by ICP emission spectrometry.
  • the "substrate protective member arranged in the gap formed between the plurality of sputtering target materials” is a member that covers the surface of the substrate exposed from the gaps of the plurality of target materials bonded to the substrate. It has the effect of preventing substances that may adversely affect the thin film to be formed from the gap during sputtering.
  • a substrate protection member a tape-shaped substrate protection member is arranged on the substrate surface, or a film or sheet is formed by coating, plating, sputtering, thermal spraying, or the like with a substance that will become the substrate protection member. It can be provided in a ribbon shape.
  • the substrate protection member can also be disposed so as to fill the gap. Also, a part of the planar member may protrude, and the protrusion may be embedded in the gap. In the present invention, it is particularly preferred that the substrate protective member is a tape-like material.
  • the material of such a substrate protection member may be a substance that does not adversely affect the thin film to be formed even if it is mixed in, for example, all or part of the elements constituting the composition of the target material, or an alloy containing these elements. and oxides can be used.
  • the chemical composition of the material is substantially different from the chemical composition of the bonding material used for bonding to the substrate.
  • metallic indium when metallic indium is used as the bonding material, it means that the substrate protective member at that time is not metallic indium.
  • metallic indium of the bonding material may remain in the gaps between the target materials, and when the indium remaining in the gaps solidifies, the surface may be oxidized. When the metal indium used for the bonding material solidifies in the gaps in this way, it is difficult to form a uniform oxide film on the surface of the indium. can't.
  • the sputtering target in the present invention is, for example, plate-shaped or cylindrical.
  • the plate-like sputtering target is a plate-like base material and a plurality of plate-like target materials arranged on a plane and bonded to each other.
  • the cylindrical sputtering target is obtained by fitting or inserting a plurality of cylindrical target materials into the cylindrical base material and arranging and bonding them in a multistage manner in the cylindrical axis direction of the cylindrical base material, or by hollow
  • a plurality of curved target materials, which are obtained by vertically dividing a cylinder in the direction of the cylinder axis, are arranged in the circumferential direction and bonded to the outer surface of the cylindrical base material.
  • This plate-like or cylindrical sputtering target is often used in large-area sputtering apparatuses.
  • the present invention does not prevent application to sputtering targets of other shapes, and the shape of the target material is not limited.
  • the substrate protection member in the present invention is any metal of Zn, Ta, and Nb, or an alloy of two or more of In, Zn, Ta, and Nb, or any of In, Zn, Ta, and Nb. Ceramics containing one or more kinds are preferable. If such a metal or ceramic is used as a base material protection member, even if a trace amount of the metal or ceramic is mixed into the formed oxide semiconductor thin film, the influence on the TFT element characteristics can be reduced compared to Cu, Ti, or the like. can be done. Examples of ceramic materials include oxides, nitrides, and oxynitrides containing one or more of In, Zn, Ta, and Nb. Preferably, the ceramic material is also an oxide.
  • Ceramic materials include In 2 O 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , In—Zn oxide, In—Ta oxide, In—Nb oxide, Zn—Ta oxide, Zn -Nb oxide, Zn--Ta--Nb oxide, In--Zn--Ta oxide, In--Zn--Nb oxide, In--Zn--Ta--Nb oxide, InN, Zn 3 N 2 , TaN, NbN, In--Zn nitride, In--Ta nitride, In---Nb nitride, Zn--Ta nitride, Zn--Nb nitride, Zn--Ta--Nb nitride, In--Zn--Ta nitride, In- Zn--Nb nitride, In--Zn--Ta nitride, In- Zn--Nb nit
  • the main material is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more. More preferably 99.5% by mass or more, particularly preferably 99.9% by mass or more, and most preferably 99.95% by mass or more.
  • the thickness of the substrate protection member is preferably 0.0001 mm to 1.0 mm.
  • the width of the substrate protection member is preferably equal to or wider than the gap formed between the target members, preferably 5.0 mm to 30 mm. Further, when the substrate protective member having the shape as described above is arranged on the substrate, it can be attached using a bonding material for the target material, a conductive double-sided tape, or the like.
  • the substrate protection member in the present invention may have a structure in which a first substrate protection member and a second substrate protection member are laminated.
  • the sputtering target according to the present invention can be easily manufactured, and the first substrate protective member and the second substrate can be easily manufactured according to the material of the target material and the substrate.
  • the material for the material protection member can be appropriately selected and applied.
  • the widths of the first substrate protection member and the second substrate protection member may be the same or different.
  • the substrate protection member of this laminated structure is arranged along the gap formed between the target materials in a state in which the first substrate protection member is on the target material side and the second substrate protection member is on the substrate side. will be placed.
  • the base material protection member in the present invention is provided with a laminated structure, a narrow first base material protection member and a wide second base material protection member are laminated, and the second base material is provided on both end sides of the first base material protection member.
  • a structure in which the protection member is exposed can be employed.
  • the narrow first base material protection member is laminated on the wide second base material protection member.
  • the thickness of the first substrate protective member is preferably 0.0001 mm to 0.3 mm, and the thickness of the second substrate.
  • the thickness of the protective member is preferably 0.1 mm to 0.7 mm.
  • the total thickness of the first substrate protection member and the second substrate protection member is preferably 0.3 mm to 1.0 mm.
  • the width of these substrate protection members is preferably 5 mm to 30 mm.
  • the width of the first substrate protection member is equal to or greater than the gap formed between the target members.
  • a large width is preferable, and 5 mm to 20 mm is preferable in consideration of workability and the like.
  • the width of the wide second substrate protection member is preferably 3 mm to 10 mm wider than the width of the first substrate protection member.
  • the second substrate protection member is composed of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta. It is preferable to use any metal or an alloy containing any two or more of these.
  • the first substrate protection member is a metal of Zn, Ta, or Nb, or an alloy containing two or more of In, Zn, Ta, and Nb, or any of In, Zn, Ta, and Nb. It is preferable to form with ceramics containing one or more of these.
  • the first substrate protection member is preferably made of ceramics containing one or more of In, Zn, Ta, and Nb. These ceramics have the same composition as the target material, or a part of the composition of the target material. Therefore, even if they are mixed in the film when forming the film, the effect on the characteristics of the TFT element will be small. is. Ceramics include oxides, nitrides, and oxynitrides containing one or more of In, Zn, Ta, and Nb.
  • Ceramics include In 2 O 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , In—Zn oxide, In—Ta oxide, In—Nb oxide, Zn—Ta oxide, Zn— Nb oxide, Zn--Ta--Nb oxide, In--Zn--Ta oxide, In--Zn--Nb oxide, In--Zn--Ta--Nb oxide, InN, Zn 3 N 2 , TaN, NbN , In—Zn nitride, In—Ta nitride, In—Nb nitride, Zn—Ta nitride, Zn—Nb nitride, Zn—Ta—Nb nitride, In—Zn—Ta nitride, In—Zn -Nb nitride, etc., but not limited to these.
  • the main material is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more. More preferably 99.5% by mass or more, particularly preferably 99.9% by mass or more, and most preferably 99.95% by mass or more.
  • the main material is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass. Above, more preferably 99.5% by mass or more, particularly preferably 99.9% by mass or more, most preferably 99.95% by mass or more.
  • ceramics are used for the first substrate protection member, these ceramics are applied by vapor deposition, sputtering, plasma spraying, cold spraying, aerosol deposition, coating, etc. to protect the first substrate. You may apply to this invention by forming as a member.
  • the target material of the present invention is characterized by a high relative density in addition to the atomic ratios of In, Zn and X.
  • the target material of the present invention preferably exhibits a relative density as high as 95% or more. By exhibiting such a high relative density, it is possible to suppress the generation of particles when performing sputtering using the target material of the present invention, which is preferable.
  • the target material of the present invention preferably has a relative density of 97% or more, more preferably 98% or more, even more preferably 99% or more, and 100% or more. is particularly preferred, and more than 100% is especially preferred.
  • the target material of the present invention having such a relative density is preferably produced by the method described below. Relative density is measured according to the Archimedes method. A specific measuring method will be described in detail in Examples described later.
  • the target material of the present invention is composed of oxides containing In, Zn and X as described above.
  • This oxide can be an In oxide, a Zn oxide or an X oxide.
  • this oxide may be a composite oxide of any two or more elements selected from the group consisting of In, Zn and X.
  • Specific examples of composite oxides include In—Zn composite oxide, Zn—Ta composite oxide, In—Ta composite oxide, In—Nb composite oxide, Zn—Nb composite oxide, In—Nb composite oxide Examples include oxides, In--Zn--Ta composite oxides, In--Zn--Nb composite oxides, but are not limited to these.
  • the target material of the present invention particularly includes an In 2 O 3 phase, which is an In oxide, and a Zn 3 In 2 O 6 phase, which is a composite oxide of In and Zn. It is preferable from the viewpoint of increasing resistance and reducing resistance.
  • the fact that the target material of the present invention contains the In 2 O 3 phase and the Zn 3 In 2 O 6 phase can be confirmed by X-ray diffraction (hereinafter also referred to as “ XRD ”) measurement of the target material of the present invention. It can be determined by whether three phases and a Zn3In2O6 phase are observed .
  • the In 2 O 3 phase in the present invention may contain a trace amount of Zn element.
  • the fact that the In 2 O 3 phase has a crystal grain size that satisfies a specific range indicates the density and strength of the target material of the present invention. It is preferable from the viewpoint of increasing the resistance and reducing the resistance.
  • the crystal grain size of the In 2 O 3 phase is preferably 3.0 ⁇ m or less, more preferably 2.7 ⁇ m or less, and even more preferably 2.5 ⁇ m or less. The smaller the crystal grain size, the better, and although the lower limit is not particularly defined, it is usually 0.1 ⁇ m or more.
  • the crystal grain size of the Zn 3 In 2 O 6 phase also satisfies a specific range. It is preferable from the viewpoint of increasing the density and strength of the material and reducing the resistance.
  • the crystal grain size of the Zn 3 In 2 O 6 phase is preferably 3.9 ⁇ m or less, more preferably 3.5 ⁇ m or less, even more preferably 3.0 ⁇ m or less, It is more preferably 2.5 ⁇ m or less, even more preferably 2.3 ⁇ m or less, particularly preferably 2.0 ⁇ m or less, and most preferably 1.9 ⁇ m or less.
  • a target material may be manufactured by the method described later.
  • the crystal grain size of the In 2 O 3 phase and the crystal grain size of the Zn 3 In 2 O 6 phase are measured by observing the target material of the present invention with a scanning electron microscope (hereinafter also referred to as “SEM”). be done. A specific measuring method will be described in detail in Examples described later.
  • the oxide powder which is the raw material of the target material
  • the compact is fired to obtain a target material composed of a sintered compact.
  • Methods hitherto known in the art can be employed to obtain the molded body.
  • the casting method is also called the slip casting method.
  • a slurry containing raw material powders and organic additives is prepared using a dispersion medium.
  • the raw material powder it is preferable to use an oxide powder or a hydroxide powder.
  • oxide powder In oxide powder, Zn oxide powder, and X oxide powder are used.
  • In 2 O 3 can be used as the In oxide.
  • ZnO can be used as the Zn oxide.
  • Ta 2 O 5 and Nb 2 O 5 for example, can be used as X oxide powders.
  • the raw material powders are all mixed and then sintered.
  • the technology described in Patent Document 2 In 2 O 3 powder and Ta 2 O 5 powder are mixed and then sintered, and then the obtained sintered powder and ZnO powder are mixed. are mixed and fired again.
  • the particles constituting the powder become coarse particles due to the prior sintering, and it is not easy to obtain a target material with a high relative density.
  • the In oxide powder, the Zn oxide powder, and the X oxide powder are preferably mixed at room temperature, molded, and then fired, so that the relative density is high. A dense target material can be easily obtained.
  • the amounts of In oxide powder, Zn oxide powder, and X oxide powder used are preferably adjusted so that the atomic ratio of In, Zn, and X in the intended target material satisfies the range described above. .
  • the particle size of the raw material powder is preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less, expressed as a volume cumulative particle size D50 at a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method.
  • a target material having a high relative density can be easily obtained by using a raw material powder having a particle size within this range.
  • organic additives are substances used to suitably adjust the properties of slurries and compacts.
  • organic additives include binders, dispersants and plasticizers.
  • a binder is added to increase the strength of the compact.
  • binders include polyvinyl alcohol.
  • a dispersant is added to enhance the dispersibility of the raw material powder in the slurry.
  • dispersants include polycarboxylic acid-based dispersants and polyacrylic acid-based dispersants.
  • a plasticizer is added to increase the plasticity of the molded product. Examples of plasticizers include polyethylene glycol (PEG) and ethylene glycol (EG).
  • the dispersion medium used in preparing the slurry containing the raw material powder and the organic additive is not particularly limited, and can be appropriately selected from among water and water-soluble organic solvents such as alcohols, depending on the purpose. can.
  • the slurry is poured into a mold, and then the dispersion medium is removed to produce a compact.
  • molds that can be used include metal molds, gypsum molds, and resin molds that are pressurized to remove the dispersion medium.
  • a slurry similar to that used in the casting method is spray-dried to obtain a dry powder.
  • the resulting dry powder is filled into a mold and subjected to CIP molding.
  • the firing temperature is preferably 1200° C. or higher and 1600° C. or lower, more preferably 1300° C. or higher and 1500° C. or lower, and still more preferably 1350° C. or higher and 1450° C. or lower.
  • the firing time is preferably from 1 hour to 100 hours, more preferably from 2 hours to 50 hours, and even more preferably from 3 hours to 30 hours.
  • the heating rate is preferably 5°C/hour or more and 500°C/hour or less, more preferably 10°C/hour or more and 200°C/hour or less, and 20°C/hour or more and 100°C/hour or less. is more preferred.
  • a phase of In and Zn composite oxides such as Zn 5 In 2 O 8
  • Zn 5 In 2 O 8 a phase of In and Zn composite oxides, such as Zn 5 In 2 O 8
  • the raw material powder contains In 2 O 3 powder and ZnO powder
  • Zn 5 In 2 O 8 phase is generated, volume diffusion proceeds and densification is promoted, so it is preferable to reliably generate the Zn 5 In 2 O 8 phase.
  • the temperature to be maintained is not necessarily limited to one specific temperature, but may be a temperature range with a certain width.
  • a specific temperature selected from the range of 1000 ° C. or higher and 1250 ° C. or lower is T (° C.)
  • T ⁇ 10 ° C. preferably T ⁇ 5°C, more preferably T ⁇ 3°C, still more preferably T ⁇ 1°C.
  • the time for maintaining this temperature range is preferably 1 hour or more and 40 hours or less, more preferably 2 hours or more and 20 hours or less.
  • the target material obtained in this way can be processed to a predetermined size by grinding or the like.
  • a sputtering target is obtained by joining this to a base material.
  • the sputtering target thus obtained is suitably used for manufacturing an oxide semiconductor.
  • the target material of the present invention can be used for manufacturing TFTs.
  • the sputtering target of the present invention can be formed, for example, by arranging and bonding a plurality of target materials 20 to a Cu substrate 10 as shown in FIG. A gap 30 of 0.1 mm to 1.0 mm is formed between these target materials.
  • a substrate protection member 50 is attached to the surface of the substrate 10 at a position corresponding to the gap formed between the target materials.
  • the substrate protection member can be attached to the surface of the substrate 10 using a bonding material, a conductive double-sided tape, or the like.
  • a plurality of target members are arranged, for example, as shown in FIG. 1 and bonded using a bonding material such as In or Sn. This bonding is performed by applying a molten bonding material to the base material surface, placing a target material on the bonding material, and cooling to room temperature.
  • a bonding material such as In or Sn.
  • FIG. 3 shows a schematic cross-sectional view when using a single-layer substrate protection member.
  • the single-layer substrate protection member 50 has a thickness of 0.0001 mm to 1.0 mm, and the substrate protection member is made of any one of Zn, Ta, and Nb metals, or any two of In, Zn, Ta, and Nb. It is made of an alloy composed of the above, or a ceramic containing one or more of In, Zn, Ta, and Nb.
  • the In bonding material 60 is present on both end sides of the single-layer substrate protection member 50 .
  • FIG. 4 shows a schematic cross-sectional view of a two-layer structure substrate protection member in which substrate protection members having the same width are laminated.
  • the two-layer substrate protection member 50 is composed of a first substrate protection member 51 and a second substrate protection member 52 .
  • the width of the first substrate protection member 51 and the second substrate protection member is preferably 5 mm to 20 mm in consideration of workability.
  • the bonding material 60 of In exists on both end sides of the first substrate protection member 51 and the second substrate protection member 52 .
  • the substrate protection member may have a structure of three or more layers.
  • an intermediate line between the material of the first substrate protection member and the material of the second substrate protection member An intermediate layer may be provided using a material having a coefficient of expansion.
  • FIG. 5 shows a schematic cross-sectional view of a two-layer structure substrate protection member in which substrate protection members with different widths are laminated.
  • the two-layer substrate protection member 50 is composed of a first substrate protection member 51 and a second substrate protection member 52 .
  • the width of the first substrate protection member 51 is 5 mm to 20 mm in consideration of workability, and the width of the second substrate protection member 52 is 8 mm to 30 mm. Also, the width of the second substrate protection member is wider.
  • the first substrate protection member 51 approximately in the center of the second substrate protection member, the second substrate protection members 52 are exposed on both end sides of the first substrate protection member. there is The width of this exposed portion is between 1.5 mm and 5 mm on each side of each end.
  • the In bonding material 60 is present on both end sides of the first substrate protection member 51 and the second substrate protection member 52 .
  • the substrate protection member may have a structure of three or more layers.
  • an intermediate line between the material of the first substrate protection member and the material of the second substrate protection member An intermediate layer may be provided using a material having a coefficient of expansion.
  • the second substrate protection member 52 shown in FIGS. 4 and 5 has a thickness of 0.1 mm to 0.7 mm, and is made of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag. , and Ta, or an alloy containing any of these.
  • the first substrate protection member 51 shown in FIGS. 4 and 5 has a thickness of 0.0001 mm to 0.3 mm and is made of any one of Zn, Ta, and Nb, or any two of In, Zn, Ta, and Nb. It is made of an alloy composed of the above, or a ceramic containing one or more of In, Zn, Ta, and Nb.
  • the two-layer substrate protection member shown in FIGS. 4 and 5 can be produced, for example, by plasma spraying powder of Ta 2 O 5 or Nb 2 O 5 onto a Cu metal sheet with a thickness of 0.3 mm. can be done.
  • FIG. 6 shows a schematic cross-sectional view of a modified example using a single-layer substrate protection member.
  • a single layer substrate protection member 50 is filled in the gaps 30 between the target materials 20 .
  • the thickness of the substrate protection member 50 is set to 0.0001 mm to 1.0 mm so that the target material 20 and the substrate protection member 50 are not flush with each other. As a result, the sputtering of the substrate protection member 50 can be suppressed.
  • the In bonding material 60 is present between the target material 20 and the substrate protection member 50 and the substrate 10 .
  • FIG. 1 An example of the TFT element 100 is schematically shown in FIG.
  • a TFT element 100 shown in the figure is formed on one surface of a glass substrate 110 .
  • a gate electrode 120 is arranged on one surface of the glass substrate 110, and a gate insulating film 130 is formed so as to cover it.
  • a source electrode 160 , a drain electrode 161 and a channel layer 140 are arranged on the gate insulating film 130 .
  • An etching stopper layer 150 is arranged on the channel layer 140 .
  • a protective layer 170 is arranged at the top.
  • the channel layer 140 can be formed using the target material of the present invention.
  • the channel layer 140 is made of an oxide containing an indium (In) element, a zinc (Zn) element, and the additive element (X), and the indium (In) element, the zinc (Zn) element, and the additive element
  • the atomic ratio of (X) satisfies the above formula (1).
  • the formulas (2) and (3) described above are satisfied.
  • the oxide semiconductor device formed from the target material of the present invention preferably has an amorphous structure from the viewpoint of improving the performance of the device.
  • this invention also includes the following inventions in view of the said embodiment.
  • [1] composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X),
  • the additive element (X) consists of at least one element selected from tantalum (Ta) and niobium (Nb),
  • the atomic ratio of each element satisfies all of the formulas (1) to (3) (X in the formula is the sum of the content ratios of the additive elements).
  • a sputtering target formed by bonding 0.4 ⁇ (In+X)/(In+Zn+X) ⁇ 0.75 (1) 0.25 ⁇ Zn/(In+Zn+X) ⁇ 0.6 (2) 0.001 ⁇ X/(In+Zn+X) ⁇ 0.015 (3)
  • the substrate protection member contains any one of Zn, Ta, and Nb metals, or an alloy containing two or more of In, Zn, Ta, and Nb. target.
  • the substrate protection member has a structure in which a first substrate protection member on the sputtering target material side and a second substrate protection member on the substrate side are laminated.
  • the second substrate protection member is any metal of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta, or any of these metals.
  • An alloy containing two or more kinds of metals is included, and the first substrate protective member contains any one of Zn, Ta, and Nb, or an alloy containing two or more of In, Zn, Ta, and Nb.
  • the second substrate protection member is any metal of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta, or any of these metals
  • Example 1 (Examples 1-1 to 1-6)] In2O3 powder with an average particle size D50 of 0.6 ⁇ m , ZnO powder with an average particle size D50 of 0.8 ⁇ m, and Ta2O5 powder with an average particle size D50 of 0.6 ⁇ m were ball-mill dry mixed with zirconia balls to prepare a mixed raw material powder.
  • the average particle size D50 of each powder was measured using a particle size distribution analyzer MT3300EXII manufactured by Microtrack Bell Co., Ltd. In the measurement, water was used as a solvent, and the refractive index of the substance to be measured was 2.20.
  • the mixing ratio of each powder was such that the atomic ratios of In, Zn, and Ta were the values shown in Table 4 below.
  • the prepared slurry was poured into a metal mold sandwiching a filter, and then the water in the slurry was discharged to obtain a compact.
  • a sintered body was produced by sintering this molded body. Firing was performed in an atmosphere with an oxygen concentration of 20% by volume at a firing temperature of 1400° C. for 8 hours at a temperature rising rate of 50° C./hour and a temperature decreasing rate of 50° C./hour. During the firing, the temperature was maintained at 1100° C. for 6 hours to promote the formation of Zn 5 In 2 O 8 .
  • the sintered body thus obtained was cut to obtain an oxide sintered body (target material) of width 210 mm x length 710 mm x thickness 6 mm.
  • a #170 whetstone was used for cutting.
  • a ⁇ 8 inch target material was cut out from the target material and divided into two at the center.
  • the two divided target materials were bonded to a backing plate (base material) made of Cu with In solder so that the gap formed between the target materials was 0.5 mm to obtain a sputtering target.
  • a substrate protection member was arranged between the backing plate made of Cu and the target material.
  • Example 1-1 A Ta metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protective member in the sputtering target described above.
  • Example 1-2 A Zn metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
  • Example 1-3 A ceramic sheet having the same composition as the target material and having a thickness of 0.3 mm and a width of 20 mm was placed as a single-layer substrate protection member.
  • Example 1-4 A Ta film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
  • Example 1-5 As a substrate protection member of laminated structure, a Ta 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was plasma-sprayed onto a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
  • Example 1-6 As a substrate protection member of laminated structure, a film having the same composition as the target material and having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The one formed as the first substrate protection member was arranged. [Comparative Example 1] Bonding was performed without arranging the substrate protective member in the gap.
  • Example 2 the raw material powders were mixed so that the atomic ratios of In, Zn, and Ta were the values shown in Table 4 below.
  • a sputtering target was obtained in the same manner as in Example 1 except for this.
  • As the substrate protective member the same one as in Example 1-5 was arranged.
  • Example 8-1 to 8-6 In Example 1, Nb 2 O 5 powder having an average particle size D 50 of 0.7 ⁇ m was used instead of Ta 2 O 5 powder. The raw material powders were mixed so that the atomic ratios of In, Zn, and Nb were the values shown in Table 1 below. A sputtering target was obtained in the same manner as in Example 1 except for this.
  • Example 8-1 A Nb metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protective member in the sputtering target described above.
  • Example 8-2 A Zn metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
  • Example 8-3 A ceramic sheet having the same composition as the target material and having a thickness of 0.3 mm and a width of 20 mm was placed as a single-layer substrate protection member.
  • Example 8-4 As a substrate protection member of laminated structure, a Nb film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
  • a first Nb 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
  • Example 8-6 As a substrate protection member of laminated structure, a film having the same composition as the target material and having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The one formed as the first substrate protection member was arranged. [Comparative Example 2] Bonding was performed without arranging the substrate protective member in the gap.
  • Example 9 (Examples 9-1 to 9-9)
  • a sputtering target was obtained in the same manner as in Example 1 except for this.
  • Example 9-1 A Ta metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protective member in the sputtering target described above.
  • Example 9-2 A Nb metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
  • Example 9-3 A Zn metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
  • Example 9-4 A ceramic sheet having the same composition as the target material and having a thickness of 0.3 mm and a width of 20 mm was placed as a single-layer substrate protection member.
  • Example 9-5 A Ta film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
  • Example 9-6 As a substrate protection member of laminated structure, a Nb film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
  • Example 9-7 As a substrate protection member of laminated structure, a Ta 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was plasma-sprayed onto a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
  • Example 9-8 As a substrate protection member of laminated structure, a first Nb 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
  • Example 9-9 As a substrate protection member of laminated structure, a film having the same composition as the target material and having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The one formed as the first substrate protection member was arranged. [Comparative Example 3] Bonding was performed without arranging the substrate protective member in the gap.
  • the ratio of each metal contained in the target materials obtained in Examples and Comparative Examples was measured by ICP emission spectrometry. It was confirmed that the atomic ratios of In, Zn, Ta, and Nb were the same as the raw material ratios shown in Table 4.
  • the air mass of the target material is divided by the volume (the mass of the target material in water/the specific gravity of water at the measurement temperature), and the percentage value with respect to the theoretical density ⁇ (g/cm 3 ) based on the following formula (i) is the relative density (unit: %). ... (i) (In the formula, Ci represents the content (% by mass) of the constituent material of the target material, and ⁇ i represents the density (g/cm 3 ) of each constituent material corresponding to Ci.) In the present invention, the constituent substances of the target material are considered to be In 2 O 3 , ZnO, Ta 2 O 5 and Nb 2 O 5 .
  • ⁇ 1 Density of In 2 O 3 (7.18 g/cm 3 ) C2: % by mass of ZnO in target material ⁇ 2: Density of ZnO (5.60 g/cm 3 ) C3: % by mass of Ta 2 O 5 in target material ⁇ 3: Density of Ta 2 O 5 (8.73 g/cm 3 ) C4: % by mass of Nb 2 O 5 in target material ⁇ 4: Density of Nb 2 O 5 (4.60 g/cm 3 ) is applied to the formula (i), the theoretical density ⁇ can be calculated.
  • the mass % of In 2 O 3 , the mass % of ZnO, the mass % of Ta 2 O 5 and the mass % of Nb 2 O 5 can be obtained from the analysis result of each element of the target material by ICP emission spectrometry.
  • FIG. 8 shows the results of XRD measurement on the target material obtained in Example 1.
  • FIG. ⁇ Radiation source CuK ⁇ ray ⁇ Tube voltage: 40 kV ⁇ Tube current: 30mA
  • ⁇ Scanning speed 5deg/min
  • the obtained SEM image was analyzed by image processing software: ImageJ 1.51k (http://imageJ.nih.gov/ij/, provider: National Institutes of Health (NIH)).
  • image processing software ImageJ 1.51k (http://imageJ.nih.gov/ij/, provider: National Institutes of Health (NIH)).
  • the specific procedure is as follows.
  • the sample used for taking the SEM image was subjected to thermal etching at 1100° C. for 1 hour, and an image in which grain boundaries appeared was obtained by performing SEM observation.
  • the obtained image was first drawn along the grain boundaries of the In 2 O 3 phase. After all plots were completed, particle analysis was performed (Analyze ⁇ Analyze Particles) to obtain the area at each particle. After that, the equivalent circle diameter was calculated from the area of each particle obtained.
  • the arithmetic average value of the area equivalent circle diameters of all particles calculated in 10 fields of view was taken as the size of the crystal grains of the In 2 O 3 phase. Subsequently, drawing was performed along the grain boundaries of the Zn 3 In 2 O 6 phase, and the equivalent circle diameter was calculated from the area of each grain obtained by performing the same analysis. The arithmetic average value of the equivalent circle diameters of all particles calculated in 10 fields of view was taken as the size of the crystal grains of the Zn 3 In 2 O 6 phase.
  • the Cu content in the sputtered film was less than 2 ppm when the substrate protection member was arranged.
  • the Cu content of the sputtered film was 21 to 23 ppm when the substrate protection member was not arranged. From this result, it can be seen that contamination of the sputtered film with Cu can be prevented by arranging the substrate protection member.
  • the TFT element 1 shown in FIG. 6 was produced by photolithography.
  • a Mo thin film was formed as a gate electrode 20 on a glass substrate (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) using a DC sputtering apparatus.
  • a SiOx thin film was formed as the gate insulating film 30 under the following conditions.
  • Deposition device Plasma CVD device PD-2202L manufactured by Samco Co., Ltd.
  • Deposition gas SiH 4 /N 2 O/N 2 mixed gas
  • Deposition pressure 110 Pa
  • Substrate temperature 250-400°C
  • the channel layer 40 was formed using the sputtering targets obtained in Examples 1-5, 2 to 7, 8-5, 9-6 and Comparative Examples 1 to 3 under the following conditions: A thin film having a thickness of 30 nm was formed by sputtering. When forming the channel layer 40, the film was formed directly above the gap formed between the target materials.
  • ⁇ Deposition device DC sputtering device SML-464 manufactured by Tokki Co., Ltd.
  • ⁇ Sputtering gas Ar/O 2 mixed gas
  • ⁇ Sputtering gas pressure 0.4 Pa ⁇ O2 gas partial pressure: 50% ⁇ Substrate temperature: room temperature
  • ⁇ Sputtering power 3 W/cm 2
  • etching stopper layer 50 a SiOx thin film was formed using the plasma CVD apparatus.
  • Mo thin films were formed as the source electrode 60 and the drain electrode 61 using the DC sputtering apparatus.
  • a SiOx thin film was deposited as the protective layer 70 using the plasma CVD apparatus.
  • heat treatment was performed at 350°C.
  • the measured transfer characteristics are field effect mobility ⁇ (cm 2 /Vs), SS (Subthreshold Swing) value (V/dec) and threshold voltage Vth (V).
  • the transfer characteristics were measured with a Semiconductor Device Analyzer B1500A manufactured by Agilent Technologies. Tables 1 and 2 show the measurement results. Although not shown in the table, the present inventor confirmed by XRD measurement that the channel layer 40 of the TFT element 1 obtained in each example had an amorphous structure.
  • the field-effect mobility is the channel mobility obtained from the change in the drain current with respect to the gate voltage when the drain voltage is constant in the saturation region of the MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) operation.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the SS value is the gate voltage required to increase the drain current by one order of magnitude near the threshold voltage, and the smaller the value, the better the transfer characteristics.
  • the threshold voltage is the voltage when a positive voltage is applied to the drain electrode and either positive or negative voltage is applied to the gate electrode, and the drain current flows to 1 nA.
  • the value is preferably close to 0V. .
  • it is more preferably ⁇ 2 V or higher, even more preferably ⁇ 1 V or higher, and even more preferably 0 V or higher. Further, it is more preferably 3 V or less, even more preferably 2 V or less, and even more preferably 1 V or less.
  • the TFT elements manufactured using the target material obtained in each example have excellent transfer characteristics.
  • Example 1 contained an In2O3 phase and a Zn3In2O6 phase. Similar results were obtained for the target materials obtained in Examples 2-9.
  • the present invention even in a large-area sputtering target obtained by bonding a plurality of target materials, it is possible to effectively prevent the constituent material of the base material from being mixed into the thin film to be formed. can provide a sputtering target.
  • the sputtering target of the present invention can be suitably used in the technical field of thin film transistors (TFTs) used in flat panel displays (FPDs).
  • TFTs thin film transistors
  • FPDs flat panel displays
  • the constituent materials of the substrate are not sputtered compared to conventional sputtering targets, and the constituent materials are mixed into the thin film to be formed. can be effectively prevented. Therefore, it is possible to suppress the production of unintended sputtering films containing many impurities, which leads to the achievement of sustainable management, efficient utilization, and decarbonization (carbon neutral) of natural resources.

Abstract

A sputtering target according to the present invention is formed by using a bonding material to bond a plurality of sputtering target members to a substrate. The sputtering target members are composed of oxides containing indium (In), zinc (Zn), and an additional element (X), with the additional element (X) being at least one element selected from among tantalum (Ta) and niobium (Nb), such that the atomic ratios for the respective elements satisfy prescribed relationships. The sintering target has substrate protecting members positioned in the gaps formed between the plurality of sputtering target members.

Description

スパッタリングターゲットsputtering target
 本発明はスパッタリングターゲットに関する。 The present invention relates to sputtering targets.
 フラットパネルディスプレイ(以下「FPD」ともいう。)に使用される薄膜トランジスタ(以下「TFT」ともいう。)の技術分野においては、FPDの高機能化に伴い、従来のアモルファスシリコンに代わってIn-Ga-Zn複合酸化物(以下「IGZO」ともいう。)に代表される酸化物半導体が注目されており、実用化が進んでいる。IGZOは、高い電界効果移動度と低いリーク電流を示すという利点を有する。近年ではFPDの更なる高機能化が進むに従い、IGZOが示す電界効果移動度よりも更に高い電界効果移動度を示す材料が望まれている。 In the technical field of thin film transistors (hereinafter also referred to as "TFTs") used in flat panel displays (hereinafter also referred to as "FPDs"), In--Ga is being used in place of conventional amorphous silicon as FPDs become more functional. Oxide semiconductors typified by -Zn composite oxides (hereinafter also referred to as “IGZO”) have attracted attention and are being put to practical use. IGZO has the advantage of exhibiting high field effect mobility and low leakage current. In recent years, as FPDs have become more sophisticated, a material that exhibits a field effect mobility higher than that of IGZO has been desired.
 例えば特許文献1及び2には、インジウム(In)元素及び亜鉛(Zn)元素と任意の元素XからなるIn-Zn-X複合酸化物によるTFT用の酸化物半導体が提案されている。同文献によればこの酸化物半導体は、In-Zn-X複合酸化物からなるターゲット材を用いたスパッタリングによって形成される。 For example, Patent Literatures 1 and 2 propose oxide semiconductors for TFTs made of In--Zn--X composite oxides composed of indium (In) element, zinc (Zn) element, and arbitrary element X. According to the document, this oxide semiconductor is formed by sputtering using a target material composed of an In--Zn--X composite oxide.
 また、スパッタリングに用いる酸化物半導体のスパッタリングターゲットでは、その素材がセラミックスであることから、大面積のターゲットを一枚のターゲット材で構成することが難しい。そのため、ある程度の大きさを有するターゲット材を複数準備し、所望の面積を有する基材に接合することで、大面積の酸化物半導体スパッタリングターゲットが製造されている(例えば、特許文献3参照)。 In addition, since the oxide semiconductor sputtering target used for sputtering is made of ceramics, it is difficult to form a large-area target from a single sheet of target material. Therefore, a large-area oxide semiconductor sputtering target is manufactured by preparing a plurality of target materials having a certain size and bonding them to a substrate having a desired area (see, for example, Patent Document 3).
 スパッタリングターゲットの基材には、通常、CuやTi、SUS等が用いられ、これら基材とターゲット材との接合には、熱伝導が良好な接合材、例えばIn等の金属が使用されている。例えば、大型の酸化物半導体スパッタリングターゲットを製造する際、大型のCu製平板型基材やTi製円筒形基材を準備し、その基材に接合するターゲット材を複数準備する。そして、基材に複数のターゲット材を配置し、In系やSn系金属の接合材により、ターゲット材を基材に接合する。この接合の際、基材とターゲット材との熱膨張の差を考慮し、隣接するターゲット材は、室温時に0.1mm~1.0mmの間隙ができるように配置されている。 Cu, Ti, SUS, etc. are usually used for the base material of the sputtering target, and a bonding material with good thermal conductivity, for example, a metal such as In, is used for bonding the base material and the target material. . For example, when manufacturing a large-sized oxide semiconductor sputtering target, a large-sized Cu plate-shaped base material or a Ti-made cylindrical base material is prepared, and a plurality of target materials to be bonded to the base material are prepared. Then, a plurality of target materials are arranged on the base material, and the target materials are bonded to the base material with a bonding material of In-based or Sn-based metal. At the time of this bonding, considering the difference in thermal expansion between the base material and the target material, the adjacent target materials are arranged so that a gap of 0.1 mm to 1.0 mm is formed at room temperature.
US2013/270109号公報US2013/270109 publication US2014/102892号公報US2014/102892 WO2012/063524号公報WO2012/063524
 このような複数のターゲット材を接合して形成したスパッタリングターゲットを使用し、スパッタリングにより薄膜の半導体素子を形成する場合、スパッタリング中にターゲット材の間隙から基材の構成材料であるCuやTiもスパッタリングされて、薄膜中に混入するという問題が懸念されている。薄膜中のCuやTiの混入は数ppmレベルであるが、その影響は酸化物半導体には極めて大きく、例えば、ターゲット材の間隙付近で形成された、Cu、Tiが混入した半導体素子と、それ以外の部分の半導体素子を比較すると、TFT素子の電界効果移動度が低くなる傾向があり、ON/OFF比も低下する傾向がある。このような不具合は、スパッタリングターゲットの大面積化を促進するためにも、解消すべき課題である。 When a sputtering target formed by bonding a plurality of such target materials is used to form a thin film semiconductor element by sputtering, Cu and Ti, which are constituent materials of the base material, are also sputtered from the gaps between the target materials during sputtering. As a result, there is concern about the problem of inclusion in the thin film. Although the amount of Cu and Ti mixed in the thin film is at the level of several ppm, its influence is extremely large for oxide semiconductors. Comparing the semiconductor elements of the other parts, the field effect mobility of the TFT element tends to be low, and the ON/OFF ratio tends to be low. Such a problem is a problem to be solved in order to promote an increase in area of the sputtering target.
 本発明は、複数のターゲット材を接合して得られた大面積のスパッタリングターゲットであっても、基材の構成材料が、成膜する薄膜中に混入することを効果的に防止することができる、スパッタリングターゲットを提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention can effectively prevent the constituent materials of the substrate from being mixed into the thin film to be formed, even in a large-area sputtering target obtained by bonding a plurality of target materials. , the purpose of which is to provide a sputtering target.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、複数のスパッタリングターゲット材間に形成される間隙に基材保護部材を配置することにより、基材の構成材料がスパッタリングされず、当該構成材料が成膜する薄膜中に混入することを効果的に防止することができることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that by arranging a substrate protection member in a gap formed between a plurality of sputtering target materials, the constituent materials of the substrate are not sputtered, and the It has been found that it is possible to effectively prevent the constituent materials from being mixed into the thin film to be formed.
 すなわち、本発明は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
 添加元素(X)はタンタル(Ta)、及びニオブ(Nb)から選ばれる少なくとも1つの元素からなり、
 各元素の原子比が式(1)ないし(3)の全てを満たす(式中のXは、前記添加元素の含有比の総和とする。)複数のスパッタリングターゲット材を、基材に接合材により接合して形成されるスパッタリングターゲットであって、
   0.4≦(In+X)/(In+Zn+X)<0.75(1)
   0.25<Zn/(In+Zn+X)≦0.6    (2)
   0.001≦X/(In+Zn+X)≦0.015  (3)
 前記複数のスパッタリングターゲット材間に形成される間隙に配置される基材保護部材を有するスパッタリングターゲットを提供するものである。
That is, the present invention comprises an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X),
The additive element (X) consists of at least one element selected from tantalum (Ta) and niobium (Nb),
The atomic ratio of each element satisfies all of the formulas (1) to (3) (X in the formula is the sum of the content ratios of the additive elements). A sputtering target formed by bonding,
0.4≦(In+X)/(In+Zn+X)<0.75 (1)
0.25<Zn/(In+Zn+X)≦0.6 (2)
0.001≦X/(In+Zn+X)≦0.015 (3)
A sputtering target is provided which has a substrate protection member arranged in a gap formed between the plurality of sputtering target materials.
図1は、本発明のスパッタリングターゲットの一実施形態の断面概略図を示す模式図である。FIG. 1 : is a schematic diagram which shows the cross-sectional schematic of one Embodiment of the sputtering target of this invention. 図2は、本発明のスパッタリングターゲットの他の実施形態の断面概略図を示す模式図である。FIG. 2 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention. 図3は、本発明のスパッタリングターゲットのその他の実施形態の断面概略図を示す模式図である。FIG. 3 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention. 図4は、本発明のスパッタリングターゲットのさらにその他の実施形態の断面概略図を示す模式図である。FIG. 4 is a schematic diagram showing a schematic cross-sectional view of still another embodiment of the sputtering target of the present invention. 図5は、本発明のスパッタリングターゲットのその他の実施形態の断面概略図を示す模式図である。FIG. 5 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention. 図6は、本発明のスパッタリングターゲットのその他の実施形態の断面概略図を示す模式図である。FIG. 6 is a schematic diagram showing a schematic cross-sectional view of another embodiment of the sputtering target of the present invention. 図7は、本発明のスパッタリングターゲットを用いて作製したTFT素子の実施形態の構造を示す模式図である。FIG. 7 is a schematic diagram showing the structure of an embodiment of a TFT element produced using the sputtering target of the present invention. 図8は、実施例1で得たターゲット材のXRD測定結果を示すグラフである。8 is a graph showing the XRD measurement results of the target material obtained in Example 1. FIG.
 以下本発明を、その好ましい実施形態に基づき説明する。なお、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下において「~」は、同様の意味をもって使用される。 The present invention will be described below based on its preferred embodiments. In addition, "~" indicating a numerical range is used to include the numerical values described before and after it as a lower limit and an upper limit, and unless otherwise specified, "~" has the same meaning below. used.
 本発明はスパッタリングターゲット(以下「ターゲット」ともいう。)に関するものである。本発明のターゲットに用いられるスパッタリングターゲット材(以下「ターゲット材」ともいう。)は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成されるものである。添加元素(X)はタンタル(Ta)及びニオブ(Nb)から選ばれる少なくとも1つの元素からなる。本発明のターゲット材は、これを構成する金属元素としてIn、Zn及び添加元素(X)を含むものであるが、本発明の効果を損なわない範囲で、これらの元素の他に、意図的に又は不可避的に、微量元素を含んでいてもよい。微量元素としては、例えば後述する有機添加物に含まれる元素やターゲット材製造時に混入するボールミル等のメディア原料が挙げられる。本発明のターゲット材における微量元素としては、例えばFe、Cr、Ni、Al、Si、W、Zr、Na、Mg、K、Ca、Ti、Y、Ga、Sn、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr及びPb等が挙げられる。それらの含有量は本発明のターゲット材が含むIn、Zn及びXを含む酸化物の合計質量に対して、各々通常100質量ppm(以下「ppm」ともいう。)以下であることが好ましく、より好ましくは80ppm以下、更に好ましくは50ppm以下である。これらの微量元素の合計量は500ppm以下であることが好ましく、より好ましくは300ppm以下、更に好ましくは100ppm以下である。本発明のターゲット材に微量元素が含まれる場合は、前記合計質量には微量元素の質量も含まれる。 The present invention relates to a sputtering target (hereinafter also referred to as "target"). The sputtering target material (hereinafter also referred to as "target material") used for the target of the present invention is composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X). . The additive element (X) consists of at least one element selected from tantalum (Ta) and niobium (Nb). The target material of the present invention contains In, Zn, and an additive element (X) as metallic elements constituting the target material. In principle, it may contain trace elements. Trace elements include, for example, elements contained in organic additives described later and media raw materials such as ball mills that are mixed during the production of the target material. Examples of trace elements in the target material of the present invention include Fe, Cr, Ni, Al, Si, W, Zr, Na, Mg, K, Ca, Ti, Y, Ga, Sn, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Pb and the like. Their content is usually 100 ppm by mass (hereinafter also referred to as "ppm") with respect to the total mass of oxides containing In, Zn and X contained in the target material of the present invention. It is preferably 80 ppm or less, more preferably 50 ppm or less. The total amount of these trace elements is preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 100 ppm or less. When trace elements are included in the target material of the present invention, the total mass includes the trace element mass.
 本発明のターゲット材は好適には、上述した酸化物を含む焼結体から構成されている。かかる焼結体及びスパッタリングターゲット材の形状に特に制限はなく、従来公知の形状、例えば平板型及び円筒形などを採用することができる。 The target material of the present invention is preferably composed of a sintered body containing the oxides described above. The shape of the sintered body and the sputtering target material is not particularly limited, and conventionally known shapes such as a flat plate shape and a cylindrical shape can be adopted.
 本発明のターゲット材は、これを構成する金属元素、すなわちIn、Zn及びXの原子比が特定の範囲であることが、該ターゲット材から形成される酸化物半導体素子の性能が向上する点から好ましい。 In the target material of the present invention, the atomic ratio of the metal elements constituting the target material, that is, In, Zn and X, is within a specific range, because the performance of the oxide semiconductor device formed from the target material is improved. preferable.
 具体的には、In及びXに関しては以下の式(1)で表される原子比を満たすことが好ましい(式中のXは、前記添加元素の含有比の総和とする。以下、式(2)及び(3)についても同じである。)。
   0.4≦(In+X)/(In+Zn+X)<0.75 (1)
 Znに関しては以下の式(2)で表される原子比を満たすことが好ましい。
   0.25<Zn/(In+Zn+X)≦0.6     (2)
 Xに関しては以下の式(3)で表される原子比を満たすことが好ましい。
   0.001≦X/(In+Zn+X)≦0.015  (3)
Specifically, with respect to In and X, it is preferable that the atomic ratio represented by the following formula (1) is satisfied (X in the formula is the sum of the content ratios of the additive elements. Hereinafter, the formula (2 ) and (3).).
0.4≦(In+X)/(In+Zn+X)<0.75 (1)
Zn preferably satisfies the atomic ratio represented by the following formula (2).
0.25<Zn/(In+Zn+X)≦0.6 (2)
X preferably satisfies the atomic ratio represented by the following formula (3).
0.001≦X/(In+Zn+X)≦0.015 (3)
 In、Zn及びXの原子比が前記の式(1)ないし(3)の全てを満たすことで、本発明のターゲット材を用い、スパッタリングによって形成された酸化物薄膜を有する半導体素子は、高い電界効果移動度、低いリーク電流及び0Vに近いしきい電圧を示すものとなる。これらの利点を一層顕著なものとする観点から、In及びXに関しては下記の式(1-2)ないし(1-5)を満たすことが更に好ましい。
   0.43≦(In+X)/(In+Zn+X)≦0.74 (1-2)
   0.48≦(In+X)/(In+Zn+X)≦0.73 (1-3)
   0.53≦(In+X)/(In+Zn+X)≦0.72 (1-4)
   0.58≦(In+X)/(In+Zn+X)≦0.70 (1-5)
When the atomic ratio of In, Zn and X satisfies all of the above formulas (1) to (3), a semiconductor device having an oxide thin film formed by sputtering using the target material of the present invention can withstand a high electric field. It exhibits effective mobility, low leakage current and threshold voltage close to 0V. From the viewpoint of making these advantages more remarkable, it is more preferable that In and X satisfy the following formulas (1-2) to (1-5).
0.43≦(In+X)/(In+Zn+X)≦0.74 (1-2)
0.48≦(In+X)/(In+Zn+X)≦0.73 (1-3)
0.53≦(In+X)/(In+Zn+X)≦0.72 (1-4)
0.58≦(In+X)/(In+Zn+X)≦0.70 (1-5)
 前記と同様の観点から、Znに関しては下記の式(2-2)ないし(2-5)を満たすことが更に好ましく、Xに関しては下記の式(3-2)ないし(3-5)を満たすことが更に好ましい。 From the same viewpoint as above, it is more preferable that Zn satisfies the following formulas (2-2) to (2-5), and X satisfies the following formulas (3-2) to (3-5). is more preferred.
   0.26≦Zn/(In+Zn+X)≦0.57    (2-2)
   0.27≦Zn/(In+Zn+X)≦0.52    (2-3)
   0.28≦Zn/(In+Zn+X)≦0.47    (2-4)
   0.30≦Zn/(In+Zn+X)≦0.42    (2-5)
   0.0015≦X/(In+Zn+X)≦0.013  (3-2)
   0.002<X/(In+Zn+X)≦0.012   (3-3)
   0.0025≦X/(In+Zn+X)≦0.010  (3-4)
   0.003≦X/(In+Zn+X)≦0.009   (3-5)
0.26≦Zn/(In+Zn+X)≦0.57 (2-2)
0.27≦Zn/(In+Zn+X)≦0.52 (2-3)
0.28≦Zn/(In+Zn+X)≦0.47 (2-4)
0.30≦Zn/(In+Zn+X)≦0.42 (2-5)
0.0015≦X/(In+Zn+X)≦0.013 (3-2)
0.002<X/(In+Zn+X)≦0.012 (3-3)
0.0025≦X/(In+Zn+X)≦0.010 (3-4)
0.003≦X/(In+Zn+X)≦0.009 (3-5)
 添加元素(X)は、上述のとおりTa及びNbから選択される1種以上が用いられる。これらの元素は、それぞれ単独で用いることができ、或いは2種を組み合わせて用いることもできる。特に添加元素(X)としてTaを用いることが、本発明のターゲット材から製造される酸化物半導体素子の総合的な性能の観点、及びターゲット材を製造する上での経済性の点から好ましい。 As the additive element (X), one or more selected from Ta and Nb are used as described above. Each of these elements can be used alone, or two of them can be used in combination. In particular, it is preferable to use Ta as the additive element (X) from the viewpoint of the overall performance of the oxide semiconductor device manufactured from the target material of the present invention and the economical efficiency in manufacturing the target material.
 本発明のターゲット材は、上述の(1)ないし(3)の関係に加えて、InとXとの原子比に関して以下の式(4)を満たすことが、本発明のターゲット材から形成される酸化物半導体素子の電界効果移動度を一層高める点、及び0Vに近いしきい電圧を示す点から好ましい。
   0.970≦In/(In+X)≦0.999 (4)
In addition to the relationships (1) to (3) above, the target material of the present invention satisfies the following formula (4) with respect to the atomic ratio of In and X. It is preferable in terms of further increasing the field effect mobility of the oxide semiconductor device and exhibiting a threshold voltage close to 0V.
0.970≦In/(In+X)≦0.999 (4)
 式(4)から明らかなとおり、本発明のターゲット材においては、Inの量に対して極めて少量のXを用いることで、ターゲット材から形成される酸化物半導体素子の電界効果移動度が高くなる。このことは本発明者が初めて見いだしたものである。これまで知られている従来技術(例えば特許文献1及び2に記載の従来技術)では、Inの量に対するXの使用量は本発明よりも多い。 As is clear from the formula (4), in the target material of the present invention, by using an extremely small amount of X with respect to the amount of In, the field effect mobility of the oxide semiconductor device formed from the target material is increased. . This fact was found by the inventor for the first time. In the conventional techniques known so far (for example, the conventional techniques described in Patent Documents 1 and 2), the amount of X used relative to the amount of In is larger than that of the present invention.
 ターゲット材から形成される酸化物半導体の電界効果移動度が一層高くなる観点、及び0Vに近いしきい電圧を示す観点から、InとXとの原子比は以下の式(4-2)ないし(4-4)を満たすことが更に好ましい。
   0.980≦In/(In+X)≦0.997 (4-2)
   0.990≦In/(In+X)≦0.995 (4-3)
   0.990<In/(In+X)≦0.993 (4-4)
From the viewpoint of further increasing the field effect mobility of the oxide semiconductor formed from the target material and from the viewpoint of exhibiting a threshold voltage close to 0 V, the atomic ratio of In and X is the following formula (4-2) to ( 4-4) is more preferably satisfied.
0.980≦In/(In+X)≦0.997 (4-2)
0.990≦In/(In+X)≦0.995 (4-3)
0.990<In/(In+X)≦0.993 (4-4)
 ターゲット材から形成される酸化物半導体素子の電界効果移動度の値が大きいことは、酸化物半導体素子であるTFT素子の伝達特性が良好となることに起因するFPDの高機能化の点から好ましい。詳細にはターゲット材から形成される酸化物半導体素子を備えたTFTは、その電界効果移動度(cm/Vs)が、45cm/Vs以上であることが好ましく、50cm/Vs以上であることが更に好ましく、60cm/Vs以上であることがより好ましく、70cm/Vs以上であることが一層好ましく、80cm/Vs以上であることが更に一層好ましく、90cm/Vs以上であることがより一層好ましく、100cm/Vs以上であることが特に好ましい。電界効果移動度の値は大きければ大きいほど、FPDの高機能化の点から好ましいが、電界効果移動度が200cm/Vs程度に高ければ、十分に満足すべき程度の性能が得られる。 A large value of the field effect mobility of the oxide semiconductor element formed from the target material is preferable from the viewpoint of improving the function of the FPD due to the favorable transfer characteristics of the TFT element, which is the oxide semiconductor element. . Specifically, the field effect mobility (cm 2 /Vs) of the TFT including the oxide semiconductor element formed from the target material is preferably 45 cm 2 /Vs or more, and more preferably 50 cm 2 /Vs or more. more preferably 60 cm 2 /Vs or more, still more preferably 70 cm 2 /Vs or more, even more preferably 80 cm 2 /Vs or more, and 90 cm 2 /Vs or more is more preferable, and 100 cm 2 /Vs or more is particularly preferable. A higher value of the field effect mobility is preferable from the standpoint of improving the functionality of the FPD.
 本発明のターゲット材に含まれる各金属の割合は、例えばICP発光分光測定によって測定される。 The proportion of each metal contained in the target material of the present invention is measured, for example, by ICP emission spectrometry.
 本発明の、「複数のスパッタリングターゲット材間に形成される間隙に配置される基材保護部材」とは、基材に接合された複数のターゲット材の間隙から露出する基材の表面を覆うものであって、成膜する薄膜に悪影響を与えるような物質を、スパッタリング時に間隙から発生させない作用を有するものをいう。このような基材保護部材としては、基材表面に、テープ状の基材保護部材を配置したり、基材保護部材となる物質を塗布、めっき、スパッタリング、溶射などにより膜状或いはシート状、リボン状に設けたりすることができる。尚、基材保護部材は、前記間隙内を充填するように配設することもできる。また、平面部材の一部が突出し、かかる凸部が上記間隙内を埋設するようにしてもよい。本発明において、基材保護部材はテープ状の物を配置することが特に好ましい。 In the present invention, the "substrate protective member arranged in the gap formed between the plurality of sputtering target materials" is a member that covers the surface of the substrate exposed from the gaps of the plurality of target materials bonded to the substrate. It has the effect of preventing substances that may adversely affect the thin film to be formed from the gap during sputtering. As such a substrate protection member, a tape-shaped substrate protection member is arranged on the substrate surface, or a film or sheet is formed by coating, plating, sputtering, thermal spraying, or the like with a substance that will become the substrate protection member. It can be provided in a ribbon shape. In addition, the substrate protection member can also be disposed so as to fill the gap. Also, a part of the planar member may protrude, and the protrusion may be embedded in the gap. In the present invention, it is particularly preferred that the substrate protective member is a tape-like material.
 このような基材保護部材の材質としては、成膜する薄膜に混入しても悪影響を与えない物質、例えば、ターゲット材の組成を構成する元素の全部或いはその一部、これらの元素を含む合金や酸化物などを用いることができる。 The material of such a substrate protection member may be a substance that does not adversely affect the thin film to be formed even if it is mixed in, for example, all or part of the elements constituting the composition of the target material, or an alloy containing these elements. and oxides can be used.
 尚、上記した基材保護部材の材質に関しては、その材質の化学組成が、基材に接合するために用いる接合材の化学組成とは実質的に異なるものである。例えば、金属インジウムを接合材として用いる場合、その際の基材保護部材は金属インジウムではないことを意味する。また、ターゲット材間の間隙に、接合材の金属インジウムが残存する場合があるが、この間隙に残存するインジウムが固化した際には、その表面が酸化することがある。このように接合材に用いる金属インジウムが間隙において固化する場合、そのインジウム表面には均一な酸化膜を形成することが困難であるため、上記した本発明の基材保護部材としての効果を奏することはできない。 Regarding the material of the substrate protection member described above, the chemical composition of the material is substantially different from the chemical composition of the bonding material used for bonding to the substrate. For example, when metallic indium is used as the bonding material, it means that the substrate protective member at that time is not metallic indium. In addition, metallic indium of the bonding material may remain in the gaps between the target materials, and when the indium remaining in the gaps solidifies, the surface may be oxidized. When the metal indium used for the bonding material solidifies in the gaps in this way, it is difficult to form a uniform oxide film on the surface of the indium. can't.
 本発明におけるスパッタリングターゲットは、例えば、板状、円筒形のものが対象となる。板状のスパッタリングターゲットは、板状基材に、板状のターゲット材を複数平面配置して接合したものが対象となる。また、円筒形のスパッタリングターゲットは、円筒形基材に、円筒形ターゲット材を複数嵌通或いは挿通させて、円筒形基材の円筒軸方向に多段状に配置して接合したもの、或いは、中空円筒を円筒軸方向に縦割りした湾曲状ターゲット材を、円筒形基材の外側面へ、円周方向に複数並べて接合したものが対象となる。この板状又は円筒形のスパッタリングターゲットは、大面積のスパッタリング装置に多用されている。尚、本発明は、他の形状のスパッタリングターゲットへの適用を妨げるものではなく、ターゲット材についてもその形状に制限はない。 The sputtering target in the present invention is, for example, plate-shaped or cylindrical. The plate-like sputtering target is a plate-like base material and a plurality of plate-like target materials arranged on a plane and bonded to each other. In addition, the cylindrical sputtering target is obtained by fitting or inserting a plurality of cylindrical target materials into the cylindrical base material and arranging and bonding them in a multistage manner in the cylindrical axis direction of the cylindrical base material, or by hollow A plurality of curved target materials, which are obtained by vertically dividing a cylinder in the direction of the cylinder axis, are arranged in the circumferential direction and bonded to the outer surface of the cylindrical base material. This plate-like or cylindrical sputtering target is often used in large-area sputtering apparatuses. The present invention does not prevent application to sputtering targets of other shapes, and the shape of the target material is not limited.
 本発明における基材保護部材はZn、Ta、及びNbいずれかの金属、或いはIn、Zn、Ta、及びNbのいずれか二種以上からなる合金、若しくはIn、Zn、Ta、及びNbのいずれか一種以上を含むセラミックスであることが好ましい。このような金属やセラミックスを基材保護部材として使用すれば、成膜された酸化物半導体薄膜中へ微量に混入しても、CuやTi等に比べ、TFT素子特性への影響を少なくすることができる。なお、セラミックスの材料としては、In、Zn、Ta、及びNbのいずれか一種以上を含む酸化物、窒化物、酸窒化物などをあげることができるが、ターゲット材が酸化物であることから、セラミックス材料も酸化物であることが好ましい。セラミックス材料として具体的には、In、ZnO、Ta、Nb、In-Zn酸化物、In-Ta酸化物、In-Nb酸化物、Zn-Ta酸化物、Zn-Nb酸化物、Zn-Ta-Nb酸化物、In-Zn-Ta酸化物、In-Zn-Nb酸化物、In-Zn-Ta-Nb酸化物などや、InN、Zn、TaN、NbN、In-Zn窒化物、In-Ta窒化物、In-Nb窒化物、Zn-Ta窒化物、Zn-Nb窒化物、Zn-Ta-Nb窒化物、In-Zn-Ta窒化物、In-Zn-Nb窒化物、In-Zn-Ta-Nb窒化物などが挙げられるが、これらに限定されるものではない。 The substrate protection member in the present invention is any metal of Zn, Ta, and Nb, or an alloy of two or more of In, Zn, Ta, and Nb, or any of In, Zn, Ta, and Nb. Ceramics containing one or more kinds are preferable. If such a metal or ceramic is used as a base material protection member, even if a trace amount of the metal or ceramic is mixed into the formed oxide semiconductor thin film, the influence on the TFT element characteristics can be reduced compared to Cu, Ti, or the like. can be done. Examples of ceramic materials include oxides, nitrides, and oxynitrides containing one or more of In, Zn, Ta, and Nb. Preferably, the ceramic material is also an oxide. Specific examples of ceramic materials include In 2 O 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , In—Zn oxide, In—Ta oxide, In—Nb oxide, Zn—Ta oxide, Zn -Nb oxide, Zn--Ta--Nb oxide, In--Zn--Ta oxide, In--Zn--Nb oxide, In--Zn--Ta--Nb oxide, InN, Zn 3 N 2 , TaN, NbN, In--Zn nitride, In--Ta nitride, In--Nb nitride, Zn--Ta nitride, Zn--Nb nitride, Zn--Ta--Nb nitride, In--Zn--Ta nitride, In- Zn--Nb nitride, In--Zn--Ta--Nb nitride and the like, but are not limited to these.
 なお、基材保護部材が上記のような金属、合金又はセラミックスから構成される場合、それらを主材料として好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは99質量%以上、より更に好ましくは99.5質量%以上、特に好ましくは99.9質量%以上、最も好ましくは99.95質量%以上の割合で含有する。 When the substrate protection member is composed of the above metals, alloys, or ceramics, the main material is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more. More preferably 99.5% by mass or more, particularly preferably 99.9% by mass or more, and most preferably 99.95% by mass or more.
 基材保護部材を構成する金属又はセラミックスを、上述のような膜状、シート状或いはリボン状の形状とした際の、基材保護部材の厚みは0.0001mm~1.0mmが好ましい。基材保護部材の幅はターゲット部材間に形成される間隙と同じ、又はそれ以上に広いことが好ましく、5.0mm~30mm幅にすることが好ましい。また、上記のような形状の基材保護部材を基材上に配置する場合、ターゲット材の接合材や導電性両面テープなどを用いて貼付することができる。 When the metal or ceramic constituting the substrate protection member is formed into the above-described film-like, sheet-like or ribbon-like shape, the thickness of the substrate protection member is preferably 0.0001 mm to 1.0 mm. The width of the substrate protection member is preferably equal to or wider than the gap formed between the target members, preferably 5.0 mm to 30 mm. Further, when the substrate protective member having the shape as described above is arranged on the substrate, it can be attached using a bonding material for the target material, a conductive double-sided tape, or the like.
 本発明における基材保護部材は、第1基材保護部材と第2基材保護部材とを積層した構造であってもよい。このような基材保護部材を積層した構造であると、本発明に係るスパッタリングターゲットを製造することが容易に行え、ターゲット材や基材の材質にあわせて第1基材保護部材と第2基材保護部材との材質を適宜選択して適用することができる。この第1基材保護部材と第2基材保護部材との幅は同等であっても、相違していてもよい。尚、この積層構造の基材保護部材は、第1基材保護部材がターゲット材側になり、第2基材保護部材が基材側になる状態で、ターゲット材間に形成される間隙に沿って配置されることになる。 The substrate protection member in the present invention may have a structure in which a first substrate protection member and a second substrate protection member are laminated. With such a structure in which the substrate protective member is laminated, the sputtering target according to the present invention can be easily manufactured, and the first substrate protective member and the second substrate can be easily manufactured according to the material of the target material and the substrate. The material for the material protection member can be appropriately selected and applied. The widths of the first substrate protection member and the second substrate protection member may be the same or different. In addition, the substrate protection member of this laminated structure is arranged along the gap formed between the target materials in a state in which the first substrate protection member is on the target material side and the second substrate protection member is on the substrate side. will be placed.
 本発明における基材保護部材を積層構造により設ける場合、狭幅の第1基材保護部材と広幅の第2基材保護部材を積層し、第1基材保護部材の両端側に第2基材保護部材が露出した構造とすることができる。この構造では、広幅の第2基材保護部材の上に、狭幅の第1基材保護部材が積層した構造となる。 When the base material protection member in the present invention is provided with a laminated structure, a narrow first base material protection member and a wide second base material protection member are laminated, and the second base material is provided on both end sides of the first base material protection member. A structure in which the protection member is exposed can be employed. In this structure, the narrow first base material protection member is laminated on the wide second base material protection member.
 本発明における基材保護部材を積層構造とし、膜状、シート状或いはリボン状の形状に構成する場合、第1基材保護部材の厚みは0.0001mm~0.3mmが好ましく、第2基材保護部材の厚みは0.1mm~0.7mmが好ましい。第1基材保護部材と第2基材保護部材との合計厚みは、0.3mm~1.0mmとすることが好ましい。また、同幅の第1基材保護部材と第2基材保護部材とを積層する場合、これら基材保護部材の幅は5mm~30mmにすることが好ましい。そして、狭幅の第1基材保護部材と広幅の第2基材保護部材とを積層する場合、第1基材保護部材の幅はターゲット部材間に形成される間隙と同じ、又はそれ以上に広いことが好ましく、作業性などを考慮すると、5mm~20mmが好ましい。広幅の第2基材保護部材の幅は第1基材保護部材の幅よりも3mm~10mm広くすることが好ましい。 When the substrate protective member in the present invention has a laminated structure and is configured in a film-like, sheet-like or ribbon-like shape, the thickness of the first substrate protective member is preferably 0.0001 mm to 0.3 mm, and the thickness of the second substrate. The thickness of the protective member is preferably 0.1 mm to 0.7 mm. The total thickness of the first substrate protection member and the second substrate protection member is preferably 0.3 mm to 1.0 mm. Further, when the first substrate protection member and the second substrate protection member having the same width are laminated, the width of these substrate protection members is preferably 5 mm to 30 mm. When laminating a narrow first substrate protection member and a wide second substrate protection member, the width of the first substrate protection member is equal to or greater than the gap formed between the target members. A large width is preferable, and 5 mm to 20 mm is preferable in consideration of workability and the like. The width of the wide second substrate protection member is preferably 3 mm to 10 mm wider than the width of the first substrate protection member.
 本発明における基材保護部材を上記した積層構造とする場合、第2基材保護部材を、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ag、及びTaのいずれかの金属又はこれらのいずれか二種以上を含む合金とすることが好ましい。また、第1基材保護部材を、Zn、Ta、Nbいずれかの金属、或いはIn、Zn、Ta、及びNbのいずれか二種以上を含む合金、若しくはIn、Zn、Ta、及びNbのいずれか一種以上を含むセラミックスで形成することが好ましい。 When the substrate protection member in the present invention has the above-described laminated structure, the second substrate protection member is composed of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta. It is preferable to use any metal or an alloy containing any two or more of these. In addition, the first substrate protection member is a metal of Zn, Ta, or Nb, or an alloy containing two or more of In, Zn, Ta, and Nb, or any of In, Zn, Ta, and Nb. It is preferable to form with ceramics containing one or more of these.
 本発明における基材保護部材を上記した積層構造とする場合、第1基材保護部材を、In、Zn、Ta、及びNbのいずれか一種以上を含むセラミックスで形成することが好ましい。これらセラミックスであれば、ターゲット部材と同組成か、或いは一部の組成がターゲット材と同じとなるので、成膜した際に膜中に混入したとしても、TFT素子特性への影響が小さくなるからである。なお、セラミックスとしてはIn、Zn、Ta及びNbのいずれか一種以上を含む酸化物、窒化物、酸窒化物などをあげることができるが、ターゲット材が酸化物であることから、セラミックスも酸化物であることが好ましい。セラミックスとして具体的には、In、ZnO、Ta、Nb、In-Zn酸化物、In-Ta酸化物、In-Nb酸化物、Zn-Ta酸化物、Zn-Nb酸化物、Zn-Ta-Nb酸化物、In-Zn-Ta酸化物、In-Zn-Nb酸化物、In-Zn-Ta-Nb酸化物などや、InN、Zn、TaN、NbN、In-Zn窒化物、In-Ta窒化物、In-Nb窒化物、Zn-Ta窒化物、Zn-Nb窒化物、Zn-Ta-Nb窒化物、In-Zn-Ta窒化物、In-Zn-Nb窒化物、In-Zn-Ta-Nb窒化物などが挙げられるが、これらに限定されるものではない。 When the substrate protection member in the present invention has the laminated structure described above, the first substrate protection member is preferably made of ceramics containing one or more of In, Zn, Ta, and Nb. These ceramics have the same composition as the target material, or a part of the composition of the target material. Therefore, even if they are mixed in the film when forming the film, the effect on the characteristics of the TFT element will be small. is. Ceramics include oxides, nitrides, and oxynitrides containing one or more of In, Zn, Ta, and Nb. is preferably Specific examples of ceramics include In 2 O 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , In—Zn oxide, In—Ta oxide, In—Nb oxide, Zn—Ta oxide, Zn— Nb oxide, Zn--Ta--Nb oxide, In--Zn--Ta oxide, In--Zn--Nb oxide, In--Zn--Ta--Nb oxide, InN, Zn 3 N 2 , TaN, NbN , In—Zn nitride, In—Ta nitride, In—Nb nitride, Zn—Ta nitride, Zn—Nb nitride, Zn—Ta—Nb nitride, In—Zn—Ta nitride, In—Zn -Nb nitride, In-Zn-Ta-Nb nitride, etc., but not limited to these.
 なお、第2基材保護部材が上記のような金属又は合金から構成される場合、それらを主材料として好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは99質量%以上、より更に好ましくは99.5質量%以上、特に好ましくは99.9質量%以上、最も好ましくは99.95質量%以上の割合で含有する。また、第1基材保護部材が上記のような金属、合金又はセラミックスから構成される場合、それらを主材料として好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは99質量%以上、より更に好ましくは99.5質量%以上、特に好ましくは99.9質量%以上、最も好ましくは99.95質量%以上の割合で含有する。 When the second substrate protection member is composed of the above metals or alloys, the main material is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more. More preferably 99.5% by mass or more, particularly preferably 99.9% by mass or more, and most preferably 99.95% by mass or more. In addition, when the first substrate protection member is composed of the metal, alloy or ceramics as described above, the main material is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass. Above, more preferably 99.5% by mass or more, particularly preferably 99.9% by mass or more, most preferably 99.95% by mass or more.
 尚、第1基材保護部材にセラミックスを使用する場合、これらセラミックスを、蒸着法、スパッタリング法、プラズマ溶射法、コールドスプレー法、エアゾルデポジション法、塗布法などを利用し、第1基材保護部材として形成することで本発明に適用してもよい。 When ceramics are used for the first substrate protection member, these ceramics are applied by vapor deposition, sputtering, plasma spraying, cold spraying, aerosol deposition, coating, etc. to protect the first substrate. You may apply to this invention by forming as a member.
 本発明のターゲット材は、In、Zn及びXの原子比に加えて、相対密度が高いことによっても特徴付けられる。詳細には、本発明のターゲット材はその相対密度が好ましくは95%以上という高い値を示すものである。このような高い相対密度を示すことで、本発明のターゲット材を用いてスパッタリングを行う場合、パーティクルの発生を抑制することが可能となるので好ましい。この観点から、本発明のターゲット材はその相対密度が97%以上であることが更に好ましく、98%以上であることが一層好ましく、99%以上であることが更に一層好ましく、100%以上であることが特に好ましく、100%超であることがとりわけ好ましい。このような相対密度を有する本発明のターゲット材は、後述する方法によって好適に製造される。相対密度は、アルキメデス法に従い測定される。具体的な測定方法は後述する実施例において詳述する。 The target material of the present invention is characterized by a high relative density in addition to the atomic ratios of In, Zn and X. Specifically, the target material of the present invention preferably exhibits a relative density as high as 95% or more. By exhibiting such a high relative density, it is possible to suppress the generation of particles when performing sputtering using the target material of the present invention, which is preferable. From this point of view, the target material of the present invention preferably has a relative density of 97% or more, more preferably 98% or more, even more preferably 99% or more, and 100% or more. is particularly preferred, and more than 100% is especially preferred. The target material of the present invention having such a relative density is preferably produced by the method described below. Relative density is measured according to the Archimedes method. A specific measuring method will be described in detail in Examples described later.
 本発明のターゲット材は、上述したとおりIn、Zn及びXを含む酸化物から構成されている。この酸化物は、Inの酸化物、Znの酸化物又はXの酸化物であり得る。或いはこの酸化物は、In、Zn及びXからなる群から選択される任意の二種以上の元素の複合酸化物であり得る。複合酸化物の具体的な例としては、In-Zn複合酸化物、Zn-Ta複合酸化物、In-Ta複合酸化物、In-Nb複合酸化物、Zn-Nb複合酸化物、In-Nb複合酸化物、In-Zn-Ta複合酸化物、In-Zn-Nb複合酸化物、等が挙げられるが、これらに限られるものではない。 The target material of the present invention is composed of oxides containing In, Zn and X as described above. This oxide can be an In oxide, a Zn oxide or an X oxide. Alternatively, this oxide may be a composite oxide of any two or more elements selected from the group consisting of In, Zn and X. Specific examples of composite oxides include In—Zn composite oxide, Zn—Ta composite oxide, In—Ta composite oxide, In—Nb composite oxide, Zn—Nb composite oxide, In—Nb composite oxide Examples include oxides, In--Zn--Ta composite oxides, In--Zn--Nb composite oxides, but are not limited to these.
 本発明のターゲット材は、特にInの酸化物であるIn相及びInとZnとの複合酸化物であるZnIn相を含むことが、該ターゲット材の密度及び強度を高め且つ抵抗を低減させる観点から好ましい。本発明のターゲット材がIn相及びZnIn相を含むことは、本発明のターゲット材を対象としたX線回折(以下「XRD」ともいう。)測定によってIn相及びZnIn相が観察されるか否かによって判断できる。なお、本発明におけるIn相は微量にZn元素を含み得る。 The target material of the present invention particularly includes an In 2 O 3 phase, which is an In oxide, and a Zn 3 In 2 O 6 phase, which is a composite oxide of In and Zn. It is preferable from the viewpoint of increasing resistance and reducing resistance. The fact that the target material of the present invention contains the In 2 O 3 phase and the Zn 3 In 2 O 6 phase can be confirmed by X-ray diffraction (hereinafter also referred to as “ XRD ”) measurement of the target material of the present invention. It can be determined by whether three phases and a Zn3In2O6 phase are observed . In addition, the In 2 O 3 phase in the present invention may contain a trace amount of Zn element.
 詳細には、X線源としてCuKα線を用いたXRD測定においてIn相は2θ=30.38°以上30.78°以下の範囲にメインピークが観察される。ZnIn相は2θ=34.00°以上34.40°以下の範囲にメインピークが観察される。 Specifically, in the XRD measurement using CuKα rays as an X-ray source, the In 2 O 3 phase has a main peak in the range of 2θ=30.38° or more and 30.78° or less. The Zn 3 In 2 O 6 phase has a main peak in the range of 2θ=34.00° to 34.40°.
 XRD測定によって本発明のターゲット材にIn相が観察される場合、In相はその結晶粒のサイズが特定の範囲を満たすことが、本発明のターゲット材の密度及び強度を高め且つ抵抗を低減させる点から好ましい。詳細には、In相の結晶粒のサイズは、3.0μm以下であることが好ましく、2.7μm以下であることが更に好ましく、2.5μm以下であることが一層好ましい。結晶粒のサイズは小さいほど好ましく下限値は特に定めるものではないが、通常0.1μm以上である。 When an In 2 O 3 phase is observed in the target material of the present invention by XRD measurement, the fact that the In 2 O 3 phase has a crystal grain size that satisfies a specific range indicates the density and strength of the target material of the present invention. It is preferable from the viewpoint of increasing the resistance and reducing the resistance. Specifically, the crystal grain size of the In 2 O 3 phase is preferably 3.0 μm or less, more preferably 2.7 μm or less, and even more preferably 2.5 μm or less. The smaller the crystal grain size, the better, and although the lower limit is not particularly defined, it is usually 0.1 μm or more.
 XRD測定によって本発明のターゲット材にZnIn相が観察される場合、ZnIn相に関しても、その結晶粒のサイズが特定の範囲を満たすことが、本発明のターゲット材の密度及び強度を高め且つ抵抗を低減させる点から好ましい。詳細には、ZnIn相の結晶粒のサイズは、3.9μm以下であることが好ましく、3.5μm以下であることがより好ましく、3.0μm以下であることが更に好ましく、2.5μm以下であることが一層好ましく、2.3μm以下であることが更に一層好ましく、2.0μm以下であることが特に好ましく、1.9μm以下であることがとりわけ好ましい。結晶粒のサイズは小さいほど好ましく下限値は特に定めるものではないが、通常0.1μm以上である。 When the Zn 3 In 2 O 6 phase is observed in the target material of the present invention by XRD measurement, it is confirmed that the crystal grain size of the Zn 3 In 2 O 6 phase also satisfies a specific range. It is preferable from the viewpoint of increasing the density and strength of the material and reducing the resistance. Specifically, the crystal grain size of the Zn 3 In 2 O 6 phase is preferably 3.9 μm or less, more preferably 3.5 μm or less, even more preferably 3.0 μm or less, It is more preferably 2.5 μm or less, even more preferably 2.3 μm or less, particularly preferably 2.0 μm or less, and most preferably 1.9 μm or less. The smaller the crystal grain size, the better, and although the lower limit is not particularly defined, it is usually 0.1 μm or more.
 In相の結晶粒のサイズ及びZnIn相の結晶粒のサイズを上述した範囲に設定するには、例えば後述する方法によってターゲット材を製造すればよい。
 In相の結晶粒のサイズ及びZnIn相の結晶粒のサイズは、本発明のターゲット材を走査型電子顕微鏡(以下「SEM」ともいう。)によって観察することで測定される。具体的な測定方法は後述する実施例において詳述する。
In order to set the crystal grain size of the In 2 O 3 phase and the crystal grain size of the Zn 3 In 2 O 6 phase within the above ranges, for example, a target material may be manufactured by the method described later.
The crystal grain size of the In 2 O 3 phase and the crystal grain size of the Zn 3 In 2 O 6 phase are measured by observing the target material of the present invention with a scanning electron microscope (hereinafter also referred to as “SEM”). be done. A specific measuring method will be described in detail in Examples described later.
 次に、本発明のターゲット材の好適な製造方法について説明する。本製造方法においては、ターゲット材の原料となる酸化物粉を所定の形状に成形して成形体を得て、この成形体を焼成することで、焼結体からなるターゲット材を得る。成形体を得るには、当該技術分野においてこれまで知られている方法を採用することができる。特に鋳込み成形法又はCIP成形法を採用することが、緻密なターゲット材を製造し得る点から好ましい。 Next, a suitable method for manufacturing the target material of the present invention will be described. In this manufacturing method, the oxide powder, which is the raw material of the target material, is formed into a predetermined shape to obtain a compact, and the compact is fired to obtain a target material composed of a sintered compact. Methods hitherto known in the art can be employed to obtain the molded body. In particular, it is preferable to adopt the cast molding method or the CIP molding method from the point of being able to manufacture a dense target material.
 鋳込み成形法はスリップキャスト法とも呼ばれる。鋳込み成形法を行うには先ず、原料粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製する。 The casting method is also called the slip casting method. To carry out the cast molding method, first, a slurry containing raw material powders and organic additives is prepared using a dispersion medium.
 前記の原料粉末としては酸化物粉末又は水酸化物粉末を用いることが好適である。酸化物粉末としては、In酸化物の粉末、Zn酸化物の粉末、及びX酸化物の粉末を用いる。In酸化物としては例えばInを用いることができる。Zn酸化物としては例えばZnOを用いることができる。X酸化物の粉末としては例えばTa、及びNbを用いることができる。 As the raw material powder, it is preferable to use an oxide powder or a hydroxide powder. As the oxide powder, In oxide powder, Zn oxide powder, and X oxide powder are used. For example, In 2 O 3 can be used as the In oxide. For example, ZnO can be used as the Zn oxide. Ta 2 O 5 and Nb 2 O 5 , for example, can be used as X oxide powders.
 本製造方法においては、これら原料粉末をすべて混合した後に焼成を行う。このこととは対照的に、従来技術、例えば特許文献2に記載の技術では、In粉とTa粉とを混合した後に焼成を行い、次いで得られた焼成粉とZnO粉とを混合して再び焼成を行っている。この方法では事前に焼成を実施することによって粉末を構成する粒子が粗粒となってしまい、相対密度の高いターゲット材を得ることが容易でない。これに対して本製造方法では、好ましくは、In酸化物の粉末、Zn酸化物の粉末及びX酸化物の粉末をすべて常温で混合、成形した後、焼成を行っているので、相対密度の高い緻密なターゲット材が容易に得られる。 In the present production method, the raw material powders are all mixed and then sintered. In contrast to this, in the conventional technology, for example, the technology described in Patent Document 2, In 2 O 3 powder and Ta 2 O 5 powder are mixed and then sintered, and then the obtained sintered powder and ZnO powder are mixed. are mixed and fired again. In this method, the particles constituting the powder become coarse particles due to the prior sintering, and it is not easy to obtain a target material with a high relative density. On the other hand, in the present production method, the In oxide powder, the Zn oxide powder, and the X oxide powder are preferably mixed at room temperature, molded, and then fired, so that the relative density is high. A dense target material can be easily obtained.
 In酸化物の粉末、Zn酸化物の粉末及びX酸化物の粉末の使用量は、目的とするターゲット材におけるIn、Zn及びXの原子比が、上述した範囲を満たすように調整することが好ましい。 The amounts of In oxide powder, Zn oxide powder, and X oxide powder used are preferably adjusted so that the atomic ratio of In, Zn, and X in the intended target material satisfies the range described above. .
 原料粉末の粒径は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50で表して、0.1μm以上1.5μm以下であることが好ましい。この範囲の粒径を有する原料粉末を用いることで、相対密度の高いターゲット材を容易に得ることができる。 The particle size of the raw material powder is preferably 0.1 μm or more and 1.5 μm or less, expressed as a volume cumulative particle size D50 at a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method. A target material having a high relative density can be easily obtained by using a raw material powder having a particle size within this range.
 前記の有機添加物は、スラリーや成形体の性状を好適に調整するために用いられる物質である。有機添加物としては、例えばバインダ、分散剤及び可塑剤等を挙げることができる。バインダは、成形体の強度を高めるために添加される。バインダとしては、公知の粉末焼結法において成形体を得るときに通常使用されるバインダを使用することができる。バインダとしては、例えばポリビニルアルコールを挙げることができる。分散剤は、スラリー中の原料粉末の分散性を高めるために添加される。分散剤としては、例えばポリカルボン酸系分散剤、ポリアクリル酸系分散剤を挙げることができる。可塑剤は、成形体の可塑性を高めるために添加される。可塑剤としては、例えば、ポリエチレングリコール(PEG)及びエチレングリコール(EG)等を挙げることができる。 The above organic additives are substances used to suitably adjust the properties of slurries and compacts. Examples of organic additives include binders, dispersants and plasticizers. A binder is added to increase the strength of the compact. As the binder, it is possible to use binders that are commonly used when obtaining compacts in known powder sintering methods. Examples of binders include polyvinyl alcohol. A dispersant is added to enhance the dispersibility of the raw material powder in the slurry. Examples of dispersants include polycarboxylic acid-based dispersants and polyacrylic acid-based dispersants. A plasticizer is added to increase the plasticity of the molded product. Examples of plasticizers include polyethylene glycol (PEG) and ethylene glycol (EG).
 原料粉末及び有機添加物を含有するスラリーを作製する際に使用する分散媒には特に制限はなく、目的に応じて、水、及びアルコール等の水溶性有機溶媒から適宜選択して使用することができる。原料粉末及び有機添加物を含有するスラリーを作製する方法には特に制限はなく、例えば、原料粉末、有機添加物、分散媒及びジルコニアボールをポットに入れ、ボールミル混合する方法が使用できる。 The dispersion medium used in preparing the slurry containing the raw material powder and the organic additive is not particularly limited, and can be appropriately selected from among water and water-soluble organic solvents such as alcohols, depending on the purpose. can. There is no particular limitation on the method of preparing the slurry containing the raw material powder and the organic additive. For example, a method of putting the raw material powder, the organic additive, the dispersion medium and the zirconia balls into a pot and mixing them in a ball mill can be used.
 このようにしてスラリーが得られたら、このスラリーを型に流し込み、次いで分散媒を除去して成形体を作製する。用いることができる型としては、例えば金属型や石膏型、加圧して分散媒除去を行う樹脂型などが挙げられる。 After the slurry is obtained in this manner, the slurry is poured into a mold, and then the dispersion medium is removed to produce a compact. Examples of molds that can be used include metal molds, gypsum molds, and resin molds that are pressurized to remove the dispersion medium.
 一方、CIP成形法においては、鋳込み成形法において用いたスラリーと同様のスラリーを噴霧乾燥して乾燥粉末を得る。得られた乾燥粉末を型に充填してCIP成形を行う。 On the other hand, in the CIP molding method, a slurry similar to that used in the casting method is spray-dried to obtain a dry powder. The resulting dry powder is filled into a mold and subjected to CIP molding.
 このようにして成形体が得られたら、次にこれを焼成する。成形体の焼成は一般に酸素含有雰囲気中で行うことができる。特に大気雰囲気中で焼成することが簡便である。焼成温度は1200℃以上1600℃以下であることが好ましく、1300℃以上1500℃以下であることが更に好ましく、1350℃以上1450℃以下であることが一層好ましい。焼成時間は、1時間以上100時間以下であることが好ましく、2時間以上50時間以下であることが更に好ましく、3時間以上30時間以下であることが一層好ましい。昇温速度は5℃/時間以上500℃/時間以下であることが好ましく、10℃/時間以上200℃/時間以下であることが更に好ましく、20℃/時間以上100℃/時間以下であることが一層好ましい。 After the compact is obtained in this way, it is then fired. Firing of the compact can generally be carried out in an oxygen-containing atmosphere. In particular, firing in an air atmosphere is convenient. The firing temperature is preferably 1200° C. or higher and 1600° C. or lower, more preferably 1300° C. or higher and 1500° C. or lower, and still more preferably 1350° C. or higher and 1450° C. or lower. The firing time is preferably from 1 hour to 100 hours, more preferably from 2 hours to 50 hours, and even more preferably from 3 hours to 30 hours. The heating rate is preferably 5°C/hour or more and 500°C/hour or less, more preferably 10°C/hour or more and 200°C/hour or less, and 20°C/hour or more and 100°C/hour or less. is more preferred.
 成形体の焼成においては、焼成過程においてInとZnとの複合酸化物、例えばZnInの相が生成する温度を一定時間維持することが、焼結の促進及び緻密なターゲット材の生成の観点から好ましい。詳細には、原料粉末にIn粉及びZnO粉が含まれている場合、昇温に従いこれらが反応してZnInの相が生成し、その後ZnInの相へ変化し、ZnInの相へと変化する。特にZnInの相が生成する際に体積拡散が進み緻密化が促進されることから、ZnInの相を確実に生成させることが好ましい。このような観点から、焼成の昇温過程において、温度を1000℃以上1250℃以下の範囲で一定時間維持することが好ましく、1050℃以上1200℃以下の範囲で一定時間維持することが更に好ましい。維持する温度は、必ずしもある特定の一点の温度に限られるものではなく、ある程度の幅を有する温度範囲であってもよい。具体的には、1000℃以上1250℃以下の範囲から選ばれるある特定の温度をT(℃)とするとき、1000℃以上1250℃以下の範囲に含まれる限り、例えばT±10℃であってもよく、好ましくはT±5℃であり、より好ましくはT±3℃であり、更に好ましくはT±1℃である。この温度範囲を維持する時間は、好ましくは1時間以上40時間以下であり、更に好ましくは2時間以上20時間以下である。 In sintering the compact, maintaining the temperature at which a phase of In and Zn composite oxides, such as Zn 5 In 2 O 8 , is generated during the sintering process for a certain period of time promotes sintering and produces a dense target material. It is preferable from the production point of view. Specifically, when the raw material powder contains In 2 O 3 powder and ZnO powder, as the temperature rises, these react to form a Zn 5 In 2 O 8 phase, and then a Zn 4 In 2 O 7 phase. phase to Zn 3 In 2 O 6 . In particular, when the Zn 5 In 2 O 8 phase is generated, volume diffusion proceeds and densification is promoted, so it is preferable to reliably generate the Zn 5 In 2 O 8 phase. From this point of view, it is preferable to maintain the temperature in the range of 1000° C. or higher and 1250° C. or lower for a certain period of time, and more preferably to maintain the temperature in the range of 1050° C. or higher and 1200° C. or lower for a certain period of time. The temperature to be maintained is not necessarily limited to one specific temperature, but may be a temperature range with a certain width. Specifically, when a specific temperature selected from the range of 1000 ° C. or higher and 1250 ° C. or lower is T (° C.), as long as it is included in the range of 1000 ° C. or higher and 1250 ° C. or lower, for example, T ± 10 ° C. preferably T±5°C, more preferably T±3°C, still more preferably T±1°C. The time for maintaining this temperature range is preferably 1 hour or more and 40 hours or less, more preferably 2 hours or more and 20 hours or less.
 このようにして得られたターゲット材は、研削加工などにより、所定の寸法に加工することができる。これを基材に接合することでスパッタリングターゲットが得られる。このようにして得られたスパッタリングターゲットは、酸化物半導体の製造に好適に用いられる。例えばTFTの製造に、本発明のターゲット材を用いることができる。 The target material obtained in this way can be processed to a predetermined size by grinding or the like. A sputtering target is obtained by joining this to a base material. The sputtering target thus obtained is suitably used for manufacturing an oxide semiconductor. For example, the target material of the present invention can be used for manufacturing TFTs.
 本発明のスパッタリングターゲットは、例えば、図1に示すようにCu製基材10に、複数のターゲット材20を配置し、接合することにより形成することができる。これらのターゲット材の間には、0.1mm~1.0mmの間隙30が形成される。 The sputtering target of the present invention can be formed, for example, by arranging and bonding a plurality of target materials 20 to a Cu substrate 10 as shown in FIG. A gap 30 of 0.1 mm to 1.0 mm is formed between these target materials.
 図2に示すように、基材10の表面には、ターゲット材間に形成される間隙に相当する位置に、基材保護部材50が貼付される。基材保護部材は、接合材や導電性両面テープなどを用いて、基材10表面に貼付することができる。 As shown in FIG. 2, a substrate protection member 50 is attached to the surface of the substrate 10 at a position corresponding to the gap formed between the target materials. The substrate protection member can be attached to the surface of the substrate 10 using a bonding material, a conductive double-sided tape, or the like.
 複数のターゲット部材は、例えば図1に示すように配置して、InやSnの接合材を用いて接合される。この接合は、基材表面に、溶融した接合材を塗布し、ターゲット材をその接合材上に配置し、室温まで冷却することにより行われる。 A plurality of target members are arranged, for example, as shown in FIG. 1 and bonded using a bonding material such as In or Sn. This bonding is performed by applying a molten bonding material to the base material surface, placing a target material on the bonding material, and cooling to room temperature.
 図3に、単層の基材保護部材を用いた場合の断面概略図を示す。単層の基材保護部材50は、厚み0.0001mm~1.0mmであり、基材保護部材はZn、Ta、Nbいずれかの金属、或いはIn、Zn、Ta、及びNbのいずれか二種以上からなる合金、若しくはIn、Zn、Ta、及びNbのいずれか一種以上を含むセラミックスで形成される。この単層の基材保護部材50の両端側には、Inの接合材60が存在した状態となる。 FIG. 3 shows a schematic cross-sectional view when using a single-layer substrate protection member. The single-layer substrate protection member 50 has a thickness of 0.0001 mm to 1.0 mm, and the substrate protection member is made of any one of Zn, Ta, and Nb metals, or any two of In, Zn, Ta, and Nb. It is made of an alloy composed of the above, or a ceramic containing one or more of In, Zn, Ta, and Nb. The In bonding material 60 is present on both end sides of the single-layer substrate protection member 50 .
 図4に、同じ幅の基材保護部材を積層した二層構造の基材保護部材の断面概略図を示す。二層構造の基材保護部材50は、第1基材保護部材51と第2基材保護部材52とから構成される。そして、この第1基材保護部材51と第2基材保護部材の幅は、作業性などを考慮すると5mm~20mmが好ましい。また、第1基材保護部材51及び、第2基材保護部材52の両端側には、Inの接合材60が存在した状態となる。なお、図4には二層構造を示したが基材保護部材は三層以上の構造をとってもよい。例えば、第1基材保護部材の材質と第2基材保護部材の材質の線膨張率差を考慮し、第1基材保護部材の材質と第2基材保護部材の材質の、中間の線膨張率を有する材料を使用し中間層を設けてもよい。 FIG. 4 shows a schematic cross-sectional view of a two-layer structure substrate protection member in which substrate protection members having the same width are laminated. The two-layer substrate protection member 50 is composed of a first substrate protection member 51 and a second substrate protection member 52 . The width of the first substrate protection member 51 and the second substrate protection member is preferably 5 mm to 20 mm in consideration of workability. In addition, the bonding material 60 of In exists on both end sides of the first substrate protection member 51 and the second substrate protection member 52 . Although a two-layer structure is shown in FIG. 4, the substrate protection member may have a structure of three or more layers. For example, considering the difference in coefficient of linear expansion between the material of the first substrate protection member and the material of the second substrate protection member, an intermediate line between the material of the first substrate protection member and the material of the second substrate protection member An intermediate layer may be provided using a material having a coefficient of expansion.
 図5に、異なる幅の基材保護部材を積層した二層構造の基材保護部材の断面概略図を示す。二層構造の基材保護部材50は、第1基材保護部材51と第2基材保護部材52とから構成される。そして、この第1基材保護部材51の幅は、作業性などを考慮して5mm~20mmであり、第2基材保護部材52の幅は8mm~30mmであり、第1基材保護部材よりも第2基材保護部材の方が幅は広い。そして、第2基材保護部材のほぼ中央に第1基材保護部材51が配置されることにより、第1基材保護部材の両端側に第2基材保護部材52が露出した状態となっている。この露出した部分の幅は、両端側のそれぞれの片側で1.5mm~5mmである。また、第1基材保護部材51及び、第2基材保護部材52の両端側には、Inの接合材60が存在した状態となっている。なお、図5には二層構造を示したが基材保護部材は三層以上の構造をとってもよい。例えば、第1基材保護部材の材質と第2基材保護部材の材質の線膨張率差を考慮し、第1基材保護部材の材質と第2基材保護部材の材質の、中間の線膨張率を有する材料を使用し中間層を設けてもよい。 FIG. 5 shows a schematic cross-sectional view of a two-layer structure substrate protection member in which substrate protection members with different widths are laminated. The two-layer substrate protection member 50 is composed of a first substrate protection member 51 and a second substrate protection member 52 . The width of the first substrate protection member 51 is 5 mm to 20 mm in consideration of workability, and the width of the second substrate protection member 52 is 8 mm to 30 mm. Also, the width of the second substrate protection member is wider. By arranging the first substrate protection member 51 approximately in the center of the second substrate protection member, the second substrate protection members 52 are exposed on both end sides of the first substrate protection member. there is The width of this exposed portion is between 1.5 mm and 5 mm on each side of each end. In addition, the In bonding material 60 is present on both end sides of the first substrate protection member 51 and the second substrate protection member 52 . Although a two-layer structure is shown in FIG. 5, the substrate protection member may have a structure of three or more layers. For example, considering the difference in coefficient of linear expansion between the material of the first substrate protection member and the material of the second substrate protection member, an intermediate line between the material of the first substrate protection member and the material of the second substrate protection member An intermediate layer may be provided using a material having a coefficient of expansion.
 図4及び図5で示す第2基材保護部材52は、厚み0.1mm~0.7mmであり、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ag、及びTaのいずれかの金属、又はこれらのいずれかを含む合金で構成される。図4及び図5で示す第1基材保護部材51は、厚み0.0001mm~0.3mmであり、Zn、Ta、Nbいずれかの金属、或いはIn、Zn、Ta、Nbのいずれか二種以上からなる合金、若しくはIn、Zn、Ta、Nbのいずれか一種以上を含むセラミックスで形成されている。 The second substrate protection member 52 shown in FIGS. 4 and 5 has a thickness of 0.1 mm to 0.7 mm, and is made of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag. , and Ta, or an alloy containing any of these. The first substrate protection member 51 shown in FIGS. 4 and 5 has a thickness of 0.0001 mm to 0.3 mm and is made of any one of Zn, Ta, and Nb, or any two of In, Zn, Ta, and Nb. It is made of an alloy composed of the above, or a ceramic containing one or more of In, Zn, Ta, and Nb.
 図4及び図5で示す二層構造の基材保護部材は、例えば、0.3mm厚みのCu金属シートに、プラズマ溶射によってTaやNbの粉末を吹き付けることにより作製することができる。 The two-layer substrate protection member shown in FIGS. 4 and 5 can be produced, for example, by plasma spraying powder of Ta 2 O 5 or Nb 2 O 5 onto a Cu metal sheet with a thickness of 0.3 mm. can be done.
 図6に、単層の基材保護部材を用いた変形例の断面概略図を示す。図6では、単層の基材保護部材50は、ターゲット材20間の間隙30内に充填されている。この場合、基材保護部材50の厚みは、0.0001mm~1.0mmとし、ターゲット材20と基材保護部材50とが面同一とならないようにする。これによって、基材保護部材50のスパッタを抑制することができる。なお、本変形例では、ターゲット材20及び基材保護部材50と基材10との間にInの接合材60が存在した状態となる。 FIG. 6 shows a schematic cross-sectional view of a modified example using a single-layer substrate protection member. In FIG. 6 , a single layer substrate protection member 50 is filled in the gaps 30 between the target materials 20 . In this case, the thickness of the substrate protection member 50 is set to 0.0001 mm to 1.0 mm so that the target material 20 and the substrate protection member 50 are not flush with each other. As a result, the sputtering of the substrate protection member 50 can be suppressed. In this modified example, the In bonding material 60 is present between the target material 20 and the substrate protection member 50 and the substrate 10 .
 図7には、TFT素子100の一例が模式的に示されている。同図に示すTFT素子100は、ガラス基材110の一面に形成されている。ガラス基材110の一面にはゲート電極120が配置されており、これを覆うようにゲート絶縁膜130が形成されている。ゲート絶縁膜130上には、ソース電極160、ドレイン電極161及びチャネル層140が配置されている。チャネル層140上にはエッチングストッパー層150が配置されている。そして最も上部に保護層170が配置されている。この構造を有するTFT素子100において、例えばチャネル層140の形成を、本発明のターゲット材を用いて行うことができる。その場合、チャネル層140は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成されたものとなり、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)の原子比は、上述した式(1)を満たすものとなる。また、上述した式(2)及び(3)を満たすものとなる。 An example of the TFT element 100 is schematically shown in FIG. A TFT element 100 shown in the figure is formed on one surface of a glass substrate 110 . A gate electrode 120 is arranged on one surface of the glass substrate 110, and a gate insulating film 130 is formed so as to cover it. A source electrode 160 , a drain electrode 161 and a channel layer 140 are arranged on the gate insulating film 130 . An etching stopper layer 150 is arranged on the channel layer 140 . A protective layer 170 is arranged at the top. In the TFT element 100 having this structure, for example, the channel layer 140 can be formed using the target material of the present invention. In that case, the channel layer 140 is made of an oxide containing an indium (In) element, a zinc (Zn) element, and the additive element (X), and the indium (In) element, the zinc (Zn) element, and the additive element The atomic ratio of (X) satisfies the above formula (1). In addition, the formulas (2) and (3) described above are satisfied.
 本発明のターゲット材から形成された酸化物半導体素子はアモルファス構造を有することが、該素子の性能向上の点から好ましい。 The oxide semiconductor device formed from the target material of the present invention preferably has an amorphous structure from the viewpoint of improving the performance of the device.
 なお、本発明は、上記実施形態に鑑み、以下の発明をも包含する。
〔1〕インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
 添加元素(X)はタンタル(Ta)、及びニオブ(Nb)から選ばれる少なくとも1つの元素からなり、
 各元素の原子比が式(1)ないし(3)の全てを満たす(式中のXは、前記添加元素の含有比の総和とする。)複数のスパッタリングターゲット材を、基材に接合材により接合して形成されるスパッタリングターゲットであって、
   0.4≦(In+X)/(In+Zn+X)<0.75(1)
   0.25<Zn/(In+Zn+X)≦0.6    (2)
   0.001≦X/(In+Zn+X)≦0.015  (3)
 前記複数のスパッタリングターゲット材間に形成される間隙に配置される基材保護部材を有するスパッタリングターゲット。
〔2〕前記基材保護部材が、Zn、Ta、及びNbいずれかの金属、又はIn、Zn、Ta、及びNbのいずれか二種以上を含有する合金を含む、〔1〕に記載のスパッタリングターゲット。
〔3〕前記基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有するセラミックスを含む、〔1〕に記載のスパッタリングターゲット。
〔4〕前記セラミックスがIn、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物、窒化物、又は酸窒化物を含む、〔3〕に記載のスパッタリングターゲット。
〔5〕前記セラミックスがIn、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物を含む、〔3〕又は〔4〕に記載のスパッタリングターゲット。
〔6〕前記基材保護部材が、スパッタリングターゲット材側の第1基材保護部材と基材側の第2基材保護部材とを積層した構造を有する、〔1〕ないし〔5〕のいずれか一つに記載のスパッタリングターゲット。
〔7〕前記第2基材保護部材が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ag、及びTaのいずれかの金属、又はこれら金属のいずれか二種以上を含有する合金を含み、前記第1基材保護部材が、Zn、Ta、及びNbいずれかの金属、又はIn、Zn、Ta、及びNbのいずれか二種以上を含有する合金を含む、〔6〕に記載のスパッタリングターゲット。
〔8〕前記第2基材保護部材が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ag、及びTaのいずれかの金属、又はこれら金属のいずれか二種以上を含有する合金を含み、第1基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有するセラミックスを含む、〔6〕に記載のスパッタリングターゲット。
〔9〕前記第1基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物、窒化物、又は酸窒化物を含む、〔8〕に記載のスパッタリングターゲット。
〔10〕前記第1基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物を含む、〔8〕又は〔9〕に記載のスパッタリングターゲット。
〔11〕添加元素(X)がタンタル(Ta)である、〔1〕ないし〔10〕のいずれか一つに記載のスパッタリングターゲット。
〔12〕前記スパッタリングターゲット材がIn相及びZnIn相を含む、〔1〕ないし〔11〕のいずれか一つに記載のスパッタリングターゲット。
〔13〕In相の結晶粒のサイズが0.1μm以上3.0μm以下であり、
 ZnIn相の結晶粒のサイズが0.1μm以上3.9μm以下である、〔12〕に記載のスパッタリングターゲット。
〔14〕式(4)を更に満たす、〔1〕ないし〔13〕のいずれか一つに記載のスパッタリングターゲット。
   0.970≦In/(In+X)≦0.999 (4)
In addition, this invention also includes the following inventions in view of the said embodiment.
[1] composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X),
The additive element (X) consists of at least one element selected from tantalum (Ta) and niobium (Nb),
The atomic ratio of each element satisfies all of the formulas (1) to (3) (X in the formula is the sum of the content ratios of the additive elements). A sputtering target formed by bonding,
0.4≦(In+X)/(In+Zn+X)<0.75 (1)
0.25<Zn/(In+Zn+X)≦0.6 (2)
0.001≦X/(In+Zn+X)≦0.015 (3)
A sputtering target having a substrate protection member arranged in a gap formed between the plurality of sputtering target materials.
[2] The sputtering according to [1], wherein the substrate protection member contains any one of Zn, Ta, and Nb metals, or an alloy containing two or more of In, Zn, Ta, and Nb. target.
[3] The sputtering target according to [1], wherein the substrate protection member contains ceramics containing at least one of In, Zn, Ta, and Nb.
[4] The sputtering target according to [3], wherein the ceramic contains an oxide, nitride, or oxynitride containing one or more of In, Zn, Ta, and Nb.
[5] The sputtering target according to [3] or [4], wherein the ceramic contains an oxide containing one or more of In, Zn, Ta, and Nb.
[6] Any one of [1] to [5], wherein the substrate protection member has a structure in which a first substrate protection member on the sputtering target material side and a second substrate protection member on the substrate side are laminated. A sputtering target according to one.
[7] The second substrate protection member is any metal of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta, or any of these metals. An alloy containing two or more kinds of metals is included, and the first substrate protective member contains any one of Zn, Ta, and Nb, or an alloy containing two or more of In, Zn, Ta, and Nb. The sputtering target according to [6].
[8] The second substrate protection member is any metal of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta, or any of these metals The sputtering target according to [6], wherein the alloy containing two or more of In, Zn, Ta, and Nb is contained in the first substrate protection member.
[9] The sputtering target according to [8], wherein the first substrate protective member contains an oxide, nitride, or oxynitride containing one or more of In, Zn, Ta, and Nb.
[10] The sputtering target of [8] or [9], wherein the first substrate protection member contains an oxide containing one or more of In, Zn, Ta, and Nb.
[11] The sputtering target according to any one of [1] to [10], wherein the additional element (X) is tantalum (Ta).
[12] The sputtering target according to any one of [ 1 ] to [ 11 ], wherein the sputtering target material contains an In2O3 phase and a Zn3In2O6 phase.
[13] the In 2 O 3 phase has a crystal grain size of 0.1 μm or more and 3.0 μm or less;
The sputtering target according to [12], wherein the Zn 3 In 2 O 6 phase has a crystal grain size of 0.1 μm or more and 3.9 μm or less.
[14] The sputtering target according to any one of [1] to [13], further satisfying formula (4).
0.970≦In/(In+X)≦0.999 (4)
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 The present invention will be described in more detail below with reference to examples. However, the scope of the invention is not limited to such examples.
〔実施例1(実施例1-1~1-6)〕
 平均粒径D50が0.6μmであるIn粉末と、平均粒径D50が0.8μmであるZnO粉末と、平均粒径D50が0.6μmであるTa粉末とを、ジルコニアボールによってボールミル乾式混合して、混合原料粉末を調製した。各粉末の平均粒径D50は、マイクロトラックベル株式会社製の粒度分布測定装置MT3300EXIIを用いて測定した。測定の際、溶媒には水を使用し、測定物質の屈折率2.20で測定した。各粉末の混合比率は、InとZnとTaとの原子比が、以下の表4に示す値となるようにした。
[Example 1 (Examples 1-1 to 1-6)]
In2O3 powder with an average particle size D50 of 0.6 μm , ZnO powder with an average particle size D50 of 0.8 μm, and Ta2O5 powder with an average particle size D50 of 0.6 μm were ball-mill dry mixed with zirconia balls to prepare a mixed raw material powder. The average particle size D50 of each powder was measured using a particle size distribution analyzer MT3300EXII manufactured by Microtrack Bell Co., Ltd. In the measurement, water was used as a solvent, and the refractive index of the substance to be measured was 2.20. The mixing ratio of each powder was such that the atomic ratios of In, Zn, and Ta were the values shown in Table 4 below.
 混合原料粉末が調製されたポットに、混合原料粉末に対して0.2質量%のバインダと、混合原料粉末に対して0.6質量%の分散剤と、混合原料粉末に対して20質量%の水とを加え、ジルコニアボールによってボールミル混合してスラリーを調製した。 In the pot in which the mixed raw material powder was prepared, 0.2% by mass of a binder relative to the mixed raw material powder, 0.6% by mass of a dispersant relative to the mixed raw material powder, and 20% by mass of the mixed raw material powder of water was added, and ball mill mixing was performed using zirconia balls to prepare a slurry.
 調製されたスラリーを、フィルターを挟んだ金属製の型に流し込み、次いでスラリー中の水を排出して成形体を得た。この成形体を焼成して焼結体を作製した。焼成は酸素濃度が20体積%である雰囲気中、焼成温度1400℃、焼成時間8時間、昇温速度50℃/時間、降温速度50℃/時間で行った。焼成の途中、1100℃を6時間維持してZnInの生成を促進させた。 The prepared slurry was poured into a metal mold sandwiching a filter, and then the water in the slurry was discharged to obtain a compact. A sintered body was produced by sintering this molded body. Firing was performed in an atmosphere with an oxygen concentration of 20% by volume at a firing temperature of 1400° C. for 8 hours at a temperature rising rate of 50° C./hour and a temperature decreasing rate of 50° C./hour. During the firing, the temperature was maintained at 1100° C. for 6 hours to promote the formation of Zn 5 In 2 O 8 .
 このようにして得られた焼結体を切削加工し、幅210mm×長さ710mm×厚さ6mmの酸化物焼結体(ターゲット材)を得た。切削加工には#170の砥石を使用した。 The sintered body thus obtained was cut to obtain an oxide sintered body (target material) of width 210 mm x length 710 mm x thickness 6 mm. A #170 whetstone was used for cutting.
 ターゲット材からφ8inchのターゲット材を切り出し、中央で2分割した。これら2分割したターゲット材を、ターゲット材間に形成される間隙が0.5mmとなるようにして、Cu製のバッキングプレート(基材)にInはんだで接合しスパッタリングターゲットを得た。その際、ターゲット材間に形成される間隙に沿って、Cu製のバッキングプレートとターゲット材との間に基材保護部材を配置した。 A φ8 inch target material was cut out from the target material and divided into two at the center. The two divided target materials were bonded to a backing plate (base material) made of Cu with In solder so that the gap formed between the target materials was 0.5 mm to obtain a sputtering target. At that time, along the gap formed between the target materials, a substrate protection member was arranged between the backing plate made of Cu and the target material.
 〔実施例1-1〕
 上述のスパッタリングターゲットにおいて単層の基材保護部材として、厚み0.3mm、幅20mmのTa金属シートを配置した。
 〔実施例1-2〕
 単層の基材保護部材として、厚み0.3mm、幅20mmのZn金属シートを配置した。
 〔実施例1-3〕
 単層の基材保護部材として、厚み0.3mm、幅20mmの、ターゲット材と同組成のセラミックスシートを配置した。
 〔実施例1-4〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、スパッタリングにより厚み0.0001mm、幅20mmのTa膜を第1基材保護部材として成膜したものを配置した。
 〔実施例1-5〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、プラズマ溶射により厚み0.1mm、幅20mmのTa膜を第1基材保護部材として成膜したものを配置した。
 〔実施例1-6〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、プラズマ溶射により厚み0.1mm、幅20mmの、ターゲット材と同組成の膜を第1基材保護部材として形成したものを配置した。
 〔比較例1〕
 間隙部分に基材保護部材を配置せずに接合を行った。
[Example 1-1]
A Ta metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protective member in the sputtering target described above.
[Example 1-2]
A Zn metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
[Example 1-3]
A ceramic sheet having the same composition as the target material and having a thickness of 0.3 mm and a width of 20 mm was placed as a single-layer substrate protection member.
[Example 1-4]
A Ta film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
[Example 1-5]
As a substrate protection member of laminated structure, a Ta 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was plasma-sprayed onto a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
[Example 1-6]
As a substrate protection member of laminated structure, a film having the same composition as the target material and having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The one formed as the first substrate protection member was arranged.
[Comparative Example 1]
Bonding was performed without arranging the substrate protective member in the gap.
〔実施例2ないし7〕
 実施例1において、InとZnとTaとの原子比が、以下の表4に示す値となるように各原料粉末を混合した。これ以外は実施例1と同様にしてスパッタリングターゲットを得た。なお、基材保護部材として実施例1-5と同様のものを配置した。
[Examples 2 to 7]
In Example 1, the raw material powders were mixed so that the atomic ratios of In, Zn, and Ta were the values shown in Table 4 below. A sputtering target was obtained in the same manner as in Example 1 except for this. As the substrate protective member, the same one as in Example 1-5 was arranged.
〔実施例8-1~8-6〕
 実施例1において、Ta粉末に代えて、平均粒径D50が0.7μmであるNb粉末を用いた。InとZnとNbとの原子比が、以下の表1に示す値となるように各原料粉末を混合した。これ以外は実施例1と同様にしてスパッタリングターゲットを得た。
[Examples 8-1 to 8-6]
In Example 1, Nb 2 O 5 powder having an average particle size D 50 of 0.7 μm was used instead of Ta 2 O 5 powder. The raw material powders were mixed so that the atomic ratios of In, Zn, and Nb were the values shown in Table 1 below. A sputtering target was obtained in the same manner as in Example 1 except for this.
 〔実施例8-1〕
 上述のスパッタリングターゲットにおいて単層の基材保護部材として、厚み0.3mm、幅20mmのNb金属シートを配置した。
 〔実施例8-2〕
 単層の基材保護部材として、厚み0.3mm、幅20mmのZn金属シートを配置した。
 〔実施例8-3〕
 単層の基材保護部材として、厚み0.3mm、幅20mmの、ターゲット材と同組成のセラミックスシートを配置した。
 〔実施例8-4〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、スパッタリングにより厚み0.0001mm、幅20mmのNb膜を第1基材保護部材として成膜したものを配置した。
 〔実施例8-5〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、プラズマ溶射により厚み0.1mm、幅20mmのNb膜を第1基材保護部材として成膜したものを配置した。
 〔実施例8-6〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、プラズマ溶射により厚み0.1mm、幅20mmの、ターゲット材と同組成の膜を第1基材保護部材として形成したものを配置した。
 〔比較例2〕
 間隙部分に基材保護部材を配置せずに接合を行った。
[Example 8-1]
A Nb metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protective member in the sputtering target described above.
[Example 8-2]
A Zn metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
[Example 8-3]
A ceramic sheet having the same composition as the target material and having a thickness of 0.3 mm and a width of 20 mm was placed as a single-layer substrate protection member.
[Example 8-4]
As a substrate protection member of laminated structure, a Nb film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
[Example 8-5]
As a substrate protection member of laminated structure, a first Nb 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
[Example 8-6]
As a substrate protection member of laminated structure, a film having the same composition as the target material and having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The one formed as the first substrate protection member was arranged.
[Comparative Example 2]
Bonding was performed without arranging the substrate protective member in the gap.
〔実施例9(実施例9-1~9-9)〕
 実施例1において、Ta粉末に代えて、Ta粉末と、Nb粉末とを、InとZnとTaとNbとの原子比が、以下の表2に示す値となるように混合した。Ta、Nbのモル比は、Ta:Nb=3:2とした。これ以外は実施例1と同様にしてスパッタリングターゲットを得た。
[Example 9 (Examples 9-1 to 9-9)]
In Example 1, instead of Ta 2 O 5 powder, Ta 2 O 5 powder and Nb 2 O 5 powder were used, and the atomic ratios of In, Zn, Ta, and Nb were the values shown in Table 2 below. mixed so that The molar ratio of Ta and Nb was Ta:Nb=3:2. A sputtering target was obtained in the same manner as in Example 1 except for this.
 〔実施例9-1〕
 上述のスパッタリングターゲットにおいて単層の基材保護部材として、厚み0.3mm、幅20mmのTa金属シートを配置した。
 〔実施例9-2〕
 単層の基材保護部材として、厚み0.3mm、幅20mmのNb金属シートを配置した。
 〔実施例9-3〕
 単層の基材保護部材として、厚み0.3mm、幅20mmのZn金属シートを配置した。
 〔実施例9-4〕
 単層の基材保護部材として、厚み0.3mm、幅20mmの、ターゲット材と同組成のセラミックスシートを配置した。
 〔実施例9-5〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、スパッタリングにより厚み0.0001mm、幅20mmのTa膜を第1基材保護部材として成膜したものを配置した。
 〔実施例9-6〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、スパッタリングにより厚み0.0001mm、幅20mmのNb膜を第1基材保護部材として成膜したものを配置した。
 〔実施例9-7〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、プラズマ溶射により厚み0.1mm、幅20mmのTa膜を第1基材保護部材として成膜したものを配置した。
 〔実施例9-8〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、プラズマ溶射により厚み0.1mm、幅20mmのNb膜を第1基材保護部材として成膜したものを配置した。
 〔実施例9-9〕
 積層構造の基材保護部材として、厚み0.3mm、幅20mmのCu金属シートの第2基材保護部材上に、プラズマ溶射により厚み0.1mm、幅20mmの、ターゲット材と同組成の膜を第1基材保護部材として形成したものを配置した。
 〔比較例3〕
 間隙部分に基材保護部材を配置せずに接合を行った。
[Example 9-1]
A Ta metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protective member in the sputtering target described above.
[Example 9-2]
A Nb metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
[Example 9-3]
A Zn metal sheet having a thickness of 0.3 mm and a width of 20 mm was arranged as a single-layer substrate protection member.
[Example 9-4]
A ceramic sheet having the same composition as the target material and having a thickness of 0.3 mm and a width of 20 mm was placed as a single-layer substrate protection member.
[Example 9-5]
A Ta film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
[Example 9-6]
As a substrate protection member of laminated structure, a Nb film having a thickness of 0.0001 mm and a width of 20 mm was formed as a first substrate protection member by sputtering on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The deposited film was arranged.
[Example 9-7]
As a substrate protection member of laminated structure, a Ta 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was plasma-sprayed onto a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
[Example 9-8]
As a substrate protection member of laminated structure, a first Nb 2 O 5 film having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. A film-formed material was placed as a material protection member.
[Example 9-9]
As a substrate protection member of laminated structure, a film having the same composition as the target material and having a thickness of 0.1 mm and a width of 20 mm was formed by plasma spraying on a second substrate protection member of a Cu metal sheet having a thickness of 0.3 mm and a width of 20 mm. The one formed as the first substrate protection member was arranged.
[Comparative Example 3]
Bonding was performed without arranging the substrate protective member in the gap.
 実施例及び比較例で得られたターゲット材に含まれる各金属の割合を、ICP発光分光測定によって測定した。InとZnとTaとNbとの原子比が、表4に示す原料比と同一であることを確認した。 The ratio of each metal contained in the target materials obtained in Examples and Comparative Examples was measured by ICP emission spectrometry. It was confirmed that the atomic ratios of In, Zn, Ta, and Nb were the same as the raw material ratios shown in Table 4.
  〔評価1〕
 実施例で得られたターゲット材の相対密度を以下の方法で測定した。実施例1~9で得られたターゲット材について以下の条件でXRD測定を行い、In相及びZnIn相の有無を確認した。また、実施例1~9で得られたターゲット材についてSEM観察を行い、In相の結晶粒のサイズ、ZnIn相の結晶粒のサイズを以下の方法で測定した。それらの結果を以下の表4に示す。
[Evaluation 1]
The relative densities of the target materials obtained in the examples were measured by the following method. The target materials obtained in Examples 1 to 9 were subjected to XRD measurement under the following conditions to confirm the presence or absence of In 2 O 3 phase and Zn 3 In 2 O 6 phase. Further, the target materials obtained in Examples 1 to 9 were observed by SEM, and the crystal grain size of the In 2 O 3 phase and the crystal grain size of the Zn 3 In 2 O 6 phase were measured by the following method. The results are shown in Table 4 below.
  〔相対密度〕
 ターゲット材の空中質量を体積(ターゲット材の水中質量/計測温度における水比重)で除し、下記式(i)に基づく理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とした。
・・・(i)
(式中Ciはターゲット材の構成物質の含有量(質量%)を示し、ρiはCiに対応する各構成物質の密度(g/cm)を示す。)
 本発明の場合、ターゲット材の構成物質は、In、ZnO、Ta、Nbと考え、例えば
C1:ターゲット材のInの質量%
ρ1:Inの密度(7.18g/cm
C2:ターゲット材のZnOの質量%
ρ2:ZnOの密度(5.60g/cm
C3:ターゲット材のTaの質量%
ρ3:Taの密度(8.73g/cm
C4:ターゲット材のNbの質量%
ρ4:Nbの密度(4.60g/cm
を式(i)に適用することで理論密度ρを算出できる。
 Inの質量%、ZnOの質量%、Taの質量%、Nbの質量%は、ICP発光分光測定によるターゲット材の各元素の分析結果から求めることができる。
[Relative density]
The air mass of the target material is divided by the volume (the mass of the target material in water/the specific gravity of water at the measurement temperature), and the percentage value with respect to the theoretical density ρ (g/cm 3 ) based on the following formula (i) is the relative density (unit: %).
... (i)
(In the formula, Ci represents the content (% by mass) of the constituent material of the target material, and ρi represents the density (g/cm 3 ) of each constituent material corresponding to Ci.)
In the present invention, the constituent substances of the target material are considered to be In 2 O 3 , ZnO, Ta 2 O 5 and Nb 2 O 5 .
ρ1: Density of In 2 O 3 (7.18 g/cm 3 )
C2: % by mass of ZnO in target material
ρ2: Density of ZnO (5.60 g/cm 3 )
C3: % by mass of Ta 2 O 5 in target material
ρ3: Density of Ta 2 O 5 (8.73 g/cm 3 )
C4: % by mass of Nb 2 O 5 in target material
ρ4: Density of Nb 2 O 5 (4.60 g/cm 3 )
is applied to the formula (i), the theoretical density ρ can be calculated.
The mass % of In 2 O 3 , the mass % of ZnO, the mass % of Ta 2 O 5 and the mass % of Nb 2 O 5 can be obtained from the analysis result of each element of the target material by ICP emission spectrometry.
  〔XRD測定条件〕
 株式会社リガクのSmartLab(登録商標)を用いた。測定条件は以下のとおりである。実施例1で得られたターゲット材についてのXRD測定の結果を図8に示す。
・線源:CuKα線
・管電圧:40kV
・管電流:30mA
・スキャン速度:5deg/min
・ステップ:0.02deg
・スキャン範囲:2θ=5度~80度
[XRD measurement conditions]
SmartLab (registered trademark) manufactured by Rigaku Corporation was used. The measurement conditions are as follows. FIG. 8 shows the results of XRD measurement on the target material obtained in Example 1. FIG.
・Radiation source: CuKα ray ・Tube voltage: 40 kV
・Tube current: 30mA
・Scanning speed: 5deg/min
・Step: 0.02deg
・Scan range: 2θ = 5 to 80 degrees
  〔In相の結晶粒のサイズ、ZnIn相の結晶粒のサイズ〕
 日立ハイテクノロジーズ製の走査型電子顕微鏡SU3500を用いて、ターゲット材の表面をSEM観察するとともに、結晶の構成相や結晶形状の評価を行った。
 具体的には、ターゲット材を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた。鏡面仕上げ面をSEM観察した。結晶形状の評価では、倍率1000倍、87.5μm×125μmの範囲のBSE-COMP像を無作為に10視野撮影しSEM像を得た。
[Size of crystal grains of In 2 O 3 phase, size of crystal grains of Zn 3 In 2 O 6 phase]
Using a scanning electron microscope SU3500 manufactured by Hitachi High-Technologies Corporation, the surface of the target material was observed by SEM, and the constituent phases and crystal shape of the crystal were evaluated.
Specifically, the cut surface obtained by cutting the target material is polished in stages using #180, #400, #800, #1000, and #2000 emery papers, and finally buffed to a mirror surface. Finished to The mirror-finished surface was observed by SEM. In the evaluation of the crystal shape, SEM images were obtained by randomly photographing 10 fields of BSE-COMP images in a range of 87.5 μm×125 μm at a magnification of 1000 times.
 得られたSEM像を、画像処理ソフトウェア:ImageJ 1.51k(http://imageJ.nih.gov/ij/、提供元:アメリカ国立衛生研究所(NIH:National Institutes of Health))によって解析した。具体的な手順は以下のとおりである。
 SEM像撮影時に用いたサンプルを、1100℃で1時間サーマルエッチングを施し、SEM観察を行うことで粒界が現れた画像を得た。得られた画像に対し、先ずIn相の粒界に沿って描画を行った。すべての描画が完了した後、粒子解析を実施(Analyze→Analyze Particles)して、各粒子における面積を得た。その後、得られた各粒子における面積から、面積円相当径を算出した。10視野において算出された全粒子の面積円相当径の算術平均値を、In相の結晶粒のサイズとした。続いてZnIn相の粒界に沿って描画を行い、同様に解析を施すことによって得られた各粒子における面積から、面積円相当径を算出した。10視野において算出された全粒子の面積円相当径の算術平均値を、ZnIn相の結晶粒のサイズとした。
The obtained SEM image was analyzed by image processing software: ImageJ 1.51k (http://imageJ.nih.gov/ij/, provider: National Institutes of Health (NIH)). The specific procedure is as follows.
The sample used for taking the SEM image was subjected to thermal etching at 1100° C. for 1 hour, and an image in which grain boundaries appeared was obtained by performing SEM observation. The obtained image was first drawn along the grain boundaries of the In 2 O 3 phase. After all plots were completed, particle analysis was performed (Analyze→Analyze Particles) to obtain the area at each particle. After that, the equivalent circle diameter was calculated from the area of each particle obtained. The arithmetic average value of the area equivalent circle diameters of all particles calculated in 10 fields of view was taken as the size of the crystal grains of the In 2 O 3 phase. Subsequently, drawing was performed along the grain boundaries of the Zn 3 In 2 O 6 phase, and the equivalent circle diameter was calculated from the area of each grain obtained by performing the same analysis. The arithmetic average value of the equivalent circle diameters of all particles calculated in 10 fields of view was taken as the size of the crystal grains of the Zn 3 In 2 O 6 phase.
  〔評価2〕
 実施例1-1~1-6、実施例8-1~8-6、実施例9-1~9-6および比較例1~3のスパッタリングターゲットにおける、スパッタ膜のCu製バッキングプレート(基材)によるCuの混入量を評価した。具体的には、スパッタリング装置(トッキ株式会社製 SML-464)を用い、ガラス基材(日本電気硝子株式会社製OA-10)に厚み14μmの薄膜を成膜した。そして、この成膜した基材について、ターゲット材間に形成される間隙の直上部分に相当する箇所を切り出した。切り出した基材について、Agilent Technologies社製ICP発光分光分析装置 720 ICP-OES を使用して、ICP-OES法により各薄膜中のCuの含有量を測定して評価を行った。
その結果を表1から3に示す。
[Evaluation 2]
Cu backing plate (substrate ) was evaluated. Specifically, using a sputtering apparatus (SML-464 manufactured by Tokki Co., Ltd.), a thin film having a thickness of 14 μm was formed on a glass substrate (OA-10 manufactured by Nippon Electric Glass Co., Ltd.). Then, a portion corresponding to a portion directly above the gap formed between the target materials was cut out from the film-formed base material. The cut base material was evaluated by measuring the Cu content in each thin film by the ICP-OES method using an ICP emission spectrometer 720 ICP-OES manufactured by Agilent Technologies.
The results are shown in Tables 1-3.
 表1~3に示すように、基材保護部材を配置した場合は、スパッタ膜のCuの含有量は2ppm未満であった。これに対して、基材保護部材を配置していない場合、スパッタ膜のCuの含有量は21~23ppmであった。この結果から、基材保護部材を配置することにより、スパッタ膜へのCuの混入を防止できていることがわかる。 As shown in Tables 1 to 3, the Cu content in the sputtered film was less than 2 ppm when the substrate protection member was arranged. On the other hand, the Cu content of the sputtered film was 21 to 23 ppm when the substrate protection member was not arranged. From this result, it can be seen that contamination of the sputtered film with Cu can be prevented by arranging the substrate protection member.
  〔評価3〕
 実施例1-5、実施例2~7、実施例8-5、実施例9-6及び比較例1~3のスパッタリングターゲットを用いて、図6に示すTFT素子1をフォトリソグラフィー法により作製した。
 TFT素子1の作製においては、最初に、ガラス基材(日本電気硝子株式会社製OA-10)10上にゲート電極20としてMо薄膜を、DCスパッタリング装置を用いて成膜した。次に、ゲート絶縁膜30としてSiOx薄膜を下記の条件で成膜した。
成膜装置:プラズマCVD装置 サムコ株式会社製 PD-2202L
成膜ガス:SiH/NO/N混合ガス
成膜圧力:110Pa
基材温度:250~400℃
[Evaluation 3]
Using the sputtering targets of Examples 1-5, 2 to 7, 8-5, 9-6 and Comparative Examples 1 to 3, the TFT element 1 shown in FIG. 6 was produced by photolithography. .
In manufacturing the TFT element 1, first, a Mo thin film was formed as a gate electrode 20 on a glass substrate (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) using a DC sputtering apparatus. Next, a SiOx thin film was formed as the gate insulating film 30 under the following conditions.
Deposition device: Plasma CVD device PD-2202L manufactured by Samco Co., Ltd.
Deposition gas: SiH 4 /N 2 O/N 2 mixed gas Deposition pressure: 110 Pa
Substrate temperature: 250-400°C
 次に、チャネル層40を、実施例1-5、実施例2~7、実施例8-5、実施例9-6及び比較例1~3で得られたスパッタリングターゲットを用いて、下記の条件でスパッタリング成膜を行い、厚さ30nmの薄膜を成膜した。なお、チャネル層40を成膜する際は、ターゲット材間に形成される間隙の直上で成膜されるようにした。
・成膜装置:DCスパッタリング装置 トッキ株式会社製 SML-464
・到達真空度:1×10-4Pa未満
・スパッタガス:Ar/O混合ガス
・スパッタガス圧:0.4Pa
・Oガス分圧:50%
・基材温度:室温
・スパッタリング電力:3W/cm
Next, the channel layer 40 was formed using the sputtering targets obtained in Examples 1-5, 2 to 7, 8-5, 9-6 and Comparative Examples 1 to 3 under the following conditions: A thin film having a thickness of 30 nm was formed by sputtering. When forming the channel layer 40, the film was formed directly above the gap formed between the target materials.
・Deposition device: DC sputtering device SML-464 manufactured by Tokki Co., Ltd.
・Ultimate vacuum: less than 1×10 −4 Pa ・Sputtering gas: Ar/O 2 mixed gas ・Sputtering gas pressure: 0.4 Pa
O2 gas partial pressure: 50%
・Substrate temperature: room temperature ・Sputtering power: 3 W/cm 2
 更に、エッチングストッパー層50として、SiOx薄膜を、前記プラズマCVD装置を用いて成膜した。次に、ソース電極60及びドレイン電極61としてMo薄膜を、前記DCスパッタリング装置を用いて成膜した。保護層70として、SiOx薄膜を、前記プラズマCVD装置を用いて成膜した。最後に350℃で熱処理を実施した。
 このようにして得られたTFT素子1について、ドレイン電圧Vd=5Vでの伝達特性の測定を行った。測定した伝達特性は、電界効果移動度μ(cm/Vs)、SS(Subthreshold Swing)値(V/dec)及びしきい電圧Vth(V)である。伝達特性は、Agilent Technologies株式会社製Semiconductor Device Analyzer B1500Aによって測定した。測定結果を表1及び表2に示す。なお表に示していないが、各実施例で得られたTFT素子1のチャネル層40がアモルファス構造であることをXRD測定によって本発明者は確認している。
Furthermore, as an etching stopper layer 50, a SiOx thin film was formed using the plasma CVD apparatus. Next, Mo thin films were formed as the source electrode 60 and the drain electrode 61 using the DC sputtering apparatus. A SiOx thin film was deposited as the protective layer 70 using the plasma CVD apparatus. Finally, heat treatment was performed at 350°C.
For the TFT element 1 thus obtained, the transfer characteristics were measured at a drain voltage of Vd=5V. The measured transfer characteristics are field effect mobility μ (cm 2 /Vs), SS (Subthreshold Swing) value (V/dec) and threshold voltage Vth (V). The transfer characteristics were measured with a Semiconductor Device Analyzer B1500A manufactured by Agilent Technologies. Tables 1 and 2 show the measurement results. Although not shown in the table, the present inventor confirmed by XRD measurement that the channel layer 40 of the TFT element 1 obtained in each example had an amorphous structure.
 電界効果移動度とは、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)動作の飽和領域において、ドレイン電圧を一定としたときのゲート電圧に対するドレイン電流の変化から求めたチャネル移動度のことであり、値が大きいほど伝達特性が良好である。
 SS値とは、しきい電圧近傍でドレイン電流を1桁上昇させるのに必要なゲート電圧のことであり、値が小さいほど伝達特性が良好である。
 しきい電圧とは、ドレイン電極に正電圧をかけ、ゲート電極に正負いずれかの電圧をかけたときにドレイン電流が流れ、1nAとなった場合の電圧であり、値が0Vに近いことが好ましい。詳細には、-2V以上であることが更に好ましく、-1V以上であることが一層好ましく、0V以上であることが更に一層好ましい。また、3V以下であることが更に好ましく、2V以下であることが一層好ましく、1V以下であることが更に一層好ましい。
The field-effect mobility is the channel mobility obtained from the change in the drain current with respect to the gate voltage when the drain voltage is constant in the saturation region of the MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) operation. , the larger the value, the better the transfer characteristic.
The SS value is the gate voltage required to increase the drain current by one order of magnitude near the threshold voltage, and the smaller the value, the better the transfer characteristics.
The threshold voltage is the voltage when a positive voltage is applied to the drain electrode and either positive or negative voltage is applied to the gate electrode, and the drain current flows to 1 nA. The value is preferably close to 0V. . Specifically, it is more preferably −2 V or higher, even more preferably −1 V or higher, and even more preferably 0 V or higher. Further, it is more preferably 3 V or less, even more preferably 2 V or less, and even more preferably 1 V or less.
 表4に示す結果から明らかなとおり、各実施例で得られたターゲット材を用いて製造されたTFT素子は、伝達特性が優れていることが分かる。 As is clear from the results shown in Table 4, the TFT elements manufactured using the target material obtained in each example have excellent transfer characteristics.
 更に、実施例1で得られたターゲット材は、In相及びZnIn相を含むものであった。実施例2ないし9で得られたターゲット材についても同様の結果が得られた。 Furthermore, the target material obtained in Example 1 contained an In2O3 phase and a Zn3In2O6 phase. Similar results were obtained for the target materials obtained in Examples 2-9.
 本発明によれば、複数のターゲット材を接合して得られた大面積のスパッタリングターゲットであっても、基材の構成材料が、成膜する薄膜中に混入することを効果的に防止することができる、スパッタリングターゲットを提供することができる。
 本発明のスパッタリングターゲットは、フラットパネルディスプレイ(FPD)に使用される薄膜トランジスタ(TFT)の技術分野において好適に用いることができる。また、複数のスパッタリングターゲット材間に形成される間隙に基材保護部材を配置することにより、従来スパッタリングターゲットに比べ基材の構成材料がスパッタリングされず、当該構成材料が成膜する薄膜中に混入することを効果的に防止することができる。そのため、不純物を多く含む目的外のスパッタリング膜の製造が抑制可能であるため、天然資源の持続可能な管理、効率的な利用、及び脱炭素(カーボンニュートラル)を達成することにつながる。
According to the present invention, even in a large-area sputtering target obtained by bonding a plurality of target materials, it is possible to effectively prevent the constituent material of the base material from being mixed into the thin film to be formed. can provide a sputtering target.
The sputtering target of the present invention can be suitably used in the technical field of thin film transistors (TFTs) used in flat panel displays (FPDs). In addition, by placing a substrate protection member in the gap formed between a plurality of sputtering target materials, the constituent materials of the substrate are not sputtered compared to conventional sputtering targets, and the constituent materials are mixed into the thin film to be formed. can be effectively prevented. Therefore, it is possible to suppress the production of unintended sputtering films containing many impurities, which leads to the achievement of sustainable management, efficient utilization, and decarbonization (carbon neutral) of natural resources.

Claims (14)

  1.  インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
     添加元素(X)はタンタル(Ta)、及びニオブ(Nb)から選ばれる少なくとも1つの元素からなり、
     各元素の原子比が式(1)ないし(3)の全てを満たす(式中のXは、前記添加元素の含有比の総和とする。)複数のスパッタリングターゲット材を、基材に接合材により接合して形成されるスパッタリングターゲットであって、
       0.4≦(In+X)/(In+Zn+X)<0.75(1)
       0.25<Zn/(In+Zn+X)≦0.6    (2)
       0.001≦X/(In+Zn+X)≦0.015  (3)
     前記複数のスパッタリングターゲット材間に形成される間隙に配置される基材保護部材を有するスパッタリングターゲット。
    Consists of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X),
    The additive element (X) consists of at least one element selected from tantalum (Ta) and niobium (Nb),
    The atomic ratio of each element satisfies all of the formulas (1) to (3) (X in the formula is the sum of the content ratios of the additive elements). A sputtering target formed by bonding,
    0.4≦(In+X)/(In+Zn+X)<0.75 (1)
    0.25<Zn/(In+Zn+X)≦0.6 (2)
    0.001≦X/(In+Zn+X)≦0.015 (3)
    A sputtering target having a substrate protection member arranged in a gap formed between the plurality of sputtering target materials.
  2.  前記基材保護部材が、Zn、Ta、及びNbいずれかの金属、又はIn、Zn、Ta、及びNbのいずれか二種以上を含有する合金を含む、請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, wherein the substrate protective member contains any one of Zn, Ta, and Nb metals, or an alloy containing two or more of In, Zn, Ta, and Nb.
  3.  前記基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有するセラミックスを含む、請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, wherein the substrate protection member contains ceramics containing one or more of In, Zn, Ta, and Nb.
  4.  前記セラミックスがIn、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物、窒化物、又は酸窒化物を含む、請求項3に記載のスパッタリングターゲット。 The sputtering target according to claim 3, wherein the ceramic contains an oxide, nitride, or oxynitride containing one or more of In, Zn, Ta, and Nb.
  5.  前記セラミックスがIn、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物を含む、請求項3又は4に記載のスパッタリングターゲット。 The sputtering target according to claim 3 or 4, wherein the ceramics contains an oxide containing one or more of In, Zn, Ta, and Nb.
  6.  前記基材保護部材が、スパッタリングターゲット材側の第1基材保護部材と基材側の第2基材保護部材とを積層した構造を有する、請求項1ないし4のいずれか一項に記載のスパッタリングターゲット。 5. The substrate protection member according to any one of claims 1 to 4, wherein the substrate protection member has a structure in which a first substrate protection member on the sputtering target material side and a second substrate protection member on the substrate side are laminated. sputtering target.
  7.  前記第2基材保護部材が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ag、及びTaのいずれかの金属、又はこれら金属のいずれか二種以上を含有する合金を含み、前記第1基材保護部材が、Zn、Ta、及びNbいずれかの金属、又はIn、Zn、Ta、及びNbのいずれか二種以上を含有する合金を含む、請求項6に記載のスパッタリングターゲット。 The second substrate protection member is any metal of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta, or any two or more of these metals wherein the first substrate protection member contains any one of Zn, Ta, and Nb metals, or an alloy containing any two or more of In, Zn, Ta, and Nb Item 7. The sputtering target according to Item 6.
  8.  前記第2基材保護部材が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ag、及びTaのいずれかの金属、又はこれら金属のいずれか二種以上を含有する合金を含み、第1基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有するセラミックスを含む、請求項6に記載のスパッタリングターゲット。 The second substrate protection member is any metal of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ag, and Ta, or any two or more of these metals The sputtering target according to claim 6, wherein the first substrate protection member contains ceramics containing at least one of In, Zn, Ta, and Nb.
  9.  前記第1基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物、窒化物、又は酸窒化物を含む、請求項8に記載のスパッタリングターゲット。 The sputtering target according to claim 8, wherein the first substrate protective member contains an oxide, nitride, or oxynitride containing one or more of In, Zn, Ta, and Nb.
  10.  前記第1基材保護部材が、In、Zn、Ta、及びNbのいずれか一種以上を含有する酸化物を含む、請求項8又は9に記載のスパッタリングターゲット。 The sputtering target according to claim 8 or 9, wherein the first substrate protection member contains an oxide containing one or more of In, Zn, Ta, and Nb.
  11.  添加元素(X)がタンタル(Ta)である、請求項1ないし4のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 4, wherein the additional element (X) is tantalum (Ta).
  12.  前記スパッタリングターゲット材がIn相及びZnIn相を含む、請求項1ないし4のいずれか一項に記載のスパッタリングターゲット。 5. The sputtering target of any one of claims 1-4, wherein the sputtering target material comprises In2O3 and Zn3In2O6 phases .
  13.  In相の結晶粒のサイズが0.1μm以上3.0μm以下であり、
     ZnIn相の結晶粒のサイズが0.1μm以上3.9μm以下である、請求項12に記載のスパッタリングターゲット。
    The crystal grain size of the In 2 O 3 phase is 0.1 μm or more and 3.0 μm or less,
    13. The sputtering target according to claim 12 , wherein the Zn3In2O6 phase has a grain size of 0.1 [mu]m or more and 3.9 [mu]m or less.
  14.  式(4)を更に満たす、請求項1ないし4のいずれか一項に記載のスパッタリングターゲット。
       0.970≦In/(In+X)≦0.999 (4)
    5. The sputtering target of any one of claims 1-4, further satisfying formula (4).
    0.970≦In/(In+X)≦0.999 (4)
PCT/JP2023/000905 2022-01-31 2023-01-16 Sputtering target WO2023145499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521469A JP7403718B1 (en) 2022-01-31 2023-01-16 sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-013649 2022-01-31
JP2022013649 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145499A1 true WO2023145499A1 (en) 2023-08-03

Family

ID=87471322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000905 WO2023145499A1 (en) 2022-01-31 2023-01-16 Sputtering target

Country Status (3)

Country Link
JP (1) JP7403718B1 (en)
TW (1) TW202342791A (en)
WO (1) WO2023145499A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display
JP2008163442A (en) * 2007-01-05 2008-07-17 Idemitsu Kosan Co Ltd Sputtering target and oxide semi-conductor film
JP2012151469A (en) * 2010-12-28 2012-08-09 Kobe Steel Ltd Semiconductor layer oxide and sputtering target of thin-film transistor, and thin-film transistor
WO2021084838A1 (en) * 2019-11-01 2021-05-06 三井金属鉱業株式会社 Gap-filling member
WO2021157112A1 (en) * 2020-02-06 2021-08-12 三井金属鉱業株式会社 Sputtering target
WO2022030455A1 (en) * 2020-08-05 2022-02-10 三井金属鉱業株式会社 Sputtering target material and oxide semiconductor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420289A (en) 2011-10-28 2012-04-18 华南理工大学 Tantalum-doped oxide semiconductor material and preparation method and application thereof
KR20150105527A (en) 2014-03-06 2015-09-17 삼성디스플레이 주식회사 Oxide sputtering target, thin film transistor using the same
CN113735564A (en) 2021-08-11 2021-12-03 芜湖映日科技股份有限公司 Nb-doped IZO target blank and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105054A1 (en) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display
JP2008163442A (en) * 2007-01-05 2008-07-17 Idemitsu Kosan Co Ltd Sputtering target and oxide semi-conductor film
JP2012151469A (en) * 2010-12-28 2012-08-09 Kobe Steel Ltd Semiconductor layer oxide and sputtering target of thin-film transistor, and thin-film transistor
WO2021084838A1 (en) * 2019-11-01 2021-05-06 三井金属鉱業株式会社 Gap-filling member
WO2021157112A1 (en) * 2020-02-06 2021-08-12 三井金属鉱業株式会社 Sputtering target
WO2022030455A1 (en) * 2020-08-05 2022-02-10 三井金属鉱業株式会社 Sputtering target material and oxide semiconductor

Also Published As

Publication number Publication date
JPWO2023145499A1 (en) 2023-08-03
TW202342791A (en) 2023-11-01
JP7403718B1 (en) 2023-12-22

Similar Documents

Publication Publication Date Title
US10196733B2 (en) Sputtering target
JP7218481B2 (en) Sputtering target material and oxide semiconductor
JP6622855B2 (en) Sputtering target, oxide semiconductor thin film, and thin film transistor including the oxide semiconductor thin film
US20220340442A1 (en) Garnet compound, sintered body and sputtering target containing same
TW201431792A (en) Sputtering target, oxide semiconductor thin film, and methods for producing these
TWI557254B (en) Sputtering target
TWI619825B (en) Sputter target, oxide semiconductor film and method of manufacturing same
JP2011195924A (en) In-Ga-Zn BASED COMPOUND OXIDE SINTERED BODY, AND METHOD FOR MANUFACTURING THE SAME
JP2014062316A (en) Sputtering target
WO2023145499A1 (en) Sputtering target
WO2023145498A1 (en) Sputtering target material and production method for oxide semiconductor
CN111448336B (en) Oxide sintered body, sputtering target, and oxide thin film
Itose et al. In 2 O 3—SnO 2—ZnO sputtering target

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521469

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746713

Country of ref document: EP

Kind code of ref document: A1