WO2023142574A1 - 一种调节电路和电子设备 - Google Patents

一种调节电路和电子设备 Download PDF

Info

Publication number
WO2023142574A1
WO2023142574A1 PCT/CN2022/129012 CN2022129012W WO2023142574A1 WO 2023142574 A1 WO2023142574 A1 WO 2023142574A1 CN 2022129012 W CN2022129012 W CN 2022129012W WO 2023142574 A1 WO2023142574 A1 WO 2023142574A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
current limiting
current
power supply
Prior art date
Application number
PCT/CN2022/129012
Other languages
English (en)
French (fr)
Inventor
王旭
Original Assignee
上海商汤智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海商汤智能科技有限公司 filed Critical 上海商汤智能科技有限公司
Publication of WO2023142574A1 publication Critical patent/WO2023142574A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of power regulation, in particular to a regulation circuit and electronic equipment.
  • the corresponding average effective power consumption of the system is usually around 10W , and the peak power consumption of the main system does not include the power amplifier and speaker components is 20W, and in the scenario where the power amplifier drives the 3W rms speaker (peak power 7.5W, 80% efficiency), in the selection of the adapter, the usual configuration selection needs It is greater than 27.5W, and users usually need to choose a 36W (12V/3A) adapter.
  • the average effective power consumption of the actual application scenario is only 13W, so that the peak-average power consumption of the system is relatively large, and the configuration economy of the adaptation is also poor, and when the adapter with a small specification is selected, the peak value cannot be satisfied. power requirements.
  • the present application provides an adjustment circuit and electronic equipment, wherein the adjustment circuit is beneficial to reduce the probability of high peak-to-average power consumption of the adjustment circuit system, poor configuration of corresponding adapters, and high peak power consumption.
  • a technical solution adopted in the present application is to provide an adjustment circuit, wherein the adjustment circuit includes: a current limiting circuit for receiving power provided by an external power supply, and setting the maximum output current of the power supply in a configurable manner;
  • the energy circuit is coupled to the current limiting circuit, and the energy storage circuit is used to receive the current-limited power output from the current limiting circuit for energy storage;
  • the power amplifier circuit is coupled to the current limiting circuit, the energy storage circuit and an external load, and the power amplifies
  • the circuit is used to receive the audio signal input from the outside, and obtain the state value of the load, so as to receive the power supply limited by the current limiting circuit according to the state value, or the energy storage power provided by the energy storage circuit and the power supply limited by the current limiting circuit,
  • the audio signal is adjusted, and the adjusted audio signal is output to the load.
  • the power amplifying circuit in response to the state value indicating that the load is working in an average power state, receives the power supply limited by the current limiting circuit; in response to the state value representing that the load is operating in a peak power state, receives the energy storage provided by the energy storage circuit Power supply and power supply limited by current limiting circuit.
  • the adjustment circuit also includes a signal processing circuit, the signal processing circuit is coupled to the power amplifier circuit, and the signal processing circuit is used to receive an externally input audio signal, and after preliminary processing the audio signal, send it to the power amplifier circuit.
  • the current limiting circuit is also coupled to an external adjustable resistor, so as to limit the maximum output current of the power supply through the adjustable resistor.
  • the current limiting circuit includes a soft-start sub-circuit, and the soft-start sub-circuit is coupled to the power supply, and is used to receive the instantaneous power sent by the power supply for the first time, so as to limit the current of the instantaneous power supply.
  • the power amplifying circuit includes a first oscillator, a first pre-driver subcircuit, a Class D power amplifier modulator, a first electromagnetic interference suppression subcircuit, and a Class D power amplifier output subcircuit, wherein the first oscillator, the first preamplifier
  • the driving subcircuit, the class D power amplifier modulator and the first electromagnetic interference suppression subcircuit are all coupled to the power supply, and the class D power amplifier modulator is coupled to the first oscillator, the first pre-driver subcircuit and the first electromagnetic interference suppression subcircuit circuit, the class D power amplifier output sub-circuit is coupled to the first electromagnetic interference suppression sub-circuit, the current limiting circuit, the energy storage circuit and the load.
  • the adjusting circuit further includes a control circuit, one end of the control circuit is coupled to the current limiting circuit, and is used for sending a control signal to the current limiting circuit, so as to set a current limiting value for limiting the maximum output current of the power supply by the current limiting circuit.
  • the adjustment circuit also includes a conversion circuit, the conversion circuit is coupled to the control circuit and the current limiting circuit, and the conversion circuit is used to receive the control signal sent by the control circuit, convert the control signal into an effective configuration signal, and send it to the current limiting circuit for
  • the current limiting circuit limits the current limiting value of the maximum output current of the power supply through an effective configuration signal.
  • an external inductor is coupled between the control circuit and the current limiting circuit, which is used for step-up DC-to-DC conversion.
  • control circuit is a digital control circuit
  • control signal is a digital control signal
  • digital control circuit includes a register
  • the control signal sends a digital control signal to the current limiting circuit through the register.
  • the current limiting value set by the control circuit to the current limiting circuit is 500mA-5A.
  • the power amplifying circuit includes a second oscillator, a second pre-driver subcircuit, a Class K power amplifier modulator, an oscillator clock, and a Class K power amplifier output subcircuit
  • the control circuit includes a logic controller, a current configuration subcircuit, and a power supply adjustment circuit.
  • the sub-circuit wherein, the second oscillator, the second pre-driver sub-circuit, the Class K power amplifier modulator and the oscillator clock are all coupled to the power supply, and the Class K power amplifier modulator is coupled to the second oscillator, the second pre-driver
  • the sub-circuit and the oscillator clock, the class K power amplifier output sub-circuit is coupled to the oscillator clock, the power supply adjustment sub-circuit, the energy storage circuit and the load
  • the logic controller is coupled to the current configuration sub-circuit and the power supply adjustment sub-circuit
  • the current configuration sub-circuit is coupled connected to the current limiting circuit
  • the current limiting circuit is coupled to the external inductor
  • the inductor is coupled to the power supply regulating sub-circuit.
  • Yet another technical solution adopted by the present application is to provide an electronic device, wherein the electronic device includes the regulating circuit described in any one of the above items.
  • the current-limiting circuit in the regulating circuit provided by this application is used to receive the power provided by the external power supply circuit, and can limit the maximum output current of the power supply, and the energy storage circuit is used to receive the current-limited current output from the current-limiting circuit.
  • the power supply stores energy, so that the power amplifying circuit can choose to receive the power supply output of the power supply limited by the current limiting circuit according to the current state value of the load detected by it, or receive the energy storage circuit provided by the energy storage circuit, and the energy storage provided by the energy storage circuit.
  • the common power supply output of the power supply and the power supply limited by the current limiting circuit can then adjust the external input audio signal it receives, and it can also control the peak power of the load by the energy storage circuit.
  • the power supply circuit performs power compensation, and reduces the demand for peak power by directly increasing the voltage level of the power supply that the corresponding power supply can provide, thereby effectively reducing the peak-to-average ratio of the power consumption of the adjustment circuit system to meet the output distortion of the power amplifier, etc. Under the premise of the index, the peak power consumption of the system can be effectively reduced. Moreover, limiting the maximum output current of the power supply through the current limiting circuit can also effectively reduce the peak power consumption of the power amplifier, thereby reducing the redundancy of the adapter power configuration of the system, and reducing the implementation cost of the product.
  • Fig. 1 is a schematic structural diagram of a conventional Class D power amplifier circuit
  • Fig. 2 is a structural schematic diagram of a conventional Class K power amplifier circuit
  • FIG. 3 is a schematic structural diagram of the first embodiment of the regulating circuit of the present application.
  • FIG. 4 is a schematic structural diagram of a second embodiment of the regulating circuit of the present application.
  • FIG. 5 is a schematic structural diagram of a third embodiment of the regulating circuit of the present application.
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of the regulating circuit of the present application.
  • FIG. 7 is a schematic structural diagram of a fifth embodiment of the regulating circuit of the present application.
  • FIG. 8 is a schematic structural diagram of a sixth embodiment of the regulating circuit of the present application.
  • Fig. 9 is a schematic diagram of the time and capacitance configuration curves corresponding to the soft start of the regulating circuit in Fig. 8;
  • FIG. 10 is a schematic structural diagram of a seventh embodiment of the regulating circuit of the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of an electronic device of the present application.
  • the inventor has found through long-term research that with the increasing abundance of electronic equipment, the precise regulation and control of load power in the electronic equipment has also been greatly developed.
  • the semiconductor field of audio power amplifiers for example, all kinds of speakers, flat panels, and all electronic products with speaker output, especially Class D and Class K power amplifiers, although they have high working efficiency, such as 80%, compared to A Class and other power amplifiers, the peak power driven by them is still relatively high.
  • the power amplifier when the power amplifier is in linear mode, take the output power of PA (Power Amplifier, power amplifier) as 1W rms (root mean square) as an example, among them, the root mean square value of the driving voltage is about 2.828V for an 8-ohm speaker rms, the peak voltage of the drive is about 4V, while the corresponding peak power of the PA driving the power amplifier is 2W, and the efficiency loss of the system drive is not included in this calculation.
  • PA Power Amplifier, power amplifier
  • 1W rms root mean square
  • the root mean square value of the driving voltage is about 2.828V for an 8-ohm speaker rms
  • the peak voltage of the drive is about 4V
  • the corresponding peak power of the PA driving the power amplifier is 2W
  • the efficiency loss of the system drive is not included in this calculation.
  • the maximum discharge current of the battery such as 2C (a discharge current of 2C means that the battery discharge rate is 2) It is 16A, and the battery can provide 59.2W of power.
  • the peak power consumption of the system is about 10W, which is completely surplus.
  • the corresponding effective power consumption of the system is usually around 10W, and The peak power consumption of the main system without the power amplifier and speaker components is 20W, and when the power amplifier drives a 3W rms speaker (peak power 7.5W, 80% efficiency), the usual configuration of the adapter is 27.5W, and the user It is necessary to select a 36W (12V/3A) adapter according to the matching standard.
  • the average effective power consumption in actual application scenarios is only 13W, so that the peak-average power consumption of the system is relatively large, and the configuration of adaptation is not economical.
  • Figure 1 is a schematic structural diagram of a conventional Class D power amplifier circuit.
  • the conventional Class D power amplifier is usually directly supplied to the power supply end of its output stage by the main power supply of the chip or a separate power supply, and as long as the power supply of the front end Good, the power amplifier can output the established performance to ensure good distortion. Therefore, in the design of the power amplifier IC (Integrated Circuit, integrated circuit), usually no additional current limiting module is added, but the disadvantage of this is that the requirement for the instantaneous capability of the front-end power supply will be very high, even higher than 2 times the effective output power.
  • IC Integrated Circuit, integrated circuit
  • FIG. 2 is a schematic structural diagram of a conventional Class K power amplifier circuit.
  • the traditional Class K power amplifier can only periodically limit the current of the BOOST (power supply regulation sub-circuit) module on the power supply current limiting architecture.
  • BOOST power supply regulation sub-circuit
  • its control accuracy is low and lacks pertinence, and it cannot limit the peak power of the power supply input.
  • the application provides an adjustment circuit and electronic equipment.
  • the application will be described in further detail below in conjunction with the accompanying drawings and embodiments.
  • the following examples are only used to illustrate the present application, but not to limit the scope of the present application.
  • the following embodiments are only some of the embodiments of the present application but not all of them, and all other embodiments obtained by those skilled in the art without creative efforts fall within the protection scope of the present application.
  • FIG. 3 is a schematic structural diagram of the first embodiment of the regulating circuit of the present application.
  • the regulating circuit 10 includes: a current limiting circuit 11 , an energy storage circuit 12 and a power amplifier circuit 13 .
  • the regulation circuit 10 provided in this application can be installed in electronic devices, such as Bluetooth speakers, high-power Bluetooth speakers, face recognition panel machines, tablet computers and other electronic devices that require built-in power amplifiers, so as to be able to In the application scenario, fine power control is performed on the corresponding load 3 through the regulating circuit 10, so as to achieve better functional services.
  • the regulating circuit 10 can also be installed in any other reasonable type of electronic equipment, which is not limited in this embodiment.
  • the current limiting circuit 11 is connected to an external power supply circuit 2, such as a power supply system or an external power supply device in an electronic device with a built-in regulating circuit 10, so as to be able to receive the power provided by the power supply circuit 2, and
  • the maximum output current of the power supply can be set configurably, that is, the maximum output current of the power supply can never exceed a set threshold, and the set threshold can also be adjusted according to actual needs.
  • the energy storage circuit 12 is coupled to the current limiting circuit 11, so as to be able to receive the current-limited power output from the current-limiting circuit 11, and store energy through the current-limited power supply for insufficient power supply at the front end, that is, the power supply
  • the power supply is supplemented, and at the same time, the front-end current limiting output is not overloaded and the maximum output current is controllable.
  • the power amplifying circuit 13 is coupled to the current limiting circuit 11 , the energy storage circuit 12 and the external load 3 , wherein the load 3 may specifically be any reasonable power-consuming functional device such as a speaker or a horn assembly.
  • the power amplifying circuit 13 is used to receive an externally input audio signal, and can detect and obtain the state value of the load 3, for example, by monitoring the current peak power of the load 3 in real time, and then can select the receiving limit according to the current state value of the load 3.
  • the power amplifying circuit 13 can adjust the audio signal based on the received power supply output, for example, perform power amplification adjustment, and output the adjusted audio signal to the load 3 to make the load 3 work.
  • the audio signal may also be a video signal or any other reasonable signal requiring power adjustment, which is not limited in the present application.
  • the current-limiting circuit 11 specifically includes an electronic circuit with a current-limiting function; or, the current-limiting circuit 11 is specifically a program-controlled integrated circuit designed using a current-limiting scheme, so as to reduce the power amplifier circuit 13. Peak power consumption, thereby reducing the redundancy of the system's adapter power configuration, and at the same time reducing the cost of corresponding electronic products.
  • the power amplifying circuit 13 may specifically include a power amplifier, and a power amplifier (English name: power amplifier), referred to as “power amplifier”, refers to a power amplifier that can generate a maximum power output to drive a power amplifier under a given distortion rate condition.
  • Amplifier for a load 3 such as a loudspeaker.
  • the power amplifier plays the role of "amplifying and outputting audio signals" in the entire audio system, and to some extent determines whether the entire system can provide good sound quality output.
  • the power amplifying circuit 13 in response to the power amplifying circuit 13 detecting that the current state value of the load 3 is characterized as the load 3 working in an average power state, the power amplifying circuit 13 correspondingly receives the power after the current limiting circuit 11 limits the current; and in response to the power amplifying circuit 13 detects that the current state value of the load 3 indicates that the load 3 is working in a peak power state, and the power amplifier circuit 13 corresponds to receiving the energy storage power provided by the energy storage circuit 12 and the power limited by the current limiting circuit 11 .
  • the medium power amplifying circuit 13 in the regulating circuit 10 selects to receive the power supply after the current limiting by the current limiting circuit 11 according to the current state value of the load 3 detected by it, or the energy storage power supply provided by the energy storage circuit 12 And the power supply after the current limiting circuit 11 is limited, and then the audio signal received by the power amplifier circuit 13 is adjusted, and the power supply circuit of the current limiting circuit 11 can be supplied by the energy storage circuit 12 to the peak power that the load 3 needs to appear.
  • the power supply circuit 2 Perform power compensation, and reduce the demand for peak power by directly increasing the voltage level of the power supply that the power supply circuit 2 can provide, thereby effectively reducing the peak-to-average ratio of the system power consumption of the adjustment circuit 10, so as to meet the output distortion of the power amplifier, etc.
  • the peak power consumption of the system can be effectively reduced.
  • limiting the maximum output current of the power supply circuit 2 through the current limiting circuit 11 can also effectively reduce the peak power consumption of the power amplifier, thereby reducing the redundancy of the adapter power configuration of the system, and reducing the cost of product implementation.
  • the requirements of the system power supply circuit 2 can be effectively reduced, and the application requirements of small-capacity batteries can be met at the same time.
  • the current limiting circuit 11 in the regulating circuit 10 is also coupled to an external adjustable resistor (not shown in the figure), and specifically, the maximum output current of the power supply is configured to limit the current through the adjustable resistor, for example,
  • the adjustable resistor can shunt the peak power output, so as to effectively reduce the peak power consumption of the power amplifier, thereby reducing the redundancy of the system's adapter power configuration, and at the same time reducing the cost of the product .
  • the adjustable resistance value can also be configured according to the current actual demand for dynamic current limiting to adapt to real-time changing current limiting scenarios.
  • the adjustable resistor can also be a fixed-value resistor to The maximum output current of the power supply in the scenario is limited, which is not limited in this application.
  • the current limiting circuit 11 in the regulating circuit 10 further includes a soft-start sub-circuit (not shown in the figure), and the soft-start sub-circuit is coupled to the power circuit 2 so as to be able to Control the instantaneous power drop or overload caused by it, for example, limit the instantaneous large current, slow down the change trend of the instantaneous power drop, and suppress the occurrence of overload.
  • FIG. 4 is a schematic structural diagram of a second embodiment of the regulating circuit of the present application. This embodiment is based on the first embodiment of the adjustment circuit provided in this application, and the adjustment circuit 20 further includes a signal processing circuit 24 .
  • the signal processing circuit 24 is coupled to the power amplifier circuit 23, and the signal processing circuit 24 is used to receive an externally input audio signal, and perform preliminary processing on the audio signal, such as modulating, filtering, and suppressing electromagnetic interference on the audio signal. One or more of them are sent to the power amplifying circuit 23.
  • the signal processing circuit 24 is further preceded by a sub-circuit (not shown in the figure), a modulator (not shown in the figure), and an electromagnetic interference suppression sub-circuit (not shown in the figure), so as to be able to pass the previous
  • the sub-circuit receives an externally input audio signal, and modulates the audio signal through the modulator, so that the modulated audio signal is suppressed by the electromagnetic interference suppression sub-circuit, and then sent to the power amplifier circuit 23 .
  • a modulator refers to a device that modulates a low-frequency digital signal (such as audio, video, data, etc.) into a high-frequency digital signal through digital signal processing technology for signal transmission. Modulators are widely used in the transmission of information such as radio (audio signal), television (video signal), etc. The modulator is generally used in pairs with the demodulator. The modulator is used to process the digital signal into a high-frequency signal for transmission, while the demodulator restores the digital signal to the original signal.
  • the current limiting circuit 21, the energy storage circuit 22 and the power amplifying circuit 23 are the same as the current limiting circuit 11, the energy storage circuit 12 and the power amplifying circuit 13 respectively, please refer to FIG. Let me repeat.
  • FIG. 5 is a schematic structural diagram of a third embodiment of the regulating circuit of the present application. This embodiment is based on the first embodiment of the regulating circuit provided in this application, and the regulating circuit 30 further includes a control circuit 34 .
  • one end of the control circuit 34 is coupled to the current-limiting circuit 31, so that the current-limiting circuit 31 can limit the current-limiting value of the maximum output current of the power supply by sending a control signal to the current-limiting circuit 31, that is, to The maximum value of the current that the current limiting circuit 31 can output is limited and set.
  • the energy storage circuit 32 and the power amplifying circuit 33 are the same as the energy storage circuit 12 and the power amplifying circuit 13 , please refer to FIG. 3 and related texts for details, and will not be repeated here.
  • control circuit 34 is specifically a digital control circuit, and the corresponding control signal is a digital control signal, and the digital control circuit 34 specifically includes a register, and the control signal can send a digital control signal to the current limiting circuit 31 through the register , so that the current limiting value of the maximum output current of the current limiting circuit 31 can be finely controlled.
  • an external inductance (not shown) is coupled between the control circuit 34 and the current limiting circuit 31, and the inductance is specifically used to receive the control signal sent by the control circuit 34, and cooperate with the control circuit internal or The corresponding external switching tube performs on-off control on the control signal sent from the control circuit 34 to the current limiting circuit 31 , and simultaneously performs a step-up DC-to-DC conversion to forward the converted control signal to the current limiting circuit 31 .
  • the inductance outside the regulating circuit 30 , the circuit complexity of the regulating circuit 30 can be effectively reduced, and the assembly space inside the regulating circuit 30 can be reduced, which is more conducive to the manufacture and function realization of the regulating circuit 30 .
  • control circuit 34 sets a corresponding current limiting value of 500mA-5A for the current limiting circuit 31, that is, the control circuit 34 can limit the maximum output current of the current limiting circuit 31 to 500mA-5A, and the user can specify
  • the supply capacity is configured, which is not limited in this application.
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of the regulating circuit of the present application. This embodiment is based on the third embodiment of the regulation circuit provided in this application, and the regulation circuit 40 further includes a conversion circuit 45 .
  • the conversion circuit 45 is coupled to the control circuit 44 and the current limiting circuit 41, and the conversion circuit 45 is used to receive the control signal sent by the control circuit 44, and after converting the control signal into an effective configuration signal, for example, the control circuit
  • the digital control signal sent by 44 is converted into a program instruction or an analog control signal and sent to the current limiting circuit 41, so that the current limiting circuit 41 can set the current limiting value of the maximum output current of the power supply through the effective configuration signal.
  • the energy storage circuit 42 and the power amplifying circuit 43 are the same as the energy storage circuit 32 and the power amplifying circuit 33 , please refer to FIG. 5 and related texts for details, and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a fifth embodiment of the regulating circuit of the present application.
  • the regulating circuit is specifically a power regulating transmission device of a Class D or Class K power amplifier, and by adding a current limiting circuit at the current demand end of the regulating circuit, that is, an independent power supply end of a Class D or Class K power amplifier, And the energy storage circuit and/or the extra power compensation circuit can limit the current intake of the regulating circuit while still guaranteeing the performance of the power amplifier to a certain extent.
  • the energy storage circuit can also be integrated outside the regulating circuit, and specifically can be an energy storage capacitor or any other reasonable energy storage device and energy storage electronic circuit, which is not limited in this application.
  • different current limiting designs can also be implemented through external hardware or software configuration.
  • FIG. 8 is a schematic structural diagram of a sixth embodiment of the regulating circuit of the present application. This embodiment is based on the first embodiment of the regulation circuit provided in this application.
  • the regulation circuit 50 is specifically a power regulation and delivery device for a Class D power amplifier, and its power amplification circuit 53 further includes a first oscillator 531, a first Pre-drive subcircuit 532, class D power amplifier modulator 533, first electromagnetic interference suppression subcircuit 534 and class D power amplifier output subcircuit 535, wherein the first oscillator 531, first predrive subcircuit 532, class D
  • the power amplifier modulator 533 and the first electromagnetic interference suppression sub-circuit 534 are both coupled to the power supply, and the class D power amplifier modulator 533 is coupled to the first oscillator 531, the first pre-driver sub-circuit 532 and the first electromagnetic interference suppression sub-circuit 534 , the class D power amplifier output sub-circuit 535 is coupled to the first electromagnetic interference suppression sub-circuit 534 ,
  • the current limiting circuit 51 and the energy storage circuit 52 are the same as the current limiting circuit 11 and the energy storage circuit 12 , please refer to FIG. 3 and related texts for details, and will not be repeated here.
  • the current limiting circuit 51 also has the following two features:
  • the response rate is high, with a us (subtle) level current-limiting response rate
  • the current limiting circuit 51 works in a linear mode. When the current at terminal 3 of the load exceeds the configured output of the current limiting circuit 51, the current limiting circuit 51 still supplies the configured maximum output current.
  • the current-limiting circuit 51 is also equipped with a slow-start configuration function for turning on the output after power-on, that is, a soft-start sub-circuit. value, the user can configure the capacitor in the soft start sub-circuit of the current limiting circuit 51 to protect the safety of the hardware module and reduce the malfunction of the current limiting circuit 51.
  • the current limiting value of the maximum output current corresponding to the current limiting circuit 51 is specifically configured through the external resistor R1.
  • This method is relatively simple, and a fixed current limiting value can be configured according to the specific design and needs of the customer.
  • the resistance value of the resistor R1, that is, the configuration parameters of the resistor R1 can be obtained according to the above linear function and the actual required current limiting value.
  • a dedicated energy storage circuit 52 is also provided between the output of the current limiting circuit 51 and the output section of the class D power amplifier, so as to be able to be used when the power supply demand of the class D power amplifier output sub-circuit 535 exceeds the maximum capacity that the current limiting circuit 51 can provide. After the current is output, it can be supplied instantaneously by the energy storage circuit 52 .
  • the energy storage circuit 52 can also be integrated outside the regulating circuit 50, and specifically can be an energy storage capacitor or any other reasonable energy storage device and energy storage electronic circuit, so as to be able to correspondingly realize insufficient power supply at the front end, That is to say, the corresponding output power of the power supply circuit 2 can not meet the current power demand of the load 3 to supplement the power supply, and at the same time satisfy the front-end current limiting output without overload and controllable audio distortion, which is not limited in this application.
  • FIG. 10 is a schematic structural diagram of a seventh embodiment of the regulating circuit of the present application. This embodiment is based on the third embodiment of the regulation circuit provided in this application.
  • the regulation circuit 60 is specifically a power regulation and delivery device for a Class K power amplifier, and its power amplification circuit 63 further includes a second oscillator 631, a second Pre-drive subcircuit 632, class K power amplifier modulator 633, second electromagnetic interference suppression subcircuit 634 and class K power amplifier output subcircuit 635
  • control circuit 64 includes logic controller 641, current configuration subcircuit 642 and power supply regulation subcircuit amplifier 643, wherein, the second oscillator 631, the second pre-driver sub-circuit 632, the class-K power amplifier modulator 633 and the second electromagnetic interference suppression sub-circuit 634 are all coupled to the power supply, and the class-K power amplifier modulator 633 is coupled to the first Two oscillators 631, the second pre-driver sub-circuit 632 and the second electromagnetic interference suppression sub-
  • the current limiting circuit 61 and the energy storage circuit 62 are the same as the current limiting circuit 31 and the energy storage circuit 32 , please refer to FIG. 5 and related texts for details, and will not be repeated here.
  • the corresponding current limiting circuit 61 specifically adopts a digital control scheme. Therefore, a logic controller 641 and a current configuration module are added.
  • the logic controller 641 can specifically be an 8-bit register, so as to be able to perform fine
  • the control of the current limit value and specifically, the corresponding current limit value can be configured as 500mA-5A.
  • the current configuration module is used to translate the current limit configuration command transmitted by the logic controller 641, so as to convert the current limit configuration command into the actual configuration size of the current limit value.
  • a dedicated energy storage circuit 62 is also provided between the output of the current limiting circuit 61 and the class K power amplifier output sub-circuit 635, so that it can be used when the power supply demand of the class K power amplifier output sub-circuit 635 exceeds the current limiting circuit. After the maximum output current that 61 can provide, the energy storage circuit 62 can be used for transient supply.
  • the energy storage circuit 62 can also be integrated outside the regulating circuit 60, and specifically can be an energy storage capacitor or any other reasonable energy storage device and energy storage electronic circuit, so as to be able to correspondingly realize insufficient power supply at the front end, That is to say, the corresponding output power of the power supply circuit 2 can not meet the current power demand of the load 3 to supplement the power supply, and at the same time satisfy the front-end current limiting output without overload and controllable audio distortion, which is not limited in this application.
  • the output current of the current limiting circuit 61 can also be effectively stabilized.
  • the circuit complexity of the regulating circuit 60 can be effectively reduced, and the assembly space inside the regulating circuit 60 can be reduced, which is more conducive to the manufacture and function realization of the regulating circuit 60 .
  • the power supply regulation sub-circuit 643 can specifically implement functions of power amplification, power supply voltage boosting and current limiting.
  • FIG. 11 is a schematic structural diagram of an embodiment of an electronic device of the present application.
  • the electronic device 70 includes a regulating circuit 71 .
  • the adjustment circuit 71 described in this embodiment is the adjustment circuit 10, the adjustment circuit 20, the adjustment circuit 30, the adjustment circuit 40, the adjustment circuit 50 or the adjustment circuit 60 described in any of the above embodiments. I won't repeat it here.
  • the electronic device 70 is any reasonable electronic device such as a bluetooth speaker, a high-power bluetooth speaker, a face recognition panel machine, a tablet computer, etc., which is not limited in this application.
  • the current limiting circuit in the regulating circuit provided by this application is used to receive the power provided by the external power supply circuit, and can limit the maximum output current of the power supply, while the energy storage circuit is used to receive the current limiting circuit
  • the output current-limited power supply stores energy, so that the power amplifier circuit can choose to receive the power supply output of the power supply limited by the current-limiting circuit or receive the energy storage provided by the energy storage circuit according to the current state value of the load detected by it.
  • the energy storage power supply provided by the energy storage circuit and the common power supply output of the power supply limited by the current limiting circuit can then adjust the external input audio signal it receives, and it can also be used according to the peak power that may occur in the load.
  • Compensate the power supply circuit of the current limiting circuit and reduce the demand for peak power by directly increasing the voltage level of the power supply that the corresponding power supply can provide, thereby effectively reducing the peak-to-average ratio of the power consumption of the regulating circuit system to meet Under the premise of output distortion of the power amplifier and other indicators, the peak power consumption of the system can be effectively reduced.
  • limiting the maximum output current of the power supply through the current limiting circuit can also effectively reduce the peak power consumption of the power amplifier, thereby reducing the redundancy of the adapter power configuration of the system, and reducing the implementation cost of the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Amplifiers (AREA)

Abstract

本申请公开了一种调节电路和电子设备,其中,该调节电路包括:限流电路,用于接收外部电源电路提供的电源,并对电源的最大输出电流进行可配置的设定;储能电路,耦接限流电路,储能电路用于接收限流电路输出的限流后的电源,以进行储能;功率放大电路,耦接限流电路、储能电路以及外部负载,功率放大电路用于接收外部输入的音频信号,并获取负载的状态值,以根据状态值接收经限流电路限流的电源,或储能电路提供的储能电源及经限流电路限流的电源,以对音频信号进行调节,并将调节后的音频信号输出给负载。因此,本申请中的调节电路能够有效降低***功耗的峰均比,以在满足功放输出失真度等指标的前提下,有效降低***的峰值功耗。

Description

一种调节电路和电子设备
本申请要求在2022年01月27日提交中国专利局、申请号为202210101881.0、申请名称为“一种调节电路和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及功率调节技术领域,尤其涉及一种调节电路和电子设备。
背景技术
现今,随着电子设备的日益丰富,对电子设备中的负载功率进行精准地的调节控制也得到了极大的发展。其中,在音频功放的半导体领域,比如,各类音箱、平板、带喇叭输出的所有电子产品,尤其是D类和K类功放,虽然具有较高的工作效率,如80%,但是相比A类等功放,其驱动的峰值功率仍比较高。
其中,对于小功率适配器或小容量电池的场景,比如,采用5V/2A适配器驱动8W蓝牙音箱的场景;又比如基于人脸识别的面板智能设备,其对应的***平均有效功耗通常在10W左右,且主***不包含功放和喇叭组件的峰值功耗为20W,而在功放驱动3W rms喇叭(峰值功率7.5W,80%效率)的场景中,在适配器的选择上,通常的配置选型需要大于27.5W,而用户通常需要选配36W(12V/3A)的适配器。但对于实际应用场景的平均有效功耗却仅为13W,以致***功耗的峰均比较大,适配的配置经济性也较差,而在选择规格适配器较小的情况下,又不能满足峰值功率的需求。
发明内容
本申请提供一种调节电路和电子设备,其中,该调节电路有利于降低调节电路***功耗的峰均比较高,相应适配器的配置经济性较差,峰值功耗较大的概率。
本申请采用的一个技术方案是:提供一种调节电路,其中,该调节电路包括:限流电路,用于接收外部电源提供的电源,并对电源的最大输出电流进行可配置的设定;储能电路,耦接限流电路,储能电路用于接收限流电路输出的限流后的电源,以进行储能;功率放大电路,耦接限流电路、储能电路以及外部负载,功率放大电路用于接收外部输入的音频信号,并获取负载的状态值,以根据状态值接收经限流电路限流的电源,或储能电路提供的储能电源及经限流电路限流的电源,以对音频信号进行调节,并将调节后的音频信号输出给负载。
其中,响应于状态值表征负载工作在平均功率状态,功率放大电路接收经限流电路限流的电源;响应于状态值表征负载工作在峰值功率状态,功率放大电路接收储能电路提供的储能电源及经限流电路限流的电源。
其中,调节电路还包括信号处理电路,信号处理电路耦接功率放大电路,信号处理电路用于接收外部输入的音频信号,并对音频信号进行初步处理后,发送给功率放大电路。
其中,限流电路还耦接一外部可调电阻,以通过可调电阻对电源的最大输出电流进行限流配置。
其中,限流电路包括软启动子电路,软启动子电路耦接电源,用于接收电源首 次发送的瞬时电源,以对瞬时电源进行限流。
其中,功率放大电路包括第一振荡器、第一前置驱动子电路、D类功放调制器、第一电磁干扰抑制子电路以及D类功放输出子电路,其中,第一振荡器、第一前置驱动子电路、D类功放调制器以及第一电磁干扰抑制子电路均耦接于电源,D类功放调制器耦接第一振荡器、第一前置驱动子电路以及第一电磁干扰抑制子电路,D类功放输出子电路耦接第一电磁干扰抑制子电路、限流电路、储能电路以及负载。
其中,调节电路还包括控制电路,控制电路的一端耦接限流电路,用于向限流电路发送控制信号,以对限流电路限制电源的最大输出电流的限流值进行设置。
其中,调节电路还包括转换电路,转换电路耦接控制电路和限流电路,转换电路用于接收控制电路发送的控制信号,并将控制信号转换为有效配置信号后,发送给限流电路,以通过有效配置信号对限流电路限制电源的最大输出电流的限流值进行设置。
其中,控制电路和限流电路之间还耦接有一外部电感,用于升压式直流变直流转换。
其中,控制电路为数字控制电路,控制信号为数字控制信号,数字控制电路包括寄存器,控制信号通过寄存器向限流电路发送数字控制信号。
其中,控制电路对限流电路对应设置的限流值为500mA-5A。
其中,功率放大电路包括第二振荡器、第二前置驱动子电路、K类功放调制器、振荡器时钟以及K类功放输出子电路,控制电路包括逻辑控制器、当前配置子电路以及供电调节子电路,其中,第二振荡器、第二前置驱动子电路、K类功放调制器以及振荡器时钟均耦接于电源,K类功放调制器耦接第二振荡器、第二前置驱动子电路以及振荡器时钟,K类功放输出子电路耦接振荡器时钟、供电调节子电路、储能电路以及负载,逻辑控制器耦接当前配置子电路和供电调节子电路,当前配置子电路耦接限流电路,限流电路耦接外部电感,电感耦接供电调节子电路。
本申请采用的又一个技术方案是:提供一种电子设备,其中,该电子设备包括如上任一项所述的调节电路。
本申请提供的调节电路中的限流电路用于接收外部电源电路提供的电源,并能够对该电源的最大输出电流进行限流,而储能电路用于接收限流电路输出的限流后的电源进行储能,从而使得功率放大电路能够根据其检测到的负载当前的状态值,选择接收经限流电路限流的电源的供电输出,或接收储能电路提供的储能电路、提供的储能电源及经限流电路限流的电源的共同供电输出,进而能够对其接收的外部输入的音频信号进行调节,也便能够针对负载可能出现的峰值功率,由储能电路对限流电路的供电回路进行电能补偿,而减少了通过直接提高相应电源能够提供的电源的电压等级来满足峰值功率的需求,从而有效降低了调节电路***功耗的峰均比,以在满足功放输出失真度等指标的前提下,能够有效降低***的峰值功耗。且通过限流电路对电源的最大输出电流进行限流,也能够有效降低功放的峰值功耗,进而降低***的适配器功率配置冗余度,也便降低了产品的实现成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实 施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是常规D类功放电路的结构示意图;
图2是常规K类功放电路的结构示意图;
图3是本申请调节电路第一实施例的结构示意图;
图4是本申请调节电路第二实施例的结构示意图;
图5是本申请调节电路第三实施例的结构示意图;
图6是本申请调节电路第四实施例的结构示意图;
图7是本申请调节电路第五实施例的结构示意图;
图8是本申请调节电路第六实施例的结构示意图;
图9是图8中调节电路软启动对应的时间和电容配置曲线示意图;
图10是本申请调节电路第七实施例的结构示意图;
图11是本申请电子设备一实施例的结构示意图。
具体实施方式
发明人经长期研究发现,随着电子设备的日益丰富,对电子设备中的负载功率进行精准地的调节控制也得到了极大的发展。然而,在音频功放的半导体领域,比如,各类音箱、平板、带喇叭输出的所有电子产品,尤其是D类和K类功放,虽然具有较高的工作效率,如80%,但是相比A类等功放,其驱动的峰值功率仍比较高。
需说明的是,如下表是目前市场上常见的几类功放的特征说明。
Figure PCTCN2022129012-appb-000001
其中,当功放处于线性模式下,以PA(Power Amplifier,功率放大器)的输出功率为1W rms(均方根)为例,其中,8欧姆的喇叭,驱动电压的均方根值约为2.828V  rms,驱动的峰值电压约为4V,而相应的PA驱动功放的峰值功率则为2W,且该计算中未包含***驱动的效率损失。
而在手机或平板电脑等采用锂离子电池供电场景,采用大容量电池的场景下,以标称3.7V 8000mAh电池为例,电池最大放电电流,如2C(放电电流2C代表电池放电速率为2)则为16A,电池可提供59.2W的功率,通常对于***消耗峰值功率在10W左右,完全富余。但对于小功率适配器或小容量电池的场景,比如,在采用5V/2A的适配器驱动8W蓝牙音箱的场景中,或基于人脸识别的智能面板,相应的***有效功耗通常在10W左右,且主***不包含功放和喇叭组件的峰值功耗为20W,而功放驱动3W rms的喇叭(峰值功率7.5W,80%效率)时,在适配器的配置上,通常的配置选择为27.5W,而用户需依据选配标准,选择36W(12V/3A)的适配器。但对于实际应用场景的平均有效功耗却仅为13W,以致***功耗的峰均比较大,适配的配置经济性较差。
其中,如图1所示,图1是常规D类功放电路的结构示意图,常规的D类功放通常是芯片主供电或单独的供电电源直接供给到其输出级的供电端,而只要前端的供电良好,功放便能输出既定的性能,以保障良好的失真度。因此,在功放IC(Integrated Circuit,集成电路)的设计上,通常不会增加额外的限流模块,但这样带来的缺点是:对前端供电的瞬时能力的要求便会很高,甚至高于2倍的有效输出功率。
进一步地,如图2所示,图2是常规K类功放电路的结构示意图,传统K类功放在电源限流架构上通常仅能够对BOOST(供电调节子电路)模块进行周期性的限流,但其控制精度低且缺少针对性,并不能实现对供电输入的峰值功率做限制。
为了实现有效降低***功耗的峰均比,以在满足功放输出失真度等指标的前提下,有效降低***的峰值功耗,本申请提供了一种调节电路和电子设备。下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参见图3,图3是本申请调节电路第一实施例的结构示意图。在本实施例中,该调节电路10包括:限流电路11、储能电路12以及功率放大电路13。
其中,本申请中提供的一种调节电路10具体可安装于电子设备,比如,蓝牙音箱,大功率蓝牙音箱,人脸识别面板机,平板电脑等需要内置功放的电子设备中,以能够根据具体的应用场景,通过该调节电路10对相应的负载3进行精细化的功率控制,从而实现更优质的功能服务。当然,在其它实施例中,该调节电路10具体还可以安装于其他任一合理类型的电子设备中,本实施例对此并不加以限制。
具体地,限流电路11连接于外部供电的电源电路2,比如,内置有调节电路10的电子设备中的电源***或外部的电源装置等,以能够接收电源电路2提供的电源, 并对该电源的最大输出电流进行可配置的设定,也即能够使该电源的最大输出电流始终不超过一设定阈值,且还可根据实际需求对该设定阈值进行调节设置。
而储能电路12耦接于限流电路11,以能够接收限流电路11输出的限流后的电源,并通过限流后的电源进行储能,以用于在前端供电不足,也即电源电路2对应输出的电源无法满足负载3当前用电需求的情况下进行供电补充,且同时满足前端限流输出不过载及最大输出电流可控。
进一步地,功率放大电路13耦接限流电路11、储能电路12以及外部负载3,其中,该负载3具体可以是扬声器或喇叭组件等任一合理的用电功能器件。而功率放大电路13用于接收外部输入的音频信号,并能够检测获取该负载3的状态值,比如,通过实时监测负载3当前的峰值功率,进而能够根据负载3当前的状态值选择接收经限流电路11限流后的电源的供电输出,或接收由储能电路12提供的储能电源以及经限流电路11限流后的电源的共同供电输出。
且功率放大电路13能够基于其接收的供电输出对音频信号进行调节,比如,对其进行功率放大调节,并将调节后的音频信号输出给负载3,以使负载3进行工作。
可理解的是,在其他实施例中,该音频信号还可以是视频信号或其他任何合理的需要进行功率调节的信号中的一种,本申请对此不做限定。
可选地,该限流电路11具体包括具有限流功能的电子电路;或,该限流电路11具体是采用限流方案设计的能够实现程序控制的集成电路,以能够降低功率放大电路13的峰值功耗,进而降低***的适配器功率配置冗余度,同时可降低相应电子产品的成本。
需说明的是,该功率放大电路13具体可以包括一功率放大器,而功率放大器(英文名称:power amplifier),简称“功放”,是指在给定失真率条件下,能产生最大功率输出以驱动某一负载3(例如扬声器)的放大器。功率放大器在整个音响***中起到了“音频信号放大并输出”的作用,在某种程度上主宰着整个***能否提供良好的音质输出。
具体地,响应于功率放大电路13检测到负载3当前的状态值表征为负载3工作在平均功率状态,功率放大电路13对应接收经限流电路11限流后的电源;而响应于功率放大电路13检测到负载3当前的状态值表征为负载3工作在峰值功率状态,功率放大电路13对应接收储能电路12提供的储能电源及经限流电路11限流的电源。
可理解的,在功率放大电路13的实际工作中,会出现功率的变化,比如,在启动各功能器件工作的初期通常需要较大的工作电流以满足各功能器件的开通需求,但该峰值功率状态通常持续时间较短,而各功能器件在实际工作中的大多数时候却通常会工作在平均功率状态,而该平均功率状态对应需要的工作电流却远小于峰值功率状态对应的工作电流。然而,为保证调节电路10能够正常工作,需要考虑负载3的峰值功率状态所对应的供电方式,从而需要提高供电电源电路2能够提供的电源的电压等级及电流值,或相应适配器的配置,以满足正常工作的要求,但这显然又会极大地提升调节电路10***功耗的峰均比,以致对于实际应用场景的平均有效功耗,适配的配置经济性较差。
而上述方案,调节电路10中的中功率放大电路13通过根据其检测到的负载3 当前的状态值,选择接收经限流电路11限流后电源,或将储能电路12提供的储能电源及经限流电路11限流后的电源,进而对功率放大电路13接收的音频信号进行调节,也便能够针对负载3需要出现的峰值功率,由储能电路12对限流电路11的供电回路进行电能补偿,而减少了通过直接提高电源电路2能够提供的电源的电压等级来满足峰值功率的需求,从而有效降低了调节电路10***功耗的峰均比,以在满足功放输出失真度等指标的前提下,能够有效降低***的峰值功耗。且通过限流电路11对电源电路2的最大输出电流进行限流,也能够有效降低功放的峰值功耗,进而降低***的适配器功率配置冗余度,也便降低了产品的实现成本。此外,还能能够有效降低***电源电路2的需求,同时可以满足小容量电池的应用需求。
在一实施例中,调节电路10中的限流电路11还耦接有一外部可调电阻(图未示出),且具体是通过可调电阻对电源的最大输出电流进行限流配置,比如,在电源电路2出现峰值电源输出时,该可调电阻能够对该峰值电源输出进行分流,以能够有效降低功放的峰值功耗,进而降低***的适配器功率配置冗余度,同时可降低产品的成本。且通过将该可调电阻设置于调节电路10之外,能够有效降低调节电路10的电路复杂度,并减少对调节电路10内部的装配空间的占用,从而更有利于调节电路10的制造和功能实现。而电阻值的可调也能够根据当前的实际需求进行相应的动态限流配置,以适应实时变化的限流场景,在其他实施例中,该可调电阻也可以是定值电阻,以对通常场景下的电源的最大输出电流进行限流,本申请对此不做限定。
在一实施例中,调节电路10中的限流电路11还包括软启动子电路(图未示出),且该软启动子电路耦接于电源电路2,以能够对电源电路2首次开启时造成的瞬时电源跌落或过载进行控制,比如,对瞬时大电流进行限流,对瞬时电源跌落的变化趋势进行减缓,并抑制过载的出现。
可理解的是,在电路中各功能器件在启动的瞬时,通常会出现极大的电流信号,而超出大多数功能器件能够承受的电流的上限值。因此,通过对瞬时电源进行限流,能够有效减少瞬时大电流对调节电路中的功能器件带来不可逆的损伤。
请参见图4,图4是本申请调节电路第二实施例的结构示意图。本实施例是在本申请提供的调节电路第一实施例的基础上,调节电路20还包括信号处理电路24。
可理解的是,为保证功率放大电路23能够有效的对外部输入的音频信号进行调节,通常还需对音频信号进行初步处理,以使其满足一定的特性,比如,使其能够被有效识别,或使信号质量更优质。
具体地,信号处理电路24耦接功率放大电路23,而信号处理电路24用于接收外部输入的音频信号,并对音频信号进行初步处理,比如,对音频信号进行调制、滤波以及电磁干扰抑制等中的一种或多种后,发送给功率放大电路23。
在一具体的实施例中,该信号处理电路24进一步前置子电路(图未示出)、调制器(图未示出)以及电磁干扰抑制子电路(图未示出),以能够通过前置子电路接收外部输入的音频信号,并通过调制器对该音频信号进行调制,以经电磁干扰抑制子电路对调制后的音频信号进行电磁干扰抑制后,发送给功率放大电路23。
需说明的是,调制器是指通过数字信号处理技术,将低频数字信号(如音频、视频、数据等)调制到高频数字信号中,进行信号传输的一种设备。调制器广泛运 用于广播(音频信号)、电视(视频信号)等信息的传输。调制器一般和解调器成对使用,调制器用于将数字信号处理到高频信号上进行传输,而解调器则将数字信号还原成原始的信号。
可理解的是,限流电路21、储能电路22以及功率放大电路23分别与限流电路11、储能电路12以及功率放大电路13相同,具体请参阅图3及相关文字内容,在此不再赘述。
请参见图5,图5是本申请调节电路第三实施例的结构示意图。本实施例是在本申请提供的调节电路第一实施例的基础上,该调节电路30还包括控制电路34。
具体地,控制电路34的一端耦接限流电路31,以能够通过向限流电路31发送控制信号,而对限流电路31限制电源的最大输出电流的限流值进行设置,也即,对限流电路31能够输出的电流的最大值进行限定设置。
而其中的储能电路32和功率放大电路33同于储能电路12和功率放大电路13,具体请参阅图3及相关文字内容,在此不再赘述。
在一实施例中,该控制电路34具体为数字控制电路,且相应的控制信号为数字控制信号,而数字控制电路34具体包括有寄存器,控制信号能够通过寄存器向限流电路31发送数字控制信号,以能够对限流电路31的最大输出电流的限流值进行精细控制。
在一实施例中,控制电路34和限流电路31之间还耦接有一外部电感(图未示出),且该电感具体用于接收控制电路34发送的控制信号,并配合控制电路内部或外部的相应开关管对控制电路34发送给限流电路31的控制信号进行通断控制,并同时进行升压式的直流变直流转换,以将转换后的控制信号转发给限流电路31。且通过将该电感设置于调节电路30之外,能够有效降低调节电路30的电路复杂度,并减少对调节电路30内部的装配空间的占用,从而更有利于调节电路30的制造和功能实现。
可选地,控制电路34对限流电路31对应设置的限流值为500mA-5A,也即控制电路34能够将限流电路31的最大输出电流限制在500mA-5A,且用户具体可以根据特定的供给能力进行配置,本申请对此不做限定。
请参见图6,图6是本申请调节电路第四实施例的结构示意图。本实施例是在本申请提供的调节电路第三实施例的基础上,该调节电路40还包括转换电路45。
具体地,该转换电路45耦接控制电路44和限流电路41,且该转换电路45用于接收控制电路44发送的控制信号,并将控制信号转换为有效配置信号后,比如,将控制电路44发送的数字控制信号转换为程序指令或模拟控制信号后发送给限流电路41,以进而能够通过该有效配置信号对限流电路41限制电源的最大输出电流的限流值进行设置。
而其中的储能电路42和功率放大电路43同于储能电路32和功率放大电路33,具体请参阅图5及相关文字内容,在此不再赘述。
请参见图7,图7是本申请调节电路第五实施例的结构示意图。
在本实施例中,该调节电路具体为D类或K类功放的功率调节输送装置,且通过在该调节电路的电流需求端,即D类或K类功放的独立供电端增加限流电路,以及储能电路和/或额外功率补偿电路,即可限制调节电路对电流的摄取,同时仍能在 一定程度上保障功放的性能。
可选地,该储能电路还可以集成在调节电路之外,且具体可以是储能电容或其他任一合理的储能器件和储能电子电路,本申请对此不做限定。
同时,为了适配不同D类功放的功耗和实际前端的供给要求,在一实施例中,还能够通过外部硬件或软件配置来实现不同的限流设计。
具体地,如图7所示,当负载端④消耗的峰值功率超出***电源输入端①所能提供的峰值功耗,但是满足平均功率消耗时,在增加限流电路51后,通过提供额外的功率补偿路径②,减少了前端输入瞬时不足的情况,同时减少了前端过载的风险。
请参见图8,图8是本申请调节电路第六实施例的结构示意图。本实施例是在本申请提供的调节电路第一实施例的基础上,该调节电路50具体为D类功放的功率调节输送装置,且其功率放大电路53进一步包括第一振荡器531、第一前置驱动子电路532、D类功放调制器533、第一电磁干扰抑制子电路534以及D类功放输出子电路535,其中,第一振荡器531、第一前置驱动子电路532、D类功放调制器533以及第一电磁干扰抑制子电路534均耦接于电源,D类功放调制器533耦接第一振荡器531、第一前置驱动子电路532以及第一电磁干扰抑制子电路534,D类功放输出子电路535耦接第一电磁干扰抑制子电路534、限流电路51、储能电路52以及负载3。
可理解的,而其中的限流电路51和储能电路52同于限流电路11和储能电路12,具体请参阅图3及相关文字内容,在此不再赘述。
进一步地,该限流电路51同时还具备以下两个特征:
1、响应速率较高,具有us(微妙)级的限流响应速率;
2、该限流电路51工作在线性模式,当负载3端电流超出限流电路51的配置输出时,限流电路51仍按照配置的最大输出电流进行供给。
其中,该限流电路51中还配备了上电开启输出的缓启动配置功能,也即软启动子电路,以当供电输入超出限流电路51内部开关管的驱动能力或超出用户配置的输出电流值时,用户可以通过在限流电路51的软启动子电路中配置电容,以保护硬件模块的安全性,并减少限流电路51的误动作。
其中,如图9所示,图9是图8中调节电路50软启动对应的时间和电容配置曲线示意图。由此可知,通过配置不同的电容值,能够进而对软启动的延时时间进行配置,两者对应关系满足t=A*Vin*C,其中A为常数,Vin为功放的供电电压,C为软启动配置电容,图9中例举的即是供电输入电压为5V的软启动时间和电容的配置曲线,以能够根据该配置曲线和实际需要的软启动时间合理配置软启动子电路中的电容。
进一步地,限流电路51对应的最大输出电流的限流值具体是通过外部电阻R1进行配置,这种方式相对简便,且针对客户特定设计和需求,能够配置固定的限流值,用户可以仅通过外部一颗1%的电阻配置出不同的限流值;且限流值的大小与电阻数值呈线性关系,限流值I lim=B*R lim,其中,B为常数,R lim为配置的电阻数值,也即根据上述线性函数及实际需要的限流值便可得到电阻R1的配置参数。
同时在限流电路51的输出至D类功放输出段之间还设置有专用的储能电路52,以能够用于在D类功放输出子电路535的供电需求超出限流电路51能够提供的最 大输出电流后,能够由储能电路52做瞬态供给。
可选地,该储能电路52还可以集成在调节电路50之外,且具体可以是储能电容或其他任一合理的储能器件和储能电子电路,以能够对应实现在前端供电不足,也即电源电路2对应输出的电源无法满足负载3当前用电需求的情况下进行供电补充,且同时满足前端限流输出不过载及音频失真度可控,本申请对此不做限定。
请参见图10,图10是本申请调节电路第七实施例的结构示意图。本实施例是在本申请提供的调节电路第三实施例的基础上,该调节电路60具体为K类功放的功率调节输送装置,且其功率放大电路63进一步包括第二振荡器631、第二前置驱动子电路632、K类功放调制器633、第二电磁干扰抑制子电路634以及K类功放输出子电路635,控制电路64包括逻辑控制器641、当前配置子电路642以及供电调节子电路放643,其中,第二振荡器631、第二前置驱动子电路632、K类功放调制器633以及第二电磁干扰抑制子电路634均耦接于电源,K类功放调制器633耦接第二振荡器631、第二前置驱动子电路632以及第二电磁干扰抑制子电路634,K类功放输出子电路635耦接第二电磁干扰抑制子电路634、功率增大子电路643、储能电路62以及负载3,逻辑控制器641耦接当前配置子电路642和供电调节子电路643,当前配置子电路642耦接限流电路61,限流电路61耦接外部电感,电感耦接供电调节子电路643。
可理解的,其中的限流电路61和储能电路62同于限流电路31和储能电路32,具体请参阅图5及相关文字内容,在此不再赘述。
如图10所示,相应的限流电路61具体采用的是数字控制方案,因此,增加有逻辑控制器641和当前配置模块,该逻辑控制器641具体可以是8bit的寄存器,以能够进行精细的限流值的控制,且具体能够将相应的限流值配置为500mA-5A。而当前配置模块用来翻译逻辑控制器641传输的限流配置命令,以将该限流配置命令对应转换为实际的限流值的配置大小。
同样地,通过在限流电路61的输出至K类功放输出子电路635之间还设置有专用的储能电路62,以能够用于在K类功放输出子电路635的供电需求超出限流电路61能够提供的最大输出电流后,能够由储能电路62做瞬态供给。
可选地,该储能电路62还可以集成在调节电路60之外,且具体可以是储能电容或其他任一合理的储能器件和储能电子电路,以能够对应实现在前端供电不足,也即电源电路2对应输出的电源无法满足负载3当前用电需求的情况下进行供电补充,且同时满足前端限流输出不过载及音频失真度可控,本申请对此不做限定。
且通过在限流电路61的输出至K类功放输出子电路635之间设置外部电感L1,也能够有效对限流电路61的输出电流进行稳流。而通过将该电感设置于调节电路60之外能够有效降低调节电路60的电路复杂度,并减少对调节电路60内部的装配空间的占用,从而更有利于调节电路60的制造和功能实现。
需说明的是,供电调节子电路643具体能够对应实现功率放大、供电升压以及限流功能。
请参阅图11,图11是本申请电子设备一实施例的结构示意图。
在本实施例中,电子设备70包括调节电路71。需要说明的是,本实施例所阐述的调节电路71为上述实施例中任一项所阐述的调节电路10、调节电路20、调节 电路30、调节电路40、调节电路50或调节电路60,在此就不再赘述。
可选地,该电子设备70为蓝牙音箱、大功率蓝牙音箱、人脸识别面板机、平板电脑等任一合理的电子装置,本申请对此不做限定。
区别于现有技术,本申请提供的调节电路中的限流电路用于接收外部电源电路提供的电源,并能够对该电源的最大输出电流进行限流,而储能电路用于接收限流电路输出的限流后的电源进行储能,从而使得功率放大电路能够根据其检测到的负载当前的状态值,选择接收经限流电路限流的电源的供电输出,或接收储能电路提供的储能电路提供的储能电源及经限流电路限流的电源的共同供电输出,进而能够对其接收的外部输入的音频信号进行调节,也便能够针对负载可能出现的峰值功率,由储能电路对限流电路的供电回路进行电能补偿,而减少了通过直接提高相应电源能够提供的电源的电压等级来满足峰值功率的需求,从而有效降低了调节电路***功耗的峰均比,以在满足功放输出失真度等指标的前提下,能够有效降低***的峰值功耗。且通过限流电路对电源的最大输出电流进行限流,也能够有效降低功放的峰值功耗,进而降低***的适配器功率配置冗余度,也便降低了产品的实现成本。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (13)

  1. 一种调节电路,其特征在于,所述调节电路包括:
    限流电路,用于接收外部电源电路提供的电源,并对所述电源的最大输出电流进行可配置的设定;
    储能电路,耦接所述限流电路,所述储能电路用于接收所述限流电路输出的限流后的所述电源,以进行储能;
    功率放大电路,耦接所述限流电路、所述储能电路以及外部负载,所述功率放大电路用于接收外部输入的音频信号,并获取所述负载的状态值,以根据所述状态值接收经所述限流电路限流的所述电源,或所述储能电路提供的储能电源及经所述限流电路限流的所述电源,以对所述音频信号进行调节,并将调节后的所述音频信号输出给所述负载。
  2. 根据权利要求1所述的调节电路,其特征在于,
    响应于所述状态值表征所述负载工作在平均功率状态,所述功率放大电路接收经所述限流电路限流的所述电源;
    响应于所述状态值表征所述负载工作在峰值功率状态,所述功率放大电路接收所述储能电路提供的储能电源及经所述限流电路限流的所述电源。
  3. 根据权利要求1或2所述的调节电路,其特征在于,
    所述调节电路还包括信号处理电路,所述信号处理电路耦接所述功率放大电路,所述信号处理电路用于接收外部输入的所述音频信号,并对所述音频信号进行初步处理后,发送给所述功率放大电路。
  4. 根据权利要求1-3中任一项所述的调节电路,其特征在于,
    所述限流电路还耦接一外部可调电阻,以通过所述可调电阻对所述电源的最大输出电流进行限流配置。
  5. 根据权利要求1-4中任一项所述的调节电路,其特征在于,
    所述限流电路包括软启动子电路,所述软启动子电路耦接所述电源,用于控制所述电源发送的瞬时电源跌落或过载。
  6. 根据权利要求1-5中任一项所述的调节电路,其特征在于,
    所述功率放大电路包括第一振荡器、第一前置驱动子电路、D类功放调制器、第一电磁干扰抑制子电路以及D类功放输出子电路,其中,所述第一振荡器、所述第一前置驱动子电路、所述D类功放调制器以及所述第一电磁干扰抑制子电路均耦接于所述电源,所述D类功放调制器耦接所述第一振荡器、所述第一前置驱动子电路以及所述第一电磁干扰抑制子电路,所述D类功放输出子电路耦接所述第一电磁干扰抑制子电路、所述限流电路、所述储能电路以及所述负载。
  7. 根据权利要求1-6中任一项所述的调节电路,其特征在于,
    所述调节电路还包括控制电路,所述控制电路的一端耦接所述限流电路,用于向所述限流电路发送控制信号,以对所述限流电路限制所述电源的最大输出电流的限流值进行设置。
  8. 根据权利要求7所述的调节电路,其特征在于,
    所述调节电路还包括转换电路,所述转换电路耦接所述控制电路和所述限流电 路,所述转换电路用于接收所述控制电路发送的所述控制信号,并将所述控制信号转换为有效配置信号后,发送给所述限流电路,以通过所述有效配置信号对所述限流电路限制所述电源的最大输出电流的限流值进行设置。
  9. 根据权利要求7或8所述的调节电路,其特征在于,
    所述控制电路和所述限流电路之间还耦接有一外部电感,所述电感用于升压式直流变直流转换。
  10. 根据权利要求7-9中任一项所述的调节电路,其特征在于,
    所述控制电路为数字控制电路,所述控制信号为数字控制信号,所述数字控制电路包括寄存器,所述控制信号通过所述寄存器向所述限流电路发送所述数字控制信号。
  11. 根据权利要求7-9中任一项所述的调节电路,其特征在于,
    所述控制电路对所述限流电路对应设置的所述限流值为500mA-5A。
  12. 根据权利要求7-9中任一项所述的调节电路,其特征在于,
    所述功率放大电路包括第二振荡器、第二前置驱动子电路、K类功放调制器、振荡器时钟以及K类功放输出子电路,所述控制电路包括逻辑控制器、当前配置子电路以及供电调节子电路,其中,所述第二振荡器、所述第二前置驱动子电路、所述K类功功放调制器以及所述振荡器时钟均耦接于所述电源,所述K类功放调制器耦接所述第二振荡器、所述第二前置驱动子电路以及所述振荡器时钟,所述K类功放输出子电路耦接所述振荡器时钟、所述供电调节子电路、所述储能电路以及所述负载,所述逻辑控制器耦接所述当前配置子电路和所述供电调节子电路,所述当前配置子电路耦接所述限流电路,所述限流电路耦接外部电感,所述电感耦接所述供电调节子电路。
  13. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-12中任一项所述的调节电路。
PCT/CN2022/129012 2022-01-27 2022-11-01 一种调节电路和电子设备 WO2023142574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210101881.0 2022-01-27
CN202210101881.0A CN114244287A (zh) 2022-01-27 2022-01-27 一种调节电路和电子设备

Publications (1)

Publication Number Publication Date
WO2023142574A1 true WO2023142574A1 (zh) 2023-08-03

Family

ID=80747392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129012 WO2023142574A1 (zh) 2022-01-27 2022-11-01 一种调节电路和电子设备

Country Status (2)

Country Link
CN (1) CN114244287A (zh)
WO (1) WO2023142574A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244287A (zh) * 2022-01-27 2022-03-25 深圳市商汤科技有限公司 一种调节电路和电子设备
CN117528342B (zh) * 2023-11-29 2024-06-18 先锋高科技(上海)有限公司 功放装置、音频***及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405924A (zh) * 2006-01-23 2009-04-08 奥德拉国际销售公司 用于受限电源的功率供应设备以及使用功率供应设备的音频放大器
CN102694506A (zh) * 2012-06-06 2012-09-26 国光电器股份有限公司 基于电脑usb电源供电和usb声卡整合的音频放大器***
CN204349930U (zh) * 2014-12-30 2015-05-20 国光电器股份有限公司 Usb瞬态功率音频放大***
US20150200640A1 (en) * 2014-01-13 2015-07-16 Apple Inc. Audio power amplification with reduced input power supply crest factor
CN213094532U (zh) * 2020-08-14 2021-04-30 深圳蚂里奥技术有限公司 一种光源驱动电路及一种电光源
CN114244287A (zh) * 2022-01-27 2022-03-25 深圳市商汤科技有限公司 一种调节电路和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405924A (zh) * 2006-01-23 2009-04-08 奥德拉国际销售公司 用于受限电源的功率供应设备以及使用功率供应设备的音频放大器
CN102694506A (zh) * 2012-06-06 2012-09-26 国光电器股份有限公司 基于电脑usb电源供电和usb声卡整合的音频放大器***
US20150200640A1 (en) * 2014-01-13 2015-07-16 Apple Inc. Audio power amplification with reduced input power supply crest factor
CN204349930U (zh) * 2014-12-30 2015-05-20 国光电器股份有限公司 Usb瞬态功率音频放大***
CN213094532U (zh) * 2020-08-14 2021-04-30 深圳蚂里奥技术有限公司 一种光源驱动电路及一种电光源
CN114244287A (zh) * 2022-01-27 2022-03-25 深圳市商汤科技有限公司 一种调节电路和电子设备

Also Published As

Publication number Publication date
CN114244287A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023142574A1 (zh) 一种调节电路和电子设备
US11695290B2 (en) Power supply method, control method, power source, and detection apparatus
WO2009097769A1 (zh) 电源管理方法、装置及终端
CN102904443A (zh) 直流对直流转换器及其电压转换方法
CN102035366A (zh) 一种供电装置
WO2024082862A1 (zh) 一种音频放大电路、板卡及电子设备
US8576585B2 (en) Power device
CN209488469U (zh) 比较器型的单边调整器和调整***
CN106953613A (zh) 功率放大器的供电电路及功率调整方法
CN216672969U (zh) 音频功率放大器和汽车音箱
CN101916127B (zh) 终端设备的供电控制方法和一种终端设备
CN113890489A (zh) 音频功率放大器供电电压控制方法、装置和音频设备
CN210744818U (zh) 一种电源***
WO2021134216A1 (zh) 电源调节***、方法、装置、芯片及电子设备
CN208190516U (zh) 应用于音响的供电电路及音响
CN110635698A (zh) 一种具有高回退范围的射频信号整流器
KR20210123627A (ko) 계통 연계형 전력변환장치의 제어장치
CN214125150U (zh) 自适应升压电路
CN216851908U (zh) 一种用于射频功率放大器的供电电路
CN211403380U (zh) 一种笔记本用电源适配电路
CN218336389U (zh) 一种低噪音的音响功放控制电路及装置
CN212969452U (zh) 一种高效率软开关工作模式的输入电源
CN220527906U (zh) 一种用于逆变式弧焊电源的并联均流电路及电源
CN217883455U (zh) 一种室内定位网关
CN214412568U (zh) 一种三合一电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923372

Country of ref document: EP

Kind code of ref document: A1