WO2023143505A1 - 一种图像生成装置、显示设备和图像生成方法 - Google Patents

一种图像生成装置、显示设备和图像生成方法 Download PDF

Info

Publication number
WO2023143505A1
WO2023143505A1 PCT/CN2023/073542 CN2023073542W WO2023143505A1 WO 2023143505 A1 WO2023143505 A1 WO 2023143505A1 CN 2023073542 W CN2023073542 W CN 2023073542W WO 2023143505 A1 WO2023143505 A1 WO 2023143505A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
illumination
image
generating device
Prior art date
Application number
PCT/CN2023/073542
Other languages
English (en)
French (fr)
Inventor
常天海
董天浩
秦振韬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023143505A1 publication Critical patent/WO2023143505A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources

Definitions

  • the embodiments of the present application relate to the field of image generation, and in particular, to an image generation device, a display device, and an image generation method.
  • the images of the left and right perspectives are respectively projected into the corresponding human eyes, so that the images of the two perspectives are processed in the human brain to obtain a 3D image.
  • light sources at two positions are respectively used as light sources for the left and right eyes, and light beams emitted by the two light sources are converged to the left and right eyes of the observer respectively through a lens.
  • the light beam is modulated by the image modulator, so that the imaging light is incident on the eyes of the observer.
  • the modulated light beams converge to a position other than the observer's eyes, and the observer cannot receive images corresponding to the eyes.
  • multiple light sources are set.
  • the two light sources corresponding to the position of the eyes after the movement are determined, the two light sources corresponding to the original position of the eyes are turned off, and the two light sources corresponding to the new position of the eyes are turned on. light source. Turning off and turning on the light source will cause a sudden change in the brightness of the light received by the human eye, affecting the display effect.
  • Embodiments of the present application provide an image generating device, a display device, and an image generating method.
  • the above device, device and method are used to smoothly change the 3D imaging position according to the position of human eyes, thereby improving the imaging consistency.
  • an embodiment of the present application provides an image generating device.
  • the image generating device includes: a first light source, a second light source, a lens, an image modulator and a driving device.
  • the first light source and the second light source are respectively used to emit an illuminating light beam.
  • the lens is used to converge the two illumination beams respectively.
  • the image modulator is used for modulating the two illuminating beams, and the modulated two illuminating beams converge to different positions respectively.
  • the driving device is used to move the first light source and the second light source, and the illuminating light beams emitted by the moved first light source and the moved second light source converge to the left eye of the first observer and the right eye of the first observer respectively.
  • the position where the imaging light (modulated illumination beam) is converged is referred to as a 3D imaging position.
  • the first light source and the second light source can be smoothly moved through the driving device, so that the 3D imaging position moves with the position of the eyes of the observer.
  • the image generation device provided by the embodiment of the present application can achieve smooth movement of the position of the 3D imaging, and the brightness of the 3D imaging is constant and does not change abruptly.
  • High imaging consistency refers to the consistency between the 3D imaging position and the actual human eye position.
  • the driving device is used to move the first light source and the second light source along a predetermined trajectory. Since the predetermined trajectory is a continuous trajectory, the first light source and the second light source can move to any position on the predetermined trajectory. Right now, For any binocular position of the first observer, the corresponding light source position can be found on the predetermined trajectory, and then the first light source and the second light source are moved to the light source position through the driving device, compared with turning on and off the fixed position The light source, the final imaging effect is good.
  • the driving device may be a motor.
  • the image generation device further includes a track.
  • the intended track is on that track.
  • the first light source and the second light source move along a predetermined trajectory on the track.
  • the movement routes of the first light source and the second light source are limited by the track, so that the first light source and the second light source can only move in the one-dimensional space, two-dimensional space or higher-dimensional space of the predetermined track on the track .
  • the predetermined trajectory is a trajectory in one-dimensional space
  • the difficulty of motor control is reduced by limiting the direction of movement (compared with moving in a two-dimensional or higher-dimensional space, one-dimensional control is less difficult)
  • the drive device does not need to have multiple Dimensional control capability simplifies the structure of the driving device and the requirements for the number of control dimensions of the driving device.
  • the position of the light source can be moved in more dimensions to match the movement of the binocular position .
  • the trajectory is within the x-axis in one-dimensional space, when the eyes move in a direction parallel to or close to the x-axis direction, the 3D imaging position can be matched with the position of the eyes by moving the light source on the predetermined trajectory.
  • the light source cannot be moved along the predetermined trajectory, so the 3D imaging position and the binocular position cannot be matched in these dimensions.
  • the predetermined trajectory is a two-dimensional trajectory (for example, the plane where the x-axis and the y-axis lie)
  • the 3D imaging position can be matched with the binocular position in two dimensions. Higher dimensions can be deduced by analogy, so I won’t repeat them here.
  • the polarization directions of the illumination light beams emitted by the first light source and the second light source are perpendicular to each other.
  • the image generating device also includes: a polarization converter and an analyzer.
  • the polarization converter is used to rotate the polarization directions of the illumination light beams emitted by the first light source and the second light source by 90° when the data loaded on the image modulator corresponds to the first viewing angle.
  • the first viewing angle corresponds to the first light source.
  • the analyzer is used to transmit the light beam emitted by the polarization converter, and the target polarization direction is the polarization direction of the illumination light beam emitted by the second light source.
  • the two-dimensional images received by the left and right eyes are different. That is to say, for the same three-dimensional picture, the left and right eyes receive the two-dimensional picture from different perspectives. Therefore, in the image acquisition process of the three-dimensional picture, it is necessary to use the acquisition devices corresponding to the left and right eyes to respectively acquire the two-dimensional images of the perspectives of the left and right eyes.
  • the angle of view of the image acquisition device corresponding to the left eye receiving the 2D image can be called the left eye angle of view
  • the angle of view of the image acquisition device corresponding to the right eye receiving the 2D image can be called the right eye angle perspective.
  • the periodic transmission of the image corresponding to the perspective of the left eye and the image corresponding to the perspective of the right eye is realized through the combination of the polarization converter and the analyzer. Therefore, the first light source and the second light source do not need to be periodically turned off and on in conjunction with the switching cycle of the image corresponding to the left-eye perspective and the image corresponding to the right-eye perspective, so that the imaging brightness is constant and does not change suddenly, and the display effect is improved. And it can avoid problems such as imaging entering the wrong human eyes, picture flickering, crosstalk caused by the time delay of turning on and turning off the light source (see the description of Figure 5 for details), improve the display effect and prolong the service life of the device.
  • the polarization converter includes a liquid crystal layer, and the polarization direction of the light beam incident on the liquid crystal layer can be rotated by 90° by energizing the liquid crystal layer; The direction of polarization does not change.
  • the liquid crystal layer is used to control whether the polarization direction of the light beam is rotated or not. Since energizing the liquid crystal layer is a control method with extremely low delay, it can effectively reduce the control delay, so that the time point of image switching can be more matched to the loading time. The switching time point of the image data.
  • the polarization converter is used to rotate the polarization directions of the illumination light beams emitted by the first light source and the second light source.
  • the image modulator is used to modulate the illumination beam from the polarization converter.
  • the analyzer is used to analyze the beam exiting the polarization converter.
  • the illumination light beam passes through the image modulator after passing through the lens.
  • the direction of the illumination light beam is changed through the lens and then modulated by the image modulator.
  • the image modulated by the image modulator has no or low degree of distortion, which ensures the imaging quality of 3D imaging.
  • the image generating device further includes a computing unit.
  • the calculation unit is used for determining target positions of the first light source and the second light source according to the positions of the eyes of the first observer.
  • the driving device is used to move the first light source and the second light source to the target position.
  • the target position of the light source is the position of the light source obtained by converging the light beams received by both eyes of the first observer along the lens in reverse direction.
  • the calculation unit may query a comparison table of 3D imaging positions and light source positions according to the positions of both eyes, so as to determine the left light source position corresponding to the left eye position and the right light source position corresponding to the right eye position.
  • the calculation unit may determine the light source position corresponding to the left eye position between the two marked light source positions corresponding to the two 3D imaging positions.
  • the position of the right eye is similar and will not be repeated here. Therefore, through the calculation unit, according to the correspondence between the finite number of calibrated 3D imaging positions and the calibrated light source positions, the light source positions corresponding to the infinite number of actual binocular positions (ie the aforementioned target positions) can be determined.
  • the image generating device further includes a position sensor.
  • a position sensor is used to determine the position of the first light source and the second light source.
  • the calculating unit is used for determining the moving distance and/or moving speed of the first light source and the second light source according to the positions of the first light source and the second light source and the target position.
  • the driving device is used to move the first light source and the second light source to the target position according to the above moving distance and/or moving speed.
  • position sensors are used to determine the actual positions of the first light source and the second light source, so as to realize the feedback control of the driving device, thereby suppressing the impact of internal and external disturbances on the controlled quantity (that is, the positions of the first light source and the second light source) Ability to produce impacts with high control precision.
  • the image generation device further includes a detection device.
  • the detection device is used to determine the position of the eyes of the first observer.
  • the real-time position information of both eyes can be obtained through the detection device, and then the position of the light source can be adjusted in real time, so that the position of the light source can be adjusted in real time according to the position of the eyes, which further improves the imaging consistency.
  • the image generating device further includes a third light source and a fourth light source.
  • the third light source and the fourth light source are used to emit two illumination beams.
  • the driving device is also used to move the third light source and the fourth light source, and the illuminating light beams emitted by the moved third light source and the moved fourth light source converge to the left eye of the second observer and the right eye of the second observer respectively.
  • the imaging light is projected to the eyes of the second observer through the third light source and the fourth light source, thereby providing 3D imaging for two observers (the first observer and the second observer).
  • the lens includes a spherical lens, an aspheric lens or a Fresnel lens.
  • the image modulator includes a liquid crystal display (liquid crystal display, LCD), a liquid crystal on silicon (LCOS) chip, a digital micromirror device (digital micromirror device, DMD) and a micro Any of the electromechanical systems (micro electro mechanical systems, MEMS).
  • LCD liquid crystal display
  • LCOS liquid crystal on silicon
  • DMD digital micromirror device
  • MEMS micro electro mechanical systems
  • the first light source and the second light source are light bars.
  • the embodiment of the present application provides a display device.
  • the display device includes a main processor and the image generating device described in the first aspect.
  • the main processor is used to send data to the image modulator.
  • An image modulator modulates the illumination beam according to this data.
  • the embodiment of the present application provides an image generation method.
  • the method includes: obtaining one beam of illumination light beams respectively through the first light source and the second light source to obtain two beams of light beams.
  • the two illumination beams are converged respectively.
  • the two illuminating light beams are respectively modulated, and the modulated two illuminating light beams converge to different positions respectively.
  • the first light source and the second light source are moved, and the illuminating light beams emitted by the moved first light source and the moved second light source converge to the left eye of the first observer and the right eye of the first observer respectively.
  • the action of moving the first light source and the second light source may specifically include: moving the first light source and the second light source along a predetermined track.
  • the first light source and the second light source move along a predetermined track on a track.
  • the polarization directions of the illumination light beams emitted by the first light source and the second light source are perpendicular to each other.
  • the method further includes: when the data loaded on the image modulator corresponds to the first viewing angle, using a polarization converter to rotate the polarization directions of the illumination light beams emitted by the first light source and the second light source by 90°. Wherein, the first viewing angle corresponds to the first light source. Transmitting a light beam with a target polarization direction in the light beams emitted by the polarization converter, where the target polarization direction is the polarization direction of the illumination light beam emitted by the second light source.
  • target positions of the first light source and the second light source may also be determined according to the binocular positions of the first observer.
  • the action of moving the first light source and the second light source may specifically include: moving the first light source and the second light source to a target position.
  • the positions of the first light source and the second light source may also be determined. And according to the positions of the first light source and the second light source and the target position, the moving distance and/or moving speed of the first light source and the second light source are determined.
  • the action of moving the first light source and the second light source to the target position may specifically include: moving the first light source and the second light source to the target position according to the moving distance and/or the moving speed.
  • two illumination light beams may also be obtained through the third light source and the fourth light source. And, the third light source and the fourth light source are moved, and the illuminating light beams emitted by the moved third light source and the moved fourth light source converge to the left eye of the second observer and the right eye of the second observer respectively.
  • Fig. 1 is a structural schematic diagram of an image generating device
  • Fig. 2 is a structural schematic diagram of an image generating device with multiple groups of light sources
  • FIG. 3a is a schematic structural diagram of an image generating device provided in an embodiment of the present application.
  • Fig. 3b is a schematic diagram of an image generating device including a reflective image modulator provided in an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of an image generation device including a track provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an image generating device including a polarization converter and an analyzer provided in an embodiment of the present application;
  • Fig. 6 is a schematic diagram of the beneficial effect of the structure shown in Fig. 5;
  • FIG. 7 is a schematic structural diagram of an image generating device including a position sensor provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a feedback control system of an image generating device provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a feedforward feedback control system of an image generation device provided in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the product form of the display device provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a table display form of a display device provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of an image generation method provided by an embodiment of the present application.
  • Glasses-free 3D technology A 3D display technology that separates left and right eye images by an image generation device, and does not require viewers to wear wearable devices to separate left and right eye images.
  • 3D imaging position the position where the modulated imaging light converges.
  • the imaging light corresponding to the perspective of the left eye and the imaging light corresponding to the perspective of the right eye converge to different 3D imaging positions.
  • Left-eye perspective Due to the different positions of human eyes, the two-dimensional images received by the left and right eyes are different for the same three-dimensional picture. That is to say, for the same three-dimensional picture, the left and right eyes receive the two-dimensional picture from different perspectives. Therefore, in the process of image acquisition of a 3D picture (that is, the acquisition of the data source projected by the image generation device in the embodiment of the present application), it is necessary to use acquisition devices corresponding to the left and right eyes to acquire two-dimensional images from the perspectives of the left and right eyes respectively.
  • the viewing angle of the left eye is the viewing angle of the 2D image received by the image capturing device corresponding to the left eye during the capturing process of the 3D image.
  • Right-eye viewing angle is the viewing angle of the 2D image received by the image acquisition device corresponding to the right eye during the acquisition process of the 3D picture.
  • Imaging Consistency The consistency between the 3D imaging position and the actual human eye position. The smaller the distance between the 3D imaging position and the actual human eye position, the higher the imaging consistency.
  • Data loaded on the image modulator in the embodiment of the present application, it represents a digital signal corresponding to a 3D image, including a digital signal corresponding to a left-eye perspective and a digital signal corresponding to a right-eye perspective.
  • the imaging light corresponding to the left eye angle can be obtained by modulating the illumination light beam according to the digital signal corresponding to the left eye angle of view
  • the imaging light corresponding to the right eye angle can be obtained by modulating the illumination beam according to the digital signal corresponding to the right eye angle of view.
  • 3D display technology can Project 3D images to make the projected images more three-dimensional and vivid.
  • 3D display technology stereoscopic 3D images are obtained in the human brain by projecting imaging lights with different viewing angles to the left and right eyes respectively.
  • 3D display technology can project the imaging light of the left and right eyes to the corresponding human eyes through various means.
  • the imaging light is divided into left and right eye imaging light, and the imaging light of the left eye perspective is projected to the left eye, and the imaging light of the right eye perspective is projected to the right eye.
  • Glasses-free 3D technology does not require the viewer to wear a wearable device, and can realize the separation of left and right eye imaging light, which is a high usability technology for the viewer.
  • the illumination beams emitted by two light sources are converged to the left and right eyes respectively through the lens, and the image modulator modulates the corresponding illumination beams respectively through the data corresponding to the left and right eyes, so that The imaging lights corresponding to the left and right eyes are respectively projected to the corresponding human eyes.
  • FIG. 2 a structure as shown in Figure 2 appears.
  • multiple groups of light sources are arranged, and a group of light sources at the initial position of the human eye (such as position 2 and position 3 in the figure) are used as light sources for the left and right eyes.
  • the human eye determines the new light source position corresponding to the new position of the human eye (for example, position 5 and position 6 in the figure). Turn off the light source at the initial light source position, turn on the light source at the new light source position, and realize the switching of the imaging position.
  • this structure of switching the imaging position by turning off the light source at the original position and turning on the light source at the new position will cause a sudden change in the brightness of the imaging light due to the turning off and turning on of the light source, thus affecting the viewing experience of the audience.
  • the 3D imaging position jumps due to the position jump of the light source, resulting in a large distance between the 3D imaging position and the actual human eye position, resulting in poor imaging consistency.
  • the image generating device 300 provided by the embodiment of the present application includes a first light source 310, a second light source 320, a lens 330, an image modulator 340 and Drive device 350 .
  • the first light source 310 and the second light source 320 are respectively used to provide an illumination light beam.
  • the lens 330 is used for converging the two illumination beams, and the two illumination beams passing through the lens 330 are respectively converged to different viewpoints.
  • the image modulator 340 is used to modulate the two light beams, and the modulated two illumination light beams converge to different positions.
  • the driving device 350 is used to move the first light source 310 and the second light source 320 .
  • the illuminating light beams emitted by the moved first light source 310 and the moved second light source 320 converge to the left eye of the first observer and the right eye of the first observer respectively.
  • the first light source 310 may be a left light source, and the second light source 320 may be a right light source; or the first light source 310 may be a right light source, and the second light source 320 may be a left light source, which is not limited in this application.
  • the illumination light beam emitted by the left light source is converged to the observer's left eye through the lens 330
  • the illumination beam emitted by the right light source is converged to the observer's right eye through the lens 330 .
  • the driving device 350 moves the first light source 310 and the second light source 320, thereby changing the converging positions of the illumination beams of the first light source 310 and the second light source 320 (that is, the 3D imaging position ), so that the 3D imaging position moves with the position of the human eye.
  • the 3D imaging position is changed by moving the light source. During the movement of the light source, the position of the light source does not change, so the 3D imaging position does not change, so the brightness is constant and does not change suddenly, which improves the viewing experience of the audience.
  • the 3D imaging position is gradually closer to the viewpoint of the human eye, and the distance between the 3D imaging position and the actual binocular position is smaller. Therefore, the imaging consistency can be improved through the image generation device provided in the embodiment of the present application.
  • the image generation device provided by the embodiment of the present application can realize the matching of multiple positions of a pair of human eyes through a pair of light sources. equipment cost.
  • the illuminating light beam may first pass through the lens 330 and then pass through the image modulator 340 as shown in FIG. Do limited.
  • the lens 330 may be a spherical lens, an aspheric lens or a Fresnel lens.
  • the first light source 310 and the second light source 320 may be light bars.
  • the light bar may be composed of one or more rows of lamp beads, and the moving direction of the first light source 310 and the second light source 320 may be perpendicular to the extending direction of each row of lamp beads.
  • the image modulator 340 may be a transmissive image modulator, configured to modulate the incident illumination light beam and transmit the modulated imaging light.
  • the image modulator 340 may be a liquid crystal display (liquid crystal display, LCD) or other transmissive image modulators, which is not limited in this application.
  • the image modulator 340 may also be a reflective image modulator.
  • the structure of an image generating device including a reflective image modulator is shown in Fig. 3b.
  • the image modulator 340 is used to modulate the incident illumination light beam and reflect the modulated imaging light.
  • the image modulator 340 can be liquid crystal on silicon (Liquid crystal on silicon, LCOS), digital micromirror device (Digital Micromirror Device, DMD) and micro-electromechanical systems (Micro-electromechanical systems, MEMS), etc., this application There is no limit to this.
  • a diffusion screen is also included between the image modulator 340 and the lens 330, or after the lens 330. The diffusion screen is used to diffusely reflect the imaging light, thus making the imaging light softer.
  • a diffusion screen may also be included in the structure of the image generating device including the transmissive image modulator (such as the structures shown in Fig. 3a, Fig. 4, Fig. 5 and Fig. 7).
  • the diffusion screen can be located at any position behind the image modulator 340, which is not limited in this application.
  • the driving device 350 can move the first light source 310 and the second light source 320 on a predetermined trajectory. Since the trajectory is a line or plane obtained by connecting multiple points, the first light source 310 and the second light source 320 can be moved to any point on the trajectory along the predetermined trajectory. That is, for any binocular position, the corresponding light source position can be found on the predetermined track, and then the first light source 310 and the second light source 320 are moved to the light source position through the driving device 350, so that the 3D imaging position where the light sources converge falls on In the actual position of the eyes, the final imaging effect is good.
  • the driving device 350 may include a motor 351 .
  • the image generating device 300 provided in the embodiment of the present application may further include a track 360 on which the predetermined track is located.
  • the driving device 350 may include a motor 351 .
  • the motor 351 is used to move the first light source 310 and the second light source 320 along a predetermined track on the track 360 .
  • the track 360 may be a one-dimensional track, that is, the first light source 310 and the second light source 320 can only move forward or backward along a predetermined track on the track.
  • the motor 351 can move the first light source 310 and the second light source 320 through transmission devices such as gears, conveyor belts, chains, pulleys, pneumatic transmission devices, and hydraulic transmission devices.
  • the one-dimensional track restricts the movement of the light source in other dimensions, the movement of the first light source 310 and the second light source 320 on the track 360 is relatively smooth, thereby realizing smooth movement of the imaging position.
  • the motor only needs to control the movement of the light source in one dimension, so the assembly structure among the motor, the transmission device and the track is simple, so that the structure of the entire image generating device is simple.
  • the left and right eyes need to alternately receive images of corresponding viewing angles. Therefore, during the modulation process of the illumination beam by the image modulator 340, the loaded image data is periodically switched. For example, as shown in FIG. 5 , odd frames (first frame, third frame, . . . ) load the data of the left eye view, and even frames (second frame, fourth frame, . . . ) load the data of the right eye view.
  • odd frames first frame, third frame, . . .
  • even frames second frame, fourth frame, . . .
  • the left and right light sources also need to be switched between the two light sources according to the switching cycle of the image modulator 340 loading data.
  • the image modulator 340 loads the data of the left-eye view
  • the left light source is on and the right light source is off
  • the right light source is on and the left light source is off.
  • the illuminating light beam emitted by the left light source is converged by the lens and projected to the left eye of the observer
  • the illuminating light beam emitted by the right light source is projected to the right eye of the observer after being converged by the lens.
  • the embodiment of the present application also provides an image generating device structure, which realizes the periodic transmission of the light beams of the left and right light sources through the polarization converter and the analyzer, and the left and right light sources do not need to be turned on and off periodically.
  • the display problems caused by the above-mentioned delays in turning on and off are avoided.
  • the image generating device 300 includes a first light source 310 , a second light source 320 , a lens 330 , an image modulator 340 , a driving device 350 , a polarization converter 370 and an analyzer 380 .
  • the functions of the first light source 310 , the second light source 320 , the lens 330 , the image modulator 340 and the driving device 350 refer to the embodiment shown in FIG. 3 a , which will not be repeated here.
  • the polarization directions of the illumination light beams emitted by the first light source 310 and the second light source 320 are perpendicular to each other.
  • the polarization converter 370 rotates the polarization directions of the illumination light beams emitted by the first light source 310 and the second light source 320 by 90°.
  • the first viewing angle corresponds to the first light source 310 .
  • the first light source 310 may be one of a left light source and a right light source. That is, if the first light source 310 is a left light source, the first viewing angle is a left-eye viewing angle; if the first light source 310 is a right light source, the first viewing angle is a right-eye viewing angle.
  • the analyzer 380 is used to transmit the light beam in the target polarization direction.
  • the target polarization direction is the polarization direction of the illumination light beam emitted from the second light source 320 .
  • the polarization state of the light beam transmitted by the analyzer 380 is S.
  • the image modulator 340 loads the data of the right eye view (that is, when there are odd frames, the first frame is taken as an example in Table 1), the polarization converter 370 is turned on.
  • the polarization converter 370 in the turned-on state rotates the polarization directions of the illumination beams emitted by the left light source and the right light source by 90°, so that the illumination beams emitted by the left light source Turn into P-polarized light, and change the illumination beam from the right light source into S-polarized light. Since the analyzer 380 can only transmit S-polarized light, the illumination light beam emitted by the right light source is transmitted, and after being converged by the lens 330 and modulated by the image modulator 340, the resulting imaging light at the angle of view of the right eye converges to the right eye; while the left light source The emitted illuminating light beam is blocked by the analyzer 380, and the left eye cannot receive the imaging light.
  • the polarization converter 370 When the image modulator 340 loads the data of the left-eye view (that is, an even-numbered frame, the second frame is taken as an example in Table 1), the polarization converter 370 is turned off. The polarization converter 370 is in a closed state, and directly transmits the S light emitted by the left light source and the P light emitted by the right light source.
  • the analyzer 380 can only transmit S-polarized light, the illumination light beam emitted by the left light source is transmitted, and through the converging of the lens 330 and the modulation of the image modulator 340, the resulting imaging light of the left eye angle is converged to the left eye; while the right light source The emitted illuminating light beam is blocked by the analyzer 380, and the right eye cannot receive the imaging light.
  • Table 1 An example of the corresponding relationship between the components and the polarization state of the beam in the image generation device
  • the data of the left-eye view can also be loaded in odd frames, and the data of the right-eye view can be loaded in even frames, then it is possible to: change the polarization state of the light source (left P right S), or change the opening and closing period of the polarization converter (odd number frame closed, even frame open), or change the polarization state of the analyzer to P, and perform one or three of the above three points, and also realize the correspondence between the viewing angle of the loaded data and the light source of the transmitted beam (that is, loading the left When the eye angle data is transmitted, the illumination beam of the left light source is transmitted, and when the right eye angle data is loaded, the illumination beam of the right light source is transmitted).
  • the sequence between any one of the polarization converter 370 and the analyzer 380 and the image modulator 340 is not limited. Therefore, the illuminating light beam described in this embodiment may be the illuminating light beam before modulation or the illuminating light beam (imaging light) after modulation, which is not limited in this application.
  • the polarization converter 370 may be a liquid crystal layer.
  • the liquid crystals in the liquid crystal layer are arranged in a predetermined form, and the polarization direction of the passing light beam is rotated by 90°.
  • the liquid crystal layer can transmit light beams.
  • light gray indicates that the left light source is on
  • dark gray indicates that the right light source is on.
  • light gray indicates the light beam transmitted from the left light source
  • dark gray indicates the light beam transmitted from the right light source. Since the liquid crystal layer is electrified to the change of the liquid crystal arrangement state in the liquid crystal layer is completed at a high speed, there is no obvious time delay. Therefore, with the structure of the image generating device shown in FIG. 5 , problems such as flickering and crosstalk caused by periodic turning on and off of the light source and poor display effect will not occur. Thus, the display effect of the image generating device is improved.
  • the control system of the on-off period is arranged between the stationary image modulator 340 and the polarization converter 370, compared to the control system arranged between the image modulator 340 and the movable first light source 310 and the second light source 320.
  • the periodic switching of the viewing angle corresponding to the imaging light is realized, and the light source does not need to be turned on and off periodically, which can prolong the service life of the light source, thereby prolonging the service life of the entire image generating device.
  • Table 1 is only an example of the corresponding relationship.
  • the polarization state of each component in the image generation device 300 and the data loading period can be carried out as shown in Table 2 settings shown in any of the rows.
  • the lens is not limited. 330 , the positional relationship between the image modulator 340 , the polarization converter 370 and the analyzer 380 . That is, after the illumination light beam exits from the first light source and the second light source, the sequence of passing through the lens 330, the image modulator 340, the polarization converter 370, and the polarizer 380 is only limited to first passing through the polarization converter 370 and then passing through the polarizer 380. , others are not limited.
  • the image generating device 300 does not include the polarization converter 370 and the analyzer 380 , the first light source 310 and the second light source 320 are periodically switched in synchronization with the switching period of the viewing angle of the image data loaded by the image modulator 340 .
  • the control system can be used to control the driving device 350 , so as to control the positions of the first light source 310 and the second light source 320 .
  • a computing unit is provided in the image generating device 300, and the computing unit is used to determine the target positions of the first light source and the second light source according to the positions of the observer's left and right eyes.
  • the driving device 350 moves the first light source 310 and the second light source 320 to the target position.
  • the calculation unit may include a comparison table between the calibrated 3D imaging position and the calibrated light source position.
  • the observer's binocular position is on the marked 3D imaging position (for example, on point (O1, O2))
  • determine the corresponding marked light source position for example, point (T1, T2)
  • the target position can be determined between the corresponding two marked light source positions.
  • the determined target position is the position of the light source obtained by converging the light beams received by the observer's eyes in reverse direction along the lens after the observer moves.
  • a position sensor 390 may be provided in the image generating device 300, and the position sensor 390 is used to determine the positions of the first light source 310 and the second light source 320,
  • the specific structure is shown in Figure 7.
  • the position sensor 390 may be a resistive displacement sensor, a distance sensor, etc., which is not limited in this application.
  • the position sensor 390 may move synchronously with the first light source and the second light source, or may be at a fixed position, which is not limited in this application.
  • the position sensor 390 may move synchronously with the first light source 310 and the second light source 320, and determine the positions of the first light source 310 and the second light source 320 through the distance from the calibration point.
  • the position sensor 390 is fixed, and the positions of the first light source 310 and the second light source 320 are determined by the distance from the calibration points on the first light source 310 and the second light source 320 . This application does not limit this.
  • feedback control or feedforward feedback control can be performed on the driving device 350 .
  • the target position of the light source is determined by the calculation unit, and the actual position of the light source is determined by the position sensor 390 .
  • the moving distance of the light source can be obtained by subtracting the target position of the light source from the actual position.
  • the driving device 350 moves the position of the light source according to the moving distance, so that the light source moves to the target position, so that the focus position (3D imaging position) of the light beam emitted by the light source falls on the moved eyes of the observer.
  • the ability of internal and external disturbances to affect the controlled quantity ie, the position of the light source
  • the control accuracy is high.
  • the imaging position can be accurately moved to the target position without other interference, thereby improving the imaging consistency.
  • the case of feedforward feedback control will be described. If the eyesight of both eyes is in a state of continuous movement, there must be a lag in the movement of the light source position compared to the actual movement of the eyes through a simple feedback control system. This lag can be minimized by feeding forward the compensation value.
  • the difference between the target position and the actual position of the light source is added to the feedforward compensation value to obtain the moving distance.
  • the feedforward compensation value may be distance and/or speed. The system lag is reduced by the feedforward compensation value, so that the moving distance and moving speed of the light source position can keep up with the movement of the binocular viewpoint, thereby improving the imaging consistency.
  • the positions of the eyes of the observer can be acquired by the detection device. That is, the image generation device 300 may further include a detection device for determining the positions of the observer's eyes.
  • the light source in Fig. 8 and Fig. 9 may be a left light source or a right light source. That is, the positions of the left light source and the right light source are controlled separately, and the feedback control system is divided into a feedback control system for the left light source and a feedback control system for the right light source. Then the position sensor 390 can be set separately for the left light source and the right light source as shown in the figure, or the left light source and the right light source can be taken as a whole, and one position sensor can be set to determine the positions of the two light sources. If position sensors 390 are provided for the left light source and the right light source respectively, the distance between the left light source and the right light source can be changed according to the interpupillary distance of different observers, thereby improving the adaptability of the image generating device to different users.
  • the target positions of the light sources in FIG. 8 and FIG. 9 may be determined according to actual binocular positions, or may be determined based on predicted binocular positions.
  • the calculation unit can predict the target position of the binocular movement according to the movement rule of the binocular position, thereby reducing the lag of the 3D imaging position movement corresponding to the light source compared with the binocular position movement.
  • the computing unit may be a part of the control circuit of the driving device 350, or may be a separate control unit, which is not limited in the present application.
  • FIG. 4 , FIG. 5 and FIG. 7 are based on FIG. 3 a , respectively superimposing the structure of the track 360 , the polarization converter 370 and the analyzer 380 , and the position sensor 390 .
  • the track 360, the polarization converter 370, the analyzer 380, and the position sensor 390 may also be superimposed on the structure shown in FIG. 3b, which is not limited in the present application.
  • any components in the track 360, the polarization converter 370, the analyzer 380, the position sensor 390, the calculation unit, and the detection device can be superimposed on each other and appear in the same image generation device, which is not covered by this application. limited.
  • the image generating devices shown in Fig. 3a to Fig. 9 can respectively move the position of the light source based on the binocular positions of one observer or multiple observers. When the binocular positions of multiple observers are moved, there are multiple pairs of light sources matching the number of observers, which is not limited in this embodiment of the present application.
  • the embodiment of the present application also provides a display device.
  • the display device 1000 includes a main processor 1100 and an image generating device 1200 .
  • the image generating device 1200 is the image generating device 300 shown in FIG. 3 a to FIG. 9 .
  • the main processor 1100 is used to send data to the image modulator in the image generating device 1200 .
  • An image modulator modulates the illumination beam according to this data.
  • the display device 1000 has various product forms. As shown in FIG. 11 , the display device 1000 may include a 3D display, a 3D projector, a 3D wearable device, and the like. Wherein, the 3D display may be a display screen of a computer monitor, a mobile phone, a notebook computer, a personal digital assistant (personal digital assistant, PDA), a game console and other mobile devices.
  • the 3D projector can be applied to a front-projection scene or a rear-projection scene, which is not limited in this application.
  • the display device 1000 may be a vehicle light, a desktop display device, a head up display (head up display, HUD) device, and the like.
  • the 3D wearable device may be augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) glasses, AR/VR helmet, smart watch, etc., which is not limited in this application.
  • the display device 1000 provided in the embodiment of the present application may be applied to vehicles such as cars and boats, which is not limited in the present application.
  • the image generating device 1200 on the display device 1000 outputs imaging light.
  • the imaging light is reflected by the glass screen and the free-form surface mirror, and projected onto the human eye through the glass screen, presenting an image on the human eye.
  • FIG. 13 is a schematic flowchart of an image projection method provided by an embodiment of the present application. This method can be applied to any of the aforementioned image generating devices. As shown in Figure 13, the method includes:
  • the first light source and the second light source are moved along a predetermined track.
  • the first light source and the second light source move along a predetermined track on a track.
  • the polarization directions of the illumination light beams emitted by the first light source and the second light source are perpendicular to each other.
  • the data loaded on the image modulator corresponds to the first viewing angle
  • the polarization directions of the illumination light beams emitted by the first light source and the second light source are rotated by 90° through the polarization converter.
  • the first viewing angle corresponds to the first light source. Transmitting a light beam with a target polarization direction in the light beams emitted by the polarization converter, where the target polarization direction is the polarization direction of the illumination light beam emitted by the second light source.
  • target positions of the first light source and the second light source are determined according to binocular positions of the first observer. Move the first light source and the second light source to the target position.
  • the positions of the first light source and the second light source are determined. According to the positions of the first light source and the second light source and the target position, the moving distance and/or moving speed of the first light source and the second light source are determined. The first light source and the second light source are moved to the target position according to the moving distance and/or the moving speed.
  • an illumination light beam is obtained through the third light source and the fourth light source respectively; the third light source and the fourth light source are moved, and the illumination emitted by the moved third light source and the moved fourth light source The light beams are respectively converged to the second view observer's left eye and a second observer's right eye.
  • the image generation device, display device, and image generation method provided in the embodiments of the present application can be applied to office, education, medical care, entertainment, games, advertisement placement, architectural decoration, event broadcast, as well as the exhibition of handicrafts, collections, etc., dramas, In scenes such as screenings of operas, concerts and other performances.
  • it can be applied to equipment such as computer display screens, conference projectors, and conference flat panel display screens.
  • it can be used in medical displays or surgical microscopes to enrich display content (3D imaging can display objects or the depth distance between objects), so that the object information obtained by medical staff can be upgraded from 2D to 3D. Thereby improving the accuracy of remote medical diagnosis or medical examination.
  • 3D images can be displayed on the screens of game consoles, mobile phones, tablets and other devices, or 3D images can be displayed through game projectors, making the image display more three-dimensional and vivid, and enhancing the user's sense of presence (presence).
  • the data loaded on the image modulator may be a digital signal corresponding to a pre-prepared 3D image, or a digital signal corresponding to a 3D image generated in real time.
  • two cameras can be used to collect images from the left-eye perspective and right-eye perspective respectively at the game site, and convert the real-time captured binocular images into digital signals and load them on the image modulator in real time to realize on-site live broadcast.
  • the data may also be free-view image data. That is, viewing angles can be changed to enhance interactivity.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other various media that can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种图像生成装置(300)、显示设备(1000)和图像生成方法,可应用于光桌显、HUD、投影仪、显示器领域,用于根据人眼位置平滑改变3D成像位置,提升成像一致性。图像生成装置(300)包括:第一光源(310)和第二光源(320),分别用于发出一束照明光束;透镜(330),用于分别汇聚两束照明光束;图像调制器(340),用于调制两束照明光束;其中,调制后的两束照明光束分别汇聚至不同位置;驱动装置(350),用于移动第一光源(310)和第二光源(320),移动后的第一光源(310)和第二光源(320)发出的照明光束汇聚至第一观察者移动后的双眼视点。

Description

一种图像生成装置、显示设备和图像生成方法
本申请要求于2022年1月26日提交中国国家知识产权局、申请号为202210094890.1、申请名称为“一种图像生成装置、显示设备和图像生成方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及图像生成领域,尤其涉及一种图像生成装置、显示设备和图像生成方法。
背景技术
在三维(three dimensions,3D)显示技术中,通过将左右视角的图像分别投射至对应的人眼中,从而在人脑中对两视角的图像进行处理获取3D图像。在一种实现中,将两个位置上的光源分别作为左右眼的光源,通过透镜将两光源发出的光束分别汇聚至观察者的左右眼。并且在光束投射至观察者双眼的光路中,通过图像调制器调制光束,使得成像光入射至观察者的双眼。
但是,若观察者移动,则调制后的光束汇聚至观察者双眼之外的位置,观察者无法接收到双眼对应的图像。
在一种解决方案中,设置多个光源,当观察者移动,则确定移动后双眼位置对应的两个光源,将原双眼位置对应的两个光源熄灭,并亮起新双眼位置对应的两个光源。光源的熄灭和亮起会造成人眼所接收的光的亮度突变,影响显示效果。
发明内容
本申请实施例提供了一种图像生成装置、显示设备和图像生成方法。上述装置、设备和方法用于根据人眼位置平滑改变3D成像位置,从而提升成像一致性。
第一方面,本申请实施例提供了一种图像生成装置。该图像生成装置包括:第一光源、第二光源、透镜、图像调制器和驱动装置。其中,第一光源和第二光源分别用于发出一束照明光束。透镜用于分别汇聚两束照明光束。图像调制器用于调制该两束照明光束,调制后的该两束照明光束分别汇聚至不同位置。驱动装置用于移动第一光源和第二光源,移动后的第一光源和移动后的第二光源发出的照明光束分别汇聚至第一观察者的左眼和第一观察者的右眼。
在本申请实施例中,将成像光(调制后的照明光束)汇聚至的位置称为3D成像位置。本申请实施例通过驱动装置,可以平滑移动第一光源和第二光源,从而使3D成像位置随观察者的双眼位置移动。相较于通过熄灭原位置光源开启新位置光源的方法中3D成像位置的跳变,通过本申请实施例提供的图像生成装置可以做到3D成像的位置的平滑移动,3D成像的亮度恒定不突变、成像一致性高。在本申请实施例中,成像一致性指的是3D成像位置与实际人眼位置之间的一致性。
在一种可选的实现方式中,驱动装置用于沿预定轨迹移动第一光源和第二光源。由于预定轨迹是一个连续的轨迹,因此第一光源和第二光源可以移动到预定轨迹上的任意位置。即, 对于第一观察者的任意双眼位置,都可以在预定轨迹上找到对应的光源位置,进而通过驱动装置将第一光源和第二光源移动到该光源位置上,相较于开启和关闭固定位置上的光源,最终呈现的成像效果好。
在一种可选的实现方式中,驱动装置可以是电机。
在一种可选的实现方式中,图像生成装置还包括轨道。预定轨迹在该轨道上。第一光源和第二光源在轨道上沿预定轨迹移动。本申请实施例通过轨道限制第一光源和第二光源的移动路线,使得第一光源和第二光源只能在轨道上的预定轨迹的一维空间、二维空间或更高维度的空间内移动。
若预定轨迹为一维空间上的轨迹,则通过限制移动方向降低电机控制难度(相较于在二维或更高维度的空间上移动,一维的控制难度低),驱动装置不需要具备多维度的控制能力,简化了驱动装置的结构和对驱动装置的控制维度数量要求。
若预定轨迹为二维空间或更高维度空间内的轨迹,则相较于更低维度(例如一维)空间内的轨迹,可以在更多的维度上匹配于双眼位置的移动来移动光源位置。例如,若轨迹为一维空间x轴内的轨迹,则在双眼沿平行或接近于x轴方向的方向上移动时,可以通过在预定轨迹上移动光源做到3D成像位置与双眼位置的匹配。但是在其他维度上(例如垂直于一维轨迹方向的y轴或z轴方向上),沿该预定轨迹无法移动光源,那么在这些维度上就无法做到3D成像位置与双眼位置的匹配。若预定轨迹为二维轨迹(例如x轴和y轴所在的平面),则可以在两个维度上做到3D成像位置与双眼位置的匹配。更高维度以此类推,此处不再赘述。
在一种可选的实现方式中,第一光源和第二光源发出的照明光束的偏振方向相互垂直。该图像生成装置还包括:偏振转换器和检偏器。其中,偏振转换器用于在加载到图像调制器上的数据对应于第一视角时,将第一光源和第二光源发出的照明光束的偏振方向旋转90°。其中,第一视角对应于第一光源。检偏器用于对偏振转换器发出的光束进行透射,目标偏振方向为第二光源发出的照明光束的偏振方向。
由于人的双眼位置不同,因此对于同一个三维画面,左右眼所接收到的二维图像是不同的。也就是说,对于同一个三维画面,左右眼是站在不同的视角接收二维画面的。因此,在三维画面的图像采集过程中,需要用左右眼对应的采集设备分别采集左右眼视角的二维图像。在三维画面的采集过程中,对应于左眼的图像采集装置接收二维图像的视角即可称为左眼视角,对应于右眼的图像采集装置接收二维图像的视角即可称为右眼视角。
本申请实施例通过偏振转换器和检偏器的组合,实现了对左眼视角对应图像和右眼视角对应图像的周期性透射。因此第一光源和第二光源并不需要配合左眼视角对应图像和右眼视角对应图像的切换周期进行周期性的熄灭和亮起,从而使成像亮度恒定不突变,提升了显示效果。并且可以避免光源的亮起时延和熄灭时延所导致的成像进入错误的人眼、画面闪烁、串扰等问题(具体参见图5的说明),提升显示效果和延长装置使用寿命。
在一种可选的实现方式中,偏振转换器包括液晶层,对该液晶层通电可以将入射液晶层的光束的偏振方向旋转90°,不对该液晶层通电,则入射该液晶层的光束的偏振方向不变。本申请实施例通过液晶层控制光束的偏振方向旋转与否,由于对液晶层通电是一种时延极低的控制手段,可以有效降低控制时延,从而使图像切换的时间点更匹配于加载的图像数据的切换时间点。
在一种可选的实现方式中,偏振转换器用于对第一光源和第二光源发出的照明光束进行偏振方向旋转。图像调制器用于对偏振转换器发出的照明光束进行调制。检偏器用于对出射偏振转换器的光束进行检偏。
在一种可选的实现方式中,照明光束经过透镜之后,再经过图像调制器。在本申请实施例中,照明光束先经过透镜改变方向再经过图像调制器进行调制,图像调制器调制所得的成像不发生畸变或畸变的程度低,保证了3D成像的成像质量。
在一种可选的实现方式中,图像生成装置还包括计算单元。计算单元用于根据第一观察者的双眼位置,确定第一光源和第二光源的目标位置。驱动装置用于将第一光源和第二光源移动至目标位置。在本申请实施例中,光源的目标位置为第一观察者双眼所接收光束沿透镜反向会聚所得的光源位置。
具体地,计算单元可以根据双眼位置,查询3D成像位置与光源位置的对照表,从而确定左眼位置对应的左光源位置和右眼位置对应的右光源位置。可选地,若左眼的位置位于对照表中两个标定3D成像位置之间,则计算单元可以在该两3D成像位置对应的两个标定光源位置之间确定左眼位置对应的光源位置。右眼位置与之相似,此处不再赘述。因此,通过计算单元,可以根据有限个标定3D成像位置与标定光源位置之间的对应关系,确定无限个实际双眼位置所对应的光源位置(即前述目标位置)。
在一种可选的实现方式中,图像生成装置还包括位置传感器。位置传感器用于确定第一光源和第二光源的位置。计算单元用于根据第一光源和第二光源的位置以及目标位置,确定第一光源和第二光源的移动距离和/或移动速度。驱动装置用于根据上述移动距离和/或移动速度,将第一光源和第二光源移动至目标位置。本申请实施例通过位置传感器确定第一光源和第二光源的实际位置,从而实现对驱动装置的反馈控制,从而抑制内、外扰动对被控量(即第一光源和第二光源的位置)产生影响的能力,控制精度高。
在一种可选的实现方式中,图像生成装置还包括检测装置。检测装置用于确定第一观察者的双眼位置。本申请实施例通过检测装置可以获取双眼的实时位置信息,进而实时调整光源的位置,使得光源位置顺应于双眼位置实时调整,进一步提升了成像一致性。
在一种可选的实现方式中,图像生成装置还包括第三光源和第四光源。第三光源和第四光源用于发出两束照明光束。驱动装置还用于移动第三光源和第四光源,移动后的第三光源和移动后的第四光源发出的照明光束分别汇聚至第二观察者的左眼和第二观察者的右眼。本申请实施例通过第三光源和第四光源,将成像光投射至第二观察者的双眼,从而为两个观察者(第一观察者和第二观察者)提供3D成像。
在一种可选的实现方式中,透镜包括球面透镜、非球面透镜或菲涅尔透镜。
在一种可选的实现方式中,图像调制器包括液晶显示器(liquid crystal display,LCD)、硅基液晶(liquid crystal on silicon,LCOS)芯片、数字微镜设备(digital micromirror device,DMD)和微机电***(micro electro mechanical systems,MEMS)中的任意一个。
在一种可选的实现方式中,第一光源和第二光源为光条。
第二方面,本申请实施例提供了一种显示设备。该显示设备包括主处理器和第一方面所述的图像生成装置。主处理器用于向图像调制器发送数据。图像调制器根据该数据对照明光束进行调制。
第三方面,本申请实施例提供了一种图像生成方法。该方法包括:分别通过第一光源和第二光源获取一束照明光束,得到两束光束。分别汇聚该两束照明光束。分别调制该两束照明光束,调制后的两束照明光束分别汇聚至不同位置。移动第一光源和第二光源,移动后的第一光源和移动后的第二光源发出的照明光束分别汇聚至第一观察者的左眼和第一观察者的右眼。
在一种可选的实现方式中,移动第一光源和第二光源的动作,具体可以包括:沿预定轨迹移动第一光源和第二光源。
在一种可选的实现方式中,第一光源和第二光源在轨道上沿预定轨迹移动。
在一种可选的实现方式中,第一光源和第二光源发出的照明光束的偏振方向相互垂直。该方法还包括:在加载到图像调制器上的数据对应于第一视角时,通过偏振转换器将第一光源和第二光源发出的照明光束的偏振方向旋转90°。其中,第一视角对应于第一光源。对偏振转换器发出的光束中的目标偏振方向的光束进行透射,目标偏振方向为第二光源发出的照明光束的偏振方向。
在一种可选的实现方式中,还可以根据第一观察者的双眼位置,确定第一光源和第二光源的目标位置。移动第一光源和第二光源的动作,具体可以包括:将第一光源和第二光源移动至目标位置。
在一种可选的实现方式中,还可以确定第一光源和第二光源的位置。并根据第一光源和第二光源的位置以及目标位置,确定第一光源和第二光源的移动距离和/或移动速度。将第一光源和第二光源移动至目标位置的动作,具体可以包括:根据移动距离和/或移动速度,将第一光源和第二光源移动至目标位置。
在一种可选的实现方式中,还可以通过第三光源和第四光源获取两束照明光束。以及,移动第三光源和第四光源,移动后的第三光源和移动后的第四光源发出的照明光束分别汇聚至第二观察者的左眼和第二观察者的右眼。
第二方面和第三方面的有益效果参见第一方面,此处不再赘述。
附图说明
图1为一种图像生成装置的结构示意图;
图2为多组光源的图像生成装置的结构示意图;
图3a为本申请实施例提供的图像生成装置的结构示意图;
图3b为本申请实施例提供的包括反射式图像调制器的图像生成装置示意图;
图4为本申请实施例提供的包括轨道的图像生成装置的结构示意图;
图5为本申请实施例提供的包括偏振转换器和检偏器的图像生成装置的结构示意图;
图6为图5所示结构的有益效果示意图;
图7为本申请实施例提供的包括位置传感器的图像生成装置的结构示意图;
图8为本申请实施例提供的图像生成装置的反馈控制***的示意图;
图9为本申请实施例提供的图像生成装置的前馈反馈控制***的示意图;
图10为本申请实施例提供的显示设备的结构示意图;
图11为本申请实施例提供的显示设备的产品形态示意图
图12为本申请实施例提供的显示设备的桌显形态示意图;
图13为本申请实施例提供的图像生成方法的流程示意图。
具体实施方式
首先对本申请实施例中出现的一些专业术语进行解释:
裸眼3D技术:由图像生成装置实现左右眼图像的分离,不需要观众佩戴穿戴设备来分离左右眼图像的一种3D显示技术。
3D成像位置:调制后所得的成像光所汇聚至的位置,左眼视角对应的成像光与右眼视角对应的成像光汇聚至不同的3D成像位置。
左眼视角:由于人的双眼位置不同,因此对于同一个三维画面,左右眼所接收到的二维图像是不同的。也就是说,对于同一个三维画面,左右眼是站在不同的视角接收二维画面的。因此,在三维画面的图像采集(即本申请实施例中图像生成装置所放映的数据源的采集)过程中,需要用左右眼对应的采集设备分别采集左右眼视角的二维图像。左眼视角为三维画面的采集过程中,对应于左眼的图像采集装置接收二维图像的视角。
右眼视角:右眼视角为三维画面的采集过程中,对应于右眼的图像采集装置接收二维图像的视角。
成像一致性:3D成像位置与实际人眼位置之间的一致性。3D成像位置与实际人眼位置之间的距离越小,成像一致性越高。
加载在图像调制器上的数据:在本申请实施例中表示3D图像对应的数字信号,包括左眼视角对应的数字信号和右眼视角对应的数字信号。根据左眼视角对应的数字信号调制照明光束可以得到左眼视角对应的成像光,根据右眼视角对应的数字信号调制照明光束可以得到右眼视角对应的成像光。
随着3D显示技术的发展,3D显示的应用场景也在增加。例如,在办公、教育、医疗、娱乐、游戏、广告投放、建筑装饰、赛事转播,以及工艺品、藏品等的展出,话剧、歌剧、演唱会等演出的放映等场景下,可通过3D显示技术投射3D图像,从而使投射出的图像更加立体生动。
在3D显示技术中,通过向左右眼分别投射不同视角的成像光,从而在人脑中获得立体的3D图像。3D显示技术可以通过多种手段将左右眼的成像光分别投射至对应人眼。其中,在裸眼3D技术中,将成像光分为左右眼成像光,并使左眼视角的成像光投射至左眼,使右眼视角的成像光投射至右眼。裸眼3D技术不需要观众佩戴穿戴设备,即可实现左右眼成像光的分离,对于观众来说是一种高易用性(usability)的技术。
如图1所示,在一种裸眼3D技术中,通过透镜将两个光源发出的照明光束分别汇聚至左右眼,图像调制器通过左右眼对应的数据分别对对应的照明光束进行调制,从而使左右眼对应的成像光分别投射至对应人眼。
当人眼位置发生变化,光源所发出光束的汇聚位置不变,从而导致人眼无法接收到基于该光源所得的成像光。为了解决人眼移动后出现的人眼无法接收成像光的问题,出现了如图2所示的结构。该结构通过设置多组光源,在人眼的初始位置通过初始光源位置(例如图中的位置2和位置3)上的一组光源作为左右眼的光源。当人眼移动,确定人眼新位置所对应的新的光源位置(例如图中的位置5和位置6)。熄灭初始光源位置上的光源,开启新的光源位置上的光源,实现成像位置的切换。
但是,这种通过原位置光源的熄灭和新位置光源的亮起以实现成像位置切换的结构,由于光源的熄灭和亮起会导致成像光的亮度突变,从而影响观众的观看体验。并且,由于光源位置跳变导致3D成像位置跳变,导致3D成像位置与实际人眼位置之间的距离较大,从而导致成像一致性差。
为了解决上述缺陷,本申请实施例提供了一种图像生成装置。如图3a所示,本申请实施例提供的图像生成装置300包括第一光源310、第二光源320、透镜330、图像调制器340和 驱动装置350。其中,第一光源310和第二光源320分别用于提供一束照明光束。透镜330用于汇聚该两束照明光束,经过透镜330的两束照明光束,分别汇聚至不同视点。图像调制器340用于调制该两束光束,调制后的两束照明光束汇聚至不同位置。驱动装置350用于移动第一光源310和第二光源320。移动后的第一光源310和移动后的第二光源320发出的照明光束,分别汇聚至第一观察者的左眼和第一观察者的右眼。
在本申请实施例中,可以第一光源310是左光源,第二光源320是右光源;也可以第一光源310是右光源,第二光源320是左光源,本申请对此不做限定。其中,左光源发出的照明光束经透镜330汇聚至观察者左眼,右光源发出的照明光束经透镜330汇聚至观察者右眼。
在本申请实施例提供的图像生成装置300中,通过驱动装置350移动第一光源310和第二光源320,从而改变第一光源310和第二光源320的照明光束的汇聚位置(即3D成像位置),使得3D成像位置跟随人眼位置移动。本申请实施例通过移动光源来改变3D成像位置,在光源的移动过程中光源位置不会跳变,因此3D成像位置也不会跳变,因而亮度恒定不突变,提升了观众的观看体验。而且本申请实施例中3D成像位置是逐渐靠近于人眼视点的,3D成像位置与实际双眼位置之间的距离更小,因此通过本申请实施例提供的图像生成装置,可以提升成像一致性。
并且,本申请实施例提供的图像生成装置通过一对光源即可实现对一双人眼的多个位置的匹配,不需要为一对人眼设置多对光源,减小了光源数量,从而降低了设备成本。
需要说明的是,在本申请实施例中,照明光束可以如图3a所示的先经过透镜330再经过图像调制器340,也可以先经过图像调制器340再经过透镜330,本申请对此不做限定。
其中,透镜330可以为球面透镜、非球面透镜或菲涅尔透镜。第一光源310和第二光源320可以为光条。可选地,光条可以由一排或多排灯珠组成,第一光源310和第二光源320的移动方向可以垂直于每排灯珠的延伸方向。
其中,图像调制器340可以为透射式图像调制器,用于将入射的照明光束调制,并将调制得到的成像光透射。示例地,图像调制器340可以为液晶显示器(liquid crystal display,LCD)或者其他透射式图像调制器,本申请对此不做限定。
可选地,图像调制器340也可以为反射式图像调制器。包括反射式图像调制器的图像生成装置的结构如图3b所示。在该结构中,图像调制器340用于将入射的照明光束调制,并将调制得到的成像光反射。在该结构中,图像调制器340可以是硅基液晶(Liquid crystal on silicon,LCOS)、数字微镜设备(Digital Micromirror Device,DMD)和微机电***(Micro-electromechanical systems,MEMS)等,本申请对此不做限定。在图像调制器340与透镜330之间,或者在透镜330之后,还包括扩散屏。扩散屏用于对成像光进行漫反射,从而使得成像光更加柔和。
值得注意的是,在包括透射式图像调制器的图像生成装置结构中(例如图3a、图4、图5和图7所示的结构中),也可以包括扩散屏。扩散屏可以位于图像调制器340之后的任意位置上,本申请对此不做限定。
在图3a和图3b所示的图像生成装置300中,驱动装置350可以在预定轨迹上移动第一光源310和第二光源320。由于轨迹是多个点连接所得的线或面,因此沿预定轨迹,可以将第一光源310和第二光源320移动至轨迹上的任意点上。即,对于任意双眼位置,都可以在预定轨迹上找到对应的光源位置,进而通过驱动装置350将第一光源310和第二光源320移动到该光源位置上,使得光源汇聚的3D成像位置落在实际的双眼位置上,最终呈现的成像效果好。可选地,如图4所示,驱动装置350可以包括电机351。
可选地,如图4所示,本申请实施例提供的图像生成装置300还可以包括轨道360,预定轨迹在轨道360上。驱动装置350可以包括电机351。电机351用于在轨道360上沿预定轨迹移动第一光源310和第二光源320。
可选地,轨道360可以是一维轨道,即第一光源310和第二光源320只能在轨道上沿预定轨迹向前或向后移动。可选地,电机351可以通过齿轮、传送带、链条、滑轮、气压传动装置、液压传动装置等传动装置,移动第一光源310和第二光源320。
由于一维轨道限制了光源在其他维度上的运动,因此第一光源310和第二光源320在轨道360上的运动较为平滑,从而实现了成像位置的平滑移动。并且,电机只需要控制光源在一个维度上的移动即可,因此电机、传动装置与轨道之间的装配结构简单,使得整个图像生成装置的结构简单。
为了在人脑中呈现立体的3D图像,左右眼需要交替接收对应视角的图像。因此图像调制器340在对照明光束的调制过程中,所加载的图像数据进行周期性的切换。例如图5所示,奇数帧(第一帧、第三帧、……)加载左眼视角的数据,偶数帧(第二帧、第四帧、……)加载右眼视角的数据。为了使数据的成像光投射至对应的人眼中,左右光源也需要依照图像调制器340加载数据的切换周期,进行两个光源之间的切换。即,图像调制器340加载左眼视角的数据时,左光源亮起,右光源熄灭;图像调制器340加载右眼视角的数据时,右光源亮起,左光源熄灭。其中,左光源发出的照明光束经透镜汇聚后投射至观察者的左眼,右光源发出的照明光束经透镜汇聚后投射至观察者的右眼。
由于光源内部的电路设计、发光原理等因素,导致光源通电与光源实际亮起的时刻之间存在一定时延。由于辉光等原因,导致光源断电与光源实际熄灭之间具有一定时延。光源实际亮起与实际熄灭的时延是光源自身原因导致的,无法消除。上述时延导致出现闪烁、串扰等问题,导致显示效果差。
为了解决上述显示效果差的问题,本申请实施例还提供了一种图像生成装置结构,通过偏振转换器和检偏器实现左右光源光束的周期透射,左右光源不需要周期性亮起和熄灭,从而避免了上述亮起和熄灭延迟导致的显示问题。
如图5所示,在该结构中,图像生成装置300包括第一光源310、第二光源320、透镜330、图像调制器340、驱动装置350、偏振转换器370和检偏器380。其中,第一光源310、第二光源320、透镜330、图像调制器340和驱动装置350的作用参见图3a所示实施例,此处不再赘述。
其中,第一光源310和第二光源320发出的照明光束的偏振方向相互垂直。当加载到图像调制器340上的数据对应于第一视角时,偏振转换器370将第一光源310和第二光源320发出的照明光束的偏振方向旋转90°。其中,第一视角对应于第一光源310。第一光源310可以是左光源和右光源中的一个。即,若第一光源310为左光源,则第一视角为左眼视角,若第一光源310为右光源,则第一视角为右眼视角。
其中,检偏器380用于透射目标偏振方向的光束。其中,目标偏振方向为第二光源320中发出的照明光束的偏振方向。
例如,若左光源的偏振态为S偏振态,右光源的偏振态为P偏振态,检偏器380可以透射光束的偏振态为S。则如表1所示,当图像调制器340加载右眼视角的数据时(即奇数帧时,表1中以第一帧为例),使偏振转换器370处于开启状态。处于开启状态的偏振转换器370将左光源和右光源发出的照明光束的偏振方向旋转90°,从而将左光源发出的照明光束 的变成P偏振光,将右光源发出的照明光束变成S偏振光。由于检偏器380只能透射S偏振光,因此右光源发出的照明光束透射,经过透镜330的汇聚和图像调制器340的调制,所得的右眼视角的成像光汇聚至右眼;而左光源发出的照明光束被检偏器380所遮挡,左眼无法接收成像光。
当图像调制器340加载左眼视角的数据时(即偶数帧时,表1中以第二帧为例),使偏振转换器370处于关闭状态。偏振转换器370处于关闭状态,直接透射左光源发出的S光和右光源发出的P光。由于检偏器380只能透射S偏振光,因此左光源发出的照明光束透射,经过透镜330的汇聚和图像调制器340的调制,所得的左眼视角的成像光汇聚至左眼;而右光源发出的照明光束被检偏器380所遮挡,右眼无法接收成像光。
表1图像生成装置中各部件、光束的偏振状态的对应关系的一种示例
可选地,也可以奇数帧加载左眼视角的数据,偶数帧加载右眼视角的数据,则可以:改变光源的偏振态(左P右S),或者改变偏振转换器的开闭周期(奇数帧闭偶数帧开),或者改变检偏器的偏振态为P,执行上述3点中的一点或三点,也可实现加载的数据的视角与所透射的光束的光源的对应(即加载左眼视角数据时透射左光源的照明光束,加载右眼视角数据时透射右光源的照明光束)。
值得注意的是,本申请实施例中不限定偏振转换器370和检偏器380中任一器件与图像调制器340之间的先后顺序。因此该实施例中所述的照明光束可以是调制前的照明光束或调制后的照明光束(成像光),本申请对此不做限定。
其中,偏振转换器370可以是液晶层。当对该液晶层通电时,液晶层中的液晶呈预定形态排布,将通过的光束的偏振方向旋转90°。当不对该液晶层通电时,该液晶层可以透射光束。
在图6中,在左右光源周期性开启关闭的结构中,浅灰色表示左光源亮起,深灰色表示右光源亮起。由于光源亮起的延迟导致出现串扰,由于光源熄灭的延迟导致高帧率下出现闪烁。在图5所示的包括偏振转换器370和检偏器380的结构中,浅灰色表示透射左光源的光束,深灰色表示透射右光源的光束。由于从液晶层通电到液晶层中液晶排布状态的改变是高速完成的,不存在明显的时延。因此,通过图5所示的图像生成装置结构,不会出现光源周期性开启关闭所导致的闪烁、串扰等显示效果差的问题。从而提升了图像生成装置的显示效果。
并且,相较于控制左右光源周期性开启关闭,控制液晶层的通断电更为简单。在该结构中,通断周期的控制***设置在静止的图像调制器340与偏振转换器370之间,相较于设置在图像调制器340与可移动的第一光源310和第二光源320之间,不需要考虑结构的移动,控制***结构简单,从而简化了整个装置结构。并且,通过偏振转换器370的开启关闭,实现了成像光对应视角的周期性切换,不需要周期性开启关闭光源,可以延长光源的使用寿命,从而延长整个图像生成装置的使用寿命。
值得注意的是,表1仅是对应关系的一种示例。为了实现加载左眼视角数据时透射左光源的照明光束,加载右眼视角数据时透射右光源的照明光束,可以将图像生成装置300中各部件的偏振态与数据的加载周期进行表2所示中任一行所示的设置。
表2图像生成装置中各部件、光束的偏振状态的对应关系
需要说明的是,图5所示的结构中,除了偏振转换器370需要在检偏器380之前的光路上(即光束必须经过偏振转换器370之后才能入射至检偏器380),不限定透镜330、图像调制器340、偏振转换器370和检偏器380之间的位置关系。即,照明光束从第一光源和第二光源出射后,经过透镜330、图像调制器340、偏振转换器370和检偏器380的先后顺序只限定先经过偏振转换器370再经过检偏器380,其他不做限定。
若图像生成装置300中不包括偏振转换器370和检偏器380,则第一光源310和第二光源320同步于图像调制器340加载的图像数据的视角的切换周期,进行周期性切换。
在本申请实施例提供的图像生成装置中,可以通过控制***实现对驱动装置350的控制,从而实现对第一光源310和第二光源320的位置的控制。为了实现上述控制,在图像生成装置300中设置计算单元,计算单元用于根据观察者的左右眼位置确定第一光源和第二光源的目标位置。从而使驱动装置350将第一光源310和第二光源320移动至目标位置。
可选地,如图8所示,计算单元中可以包括标定3D成像位置与标定光源位置之间的对照表。当观察者的双眼位置在标定3D成像位置上(例如在点(O1,O2)上)时,确定对应的标定光源位置(例如点(T1,T2))为第一光源和第二光源的目标位置。当观察者的双眼位置在两个标定3D成像位置之间,则可以在对应的两个标定光源位置之间确定目标位置。所确定的目标位置,为观察者移动后的双眼所接收光束沿透镜反向汇聚所得的光源位置。
可选地,为了实现对第一光源位置和第二光源位置的精确控制,可以在图像生成装置300中设置位置传感器390,位置传感器390用于确定第一光源310和第二光源320的位置,具体结构如图7所示。
位置传感器390可以是电阻式位移传感器、距离传感器等,本申请对此不做限定。位置传感器390可以与第一光源和第二光源同步移动,也可以在固定位置上,本申请对此不做限定。例如,位置传感器390可以与第一光源310和第二光源320同步移动,通过与标定点之间的距离确定第一光源310和第二光源320的位置。或者,位置传感器390位置固定,通过与第一光源310和第二光源320上的标定点之间的距离,确定第一光源310和第二光源320的位置。本申请对此不做限定。
可选地,基于图7所示的图像生成装置结构,可以对驱动装置350进行反馈控制或前馈反馈控制。
接下来说明反馈控制的情况。如图8所示,通过计算单元确定光源的目标位置,通过位置传感器390确定光源的实际位置。将光源的目标位置与实际位置相减,即可得到光源的移动距离。驱动装置350根据该移动距离移动光源位置,使得光源移动至目标位置上,从而使得光源所发出光束的聚焦位置(3D成像位置)落在观察者移动后的双眼上。
通过图8所示的反馈控制***,可以抑制内、外扰动对被控量(即光源位置)产生影响的能力,控制精度高。使得成像位置可以不受其他干扰精准移动到目标位置上,从而提升了成像一致性。
接下来说明前馈反馈控制的情况。若双眼视点处于连续移动的状态,则通过单纯的反馈控制***一定会存在光源位置移动相较于实际双眼位置移动的滞后。可以通过前馈补偿值来尽量减小这个滞后。如图9所示,以图8所示的反馈控制***为基础,在计算单元计算移动距离的过程中,将光源的目标位置与实际位置之差与前馈补偿值相加,得到移动距离。其中,前馈补偿值可以是距离和/或速度。通过前馈补偿值减小***滞后,使得光源位置的移动距离和移动速度能跟上双眼视点的移动,从而提升成像一致性。
在图8和图9所示的控制***中,观察者的双眼位置可以通过检测装置获取。即,图像生成装置300中还可以包括检测装置,检测装置用于确定观察者双眼的位置。
可选的,图8和图9中光源可以是左光源或右光源。即对左光源和右光源的位置分别进行控制,反馈控制***分为左光源的反馈控制***和右光源的反馈控制***。则位置传感器390可以如图所示为左光源和右光源分别设置,也可以将左光源和右光源作为一个整体,设置一个位置传感器来确定两个光源的位置。若为左光源和右光源分别设置位置传感器390,则可以根据不同观察者的瞳距,改变左光源与右光源之间的距离,从而提升图像生成装置对不同用户的适配性。
可选地,图8和图9中的光源的目标位置,可以是根据实际的双眼位置确定的,也可以是根据预测的双眼位置所确定的。计算单元可以根据双眼位置的移动规律,预测双眼移动的目标位置,从而减小光源对应的3D成像位置移动相较于双眼位置移动的滞后。
在本申请实施例中,计算单元可以是驱动装置350的控制电路的一部分,也可以是单独的控制单元,本申请对此不做限定。
需要说明的是,图4、图5和图7是以图3a为基础,分别叠加轨道360,偏振转换器370和检偏器380,以及位置传感器390的结构。轨道360、偏振转换器370和检偏器380,以及位置传感器390,也可以叠加在图3b所示的结构上,本申请对此不做限定。可选地,轨道360、偏振转换器370和检偏器380、位置传感器390、计算单元、检测设备中的任意器件,可以相互叠加,出现在同一个图像生成装置中,本申请对此不做限定。
图3a至图9所示的图像生成装置,可以基于一个观察者或多个观察者的双眼位置分别移动光源位置。当基于多个观察者的双眼位置移动时,具有匹配于观察者数量的多对光源,本申请实施例对此不做限定。
如图10所示,本申请实施例还提供了一种显示设备。显示设备1000包括主处理器1100和图像生成装置1200。其中图像生成装置1200为图3a至图9所示的图像生成装置300。主处理器1100用于向图像生成装置1200中的图像调制器发送数据。图像调制器根据该数据对照明光束进行调制。
显示设备1000具有多种产品形态。如图11所示,显示设备1000可以包括3D显示器、3D投影仪、3D穿戴设备等。其中,3D显示器可以是计算机显示器、手机、笔记本电脑、个人数字助手(personal digital assistant,PDA)、游戏机等移动设备的显示屏。3D投影仪可以应用于前投式场景、背投式场景中,本申请对此不做限定。例如,显示设备1000可以是车灯、桌面显示设备、抬头显示(head up display,HUD)设备等。3D穿戴设备可以是增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)眼镜、AR/VR头盔、智能手表等,本申请对此不做限定。本申请实施例提供的显示设备1000,可以应用于车、船等交通工具上,本申请对此不做限定。
如图12所示,当显示设备1000为桌面显示设备时,显示设备1000上的图像生成装置1200输出成像光。成像光经过玻璃屏幕和自由曲面反射镜的反射,透过玻璃屏幕投射到人眼上,在人眼上呈现出成像。
图13是本申请实施例提供的一种图像投射方法的流程示意图。该方法可以应用于前述任一种图像生成装置。如图13所示,该方法包括:
S1、分别通过第一光源和第二光源获取一束照明光束。
S2、分别汇聚两束照明光束。
S3、分别调制两束照明光束,其中,调制后的两束照明光束分别汇聚至不同位置。
S4、移动第一光源和第二光源,移动后的第一光源和移动后的第二光源发出的照明光束分别汇聚至第一观察者的左眼和第一观察者的右眼。
在一种可选的实现方式中,沿预定轨迹移动第一光源和第二光源。
在一种可选的实现方式中,第一光源和第二光源在轨道上沿预定轨迹移动。
在一种可选的实现方式中,第一光源和第二光源发出的照明光束的偏振方向相互垂直。在加载到图像调制器上的数据对应于第一视角时,通过偏振转换器将第一光源和第二光源发出的照明光束的偏振方向旋转90°。其中,第一视角对应于第一光源。对偏振转换器发出的光束中的目标偏振方向的光束进行透射,目标偏振方向为第二光源发出的照明光束的偏振方向。
在一种可选的实现方式中,根据第一观察者的双眼位置,确定第一光源和第二光源的目标位置。将第一光源和第二光源移动至目标位置。
在一种可选的实现方式中,确定第一光源和第二光源的位置。根据第一光源和第二光源的位置以及目标位置,确定第一光源和第二光源的移动距离和/或移动速度。根据移动距离和/或移动速度,将第一光源和第二光源移动至所述目标位置。
在一种可选的实现方式中,分别通过第三光源和第四光源获取一束照明光束;移动第三光源和第四光源,移动后的第三光源和移动后的第四光源发出的照明光束分别汇聚至第二观 察者的左眼和第二观察者的右眼。
本申请实施例提供的图像生成装置、显示设备和图像生成方法,可以应用于办公、教育、医疗、娱乐、游戏、广告投放、建筑装饰、赛事转播,以及工艺品、藏品等的展出,话剧、歌剧、演唱会等演出的放映等场景中。例如,在办公、教育等场景中,可以应用在计算机显示屏、会议投影仪、会议平板显示屏等设备中。在医疗场景中,可以应用在医用显示器或手术显微镜等中,以丰富显示内容(3D成像可以显示物体或物体之间的深度距离),使医护人员获取的物体信息从2维升级至3维,从而提升远程医疗诊断或医学检查等的准确性。在娱乐、赛事转播、演出放映等场景中,可以在游戏机、手机、平板等设备的屏幕上显示3D图像,或通过游戏投影仪显示3D图像,使图像显示更加立体生动,提升用户的临场感(presence)。
其中,加载在图像调制器上的数据可以是预先准备好的3D图像对应的数字信号,也可以是实时生成的3D图像对应的数字信号。例如,在赛事转播场景中,可以在比赛现场通过两个相机分别采集左眼视角和右眼视角的图像,将该实时采集的双眼图像转换成数字信号并实时加载在图像调制器上,实现现场实时转播。可选地,该数据还可以是自由视角的图像数据。即,可以改变观看视角,以增强交互性。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (21)

  1. 一种图像生成装置,其特征在于,包括:
    第一光源和第二光源,分别用于发出一束照明光束;
    透镜,用于分别汇聚两束照明光束;
    图像调制器,用于调制所述两束照明光束,其中,调制后的所述两束照明光束分别汇聚至不同位置;
    驱动装置,用于移动所述第一光源和所述第二光源,其中,移动后的所述第一光源和移动后的所述第二光源发出的照明光束分别汇聚至第一观察者的左眼和所述第一观察者的右眼。
  2. 根据权利要求1所述的图像生成装置,其特征在于,所述驱动装置用于沿预定轨迹移动所述第一光源和所述第二光源。
  3. 根据权利要求2所述图像生成装置,其特征在于,还包括轨道,其中,所述第一光源和所述第二光源在所述轨道上沿所述预定轨迹移动。
  4. 根据权利要求1至3中任一项所述的图像生成装置,其特征在于,所述第一光源和所述第二光源发出的照明光束的偏振方向相互垂直;
    所述图像生成装置还包括:
    偏振转换器,用于在加载到所述图像调制器上的数据对应于第一视角时,将所述第一光源和所述第二光源发出的照明光束的偏振方向旋转90°,其中,所述第一视角对应于所述第一光源;
    检偏器,用于对所述偏振转换器发出的光束中的目标偏振方向的光束进行透射,所述目标偏振方向为所述第二光源发出的照明光束的偏振方向。
  5. 根据权利要求4所述的图像生成装置,其特征在于,所述偏振转换器用于对所述第一光源和所述第二光源发出的照明光束进行偏振方向旋转;
    所述图像调制器用于对所述偏振转换器发出的照明光束进行调制。
  6. 根据权利要求1至5中任一项所述的图像生成装置,其特征在于,所述照明光束经过所述透镜之后,再经过所述图像调制器。
  7. 根据权利要求1至6中任一项所述的图像生成装置,其特征在于,还包括:
    计算单元,用于根据所述第一观察者的双眼位置,确定所述第一光源和所述第二光源的目标位置;
    所述驱动装置,用于将所述第一光源和所述第二光源移动至所述目标位置。
  8. 根据权利要求7所述的图像生成装置,其特征在于,还包括:
    位置传感器,用于确定所述第一光源和所述第二光源的位置;
    所述计算单元,用于根据所述第一光源和所述第二光源的位置以及所述目标位置,确定所述第一光源和所述第二光源的移动距离和/或移动速度;
    所述驱动装置,用于根据所述移动距离和/或移动速度,将所述第一光源和所述第二光源移动至所述目标位置。
  9. 根据权利要求1至8中任一项所述的图像生成装置,其特征在于,还包括:
    检测装置,用于确定所述第一观察者的双眼位置。
  10. 根据权利要求1至9中任一项所述的图像生成装置,其特征在于,还包括:
    第三光源和第四光源,分别用于发出一束照明光束;
    所述驱动装置,还用于移动所述第三光源和所述第四光源,其中,移动后的所述第三光源和移动后的所述第四光源发出的照明光束分别汇聚至第二观察者的左眼和所述第二观察者的右眼。
  11. 根据权利要求1至10中任一项所述的图像生成装置,其特征在于,所述透镜包括球面透镜、非球面透镜和菲涅尔透镜中的任意一个。
  12. 根据权利要求1至11中任一项所述的图像生成装置,其特征在于,所述第一光源和所述第二光源为光条。
  13. 根据权利要求1至12中任一项所述的图像生成装置,其特征在于,所述图像调制器包括:液晶显示器LCD、硅基液晶LCOS、数字微镜设备DMD和微机电***MEMS中的任意一个。
  14. 一种显示设备,其特征在于,包括主处理器和权利要求1至13中任一项所述的图像生成装置;
    所述主处理器用于向所述图像调制器发送数据。
  15. 一种图像生成方法,其特征在于,包括:
    分别通过第一光源和第二光源获取一束照明光束;
    分别汇聚两束照明光束;
    分别调制所述两束照明光束,其中,调制后的所述两束照明光束分别汇聚至不同位置;
    移动所述第一光源和所述第二光源,其中,移动后的所述第一光源和移动后的所述第二光源发出的照明光束分别汇聚至第一观察者的左眼和所述第一观察者的右眼。
  16. 根据权利要求15所述的方法,其特征在于,所述移动所述第一光源和所述第二光源,包括:
    沿预定轨迹移动所述第一光源和所述第二光源。
  17. 根据权利要求16所述的方法,其特征在于,所述沿预定轨迹移动所述第一光源和所述第二光源,包括:
    在轨道上沿所述预定轨迹移动所述第一光源和所述第二光源。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述第一光源和所述第二光源发出的照明光束的偏振方向相互垂直;
    所述方法还包括:在加载到图像调制器上的数据对应于第一视角时,通过偏振转换器将所述第一光源和所述第二光源发出的照明光束的偏振方向旋转90°,其中,所述第一视角对应于所述第一光源;
    对所述偏振转换器发出的光束中的目标偏振方向的光束进行透射,所述目标偏振方向为所述第二光源发出的照明光束的偏振方向。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,还包括:
    根据所述第一观察者的双眼位置,确定所述第一光源和所述第二光源的目标位置;
    所述移动所述第一光源和所述第二光源,包括:
    将所述第一光源和所述第二光源移动至所述目标位置。
  20. 根据权利要求19所述的方法,其特征在于,还包括:
    确定所述第一光源和所述第二光源的位置;
    根据所述第一光源和所述第二光源的位置以及所述目标位置,确定所述第一光源和所述第二光源的移动距离和/或移动速度;
    所述将所述第一光源和所述第二光源移动至所述目标位置,包括:
    根据所述移动距离和/或移动速度,将所述第一光源和所述第二光源移动至所述目标位 置。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,还包括:
    分别通过第三光源和第四光源获取一束照明光束;
    移动所述第三光源和所述第四光源,移动后的所述第三光源和移动后的所述第四光源发出的照明光束分别汇聚至第二观察者的左眼和所述第二观察者的右眼。
PCT/CN2023/073542 2022-01-26 2023-01-28 一种图像生成装置、显示设备和图像生成方法 WO2023143505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210094890.1 2022-01-26
CN202210094890.1A CN116540418A (zh) 2022-01-26 2022-01-26 一种图像生成装置、显示设备和图像生成方法

Publications (1)

Publication Number Publication Date
WO2023143505A1 true WO2023143505A1 (zh) 2023-08-03

Family

ID=85176215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073542 WO2023143505A1 (zh) 2022-01-26 2023-01-28 一种图像生成装置、显示设备和图像生成方法

Country Status (2)

Country Link
CN (2) CN116540418A (zh)
WO (1) WO2023143505A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116540418A (zh) * 2022-01-26 2023-08-04 华为技术有限公司 一种图像生成装置、显示设备和图像生成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222584A (ja) * 1996-02-16 1997-08-26 Mitsubishi Electric Corp 立体映像表示装置
JP2000352694A (ja) * 1999-06-09 2000-12-19 Toshiba Corp 立体映像表示装置
JP2011128235A (ja) * 2009-12-15 2011-06-30 Nikon Corp 表示装置および表示方法
CN102281453A (zh) * 2010-06-14 2011-12-14 索尼公司 偏振转换设备、偏振转换方法和显示装置
CN102317842A (zh) * 2010-02-02 2012-01-11 株式会社有泽制作所 立体图像显示装置及立体图像显示方法
CN115576116A (zh) * 2022-01-26 2023-01-06 华为技术有限公司 一种图像生成装置、显示设备和图像生成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2284487A (en) * 1993-12-01 1995-06-07 Sharp Kk Display for 3D images
GB2294350A (en) * 1994-10-21 1996-04-24 Sharp Kk Light source and display
CN101556390B (zh) * 2008-04-09 2012-07-18 北京京东方光电科技有限公司 用于三维显示装置的开关面板和液晶显示***
CN102478730B (zh) * 2010-11-24 2014-05-14 上海中航光电子有限公司 偏光式3d显示装置及***
CN102681191A (zh) * 2011-03-16 2012-09-19 上海中航光电子有限公司 被动偏光式3d显示装置及***
CN102223563A (zh) * 2011-07-12 2011-10-19 电子科技大学 一种三维影像液晶显示***
CN106526878B (zh) * 2016-12-08 2019-04-05 南京大学 多维度自由立体显示装置
CN206757204U (zh) * 2017-03-13 2017-12-15 广州影动数字科技有限公司 一种三维显示装置
EP3762762B1 (en) * 2018-04-03 2023-05-31 Huawei Technologies Co., Ltd. Display device for head-mounting and display method
US11025892B1 (en) * 2018-04-04 2021-06-01 James Andrew Aman System and method for simultaneously providing public and private images
CN111273457A (zh) * 2020-02-24 2020-06-12 广州弥德科技有限公司 基于投影光学引擎的指向光源裸眼3d显示器和显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222584A (ja) * 1996-02-16 1997-08-26 Mitsubishi Electric Corp 立体映像表示装置
JP2000352694A (ja) * 1999-06-09 2000-12-19 Toshiba Corp 立体映像表示装置
JP2011128235A (ja) * 2009-12-15 2011-06-30 Nikon Corp 表示装置および表示方法
CN102317842A (zh) * 2010-02-02 2012-01-11 株式会社有泽制作所 立体图像显示装置及立体图像显示方法
CN102281453A (zh) * 2010-06-14 2011-12-14 索尼公司 偏振转换设备、偏振转换方法和显示装置
CN115576116A (zh) * 2022-01-26 2023-01-06 华为技术有限公司 一种图像生成装置、显示设备和图像生成方法

Also Published As

Publication number Publication date
CN115576116B (zh) 2024-05-14
CN116540418A (zh) 2023-08-04
CN115576116A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
US9995857B2 (en) System, apparatus, and method for displaying an image using focal modulation
US11683472B2 (en) Superstereoscopic display with enhanced off-angle separation
Balogh et al. Holovizio 3D display system
US20110057862A1 (en) Image display device
JPWO2004084560A1 (ja) 立体映像撮影表示システム
US9116422B2 (en) Display apparatus for displaying multiple images of viewing angles
US6198524B1 (en) Polarizing system for motion visual depth effects
JP2013544371A (ja) 立体映像上映システムと、そのための立体映像プレーヤ及び立体映像用プロジェクタ
US9591293B2 (en) Stereoscopic field sequential colour display control
TW201323927A (zh) 立體顯示裝置
WO2023143505A1 (zh) 一种图像生成装置、显示设备和图像生成方法
JP2009098326A (ja) 三次元画像形成装置
JP2006276101A (ja) 立体画像表示装置
JP3789332B2 (ja) 三次元表示装置
JP4472607B2 (ja) 3次元映像提示・撮像装置
US9268160B2 (en) Three dimensional image projector with single modulator
US8950869B2 (en) Three dimensional image projector with two color imaging
WO2021227945A1 (zh) 一种显示装置和***以及方法
JP4609001B2 (ja) ポインタ装置
JP3739350B2 (ja) 三次元表示装置
JP2004258594A (ja) 広角度から鑑賞できる立体画像表示装置
JP3463960B2 (ja) 立体画像表示装置
JP2006133455A (ja) 三次元画像表示装置
JP3735134B2 (ja) 立体映像表示装置
JP2865616B2 (ja) 立体映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746382

Country of ref document: EP

Kind code of ref document: A1