WO2023142040A1 - Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors - Google Patents

Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors Download PDF

Info

Publication number
WO2023142040A1
WO2023142040A1 PCT/CN2022/074989 CN2022074989W WO2023142040A1 WO 2023142040 A1 WO2023142040 A1 WO 2023142040A1 CN 2022074989 W CN2022074989 W CN 2022074989W WO 2023142040 A1 WO2023142040 A1 WO 2023142040A1
Authority
WO
WIPO (PCT)
Prior art keywords
herpes simplex
simplex virus
mir
recombinant herpes
gene
Prior art date
Application number
PCT/CN2022/074989
Other languages
French (fr)
Inventor
William Wei-Guo JIA
Kuan Zhang
Jun Ding
Guoyu LIU
Yanal M. Murad
Xiaohu Liu
Ronghua ZHAO
Dmitry V. Chouljenko
Zhenglong Wang
Original Assignee
Virogin Biotech Canada Ltd.
Virogin Biotech (Shanghai) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virogin Biotech Canada Ltd., Virogin Biotech (Shanghai) Ltd. filed Critical Virogin Biotech Canada Ltd.
Priority to PCT/CN2022/074989 priority Critical patent/WO2023142040A1/en
Priority to PCT/CN2023/073525 priority patent/WO2023143495A1/en
Publication of WO2023142040A1 publication Critical patent/WO2023142040A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/763Herpes virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0058Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0066Manipulation of the nucleic acid to modify its expression pattern, e.g. enhance its duration of expression, achieved by the presence of particular introns in the delivered nucleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16632Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector
    • C12N2710/16643Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates generally to oncolytic herpes simplex virus (oHSV) vectors that express molecules that stimulate the immune system.
  • oHSV oncolytic herpes simplex virus
  • Immune-targeted drug therapy e.g., immune checkpoint suppression
  • immune cell therapy e.g., chimeric antigen receptor T-cell (CAR-T)
  • CAR-T chimeric antigen receptor T-cell
  • the present invention overcomes shortcomings of current cancer therapies, including immunotherapies, and further provides additional unexpected benefits.
  • the invention relates to compositions and methods for treating cancer with recombinant herpes simplex virus vectors.
  • recombinant herpes simplex viruses comprising a modified oncolytic herpes virus genome, wherein the modified herpes virus genome comprises at least one miRNA target sequence operably linked to a first copy of an ICP34.5 gene, and a second copy of the ICP34.5 gene comprises an inactivating mutation.
  • the recombinant virus can comprise from one to ten miRNA target sequences operably linked to the first copy of the ICP34.5 gene.
  • the miRNA target sequences can bind at least two different miRNAs (e.g., one or more of miR-124, miR-124*, and miR-143) .
  • the miR target sequences include SEQ ID NO. 2 (a miR-124 binding sequence) ; SEQ ID NO. 3 (a miR-143 binding sequence) ; SEQ ID No. 9 (a miR-223 binding sequence) ; and SEQ ID NO. 10 (a miR-125b binding sequence) .
  • the recombinant herpes virus can further comprise at least one nucleic acid encoding a non-viral protein.
  • non-viral proteins include immunostimulatory factors, antibodies, and checkpoint blocking peptides, wherein the at least one nucleic acid is operably linked to a strong promoter, e.g., a viral promoter such as CMV or other promoters such as EF-1alpha or CAG.
  • the non-viral protein is one, or all of IL12, IL15, IL15 receptor alpha subunit. Representative examples of these sequences include SEQ ID NO. 4 (IL12) ; SEQ ID NO. 5 (IL15) ; and SEQ ID NO. 6 (IL15 receptor alpha subunit) .
  • the recombinant herpes simplex virus further comprises a nucleic acid sequence encoding a glycoprotein with enhanced fusogenicity (as compared to a similar wild-type virus) .
  • a glycoprotein with enhanced fusogenicity as compared to a similar wild-type virus.
  • transgenes e.g., a fusogenic glycoprotein from Gibbon Ape Leukemia Virus “GALV”
  • GALV Gibbon Ape Leukemia Virus
  • the recombinant herpes virus comprises at least one miRNA target sequence operably linked to a first copy of an ICP27 gene.
  • the recombinant virus can comprise from one to ten copies of the miRNA target sequences operably linked to the first copy of the ICP27 gene.
  • the miRNA target sequences can bind at least two different miRNAs (e.g., one or more of miR-223, miR-125b, and miR-34a) .
  • the recombinant herpes virus can further comprise an ICP27 promoter sequence operably linked to a first copy of an ICP47 gene, wherein the natural promoter of the ICP47 gene comprises an inactivating deletion.
  • the recombinant herpes virus can further comprise an inactivating mutation in at least one copy of an ICP4 gene.
  • the recombinant herpes virus can further comprise a tumor-specific promoter operably linked to a first copy of an ICP27 gene, wherein the natural ICP27 promoter comprises an inactivating mutation.
  • compositions comprising the recombinant herpes viruses described herein, as well as methods of lysing tumor cells, and, methods of treating cancers in a subject comprising the step of administering one of the recombinant herpes viruses described herein to a subject.
  • FIG. 1 diagrammatically depicts a Transcription and Translation Dual Regulated ( “TTDR” ) system as exemplified by the overall structural organization of the double-stranded deoxyribonucleic acid (DNA) elements of VG202 (also referred to as VG21224) .
  • TTDR Transcription and Translation Dual Regulated
  • FIG. 2 is a graph showing the ratios of miRNA levels in liver cancer cell lines compared to a non-tumor liver cell line.
  • FIG. 3 is a graph showing the ratios of miRNA levels in various cancer cell lines compared to a non-tumor cell line.
  • FIG. 4 is a cartoon depicting the general features of two recombinant oncolytic HSV constructs (top panel) and a graph showing viral replication titer in HCC cells compared to viral replication titer of the same viruses in a non-tumor liver cell line (bottom panel) .
  • FIG. 5 is a cartoon depicting the general features of four recombinant oncolytic HSV constructs (top panel) and graphs showing viral replication titers in cancer cells compared to viral replication titers of the same viruses in a non-tumor cell line (bottom panel) .
  • FIG. 6 is a graph (top panel) and table (bottom panel) demonstrating microRNA-mediated control of viral gene expression.
  • oncolytic herpes virus refers generally to a herpes virus capable of replicating in and killing tumor cells. Within certain embodiments the virus can be engineered in order to more selectively target tumor cells. Representative examples of oncolytic herpes viruses are described in US Patent Nos. 7,223,593, 7,537,924, 7,063,835, 7,063,851, 7,118,755, 8,216,564, 8,277,818, and 8,680,068, all of which are incorporated by reference in their entirety.
  • Treat” or “treating” or “treatment, ” as used herein, means an approach for obtaining beneficial or desired results, including clinical results.
  • Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, diminishment of the reoccurrence of disease, and remission (whether partial or total) , whether detectable or undetectable.
  • the terms “treating” and “treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • cancers include carcinomas, leukemia’s , lymphomas, myelomas and sarcomas. Further examples include, but are not limited to cancer of the bile duct cancer, brain (e.g., glioblastoma) , breast, cervix, colorectal, CNS (e.g., acoustic neuroma, astrocytoma, craniopharyogioma, ependymoma, glioblastoma, hemangioblastoma, medulloblastoma, menangioma, neuroblastoma, oligodendroglioma, pinealoma and retinoblastoma) , endometrial lining, hematopoietic cells (e.g., leukemia’s and lymphomas) , kidney, larynx, lung, liver, oral cavity, ovaries, pancreas, prostate, skin (e.g., mel
  • Cancers can comprise solid tumors (e.g., sarcomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma and osteogenic sarcoma) , be diffuse (e.g., leukemia’s) , or some combination of these (e.g., a metastatic cancer having both solid tumors and disseminated or diffuse cancer cells) . Cancers can also be resistant to conventional treatment (e.g. conventional chemotherapy and/or radiation therapy) .
  • conventional chemotherapy and/or radiation therapy e.g. conventional chemotherapy and/or radiation therapy
  • cancers to be treated include lung tumors, breast and prostate tumors, glioblastomas, tumors of the gastro-intestinal tract (and associated organs) e.g., esophagus, cholangiocarcinoma, anal, stomach, bladder, kidney, intestine, pancreatic, colon and liver, and all surface injectable tumors (e.g., melanomas) .
  • Benign tumors and other conditions of unwanted cell proliferation may also be treated.
  • the cancer to be treated expresses a detectable amount of C-X-C Motif Chemokine Receptor 4 (CXCR4) .
  • Herpes Simplex Virus (HSV) 1 and 2 are members of the Herpesviridae family, which infects humans.
  • the HSV genome contains two unique regions, which are known as the unique long (U L ) and unique short (U S ) region. Each of these regions is flanked by a pair of identical inverted repeat sequences, with the repeats flanking the U L region designated as R L and the repeats flanking the U S region designated as R S .
  • R L unique long
  • R S unique short
  • the viral genome has been engineered to develop oncolytic viruses for use in e.g. cancer therapy. Tumor-selective replication of HSV may be conferred by mutation of the HSV ICP34.5 (also called ⁇ 34.5) gene.
  • HSV contains two copies of ICP34.5. Mutants inactivating one or both copies of the ICP34.5 gene are known to lack neurovirulence, i.e. be avirulent/non-neurovirulent and be oncolytic. Tumor selective replication of HSV may also be conferred by controlling expression of key viral genes such as ICP27 and/or ICP4.
  • Suitable oncolytic HSV may be derived from either HSV-1 or HSV-2, including any laboratory strain or clinical isolate.
  • the oHSV may be derived from one of laboratory strains HSV-1 strain 17, HSV-1 strain F, or HSV-2 strain HG52. In other embodiments, it may be derived from non-laboratory strain JS-1.
  • Other suitable HSV-1 viruses include HrrR3 (Goldstein and Weller, J. Virol. 62, 196-205, 1988) , G2O7 (Mineta et al. Nature Medicine. 1 (9) : 938-943, 1995; Kooby et al.
  • the oHSV vector has at least one ICP27 gene that is modified with miRNA target sequences in its 3’UTR as disclosed herein; there are no unmodified ICP27 genes in the vector.
  • the oHSV has only one ICP27 gene and it is modified.
  • the modified ICP27 gene (s) are constructed in vitro and inserted into the oHSV vector as replacements for the viral gene (s) .
  • the modified ICP27 gene may comprise additional changes, such as having an exogenous promoter.
  • the oHSV vector has at least one ⁇ 34.5 gene that is modified with miRNA target sequences in its 3’UTR as disclosed herein; there are no unmodified ⁇ 34.5 genes in the vector.
  • the oHSV has two modified ⁇ 34.5 genes; in other embodiments, the oHSV has only one ⁇ 34.5 gene, and it is modified.
  • the modified ⁇ 34.5 gene (s) are constructed in vitro and inserted into the oHSV vector as replacements for the viral gene (s) .
  • the modified ⁇ 34.5 gene is a replacement of only one ⁇ 34.5 gene, the other ⁇ 34.5 is deleted. Either native ⁇ 34.5 gene can be deleted.
  • the terminal repeat region which comprises ⁇ 34.5 gene and ICP4 gene, is deleted.
  • the modified ⁇ 34.5 gene may comprise additional changes, such as having an exogenous promoter.
  • the oHSV may have additional mutations, which may include disabling mutations e.g., deletions, substitutions, insertions) , which may affect the virulence of the virus or its ability to replicate.
  • mutations may be made in any one or more of ICP6, ICPO, ICP4, ICP27, ICP47, ICP24, ICP56.
  • a mutation in one of these genes leads to an inability (or reduction of the ability) of the HSV to express the corresponding functional polypeptide.
  • the promoter of a viral gene may be substituted with a promoter that is selectively active in target cells or inducible upon delivery of an inducer or inducible upon a cellular event or particular environment.
  • the oHSV may have additional mutations, which may include disabling mutations, e.g., deletions, substitutions, insertions) , which may reduce the risk of recombination events in a repetitive and non-unique region of the viral genome.
  • mutations may be made in any one or more of R S region, R L region, US1 promoter, US12 promoter.
  • the promoter of a viral gene may be substituted with a promoter of a different viral gene that reduces the risk of recombination event in the repetitive and non-unique region of the native, or natural, promoter.
  • the expression of ICP4 or ICP27 is controlled by an exogenous (i.e., heterologous) promoter, e.g., a tumor-specific promoter.
  • a tumor-specific promoter include survivin, CEA, CXCR4, PSA, ARR2PB, or telomerase; other suitable tumor-specific promoters may be specific to a single tumor type and are known in the art.
  • Other elements may be present.
  • an enhancer such as NFkB/oct4/sox2 enhancer is present.
  • the 5’UTR may be exogenous, such as a 5’UTR from growth factor genes such as FGF. See Figure 1 for an exemplary construct. See also SEQ ID NO. 8 for a representative sequence of a CXCR4 promoter.
  • the oHSV may also have genes and nucleotide sequences that are non-HSV in origin.
  • a sequence that encodes a prodrug, a sequence that encodes a cytokine or other immune stimulating factor, a tumor-specific promoter, an inducible promoter, an enhancer, a sequence homologous to a host cell, among others may be in the oHSV genome.
  • Exemplary sequences encode IL12, IL15, IL15 receptor alpha subunit, OX40L, PD-L1 blocker or a PD-1 blocker.
  • sequences that encode a product they are operatively linked to a promoter sequence and other regulatory sequences (e.g., enhancer, polyadenylation signal sequence) necessary or desirable for expression.
  • the regulatory region of viral genes may be modified to comprise response elements that affect expression.
  • exemplary response elements include response elements for NF- ⁇ B, Oct-3/4-SOX2, enhancers, silencers, cAMP response elements, CAAT enhancer binding sequences, and insulators. Other response elements may also be included.
  • a viral promoter may be replaced with a different promoter. The choice of the promoter will depend upon a number of factors, such as the proposed use of the HSV vector, treatment of the patient, disease state or condition, and ease of applying an inducer (for an inducible promoter) . For treatment of cancer, generally when a promoter is replaced it will be with a cell-specific or tissue-specific or tumor-specific promoter. Tumor-specific, cell-specific and tissue-specific promoters are known in the art. Other gene elements may be modified as well. For example, the 5’UTR of the viral gene may be replaced with an exogenous UTR.
  • FIG. 1 diagrammatically depicts the overall structural organization of the double-stranded deoxyribonucleic acid (DNA) elements of VG21224.
  • CXCR4 means C-X-C Motif Chemokine Receptor 4;
  • CMV means cytomegalovirus;
  • gB means glycoprotein B;
  • ICP means infected cell polypeptide;
  • IL means interleukin;
  • R L means repeat long;
  • RNA means ribonucleic acid;
  • R S means repeat short;
  • UL means unique long; “US” means unique short.
  • VG21224 and VG202 refer to the same construct and may be used interchangeably.
  • VG21224 is a recombinant HSV-1 platform that utilizes both transcriptional and translational dual-regulation ( “TTDR” –see FIG. 1) of key viral genes to limit virus replication to tumor cells and enhance tumor-specific virulence without compromising safety.
  • VG21224 expresses a payload cassette composed of IL12, IL15 and IL15 receptor alpha subunit. The payload expression is under control of the CMV promoter for expression in cells that do not suppress CMV promoter function.
  • gB viral glycoprotein B in VG21224 was truncated to facilitate virus spread in the tumor by enhanced fusogenicity.
  • ICP34.5 expression is post-transcriptionally regulated. Briefly, in wild-type HSV-1, there are 2 copies of the ICP34.5 gene. In VG21224, one copy of ICP34.5 has been deleted. For the remaining ICP34.5 gene, VG21224 inserts multiple copies of binding domains for miR124 and miR143 in the 3’UTR region to regulate its expression post-transcriptionally.
  • ICP34.5 is encoded by the HSV late gene g-34.5. It is well known for its function of suppressing anti-viral immunity of host cells, particularly neuronal cells, to cause neurotoxicity. To abolish the functions of ICP34.5 in neurons and other normal cells while retaining its activity in tumor cells for robust replication, instead of deleting the gene or using a specific promoter to control the expression of ICP34.5 to target specific tumors, VG21224 uses microRNAs as a post-transcriptional control to achieve differential expression of ICP34.5 in tumor cells. Briefly, miRNAs are ⁇ 22 nucleotides, noncoding small RNAs coded by miRNA genes, which are transcribed by RNA polymerase II to produce primary miRNA (pri-miRNA) .
  • miRNA in miRISC may influence gene expression by binding to the 3′-untranslated region (3′-UTR) in the target mRNA. This region consists of sequences recognized by miRNA. If the complementarity of the miRNA: mRNA complex is perfect, the mRNA is degraded by Ago2, a protein belonging to the Argonaute family. However, if the complementarity is not perfect, the translation of the target mRNA while not fully degraded, is still suppressed.
  • miRNA in miRISC may influence gene expression by binding to the 3′-untranslated region (3′-UTR) in the target mRNA. This region consists of sequences recognized by miRNA. If the complementarity of the miRNA: mRNA complex is perfect, the mRNA is degraded by Ago2, a protein belonging to the Argonaute family. However, if the complementarity is not perfect, the translation of the target mRNA while not fully degraded, is still suppressed.
  • miRNAs are expressed differentially in a tissue specific fashion.
  • miR-124 One of the examples is miR-124. While the precursors of miR-124 from different species are different, the sequences of mature miR-124 in human, mice, rats are completely identical.
  • MiR-124 is the most abundantly expressed miRNA in neuronal cells and is highly expressed in the immune cells and organs (Qin et al., 2016, miRNA-124 in immune system and immune disorders. Frontiers in Immunology, 7 (OCT) , 1–8) .
  • Another example of differential expression of miRNA is miR143 (Lagos-Quintana et al., 2002, Identification of tissue-specific MicroRNAs from mouse. Current Biology, 12 (9) , 735–739) .
  • MiR-143 is constitutively expressed in normal tissues but significantly downregulated in cancer cells (Michael et al., 2003, Reduced Accumulation of Specific MicroRNAs in Colorectal Neoplasia. Molecular Cancer Research, 1 (12) , 882–891) .
  • the 3’UTR region of ICP34.5 gene in VG21224 contains multiple copies of binding domains (also referred to as “miRNA target sequences” , “miRNA binding sequences” or “miRNA binding sites” ) that are completely complementary to miR124 and miR143. Binding of miR124 and miR143 to the 3’UTR of ICP34.5 mRNA causes degradation of the mRNA; therefore the gene is post-transcriptionally downregulated in normal cells but not tumor cells. This design allows differential expression of ICP34.5 in tumor cells.
  • identical, or, varying lengths of linker DNA can be inserted between different miRNA binding sites.
  • the linkers range from 1 to 50 base pairs. Within other embodiments the linker is less than 10 base pairs.
  • HSV-1 viral replication depends on a cascade of expression of viral genes, with immediate early gene products (particularly ICP4 and ICP27) controlling subsequent expression of viral early genes and late genes that govern the lytic replication cycle of the virus. Deletion of ICP4 or ICP27 results in complete abrogation of viral replication and a significant reduction in viral gene expression, which makes ICP4 and ICP27 excellent targets for tumor specific regulation in oncolytic HSV.
  • ICP27 is a multi-functional protein that regulates transcription of many virus genes. ICP27 functions in all stages of mRNA biogenesis from transcription, RNA processing and export through to translation. ICP27 has also been implicated in nuclear protein quality control, cell cycle control, activation of stress signaling pathways and prevention of apoptosis.
  • VG21224 the native promoter of ICP27 is replaced with a 279bp promoter for human C-X-C motif chemokine receptor 4 (CXCR4) to enhance expression in liver tumors, particularly hepatocellular carcinoma (HCC) .
  • CXCR4 human C-X-C motif chemokine receptor 4
  • ICP27 expression may be rendered even more tumor-specific via incorporation of microRNA binding sites within the 3’untranslated region (3’UTR) of ICP27, in which the binding sites include multiple copies of DNA sequences that are complementary to microRNAs which are present at relatively high concentrations in normal cells but are downregulated in cancer cells. Examples include DNA sequences that are complimentary to miR-223, miR-223-3p, miR125b and miR-125b-5p.
  • VG21224 includes 5 copies of miR-223 and 5 copies of miR-125b binding sites in the 3’ untranslated region (3’-UTR) of ICP27.
  • MicroRNA 223 (miR-223) expression in hepatocellular carcinoma (HCC) is downregulated by more than 40%when compared to adjacent normal tissues.
  • microarray assays suggest that miR-223 is not significantly downregulated in cirrhotic liver tissue, which can enable precise targeting of HCC even in patients with common comorbidities, such as liver cirrhosis (see, e.g, Braconi, C. et al. 2011. “The role of microRNAs in human liver cancers. ” Seminars in oncology. 38 (6) : 752-763 and Dong, Y. W. et al. 2014. “Sulfatide epigenetically regulates miR-223 and promotes the migration of human hepatocellular carcinoma cells.
  • Mir-223-3p is the major population in deep sequencing results. Consequently, in certain embodiments, miR-223-3p targeting sites are used for tumor-specific regulation in the VG21224 oncolytic HSV product.
  • miR-125b is significantly suppressed in both HCC tissue and liver cancer-derived cell lines, including HepG2, SMMC-7721, and MHC97H when compared to a non-cancerous control cell line, HL-7702 (see, e.g., Zhao, L. and W. Wang. 2015. “miR-125b suppresses the proliferation of hepatocellular carcinoma cells by targeting Sirtuin7. ” Int. J. Clin. Exp. Med. 8 (10) : 18469-18475.
  • miR-125b has two subtypes, termed miR-125b-1 and miR-125b-2. They share the same miR-125b-5p sequence but contain different 3p sequences, categorized as miR-125b-1-3p and miR-125b-2-3p. Deep sequencing detects a high proportion of 5p sequences in both subtypes. Consequently, in certain embodiments, miR-125b-5p targeting sites are used for tumor-specific regulation in the VG21224 oncolytic HSV product.
  • miR-223 is used in combination with miR-125b to regulate expression of ICP27 in a liver cancer specific manner as miR-223 has been observed to differentiate HCC from cirrhotic liver tissue.
  • miR-34a has been shown to act as a tumor suppressor in many cancers, including pancreatic cancer, prostate cancer, glioblastoma, colon cancer, and breast cancer and is correspondingly downregulated in most cancer-derived cell lines and cancer tissues (see, e.g., Zhang, Wang et al. 2018) .
  • HCC serum analysis has revealed simultaneous overexpression of miR-183 and under-expression of miR-34a, potentially supporting use of both miR-34a and miR-183 as biomarkers for differentiation of HCC from liver cirrhosis and chronic hepatitis with high diagnostic sensitivity (see, e.g., Bharali, D. et al.
  • miR-34a expression levels have been shown to be significantly reduced in clinical HCC specimens and in a broad range of liver cancer cell lines including Huh7, HCCLM3, Hep3B, Mahlavu, and SNU475 when compared to the normal human hepatocyte cell line, L02. Similar downregulation of miR-34a expression was observed following RT-qPCR analysis of tissue samples from 22 pairs of HCC tissues and their corresponding adjacent normal tissues (see, e.g., Zhang, Wang et al. 2018) .
  • multiple copies of miR-34a, miR-125a, miR-125b, miR-223, miR-145, and/or miR-199a are used in various combinations to accomplish tumor-specific regulation.
  • multiple copies of miR-34a, miR-125b, and/or miR-223 may be used based on the inventors’ observations that analysis of multiple HCC and non-HCC tumor cell lines indicates that miR-125b is consistently expressed at the lowest levels in cancer cell lines, followed by miR-34a and miR-223 (see, e.g., data presented in Figures 2 and 3) .
  • RT-qPCR detection of ICP27 transcripts demonstrated that adding miR-223 and miR-125b binding sites to the 3’-UTR of ICP27 results in nearly complete elimination of ICP27 expression in the presence of miR-223 and miR-125b.
  • VG21224 co-expresses IL12, IL15 and IL15 receptor alpha subunit to further stimulate an immunomodulatory response.
  • Expression of IL12 promotes polarization of antigen exposed T cells towards an inflammatory and anti-tumor T H 1 phenotype, while IL-15 activates NK cells to further increase tumor killing and activation of antigen presenting cells.
  • VG21224 encodes IL15R ⁇ to further enhance immune stimulation.
  • IL-12, IL-15, and IL-15R ⁇ can be driven by a single strong promoter (e.g., a viral promoter such as CMV, or, other strong promoters such as EF-1alpha or CAG) and the polypeptides are linked with 2A self-cleaving peptides (see SEQ ID NO. 7; see also Z. Liu et al., 2017, Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports, 7 (1) , 1–9) that generate the 3 individual proteins through a mechanism of ribosomal skipping during translation.
  • a single strong promoter e.g., a viral promoter such as CMV, or, other strong promoters such as EF-1alpha or CAG
  • 2A self-cleaving peptides see SEQ ID NO. 7; see also Z. Liu et al., 2017, Systematic comparison of 2A peptides for cloning multi-
  • HSV-1 membrane fusion is a crucial step during infection. It is dependent on four essential viral glycoproteins (gB, gD, gH, and gL) , which mediate entry into host cells by merging the viral envelope with a host cell membrane.
  • the core fusion protein is glycoprotein B (gB) , a 904-residue glycosylated transmembrane protein encoded by the UL27 gene of HSV-1.
  • gB may be modified by truncating C-terminal amino acids 877 to 904 from the full-length protein.
  • the promoter controlling expression of the US12 gene which encodes UL47
  • the promoter controlling expression of the US1 gene which is located approximately 13k base pairs from the US12 gene.
  • large regions of the native ICP47 promoter include repetitive sequences that may facilitate spurious homologous recombination events.
  • replacement of the native ICP47 promoter with a heterologous (i.e., exogenous) promoter is predicted to improve viral genomic stability.
  • both ICP27 and ICP47 are encoded by immediate early genes, expressed very early after infection, and share many regulatory elements.
  • the VG21224 construct replaces the native ICP47 with the ICP27 promoter.
  • the native ICP27 promoter includes the entire sequence of DNA located between the coding regions of UL53 (gK) and UL57 (ICP27) .
  • the ICP27 promoter includes the 538bp sequence set forth in SEQ ID NO: 1.
  • the ICP27 promoter sequence may be 90%, 80%, 70%, 60%, or 50%identical to the ICP27 promoter sequence of any known human herpes virus type 1 strain or human herpes virus type 2 strain, e.g., human herpes virus type 1 strain 17 (NCBI reference sequence NC_001806.2) .
  • hVG21224 is an oncolytic virus product with ICP27 under control of the CXCR4 promoter and miRNA-223-3p/miRNA-125b-5p , ICP34.5 under control of miRNA-124/143, and ICP47 under control of the ICP27 promoter.
  • hVG21224 also incorporates a virus-expressed cytokine cassette encoding IL-12, IL-15/IL-15RA under the control of the CMV promoter.
  • the expression control mechanisms in hVG21224 are designed to increase safety without sacrificing efficacy. Specific modifications to wild type -HSV-1 strain 17+ are set forth below in Table 1.
  • CEA carcinoembryonic antigen
  • CXCR4 C-X-C Motif Chemokine Receptor 4
  • gB glycoprotein B
  • HSV-1 herpes simplex virus-1
  • ICP0 infected cell polypeptide 0
  • ICP27 infected cell polypeptide 27
  • ICP47 infected cell polypeptide 47
  • ICP34.5 infected cell polypeptide 34.5
  • IL interleukin
  • miR microRNA
  • R ⁇ receptor alpha
  • TR L terminal repeat long
  • TR S terminal repeat short
  • UL unique long
  • US unique short
  • LAT latency-associated transcript.
  • VG21224 is a conditionally replicating oncolytic HSV-1 virus.
  • the genome of VG21224 deleted the terminal repeat long (TR L ) sequence of HSV-1 that contains one copy of ICP34.5, ICP0 and LAT and the terminal repeat short (TR s ) sequence of HSV-1 that contains one copy of ICP4.
  • TR L terminal repeat long
  • TR s terminal repeat short sequence of HSV-1 that contains one copy of ICP4.
  • the remaining copy of ICP34.5 has an insertion in its 3’UTR region containing multiple copies of binding domains for miRNA miR-124 and miR-143, which are highly expressed in neurons and normal tissues but not in tumor cells.
  • the product is further modified by replacing the native viral promoter for the essential viral gene UL54 which encodes ICP27 (infected cell polypeptide 27) with a tumor-specific promoter from the tumor selective C-X-C Motif Chemokine Receptor 4 (CXCR4) gene, coupled with an insertion in the 3’-UTR region of the UL54 (ICP27) gene containing multiple copies of binding domains for miRNA miR-223-3p and miR-125b-5p.
  • CXCR4 tumor selective C-X-C Motif Chemokine Receptor 4
  • the product is further modified by replacing the native viral promoter driving expression of the immediate-early US12 gene which encodes ICP47 (infected cell polypeptide 47) with the native viral promoter which drives expression of the immediate-early UL54 gene which encodes ICP27 (infected cell polypeptide 27) .
  • VG21224 also expresses a potent immunomodulatory payload, consisting of IL-12, IL-15, and IL-15R ⁇ , which is controlled by a cytomegalovirus (CMV promoter) .
  • CMV promoter cytomegalovirus
  • VG2062 has a glycoprotein B (gB) truncation to enhance fusogenic activity, to facilitate virus spread within the tumor microenvironment.
  • compositions are provided that may be used to prevent, treat, or ameliorate the effects of a disease, such as, for example, cancer. More particularly, therapeutic compositions are provided comprising at least one oncolytic virus as described herein.
  • compositions will further comprise a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is meant to encompass any carrier, diluent or excipient that does not interfere with the effectiveness of the biological activity of the oncolytic virus and that is not toxic to the subject to whom it is administered (see generally Remington: The Science and Practice of Pharmacy, Lippincott Williams &Wilkins; 21st ed. (May 1, 2005 and in The United States Pharmacopeia: The National Formulary (USP 40 –NF 35 and Supplements) .
  • suitable pharmaceutical carriers include phosphate buffered saline solutions, water, emulsions (such as oil /water emulsions) , various types of wetting agents, sterile solutions, and others.
  • Additional pharmaceutically acceptable carriers include gels, bioabsorbable matrix materials, implantation elements containing the oncolytic virus, or any other suitable vehicle, delivery or dispensing means or material (s) .
  • Such carriers can be formulated by conventional methods and can be administered to the subject at an effective dose.
  • Additional pharmaceutically acceptable excipients include, but are not limited to, water, saline, polyethylene glycol, hyaluronic acid and ethanol.
  • Pharmaceutically acceptable salts can also be included therein, e.g., mineral acid salts (such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like) and the salts of organic acids (such as acetates, propionates, malonates, benzoates, and the like) .
  • mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like
  • organic acids such as acetates, propionates, malonates, benzoates, and the like
  • Such pharmaceutically acceptable (pharmaceutical-grade) carriers, diluents and excipients that may be used to deliver the oHSV to a cancer cell will preferably not induce an immune response in the individual (subject) receiving the composition (and will preferably be administered without undue toxicity) .
  • compositions provided herein can be provided at a variety of concentrations.
  • dosages of oncolytic virus can be provided which ranges from about 10 6 to about 10 9 pfu.
  • the dosage can range from about 10 6 to about 10 8 pfu/ml, with up to 4 mls being injected into a patient with large lesions (e.g., >5 cm) and smaller amounts (e.g., up to 0.1mls) in patients with small lesions (e.g., ⁇ 0.5 cm) every 2 –3 weeks, of treatment.
  • lower dosages than standard may be utilized. Hence, within certain embodiments less than about 10 6 pfu/ml (with up to 4 mls being injected into a patient every 2 –3 weeks) can be administered to a patient.
  • compositions may be stored at a temperature conducive to stable shelf-life and includes room temperature (about 20°C) , 4°C, -20°C, -80°C, and in liquid N2. Because compositions intended for use in vivo generally do not have preservatives, storage will generally be at colder temperatures. Compositions may be stored dry (e.g., lyophilized) or in liquid form.
  • compositions described herein comprising the step of administering an effective dose or amount of oHSV as described herein to a subject.
  • an effective amount of the compositions described herein is an amount that induces remission, reduces tumor burden, and/or prevents tumor spread or growth of the cancer. Effective amounts may vary according to factors such as the subject’s disease state, age, gender, and weight, as well as the pharmaceutical formulation, the route of administration, and the like, but can nevertheless be routinely determined by one skilled in the art.
  • the therapeutic compositions are administered to a subject diagnosed with cancer or is suspected of having a cancer.
  • Subjects may be human or non-human animals.
  • compositions are used to treat cancer.
  • beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, diminishment of the reoccurrence of disease, and remission (whether partial or total) , whether detectable or undetectable.
  • treating and “treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • Representative forms of cancer include carcinomas, leukemia’s , lymphomas, myelomas and sarcomas.
  • Representative forms of leukemias include acute myeloid leukemia (AML) and representative forms of lymphoma include B cell lymphomas.
  • bile duct e.g., glioblastoma
  • breast cervix
  • colorectal CNS (e.g., acoustic neuroma, astrocytoma, craniopharyogioma, ependymoma, glioblastoma, hemangioblastoma, medulloblastoma, menangioma, neuroblastoma, oligodendroglioma, pinealoma and retinoblastoma) , endometrial lining, hematopoietic cells (e.g., leukemia’s and lymphomas) , kidney, bladder, larynx, lung, liver, oral cavity, ovaries, pancreas, prostate, skin (e.g., melanoma and squamous cell carcinoma) , GI (e.g., esophagus, stomach,
  • CNS e.g., acoustic
  • Cancers can comprise solid tumors (e.g., sarcomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma and osteogenic sarcoma) , be diffuse (e.g., leukemia’s ) , or some combination of these (e.g., a metastatic cancer having both solid tumors and disseminated or diffuse cancer cells) . Cancers can also be resistant to conventional treatment (e.g. conventional chemotherapy and/or radiation therapy) . Benign tumors and other conditions of unwanted cell proliferation may also be treated.
  • solid tumors e.g., sarcomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma and osteogenic sarcoma
  • diffuse e.g., leukemia’s
  • metastatic cancer having both solid tumors and disseminated or diffuse cancer cells
  • cancers to be treated include those with high levels of CXCR4 expression.
  • Representative examples include lung tumors, breast and prostate tumors, glioblastomas, tumors of the gastro-intestinal tract (and associated organs) e.g., esophagus, cholangiocarcinoma, anal, stomach, bladder, intestine, pancreatic, colon and liver, and all surface injectable tumors (e.g., melanomas) .
  • the recombinant herpes simplex viruses described herein may be given by a route that is e.g. oral, topical, parenteral, systemic, intravenous, intramuscular, intraocular, intrathecal, intratumoral, subcutaneous, or transdermal.
  • the oncolytic virus may be delivered by a cannula, by a catheter, or by direct injection.
  • the site of administration may be directly into the tumor, adjacent to the tumor, or at a site distant from the tumor. The route of administration will often depend on the type of cancer being targeted.
  • the optimal or appropriate dosage regimen of the oncolytic virus is readily determinable within the skill of the art, by the attending physician based on patient data, patient observations, and various clinical factors, including for example a subject’s size, body surface area, age, gender, and the particular oncolytic virus being administered, the time and route of administration, the type of cancer being treated, the general health of the patient, and other drug therapies to which the patient is being subjected.
  • treatment of a subject using the oncolytic virus described herein may be combined with additional types of therapy, such as administration of a different oncolytic virus, radiotherapy, administration of a checkpoint inhibitor, chemotherapy using, e.g., a chemotherapeutic agent such as etoposide, ifosfamide, adriamycin, vincristine, doxycycline, and others.
  • additional types of therapy such as administration of a different oncolytic virus, radiotherapy, administration of a checkpoint inhibitor, chemotherapy using, e.g., a chemotherapeutic agent such as etoposide, ifosfamide, adriamycin, vincristine, doxycycline, and others.
  • Recombinant herpes simplex viruses described herein may be formulated as medicaments and pharmaceutical compositions for clinical use and may be combined with a pharmaceutically acceptable carrier, diluent, excipient or adjuvant.
  • the formulation will depend, at least in part, on the route of administration. Suitable formulations may comprise the virus and inhibitor in a sterile medium.
  • the formulations can be fluid, gel, paste or solid forms. Formulations may be provided to a subject or medical professional.
  • a therapeutically effective amount is preferably administered. This is an amount that is sufficient to show benefit to the subject.
  • the actual amount administered, and the time-course of administration will depend at least in part on the nature of the cancer, the condition of the subject, site of delivery, and other factors.
  • the oncolytic virus can be administered by a variety of methods, e.g., intratumorally, intravenously, or, after surgical resection of a tumor.
  • BAC recombineering requires the presence of exogenous BAC DNA within the viral genome to facilitate mutagenesis in E. coli.
  • the BAC sequence is most commonly inserted either between viral genes such as the HSV genes US1/US2, UL3/UL4 and /or UL50/UL51, or, into the thymidine kinase (TK) gene, which can disrupt expression of native TK.
  • TK-deficient viral vectors may include an expression cassette for a copy of the native viral thymidine kinase (TK) gene under the control of a constitutive promoter inserted into a non-coding region of the viral genome.
  • TK function may be restored by removing the exogenous BAC sequences via homologous recombination to reconstitute the native TK gene sequence. Presence of a functional TK gene enhances virus safety by rendering the virus sensitive to common treatment with guanosine analogues, such as ganciclovir and acyclovir.
  • transcriptional regulation is accomplished by utilizing the tumor-specific CXCR4 promoter to control expression of the essential HSV-1 transactivator protein ICP27.
  • Translational regulation employs multiple tandem copies of microRNA binding sites inserted into the 3’-UTR of both ICP27 and the key HSV-1 neurovirulence factor ICP34.5 which promote the binding of microRNAs that are both abundant in normal cells and downregulated in tumor cells. Attachment of said microRNAs leads to reduced translation and increased degradation of the ICP34.5 mRNA transcript in normal cells, while allowing ICP34.5 production to proceed at near wild-type levels in tumor cells.
  • glycoprotein B was truncated to increase fusogenicity and a CMV promoter-driven cytokine expression cassette encoding IL-12, IL-15, and IL-15 alpha receptor was inserted between HSV-1 genes UL3 and UL4.
  • the native promoter driving expression of ICP47 was also replaced by the HSV-1 ICP27 promoter to reduce the risk of recombination events in the repetitive and non-unique ICP47 promoter region.
  • Wild-type HSV-1 contains two identical copies of R L (containing ICP0 and ICP34.5) and R S (containing ICP4) that facilitate recombination events during viral replication, yielding four roughly equimolar isomers of the HSV-1 genome where the orientation of the US and UL regions is inverted (see generally, Slobedman B, Zhang X, Simmons A. Herpes simplex virus genome isomerization: origins of adjacent long segments in concatemeric viral DNA. J Virol. 1999 Jan; 73 (1) : 810-3. doi: 10.1128/JVI. 73.1.810-813.1999. PMID: 9847394; PMCID: PMC103895) .
  • Genome linearization occurs at the R L -R S junction, and the separated R L and R S flanking the genome are typically called the TR L (terminal repeat long) and TR S (terminal repeat short) while the unseparated internal set of R L and R S are known as IR L (internal repeat long) and IR S (internal repeat short) .
  • TR L terminal repeat long
  • TR S terminal repeat short
  • IR L internal repeat long
  • IR S internal repeat short
  • VG21224 is a historical name for VG202 and may be used interchangeably.
  • the expression level of mature miRs was quantified in the following tumor cell lines: Hep3B (liver cancer-derived) , HepG2 (liver cancer derived) , SMMC7721 (liver cancer derived) , A549 (lung cancer-derived) , Caski (cervical cancer-derived) , FADU (hypopharyngeal carcinoma-derived) , and SH-sy5y (neuroblastoma-derived) by qPCR and compared to the corresponding miR levels in a non-cancerous cell line (Mrc5) .
  • miR-125b consistently exhibited the lowest levels of expression in all cancer cell lines; miR-34a and miR-223 also demonstrated low expression levels compared to the non-cancerous cell line.
  • VG1925 is a modified HSV-1 with deleted TR, with ICP34.5 controlled by miR-124 and miR-143 binding sites inserted in the 3’-UTR of ICP34.5, with the native ICP27 promoter-regulatory region replaced by a tumor-specific CEA promoter, and with an expression cassette encoding IL12, IL15, and IL15RA inserted between UL3 and UL4 (see upper panel of FIG. 4)
  • V20G07 replicates over 24-fold more efficiently in Hep3B cells than in L-02 cells. This increased replication rate is significantly higher than what was observed for VG1925.
  • the binding sites for miR-223 and miR-125b may enhance the rate of viral replication specifically in liver tumor cells.
  • Viruses V20G06 and V20G09 were constructed based on the VG1925 backbone by inserting miR-targeting sequence concatemers for miR-34a and miR-125a and for miR-34a and miR-223 into the 3’-UTR of ICP27 to create V20G06 and V20G09, respectively (see upper panel of FIG. 5) .
  • V20G06 and V20G07 demonstrated the greatest cancer selectivity at the 48-hour time point, especially in the liver cancer (HCC) cell line. At the 72-hour time point, only V20G07 exhibited enhanced replication in Hep3B cells.
  • V20G07 mutant with ICP27 regulated by miR-223 and miR-125b, demonstrated the greatest selective replication in Hep3B cells, compared to all other viruses tested.
  • VG21224-TK is an alternative name for VG21224
  • VG2062-tk is an alternative name for VG2062, and is similar to VG21224 except that it has no microRNA binding sites inserted into the 3’UTR of ICP27.
  • mRNA was isolated 6 hours post infection and RT-qPCR was performed to measure levels of ICP27 and ICP34.5 transcripts.
  • miR-223 and miR-125b were even more effective at downregulating ICP34.5 transcripts than miR-124 and miR-143 in VG21224-TK, despite the lack of miR-223 and miR-125b binding sites in the 3’-UTR of ICP34.5, likely due to effective regulation of ICP27 via miR-223 and miR-125b in VG21224-TK.
  • ICP27 is a key transactivator of other viral genes including ICP34.5, explaining why downregulation of ICP27 expression would also result in reduced expression of other viral genes, ultimately leading to reduced replication efficiency in non-tumor cells that express high levels of miR-223 and miR-125b.
  • VG2062-TK and VG21224-TK are synonyms for VG2062 and VG21224, respectively, and may be used interchangeably.
  • microRNAs are capable of effectively controlling expression of viral genes in this experimental system.
  • a recombinant herpes simplex virus comprising a modified oncolytic herpes virus genome, wherein the modified herpes virus genome comprises at least one miRNA target sequence operably linked to a ICP27 gene.
  • the recombinant herpes simplex virus of embodiment 1, comprising from two to ten miRNA target sequences operably linked to the ICP27 gene.
  • identical, or, varying lengths of linker DNA can be inserted between different miRNA binding sites. Within certain embodiments the linkers range from 1 to 50 base pairs. Within other embodiments the linker is less than 10 base pairs.
  • modified herpes virus genome comprises additional mutations or modifications in viral genes ICP4 and/or ICP27.
  • the recombinant herpes simplex virus according to any one of embodiments 1-15 further comprising at least one nucleic acid encoding a non-viral protein selected from the group consisting of immunostimulatory factors, antibodies, and checkpoint blocking peptides, wherein the at least one nucleic acid is operably linked to a generic, or, a tumor-specific promoter.
  • generic promoters include constitutive promoters such as SV40, CMV, UBC, EF1alpha, PGK and CAGG.
  • examples include a wide variety of transgenes (e.g., a fusogenic glycoprotein from Gibbon Ape Leukemia Virus “GALV” ) , and/or mutations which enhance HSV fusion, including for example, a truncations or mutations in glycoprotein B, glycoprotein K, and or UL20.
  • the nucleic acid sequence encodes a fusogenic form of glycopotein B (e.g., glycoprotein B which is truncated after amino acid 876) .
  • the recombinant herpes simplex virus comprises an oncolytic HSV-1 wherein: a) there is a deletion of an repeat long (RL) region containing the genes encoding ICP0 and ICP34.5 and a deletion of an repeat short (RS) region containing the gene encoding ICP4; b) replacement of a native ICP27 promoter with a CXCR4 promoter; c) insertion of binding sites for miR-143 and miR-124 in the ICP34.5 3’UTR; d) deletion of a portion of the 3’ end of glycoprotein B coding region (e.g., a 84 bp deletion) ; e) insertion of an expression cassette which can express L-12, IL-15, and IL-15R ⁇ under the control of a CMV promoter; f) insertion of binding
  • a method for inhibiting or lysing tumor cells comprising providing a therapeutically effective amount of recombinant herpes simplex virus according to any one of embodiments 1 to 22.
  • a therapeutic composition comprising the recombinant herpes simplex virus according to any one of embodiments 1 to 22 and a pharmaceutically acceptable carrier.
  • a method for treating cancer in a subject suffering therefrom comprising the step of administering a therapeutically effective amount of the composition of embodiment 24.
  • the cancer expresses a high level of a biomarker, the promoter of which is used to drive ICP4 and/or ICP27 genes according to one of the preceding embodiments.
  • the cancer expresses a high level of a biomarker such as, for example, CEA or, CXCR4.
  • the cancer is selected from the group consisting of cancers of the liver, cervix, esophagus, lung, colorectum, stomach, cholangiocarcinoma and pancreas.
  • the cancer is selected from the group consisting of breast and prostate tumors, and glioblastomas.
  • the cancer is a leukemia or a lymphoma.
  • the cancer is an acute myeloid leukemia (AML) or a B cell lymphoma.
  • AML acute myeloid leukemia
  • B cell lymphoma a B cell lymphoma
  • the cancer is a surface injectable tumor.
  • the cancer expresses a high level of CXCR4.
  • any concentration range, percentage range, ratio range, or integer range provided herein is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer) , unless otherwise indicated.
  • any number range recited herein relating to any physical feature, such as polymer subunits, size or thickness are to be understood to include any integer within the recited range, unless otherwise indicated.
  • the term "about” means ⁇ 20%of the indicated range, value, or structure, unless otherwise indicated.

Abstract

An HSV vector with ICP27 under control of CXCR4 promoter and miRNA-223/125b and ICP34.5 under control of miRNA-124/143, and deletion of one RL and one RS region of the viral genome. Within optional embodiments the mutation is a deletion containing the second copy of the ICP34.5 gene. The HSV vector also incorporates a virus-expressed cytokine cassette encoding IL-12, IL-15/1 L-15RA under the control of CMV promoter.

Description

TRANSCRIPTIONAL AND TRANSLATIONAL DUAL REGULATED ONCOLYTIC HERPES SIMPLEX VIRUS VECTORS FIELD OF THE INVENTION
The present invention relates generally to oncolytic herpes simplex virus (oHSV) vectors that express molecules that stimulate the immune system.
REFERENCE TO SEQUENCE LISTING, TABLE OR COMPUTER PROGRAM
The official copy of the Sequence Listing is submitted concurrently with the specification as an ASCII formatted text file via EFS-Web, with a file name of “VIRO. 415 sequences_ST25” , a creation date of January 27, 2022, and a size of 10.6 KB. The Sequence Listing filed via EFS-Web is part of the specification and is incorporated in its entirety by reference herein.
BACKGROUND
Malignant tumors are a serious threat to human life and health. Although a variety of standard treatment options exist, such as surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy (including immune checkpoint inhibitors) , most patients with advanced tumors still have poor prognosis. At present, tumor immunotherapy has made breakthrough progress in the treatment of tumors. Immune-targeted drug therapy (e.g., immune checkpoint suppression) and immune cell therapy (e.g., chimeric antigen receptor T-cell (CAR-T) ) have triggered changes in the field of anti-tumor therapy. However, among the currently approved indications for checkpoint inhibitors, the single-drug effective rate is only about 30% (Jiang et al., 2020, Progress and Challenges in Precise Treatment of Tumors With PD-1/PD-L1 Blockade. Frontiers in Immunology, 11 (March) ) ; while CAR-T therapy mainly only targets Cluster of Differentiation 19 (CD19) and B cell maturation antigen (BCMA) that are highly expressed by B cell tumors. The clinical effectiveness in solid tumors has yet to be confirmed (Long et al., 2018, CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Frontiers in Immunology, 9 (December) , 2740) . There are still many malignant tumors where there is clear long-term evidence as to the benefits of immunotherapy.
There is no clinically effective treatment for malignant tumors relapsed after and refractory to standard treatment, and patients with this condition are likely to die sooner due to the extensive tumor metastasis or invasion of important organs. Therefore, these  patients have an extremely high unmet need for effective treatment, leading to an urgent need to develop new treatment methods to control the progression of the disease and prolong the survival of patients.
The present invention overcomes shortcomings of current cancer therapies, including immunotherapies, and further provides additional unexpected benefits.
All of the subject matter discussed in the Background section is not necessarily prior art and should not be assumed to be prior art merely as a result of its discussion in the Background section. Along these lines, any recognition of problems in the prior art discussed in the Background section or associated with such subject matter should not be treated as prior art unless expressly stated to be prior art. Instead, the discussion of any subject matter in the Background section should be treated as part of the inventor’s approach to the particular problem, which in and of itself may also be inventive.
SUMMARY
Briefly stated, the invention relates to compositions and methods for treating cancer with recombinant herpes simplex virus vectors. Within one embodiment of the invention recombinant herpes simplex viruses are provided comprising a modified oncolytic herpes virus genome, wherein the modified herpes virus genome comprises at least one miRNA target sequence operably linked to a first copy of an ICP34.5 gene, and a second copy of the ICP34.5 gene comprises an inactivating mutation. Within various embodiments, the recombinant virus can comprise from one to ten miRNA target sequences operably linked to the first copy of the ICP34.5 gene.
Within further embodiments, the miRNA target sequences can bind at least two different miRNAs (e.g., one or more of miR-124, miR-124*, and miR-143) . Within certain embodiments the miR target sequences include SEQ ID NO. 2 (a miR-124 binding sequence) ; SEQ ID NO. 3 (a miR-143 binding sequence) ; SEQ ID No. 9 (a miR-223 binding sequence) ; and SEQ ID NO. 10 (a miR-125b binding sequence) .
Within yet other embodiments, the recombinant herpes virus can further comprise at least one nucleic acid encoding a non-viral protein. Examples of non-viral proteins include immunostimulatory factors, antibodies, and checkpoint blocking peptides, wherein the at least one nucleic acid is operably linked to a strong promoter, e.g., a viral promoter such as CMV or other promoters such as EF-1alpha or CAG.. Within particularly preferred  embodiments, the non-viral protein is one, or all of IL12, IL15, IL15 receptor alpha subunit. Representative examples of these sequences include SEQ ID NO. 4 (IL12) ; SEQ ID NO. 5 (IL15) ; and SEQ ID NO. 6 (IL15 receptor alpha subunit) .
Within yet other embodiments the recombinant herpes simplex virus further comprises a nucleic acid sequence encoding a glycoprotein with enhanced fusogenicity (as compared to a similar wild-type virus) . Examples include a wide variety of transgenes (e.g., a fusogenic glycoprotein from Gibbon Ape Leukemia Virus “GALV” ) , and/or mutations which enhance HSV fusion, including for example, truncations or mutations in glycoprotein B, glycoprotein K, and or UL20.
In other embodiments, the recombinant herpes virus comprises at least one miRNA target sequence operably linked to a first copy of an ICP27 gene. Within various embodiments, the recombinant virus can comprise from one to ten copies of the miRNA target sequences operably linked to the first copy of the ICP27 gene.
Within further embodiments, the miRNA target sequences can bind at least two different miRNAs (e.g., one or more of miR-223, miR-125b, and miR-34a) .
In yet other embodiments, the recombinant herpes virus can further comprise an ICP27 promoter sequence operably linked to a first copy of an ICP47 gene, wherein the natural promoter of the ICP47 gene comprises an inactivating deletion.
Within yet other embodiments, the recombinant herpes virus can further comprise an inactivating mutation in at least one copy of an ICP4 gene.
In yet other embodiments, the recombinant herpes virus can further comprise a tumor-specific promoter operably linked to a first copy of an ICP27 gene, wherein the natural ICP27 promoter comprises an inactivating mutation.
Also provided are therapeutic compositions comprising the recombinant herpes viruses described herein, as well as methods of lysing tumor cells, and, methods of treating cancers in a subject comprising the step of administering one of the recombinant herpes viruses described herein to a subject.
This Brief Summary has been provided to introduce certain concepts in a simplified form that are further described in detail below in the Detailed Description. Except where otherwise expressly stated, this Brief Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to limit the scope of the claimed subject matter.
The details of one or more embodiments are set forth in the description below. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Thus, any of the various embodiments described herein can be combined to provide further embodiments. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications as identified herein to provide yet further embodiments. Other features, objects and advantages will be apparent from the description, the drawings, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Exemplary features of the present disclosure, its nature and various advantages will be apparent from the accompanying drawings and the following detailed description of various embodiments. Non-limiting and non-exhaustive embodiments are described with reference to the accompanying drawings, wherein like labels or reference numbers refer to like parts throughout the various views unless otherwise specified. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements are selected, enlarged, and positioned to improve drawing legibility. The particular shapes of the elements as drawn have been selected for ease of recognition in the drawings. One or more embodiments are described hereinafter with reference to the accompanying drawings in which:
FIG. 1 diagrammatically depicts a Transcription and Translation Dual Regulated ( “TTDR” ) system as exemplified by the overall structural organization of the double-stranded deoxyribonucleic acid (DNA) elements of VG202 (also referred to as VG21224) .
FIG. 2 is a graph showing the ratios of miRNA levels in liver cancer cell lines compared to a non-tumor liver cell line.
FIG. 3 is a graph showing the ratios of miRNA levels in various cancer cell lines compared to a non-tumor cell line.
FIG. 4 is a cartoon depicting the general features of two recombinant oncolytic HSV constructs (top panel) and a graph showing viral replication titer in HCC cells compared to viral replication titer of the same viruses in a non-tumor liver cell line (bottom panel) .
FIG. 5 is a cartoon depicting the general features of four recombinant oncolytic HSV constructs (top panel) and graphs showing viral replication titers in cancer cells compared to  viral replication titers of the same viruses in a non-tumor cell line (bottom panel) .
FIG. 6 is a graph (top panel) and table (bottom panel) demonstrating microRNA-mediated control of viral gene expression.
DETAILED DESCRIPTION OF THE INVENTION
The term “oncolytic herpes virus” or “oHSV” refers generally to a herpes virus capable of replicating in and killing tumor cells. Within certain embodiments the virus can be engineered in order to more selectively target tumor cells. Representative examples of oncolytic herpes viruses are described in US Patent Nos. 7,223,593, 7,537,924, 7,063,835, 7,063,851, 7,118,755, 8,216,564, 8,277,818, and 8,680,068, all of which are incorporated by reference in their entirety.
“Treat” or “treating” or “treatment, ” as used herein, means an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, diminishment of the reoccurrence of disease, and remission (whether partial or total) , whether detectable or undetectable. The terms “treating” and “treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
Representative forms of cancer include carcinomas, leukemia’s , lymphomas, myelomas and sarcomas. Further examples include, but are not limited to cancer of the bile duct cancer, brain (e.g., glioblastoma) , breast, cervix, colorectal, CNS (e.g., acoustic neuroma, astrocytoma, craniopharyogioma, ependymoma, glioblastoma, hemangioblastoma, medulloblastoma, menangioma, neuroblastoma, oligodendroglioma, pinealoma and retinoblastoma) , endometrial lining, hematopoietic cells (e.g., leukemia’s and lymphomas) , kidney, larynx, lung, liver, oral cavity, ovaries, pancreas, prostate, skin (e.g., melanoma and squamous cell carcinoma) and thyroid. Cancers can comprise solid tumors (e.g., sarcomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma and osteogenic sarcoma) , be diffuse (e.g., leukemia’s) , or some combination of these (e.g., a metastatic cancer having both solid tumors and disseminated or diffuse cancer cells) . Cancers can also be resistant to conventional treatment (e.g. conventional chemotherapy and/or radiation therapy) .
Particularly preferred cancers to be treated include lung tumors, breast and prostate tumors, glioblastomas, tumors of the gastro-intestinal tract (and associated organs) e.g., esophagus, cholangiocarcinoma, anal, stomach, bladder, kidney, intestine, pancreatic, colon and liver, and all surface injectable tumors (e.g., melanomas) . Benign tumors and other conditions of unwanted cell proliferation may also be treated. More preferably, the cancer to be treated expresses a detectable amount of C-X-C Motif Chemokine Receptor 4 (CXCR4) .
In order to further an understanding of the various embodiments herein, the following sections are provided which describe various embodiments: A. Oncolytic Herpes Viruses; B. Specific Herpes Virus Constructs –VG21224; C. Post-transcriptional Regulation; D. Expression of ICP27 in VG21224 is Transcriptionally and Post-transcriptionally Controlled; E. Payload Expression in VG21224 is Enhanced; F. Truncated Glycoprotein B; G. Modified ICP47 Promoter; H. Therapeutic Compositions; and I. Administration.
A.  ONCOLYTIC HERPES VIRUSES
Herpes Simplex Virus (HSV) 1 and 2 are members of the Herpesviridae family, which infects humans. The HSV genome contains two unique regions, which are known as the unique long (U L) and unique short (U S) region. Each of these regions is flanked by a pair of identical inverted repeat sequences, with the repeats flanking the U L region designated as R L and the repeats flanking the U S region designated as R S. There are about 75 known open reading frames. The viral genome has been engineered to develop oncolytic viruses for use in e.g. cancer therapy. Tumor-selective replication of HSV may be conferred by mutation of the HSV ICP34.5 (also called γ34.5) gene. HSV contains two copies of ICP34.5. Mutants inactivating one or both copies of the ICP34.5 gene are known to lack neurovirulence, i.e. be avirulent/non-neurovirulent and be oncolytic. Tumor selective replication of HSV may also be conferred by controlling expression of key viral genes such as ICP27 and/or ICP4.
Suitable oncolytic HSV may be derived from either HSV-1 or HSV-2, including any laboratory strain or clinical isolate. In some embodiments, the oHSV may be derived from one of laboratory strains HSV-1 strain 17, HSV-1 strain F, or HSV-2 strain HG52. In other embodiments, it may be derived from non-laboratory strain JS-1. Other suitable HSV-1 viruses include HrrR3 (Goldstein and Weller, J. Virol. 62, 196-205, 1988) , G2O7 (Mineta et al. Nature Medicine. 1 (9) : 938-943, 1995; Kooby et al. The FASEB Journal, 13 (11) : 1325-1334, 1999) ; G47Delta (Todo et al. Proceedings of the National Academy of Sciences. 2001; 98 (11) : 6396-6401) ; HSV 1716 (Mace et al. Head &Neck, 2008; 30 (8) : 1045-1051; Harrow et al. Gene Therapy.  2004; 11 (22) : 1648-1658) ; HF10 (Nakao et al. Cancer Gene Therapy. 2011; 18 (3) : 167-175) ; NV1020 (Fong et al. Molecular Therapy, 2009; 17 (2) : 389-394) ; T-VEC (Andtbacka et al. Journal of Clinical Oncology, 2015: 33 (25) : 2780-8) ; J100 (Gaston et al. PloS one, 2013; 8 (11) : e81768) ; M002 (Parker et al. Proceedings of the National Academy of Sciences, 2000; 97 (5) : 2208-2213) ; NV1042 (Passer et al. Cancer Gene Therapy. 2013; 20 (1) : 17-24) ; G2O7-IL2 (Carew et al. Molecular Therapy, 2001; 4 (3) : 250-256) ; rQNestin34.5 (Kambara et al. Cancer Research, 2005; 65 (7) : 2832-2839) ; G47Δ-mIL-18 (Fukuhara et al. Cancer Research, 2005; 65 (23) : 10663-10668) ; and those vectors which are disclosed in PCT applications PCT/US2017/030308 entitled “HSV Vectors with Enhanced Replication in Cancer Cells” , and PCT/US2017/018539 entitled “Compositions and Methods of Using Stat1/3 Inhibitors with Oncolytic Herpes Virus” , all of the above of which are incorporated by reference in their entirety.
The oHSV vector has at least one ICP27 gene that is modified with miRNA target sequences in its 3’UTR as disclosed herein; there are no unmodified ICP27 genes in the vector. In some embodiments, the oHSV has only one ICP27 gene and it is modified. In some embodiments, the modified ICP27 gene (s) are constructed in vitro and inserted into the oHSV vector as replacements for the viral gene (s) . As discussed herein, the modified ICP27 gene may comprise additional changes, such as having an exogenous promoter.
The oHSV vector has at least one γ34.5 gene that is modified with miRNA target sequences in its 3’UTR as disclosed herein; there are no unmodified γ34.5 genes in the vector. In some embodiments, the oHSV has two modified γ34.5 genes; in other embodiments, the oHSV has only one γ34.5 gene, and it is modified. In some embodiments, the modified γ34.5 gene (s) are constructed in vitro and inserted into the oHSV vector as replacements for the viral gene (s) . When the modified γ34.5 gene is a replacement of only one γ34.5 gene, the other γ34.5 is deleted. Either native γ34.5 gene can be deleted. In one embodiment, the terminal repeat region, which comprises γ34.5 gene and ICP4 gene, is deleted. As discussed herein, the modified γ34.5 gene may comprise additional changes, such as having an exogenous promoter.
The oHSV may have additional mutations, which may include disabling mutations e.g., deletions, substitutions, insertions) , which may affect the virulence of the virus or its ability to replicate. For example, mutations may be made in any one or more of ICP6, ICPO, ICP4, ICP27, ICP47, ICP24, ICP56. Preferably, a mutation in one of these genes (optionally in both copies of the gene where appropriate) leads to an inability (or reduction of the ability) of  the HSV to express the corresponding functional polypeptide. In some embodiments, the promoter of a viral gene may be substituted with a promoter that is selectively active in target cells or inducible upon delivery of an inducer or inducible upon a cellular event or particular environment.
The oHSV may have additional mutations, which may include disabling mutations, e.g., deletions, substitutions, insertions) , which may reduce the risk of recombination events in a repetitive and non-unique region of the viral genome. For example, mutations may be made in any one or more of R S region, R L region, US1 promoter, US12 promoter. In some embodiments, the promoter of a viral gene may be substituted with a promoter of a different viral gene that reduces the risk of recombination event in the repetitive and non-unique region of the native, or natural, promoter.
In certain embodiments, the expression of ICP4 or ICP27 is controlled by an exogenous (i.e., heterologous) promoter, e.g., a tumor-specific promoter. Exemplary tumor-specific promoters include survivin, CEA, CXCR4, PSA, ARR2PB, or telomerase; other suitable tumor-specific promoters may be specific to a single tumor type and are known in the art. Other elements may be present. In some cases, an enhancer such as NFkB/oct4/sox2 enhancer is present. As well, the 5’UTR may be exogenous, such as a 5’UTR from growth factor genes such as FGF. See Figure 1 for an exemplary construct. See also SEQ ID NO. 8 for a representative sequence of a CXCR4 promoter.
The oHSV may also have genes and nucleotide sequences that are non-HSV in origin. For example, a sequence that encodes a prodrug, a sequence that encodes a cytokine or other immune stimulating factor, a tumor-specific promoter, an inducible promoter, an enhancer, a sequence homologous to a host cell, among others may be in the oHSV genome. Exemplary sequences encode IL12, IL15, IL15 receptor alpha subunit, OX40L, PD-L1 blocker or a PD-1 blocker. For sequences that encode a product, they are operatively linked to a promoter sequence and other regulatory sequences (e.g., enhancer, polyadenylation signal sequence) necessary or desirable for expression.
The regulatory region of viral genes may be modified to comprise response elements that affect expression. Exemplary response elements include response elements for NF-κB, Oct-3/4-SOX2, enhancers, silencers, cAMP response elements, CAAT enhancer binding sequences, and insulators. Other response elements may also be included. A viral promoter may be replaced with a different promoter. The choice of the promoter will depend upon a  number of factors, such as the proposed use of the HSV vector, treatment of the patient, disease state or condition, and ease of applying an inducer (for an inducible promoter) . For treatment of cancer, generally when a promoter is replaced it will be with a cell-specific or tissue-specific or tumor-specific promoter. Tumor-specific, cell-specific and tissue-specific promoters are known in the art. Other gene elements may be modified as well. For example, the 5’UTR of the viral gene may be replaced with an exogenous UTR.
B.  SPECIFIC HERPES VIRUS CONSTRUCTS –VG21224
One preferred construct of the invention is provided in FIG. 1. Briefly, FIG. 1 diagrammatically depicts the overall structural organization of the double-stranded deoxyribonucleic acid (DNA) elements of VG21224. “CXCR4” means C-X-C Motif Chemokine Receptor 4; “CMV” means cytomegalovirus; “gB” means glycoprotein B; “ICP” means infected cell polypeptide; “IL” means interleukin; “R L” means repeat long; “RNA” means ribonucleic acid; “miR” and “miRNA” means microRNA; “R S” means repeat short; “UL” means unique long; “US” means unique short. The names “VG21224” and “VG202” refer to the same construct and may be used interchangeably.
VG21224 is a recombinant HSV-1 platform that utilizes both transcriptional and translational dual-regulation ( “TTDR” –see FIG. 1) of key viral genes to limit virus replication to tumor cells and enhance tumor-specific virulence without compromising safety. In addition, VG21224 expresses a payload cassette composed of IL12, IL15 and IL15 receptor alpha subunit. The payload expression is under control of the CMV promoter for expression in cells that do not suppress CMV promoter function. Finally, a viral glycoprotein B (gB) in VG21224 was truncated to facilitate virus spread in the tumor by enhanced fusogenicity.
C.  POST-TRANSCRIPTIONAL REGULATION
In VG21224, ICP34.5 expression is post-transcriptionally regulated. Briefly, in wild-type HSV-1, there are 2 copies of the ICP34.5 gene. In VG21224, one copy of ICP34.5 has been deleted. For the remaining ICP34.5 gene, VG21224 inserts multiple copies of binding domains for miR124 and miR143 in the 3’UTR region to regulate its expression post-transcriptionally.
ICP34.5 is encoded by the HSV late gene g-34.5. It is well known for its function of suppressing anti-viral immunity of host cells, particularly neuronal cells, to cause neurotoxicity. To abolish the functions of ICP34.5 in neurons and other normal cells while retaining its activity in tumor cells for robust replication, instead of deleting the gene or  using a specific promoter to control the expression of ICP34.5 to target specific tumors, VG21224 uses microRNAs as a post-transcriptional control to achieve differential expression of ICP34.5 in tumor cells. Briefly, miRNAs are ~22 nucleotides, noncoding small RNAs coded by miRNA genes, which are transcribed by RNA polymerase II to produce primary miRNA (pri-miRNA) . Mature single-stranded (ss) miRNA forms the miRNA-associated RNA-induced silencing complex (miRISC) . miRNA in miRISC may influence gene expression by binding to the 3′-untranslated region (3′-UTR) in the target mRNA. This region consists of sequences recognized by miRNA. If the complementarity of the miRNA: mRNA complex is perfect, the mRNA is degraded by Ago2, a protein belonging to the Argonaute family. However, if the complementarity is not perfect, the translation of the target mRNA while not fully degraded, is still suppressed.
miRNAs are expressed differentially in a tissue specific fashion. One of the examples is miR-124. While the precursors of miR-124 from different species are different, the sequences of mature miR-124 in human, mice, rats are completely identical. MiR-124 is the most abundantly expressed miRNA in neuronal cells and is highly expressed in the immune cells and organs (Qin et al., 2016, miRNA-124 in immune system and immune disorders. Frontiers in Immunology, 7 (OCT) , 1–8) . Another example of differential expression of miRNA is miR143 (Lagos-Quintana et al., 2002, Identification of tissue-specific MicroRNAs from mouse. Current Biology, 12 (9) , 735–739) . MiR-143 is constitutively expressed in normal tissues but significantly downregulated in cancer cells (Michael et al., 2003, Reduced Accumulation of Specific MicroRNAs in Colorectal Neoplasia. Molecular Cancer Research, 1 (12) , 882–891) .
The 3’UTR region of ICP34.5 gene in VG21224 contains multiple copies of binding domains (also referred to as “miRNA target sequences” , “miRNA binding sequences” or “miRNA binding sites” ) that are completely complementary to miR124 and miR143. Binding of miR124 and miR143 to the 3’UTR of ICP34.5 mRNA causes degradation of the mRNA; therefore the gene is post-transcriptionally downregulated in normal cells but not tumor cells. This design allows differential expression of ICP34.5 in tumor cells. Within various embodiments, identical, or, varying lengths of linker DNA can be inserted between different miRNA binding sites. Within other embodiments the linkers range from 1 to 50 base pairs. Within other embodiments the linker is less than 10 base pairs.
D.  EXPRESSION OF ICP27 IN VG21224 IS TRANSCRIPTIONALLY AND POST- TRANSCRIPTIONALLY CONTROLLED
HSV-1 viral replication depends on a cascade of expression of viral genes, with immediate early gene products (particularly ICP4 and ICP27) controlling subsequent expression of viral early genes and late genes that govern the lytic replication cycle of the virus. Deletion of ICP4 or ICP27 results in complete abrogation of viral replication and a significant reduction in viral gene expression, which makes ICP4 and ICP27 excellent targets for tumor specific regulation in oncolytic HSV.
While ICP4 is a major transcription factor regulating viral gene expression, ICP27 is a multi-functional protein that regulates transcription of many virus genes. ICP27 functions in all stages of mRNA biogenesis from transcription, RNA processing and export through to translation. ICP27 has also been implicated in nuclear protein quality control, cell cycle control, activation of stress signaling pathways and prevention of apoptosis.
In VG21224, the native promoter of ICP27 is replaced with a 279bp promoter for human C-X-C motif chemokine receptor 4 (CXCR4) to enhance expression in liver tumors, particularly hepatocellular carcinoma (HCC) .
Since CXCR4 is ubiquitously expressed in most liver cells, additional regulation is advantageous to decrease viral replication in normal liver cells and increase the targeting of VG21224 towards liver cancer cells. ICP27 expression may be rendered even more tumor-specific via incorporation of microRNA binding sites within the 3’untranslated region (3’UTR) of ICP27, in which the binding sites include multiple copies of DNA sequences that are complementary to microRNAs which are present at relatively high concentrations in normal cells but are downregulated in cancer cells. Examples include DNA sequences that are complimentary to miR-223, miR-223-3p, miR125b and miR-125b-5p. In one embodiment, VG21224 includes 5 copies of miR-223 and 5 copies of miR-125b binding sites in the 3’ untranslated region (3’-UTR) of ICP27.
MicroRNA 223 (miR-223) expression in hepatocellular carcinoma (HCC) is downregulated by more than 40%when compared to adjacent normal tissues. Importantly, microarray assays suggest that miR-223 is not significantly downregulated in cirrhotic liver tissue, which can enable precise targeting of HCC even in patients with common comorbidities, such as liver cirrhosis (see, e.g, Braconi, C. et al. 2011. “The role of microRNAs in human liver cancers. ” Seminars in oncology. 38 (6) : 752-763 and Dong, Y. W. et al. 2014. “Sulfatide epigenetically regulates miR-223 and promotes the migration of human hepatocellular carcinoma cells. ” J. of Hepatology. 60 (4) : 792-801) . Mir-223-3p is the major population in deep  sequencing results. Consequently, in certain embodiments, miR-223-3p targeting sites are used for tumor-specific regulation in the VG21224 oncolytic HSV product.
Results of RT-qPCR analysis have shown that miR-125b is significantly suppressed in both HCC tissue and liver cancer-derived cell lines, including HepG2, SMMC-7721, and MHC97H when compared to a non-cancerous control cell line, HL-7702 (see, e.g., Zhao, L. and W. Wang. 2015. “miR-125b suppresses the proliferation of hepatocellular carcinoma cells by targeting Sirtuin7. ” Int. J. Clin. Exp. Med. 8 (10) : 18469-18475. ) Downregulation of miR-199a, miR-195, miR-200a, and miR-125 has also been detected in HCC (compared to NC) using microarray, with miR-199a in particular being found at significantly (>80%) lower levels in HCC than in liver cirrhosis samples, thus suggesting greater potential selectivity for HCC (see, e.g., Murakami, Y. et al. 2006. "Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. " Oncogene 25 (17) : 2537-2545. ) 
miR-125b has two subtypes, termed miR-125b-1 and miR-125b-2. They share the same miR-125b-5p sequence but contain different 3p sequences, categorized as miR-125b-1-3p and miR-125b-2-3p. Deep sequencing detects a high proportion of 5p sequences in both subtypes. Consequently, in certain embodiments, miR-125b-5p targeting sites are used for tumor-specific regulation in the VG21224 oncolytic HSV product.
In other embodiments, miR-223 is used in combination with miR-125b to regulate expression of ICP27 in a liver cancer specific manner as miR-223 has been observed to differentiate HCC from cirrhotic liver tissue.
miR-34a has been shown to act as a tumor suppressor in many cancers, including pancreatic cancer, prostate cancer, glioblastoma, colon cancer, and breast cancer and is correspondingly downregulated in most cancer-derived cell lines and cancer tissues (see, e.g., Zhang, Wang et al. 2018) . HCC serum analysis has revealed simultaneous overexpression of miR-183 and under-expression of miR-34a, potentially supporting use of both miR-34a and miR-183 as biomarkers for differentiation of HCC from liver cirrhosis and chronic hepatitis with high diagnostic sensitivity (see, e.g., Bharali, D. et al. 2018 "Expression analysis of serum microRNA-34a and microRNA-183 in hepatocellular carcinoma. " Asian Pacific Journal of Cancer Prevention. 19 (9) : 2561-2568) . Circulating miR34a levels have been shown to be higher in cirrhotic patients than in healthy patients or in patients with HCC (see, e.g., Amaral, A.E.D., et al. 2018. "MicroRNA profiles in serum samples from patients with stable cirrhosis and miRNA-21 as a predictor of transplant-free survival. " Pharmacol. Res. 134: 179-192. ) . miR-34a  expression levels have been shown to be significantly reduced in clinical HCC specimens and in a broad range of liver cancer cell lines including Huh7, HCCLM3, Hep3B, Mahlavu, and SNU475 when compared to the normal human hepatocyte cell line, L02. Similar downregulation of miR-34a expression was observed following RT-qPCR analysis of tissue samples from 22 pairs of HCC tissues and their corresponding adjacent normal tissues (see, e.g., Zhang, Wang et al. 2018) .
In other embodiments, multiple copies of miR-34a, miR-125a, miR-125b, miR-223, miR-145, and/or miR-199a are used in various combinations to accomplish tumor-specific regulation. For example, multiple copies of miR-34a, miR-125b, and/or miR-223 may be used based on the inventors’ observations that analysis of multiple HCC and non-HCC tumor cell lines indicates that miR-125b is consistently expressed at the lowest levels in cancer cell lines, followed by miR-34a and miR-223 (see, e.g., data presented in Figures 2 and 3) .
The design of the VG21224 viral construct, including multiple miR-223 and miR-125b binding sites, was based on the ability of multiple different miR combinations to control viral replication, including combinations of miR-34a and miR-125a, as well as miR-34a and miR-223. The combination of miR-223 and miR-125b was observed to exhibit the best selectivity for virus replication in liver cancer cells (see, e.g., data presented in Figures 4 and 5) . RT-qPCR detection of ICP27 transcripts demonstrated that adding miR-223 and miR-125b binding sites to the 3’-UTR of ICP27 results in nearly complete elimination of ICP27 expression in the presence of miR-223 and miR-125b. Concomitant drops in expression of other key viral genes, such as ICP34.5, was also observed due to ICP27’s key role in regulation of HSV gene expression, thus supporting the strategy for enhancing OV safety and tumor-specific targeting by controlling production of ICP27 (see, e.g., data presented in Figure 6) .
E.  PAYLOAD EXPRESSION OF VG21224 IS ENHANCED
VG21224 co-expresses IL12, IL15 and IL15 receptor alpha subunit to further stimulate an immunomodulatory response. Expression of IL12 promotes polarization of antigen exposed T cells towards an inflammatory and anti-tumor T H1 phenotype, while IL-15 activates NK cells to further increase tumor killing and activation of antigen presenting cells. In addition to IL15 expression, VG21224 encodes IL15Rα to further enhance immune stimulation.
Transcription of IL-12, IL-15, and IL-15Rα can be driven by a single strong promoter (e.g., a viral promoter such as CMV, or, other strong promoters such as EF-1alpha or CAG) and  the polypeptides are linked with 2A self-cleaving peptides (see SEQ ID NO. 7; see also Z. Liu et al., 2017, Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports, 7 (1) , 1–9) that generate the 3 individual proteins through a mechanism of ribosomal skipping during translation.
F.  TRUNCATED GLYCOPROTEIN B (GB)
HSV-1 membrane fusion is a crucial step during infection. It is dependent on four essential viral glycoproteins (gB, gD, gH, and gL) , which mediate entry into host cells by merging the viral envelope with a host cell membrane. The core fusion protein is glycoprotein B (gB) , a 904-residue glycosylated transmembrane protein encoded by the UL27 gene of HSV-1. Multiple types of mutations within the cytoplasmic domain of gB have yielded a hyperfusogenic phenotype, increasing cell-cell fusion (Chowdary &Heldwein, 2010, Syncytial Phenotype of C-Terminally Truncated Herpes Simplex Virus Type 1 gB Is Associated with Diminished Membrane Interactions. Journal of Virology, 84 (10) , 4923–4935) . In one embodiment, gB may be modified by truncating C-terminal amino acids 877 to 904 from the full-length protein.
G.  MODIFIED ICP47 PROMOTER
In the HSV genome, the promoter controlling expression of the US12 gene, which encodes UL47, is identical to the promoter controlling expression of the US1 gene, which is located approximately 13k base pairs from the US12 gene. In addition, large regions of the native ICP47 promoter include repetitive sequences that may facilitate spurious homologous recombination events. Thus, replacement of the native ICP47 promoter with a heterologous (i.e., exogenous) promoter is predicted to improve viral genomic stability.
In HSV, both ICP27 and ICP47 are encoded by immediate early genes, expressed very early after infection, and share many regulatory elements. To reduce the risk of homologous recombination while maintaining a natural expression pattern, the VG21224 construct replaces the native ICP47 with the ICP27 promoter.
In some embodiments, the native ICP27 promoter includes the entire sequence of DNA located between the coding regions of UL53 (gK) and UL57 (ICP27) . In one embodiment, the ICP27 promoter includes the 538bp sequence set forth in SEQ ID NO: 1.
In other embodiments, the ICP27 promoter sequence may be 90%, 80%, 70%, 60%, or 50%identical to the ICP27 promoter sequence of any known human herpes virus type 1 strain or human herpes virus type 2 strain, e.g., human herpes virus type 1 strain 17 (NCBI  reference sequence NC_001806.2) .
hVG21224 is an oncolytic virus product with ICP27 under control of the CXCR4 promoter and miRNA-223-3p/miRNA-125b-5p , ICP34.5 under control of miRNA-124/143, and ICP47 under control of the ICP27 promoter. hVG21224 also incorporates a virus-expressed cytokine cassette encoding IL-12, IL-15/IL-15RA under the control of the CMV promoter. The expression control mechanisms in hVG21224 are designed to increase safety without sacrificing efficacy. Specific modifications to wild type -HSV-1 strain 17+ are set forth below in Table 1.
Table 1: Genetic Modification in VG21224 from wild type HSV-1, strain 17+
Figure PCTCN2022074989-appb-000001
CEA = carcinoembryonic antigen; CXCR4 = C-X-C Motif Chemokine Receptor 4; gB = glycoprotein B; HSV-1 = herpes simplex virus-1; ICP0 = infected cell polypeptide 0; ICP27 = infected cell polypeptide 27; ICP47 =infected cell polypeptide 47; ICP34.5 = infected cell polypeptide 34.5; IL = interleukin; miR = microRNA; Rα= receptor alpha; TR L = terminal repeat long; TR S = terminal repeat short; UL = unique long; US = unique short; LAT = latency-associated transcript.
VG21224 is a conditionally replicating oncolytic HSV-1 virus. The genome of VG21224 deleted the terminal repeat long (TR L) sequence of HSV-1 that contains one copy of  ICP34.5, ICP0 and LAT and the terminal repeat short (TR s) sequence of HSV-1 that contains one copy of ICP4. The remaining copy of ICP34.5 has an insertion in its 3’UTR region containing multiple copies of binding domains for miRNA miR-124 and miR-143, which are highly expressed in neurons and normal tissues but not in tumor cells. The product is further modified by replacing the native viral promoter for the essential viral gene UL54 which encodes ICP27 (infected cell polypeptide 27) with a tumor-specific promoter from the tumor selective C-X-C Motif Chemokine Receptor 4 (CXCR4) gene, coupled with an insertion in the 3’-UTR region of the UL54 (ICP27) gene containing multiple copies of binding domains for miRNA miR-223-3p and miR-125b-5p. The product is further modified by replacing the native viral promoter driving expression of the immediate-early US12 gene which encodes ICP47 (infected cell polypeptide 47) with the native viral promoter which drives expression of the immediate-early UL54 gene which encodes ICP27 (infected cell polypeptide 27) . VG21224 also expresses a potent immunomodulatory payload, consisting of IL-12, IL-15, and IL-15Rα, which is controlled by a cytomegalovirus (CMV promoter) . Finally, VG2062 has a glycoprotein B (gB) truncation to enhance fusogenic activity, to facilitate virus spread within the tumor microenvironment.
H.  THERAPEUTIC COMPOSITIONS
Therapeutic compositions are provided that may be used to prevent, treat, or ameliorate the effects of a disease, such as, for example, cancer. More particularly, therapeutic compositions are provided comprising at least one oncolytic virus as described herein.
In certain embodiments, the compositions will further comprise a pharmaceutically acceptable carrier. The phrase “pharmaceutically acceptable carrier” is meant to encompass any carrier, diluent or excipient that does not interfere with the effectiveness of the biological activity of the oncolytic virus and that is not toxic to the subject to whom it is administered (see generally Remington: The Science and Practice of Pharmacy, Lippincott Williams &Wilkins; 21st ed. (May 1, 2005 and in The United States Pharmacopeia: The National Formulary (USP 40 –NF 35 and Supplements) .
In the case of an oncolytic virus as described herein, non-limiting examples of suitable pharmaceutical carriers include phosphate buffered saline solutions, water, emulsions (such as oil /water emulsions) , various types of wetting agents, sterile solutions, and others. Additional pharmaceutically acceptable carriers include gels, bioabsorbable  matrix materials, implantation elements containing the oncolytic virus, or any other suitable vehicle, delivery or dispensing means or material (s) . Such carriers can be formulated by conventional methods and can be administered to the subject at an effective dose. Additional pharmaceutically acceptable excipients include, but are not limited to, water, saline, polyethylene glycol, hyaluronic acid and ethanol. Pharmaceutically acceptable salts can also be included therein, e.g., mineral acid salts (such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like) and the salts of organic acids (such as acetates, propionates, malonates, benzoates, and the like) . Such pharmaceutically acceptable (pharmaceutical-grade) carriers, diluents and excipients that may be used to deliver the oHSV to a cancer cell will preferably not induce an immune response in the individual (subject) receiving the composition (and will preferably be administered without undue toxicity) .
The compositions provided herein can be provided at a variety of concentrations. For example, dosages of oncolytic virus can be provided which ranges from about 10 6 to about 10 9 pfu. Within further embodiments, the dosage can range from about 10 6 to about 10 8 pfu/ml, with up to 4 mls being injected into a patient with large lesions (e.g., >5 cm) and smaller amounts (e.g., up to 0.1mls) in patients with small lesions (e.g., < 0.5 cm) every 2 –3 weeks, of treatment.
Within certain embodiments of the invention, lower dosages than standard may be utilized. Hence, within certain embodiments less than about 10 6 pfu/ml (with up to 4 mls being injected into a patient every 2 –3 weeks) can be administered to a patient.
The compositions may be stored at a temperature conducive to stable shelf-life and includes room temperature (about 20℃) , 4℃, -20℃, -80℃, and in liquid N2. Because compositions intended for use in vivo generally do not have preservatives, storage will generally be at colder temperatures. Compositions may be stored dry (e.g., lyophilized) or in liquid form.
I.  ADMINISTRATION
In addition to the compositions described herein, various methods of using such compositions to treat or ameliorate cancer are provided, comprising the step of administering an effective dose or amount of oHSV as described herein to a subject.
The terms “effective dose” and “effective amount” refers to amounts of the oncolytic virus that is sufficient to effect treatment of a targeted cancer, e.g., amounts that  are effective to reduce a targeted tumor size or load, or otherwise hinder the growth rate of targeted tumor cells. More particularly, such terms refer to amounts of oncolytic virus that is effective, at the necessary dosages and periods of treatment, to achieve a desired result. For example, in the context of treating a cancer, an effective amount of the compositions described herein is an amount that induces remission, reduces tumor burden, and/or prevents tumor spread or growth of the cancer. Effective amounts may vary according to factors such as the subject’s disease state, age, gender, and weight, as well as the pharmaceutical formulation, the route of administration, and the like, but can nevertheless be routinely determined by one skilled in the art.
The therapeutic compositions are administered to a subject diagnosed with cancer or is suspected of having a cancer. Subjects may be human or non-human animals.
The compositions are used to treat cancer. The terms “treat” or “treating” or “treatment, ” as used herein, means an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, diminishment of the reoccurrence of disease, and remission (whether partial or total) , whether detectable or undetectable. The terms “treating” and “treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
Representative forms of cancer include carcinomas, leukemia’s , lymphomas, myelomas and sarcomas. Representative forms of leukemias include acute myeloid leukemia (AML) and representative forms of lymphoma include B cell lymphomas. Further examples include, but are not limited to cancer of the bile duct, brain (e.g., glioblastoma) , breast, cervix, colorectal, CNS (e.g., acoustic neuroma, astrocytoma, craniopharyogioma, ependymoma, glioblastoma, hemangioblastoma, medulloblastoma, menangioma, neuroblastoma, oligodendroglioma, pinealoma and retinoblastoma) , endometrial lining, hematopoietic cells (e.g., leukemia’s and lymphomas) , kidney, bladder, larynx, lung, liver, oral cavity, ovaries, pancreas, prostate, skin (e.g., melanoma and squamous cell carcinoma) , GI (e.g., esophagus, stomach, and colon) and thyroid. Cancers can comprise solid tumors (e.g., sarcomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma and osteogenic sarcoma) , be diffuse (e.g., leukemia’s ) , or some combination of these (e.g., a metastatic cancer having both  solid tumors and disseminated or diffuse cancer cells) . Cancers can also be resistant to conventional treatment (e.g. conventional chemotherapy and/or radiation therapy) . Benign tumors and other conditions of unwanted cell proliferation may also be treated.
Particularly preferred cancers to be treated include those with high levels of CXCR4 expression. Representative examples include lung tumors, breast and prostate tumors, glioblastomas, tumors of the gastro-intestinal tract (and associated organs) e.g., esophagus, cholangiocarcinoma, anal, stomach, bladder, intestine, pancreatic, colon and liver, and all surface injectable tumors (e.g., melanomas) .
The recombinant herpes simplex viruses described herein may be given by a route that is e.g. oral, topical, parenteral, systemic, intravenous, intramuscular, intraocular, intrathecal, intratumoral, subcutaneous, or transdermal. Within certain embodiments the oncolytic virus may be delivered by a cannula, by a catheter, or by direct injection. The site of administration may be directly into the tumor, adjacent to the tumor, or at a site distant from the tumor. The route of administration will often depend on the type of cancer being targeted.
The optimal or appropriate dosage regimen of the oncolytic virus is readily determinable within the skill of the art, by the attending physician based on patient data, patient observations, and various clinical factors, including for example a subject’s size, body surface area, age, gender, and the particular oncolytic virus being administered, the time and route of administration, the type of cancer being treated, the general health of the patient, and other drug therapies to which the patient is being subjected. According to certain embodiments, treatment of a subject using the oncolytic virus described herein may be combined with additional types of therapy, such as administration of a different oncolytic virus, radiotherapy, administration of a checkpoint inhibitor, chemotherapy using, e.g., a chemotherapeutic agent such as etoposide, ifosfamide, adriamycin, vincristine, doxycycline, and others.
Recombinant herpes simplex viruses described herein may be formulated as medicaments and pharmaceutical compositions for clinical use and may be combined with a pharmaceutically acceptable carrier, diluent, excipient or adjuvant. The formulation will depend, at least in part, on the route of administration. Suitable formulations may comprise the virus and inhibitor in a sterile medium. The formulations can be fluid, gel, paste or solid forms. Formulations may be provided to a subject or medical professional.
A therapeutically effective amount is preferably administered. This is an amount  that is sufficient to show benefit to the subject. The actual amount administered, and the time-course of administration will depend at least in part on the nature of the cancer, the condition of the subject, site of delivery, and other factors.
Within yet other embodiments of the invention the oncolytic virus can be administered by a variety of methods, e.g., intratumorally, intravenously, or, after surgical resection of a tumor.
EXAMPLES
Overview: All viral mutagenesis can be performed in Escherichia coli using standard lambda Red-mediated recombineering techniques implemented on the viral genome cloned into a bacterial artificial chromosome (BAC) (see generally: Tischer BK, Smith GA, Osterrieder N. Methods Mol Biol. 2010; 634: 421-30. doi: 10.1007/978-1-60761-652-8_30. PMID: 20677001; Tischer BK, von Einem J, Kaufer B, and Osterrieder N., BioTechniques 40: 191-197, Feb. 2006 (including the Supplementary Material, doi: 10.2144/000112096; and Tischer BK, Smith, GA and Osterrieder N. Chapter 30, Jeff Braman (ed. ) , In Vitro Mutagenesis Protocols: Third Edition, Methods in Molecular Biology, vol. 634, doi: 10.1007/978-1-60761-652-8_30, Springer Science+Business Media, LLC 2010) .
BAC recombineering requires the presence of exogenous BAC DNA within the viral genome to facilitate mutagenesis in E. coli. The BAC sequence is most commonly inserted either between viral genes such as the HSV genes US1/US2, UL3/UL4 and /or UL50/UL51, or, into the thymidine kinase (TK) gene, which can disrupt expression of native TK. TK-deficient viral vectors may include an expression cassette for a copy of the native viral thymidine kinase (TK) gene under the control of a constitutive promoter inserted into a non-coding region of the viral genome. Alternatively, TK function may be restored by removing the exogenous BAC sequences via homologous recombination to reconstitute the native TK gene sequence. Presence of a functional TK gene enhances virus safety by rendering the virus sensitive to common treatment with guanosine analogues, such as ganciclovir and acyclovir.
EXAMPLE 1
Development of TTDR Virus Platform VG202
As shown in FIG. 1, transcriptional regulation is accomplished by utilizing the tumor-specific CXCR4 promoter to control expression of the essential HSV-1 transactivator protein ICP27. Translational regulation employs multiple tandem copies of microRNA binding  sites inserted into the 3’-UTR of both ICP27 and the key HSV-1 neurovirulence factor ICP34.5 which promote the binding of microRNAs that are both abundant in normal cells and downregulated in tumor cells. Attachment of said microRNAs leads to reduced translation and increased degradation of the ICP34.5 mRNA transcript in normal cells, while allowing ICP34.5 production to proceed at near wild-type levels in tumor cells. Additionally, glycoprotein B was truncated to increase fusogenicity and a CMV promoter-driven cytokine expression cassette encoding IL-12, IL-15, and IL-15 alpha receptor was inserted between HSV-1 genes UL3 and UL4. The native promoter driving expression of ICP47 was also replaced by the HSV-1 ICP27 promoter to reduce the risk of recombination events in the repetitive and non-unique ICP47 promoter region. Wild-type HSV-1 contains two identical copies of R L (containing ICP0 and ICP34.5) and R S (containing ICP4) that facilitate recombination events during viral replication, yielding four roughly equimolar isomers of the HSV-1 genome where the orientation of the US and UL regions is inverted (see generally, Slobedman B, Zhang X, Simmons A. Herpes simplex virus genome isomerization: origins of adjacent long segments in concatemeric viral DNA. J Virol. 1999 Jan; 73 (1) : 810-3. doi: 10.1128/JVI. 73.1.810-813.1999. PMID: 9847394; PMCID: PMC103895) . Genome linearization occurs at the R L-R S junction, and the separated R L and R S flanking the genome are typically called the TR L (terminal repeat long) and TR S (terminal repeat short) while the unseparated internal set of R L and R S are known as IR L (internal repeat long) and IR S (internal repeat short) . One copy of both R L and R S may be removed to reduce the probability of internal recombination and to lock the viral genome into a single stable configuration, while simultaneously attenuating virulence and freeing up genomic space for payload insertion.
CXCR4 = C-X-C Motif Chemokine Receptor 4; gB = glycoprotein B; HSV-1 = herpes simplex virus-1; ICP0 = infected cell polypeptide 0; ICP27 = infected cell polypeptide 27; ICP47 = infected cell polypeptide 47; ICP34.5 = infected cell polypeptide 34.5; IL = interleukin; miR =microRNA; TRL = terminal repeat long; TRS = terminal repeat short; UL = unique long; US =unique short. VG21224 is a historical name for VG202 and may be used interchangeably.
EXAMPLE 2
MicroRNA Expression Profiling in HCC Cell Lines
Objective To investigate the expression level of miR-125a, miR-125b, miR-145, miR223, and miR-34a in HCC cell lines compared to a non-cancerous liver cell line.
Procedure: The expression level of mature miRs was quantified in a panel of HCC cell lines (Hep3B, HepG2, and SMMC7721) by qPCR and compared to the corresponding miR levels in a non-cancerous liver cell line (L-02)
Results: As shown in FIG. 2, a reduction in miR levels was observed in HCC cell lines compared to the L-02 cell lines, with the exception of miR-125a, which demonstrated an increase in Hep3B cells.
Conclusion: The expression of miR-125b, miR-145, miR223, and miR-34a is downregulated in several liver tumor-derived cell lines, as compared to non-cancerous liver cells.
EXAMPLE 3
MicroRNA Expression Profiling in Multiple Tumor Cell Lines
Objective To investigate the expression levels of miR-125a, miR-125b, miR-145, miR223, and miR-34a in several cancer cell lines compared to non-cancerous cells.
Procedure: The expression level of mature miRs was quantified in the following tumor cell lines: Hep3B (liver cancer-derived) , HepG2 (liver cancer derived) , SMMC7721 (liver cancer derived) , A549 (lung cancer-derived) , Caski (cervical cancer-derived) , FADU (hypopharyngeal carcinoma-derived) , and SH-sy5y (neuroblastoma-derived) by qPCR and compared to the corresponding miR levels in a non-cancerous cell line (Mrc5) .
Results: As shown in FIG. 3, miR-125b consistently exhibited the lowest levels of expression in all cancer cell lines; miR-34a and miR-223 also demonstrated low expression levels compared to the non-cancerous cell line.
Conclusion: The expression of miR-125b, miR223, and miR-34a is downregulated in several tumor-derived cell lines, as compared to non-cancerous liver cells.
EXAMPLE 4
MicroRNA-Mediated Control of Virus Replication in HCC
Objective To investigate whether binding sites for miRs with low expression in liver cancer can enhance oncolytic virus replication in HCC cell lines.
Procedure: miR-targeting sequence concatemers for miR-223 and miR-125b were cloned into the 3’-UTR of ICP27 in the VG1925 virus genome, resulting in virus V20G07. VG1925 is a modified HSV-1 with deleted TR, with ICP34.5 controlled by miR-124 and miR-143  binding sites inserted in the 3’-UTR of ICP34.5, with the native ICP27 promoter-regulatory region replaced by a tumor-specific CEA promoter, and with an expression cassette encoding IL12, IL15, and IL15RA inserted between UL3 and UL4 (see upper panel of FIG. 4)
Hep3B tumor-derived cells and the non-cancerous L-02 cell line were infected with VG1925 and V20G07 at MOI = 0.01 and virus was harvested at 48 hours post-infection, followed by titration on Vero cells.
Results: As shown in FIG. 4, V20G07 replicates over 24-fold more efficiently in Hep3B cells than in L-02 cells. This increased replication rate is significantly higher than what was observed for VG1925.
Conclusion: The binding sites for miR-223 and miR-125b (introduced into the 3’-UTR of a critical viral gene in the V20G07 construct, but not in the VG1925 construct) may enhance the rate of viral replication specifically in liver tumor cells.
EXAMPLE 5
MicroRNA-Mediated Control of Virus Replication in Tumor Cells
Objective To investigate the efficacy of various miR binding site combinations in promoting tumor selectivity.
Procedure: Viruses V20G06 and V20G09 were constructed based on the VG1925 backbone by inserting miR-targeting sequence concatemers for miR-34a and miR-125a and for miR-34a and miR-223 into the 3’-UTR of ICP27 to create V20G06 and V20G09, respectively (see upper panel of FIG. 5) .
Tumor-derived cell line Hep3B, and non-cancerous L-02 cells were infected with VG1925, V20G06, V20G07, and V20G09 at MOI = 0.01 and virus was harvested at 48 hours and 72 hours post infection, followed by titration on Vero cells.
Results: As shown in FIG. 5, V20G06 and V20G07 demonstrated the greatest cancer selectivity at the 48-hour time point, especially in the liver cancer (HCC) cell line. At the 72-hour time point, only V20G07 exhibited enhanced replication in Hep3B cells.
Conclusion: Overall, the V20G07 mutant, with ICP27 regulated by miR-223 and miR-125b, demonstrated the greatest selective replication in Hep3B cells, compared to all other viruses tested.
EXAMPLE 6
MicroRNA-Mediated Control of Viral Gene Expression
Objective To investigate the ability of microRNAs to control expression of viral genes.
Procedure: 293T cells were transfected with precursors for either miR-124 and miR-143 or miR-223 and miR-125b. Transfection with scrambled miR served as the negative control. 24 hours post-transfection, cells were superinfected with VG17 (wild-type) , VG161, mVG2031-TK, VG2062-TK, or two different clones of VG21224-TK. VG17 and VG161 served as negative controls as they do not incorporate exogenous miR binding sites, while mVG2031-TK is a murine version of VG2062 containing mouse IL-12 in place of human IL-12. VG21224-TK is an alternative name for VG21224, and VG2062-tk is an alternative name for VG2062, and is similar to VG21224 except that it has no microRNA binding sites inserted into the 3’UTR of ICP27. mRNA was isolated 6 hours post infection and RT-qPCR was performed to measure levels of ICP27 and ICP34.5 transcripts.
Results: As shown in FIG. 6, the presence of miR-124 and miR-143 resulted in roughly a 50%reduction in ICP34.5 transcripts for all viruses that incorporate miR-124 and miR-143 binding sites in the 3’-UTR of ICP34.5 (mVG2031-TK, VG2062-TK, and VG21224-TK) . Regulation of ICP27 using miR-223 and miR-125b was even more effective, resulting in nearly complete reduction of ICP27 expression in both tested clones of VG21224-TK. Interestingly, miR-223 and miR-125b were even more effective at downregulating ICP34.5 transcripts than miR-124 and miR-143 in VG21224-TK, despite the lack of miR-223 and miR-125b binding sites in the 3’-UTR of ICP34.5, likely due to effective regulation of ICP27 via miR-223 and miR-125b in VG21224-TK. ICP27 is a key transactivator of other viral genes including ICP34.5, explaining why downregulation of ICP27 expression would also result in reduced expression of other viral genes, ultimately leading to reduced replication efficiency in non-tumor cells that express high levels of miR-223 and miR-125b. VG2062-TK and VG21224-TK are synonyms for VG2062 and VG21224, respectively, and may be used interchangeably.
Conclusion: microRNAs are capable of effectively controlling expression of viral genes in this experimental system.
The following are some exemplary numbered embodiments of the present disclosure.
1. A recombinant herpes simplex virus comprising a modified oncolytic herpes virus genome, wherein the modified herpes virus genome comprises at least one miRNA target  sequence operably linked to a ICP27 gene.
2. The recombinant herpes simplex virus of embodiment 1, comprising from two to ten miRNA target sequences operably linked to the ICP27 gene.
3. The recombinant herpes simplex virus of embodiment 1 or 2, wherein the miRNA target sequences are inserted into a 3' untranslated region of the ICP27 gene. Within a further embodiments the miRNA target sequences are inserted in tandem into the 3’ untranslated region. Within various embodiments, identical, or, varying lengths of linker DNA can be inserted between different miRNA binding sites. Within certain embodiments the linkers range from 1 to 50 base pairs. Within other embodiments the linker is less than 10 base pairs.
4. The recombinant herpes simplex virus of embodiment 2, wherein the from two to ten miRNA target sequences bind at least two different miRNAs.
5. The recombinant herpes simplex virus of any one of embodiments 1-4, wherein the miRNAs are selected from the group consisting of miR-223, miR-125b, and miR-34a.
6. The recombinant herpes simplex virus of any one of embodiments 1-5, further comprising at least one miRNA target sequence operably linked to a first copy of an ICP34.5 gene, and a second copy of the ICP34.5 gene comprises an inactivating mutation.
7. The recombinant herpes simplex virus of embodiment 6, wherein the mutation is deletion of one RL and one RS region of the viral genome. Within optional embodiments the mutation is a deletion containing the second copy of the ICP34.5 gene.
8. The recombinant herpes simplex virus according to any one of embodiments 6 or 7, comprising from two to ten miRNA target sequences operably linked to the first copy of the ICP34.5 gene.
9. The recombinant herpes simplex virus according to any one of embodiments 6, 7, or 8, wherein the miRNA target sequences are inserted into a 3' untranslated region of the first copy of the ICP34.5 gene.
10. The recombinant herpes simplex virus according to any one of embodiments 6, 7, 8, or 9, wherein the from two to ten miRNA target sequences bind at least two different miRNAs.
11. The recombinant herpes simplex virus according to any one of  embodiments  6, 7, 8, 9, or 10, wherein the miRNAs are selected from the group consisting of miR-124, miR-124*, and miR-143.
12. The recombinant herpes simplex virus according to any one of embodiments 1-11, wherein the modified herpes virus genome comprises additional mutations or modifications in viral genes ICP4 and/or ICP27.
13. The recombinant herpes simplex virus according to embodiment 12, wherein the modification comprises replacing a native viral promoter with a tumor specific promoter.
14. The recombinant herpes simplex virus according to embodiment 12 or 13, wherein the modification is replacement of the entire promoter-regulatory region of ICP27, optionally, with a tumor specific promoter.
15. The recombinant herpes simplex virus according to any one of embodiments 12-15, wherein the ICP27 promoter is replaced with a CXCR4 promoter.
16. The recombinant herpes simplex virus according to any one of embodiments 1-15, further comprising at least one nucleic acid encoding a non-viral protein selected from the group consisting of immunostimulatory factors, antibodies, and checkpoint blocking peptides, wherein the at least one nucleic acid is operably linked to a generic, or, a tumor-specific promoter. Examples of generic promoters include constitutive promoters such as SV40, CMV, UBC, EF1alpha, PGK and CAGG.
17. The recombinant herpes simplex virus according to embodiments 16, wherein the non-viral protein is selected from the group consisting of IL12, IL15, IL15 receptor alpha subunit.
18. The recombinant herpes simplex virus according to any one of embodiments 16 or 17, wherein the promoter is a CMV promoter.
19. The recombinant herpes simplex virus according to any one of embodiments 1-18 having a nucleic acid sequence encoding a glycoprotein with enhanced fusogenicity (as compared to a similar wild-type virus) . Examples include a wide variety of transgenes (e.g., a fusogenic glycoprotein from Gibbon Ape Leukemia Virus “GALV” ) , and/or mutations which enhance HSV fusion, including for example, a truncations or mutations in glycoprotein B, glycoprotein K, and or UL20. Within a preferred embodiment the nucleic acid sequence encodes a fusogenic form of glycopotein B (e.g., glycoprotein B which is truncated after amino acid 876) .
20. The recombinant herpes simplex virus according to embodiment 19, wherein the glycoprotein B can be truncated with a deletion occurring after amino acid 876.
21. The recombinant herpes simplex virus of any one of embodiments 1-20, further  comprising an ICP27 regulatory sequence operably linked to an ICP47 gene and wherein the ICP47 gene comprises an inactivating mutation in the natural regulatory sequence.
22. The recombinant herpes simplex virus according to any one of embodiments 1-21, wherein the oncolytic herpes virus is HSV-1. Within certain embodiments of the invention the recombinant herpes simplex virus comprises an oncolytic HSV-1 wherein: a) there is a deletion of an repeat long (RL) region containing the genes encoding ICP0 and ICP34.5 and a deletion of an repeat short (RS) region containing the gene encoding ICP4; b) replacement of a native ICP27 promoter with a CXCR4 promoter; c) insertion of binding sites for miR-143 and miR-124 in the ICP34.5 3’UTR; d) deletion of a portion of the 3’ end of glycoprotein B coding region (e.g., a 84 bp deletion) ; e) insertion of an expression cassette which can express L-12, IL-15, and IL-15Rα under the control of a CMV promoter; f) insertion of binding sites for miR-223, miR-125b, and/or miR-34a in the ICP27 3’UTR; g) replacement of a native ICP47 promoter with an ICP27 promoter.
23. A method for inhibiting or lysing tumor cells, comprising providing a therapeutically effective amount of recombinant herpes simplex virus according to any one of embodiments 1 to 22.
24. A therapeutic composition comprising the recombinant herpes simplex virus according to any one of embodiments 1 to 22 and a pharmaceutically acceptable carrier.
25. A method for treating cancer in a subject suffering therefrom, comprising the step of administering a therapeutically effective amount of the composition of embodiment 24.
26. The method according to embodiment 25, wherein said cancer expresses a high level of a biomarker, the promoter of which is used to drive ICP4 and/or ICP27 genes according to one of the preceding embodiments. Within other embodiments, the cancer expresses a high level of a biomarker such as, for example, CEA or, CXCR4. Within certain embodiments, the cancer is selected from the group consisting of cancers of the liver, cervix, esophagus, lung, colorectum, stomach, cholangiocarcinoma and pancreas. Within other embodiments the cancer is selected from the group consisting of breast and prostate tumors, and glioblastomas. Within other embodiments the cancer is a leukemia or a lymphoma. Within other embodiments the cancer is an acute myeloid leukemia (AML) or a B cell lymphoma. Within other embodiments, the cancer is a surface injectable tumor. Within yet other embodiments the cancer expresses a high level of CXCR4.
The invention has been described broadly and generically herein. Each of the  narrower species and subgeneric groupings falling within the generic disclosure also form part of the invention. This includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.
It is also to be understood that as used herein and in the appended claims, the singular forms “a, ” “an, ” and “the” include plural reference unless the context clearly dictates otherwise, the term “X and/or Y” means “X” or “Y” or both “X” and “Y, ” and the letter “s” following a noun designates both the plural and singular forms of that noun. In addition, where features or aspects of the invention are described in terms of Markush groups, it is intended, and those skilled in the art will recognize, that the invention embraces and is also thereby described in terms of any individual member and any subgroup of members of the Markush group, and Applicants reserve the right to revise the application or claims to refer specifically to any individual member or any subgroup of members of the Markush group.
It is to be understood that the terminology used herein is for the purpose of describing specific embodiments only and is not intended to be limiting. It is further to be understood that unless specifically defined herein, the terminology used herein is to be given its traditional meaning as known in the relevant art.
Reference throughout this specification to “one embodiment” or “an embodiment” and variations thereof means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a, ” “an, ” and “the” include plural referents, i.e., one or more, unless the content and context clearly dictates otherwise. It should also be noted that the conjunctive terms, “and” and “or” are generally employed in the broadest sense to include “and/or” unless the content and context clearly dictates inclusivity or exclusivity as the case may be. Thus, the use of the alternative (e.g., "or" ) should be understood to mean either one, both, or any combination thereof of the alternatives. In addition, the composition of “and” and “or” when recited herein as “and/or” is intended to encompass an embodiment that includes all of the associated items  or ideas and one or more other alternative embodiments that include fewer than all of the associated items or ideas.
Unless the context requires otherwise, throughout the specification and claims that follow, the word “comprise” and synonyms and variants thereof such as “have” and “include, ” as well as variations thereof such as “comprises” and “comprising” are to be construed in an open, inclusive sense, e.g., “including, but not limited to. ” The term "consisting essentially of" limits the scope of a claim to the specified materials or steps, or to those that do not materially affect the basic and novel characteristics of the claimed invention.
Any headings used within this document are only being utilized to expedite its review by the reader, and should not be construed as limiting the invention or claims in any manner. Thus, the headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
Where a range of values is provided herein, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
For example, any concentration range, percentage range, ratio range, or integer range provided herein is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer) , unless otherwise indicated. Also, any number range recited herein relating to any physical feature, such as polymer subunits, size or thickness, are to be understood to include any integer within the recited range, unless otherwise indicated. As used herein, the term "about" means ± 20%of the indicated range, value, or structure, unless otherwise indicated.
All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety. Such documents may be incorporated by reference for  the purpose of describing and disclosing, for example, materials and methodologies described in the publications, which might be used in connection with the presently described invention. The publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate any referenced publication by virtue of prior invention.
All patents, publications, scientific articles, web sites, and other documents and materials referenced or mentioned herein are indicative of the levels of skill of those skilled in the art to which the invention pertains, and each such referenced document and material is hereby incorporated by reference to the same extent as if it had been incorporated by reference in its entirety individually or set forth herein in its entirety. Applicants reserve the right to physically incorporate into this specification any and all materials and information from any such patents, publications, scientific articles, web sites, electronically available information, and other referenced materials or documents.
In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Furthermore, the written description portion of this patent includes all claims. Furthermore, all claims, including all original claims as well as all claims from any and all priority documents, are hereby incorporated by reference in their entirety into the written description portion of the specification, and Applicants reserve the right to physically incorporate into the written description or any other portion of the application, any and all such claims. Thus, for example, under no circumstances may the patent be interpreted as allegedly not providing a written description for a claim on the assertion that the precise wording of the claim is not set forth in haec verba in written description portion of the patent.
The claims will be interpreted according to law. However, and notwithstanding the alleged or perceived ease or difficulty of interpreting any claim or portion thereof, under no circumstances may any adjustment or amendment of a claim or any portion thereof during prosecution of the application or applications leading to this patent be interpreted as having forfeited any right to any and all equivalents thereof that do not form a part of the prior art.
Other nonlimiting embodiments are within the following claims. The patent may not be interpreted to be limited to the specific examples or nonlimiting embodiments or methods specifically and/or expressly disclosed herein. Under no circumstances may the patent be interpreted to be limited by any statement made by any Examiner or any other official or employee of the Patent and Trademark Office unless such statement is specifically and without qualification or reservation expressly adopted in a responsive writing by Applicants.

Claims (28)

  1. A recombinant herpes simplex virus comprising a modified oncolytic herpes virus genome, wherein the modified herpes virus genome comprises at least one miRNA target sequence operably linked to a ICP27 gene.
  2. The recombinant herpes simplex virus of claim 1, comprising from two to ten miRNA target sequences operably linked to the ICP27 gene.
  3. The recombinant herpes simplex virus of claim 2, wherein the miRNA target sequences are inserted into a 3' untranslated region of the ICP27 gene.
  4. The recombinant herpes simplex virus of claim 2, wherein the from two to ten miRNA target sequences bind at least two different miRNAs.
  5. The recombinant herpes simplex virus of claim 4, wherein the miRNAs are selected from the group consisting of miR-223, miR-125b, and miR-34a.
  6. The recombinant herpes simplex virus of claim 1, further comprising at least one miRNA target sequence operably linked to a first copy of an ICP34.5 gene, and a second copy of the ICP34.5 gene comprises an inactivating mutation.
  7. The recombinant herpes simplex virus of embodiment 6, wherein the mutation is deletion of one RL and one RS region of the viral genome.
  8. The recombinant herpes simplex virus of claim 6, comprising from two to ten miRNA target sequences operably linked to the first copy of the ICP34.5 gene.
  9. The recombinant herpes simplex virus of claim 8, wherein the miRNA target sequences are inserted into a 3' untranslated region of the first copy of the ICP34.5 gene.
  10. The recombinant herpes simplex virus of claim 8, wherein the from two to ten miRNA target sequences bind at least two different miRNAs.
  11. The recombinant herpes simplex virus of claim 10, wherein the miRNAs are selected from the group consisting of miR-124, miR-124*, and miR-143.
  12. The recombinant herpes simplex virus of claim 1, wherein the modified herpes virus genome comprises additional mutations or modifications in viral genes ICP4 and/or ICP27.
  13. The recombinant herpes simplex virus of claim 12, wherein said virus is modified by replacing a native viral promoter with a tumor specific promoter.
  14. The recombinant herpes simplex virus of claim 12, wherein the modification is replacement of the entire promoter-regulatory region of ICP27 with a tumor specific promoter.
  15. The recombinant herpes simplex virus of claim 14, wherein the ICP27 promoter is replaced with a CXCR4 promoter.
  16. The recombinant herpes simplex virus of claim 12, wherein the modification is deletion of the ICP4 gene.
  17. The recombinant herpes simplex virus of claim 1, further comprising at least one nucleic acid encoding a non-viral protein selected from the group consisting of immunostimulatory factors, antibodies, and checkpoint blocking peptides, wherein the at least one nucleic acid is operably linked to a generic or a tumor-specific promoter.
  18. The recombinant herpes simplex virus of claim 17, wherein the non-viral protein is selected from the group consisting of IL12, IL15, IL15 receptor alpha subunit.
  19. The recombinant herpes simplex virus of claim 17, wherein the generic promoter is CMV.
  20. The recombinant herpes simplex virus of claim 1, further comprising a nucleic acid sequence encoding a fusogenic form of glycoprotein B.
  21. The recombinant herpes simplex virus of claim 21, wherein the glycoprotein B can be truncated with a deletion occurring after amino acid 876.
  22. The recombinant herpes simplex virus of claim 1, further comprising an ICP27 regulatory sequence operably linked to an ICP47 gene, wherein the ICP47 gene comprises an inactivating deletion in the natural ICP47 regulatory sequence.
  23. The recombinant herpes simplex virus of any one of claims 1 to 22, wherein the oncolytic herpes virus is HSV-1.
  24. A method for inhibiting tumor cells, comprising providing a therapeutically effective amount of recombinant herpes simplex virus according to any one of claims 1 to 23.
  25. A therapeutic composition comprising the recombinant herpes simplex virus according to any one of claims 1 to 23 and a pharmaceutically acceptable carrier.
  26. A method for treating cancer in a subject suffering therefrom, comprising the step of administering a therapeutically effective amount of the composition of claim 25.
  27. The method according to claim 26, wherein said cancer expresses a high level of a biomarker such as CXCR4.
  28. The method according to claim 26, wherein said cancer is a cancer of the liver.
PCT/CN2022/074989 2022-01-29 2022-01-29 Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors WO2023142040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/074989 WO2023142040A1 (en) 2022-01-29 2022-01-29 Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors
PCT/CN2023/073525 WO2023143495A1 (en) 2022-01-29 2023-01-28 Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074989 WO2023142040A1 (en) 2022-01-29 2022-01-29 Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors

Publications (1)

Publication Number Publication Date
WO2023142040A1 true WO2023142040A1 (en) 2023-08-03

Family

ID=87470154

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/074989 WO2023142040A1 (en) 2022-01-29 2022-01-29 Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors
PCT/CN2023/073525 WO2023143495A1 (en) 2022-01-29 2023-01-28 Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073525 WO2023143495A1 (en) 2022-01-29 2023-01-28 Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors

Country Status (1)

Country Link
WO (2) WO2023142040A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000668A2 (en) * 2005-05-27 2007-01-04 Fondazione Centro San Raffaele Del Monte Tabor Gene vector comprising mi-rna
US20100297085A1 (en) * 2007-05-09 2010-11-25 Kousoulas Konstantin G Synthetic Herpes Simplex Viruses Type-1 for Treatment of Cancers
WO2017085175A1 (en) * 2015-11-18 2017-05-26 Virttu Biologics Limited Herpes simplex viruses
WO2017132552A1 (en) * 2016-01-27 2017-08-03 Oncorus, Inc. Oncolytic viral vectors and uses thereof
WO2020113151A1 (en) * 2018-11-29 2020-06-04 Virogin Biotech Canada Ltd Hsv vector with reduced neurotoxicity
WO2020185298A1 (en) * 2019-03-14 2020-09-17 Massachusetts Institute Of Technology Engineered herpes simplex virus-1 (hsv-1) vectors and uses thereof
WO2020239040A1 (en) * 2019-05-30 2020-12-03 伍泽堂 Recombinant oncolytic virus, preparation method therefor, use thereof and medicine thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000668A2 (en) * 2005-05-27 2007-01-04 Fondazione Centro San Raffaele Del Monte Tabor Gene vector comprising mi-rna
US20100297085A1 (en) * 2007-05-09 2010-11-25 Kousoulas Konstantin G Synthetic Herpes Simplex Viruses Type-1 for Treatment of Cancers
WO2017085175A1 (en) * 2015-11-18 2017-05-26 Virttu Biologics Limited Herpes simplex viruses
WO2017132552A1 (en) * 2016-01-27 2017-08-03 Oncorus, Inc. Oncolytic viral vectors and uses thereof
WO2020113151A1 (en) * 2018-11-29 2020-06-04 Virogin Biotech Canada Ltd Hsv vector with reduced neurotoxicity
WO2020185298A1 (en) * 2019-03-14 2020-09-17 Massachusetts Institute Of Technology Engineered herpes simplex virus-1 (hsv-1) vectors and uses thereof
WO2020239040A1 (en) * 2019-05-30 2020-12-03 伍泽堂 Recombinant oncolytic virus, preparation method therefor, use thereof and medicine thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, X.; DONG, HUI; WANG, JUN; QUAN, JIN-MEI; ZHANG, WEI: "Inhibition of HSV-1 Virus Production by siRNAs Specific for ICP27 Gene", LIFE SCIENCE RESEARCH, HUNAN SHIFAN DAXUE, SHENGMING KEXUE XUEYUAN,, CN, vol. 21, no. 2, 30 April 2017 (2017-04-30), CN , pages 130 - 135, XP009547927, ISSN: 1007-7847, DOI: 10.16605/j.cnki.1007-7847.2017.02.007 *

Also Published As

Publication number Publication date
WO2023143495A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US20200171110A1 (en) Hsv vector with reduced neurotoxicity
WO2007052029A1 (en) Oncolytic herpes virus vectors
US20230365994A1 (en) Hsv vectors with enhanced replication in cancer cells
JP7229173B2 (en) Methods for Producing Recombinant Viruses
WO2021253733A1 (en) Construct and use thereof
Kennedy et al. Design of an interferon-resistant oncolytic HSV-1 incorporating redundant safety modalities for improved tolerability
Grandi et al. Design and application of oncolytic HSV vectors for glioblastoma therapy
JP2019517815A5 (en)
WO2017085175A1 (en) Herpes simplex viruses
WO2023142040A1 (en) Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors
CN111041001B (en) Safe coxsackie virus for treating KRAS mutant tumor and pharmaceutical composition thereof
US20220267799A1 (en) Genetically modified enterovirus vectors
WO2020106566A1 (en) Regulatable fusogenic oncolytic herpes simplex virus type 1 virus and methods of use
Chouljenko et al. Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1
EP4162941A1 (en) Isolated recombinant oncolytic poxvirus capable of being regulated and controlled by microrna and use thereof
WO2022001080A1 (en) Recombinant herpes simplex virus and construction method therefor
WO2023147566A1 (en) Transcriptional and translational dual regulated oncolytic herpes simplex virus vectors
JP2024512053A (en) Oncolytic herpes simplex virus vectors subject to dual transcriptional and translational regulation
JP5580043B2 (en) Radiosensitization enhancer
Blum Molecular therapy and prevention of liver diseases.
WO2023096996A2 (en) Chimeric hsv expressing hil21 to boost anti-tumor immune activity
Virus Cancer-Oncolytic Viruses I
Mukherjee et al. Epstein-Barr Virus and its Capacity to Evade the Immune System to Cause Cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922871

Country of ref document: EP

Kind code of ref document: A1