WO2023142302A1 - 双轮铣泥浆管定位方法、装置、设备及作业机械 - Google Patents

双轮铣泥浆管定位方法、装置、设备及作业机械 Download PDF

Info

Publication number
WO2023142302A1
WO2023142302A1 PCT/CN2022/092386 CN2022092386W WO2023142302A1 WO 2023142302 A1 WO2023142302 A1 WO 2023142302A1 CN 2022092386 W CN2022092386 W CN 2022092386W WO 2023142302 A1 WO2023142302 A1 WO 2023142302A1
Authority
WO
WIPO (PCT)
Prior art keywords
mud
winch
pulse value
mud pipe
winding position
Prior art date
Application number
PCT/CN2022/092386
Other languages
English (en)
French (fr)
Inventor
王鹏
Original Assignee
北京三一智造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三一智造科技有限公司 filed Critical 北京三一智造科技有限公司
Publication of WO2023142302A1 publication Critical patent/WO2023142302A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • B65H75/4402Guiding arrangements to control paying-out and re-storing of the material
    • B65H75/4405Traversing devices; means for orderly arranging the material on the drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • B65H75/4402Guiding arrangements to control paying-out and re-storing of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/33Hollow or hose-like material

Definitions

  • the present application relates to the technical field of mud pipe positioning, and in particular to a positioning method, device, equipment and operating machinery for double-wheel milling mud pipes.
  • the purpose of positioning the position of the mud pipe is to control the automatic deflection of the mud winch, so that the outlet direction of the mud pipe on the mud winch is always aligned with the top guide wheel. Once the two are not aligned, the mud pipe will be misaligned when the pipe is collected, resulting in failure. Accurately wind the mud hose completely.
  • the positioning of the mud pipe of the double-wheel milling machine mainly depends on the conversion of the total length L of the mud pipe combined with the depth H to obtain the length of the mud pipe wound on the mud pipe winch; combined with the mechanical parameters of the mud pipe winch to obtain the current position information of the mud pipe.
  • This application provides a double-wheel milling mud pipe positioning method, device, equipment and operating machinery to solve the defect of inaccurate mud pipe positioning in the prior art, and effectively improve the positioning accuracy of the mud pipe by collecting pulses through the encoder Spend.
  • the application provides a positioning method for double-wheel milling mud pipe, including:
  • the encoder Calibrate the encoder and establish a relationship table between the pulse value and the winding position, the encoder is set on the mud winch, and the mud winch is used to wind the mud pipe;
  • the deflection of the mud winch is controlled, so that the outlet direction of the mud pipe on the mud winch is aligned with the top guide wheel.
  • the acquisition of the number of calibrated winding turns of the mud pipe on the mud winch at the time of calibration includes:
  • the number of calibrated winding turns of the mud pipe on the mud winch is determined.
  • the pulse value and winding position relationship table is established according to the calibration pulse value and the calibration number of turns, including:
  • the winding position includes the number of winding layers and the number of winding rows.
  • the deflection of the mud winch is controlled, including:
  • the relative position of the mud winch and the top guide wheel is adjusted.
  • the present application also provides a dual-wheel milling mud pipe positioning device, including:
  • the calibration module is used to calibrate the encoder and establish a relationship table between the pulse value and the winding position, the encoder is arranged on the mud winch, and the mud winch is used to wind the mud pipe;
  • an acquisition module configured to acquire the pulse value of the encoder
  • a determining module configured to determine the winding position of the mud pipe on the mud winch corresponding to the pulse value according to the pulse value and winding position relationship table;
  • the execution module is configured to control the deflection of the mud winch according to the winding position of the mud pipe, so that the direction of the mud pipe on the mud winch aligns with the top guide wheel.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. The steps of the mud pipe positioning method.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the steps of any one of the above-mentioned two-wheel milling mud pipe positioning methods are realized.
  • the present application also provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program is executed by a processor, the steps of any one of the methods for positioning the mud pipe for double-wheel milling described above are realized.
  • the application provides a positioning method, device, equipment and operating machinery for a double-wheel milling mud pipe.
  • the method establishes a relationship table between pulse value and winding position by calibrating the encoder.
  • the encoder is arranged on the mud winch, and the The mud winch is used for winding the mud pipe; the pulse value of the encoder is collected; the winding position of the mud pipe on the mud winch corresponding to the pulse value is determined according to the pulse value and the winding position relationship table; according to the mud pipe control the deflection of the mud winch so that the outlet direction of the mud pipe on the mud winch is aligned with the top guide wheel, and the winding position of the mud pipe is determined by collecting the pulse value of the encoder, which is only in line with the mud winch
  • the number of turns is related to the number of rotations and is not affected by the elasticity of the mud pipe itself, so as to avoid the influence of the elastic change of the mud pipe on the position determination,
  • Fig. 1 is the schematic diagram of the principle of positioning the mud pipe on the mud winch provided by the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of the positioning method for the dual-wheel milling mud pipe provided by the embodiment of the present application;
  • Fig. 3 is a schematic structural view of the dual-wheel milling mud pipe positioning device provided by the embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • a dual-wheel milling mud pipe positioning method, device, equipment and operating machinery of the present application will be described below with reference to FIGS. 1-4 .
  • Fig. 1 is a schematic diagram of the principle of positioning a mud pipe on a mud winch provided by an embodiment of the present application
  • Fig. 2 is one of the schematic flow charts of a method for positioning a mud pipe by double-wheel milling provided by an embodiment of this application.
  • a kind of double-wheel milling mud pipe positioning method provided by the embodiment of the present application includes the following steps:
  • the encoder uses an absolute encoder for illustration. Because each position of an absolute encoder is absolutely unique, anti-interference, and does not require power-off memory, it can be more accurate. Better realize the capture of the rotation information of the mud winch. As shown in Figure 1, the absolute encoder 1 is set on the mud winch 2, and the absolute encoder 1 will collect the corresponding pulse information every time the mud winch 2 rotates one revolution. During the process of winding the mud pipe 4 Among them, accurately determining the specific winding position can better ensure the winding efficiency.
  • each layer is wound with four turns, and the corresponding turns in each layer are defined as columns, that is, each layer of winding can be wound into four columns.
  • the relationship can more accurately determine the specific winding position of the mud pipe 4 . Therefore, firstly, the encoder is calibrated, and the relationship table between the pulse value and the winding position is established, so that the corresponding relationship between any pulse value and the winding position can be obtained.
  • the winding process of the mud winch 2 to the mud pipe 4 is that the rotation of the mud winch 2 drives the mud pipe 4 to be wound on the mud winch 2 , and the mud pipe 4 is connected to the tool holder 5 through the support of the top guide wheel 3 .
  • the winding position of the mud pipe on the mud winch corresponding to the pulse value can be queried in the pre-established pulse value and winding position relationship table, wherein the winding position includes the number of winding layers and the number of winding columns.
  • the deflection of the mud winch can be controlled so that the appearance direction of the mud pipe on the mud winch is facing the top guide wheel, so as to better reduce the winding disorder.
  • the adjustment angle of the mud winch is determined according to the winding position; based on the adjustment angle, the relative position of the mud winch and the top guide wheel is adjusted.
  • This embodiment provides a positioning method for double-wheel milling mud pipes.
  • the pulse value and winding position relationship table is established.
  • the encoder is arranged on the mud winch, and the mud winch is used to wind the mud pipe. ; collect the pulse value of the encoder; determine the winding position of the mud pipe on the mud winch corresponding to the pulse value according to the pulse value and winding position relationship table; according to the winding position of the mud pipe, control the The mud winch is deflected so that the outlet direction of the mud pipe on the mud winch is aligned with the top guide wheel.
  • the winding position of the mud pipe is determined by collecting the pulse value of the encoder, which is only related to the number of rotations of the mud winch, and is not affected by the elasticity of the mud pipe itself, so as to avoid the influence of the elastic change of the mud pipe on the determination of the position, effectively The accuracy of determining the winding position of the mud pipe is greatly improved.
  • the encoder is calibrated, and the relationship table between the pulse value and the winding position is established, including: obtaining the number of calibrated winding turns of the mud pipe on the mud winch at the calibration time, and defining the calibration time as The number of turns of the mud pipe on the mud winch in the current state can be the corresponding position at any time after the work is completed, which can be the first column of the first layer or the bth column of the first layer.
  • the specific acquisition of the mud pipe calibration winding number on the mud winch at the calibration moment can include: obtaining the mud pipe winding layer number and the outermost circle number on the mud winch at the calibration moment; then according to the winding layer number, the Describe the number of outermost layers of turns and the number of turns that can be wound on each layer of the mud winch, and determine the number of calibrated winding turns of the mud pipe on the mud winch.
  • the number of winding layers corresponding to the current calibration moment is two layers, and the number of outermost turns is Three turns, and usually the number of winding turns per layer of the mud winch is four turns, it can be determined that the current number of winding turns is seven turns, and since the winding direction of the mud pipe on the mud winch is fixed, it can be clearly understood Whether it should be wrapped from right to left or left to right at the current moment.
  • the specific method of collecting the number of winding turns at the current calibration moment can be manual input, that is, the number of current layers and the number of outermost turns can be manually input on the display screen of human-computer interaction, and then the number of winding turns can be calculated.
  • establishing a pulse value and winding position relationship table may include: according to the calibrated pulse value, the calibrated number of turns and the fixed pulse value of each turn of the mud winch , calculate the pulse value corresponding to any number of turns, said arbitrary number of turns includes any column on any layer; according to any column on any layer and the corresponding pulse value, establish a relationship table between pulse value and winding position.
  • the pulse value of each rotation of the mud winch is a fixed value
  • the pulse corresponding to any number of turns can be calculated according to the current calibration number of turns and the calibration pulse corresponding to the number of calibration turns and the fixed pulse value corresponding to each turn of the mud winch value
  • the pulse value referred to at this time can also be the pulse interval, that is, the corresponding circle is the corresponding pulse interval of all the pulse values from the beginning of winding to the completion of winding.
  • the pulse value of the initial position and the pulse value at any time can be obtained.
  • the pulse value of the initial position refers to the corresponding pulse value when the mud winch is not winding, so as to obtain the corresponding values of all positions of the entire winding position of the mud winch.
  • the pulse value and winding position relationship table is finally constructed, and the most intuitive relationship reflected in the pulse value and winding position relationship table is the corresponding relationship between the specific pulse value and the corresponding winding position.
  • controlling the deflection of the mud winch includes: determining the adjustment angle of the mud winch according to the winding position; Adjust the angle to adjust the relative position of the mud winch and the top guide wheel.
  • another method can be used to determine the winding position, for example, it can be to collect the pulse value corresponding to the current moment of the absolute encoder, and then combine the number of layers and the number of outermost turns at the current moment, which can Know the pulse value corresponding to the current position. Since the pulse value of each rotation of the mud winch is a fixed value, the winding position of the mud pipe on the mud winch is determined according to the pulse value collected in real time. Three columns, the corresponding pulse value is A, and the fixed pulse value is a for each rotation of the mud winch, then when the collected pulse value is A+2a, it can be determined that it is currently in the first column of the third floor. By analogy, the winding position corresponding to any pulse value can be determined, that is, which layer and which column.
  • the application also protects a dual-wheel milling mud pipe positioning device.
  • the following describes the dual-wheel milling mud pipe positioning device provided by the application.
  • the dual-wheel milling mud pipe positioning device described below is the same as the above description
  • the positioning method of the double-wheel milling mud pipe can be referred to each other.
  • Fig. 3 is a schematic structural diagram of a positioning device for a dual-wheel milling mud pipe provided in an embodiment of the present application.
  • a dual-wheel milling mud pipe positioning device provided in the embodiment of the present application includes:
  • the calibration module 301 is used to calibrate the encoder and establish a relationship table between the pulse value and the winding position, the encoder is arranged on the mud winch, and the mud winch is used to wind the mud pipe;
  • Determining module 303 for determining the winding position of the mud pipe on the mud capstan corresponding to the pulse value according to the pulse value and winding position relation table;
  • the execution module 304 is configured to control the deflection of the mud winch according to the winding position of the mud pipe, so that the direction of the mud pipe on the mud winch aligns with the top guide wheel.
  • the embodiment provides a dual-wheel milling mud pipe positioning device.
  • the pulse value and winding position relationship table is established.
  • the encoder is arranged on the mud winch, and the mud winch is used to wind the mud pipe. ; collect the pulse value of the encoder; determine the winding position of the mud pipe on the mud winch corresponding to the pulse value according to the pulse value and winding position relationship table; according to the winding position of the mud pipe, control the The mud winch is deflected so that the outlet direction of the mud pipe on the mud winch is aligned with the top guide wheel, and the winding position of the mud pipe is determined by collecting the pulse value of the encoder, which is only related to the number of rotations of the mud winch. It is not affected by the elasticity of the mud pipe itself, thereby avoiding the influence of the elasticity change of the mud pipe on the determination of the position, and effectively improving the accuracy of determining the winding position of the mud pipe.
  • the determination module 303 in this embodiment is specifically used for:
  • the winding position of the mud pipe on the mud winch corresponding to the pulse interval is searched in the pre-established pulse value and winding position relationship table.
  • this embodiment also includes a calibration module 301, which is used for:
  • the establishment module in this embodiment is specifically used for:
  • the number of calibrated winding turns of the mud pipe on the mud winch is determined.
  • the establishment module in this embodiment is also specifically used for:
  • the winding position in this embodiment includes the number of winding layers and the number of winding columns.
  • execution module 304 in this embodiment is specifically used for:
  • the relative position of the mud winch and the top guide wheel is adjusted.
  • this application also protects a working machine, which uses the positioning method of the double-wheel milling mud pipe as in any of the above-mentioned embodiments to determine the winding position of the mud pipe.
  • the operation in this embodiment The machine takes a double-wheel milling machine as an example.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • this electronic device can comprise: processor (processor) 410, communication interface (Communications Interface) 420, memory (memory) 430 and communication bus 440, wherein, processor 410, communication interface 420, memory 430 pass through The communication bus 440 implements mutual communication.
  • the processor 410 can call the logic instructions in the memory 430 to execute the positioning method of the double-wheel milling mud pipe.
  • the method includes: calibrating the encoder, and establishing a relationship table between the pulse value and the winding position, and the encoder is arranged on the mud winch , the mud winch is used to wind the mud pipe; collect the pulse value of the encoder; determine the winding position of the mud pipe on the mud winch corresponding to the pulse value according to the pulse value and winding position relationship table; according to the The winding position of the mud pipe, control the deflection of the mud winch, so that the outlet direction of the mud pipe on the mud winch is aligned with the top guide wheel,
  • the above logic instructions in the memory 430 may be implemented in the form of software function units and be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program
  • the computer program can be stored on a non-transitory computer-readable storage medium
  • the computer can Execute the method for locating the mud pipe for double-wheel milling provided by the above-mentioned methods, the method includes: calibrating the encoder, and establishing a relationship table between the pulse value and the winding position, the encoder is arranged on the mud winch, and the mud winch is used for Winding the mud pipe; collecting the pulse value of the encoder; determining the winding position of the mud pipe on the mud winch corresponding to the pulse value according to the pulse value and winding position relationship table; according to the winding position of the mud pipe, Control the deflection of the mud winch so that the outlet direction of the mud pipe on the mud winch is aligned with the top guide wheel,
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the positioning method for the dual-wheel milling mud pipe provided by the above methods,
  • the method includes: calibrating the encoder, establishing a pulse value and winding position relationship table, the encoder is arranged on a mud winch, and the mud winch is used to wind the mud pipe; collecting the pulse value of the encoder; according to the The pulse value and winding position relationship table determines the winding position of the mud pipe on the mud winch corresponding to the pulse value; according to the winding position of the mud pipe, the deflection of the mud winch is controlled so that the mud pipe is in the The outlet direction on the mud winch is aligned with the top guide wheel,
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Earth Drilling (AREA)

Abstract

一种双轮铣泥浆管定位方法、装置、设备及作业机械,该双轮铣泥浆管定位方法通过对编码器(1)进行标定,建立脉冲值与缠绕位置关系表,编码器设置于泥浆绞盘(2)上,泥浆绞盘用于缠绕泥浆管(4);采集编码器的脉冲值;根据脉冲值与缠绕位置关系表确定脉冲值对应的泥浆绞盘上泥浆管的缠绕位置;根据泥浆管的缠绕位置,控制泥浆绞盘偏转,使得泥浆管在泥浆绞盘上的出线方向对正顶部导轮(3),通过编码器采集脉冲值的方式确定泥浆管的缠绕位置,只与泥浆绞盘的转动圈数有关联,不受泥浆管自身弹性的影响,从而避免泥浆管弹性变化带来对位置确定的影响,有效地提高了对泥浆管缠绕位置确定的精确度。

Description

双轮铣泥浆管定位方法、装置、设备及作业机械
相关申请的交叉引用
本申请要求于2022年1月26日提交的申请号为202210096138.0,发明名称为″双轮铣泥浆管定位方法、装置、设备及作业机械″的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及泥浆管定位技术领域,尤其涉及一种双轮铣泥浆管定位方法、装置、设备及作业机械。
背景技术
泥浆管位置定位的目的是为了控制泥浆绞盘的自动偏转,让泥浆管在泥浆绞盘上的出线方向始终对正顶部导轮,一旦二者没有对准将导致收管的时候泥浆管缠绕错位,导致不能准确地将泥浆管完全缠绕。目前,双轮铣槽机泥浆管定位主要依靠泥浆管总长L结合深度H换算得到泥浆管绞盘上缠绕泥浆管长度;结合泥浆管绞盘机械参数获得泥浆管当前的位置信息。
但是,由于泥浆管自身弹性的原因,导致泥浆管长度获取存在较大误差,容易导致泥浆管在泥浆绞盘上的定位不准确。
发明内容
本申请提供一种双轮铣泥浆管定位方法、装置、设备及作业机械,用以解决现有技术中泥浆管定位不准确的缺陷,通过编码器采集脉冲的方式有效地提高泥浆管的定位精确度。
本申请提供一种双轮铣泥浆管定位方法,包括:
对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;
采集所述编码器的脉冲值;
根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆 绞盘上泥浆管的缠绕位置;
根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮。
根据本申请提供的一种双轮铣泥浆管定位方法,所述
根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置,包括:
确定所述脉冲值对应的脉冲区间;
在所述脉冲值与缠绕位置关系表中查找所述脉冲区间对应的所述泥浆绞盘上泥浆管的缠绕位置。
根据本申请提供的一种双轮铣泥浆管定位方法,所述
对编码器进行标定,建立脉冲值与缠绕位置关系表,包括:
获取标定时刻泥浆绞盘上的泥浆管标定缠绕圈数;
采集在所述标定缠绕圈数下的编码器的标定脉冲值;
根据所述标定脉冲值和所述标定圈数,建立脉冲值与缠绕位置关系表。
根据本申请提供的一种双轮铣泥浆管定位方法,所述获取标定时刻泥浆绞盘上的泥浆管标定缠绕圈数,包括:
获取标定时刻泥浆绞盘上的泥浆管缠绕层数和最外层圈数;
根据所述缠绕层数、所述最外层圈数和泥浆绞盘每层的可缠绕圈数,确定所述泥浆绞盘上的泥浆管标定缠绕圈数。
根据本申请提供的一种双轮铣泥浆管定位方法,所述根据所述标定脉冲值和所述标定圈数,建立脉冲值与缠绕位置关系表,包括:
根据所述标定脉冲值、所述标定圈数和泥浆绞盘每圈的固定脉冲值,计算出任意圈数对应的脉冲值,所述任意圈数包括任意层上的任意列;
根据所述任意层上的任意列与对应的脉冲值,建立脉冲值与缠绕位置关系表。
根据本申请提供的一种双轮铣泥浆管定位方法,所述缠绕位置包括缠绕层数和缠绕列数。
根据本申请提供的一种双轮铣泥浆管定位方法,所述
根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,包括:
根据所述缠绕位置确定所述泥浆绞盘的调整角度;
基于所述调整角度,调节所述泥浆绞盘与顶部导轮的相对位置。
本申请还提供一种双轮铣泥浆管定位装置,包括:
标定模块,用于对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;
采集模块,用于采集所述编码器的脉冲值;
确定模块,用于根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;
执行模块,用于根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述双轮铣泥浆管定位方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述双轮铣泥浆管定位方法的步骤。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述双轮铣泥浆管定位方法的步骤。
本申请提供的一种双轮铣泥浆管定位方法、装置、设备及作业机械,方法通过对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;采集所述编码器的脉冲值;根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮,通过编码器采集脉冲值的方式确定泥浆管的缠绕位置,只与泥浆绞盘的转动圈数有关联,不受泥浆管自身弹性的影响,从而避免泥浆管弹性变化带来对位置确定的影响,有效地提高了对泥浆管缠绕位置确定的精确度。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面 描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的泥浆管在泥浆绞盘上定位的原理示意图;
图2是本申请实施例提供的双轮铣泥浆管定位方法的流程示意图;
图3是本申请实施例提供的双轮铣泥浆管定位装置的结构示意图;
图4是本申请实施例提供的电子设备的结构示意图。
附图标记:
1、编码器;2、泥浆绞盘;3、顶部导轮;4、泥浆管;5、刀架。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1-图4描述本申请的一种双轮铣泥浆管定位方法、装置、设备及作业机械。
图1是本申请实施例提供的泥浆管在泥浆绞盘上定位的原理示意图;图2是本申请实施例提供的双轮铣泥浆管定位方法的流程示意图之一。
如图1和图2所示,本申请实施例提供的一种双轮铣泥浆管定位方法,包括以下步骤:
201、对编码器进行标定,建立脉冲值与缠绕位置关系表,编码器设置于泥浆绞盘上,泥浆绞盘用于缠绕泥浆管。
在一个具体的实现过程中,以双轮铣槽机为例,编码器采用绝对式编码器进行说明,绝对式编码器因其每一个位置绝对唯一、抗干扰、无需掉电记忆,因此能够更好地实现对泥浆绞盘的转动信息抓取。如图1所示,将绝对式编码器1设置于泥浆绞盘2上,泥浆绞盘2每转动一圈绝对式编码器1便会采集到相对应的脉冲信息,在对泥浆管4进行缠绕的过程中,精确地确定出具体的缠绕位置能够更好地保证缠绕效率,通常每层缠绕四圈,定义每层中对应的圈为列,即每层缠绕完成可以缠绕四列,通过层与 列的关系可以更加精准的确定出泥浆管4具体的缠绕位置。因此,首先对编码器进行标定,建立脉冲值与缠绕位置关系表,使得得到任一脉冲值与缠绕位置的对应关系。
202、采集编码器的脉冲值。
泥浆绞盘2对泥浆管4的缠绕过程为泥浆绞盘2转动带动泥浆管4缠绕至泥浆绞盘2上,泥浆管4通过顶部导轮3的支撑作用与刀架5连接。在具体应用时,可能不需要将泥浆管4完全放开,因此,在工作完成之后对泥浆管4进行缠绕时,并不是从第一层的第一列开始的,因此需要实时的采集编码器1的脉冲值。
203、根据脉冲值与缠绕位置关系表确定脉冲值对应的泥浆绞盘上泥浆管的缠绕位置。
在得到当前实时的脉冲值之后,便可以在预先建立的脉冲值与缠绕位置关系表中查询脉冲值对应的泥浆绞盘上泥浆管的缠绕位置,其中缠绕位置包括缠绕层数和缠绕列数。而具体的在预先建立的脉冲值与缠绕位置关系表中查询所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置,可以是首先确定所述脉冲值对应的脉冲区间;因为泥浆绞盘每转动一圈对应的脉冲值为定值,例如每转动一圈为9000个脉冲值,因此首先确定当前编码器实时采集到的脉冲值位于脉冲值与缠绕位置关系表中的哪个区间内,然后在预先建立的脉冲值与缠绕位置关系表中查找所述脉冲区间对应的所述泥浆绞盘上泥浆管的缠绕位置,便得到了最终的泥浆绞盘在当前时刻的缠绕层数和缠绕列数,从而完成精准定位,更好地保证泥浆管的正确缠绕。
204、根据泥浆管的缠绕位置,控制泥浆绞盘偏转,使得泥浆管在泥浆绞盘上的出线方向对正顶部导轮。
具体的,在确定得到泥浆管的缠绕位置之后,便可以控制泥浆绞盘的偏转,使得泥浆管在泥浆绞盘上的出现方向正对顶部导轮,以更好地减少缠绕错乱的情况。例如,根据缠绕位置确定泥浆绞盘的调整角度;基于调整角度,调节泥浆绞盘与顶部导轮的相对位置。
本实施例提供的一种双轮铣泥浆管定位方法,通过对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;采集所述编码器的脉冲值;根据所述脉冲值与缠绕 位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮。通过编码器采集脉冲值的方式确定泥浆管的缠绕位置,只与泥浆绞盘的转动圈数有关联,不受泥浆管自身弹性的影响,从而避免泥浆管弹性变化带来对位置确定的影响,有效地提高了对泥浆管缠绕位置确定的精确度。
进一步的,在上述实施例的基础上,本实施例中对编码器进行标定,建立脉冲值与缠绕位置关系表,包括:获取标定时刻泥浆绞盘上的泥浆管标定缠绕圈数,定义标定时刻为当前状态下的泥浆绞盘上的泥浆管缠绕圈数,即可以是工作完成之后的任意时刻对应的位置,可以是第一层第一列也可以是第a层第b列。而具体的获取标定时刻泥浆绞盘上的泥浆管标定缠绕圈数,则可以包括:获取标定时刻泥浆绞盘上的泥浆管缠绕层数和最外层圈数;然后再根据所述缠绕层数、所述最外层圈数和泥浆绞盘每层的可缠绕圈数,确定所述泥浆绞盘上的泥浆管标定缠绕圈数,例如当前标定时刻对应的缠绕层数为两层,最外层圈数为三圈,而通常泥浆绞盘的每层可缠绕圈数为四圈,则可以确定出当前的缠绕圈数为七圈,而由于泥浆绞盘上泥浆管的缠绕方向是固定的,因此可以清晰的了解到当前时刻应该是自右向左缠绕还是自左向右缠绕。而具体的采集当前标定时刻的缠绕圈数的方式可以是人为输入,即可以是人工在人机交互的显示屏上输入当前层数和最外层圈数,进而计算出缠绕圈数。
在准确的获取到标定缠绕圈数之后,再采集在所述标定缠绕圈数下的编码器的标定脉冲值;同样是通过绝对式编码器获取标定时刻对应的标定脉冲值,然后再根据所述标定脉冲值和所述标定圈数,建立脉冲值与缠绕位置关系表。而具体的,根据所述标定脉冲值和所述标定圈数,建立脉冲值与缠绕位置关系表,可以包括:根据所述标定脉冲值、所述标定圈数和泥浆绞盘每圈的固定脉冲值,计算出任意圈数对应的脉冲值,所述任意圈数包括任意层上的任意列;根据所述任意层上的任意列与对应的脉冲值,建立脉冲值与缠绕位置关系表。由于泥浆绞盘每转动一圈的脉冲值为固定值,因此便可以根据当前的标定圈数和标定圈数对应的标定脉冲以及泥浆绞盘每圈对应的固定脉冲值计算得出任意圈数对应的脉冲值,此时所指的 脉冲值也可以是脉冲区间,即对应的圈为从刚开始缠绕到缠绕完成所有的脉冲值为对应的脉冲区间。以当前缠绕位置是第二层第三列为例进行说明,在得到第二层第三列对应的脉冲值后,通过推算,即总的圈数为七圈,根据每圈对应的固定的脉冲值,便可以得到初始位置的脉冲值以及任意时刻的脉冲值,初始位置的脉冲值指的是泥浆绞盘没有进行缠绕时的对应的脉冲值,从而得到泥浆绞盘的整个缠绕位置的所有位置对应的脉冲区间,最终构建出脉冲值与缠绕位置关系表,而脉冲值与缠绕位置关系表中最直观地反映出的关系便是具体的脉冲值与对应的缠绕位置的对应关系。
进一步的,在上述实施例的基础上,本实施例中根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,包括:根据所述缠绕位置确定所述泥浆绞盘的调整角度;基于所述调整角度,调节所述泥浆绞盘与顶部导轮的相对位置。为了保证泥浆绞盘能够规范的完成对泥浆管的缠绕,需要时刻的根据泥浆管的缠绕位置调整泥浆绞盘的角度,从而使得不会发生缠绕错乱。
进一步的,本实施例中还可以采用另外一种方式实现缠绕位置的确定,例如可以是采集绝对式编码器当前时刻对应的脉冲值,然后结合当前时刻的层数和最外层圈数,能够了解到当前位置对应的脉冲值,由于泥浆绞盘每转动一圈的脉冲值为定值,因此,根据实时采集到的脉冲值确定泥浆管在泥浆绞盘上的缠绕位置,例如当前为第二层第三列,对应的脉冲值为A,泥浆绞盘每转动一圈的固定脉冲值为a,则当采集到脉冲值为A+2a,便可以确定当前处于第三层第一列。以此类推,便可以确定出任意脉冲值对应的缠绕位置,即第几层第几列。
基于同一总的发明构思,本申请还保护一种双轮铣泥浆管定位装置,下面对本申请提供的双轮铣泥浆管定位装置进行描述,下文描述的双轮铣泥浆管定位装置与上文描述的双轮铣泥浆管定位方法可相互对应参照。
图3是本申请实施例提供的双轮铣泥浆管定位装置的结构示意图。
如图3所示,本申请实施例提供的一种双轮铣泥浆管定位装置,包括:
标定模块301,用于对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;
采集模块302,用于采集所述编码器的脉冲值;
确定模块303,用于根据所述脉冲值与缠绕位置关系表确定所述脉冲 值对应的所述泥浆绞盘上泥浆管的缠绕位置;
执行模块304,用于根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮。
本实施例提供的一种双轮铣泥浆管定位装置,通过对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;采集所述编码器的脉冲值;根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮,通过编码器采集脉冲值的方式确定泥浆管的缠绕位置,只与泥浆绞盘的转动圈数有关联,不受泥浆管自身弹性的影响,从而避免泥浆管弹性变化带来对位置确定的影响,有效地提高了对泥浆管缠绕位置确定的精确度。
进一步的,本实施例中的确定模块303,具体用于:
确定所述脉冲值对应的脉冲区间;
在预先建立的脉冲值与缠绕位置关系表中查找所述脉冲区间对应的所述泥浆绞盘上泥浆管的缠绕位置。
进一步的,本实施例中还包括,标定模块301,用于:
获取标定时刻泥浆绞盘上的泥浆管标定缠绕圈数;
采集在所述标定缠绕圈数下的编码器的标定脉冲值;
根据所述标定脉冲值和所述标定圈数,建立脉冲值与缠绕位置关系表。
进一步的,本实施例中的建立模块,具体用于:
获取标定时刻泥浆绞盘上的泥浆管缠绕层数和最外层圈数;
根据所述缠绕层数、所述最外层圈数和泥浆绞盘每层的可缠绕圈数,确定所述泥浆绞盘上的泥浆管标定缠绕圈数。
进一步的,本实施例中的建立模块,具体还用于:
根据所述标定脉冲值、所述标定圈数和泥浆绞盘每圈的固定脉冲值,计算出任意圈数对应的脉冲值,所述任意圈数包括任意层上的任意列;
根据所述任意层上的任意列与对应的脉冲值,建立脉冲值与缠绕位置关系表。
进一步的,本实施例中的所述缠绕位置包括缠绕层数和缠绕列数。
进一步的,本实施例中执行模块304,具体用于:
根据所述缠绕位置确定所述泥浆绞盘的调整角度;
基于所述调整角度,调节所述泥浆绞盘与顶部导轮的相对位置。
基于同一总的发明构思,本申请还保护一种作业机械,所述作业机械采用如上述任一实施例的所述双轮铣泥浆管定位方法确定泥浆管的缠绕位置,本实施例中的作业机械以双轮铣槽机为例。
图4是本申请实施例提供的电子设备的结构示意图。
如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行双轮铣泥浆管定位方法,该方法包括:对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;采集所述编码器的脉冲值;根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮,
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的双轮铣泥浆管定位方法,该方法包括:对编码器进行标定,建立脉冲值与缠绕 位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;采集所述编码器的脉冲值;根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮,
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的双轮铣泥浆管定位方法,该方法包括:对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;采集所述编码器的脉冲值;根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮,
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不 使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种双轮铣泥浆管定位方法,包括:
    对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;
    采集所述编码器的脉冲值;
    根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;
    根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮。
  2. 根据权利要求1所述的双轮铣泥浆管定位方法,其中,所述根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置,包括:
    确定所述脉冲值对应的脉冲区间;
    在所述脉冲值与缠绕位置关系表中查找所述脉冲区间对应的所述泥浆绞盘上泥浆管的缠绕位置。
  3. 根据权利要求1所述的双轮铣泥浆管定位方法,其中,所述对编码器进行标定,建立脉冲值与缠绕位置关系表,包括:
    获取标定时刻泥浆绞盘上的泥浆管标定缠绕圈数;
    采集在所述标定缠绕圈数下的编码器的标定脉冲值;
    根据所述标定脉冲值和所述标定圈数,建立脉冲值与缠绕位置关系表。
  4. 根据权利要求3所述的双轮铣泥浆管定位方法,其中,所述获取标定时刻泥浆绞盘上的泥浆管标定缠绕圈数,包括:
    获取标定时刻泥浆绞盘上的泥浆管缠绕层数和最外层圈数;
    根据所述缠绕层数、所述最外层圈数和泥浆绞盘每层的可缠绕圈数,确定所述泥浆绞盘上的泥浆管标定缠绕圈数。
  5. 根据权利要求4所述的双轮铣泥浆管定位方法,其中,所述根据所述标定脉冲值和所述标定圈数,建立脉冲值与缠绕位置关系表,包括:
    根据所述标定脉冲值、所述标定圈数和泥浆绞盘每圈的固定脉冲值,计算出任意圈数对应的脉冲值,所述任意圈数包括任意层上的任意列;
    根据所述任意层上的任意列与对应的脉冲值,建立脉冲值与缠绕位置关系表。
  6. 根据权利要求1所述的双轮铣泥浆管定位方法,其中,所述缠绕位置包括缠绕层数和缠绕列数。
  7. 根据权利要求1-6任一项所述的双轮铣泥浆管定位方法,其中,所述根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,包括:
    根据所述缠绕位置确定所述泥浆绞盘的调整角度;
    基于所述调整角度,调节所述泥浆绞盘与顶部导轮的相对位置。
  8. 一种双轮铣泥浆管定位装置,包括:
    标定模块,用于对编码器进行标定,建立脉冲值与缠绕位置关系表,所述编码器设置于泥浆绞盘上,所述泥浆绞盘用于缠绕泥浆管;
    采集模块,用于采集所述编码器的脉冲值;
    确定模块,用于根据所述脉冲值与缠绕位置关系表确定所述脉冲值对应的所述泥浆绞盘上泥浆管的缠绕位置;
    执行模块,用于根据所述泥浆管的缠绕位置,控制所述泥浆绞盘偏转,使得所述泥浆管在所述泥浆绞盘上的出线方向对正顶部导轮。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至7任一项所述双轮铣泥浆管定位方法的步骤。
  10. 一种作业机械,所述作业机械采用如权利要求1至7任一项所述双轮铣泥浆管定位方法确定泥浆管的缠绕位置。
PCT/CN2022/092386 2022-01-26 2022-05-12 双轮铣泥浆管定位方法、装置、设备及作业机械 WO2023142302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210096138.0A CN114426229B (zh) 2022-01-26 2022-01-26 双轮铣泥浆管定位方法、装置、设备及作业机械
CN202210096138.0 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023142302A1 true WO2023142302A1 (zh) 2023-08-03

Family

ID=81312971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092386 WO2023142302A1 (zh) 2022-01-26 2022-05-12 双轮铣泥浆管定位方法、装置、设备及作业机械

Country Status (2)

Country Link
CN (1) CN114426229B (zh)
WO (1) WO2023142302A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426229B (zh) * 2022-01-26 2023-11-24 北京三一智造科技有限公司 双轮铣泥浆管定位方法、装置、设备及作业机械

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310613A (ja) * 2001-04-11 2002-10-23 Seiko Epson Corp 測定システム、プリンタにおける印刷用紙搬送制御方法、該搬送制御に用いるリニアエンコーダ
CN107604968A (zh) * 2017-10-20 2018-01-19 徐工集团工程机械有限公司 可摆动多层多排软管绞盘机构及配置该机构的双轮铣槽机
CN107804760A (zh) * 2017-10-24 2018-03-16 徐工集团工程机械有限公司 一种绞盘轴线可自动调整角度的控制方法及装置
US20190203575A1 (en) * 2016-08-02 2019-07-04 Schlumberger Technology Corporation Downhole equipment transport control
CN112112210A (zh) * 2020-09-28 2020-12-22 北京三一智造科技有限公司 绞盘自动偏转控制方法、装置及双轮铣槽机
CN213112046U (zh) * 2020-09-25 2021-05-04 北京三一智造科技有限公司 绞盘装置
CN214530849U (zh) * 2021-03-26 2021-10-29 北京三一智造科技有限公司 一种双轮铣槽机
CN114426229A (zh) * 2022-01-26 2022-05-03 北京三一智造科技有限公司 双轮铣泥浆管定位方法、装置、设备及作业机械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242355A (ja) * 1994-03-03 1995-09-19 Fuji Photo Film Co Ltd 搬送機構の誤差補正方法および装置
ATE543773T1 (de) * 2007-02-01 2012-02-15 Deep Tek Winch Ip Ltd Windentrommelanordnung und verfahren zum wickeln einer leitung
CN102336376A (zh) * 2010-07-26 2012-02-01 上海派恩科技有限公司 一种水文绞车收/放缆控制***
NO20131666A1 (no) * 2013-12-13 2015-06-15 Tts Ships Equipment As Fremgangsmåte og system for å detektere forekommende slakk heiseline i en vinsj
US9791301B2 (en) * 2014-01-10 2017-10-17 Ndt Technologies, Inc. Method and apparatus for wire rope distance measurement
KR20150003493U (ko) * 2014-03-13 2015-09-23 현대중공업 주식회사 와이어로프 타이밍 조정 기능을 갖는 윈치
WO2016141942A1 (en) * 2015-03-06 2016-09-15 J.Hvidtved Larsen A/S Control unit for positioning a hose
US10259677B2 (en) * 2015-09-27 2019-04-16 Adam Lillich Automatic cable spooling device
US10207890B2 (en) * 2017-05-19 2019-02-19 Reelex Packaging Solutions, Inc. Apparatus and method for winding coil
CN111252673B (zh) * 2020-02-18 2021-04-16 杭州江河机电装备工程有限公司 一种旋转编码器的角度-长度转换装置与方法
KR102173165B1 (ko) * 2020-02-24 2020-11-02 주식회사 에스디산업기술 이동이 가능한 캡스턴
CN112027106B (zh) * 2020-08-31 2023-03-07 西南科技大学 一种自适应收放线的无人机系留平台及无人机定位方法
CN112125190A (zh) * 2020-10-20 2020-12-25 北京三一智造科技有限公司 卷扬装置、卷扬测深设备及卷扬测深方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310613A (ja) * 2001-04-11 2002-10-23 Seiko Epson Corp 測定システム、プリンタにおける印刷用紙搬送制御方法、該搬送制御に用いるリニアエンコーダ
US20190203575A1 (en) * 2016-08-02 2019-07-04 Schlumberger Technology Corporation Downhole equipment transport control
CN107604968A (zh) * 2017-10-20 2018-01-19 徐工集团工程机械有限公司 可摆动多层多排软管绞盘机构及配置该机构的双轮铣槽机
CN107804760A (zh) * 2017-10-24 2018-03-16 徐工集团工程机械有限公司 一种绞盘轴线可自动调整角度的控制方法及装置
CN213112046U (zh) * 2020-09-25 2021-05-04 北京三一智造科技有限公司 绞盘装置
CN112112210A (zh) * 2020-09-28 2020-12-22 北京三一智造科技有限公司 绞盘自动偏转控制方法、装置及双轮铣槽机
CN214530849U (zh) * 2021-03-26 2021-10-29 北京三一智造科技有限公司 一种双轮铣槽机
CN114426229A (zh) * 2022-01-26 2022-05-03 北京三一智造科技有限公司 双轮铣泥浆管定位方法、装置、设备及作业机械

Also Published As

Publication number Publication date
CN114426229B (zh) 2023-11-24
CN114426229A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2023142302A1 (zh) 双轮铣泥浆管定位方法、装置、设备及作业机械
US20050114059A1 (en) Point cloud measuring system and method
CN202661082U (zh) 一种自动标定转台***
CN104139321B (zh) 大型结构件原位测量自动找正***及其找正方法
CN107498299A (zh) 一种应用于螺栓拧紧的工具定位***及操作方法
CN107175406B (zh) 焊接轨迹的控制方法和***
WO2021004218A1 (zh) 机床运动轨迹的控制方法及装置、存储介质、处理器
TWI614081B (zh) 遠端加工優化系統與方法
CN108406440A (zh) 旋转工作台上圆弧段类工件表面待加工点位坐标获取方法
CN204202873U (zh) 谐波减速器传动链误差和回程误差的连续测量***
WO2024055799A1 (zh) 牙科种植导板定向方法、装置、电子设备及存储介质
CN116520769B (zh) 数控机床的监测方法、装置、终端设备及计算机存储介质
CN106155101A (zh) 一种针对带限位转台的快速位置寻零方法
US20070051004A1 (en) Multi-point measuring system and method
CN104266731A (zh) 验证电磁流量计的***
US10132623B2 (en) Method for measuring slant wall thickness dimension of hub
CN104493420A (zh) 相贯线焊道定位方法
CN112705745B (zh) 一种卧式加工中心b轴标定找正***及其工作方法
CN104316017B (zh) 一种圆柱度的三截面测量方法
CN113697696A (zh) 起重机回转控制方法、***及起重机
TWI647054B (zh) 刀具的智能校正系統與校正方法
CN107303650A (zh) 用于打磨抛光的自动抓取方法、装置及***
CN110560811A (zh) 一种pcd刀具线切割五轴数控软件的控制方法及***
TW202122205A (zh) 整合量測之加工控制系統
CN109945909A (zh) 一种编码器精度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923117

Country of ref document: EP

Kind code of ref document: A1