WO2023141926A1 - Multi-pusch scheduling with tboms - Google Patents

Multi-pusch scheduling with tboms Download PDF

Info

Publication number
WO2023141926A1
WO2023141926A1 PCT/CN2022/074541 CN2022074541W WO2023141926A1 WO 2023141926 A1 WO2023141926 A1 WO 2023141926A1 CN 2022074541 W CN2022074541 W CN 2022074541W WO 2023141926 A1 WO2023141926 A1 WO 2023141926A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
tboms
slots
slot
available
Prior art date
Application number
PCT/CN2022/074541
Other languages
French (fr)
Inventor
Shaozhen GUO
Mostafa KHOSHNEVISAN
Jing Sun
Xiaoxia Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/074541 priority Critical patent/WO2023141926A1/en
Publication of WO2023141926A1 publication Critical patent/WO2023141926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to wireless communication systems, and more particularly to resource allocation with multi-PUSCH and TBoMS implemented together.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long term evolution
  • NR next generation new radio
  • 5G 5 th Generation
  • LTE long term evolution
  • NR next generation new radio
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands.
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum.
  • Wireless devices may flexibly schedule resources for data transmissions in a variety of ways, including scheduling multiple physical uplink shared channel (Multi-PUSCH) resources. Wireless devices may also schedule a single transport block (TB) over multiple slots (TBoMS) . Currently, there is no support in wireless devices for scheduling Multi-PUSCH together with TBoMS. There is a need in the art for techniques accounting for these methods being used together.
  • Multi-PUSCH physical uplink shared channel
  • TBoMS transport block
  • a method of wireless communication comprises receiving, by a user equipment (UE) from a network entity, a communication indicating: a multiple physical uplink shared channel (multi-PUSCH) configuration, and a transport block over multiple slots (TBoMS) configuration.
  • the method further comprises transmitting, by the UE to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
  • a user equipment comprises a transceiver configured to receive, from a network entity, a communication indicating a multiple physical uplink shared channel (multi-PUSCH) configuration and a transport block over multiple slots (TBoMS) configuration.
  • the transceiver is further configured to transmit, to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
  • a method of wireless communication comprises transmitting, by a network entity to a user equipment (UE) , a communication indicating a multiple physical uplink shared channel (multi-PUSCH) configuration and a transport block over multiple slots (TBoMS) configuration.
  • the method further comprises receiving, by the network entity from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
  • a network entity comprises a transceiver configured to transmit, to a user equipment (UE) , a communication indicating a multiple physical uplink shared channel (multi-PUSCH) configuration and a transport block over multiple slots (TBoMS) configuration.
  • the transceiver is further configured to receive, from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
  • FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
  • FIG. 2 illustrates an exemplary communication protocol diagram according to some aspects of the present disclosure.
  • FIG. 3 illustrates a block diagram of an exemplary base station (BS) according to some aspects of the present disclosure.
  • FIG. 4 illustrates a block diagram of an exemplary user equipment (UE) according to some aspects of the present disclosure.
  • FIGS. 5-13 illustrate exemplary resource allocation diagrams according to some aspects of the present disclosure.
  • FIG. 14 illustrates a diagram of an exemplary method performed by a UE according to some aspects of the present disclosure.
  • FIG. 15 illustrates a diagram of an exemplary method performed by a UE according to some aspects of the present disclosure.
  • FIG. 16 illustrates a diagram of an exemplary method performed by a network entity according to some aspects of the present disclosure.
  • FIG. 17 illustrates an example portion of a wireless communications system that supports RU sharing techniques in wireless communications according to some aspects of the present disclosure.
  • FIG. 18 illustrates a diagram of a system including a device that supports RU sharing techniques in wireless communications according to some aspects of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • LTE long term evolution
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • a BS may use RRC configuration parameters to configure multiple resources which may be activated by a single DCI message. For example, a BS may configure a time domain resource allocation table (TDRA) where each row of the table indicates the starting slot (relative to the scheduling DCI) and length of a number of PUSCH transmissions (i.e., multi-PUSCH) . Each PUSCH resource may be used by the UE to transmit a single transport block (TB) of data.
  • the TDRA table may be configured to indicate that a TB extend over multiple slots (TBoMS) to allow for larger amounts of data within a single TB transmission via PUSCH.
  • a BS may configure the UE, for example via the TDRA table, to repeat PUSCH transmissions. Together, this allows for a single DCI message to indicate a row of the TDRA table and thereby activate multiple PUSCH transmissions, each with a TBoMS, and each with repetitions.
  • a BS may configure the UE to perform such multi-PUSCH transmissions with TBoMS in a variety of ways, and the UE may allocate the PUSCH resources in a variety of ways.
  • the method by which transmissions are allocated to slots is based on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC.
  • a TDRA row may include two PUSCH transmissions, each with a two-slot TBoMS, and each configured to have two repetitions.
  • the UE may determine to allocate the first repetition of the first TBoMS to the first available slots.
  • the UE may allocate the second repetition of the first TBoMS in the subsequent available slots.
  • the UE may allocate the first repetition of the second TBoMS in the subsequent available slots.
  • the UE may allocate the second repetition of the second TBoMS in the subsequent available slots.
  • the slot that each PUSCH starts at may be defined by a parameter K2 which is configured via RRC.
  • K2 may be configured either jointly, or individually for each configured PUSCH.
  • K2 may be defined as the offset between the DL slot where the DCI for UL scheduling is received and the slot where the PUSCH begins. This is one example of an order in which UE 115 may allocate slots. Other examples are discussed below with reference to FIGS. 5-15.
  • the configuration of the UE may result in resources which are overlapping.
  • a first PUSCH may have N slots per TBoMS and M repetitions. If the starting slot of a second PUSCH is before M*N slots after the scheduling DCI, then the slots which would be allocated to the second PUSCH may already be allocated to the first PUSCH.
  • the UE may cancel one or more slots of allocated transmissions of the first PUSCH. In some aspects, only overlapped slots are cancelled. In other aspects, every block of the TBoMS repetition where any slot of the TBoMS repetition overlaps is cancelled. In yet further aspects, the UE may cancel the entire TB and all repetitions if any overlap occurs. The determination of which slots are cancelled may be configured or based on a predefined rule.
  • a maximum distance may be configured or predefined from a scheduling DCI for allocation of a TB slot.
  • the UE may cancel allocations of one or more slots of a TBoMS where the TBoMS extends beyond the maximum distance. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
  • multi-PUSCH and TBoMS may be both configured at the same time, and how they interact, allows greater flexibility in scheduling resources. Additionally, the UE and BS may have less scheduling overhead by allowing for such scheduling. Specifically, support for multi-PUSCH scheduling together with TBoMS may reduce DCI overhead and improve coverage of multi-PUSCH scheduling. Allowing for different configurable methods of allocating resources may allow greater flexibility for a BS, further optimizing communications. For example, some allocation methods may improve signal diversity by spreading repetitions further apart from each other in time. Other methods may reduce latency of transmission.
  • FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 (individually labeled as 115a, 115b, 115c, 115d, 115e, 115f, 115g, 115h, and 115k) and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may be designed to enable a wide range of use cases. While in some examples a network 100 may utilize monolithic base stations, there are a number of other architectures which may be used to perform aspects of the present disclosure. For example, more distributed architectures are presented and discussed with reference to FIGS. 17-18. For simplicity of discussion, the present disclosure refers to methods of the present disclosure being performed by base stations, or more generally network entities, while the functionality may be performed by a variety of architectures other than a monolithic base station.
  • aspects of the present disclosure may also be performed by a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , a Non-Real Time (Non-RT) RIC, integrated access and backhaul (IAB) node, a relay node, a sidelink node, etc.
  • Near-RT Near-Real Time
  • Non-RT Non-Real Time
  • IAB integrated access and backhaul
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt e.g., communication links indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 105 may also communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115.
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • the network 100 may also support communications with ultra-reliable and redundant links for devices, such as the UE 115e, which may be airborne. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and a BS 105.
  • V2V dynamic, low-latency TDD/FDD communications
  • V2X V2X
  • C-V2X C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115
  • V2I vehicle-to-infrastructure
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands.
  • the subcarrier spacing and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands.
  • each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than for UL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
  • the MIB may be transmitted over a physical broadcast channel (PBCH) .
  • PBCH physical broadcast channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 115 may receive a MIB.
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI and/or OSI.
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105.
  • the random access procedure may be a four-step random access procedure.
  • the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response.
  • the random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator.
  • ID detected random access preamble identifier
  • TA timing advance
  • C-RNTI temporary cell-radio network temporary identifier
  • the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response.
  • the connection response may indicate a contention resolution.
  • the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively.
  • the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
  • the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged.
  • the BS 105 may schedule the UE 115 for UL and/or DL communications.
  • the BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH.
  • the scheduling grants may be transmitted in the form of DL control information (DCI) .
  • the BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
  • the connection may be referred to as an RRC connection.
  • the UE 115 is actively exchanging data with the BS 105, the UE 115 is in an RRC connected state.
  • a BS 105 can schedule more than one PUSCH resource for a UE 115 by configuring a time domain resource allocation (TDRA) table.
  • the table may include information about time domain resources which may include multiple PUSCH (multi-PUSCH) resources, and an indication of a number of repetitions of the resources.
  • a BS 105 may configure a UE 115 with a TDRA table where each row of the table is a different configuration, so that the BS 105 can transmit a DCI which indicates a row and thereby activate that configuration.
  • One type of configuration stored in a TDRA table is an indication of how many slots are to be used by a transport block (TB) .
  • TB transport block
  • a TB is a unit of data and supporting configuration information that is delivered from a higher abstraction layer to the physical layer for transmission, for example via a PUSCH transmission.
  • one TB takes one slot of time to transmit.
  • a UE may be configured to split a larger TB over multiple slots, making it a transport block over multiple slots (TBoMS) .
  • TBoMS transport block over multiple slots
  • a UE 115 may be configured to perform multi-PUSCH, TBoMS, and PUSCH repetitions in combination allowing a UE to send more data with less configuration and scheduling overhead.
  • multi-PUSCH, TBoMS, and PUSCH repetition scheduling may be performed with reduced overhead according to embodiments of the present disclosure by enhancements to existing control messaging from the BS 105 to a UE 115, including how to combine the operations of each of multi-PUSCH, TBoMS, and/or PUSCH repetition to operate together.
  • the UE 115 may initiate an initial network attachment procedure with the network 100.
  • the BS 105 may coordinate with various network entities or fifth generation core (5GC) entities, such as an access and mobility function (AMF) , a serving gateway (SGW) , and/or a packet data network gateway (PGW) , to complete the network attachment procedure.
  • 5GC fifth generation core
  • the BS 105 may coordinate with the network entities in the 5GC to identify the UE, authenticate the UE, and/or authorize the UE for sending and/or receiving data in the network 100.
  • the AMF may assign the UE with a group of tracking areas (TAs) . Once the network attach procedure succeeds, a context is established for the UE 115 in the AMF.
  • TAs tracking areas
  • the UE 115 can move around the current TA.
  • the BS 105 may request the UE 115 to update the network 100 with the UE 115’s location periodically.
  • the UE 115 may only report the UE 115’s location to the network 100 when entering a new TA.
  • the TAU allows the network 100 to quickly locate the UE 115 and page the UE 115 upon receiving an incoming data packet or call for the UE 115.
  • the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service.
  • the BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH.
  • the BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH.
  • the DL data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105.
  • TB transport block
  • the UE 115 may transmit a HARQ NACK to the BS 105.
  • the BS 105 may retransmit the DL data packet to the UE 115.
  • the retransmission may include the same coded version of DL data as the initial transmission.
  • the retransmission may include a different coded version of the DL data than the initial transmission.
  • the UE 115 may apply soft combining to combine the encoded data received from the initial transmission and the retransmission for decoding.
  • the BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
  • the network 100 may operate over a system BW or a component carrier (CC) BW.
  • the network 100 may partition the system BW into multiple BWPs (e.g., portions) .
  • a BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) .
  • the assigned BWP may be referred to as the active BWP.
  • the UE 115 may monitor the active BWP for signaling information from the BS 105.
  • the BS 105 may schedule the UE 115 for UL or DL communications in the active BWP.
  • a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • FIG. 2 illustrates an exemplary communication protocol diagram 200 according to some aspects of the present disclosure.
  • Aspects of the communication protocol diagram 200 may be performed by wireless networks, such as the network 100.
  • a BS 105 and UE 115 may perform functions of the communication protocol diagram 200.
  • the BS 105 may utilize a transmission-reception point (TRP) to communicate with the UE 115.
  • TRP transmission-reception point
  • the BS 105 may utilize one or more components, such as the processor 302, the memory 304, the scheduling module 308, the transceiver 310, the modem 312, and the one or more antennas 316 shown in FIG. 3 (discussed further below) .
  • the actions described as being performed by the BS 105 may also be performed by other network entities, such as by one or more components of a disaggregated base station.
  • the UE 115 may utilize one or more components, such as the processor 402, the memory 404, the resource allocation module 408, the transceiver 410, the modem 412, and the one or more antennas 416 shown in FIG. 4 (discussed further below) .
  • the method 200 includes a number of enumerated actions, but aspects of the FIG. 2 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
  • the BS 105 transmits an RRC configuration to the UE 115.
  • the RRC configuration may be used to configure a TDRA table. While illustrated as a single RRC message, configuration parameters may be sent over multiple RRC messages at different times. Configurations may include configuring multi-PUSCH transmissions. Each of the PUSCH transmissions may be associated with a transport block (TB) . Based on the configuration, TBs may be one slot wide, or may extend over multiple slots, making it a transport block over multiple slots (TBoMS) . Configuration of TBoMS may be performed by a single number in a single column which controls the TBoMS slot length for the entire row.
  • TB transport block
  • Configuration of TBoMS may be performed by a single number in a single column which controls the TBoMS slot length for the entire row.
  • Configuration of TBoMS may also be individual to each PUSCH transmission, where each has a value associated with it indicating TBoMS length.
  • the term TBoMS and TB are used interchangeably when the TB discussed is configured for multiple slots.
  • the RRC configuration may configure repetitions of the PUSCH transmissions. These repetitions are repetitions of the data, not just the resource allocations. Configuration of repetitions may be performed by a single number in a single column which controls the amount of repetitions for each PUSCH defined in that row. Configuration of repetitions may also be individual to each PUSCH transmission, where each has a value associated with it indicating the number of repetitions.
  • the parameters used for configuration may be pusch-TimeDomainAllocationListForMultiPUSCH for multi-PUSCH, and numberOfSlotsTBoMS for TBoMS.
  • an RRC parameter may be used that enables both multi-PUSCH and TBoMS together.
  • the TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations.
  • Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length.
  • SIV start and length indicator value
  • certain configuration parameters exist in a single column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated by a single number in a single column and apply to every PUSCH transmission defined in the row (i.e., joint configuration) .
  • the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions.
  • parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table.
  • the BS 105 transmits a DCI configuration to the UE 115.
  • the DCI configuration may indicate a row of the TDRA table to the UE 115, thereby activating the transmissions defined by that row.
  • the UE 115 determines PUSCH resource (slot) availability.
  • UE 115 may determine a slot’s availability based on RRC configured parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst.
  • a slot may not be available for PUSCH transmission, for example, when the slot is configured for downlink.
  • a slot may be available for two different PUSCH transmissions if their respective SLIV configurations cause them to not overlap when scheduled within the same slot.
  • the UE 115 determines PUSCH resource allocations. Based on the configurations in the TDRA table, the row indicated via DCI, and the slot availability, the UE 115 may allocate specific PUSCH transmissions to the available slots. In some aspects, the method by which transmissions are allocated to slots is based on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC.
  • a TDRA row may include two PUSCH transmissions, each with a two-slot TBoMS, and each configured to have two repetitions.
  • UE 115 may determine to allocate the first repetition of the first TBoMS to the first available slots.
  • UE 115 may allocate the second repetition of the first TBoMS in the subsequent available slots.
  • UE 115 may allocate the first repetition of the second TBoMS in the subsequent available slots.
  • UE 115 may allocate the second repetition of the second TBoMS in the subsequent available slots.
  • the slot that each PUSCH starts at may be defined by a parameter K2 which is configured via RRC.
  • K2 may be configured either jointly, or individually for each configured PUSCH.
  • K2 may be defined as the offset between the DL slot where the DCI for UL scheduling is received and the slot where the PUSCH begins. This is one example of an order in which UE 115 may allocate slots. Other examples are discussed below with reference to FIGS. 5-15.
  • the UE 115 determines overlapped resource allocations and resource allocations beyond a threshold.
  • the first allocation of the next TB e.g., the second TB
  • the current TB e.g., the first TB
  • M*N the number of available slots.
  • a threshold may be configured or otherwise predefined by a rule, beyond which resources may not be allocated. For example, a certain number of slots beyond the scheduling DCI (either in terms of physical slots or available slots) .
  • the UE 115 cancels overlapped resource allocations, and resource allocations beyond the threshold. If UE 115 determines that a PUSCH with its repetitions cannot be completely mapped as another PUSCH is also mapped to at least one of the same slots, UE 115 may cancel the overlapped slot (s) . UE 115 may cancel more than the overlapped slot (s) , either based on a predefined rule or a configuration. For example, UE 115 may cancel all slots of a TB repetition where any slot of that TB repetition is overlapped. In another example, UE 115 may cancel all slots of all repetitions of a TB if any slot of that TB is overlapped.
  • UE 115 may cancel either only the slots beyond the threshold, or the repetition which has a portion beyond the threshold, or the entire TB which has a portion beyond the threshold. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
  • the UE 115 transmits the PUSCH transmissions to the BS 105.
  • the transmissions occur according to the configuration, the mapping as determined by the UE, and any cancellations that occurred.
  • FIG. 3 is a block diagram of an exemplary BS 300 according to some aspects of the present disclosure.
  • the BS 300 may be a BS 105 as discussed in FIG. 1.
  • the BS 300 may include a processor 302, a memory 304, a scheduling module 308, a transceiver 310 including a modem subsystem 312 and a RF unit 314, and one or more antennas 316.
  • These elements may be coupled with one another.
  • the term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for example via one or more buses.
  • BS 300 may be monolithic, or may be disaggregated, comprising of multiple component parts which together perform the functions of a BS 300.
  • BS 300 may be composed of a remote unit (RU) , distributed unit (DU) , and/or central unit (CU) as discussed below with reference to FIG. 17.
  • Functions described as being performed by BS 300 may be performed by one or more of these disaggregated sub-components.
  • a function described a being performed by BS 300 may be performed solely by a RU, or in some aspects it may be performed jointly by a DU and a RU.
  • physical components of BS 300 may be disaggregated.
  • processor 302 may be composed of a processor in a DU and a processor in a CU.
  • the processor 302 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 302 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 304 may include a cache memory (e.g., a cache memory of the processor 302) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 304 may include a non-transitory computer-readable medium.
  • the memory 304 may store instructions 306.
  • the instructions 306 may include instructions that, when executed by the processor 302, cause the processor 302 to perform operations described herein, for example, aspects of FIGS. 1-2, 5-13, and 16. Instructions 306 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 302) to control or command the wireless communication device to do so.
  • processors such as processor 302
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc.
  • “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the scheduling module 308 may be implemented via hardware, software, or combinations thereof.
  • the scheduling module 308 may be implemented as a processor, circuit, and/or instructions 306 stored in the memory 304 and executed by the processor 302.
  • the scheduling module 308 can be integrated within the modem subsystem 312.
  • the scheduling module 308 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 312.
  • the scheduling module 308 may communicate with one or more components of BS 300 to implement various aspects of the present disclosure, for example, aspects of FIGS. 1-2, 5-13, and 16.
  • the scheduling module 308 may configure a UE 115 to perform multiple PUSCH transmissions (multi-PUSCH) .
  • the configuration may be performed by RRC communication to the UE 115.
  • Certain configuration parameters may be contained in a TDRA table which the scheduling module 308 configures. For example, TBs may be configured to extend over multiple slots (TBoMS) and may be configured to repeat a number of times.
  • Scheduling module 308 may also indicate to a UE 115 a direction (e.g., UL or DL) for each slot which may be used by the UE 115 in order to determine slot availability.
  • RRC parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst may be transmitted by scheduling module 308 to the UE 115.
  • scheduling module 308 may transmit a DCI message to the UE 115 indicating a row of the TDRA table to activate the PUSCH transmissions configured in the indicated row.
  • the BS 300 will then receive the configured PUSCH transmissions from the UE 115.
  • the transceiver 310 may include the modem subsystem 312 and the RF unit 314.
  • the transceiver 310 can be configured to communicate bi-directionally with other devices, such as the UEs 115, 215 and/or BS 300 and/or another core network element.
  • the modem subsystem 312 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 314 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., RRC configurations, PDCCH DCIs, etc.
  • modulated/encoded data e.g., RRC configurations, PDCCH DCIs, etc.
  • the RF unit 314 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 312 and/or the RF unit 314 may be separate devices that are coupled together at the BS 300 to enable the BS 300 to communicate with other devices.
  • the RF unit 314 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 316 for transmission to one or more other devices.
  • the antennas 316 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 310.
  • the transceiver 310 may provide the demodulated and decoded data (e.g., PUSCH data, etc. ) to the scheduling module 308 for processing.
  • the antennas 316 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the BS 300 can include multiple transceivers 310 implementing different RATs (e.g., NR and LTE) .
  • the BS 300 can include a single transceiver 310 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 310 can include various components, where different combinations of components can implement different RATs.
  • FIG. 4 is a block diagram of an exemplary UE 400 according to some aspects of the present disclosure.
  • the UE 400 may be a UE 115 as discussed above in FIG. 1.
  • the UE 400 may include a processor 402, a memory 404, a resource allocation module 408, a transceiver 410 including a modem subsystem 412 and a radio frequency (RF) unit 414, and one or more antennas 416.
  • These elements may be coupled with one another.
  • the term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 402 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 402 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 404 may include a cache memory (e.g., a cache memory of the processor 402) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 404 includes a non-transitory computer-readable medium.
  • the memory 404 may store, or have recorded thereon, instructions 406.
  • the instructions 406 may include instructions that, when executed by the processor 402, cause the processor 402 to perform the operations described herein with reference to a UE 115 in connection with aspects of the present disclosure, for example, aspects of FIGS. 1-2 and 5-15. Instructions 406 may also be referred to as code, which may include any type of computer-readable statements.
  • the resource allocation module 408 may be implemented via hardware, software, or combinations thereof.
  • the resource allocation module 408 may be implemented as a processor, circuit, and/or instructions 406 stored in the memory 404 and executed by the processor 402.
  • the resource allocation module 408 may be configured to perform actions described with reference to FIGS. 1-2 and 5-15.
  • resource allocation module 408 may receive an RRC configuration from a BS 105.
  • the RRC configuration may be used to configure a TDRA table.
  • Configuration parameters may be received over multiple RRC messages at different times.
  • Configurations may include configuring multi-PUSCH transmissions.
  • the TB associated with a PUSCH transmission may be configured to be one or more slots wide. When more than one slot, it is considered to be a TBoMS.
  • the RRC configuration may configure repetitions of the PUSCH transmissions. These repetitions are repetitions of the data, not just the resource allocations.
  • the TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations.
  • Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length.
  • SIV start and length indicator value
  • certain configuration parameters exist in a single column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated by a single number in a single column and apply to every PUSCH transmission defined in the row (i.e., joint configuration) .
  • the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions.
  • parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table.
  • Resource allocation module 408 may receive a DCI configuration from the BS 105 which indicates a row of the TDRA table. In response, resource allocation modeul 408 may determine how PUSCH transmissions will be allocated among slots. First, resource allocation module 408 may determine PUSCH resource (slot) availability based on, for example, RRC configured parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst. A slot may not be available for PUSCH transmission, for example, when the slot is configured for downlink. A slot may be available for two different PUSCH transmissions if their respective SLIV configurations cause them to not overlap when scheduled within the same slot.
  • the method by which transmissions are allocated to the available slots is based on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC. Examples of slot allocation methods are discussed below with reference to FIGS. 5-15.
  • resource allocation module 408 may determine that some allocations overlap. This may occur, for example, when a first PUSCH including its repetitions extends beyond the starting point of a second PUSCH as defined by the K2 parameter. Based on the overlapping of allocations, resource allocation module 408 may cancel one or more resources. For example, it may cancel only the overlapped slots, or every slot of that repetition, or every slot of that TB, depending either on a configuration or a predefined rule. Additionally, a threshold number of slots (either physical slots or available slots) may be defined which limits how far a PUSCH may be allocated beyond the scheduling DCI. Resource allocation module 408 may likewise cancel one or more slots of an allocation based on the allocation being beyond the threshold. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
  • resource allocation module may transmit the PUSCH transmissions accordingly.
  • the transceiver 410 may include the modem subsystem 412 and the RF unit 414.
  • the transceiver 410 can be configured to communicate bi-directionally with other devices, such as the BSs 105 and 300.
  • the modem subsystem 412 may be configured to modulate and/or encode the data from the memory 404, the resource allocation module 408 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 414 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., PUSCH data, etc. ) or of transmissions originating from another source such as a UE 115, a BS 105, or an anchor.
  • the RF unit 414 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 410, the modem subsystem 412 and the RF unit 414 may be separate devices that are coupled together at the UE 400 to enable the UE 400 to communicate with other devices.
  • the RF unit 414 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 416 for transmission to one or more other devices.
  • the antennas 416 may further receive data messages transmitted from other devices.
  • the antennas 416 may provide the received data messages for processing and/or demodulation at the transceiver 410.
  • the transceiver 410 may provide the demodulated and decoded data (e.g., RRC configurations, PDCCH DCIs, etc. ) to the resource allocation module 408 for processing.
  • the antennas 416 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the UE 400 can include multiple transceivers 410 implementing different RATs (e.g., NR and LTE) .
  • the UE 400 can include a single transceiver 410 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 410 can include various components, where different combinations of components can implement different RATs.
  • FIG. 5 illustrates an exemplary resource allocation diagram 500 according to some aspects of the present disclosure.
  • Diagram 500 illustrates a number of slots in a radio frame structure. The configured direction of each slot is indicated at the top by a letter S for special slots, U for uplink slots, and D for downlink slots.
  • Each row of resources in diagram 500 illustrates the same allocation method, but with different configuration parameters.
  • the first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row.
  • the configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
  • the examples illustrated in diagram 500 include multi-PUSCH, and TBoMS, but no repetitions. Allocations are illustrated according to a method where TBoMS of a first TB is mapped to a first quantity of available slots, e.g., N1, followed by TBoMS of a second TB mapped to a second quantity of available slots, e.g., N2, and the same mapping continues to the TBoMS of the remaining TBs.
  • This may be described as TBoMS-priority mapping as all transmission occasions of TBoMS (TOT) of a single TBoMS are allocated one after another.
  • TOT TBoMS
  • TBoMS-priority mapping is a predefined rule, and in other aspects it is configurable, for example via RRC.
  • DCI 502 schedules two PUSCHs associated with TB1 and TB2.
  • the TBoMS of TB1 TOTs 504 and 506 are allocated to the first two available slots.
  • the TBoMS of TB2 TOTs 508 and 510 are allocated to the next two available slots.
  • DCI 512 schedules two PUSCHs associated with TB1 and TB2.
  • the TBoMS of TB1 TOTs 514 and 516 are allocated to the first two available slots.
  • the TBoMS of TB2 TOTs 518, 520, 522, and 524 are allocated to the next four available slots.
  • the first TOT of the TBoMS of TB2 is configured by the parameter K2.
  • FIG. 5 thus illustrates an exemplary resource allocation following the TBoMS-priority mapping method.
  • Non-TBoMS-priority mapping is discussed below with reference to FIG. 6.
  • the parameters illustrated in FIG. 5 are exemplary, and the allocation pattern described may be extended to different values of N, different SLIV configurations, etc.
  • FIG. 6 illustrates an exemplary resource allocation diagram 600 according to some aspects of the present disclosure.
  • Diagram 600 illustrates a number of slots in a radio frame structure. The configured direction of each slot is indicated at the top by a letter S for special slots, U for uplink slots, and D for downlink slots.
  • Each row of resources in diagram 600 illustrates the same allocation method, but with different configuration parameters.
  • the first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row.
  • the configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
  • the examples illustrated in diagram 600 include multi-PUSCH, and TBoMS, but no repetitions. Allocations are illustrated according to a method where the first TOT for each TB are sequentially mapped to a first quantity of available slots followed by the second TOT of each TB, until all TOTs of each TBoMS are mapped to the slots.
  • This may be described as non-TBoMS-priority mapping as TOTs of different TBoMSs are cycled together before continuing to allocate the next TOTS of each TBoMS, as opposed to TBoMS-priority mapping described with reference to FIG. 5 where each TOT of a TB are transmitted without other TOTs of other TBs interspersed.
  • non-TBoMS-priority mapping is a predefined rule, and in other aspects it is configurable, for example via RRC.
  • DCI 602 schedules two PUSCHs associated with TB1 and TB2.
  • the first TOT 604 of the TBoMS of TB1 is allocated to the first available slot.
  • the first TOT 606 of TBoMS of TB2 is allocated to the next available slot.
  • the second TOT 608 of the first TBoMS of TB1 is allocated, followed by the second TOT 610 of the second TBoMS of TB2.
  • the multi-PUSCH transmissions are non-contiguous, as each TOT utilizes its own slot.
  • the respective SLIV of each PUSCH is such that where each starts in a slot and their corresponding length as indicated by their SLIV are compatible so that they may be allocated to the same slot.
  • the first two slots as illustrated are considered available for both TBs.
  • DCI 612 schedules PUSCHs associated with TB1 and TB2.
  • the first slot after the DCI is available for the first TOT 614 of TB1 and the first TOT 616 of TB2 so they are both allocated to that slot.
  • the next slot is available for the first TOT 618 of TB1 and the second TOT 620 of TB2 so they are both allocated to that slot.
  • the Multi-PUSCH is contiguous.
  • the first TOT 624 of the TBoMS of TB1 is allocated to the first available slot.
  • the first TOT 626 of TBoMS of TB2 is allocated to the next available slot.
  • the second TOT 628 of the first TBoMS of TB1 is allocated, followed by the second TOT 630 of the second TBoMS of TB2. Since the TBoMS of TB2 is longer than the TBoMS of TB1, the remaining available slots are allocated to the rest of TB2, where the next available slots are allocated to the last two TOTs 632 and 634 of TB2.
  • DCI 636 schedules PUSCHs associated with TB1 and TB2.
  • the first slot after the DCI is available for the first TOT 638 of TB1 and the first TOT 640 of TB2 so they are both allocated to that slot.
  • the next slot is available for the second TOT 642 of TB1 and the second TOT 644 of TB2 so they are both allocated to that slot.
  • the next two available slots are allocated to the final TOTs 646 and 648 of the TBoMS of TB2.
  • FIG. 6 thus illustrates an exemplary resource allocation following the non-TBoMS-priority mapping method.
  • Different mapping methods including accounting for PUSCH repetitions are described with reference to FIG. 7 below.
  • the parameters illustrated in FIG. 6 are exemplary, and the allocation pattern described may be extended to different values of N, different SLIV configurations, etc.
  • FIG. 7 illustrates an exemplary resource allocation diagram 700 according to some aspects of the present disclosure.
  • Diagram 700 illustrates a number of slots in a radio frame structure. For simplicity, only available slots are illustrated.
  • Each row of resources in diagram 700 illustrates the same allocation method, but with different configuration parameters.
  • the first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row.
  • the configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
  • the examples illustrated in diagram 700 include multi-PUSCH, and TBoMS as were present in the examples of FIG. 5 and 6.
  • PUSCH repetitions are also included in diagram 700.
  • Allocations are illustrated according to a method where the TBoMSs are allocated sequentially. Specifically, repetitions of TBoMS for the first TB are mapped to a first quantity of available slots, e.g., N1*M1, repetitions of TBoMS for the second TB are mapped to a second quantity of available slots, e.g., N2*M2, and the same mapping continues to the repetitions of TBoMS of the remaining TBs. This may be described as sequential TBoMS mapping.
  • sequential TBoMS mapping is a predefined rule, and in other aspects it is configurable, for example via RRC. As illustrated, the sequential TBoMS mapping is performed with TBoMS-priority mapping, however in other aspects, sequential TBoMS mapping may be used in combination with non-TBoMS-priority mapping.
  • DCI 702 schedules two PUSCHs associated with TB1 and TB2.
  • the first two slots are allocated to the first repetition of TOTs 704 and 706 of the TBoMS of TB1.
  • the next available slots are allocated to the second repetition of TOTs 708 and 710 of the TBoMS of TB1.
  • the next available slots are allocated to the first and second repetitions of TOTs 712, 714, 716, and 718 of the TBoMS of TB2.
  • Diagram 700 also shows the K2 parameter values. Specifically, K2_1 (the K2 parameter for TB1) has a value of 1, and K2_2 (the K2 parameter for TB2) has a value of 5. This configuration ensures that the first TB starts one slot after the scheduling DCI 702 and the second TB starts 5 slots after the scheduling DCI. Scenarios where the second TB is configured to start before all of the prior TBs slots being allocated are discussed with reference to FIGS. 10-11.
  • TB2 is then allocated to the next available slots, however with more slots allocated due to more slots being configured for its TBoMS.
  • TBoMS portions 730, 732, 734, and 736 of the first repetition then TBoMS portions 738, 740, 742, and 744 of the second repetition.
  • FIG. 7 thus illustrates an exemplary resource allocation following the sequential TBoMS mapping method.
  • FIGS. 8-9 below illustrate a cyclic TBoMS mapping.
  • the parameters illustrated in FIG. 7 are exemplary, and the allocation pattern described may be extended to different values of N, M, different SLIV configurations, etc.
  • FIGS. 8-9 illustrate exemplary resource allocation diagrams 800 and 900 according to some aspects of the present disclosure.
  • Diagrams 800 and 900 viewed together, illustrate a number of slots in a radio frame structure. For simplicity, only available slots are illustrated.
  • Each row of resources in diagrams 800 and 900 illustrates the same allocation method, but with different configuration parameters.
  • the first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row.
  • the configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
  • the examples illustrated in diagrams 800 and 900 include multi-PUSCH, and TBoMS, and repetitions. Rather than being allocated according to the sequential TBoMS mapping described with reference of FIG. 7, Allocations are illustrated according to a cyclic TBoMS mapping method. Under this method, the first repetition of the first TBoMS is mapped to a first quantity of available slots, e.g., N1 slots, the first repetition of the second TBoMS is mapped to a second quantity of available slots, e.g., N2 slots. This mapping continues to the first repetition of remaining TBoMSs.
  • cyclic TBoMS mapping is a predefined rule, and in other aspects it is configurable, for example via RRC. As illustrated, the cyclic TBoMS mapping is performed with TBoMS-priority mapping, however in other aspects, sequential TBoMS mapping may be used in combination with non-TBoMS-priority mapping.
  • DCI 802 schedules two PUSCHs associated with TB1 and TB2.
  • the first two slots are allocated to the first repetition of the TBoMS of TB1, TOTs 804 and 806.
  • the next two slots are allocated to the first repetition of the TBoMS of TB2, TOTs 808 and 810.
  • the repetitions of each of the TBs are allocated, specifically the second repetition of the TBoMS of TB1, TOTs 812 and 814, followed by the second repetition of the TBoMS of TB2, TOTs 816 and 818.
  • DCI 902 schedules two PUSCHs associated with TB1 and TB2.
  • the first two slots are allocated to the first repetition of the TBoMS of TB1, TOTs 904 and 906.
  • the next two slots are allocated to the first repetition of the TBoMS of TB2, TOTs 908 and 910.
  • the repetitions of each of the TBs are allocated, specifically the second repetition of the TBoMS of TB1, TOTs 912 and 914, followed by the second repetition of the TBoMS of TB2, TOTs 916 and 918.
  • the next slots are allocated to the third repetition of the TBoMS of TB1, TOTs 920 and 922, and the fourth repetition of the TBoMS of TB1, TOTs 924 and 926.
  • DCI 928 schedules two PUSCHs associated with TB1 and TB2.
  • the first two slots are allocated to the first repetition of the TBoMS of TB1, TOTs 930 and 932.
  • the next four slots are allocated to the first repetition of the TBoMS of TB2, TOTs 934, 936, 938, and 940.
  • the repetitions of each of the TBs are allocated, specifically the second repetition of the TBoMS of TB1, TOTs 942 and 944, followed by the second repetition of the TBoMS of TB2, TOTs 946, 948, 950, and 952.
  • FIGS. 8-9 thus illustrate an exemplary resource allocation following the cyclic TBoMS mapping method.
  • the parameters illustrated in FIGS> 8-9 are exemplary, and the allocation pattern described may be extended to different values of N, M, different SLIV configurations, etc.
  • FIG. 10 illustrates an exemplary resource allocation diagram 1000 according to some aspects of the present disclosure.
  • Diagram 1000 illustrates a number of slots in a radio frame structure. For simplicity, only available slots are illustrated.
  • Each row of resources in diagram 1000 illustrates the same allocation method, but with different configuration parameters.
  • the allocation method illustrated in diagram 1000 is the same as the allocation method described with reference to diagram 700 of FIG. 7, sequential TBoMS mapping with TBoMS priority mapping.
  • the K2 parameters are such that the second TB is allocated before all slots of the first TB are allocated causing an overlap in resources.
  • the first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row.
  • the configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
  • Each pair of rows in diagram 1000 representing concurrent allocations of TB1 and TB2, illustrate a different option for handling the overlapping resources.
  • the initial resource allocations are the same for each pair of rows.
  • a UE 115 determines to resolve an overlap in resource allocations in this context may be either a predefined rule, or configured, for example via RRC.
  • the first option for resolution of the overlap is illustrated in the first pair of rows.
  • the UE 115 cancels the TOT that is after the starting slot of the next TB. In this case, only TOT 1010 is cancelled.
  • the second option for resolution of the overlap is illustrated in the next pair of rows, where the entire repetition is cancelled where any TOT in that repetition is overlapped. Specifically, in this case TOTs 1008 and 1010 are cancelled, even though only TOT 1010 is overlapped.
  • every TOT of a TB is cancelled if any are overlapped. Specifically in this example, TOTs 1004, 1006, 1008, and 1010 are cancelled even though only TOT 1010 is overlapped.
  • FIG. 11 illustrates the same cancellation options for overlapping resources, only in the context of a different resource allocation method.
  • the allocation method illustrated in FIG. 11 is cyclic TBoMS mapping with TBoMS priority mapping, as is also illustrated in FIGS. 8-9.
  • the initial resource allocations are the same for each pair of rows in diagram 1100.
  • TOTs 1108 and 1110 of the second repetition of TB1 and TOTs 1116 and 1118 of the second repetition of TB2 do not overlap.
  • having a K2 parameter forces a TB to be allocated at a certain starting slot which may cause an overlap, but slots after that point may be allocated according to availability including if another TB is scheduled for that slot.
  • How a UE 115 determines to resolve an overlap in resource allocations in this context may be either a predefined rule, or configured, for example via RRC.
  • the first option for resolution of the overlap is illustrated in the first pair of rows.
  • the UE 115 cancels the TOT that is after the starting slot of the next TB. In this case, only TOT 1106 is cancelled.
  • the second option for resolution of the overlap is illustrated in the next pair of rows, where the entire repetition is cancelled where any TOT in that repetition is overlapped. Specifically, in this case TOTs 1104 and 1106 are cancelled, even though only TOT 1106 is overlapped.
  • every TOT of a TB is cancelled if any are overlapped. Specifically in this example, TOTs 1104, 1106, 1108, and 1110 are cancelled even though only TOT 1106 is overlapped. Note that in this instance the second repetition of TB2 may be allocated earlier than in the other examples as the cancellation of TB1 frees those slots for allocation.
  • FIG. 12 illustrates an exemplary resource allocation diagram 1200 according to some aspects of the present disclosure.
  • Diagram 1200 illustrates a number of slots in a radio frame structure. For simplicity, only available slots are illustrated.
  • Each row of resources in diagram 1200 illustrates the same allocation method, but with different configuration parameters.
  • the first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row.
  • the configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
  • FIG. 12 is illustrating options for cancelling resource allocations when those allocations exceed a predetermined upper limit in terms of distance from a scheduling DCI.
  • an upper limit from a scheduling DCI to a TOT allocation may be set.
  • the distance may be in terms of physical slots, or alternatively in terms of available slots.
  • an upper limit is defined as 8 slots (either in terms of physical or available slots) . This results in the final TOT 1218 to be allocated past the upper limit.
  • How a UE 115 determines to resolve a resource allocation past the upper limit in this context may be either a predefined rule, or configured, for example via RRC.
  • the entire repetition is cancelled where any TOT of the repetition is past the upper limit. In this example, that is TOTs 1216 and 1218.
  • the entire TB is cancelled where any part of that TB is past the upper limit. In this example, that is TOTs 1212, 1214, 1216, and 1218.
  • FIG. 13 illustrates the same cancellation options for resources allocated beyond a threshold, only in the context of a different resource allocation method.
  • the allocation method illustrated in FIG. 13 is cyclic TBoMS mapping with TBoMS priority mapping, as is also illustrated in FIGS. 8-9.
  • the first repetition of TB1, TOTs 1304 and 1306, are allocated in the first two available slots after scheduling DCI 1302.
  • the first repetition of TB2, TOTs 1308 and 1310 are allocated.
  • the second repetitions of TB1 and TB2 are allocated, TOTs 1312, 1314, 1316, and 1318.
  • the upper limit as illustrated is 8 slots, which results in TOT 1318 being allocated past the upper limit. How a UE 115 determines to resolve a resource allocation past the upper limit in this context may be either a predefined rule, or configured, for example via RRC.
  • TOT 1318 In the first option illustrated in the first row, only the TOTs beyond the upper limit are cancelled, in this example TOT 1318.
  • the entire repetition is cancelled where any TOT of the repetition is past the upper limit. In this example, that is TOTs 1316 and 1318.
  • the entire TB is cancelled where any part of that TB is past the upper limit. In this example, that is TOTs 1308, 1310, 1316, and 1318. Note that in this scenario, TOTs are cancelled in slots before other uncancelled TOT allocations. In some aspects, TOTs may be reallocated earlier in place of cancelled TOT allocations.
  • TOTs 1312 and 1314 of the second repetition of TB1 may be allocated in the slots after the first repetition of TB1.
  • FIG. 14 is a flowchart of a method 1400 according to some aspects of the present disclosure.
  • the method 1400 may be performed by a UE, such as a UE 115 or 400.
  • the UE 115 may utilize one or more components, such as the processor 402, the memory 404, the resource allocation module 408, the transceiver 410, the modem 412, and the one or more antennas 416 shown in FIG. 4.
  • the method 1400 includes a number of enumerated actions, but aspects of the method 1400 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
  • UE 115 receives an RRC configuration message configuring multi-PUSCH, TBoMS, and PUSCH repetitions.
  • the RRC configuration may be used to configure a TDRA table. While illustrated as a single RRC message, configuration parameters may be sent over multiple RRC messages at different times. While all three types of configurations may be used together as described below, in some aspects the UE 115 may receive an RRC configuration that only utilized one or two, for example multi-PUSCH and TBoMS but with no repetitions.
  • the parameters used for configuration may be pusch-TimeDomainAllocationListForMultiPUSCH for mult-PUSCH, and numberOfSlotsTBoMS for TBoMS. In some aspects, a separate parameters is used to enable multi-PUSCH and TBoMS together.
  • the TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations.
  • Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length.
  • SIV start and length indicator value
  • certain configuration parameters exist in a single column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated in a single column and apply to every PUSCH transmission defined in the row (i.e., joint configuration) . Similarly, the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions.
  • parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table.
  • a DCI message may indicate the row, and thereby schedule the resources defined therein.
  • the UE 115 determines PUSCH resource (slot) availability.
  • UE 115 may determine a slot’s availability based on RRC configured parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst.
  • a slot may not be available for PUSCH transmission, for example, when the slot is configured for downlink.
  • a slot may be available for two different PUSCH transmissions if their respective SLIV configurations cause them to not overlap when scheduled within the same slot, for example as discussed with reference to FIG. 6.
  • the UE 115 determines PUSCH resource allocations. Based on the configurations in the TDRA table, the row indicated via DCI, and the slot availability, the UE 115 may allocate specific PUSCH transmissions to the available slots. In some aspects, the method by which transmissions are allocated to slots is based on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC. Methods of allocation are discussed above with reference to FIGS. 5-13.
  • a TDRA row may include two PUSCH transmissions, each with a two-slot TBoMS, and each configured to have two repetitions.
  • UE 115 may determine to allocate the first repetition of the first TBoMS to the first available slots.
  • UE 115 may allocate the second repetition of the first TBoMS in the subsequent available slots.
  • UE 115 may allocate the first repetition of the second TBoMS in the subsequent available slots.
  • UE 115 may allocate the second repetition of the second TBoMS in the subsequent available slots.
  • the slot that each PUSCH starts at may be defined by a parameter K2 which is configured via RRC.
  • K2 may be configured either jointly, or individually for each configured PUSCH.
  • K2 may be defined as the offset between the DL slot where the DCI for UL scheduling is received and the slot where the PUSCH begins. This is one example of an order in which UE 115 may allocate slots.
  • the UE 115 determines overlapped resource allocations and resource allocations beyond a threshold.
  • the first allocation of the next TB e.g., the second TB
  • the current TB e.g., the first TB
  • M*N the number of available slots.
  • a threshold may be configured or otherwise predefined by a rule, beyond which resources may not be allocated. For example, a certain number of slots beyond the scheduling DCI (either in terms of physical slots or available slots) .
  • the UE 115 cancels overlapped resource allocations, and resource allocations beyond the threshold. If UE 115 determines that a PUSCH with its repetitions cannot be completely mapped as another PUSCH is also mapped to at least one of the same slots, UE 115 may cancel the overlapped slot (s) . UE 115 may cancel more than the overlapped slot (s) , either based on a predefined rule or a configuration. For example, UE 115 may cancel all slots of a TB repetition where any slot of that TB repetition is overlapped. In another example, UE 115 may cancel all slots of all repetitions of a TB if any slot of that TB is overlapped.
  • UE 115 may cancel either only the slots beyond the threshold, or the repetition which has a portion beyond the threshold, or the entire TB which has a portion beyond the threshold. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
  • the UE 115 transmits the PUSCH transmissions to the BS 105.
  • the transmissions occur according to the configuration, the mapping as determined by the UE, and any cancellations that occurred.
  • FIG. 15 is a flowchart of a method 1500 according to some aspects of the present disclosure.
  • the method 1500 may be performed by a UE, such as a UE 115 or 400.
  • the UE 115 may utilize one or more components, such as the processor 402, the memory 404, the resource allocation module 408, the transceiver 410, the modem 412, and the one or more antennas 416 shown in FIG. 4.
  • the method 1500 includes a number of enumerated actions, but aspects of the method 1500 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
  • UE 115 receives an RRC configuration message configuring multi-PUSCH, TBoMS, and PUSCH repetitions. This may occur as described with reference to block 1405 of FIG. 14.
  • UE 115 determines PUSCH resource availability. This may be performed similarly to block 1410 of FIG. 14.
  • UE 115 determines whether TBoMS-priority mapping is selected. This mapping style may either be a predefined, standardized rule, or may be configurable, for example via RRC. If the mapping type is standardized, then decision block 1515 may not actually be an action performed by the UE 115, but rather it would always map in the predefined way. If TBoMS-priority mapping is used, then the method continues to decision block 1520.
  • the UE determines whether Sequential TBoMS mapping is selected. Similar to decision block 1515, this may be a determination that UE 115 makes based on a configuration, or it may be based on a predefined rule, such that UE 115 does not have to make an actual determination at block 1520. If sequential TBoMS mapping is selected, then the method continues to block 1530, otherwise it continues to block 1535. In the case that at decision block 1515, TBoMS-priority mapping was not selected, then the method would continue to decision block 1525 which is making the same determination as decision block 1520. In the case where TBoMS-priority mapping is not selected and sequential TBoMS mapping is also not selected, the method continues to block 1540. In the case where TBoMS-priority mapping is not selected but sequential TBoMS mapping is selected, then the method continues to block 1545.
  • UE 115 allocates the first TB and its repetitions before the second TB and its repetitions, and so on. Examples of this allocation method are discussed above with reference to FIG. 7.
  • UE 115 allocates the first TB, then the second TB, then repetitions of the first and second TB, and so on. Examples of this allocation method are discussed above with reference to FIG. 8.
  • UE 115 allocates the first slot of each TB, then the second slot of each TB, then repetitions of each TB.
  • This allocation method is similar to that of block 1535, except that slots of a specific TB are not allocated sequentially, but rather cyclically where the first slots of each TB are allocated, then the second slots and so on.
  • UE 115 allocates the first slot of each TB, then repetitions of the first slots, then the second slot of each TB, then repetitions of the second slots, and so on.
  • This allocation method is similar to that of block 1530, except that slots of a specific TB are not allocated sequentially, but rather cyclically where the first slots of each TB are allocated, then the second slots and so on.
  • UE 115 determines overlapped resource allocations and resource allocations beyond a threshold. This is done similarly to block 1420 of FIG. 14.
  • the UE 115 cancels overlapped resource allocations, and resource allocations beyond the threshold. This is done similarly to block 1425 of FIG. 14.
  • the UE 115 transmits the PUSCH transmissions to the BS 105.
  • the transmissions occur according to the configuration, the mapping as determined by the UE, and any cancellations that occurred. This is done similarly to block 1430 of FIG. 14.
  • FIG. 16 is a flowchart of a method 1600 according to some aspects of the present disclosure.
  • the method 1600 may be performed by a BS, such as a BS 105 or 300.
  • the BS 105 may utilize one or more components, such as the processor 302, the memory 304, the scheduling module 308, the transceiver 310, the modem 312, and the one or more antennas 316 shown in FIG. 3.
  • the method 1600 includes a number of enumerated actions, but aspects of the method 1600 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
  • a BS 105 transmits an RRC message configuring multi-PUSCH, TBoMS, and PUSCH repetitions.
  • the RRC configuration may be used to configure a TDRA table. While illustrated as a single RRC message, configuration parameters may be sent over multiple RRC messages at different times. While all three types of configurations may be used together as described below, in some aspects the UE 115 may receive an RRC configuration that only utilized one or two, for example multi-PUSCH and TBoMS but with no repetitions.
  • the TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations.
  • Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length.
  • SIV start and length indicator value
  • certain configuration parameters exist in a single column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated in a single column and apply to every PUSCH transmission defined in the row (i.e., joint configuration) . Similarly, the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions.
  • parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table.
  • BS 105 transmits a DCI message indicating a row of the TDRA table. This effectively activate the configuration, and thereby schedule the resources defined therein.
  • BS 105 receives the multiple PUSCHs with TBoMS and PUSCH repetitions as defined by the RRC and DCI configurations.
  • different combinations of PUSCHs, TBoMS and repetitions may be received.
  • multiple PUSCHs may be received, with different TBoMS lengths (e.g., 2, 4, 8) but without repetitions.
  • multiple PUSCHs may be received, each with different amounts of repetitions (e.g., 2, 4, 8) but without TBoMS.
  • a single PUSCH may be received with TBoMS and multiple repetitions.
  • FIG. 17 illustrates an example of a disaggregated RAN architecture 1700 that supports remote unit (RU) sharing techniques in wireless communications in accordance with aspects of the present disclosure.
  • the disaggregated RAN architecture 1700 may implement aspects of wireless communications system 100.
  • One or more of the elements discussed with respect to RAN architecture 1700 may be a network entity which performs one or more functions described with reference to FIGS. 2-16.
  • a central unit (CU) 1705 may be interconnected with multiple distributed units (DUs) 1710.
  • DUs distributed units
  • control plane (CP) functions of CU 1705 may be handled at a CU-CP component that communicates with DUs 1710 via a F1-C interface
  • user plane (UP) functions of CU 1705 may be handled at a CU-UP component that communicates with DUs 1710 via a F1-U interface.
  • Such a disaggregated RAN architecture may provide an open RAN (O-RAN) environment that provides mobile network operators an opportunity to diversify their network suppliers. Further, such an architecture may provide enhanced network redundancy, where multiple DUs 1710 may be connected to CU 1705 (or multiple CUs) , and multiple RUs 1715 may be connected to one or multiple DUs 1710.
  • O-RAN open RAN
  • Each RU 1715 may be a separate cell or a number of RUs 1715 can belong to the same cell.
  • one or more RUs 1715 may be shared RUs 1715 that may be interconnected with DUs 1710 of multiple different mobile network operators.
  • FIG. 18 shows a diagram of a system 1800 including a device 1805 that supports RU sharing techniques in wireless communications in accordance with aspects of the present disclosure.
  • the device 1805 may communicate with one or more RUs 1855.
  • the device 1805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1820, a network communications manager 1810, a memory 1830, code 1835, a processor 1840, and a RU communications manager 1845. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1850) .
  • One or more of the components of system 1800 may perform functions as described herein with reference to FIGS. 2-16, for example functions described as performed by a base station or network entity.
  • the network communications manager 1810 may manage communications with a core network 1860 (e.g., via one or more wired backhaul links) .
  • the network communications manager 1810 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the memory 1830 may include RAM and ROM.
  • the memory 1830 may store computer-readable, computer-executable code 1835 including instructions that, when executed by the processor 1840, cause the device 1805 to perform various functions described herein.
  • the code 1835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1835 may not be directly executable by the processor 1840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1840.
  • the processor 1840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1830) to cause the device 1805 to perform various functions (e.g., functions or tasks supporting RU sharing techniques in wireless communications) .
  • the device 1805 or a component of the device 1805 may include a processor 1840 and memory 1830 coupled to the processor 1840, the processor 1840 and memory 1830 configured to perform various functions described herein.
  • the RU communications manager 1845 may manage communications with Rus 1855, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with RUs 1855. For example, the RU communications manager 1845 may coordinate scheduling for transmissions to UEs 115. In some examples, the RU communications manager 1845 may provide an F1 interface within a wireless communications network technology to provide communication with RUs 1855.
  • the communications manager 1820 may support wireless communications at a network node in accordance with examples as disclosed herein.
  • the communications manager 1820 may be configured as or otherwise support a means for transmitting, to a first RU, a request for a wireless resource configuration for a first time period.
  • the communications manager 1820 may be configured as or otherwise support a means for transmitting, to a second RU, an interference inquiry associated with the wireless resource configuration for the first time period.
  • the communications manager 1820 may be configured as or otherwise support a means for receiving, from the second RU, a response to the interference inquiry.
  • the communications manager 1820 may be configured as or otherwise support a means for transmitting, based on the response to the interference inquiry, a payload to the first RU for transmission during the first time period.
  • the device 1805 may support techniques for RU sharing in which DUs of different MNOs may access wireless resources of other MNOs, which may increase efficiency of resource usage while provide for competition and innovation among different MNOs, may increase the reliability of wireless communications, decrease latency, and enhance user experience.
  • the communications manager 1820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with other components.
  • the communications manager 1820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1820 may be supported by or performed by the processor 1840, the memory 1830, the code 1835, or any combination thereof.
  • the code 1835 may include instructions executable by the processor 1840 to cause the device 1805 to perform various aspects of RU sharing techniques in wireless communications as described herein, or the processor 1840 and the memory 1830 may be otherwise configured to perform or support such operations.
  • a method of wireless communication comprising:
  • UE user equipment
  • multi-PUSCH multiple physical uplink shared channel
  • TBoMS transport block over multiple slots
  • Clause 3 The method of any of clauses 1-2, wherein the transmitting further comprises:
  • Clause 5 The method of clause 4, wherein the second available slot is determined based on an indicated K2 value for the second PUSCH TBoMS, or is subsequent to the first available slot after the indicated K2 value for the second PUSCH TBoMS.
  • Clause 6 The method of any of clauses 1-2, wherein component slots of each respective TBoMS are transmitted in an order that is determined based at least in part on a configuration received by the UE from the network entity.
  • a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs
  • transmitting further comprises:
  • a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs
  • transmitting further comprises:
  • Clause 12 The method of any of clauses 1-11, wherein the communication further indicates a maximum time between a downlink control information (DCI) and a slot scheduled by the DCI for a transport block (TB) transmission, further comprising:
  • DCI downlink control information
  • TB transport block
  • Clause 13 The method of any of clauses 1-12, wherein the communication comprises a downlink control information (DCI) message which indicates a row index of a time domain resource assignment (TDRA) table.
  • DCI downlink control information
  • TDRA time domain resource assignment
  • Clause 14 The method of any of clauses 1-13, wherein the communication comprises a radio resource control (RRC) message which indicates parameters for a time domain resource assignment (TDRA) table.
  • RRC radio resource control
  • TDRA time domain resource assignment
  • a user equipment comprising:
  • a transceiver configured to:
  • multi-PUSCH multiple physical uplink shared channel
  • TBoMS transport block over multiple slots
  • Clause 19 The UE of clause 18, wherein the second available slot is determined based on an indicated K2 value for the second PUSCH TBoMS, or is subsequent to the first available slot after the indicated K2 value for the second PUSCH TBoMS.
  • Clause 20 The UE of any of clauses 15-16, wherein component slots of each respective TBoMS are transmitted in an order that is determined based at least in part on a configuration received by the UE from the network entity.
  • a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs
  • transceiver is further configured to:
  • a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs
  • transceiver is further configured to:
  • Clause 26 The UE of any of clauses 15-25, wherein the communication further indicates a maximum time between a downlink control information (DCI) and a slot scheduled by the DCI for a transport block (TB) transmission, wherein the transceiver is further configured to:
  • DCI downlink control information
  • TB transport block
  • Clause 27 The UE of any of clauses 15-26, wherein the communication comprises a downlink control information (DCI) message which indicates a row index of a time domain resource assignment (TDRA) table.
  • DCI downlink control information
  • TDRA time domain resource assignment
  • Clause 28 The UE of any of clauses 15-27, wherein the communication comprises a radio resource control (RRC) message which indicates parameters for a time domain resource assignment (TDRA) table.
  • RRC radio resource control
  • TDRA time domain resource assignment
  • a method of wireless communication comprising:
  • multi-PUSCH multiple physical uplink shared channel
  • a network entity comprising:
  • a transceiver configured to:
  • UE user equipment
  • multi-PUSCH multiple physical uplink shared channel
  • TBoMS transport block over multiple slots
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) receives an RRC message configuring multi-PUSCH, transport block over multiple slots (TBoMS), and PUSCH repetitions. The UE determines which slots are allocated to which PUSCH, TBoMS, and repetitions according to the configuration, and transmits data using those allocated resources. In some aspects, a configurations which results in overlapping resources in time, or resources being allocated beyond a predefined threshold distance from a scheduling DCI, the UE is configured to cancel certain allocations based on a predefined rule or configuration.

Description

MULTI-PUSCH SCHEDULING WITH TBOMS TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to resource allocation with multi-PUSCH and TBoMS implemented together.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the long term evolution (LTE) technology to a next generation new radio (NR) technology, which may be referred to as 5 th Generation (5G) . For example, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum.
Wireless devices may flexibly schedule resources for data transmissions in a variety of ways, including scheduling multiple physical uplink shared channel (Multi-PUSCH) resources. Wireless devices may also schedule a single transport block (TB) over multiple slots (TBoMS) . Currently, there is no support in wireless devices for scheduling Multi-PUSCH together with TBoMS. There is a need in the art for techniques accounting for these methods being used together.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In one aspect of the disclosure, a method of wireless communication comprises receiving, by a user equipment (UE) from a network entity, a communication indicating: a multiple physical uplink shared channel (multi-PUSCH) configuration, and a transport block over multiple slots (TBoMS) configuration. The method further comprises transmitting, by the UE to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
In an additional aspect of the disclosure, a user equipment (UE) comprises a transceiver configured to receive, from a network entity, a communication indicating a multiple physical uplink shared channel (multi-PUSCH) configuration and a transport block over multiple slots (TBoMS) configuration. The transceiver is further configured to transmit, to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
In an additional aspect of the disclosure, a method of wireless communication comprises transmitting, by a network entity to a user equipment (UE) , a communication indicating a multiple physical uplink shared channel (multi-PUSCH) configuration and a transport block over multiple slots (TBoMS) configuration. The method further comprises receiving, by the network entity from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
In an additional aspect of the disclosure, a network entity comprises a transceiver configured to transmit, to a user equipment (UE) , a communication indicating a multiple physical uplink shared channel (multi-PUSCH) configuration and a transport block over multiple slots (TBoMS) configuration. The transceiver is further  configured to receive, from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary aspects in conjunction with the accompanying figures. While features may be discussed relative to certain aspects and figures below, all aspects can include one or more of the advantageous features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects discussed herein. In similar fashion, while exemplary aspects may be discussed below as device, system, or method aspects it should be understood that such exemplary aspects can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
FIG. 2 illustrates an exemplary communication protocol diagram according to some aspects of the present disclosure.
FIG. 3 illustrates a block diagram of an exemplary base station (BS) according to some aspects of the present disclosure.
FIG. 4 illustrates a block diagram of an exemplary user equipment (UE) according to some aspects of the present disclosure.
FIGS. 5-13 illustrate exemplary resource allocation diagrams according to some aspects of the present disclosure.
FIG. 14 illustrates a diagram of an exemplary method performed by a UE according to some aspects of the present disclosure.
FIG. 15 illustrates a diagram of an exemplary method performed by a UE according to some aspects of the present disclosure.
FIG. 16 illustrates a diagram of an exemplary method performed by a network entity according to some aspects of the present disclosure.
FIG. 17 illustrates an example portion of a wireless communications system that supports RU sharing techniques in wireless communications according to some aspects of the present disclosure.
FIG. 18 illustrates a diagram of a system including a device that supports RU sharing techniques in wireless communications according to some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some aspects, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various aspects, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various  radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
Rather than scheduling each PUSCH transmission individually, a BS may use RRC configuration parameters to configure multiple resources which may be activated by a single DCI message. For example, a BS may configure a time domain resource allocation table (TDRA) where each row of the table indicates the starting slot (relative to the scheduling DCI) and length of a number of PUSCH transmissions (i.e., multi-PUSCH) . Each PUSCH resource may be used by the UE to transmit a single transport block (TB) of data. The TDRA table may be configured to indicate that a TB extend over multiple slots (TBoMS) to allow for larger amounts of data within a single TB transmission via PUSCH. Additionally, a BS may configure the UE, for example via the TDRA table, to repeat PUSCH transmissions. Together, this allows for a single DCI  message to indicate a row of the TDRA table and thereby activate multiple PUSCH transmissions, each with a TBoMS, and each with repetitions.
As is described with greater detail herein with respect to the figures, a BS may configure the UE to perform such multi-PUSCH transmissions with TBoMS in a variety of ways, and the UE may allocate the PUSCH resources in a variety of ways. In some aspects, the method by which transmissions are allocated to slots is based on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC.
For example, a TDRA row may include two PUSCH transmissions, each with a two-slot TBoMS, and each configured to have two repetitions. TBoMS slot length may be indicated by value N, where in this example N=2, and the number of repetitions may be indicated by value M, where in this example M=2. The UE may determine to allocate the first repetition of the first TBoMS to the first available slots. The UE may allocate the second repetition of the first TBoMS in the subsequent available slots. The UE may allocate the first repetition of the second TBoMS in the subsequent available slots. Finally, the UE may allocate the second repetition of the second TBoMS in the subsequent available slots. The slot that each PUSCH starts at may be defined by a parameter K2 which is configured via RRC. K2 may be configured either jointly, or individually for each configured PUSCH. K2 may be defined as the offset between the DL slot where the DCI for UL scheduling is received and the slot where the PUSCH begins. This is one example of an order in which UE 115 may allocate slots. Other examples are discussed below with reference to FIGS. 5-15.
In some aspects, the configuration of the UE may result in resources which are overlapping. For example, a first PUSCH may have N slots per TBoMS and M repetitions. If the starting slot of a second PUSCH is before M*N slots after the scheduling DCI, then the slots which would be allocated to the second PUSCH may already be allocated to the first PUSCH. In response, the UE may cancel one or more slots of allocated transmissions of the first PUSCH. In some aspects, only overlapped slots are cancelled. In other aspects, every block of the TBoMS repetition where any slot of the TBoMS repetition overlaps is cancelled. In yet further aspects, the UE may cancel the entire TB and all repetitions if any overlap occurs. The determination of which slots are cancelled may be configured or based on a predefined rule.
In another aspect, a maximum distance may be configured or predefined from a scheduling DCI for allocation of a TB slot. Similarly to overlapping slots, the UE may  cancel allocations of one or more slots of a TBoMS where the TBoMS extends beyond the maximum distance. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
There are a variety of benefits realized by utilizing aspects of the present disclosure. First, defining how multi-PUSCH and TBoMS may be both configured at the same time, and how they interact, allows greater flexibility in scheduling resources. Additionally, the UE and BS may have less scheduling overhead by allowing for such scheduling. Specifically, support for multi-PUSCH scheduling together with TBoMS may reduce DCI overhead and improve coverage of multi-PUSCH scheduling. Allowing for different configurable methods of allocating resources may allow greater flexibility for a BS, further optimizing communications. For example, some allocation methods may improve signal diversity by spreading repetitions further apart from each other in time. Other methods may reduce latency of transmission. These benefits and others are recognized from the detailed description of aspects of the present disclosure below.
FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities. A BS 105 may be a station that communicates with UEs 115 (individually labeled as 115a, 115b, 115c, 115d, 115e, 115f, 115g, 115h, and 115k) and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each BS 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell  (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may be designed to enable a wide range of use cases. While in some examples a network 100 may utilize monolithic base stations, there are a number of other architectures which may be used to perform aspects of the present disclosure. For example, more distributed architectures are presented and discussed with reference to FIGS. 17-18. For simplicity of discussion, the present disclosure refers to methods of the present disclosure being performed by base stations, or more generally network entities, while the functionality may be performed by a variety of architectures other than a monolithic base station. In addition to disaggregated base stations, aspects of the present disclosure may also be performed by a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , a Non-Real Time (Non-RT) RIC, integrated access and backhaul (IAB) node, a relay node, a sidelink node, etc.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not  include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. A UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 105 may also communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various examples, the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
The network 100 may also support communications with ultra-reliable and redundant links for devices, such as the UE 115e, which may be airborne. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and  105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105e, or in multi-action-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and a BS 105.
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some aspects, the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other aspects, the subcarrier spacing and/or the duration of TTIs may be scalable.
In some aspects, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a TDD mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some aspects, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. A UL-centric subframe may include a longer duration for UL communication than for UL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some aspects, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) . The MIB may be transmitted over a physical broadcast channel (PBCH) .
In some aspects, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer  identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 115 may receive a MIB. The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI and/or OSI. The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. In some examples, the random access procedure may be a four-step random access procedure. For example, the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response. The random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator. Upon receiving the random access response, the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response. The connection response may indicate a contention resolution. In some examples, the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively. In some examples, the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) . The BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.  The connection may be referred to as an RRC connection. When the UE 115 is actively exchanging data with the BS 105, the UE 115 is in an RRC connected state.
In some aspects, a BS 105 can schedule more than one PUSCH resource for a UE 115 by configuring a time domain resource allocation (TDRA) table. The table may include information about time domain resources which may include multiple PUSCH (multi-PUSCH) resources, and an indication of a number of repetitions of the resources. A BS 105 may configure a UE 115 with a TDRA table where each row of the table is a different configuration, so that the BS 105 can transmit a DCI which indicates a row and thereby activate that configuration. One type of configuration stored in a TDRA table is an indication of how many slots are to be used by a transport block (TB) . A TB is a unit of data and supporting configuration information that is delivered from a higher abstraction layer to the physical layer for transmission, for example via a PUSCH transmission. In a typical case, one TB takes one slot of time to transmit. However, a UE may be configured to split a larger TB over multiple slots, making it a transport block over multiple slots (TBoMS) .
In addition to multi-PUSCH configuration and TBoMS configuration, other configuration information may be kept in the TDRA table such as PUSCH repetitions. As is discussed in further detail below, a UE 115 may be configured to perform multi-PUSCH, TBoMS, and PUSCH repetitions in combination allowing a UE to send more data with less configuration and scheduling overhead. Specifically, multi-PUSCH, TBoMS, and PUSCH repetition scheduling may be performed with reduced overhead according to embodiments of the present disclosure by enhancements to existing control messaging from the BS 105 to a UE 115, including how to combine the operations of each of multi-PUSCH, TBoMS, and/or PUSCH repetition to operate together.
After establishing a connection with the BS 105, the UE 115 may initiate an initial network attachment procedure with the network 100. The BS 105 may coordinate with various network entities or fifth generation core (5GC) entities, such as an access and mobility function (AMF) , a serving gateway (SGW) , and/or a packet data network gateway (PGW) , to complete the network attachment procedure. For example, the BS 105 may coordinate with the network entities in the 5GC to identify the UE, authenticate the UE, and/or authorize the UE for sending and/or receiving data in the network 100. In addition, the AMF may assign the UE with a group of tracking areas (TAs) . Once the network attach procedure succeeds, a context is established for the UE 115 in the AMF. After a successful attach to the network, the UE 115 can move around  the current TA. For tracking area update (TAU) , the BS 105 may request the UE 115 to update the network 100 with the UE 115’s location periodically. Alternatively, the UE 115 may only report the UE 115’s location to the network 100 when entering a new TA. The TAU allows the network 100 to quickly locate the UE 115 and page the UE 115 upon receiving an incoming data packet or call for the UE 115.
In some aspects, the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service. The BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH. The BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH. The DL data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105. Conversely, if the UE 115 fails to receive the DL transmission successfully, the UE 115 may transmit a HARQ NACK to the BS 105. Upon receiving a HARQ NACK from the UE 115, the BS 105 may retransmit the DL data packet to the UE 115. The retransmission may include the same coded version of DL data as the initial transmission. Alternatively, the retransmission may include a different coded version of the DL data than the initial transmission. The UE 115 may apply soft combining to combine the encoded data received from the initial transmission and the retransmission for decoding. The BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
In some aspects, the network 100 may operate over a system BW or a component carrier (CC) BW. The network 100 may partition the system BW into multiple BWPs (e.g., portions) . A BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) . The assigned BWP may be referred to as the active BWP. The UE 115 may monitor the active BWP for signaling information from the BS 105. The BS 105 may schedule the UE 115 for UL or DL communications in the active BWP. In some aspects, a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications. For example, the BWP pair may include one BWP for UL communications and one BWP for DL communications.
FIG. 2 illustrates an exemplary communication protocol diagram 200 according to some aspects of the present disclosure. Aspects of the communication protocol diagram 200 may be performed by wireless networks, such as the network 100. In this  regard, a BS 105 and UE 115 may perform functions of the communication protocol diagram 200. In some instances, the BS 105 may utilize a transmission-reception point (TRP) to communicate with the UE 115. In some aspects, the BS 105 may utilize one or more components, such as the processor 302, the memory 304, the scheduling module 308, the transceiver 310, the modem 312, and the one or more antennas 316 shown in FIG. 3 (discussed further below) . The actions described as being performed by the BS 105 may also be performed by other network entities, such as by one or more components of a disaggregated base station. The UE 115 may utilize one or more components, such as the processor 402, the memory 404, the resource allocation module 408, the transceiver 410, the modem 412, and the one or more antennas 416 shown in FIG. 4 (discussed further below) . As illustrated, the method 200 includes a number of enumerated actions, but aspects of the FIG. 2 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
At action 205, the BS 105 transmits an RRC configuration to the UE 115. The RRC configuration may be used to configure a TDRA table. While illustrated as a single RRC message, configuration parameters may be sent over multiple RRC messages at different times. Configurations may include configuring multi-PUSCH transmissions. Each of the PUSCH transmissions may be associated with a transport block (TB) . Based on the configuration, TBs may be one slot wide, or may extend over multiple slots, making it a transport block over multiple slots (TBoMS) . Configuration of TBoMS may be performed by a single number in a single column which controls the TBoMS slot length for the entire row. Configuration of TBoMS may also be individual to each PUSCH transmission, where each has a value associated with it indicating TBoMS length. In the present description, the term TBoMS and TB are used interchangeably when the TB discussed is configured for multiple slots. In addition to setting up multi-PUSCH and TBoMS, the RRC configuration may configure repetitions of the PUSCH transmissions. These repetitions are repetitions of the data, not just the resource allocations. Configuration of repetitions may be performed by a single number in a single column which controls the amount of repetitions for each PUSCH defined in that row. Configuration of repetitions may also be individual to each PUSCH transmission, where each has a value associated with it indicating the number of repetitions.
The parameters used for configuration may be pusch-TimeDomainAllocationListForMultiPUSCH for multi-PUSCH, and numberOfSlotsTBoMS for TBoMS. In some aspects, rather than individually configuring multi-PUSCH and TBoMS, an RRC parameter may be used that enables both multi-PUSCH and TBoMS together.
The TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations. Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length. In some aspects, certain configuration parameters exist in a single column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated by a single number in a single column and apply to every PUSCH transmission defined in the row (i.e., joint configuration) . Similarly, the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions. In some aspects, parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table.
At action 210, the BS 105 transmits a DCI configuration to the UE 115. The DCI configuration may indicate a row of the TDRA table to the UE 115, thereby activating the transmissions defined by that row.
At action 215, the UE 115 determines PUSCH resource (slot) availability. UE 115 may determine a slot’s availability based on RRC configured parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst. A slot may not be available for PUSCH transmission, for example, when the slot is configured for downlink. A slot may be available for two different PUSCH transmissions if their respective SLIV configurations cause them to not overlap when scheduled within the same slot.
At action 220, the UE 115 determines PUSCH resource allocations. Based on the configurations in the TDRA table, the row indicated via DCI, and the slot availability, the UE 115 may allocate specific PUSCH transmissions to the available slots. In some aspects, the method by which transmissions are allocated to slots is based  on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC.
For example, a TDRA row may include two PUSCH transmissions, each with a two-slot TBoMS, and each configured to have two repetitions. TBoMS slot length may be indicated by value N, where in this example N=2, and the number of repetitions may be indicated by value M, where in this example M=2. UE 115 may determine to allocate the first repetition of the first TBoMS to the first available slots. UE 115 may allocate the second repetition of the first TBoMS in the subsequent available slots. UE 115 may allocate the first repetition of the second TBoMS in the subsequent available slots. Finally, UE 115 may allocate the second repetition of the second TBoMS in the subsequent available slots. The slot that each PUSCH starts at may be defined by a parameter K2 which is configured via RRC. K2 may be configured either jointly, or individually for each configured PUSCH. K2 may be defined as the offset between the DL slot where the DCI for UL scheduling is received and the slot where the PUSCH begins. This is one example of an order in which UE 115 may allocate slots. Other examples are discussed below with reference to FIGS. 5-15.
At action 225, the UE 115 determines overlapped resource allocations and resource allocations beyond a threshold. When the mapping is based on available slots, the first allocation of the next TB (e.g., the second TB) may start before the current TB (e.g., the first TB) is completely mapped to the M*N slots. This may occur, for example, when M*N > K2. It may also happen when M*N < K2, based on the number of available slots. Additionally, a threshold may be configured or otherwise predefined by a rule, beyond which resources may not be allocated. For example, a certain number of slots beyond the scheduling DCI (either in terms of physical slots or available slots) .
At action 230, the UE 115 cancels overlapped resource allocations, and resource allocations beyond the threshold. If UE 115 determines that a PUSCH with its repetitions cannot be completely mapped as another PUSCH is also mapped to at least one of the same slots, UE 115 may cancel the overlapped slot (s) . UE 115 may cancel more than the overlapped slot (s) , either based on a predefined rule or a configuration. For example, UE 115 may cancel all slots of a TB repetition where any slot of that TB repetition is overlapped. In another example, UE 115 may cancel all slots of all repetitions of a TB if any slot of that TB is overlapped. Similar to overlapped slots, UE 115 may cancel either only the slots beyond the threshold, or the repetition which has a  portion beyond the threshold, or the entire TB which has a portion beyond the threshold. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
At action 235, the UE 115 transmits the PUSCH transmissions to the BS 105. The transmissions occur according to the configuration, the mapping as determined by the UE, and any cancellations that occurred.
FIG. 3 is a block diagram of an exemplary BS 300 according to some aspects of the present disclosure. The BS 300 may be a BS 105 as discussed in FIG. 1. As shown, the BS 300 may include a processor 302, a memory 304, a scheduling module 308, a transceiver 310 including a modem subsystem 312 and a RF unit 314, and one or more antennas 316. These elements may be coupled with one another. The term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for example via one or more buses.
BS 300 may be monolithic, or may be disaggregated, comprising of multiple component parts which together perform the functions of a BS 300. For example, BS 300 may be composed of a remote unit (RU) , distributed unit (DU) , and/or central unit (CU) as discussed below with reference to FIG. 17. Functions described as being performed by BS 300 may be performed by one or more of these disaggregated sub-components. For example, a function described a being performed by BS 300 may be performed solely by a RU, or in some aspects it may be performed jointly by a DU and a RU. Additionally, physical components of BS 300 may be disaggregated. For example, processor 302 may be composed of a processor in a DU and a processor in a CU.
The processor 302 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 302 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 304 may include a cache memory (e.g., a cache memory of the processor 302) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of  memory. In some aspects, the memory 304 may include a non-transitory computer-readable medium. The memory 304 may store instructions 306. The instructions 306 may include instructions that, when executed by the processor 302, cause the processor 302 to perform operations described herein, for example, aspects of FIGS. 1-2, 5-13, and 16. Instructions 306 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 302) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
The scheduling module 308 may be implemented via hardware, software, or combinations thereof. For example, the scheduling module 308 may be implemented as a processor, circuit, and/or instructions 306 stored in the memory 304 and executed by the processor 302. In some examples, the scheduling module 308 can be integrated within the modem subsystem 312. For example, the scheduling module 308 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 312. The scheduling module 308 may communicate with one or more components of BS 300 to implement various aspects of the present disclosure, for example, aspects of FIGS. 1-2, 5-13, and 16.
The scheduling module 308 may configure a UE 115 to perform multiple PUSCH transmissions (multi-PUSCH) . The configuration may be performed by RRC communication to the UE 115. Certain configuration parameters may be contained in a TDRA table which the scheduling module 308 configures. For example, TBs may be configured to extend over multiple slots (TBoMS) and may be configured to repeat a number of times. Scheduling module 308 may also indicate to a UE 115 a direction (e.g., UL or DL) for each slot which may be used by the UE 115 in order to determine slot availability. Specifically, RRC parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst may be transmitted by scheduling module 308 to the UE 115. After configuring the TDRA table and other parameters, scheduling module 308 may transmit a DCI message to the UE 115  indicating a row of the TDRA table to activate the PUSCH transmissions configured in the indicated row. The BS 300 will then receive the configured PUSCH transmissions from the UE 115.
As shown, the transceiver 310 may include the modem subsystem 312 and the RF unit 314. The transceiver 310 can be configured to communicate bi-directionally with other devices, such as the UEs 115, 215 and/or BS 300 and/or another core network element. The modem subsystem 312 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 314 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., RRC configurations, PDCCH DCIs, etc. ) from the modem subsystem 312 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 and/or UE 400. The RF unit 314 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 310, the modem subsystem 312 and/or the RF unit 314 may be separate devices that are coupled together at the BS 300 to enable the BS 300 to communicate with other devices.
The RF unit 314 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 316 for transmission to one or more other devices. The antennas 316 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 310. The transceiver 310 may provide the demodulated and decoded data (e.g., PUSCH data, etc. ) to the scheduling module 308 for processing. The antennas 316 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In an aspect, the BS 300 can include multiple transceivers 310 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 300 can include a single transceiver 310 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 310 can include various components, where different combinations of components can implement different RATs.
FIG. 4 is a block diagram of an exemplary UE 400 according to some aspects of the present disclosure. The UE 400 may be a UE 115 as discussed above in FIG. 1. As shown, the UE 400 may include a processor 402, a memory 404, a resource allocation  module 408, a transceiver 410 including a modem subsystem 412 and a radio frequency (RF) unit 414, and one or more antennas 416. These elements may be coupled with one another. The term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 402 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 402 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 404 may include a cache memory (e.g., a cache memory of the processor 402) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 404 includes a non-transitory computer-readable medium. The memory 404 may store, or have recorded thereon, instructions 406. The instructions 406 may include instructions that, when executed by the processor 402, cause the processor 402 to perform the operations described herein with reference to a UE 115 in connection with aspects of the present disclosure, for example, aspects of FIGS. 1-2 and 5-15. Instructions 406 may also be referred to as code, which may include any type of computer-readable statements.
The resource allocation module 408 may be implemented via hardware, software, or combinations thereof. For example, the resource allocation module 408 may be implemented as a processor, circuit, and/or instructions 406 stored in the memory 404 and executed by the processor 402.
In some aspects, the resource allocation module 408 may be configured to perform actions described with reference to FIGS. 1-2 and 5-15. For example, resource allocation module 408 may receive an RRC configuration from a BS 105. The RRC configuration may be used to configure a TDRA table. Configuration parameters may be received over multiple RRC messages at different times. Configurations may include  configuring multi-PUSCH transmissions. The TB associated with a PUSCH transmission may be configured to be one or more slots wide. When more than one slot, it is considered to be a TBoMS. In addition to setting up multi-PUSCH and TBoMS, the RRC configuration may configure repetitions of the PUSCH transmissions. These repetitions are repetitions of the data, not just the resource allocations.
The TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations. Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length. In some aspects, certain configuration parameters exist in a single column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated by a single number in a single column and apply to every PUSCH transmission defined in the row (i.e., joint configuration) . Similarly, the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions. In some aspects, parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table.
Resource allocation module 408 may receive a DCI configuration from the BS 105 which indicates a row of the TDRA table. In response, resource allocation modeul 408 may determine how PUSCH transmissions will be allocated among slots. First, resource allocation module 408 may determine PUSCH resource (slot) availability based on, for example, RRC configured parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst. A slot may not be available for PUSCH transmission, for example, when the slot is configured for downlink. A slot may be available for two different PUSCH transmissions if their respective SLIV configurations cause them to not overlap when scheduled within the same slot. In some aspects, the method by which transmissions are allocated to the available slots is based on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC. Examples of slot allocation methods are discussed below with reference to FIGS. 5-15.
After determining slot allocations, resource allocation module 408 may determine that some allocations overlap. This may occur, for example, when a first PUSCH including its repetitions extends beyond the starting point of a second PUSCH as defined by the K2 parameter. Based on the overlapping of allocations, resource allocation module 408 may cancel one or more resources. For example, it may cancel only the overlapped slots, or every slot of that repetition, or every slot of that TB, depending either on a configuration or a predefined rule. Additionally, a threshold number of slots (either physical slots or available slots) may be defined which limits how far a PUSCH may be allocated beyond the scheduling DCI. Resource allocation module 408 may likewise cancel one or more slots of an allocation based on the allocation being beyond the threshold. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
After determining allocations and cancellations, resource allocation module may transmit the PUSCH transmissions accordingly.
As shown, the transceiver 410 may include the modem subsystem 412 and the RF unit 414. The transceiver 410 can be configured to communicate bi-directionally with other devices, such as the  BSs  105 and 300.
The modem subsystem 412 may be configured to modulate and/or encode the data from the memory 404, the resource allocation module 408 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 414 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., PUSCH data, etc. ) or of transmissions originating from another source such as a UE 115, a BS 105, or an anchor. The RF unit 414 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 410, the modem subsystem 412 and the RF unit 414 may be separate devices that are coupled together at the UE 400 to enable the UE 400 to communicate with other devices.
The RF unit 414 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 416 for transmission to one or more other devices. The antennas 416 may further receive data messages transmitted from other devices. The antennas 416 may provide the received data messages for processing  and/or demodulation at the transceiver 410. The transceiver 410 may provide the demodulated and decoded data (e.g., RRC configurations, PDCCH DCIs, etc. ) to the resource allocation module 408 for processing. The antennas 416 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In an aspect, the UE 400 can include multiple transceivers 410 implementing different RATs (e.g., NR and LTE) . In an aspect, the UE 400 can include a single transceiver 410 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 410 can include various components, where different combinations of components can implement different RATs.
FIG. 5 illustrates an exemplary resource allocation diagram 500 according to some aspects of the present disclosure. Diagram 500 illustrates a number of slots in a radio frame structure. The configured direction of each slot is indicated at the top by a letter S for special slots, U for uplink slots, and D for downlink slots. Each row of resources in diagram 500 illustrates the same allocation method, but with different configuration parameters. The first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row. The configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
The examples illustrated in diagram 500 include multi-PUSCH, and TBoMS, but no repetitions. Allocations are illustrated according to a method where TBoMS of a first TB is mapped to a first quantity of available slots, e.g., N1, followed by TBoMS of a second TB mapped to a second quantity of available slots, e.g., N2, and the same mapping continues to the TBoMS of the remaining TBs. This may be described as TBoMS-priority mapping as all transmission occasions of TBoMS (TOT) of a single TBoMS are allocated one after another. In some aspects, TBoMS-priority mapping is a predefined rule, and in other aspects it is configurable, for example via RRC.
In the first example, DCI 502 schedules two PUSCHs associated with TB1 and TB2. The number of slots per TBoMS (N) is, in this example, configured jointly where N=2. The TBoMS of  TB1 TOTs  504 and 506 are allocated to the first two available slots. The TBoMS of  TB2 TOTs  508 and 510 are allocated to the next two available slots.
In the second example, DCI 512 schedules two PUSCHs associated with TB1 and TB2. However, in this example, the number of slots for each TBoMS is configured individually, with N1=2 and N2=4. The TBoMS of  TB1 TOTs  514 and 516 are  allocated to the first two available slots. The TBoMS of  TB2 TOTs  518, 520, 522, and 524 are allocated to the next four available slots. In some aspects, the first TOT of the TBoMS of TB2 is configured by the parameter K2.
FIG. 5 thus illustrates an exemplary resource allocation following the TBoMS-priority mapping method. Non-TBoMS-priority mapping is discussed below with reference to FIG. 6. The parameters illustrated in FIG. 5 are exemplary, and the allocation pattern described may be extended to different values of N, different SLIV configurations, etc.
FIG. 6 illustrates an exemplary resource allocation diagram 600 according to some aspects of the present disclosure. Diagram 600 illustrates a number of slots in a radio frame structure. The configured direction of each slot is indicated at the top by a letter S for special slots, U for uplink slots, and D for downlink slots. Each row of resources in diagram 600 illustrates the same allocation method, but with different configuration parameters. The first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row. The configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
The examples illustrated in diagram 600 include multi-PUSCH, and TBoMS, but no repetitions. Allocations are illustrated according to a method where the first TOT for each TB are sequentially mapped to a first quantity of available slots followed by the second TOT of each TB, until all TOTs of each TBoMS are mapped to the slots. This may be described as non-TBoMS-priority mapping as TOTs of different TBoMSs are cycled together before continuing to allocate the next TOTS of each TBoMS, as opposed to TBoMS-priority mapping described with reference to FIG. 5 where each TOT of a TB are transmitted without other TOTs of other TBs interspersed. In some aspects, non-TBoMS-priority mapping is a predefined rule, and in other aspects it is configurable, for example via RRC.
In the first example, DCI 602 schedules two PUSCHs associated with TB1 and TB2. The number of slots per TBoMS (N) is configured jointly where N=2. The first TOT 604 of the TBoMS of TB1 is allocated to the first available slot. Then the first TOT 606 of TBoMS of TB2 is allocated to the next available slot. Then the second TOT 608 of the first TBoMS of TB1 is allocated, followed by the second TOT 610 of the second TBoMS of TB2. In this example, the multi-PUSCH transmissions are non-contiguous, as each TOT utilizes its own slot.
The following example has the same number of PUSCHs, and continues with N=2. However, the respective SLIV of each PUSCH is such that where each starts in a slot and their corresponding length as indicated by their SLIV are compatible so that they may be allocated to the same slot. Effectively, the first two slots as illustrated are considered available for both TBs. Specifically, DCI 612 schedules PUSCHs associated with TB1 and TB2. The first slot after the DCI is available for the first TOT 614 of TB1 and the first TOT 616 of TB2 so they are both allocated to that slot. The next slot is available for the first TOT 618 of TB1 and the second TOT 620 of TB2 so they are both allocated to that slot. In this case the Multi-PUSCH is contiguous.
In the next example, DCI 622 scheduled two PUSCHs, but with different TBoMS lengths, N1=2, and N2=4. The first TOT 624 of the TBoMS of TB1 is allocated to the first available slot. Then the first TOT 626 of TBoMS of TB2 is allocated to the next available slot. Then the second TOT 628 of the first TBoMS of TB1 is allocated, followed by the second TOT 630 of the second TBoMS of TB2. Since the TBoMS of TB2 is longer than the TBoMS of TB1, the remaining available slots are allocated to the rest of TB2, where the next available slots are allocated to the last two TOTs 632 and 634 of TB2.
In the final example of FIG. 6, the same N1=2 and N2=4 parameters are illustrated, however, similar to the second example, the SLIV configurations of each TB are such that they may share slots. Specifically, DCI 636 schedules PUSCHs associated with TB1 and TB2. The first slot after the DCI is available for the first TOT 638 of TB1 and the first TOT 640 of TB2 so they are both allocated to that slot. The next slot is available for the second TOT 642 of TB1 and the second TOT 644 of TB2 so they are both allocated to that slot. As TB1 does not utilize any more slots, the next two available slots are allocated to the  final TOTs  646 and 648 of the TBoMS of TB2.
FIG. 6 thus illustrates an exemplary resource allocation following the non-TBoMS-priority mapping method. Different mapping methods including accounting for PUSCH repetitions are described with reference to FIG. 7 below. The parameters illustrated in FIG. 6 are exemplary, and the allocation pattern described may be extended to different values of N, different SLIV configurations, etc.
FIG. 7 illustrates an exemplary resource allocation diagram 700 according to some aspects of the present disclosure. Diagram 700 illustrates a number of slots in a radio frame structure. For simplicity, only available slots are illustrated. Each row of resources in diagram 700 illustrates the same allocation method, but with different  configuration parameters. The first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row. The configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
The examples illustrated in diagram 700 include multi-PUSCH, and TBoMS as were present in the examples of FIG. 5 and 6. In addition, PUSCH repetitions are also included in diagram 700. Allocations are illustrated according to a method where the TBoMSs are allocated sequentially. Specifically, repetitions of TBoMS for the first TB are mapped to a first quantity of available slots, e.g., N1*M1, repetitions of TBoMS for the second TB are mapped to a second quantity of available slots, e.g., N2*M2, and the same mapping continues to the repetitions of TBoMS of the remaining TBs. This may be described as sequential TBoMS mapping. In some aspects, sequential TBoMS mapping is a predefined rule, and in other aspects it is configurable, for example via RRC. As illustrated, the sequential TBoMS mapping is performed with TBoMS-priority mapping, however in other aspects, sequential TBoMS mapping may be used in combination with non-TBoMS-priority mapping.
In the first example, DCI 702 schedules two PUSCHs associated with TB1 and TB2. The number of slots per TBoMS (N) is configured separately, but with the same value where N1=2 and N2=2. Each PUSCH is also configured with a repetition value separately but with the same value where M1=2 and M2=2. The first two slots are allocated to the first repetition of  TOTs  704 and 706 of the TBoMS of TB1. The next available slots are allocated to the second repetition of  TOTs  708 and 710 of the TBoMS of TB1. Then the next available slots are allocated to the first and second repetitions of  TOTs  712, 714, 716, and 718 of the TBoMS of TB2. Diagram 700 also shows the K2 parameter values. Specifically, K2_1 (the K2 parameter for TB1) has a value of 1, and K2_2 (the K2 parameter for TB2) has a value of 5. This configuration ensures that the first TB starts one slot after the scheduling DCI 702 and the second TB starts 5 slots after the scheduling DCI. Scenarios where the second TB is configured to start before all of the prior TBs slots being allocated are discussed with reference to FIGS. 10-11.
In the second example, DCI 720 schedules two PUSCHs associated with TB1 and TB2, each with two repetitions (M1=M2=2) . However, in this example, the number of slots for each TBoMS is configured with N1=2 and N2=4. Both repetitions of TB1 in this example are still allocated to the first  available slots  722, 724, 726, and 728. TB2 is  then allocated to the next available slots, however with more slots allocated due to more slots being configured for its TBoMS. Specifically,  TBoMS portions  730, 732, 734, and 736 of the first repetition, then  TBoMS portions  738, 740, 742, and 744 of the second repetition.
FIG. 7 thus illustrates an exemplary resource allocation following the sequential TBoMS mapping method. FIGS. 8-9 below illustrate a cyclic TBoMS mapping. The parameters illustrated in FIG. 7 are exemplary, and the allocation pattern described may be extended to different values of N, M, different SLIV configurations, etc.
FIGS. 8-9 illustrate exemplary resource allocation diagrams 800 and 900 according to some aspects of the present disclosure. Diagrams 800 and 900, viewed together, illustrate a number of slots in a radio frame structure. For simplicity, only available slots are illustrated. Each row of resources in diagrams 800 and 900 illustrates the same allocation method, but with different configuration parameters. The first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row. The configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
The examples illustrated in diagrams 800 and 900 include multi-PUSCH, and TBoMS, and repetitions. Rather than being allocated according to the sequential TBoMS mapping described with reference of FIG. 7, Allocations are illustrated according to a cyclic TBoMS mapping method. Under this method, the first repetition of the first TBoMS is mapped to a first quantity of available slots, e.g., N1 slots, the first repetition of the second TBoMS is mapped to a second quantity of available slots, e.g., N2 slots. This mapping continues to the first repetition of remaining TBoMSs. Then the second repetition of the first TBoMS is mapped to another first quantity of available slots, e.g., N1 slots, the second repetition of the second TBoMS is mapped to another second quantity of available slots, e.g., N2 slots, this mapping continues to the second repetition of remaining TBoMSs. The same mapping pattern continues to the last repetition of the last TBoMS. In some aspects, cyclic TBoMS mapping is a predefined rule, and in other aspects it is configurable, for example via RRC. As illustrated, the cyclic TBoMS mapping is performed with TBoMS-priority mapping, however in other aspects, sequential TBoMS mapping may be used in combination with non-TBoMS-priority mapping.
In the example of FIG. 8, DCI 802 schedules two PUSCHs associated with TB1 and TB2. The number of slots per TBoMS (N) is configured separately, but with the  same value where N1=N2=2. Each PUSCH is also configured with a repetition value separately but with the same value where M1=M2=2. The first two slots are allocated to the first repetition of the TBoMS of TB1,  TOTs  804 and 806. The next two slots are allocated to the first repetition of the TBoMS of TB2,  TOTs  808 and 810. Next, the repetitions of each of the TBs are allocated, specifically the second repetition of the TBoMS of TB1,  TOTs  812 and 814, followed by the second repetition of the TBoMS of TB2,  TOTs  816 and 818.
In the first example of FIG. 9, DCI 902 schedules two PUSCHs associated with TB1 and TB2. The number of slots per TBoMS (N) is configured with N1=N2=2, and the number of repetitions is configured with M1=4 and M2=2. The first two slots are allocated to the first repetition of the TBoMS of TB1,  TOTs  904 and 906. The next two slots are allocated to the first repetition of the TBoMS of TB2,  TOTs  908 and 910. Next, the repetitions of each of the TBs are allocated, specifically the second repetition of the TBoMS of TB1,  TOTs  912 and 914, followed by the second repetition of the TBoMS of TB2,  TOTs  916 and 918. At this point, both configured repetitions of TB2 have been allocated, so the remaining repetitions of TB1 may be allocated without any repetitions of TB2 interspersed. Specifically, the next slots are allocated to the third repetition of the TBoMS of TB1,  TOTs  920 and 922, and the fourth repetition of the TBoMS of TB1, TOTs 924 and 926.
In the second example of FIG. 9, DCI 928 schedules two PUSCHs associated with TB1 and TB2. The number of slots per TBoMS (N) is configured with N1=2 and N2=4, and the number of repetitions is configured with M1=M2=2. The first two slots are allocated to the first repetition of the TBoMS of TB1,  TOTs  930 and 932. The next four slots are allocated to the first repetition of the TBoMS of TB2,  TOTs  934, 936, 938, and 940. Next, the repetitions of each of the TBs are allocated, specifically the second repetition of the TBoMS of TB1,  TOTs  942 and 944, followed by the second repetition of the TBoMS of TB2,  TOTs  946, 948, 950, and 952.
FIGS. 8-9 thus illustrate an exemplary resource allocation following the cyclic TBoMS mapping method. The parameters illustrated in FIGS> 8-9 are exemplary, and the allocation pattern described may be extended to different values of N, M, different SLIV configurations, etc.
FIG. 10 illustrates an exemplary resource allocation diagram 1000 according to some aspects of the present disclosure. Diagram 1000 illustrates a number of slots in a radio frame structure. For simplicity, only available slots are illustrated. Each row of  resources in diagram 1000 illustrates the same allocation method, but with different configuration parameters. Specifically, the allocation method illustrated in diagram 1000 is the same as the allocation method described with reference to diagram 700 of FIG. 7, sequential TBoMS mapping with TBoMS priority mapping. However, in diagram 1000, the K2 parameters are such that the second TB is allocated before all slots of the first TB are allocated causing an overlap in resources. The first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row. The configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
Each pair of rows in diagram 1000, representing concurrent allocations of TB1 and TB2, illustrate a different option for handling the overlapping resources. The initial resource allocations are the same for each pair of rows. DCI 1002 schedules TB1 with an N=2 and M=2, and K2_1=1. This results in the first four available slots after DCI 1002 to be allocated to the first and second repetitions of TB1,  TOTs  1004, 1006, 1008, and 1010. DCI 1002 schedules TB2 with an N=2, and M=2, and K2_2=4. Since the K2_2=4, the second TB is allocated starting at the fourth available slot after DCI 1002. This results in the fourth slot and the following available slots to be allocated to the first and second repetitions of TB2,  TOTs  1012, 1014, 1016, and 1018. This means that the last slot of the second repetition of TB1 overlaps with the first slot of the first repetition of TB2. How a UE 115 determines to resolve an overlap in resource allocations in this context may be either a predefined rule, or configured, for example via RRC.
The first option for resolution of the overlap is illustrated in the first pair of rows. The UE 115 cancels the TOT that is after the starting slot of the next TB. In this case, only TOT 1010 is cancelled. The second option for resolution of the overlap is illustrated in the next pair of rows, where the entire repetition is cancelled where any TOT in that repetition is overlapped. Specifically, in this  case TOTs  1008 and 1010 are cancelled, even though only TOT 1010 is overlapped. In the final option illustrated in FIG. 10, every TOT of a TB is cancelled if any are overlapped. Specifically in this example,  TOTs  1004, 1006, 1008, and 1010 are cancelled even though only TOT 1010 is overlapped.
FIG. 11 illustrates the same cancellation options for overlapping resources, only in the context of a different resource allocation method. Specifically, the allocation method illustrated in FIG. 11 is cyclic TBoMS mapping with TBoMS priority mapping, as is also illustrated in FIGS. 8-9.
The initial resource allocations are the same for each pair of rows in diagram 1100. DCI 1102 schedules TB1 with an N=2 and M=2, and K2_1=1, and TB2 with an N=2, M=2, and K2_2=2. Since the allocation method is cyclic TBoMS, this results in the first two available slots after DCI 1102 to be allocated to the first repetition of TB1,  TOTs  1104 and 1106. The first repetition of the second TB is allocated starting at the second available slot after DCI 1102. This results in the second slot after DCI 1102 to be allocated to both TB1 and TB2. As the remaining allocations are performed based on slot availability and the allocation method,  TOTs  1108 and 1110 of the second repetition of TB1 and  TOTs  1116 and 1118 of the second repetition of TB2 do not overlap. In other words, having a K2 parameter forces a TB to be allocated at a certain starting slot which may cause an overlap, but slots after that point may be allocated according to availability including if another TB is scheduled for that slot. How a UE 115 determines to resolve an overlap in resource allocations in this context may be either a predefined rule, or configured, for example via RRC.
The first option for resolution of the overlap is illustrated in the first pair of rows. The UE 115 cancels the TOT that is after the starting slot of the next TB. In this case, only TOT 1106 is cancelled. The second option for resolution of the overlap is illustrated in the next pair of rows, where the entire repetition is cancelled where any TOT in that repetition is overlapped. Specifically, in this  case TOTs  1104 and 1106 are cancelled, even though only TOT 1106 is overlapped. In the final option illustrated in FIG. 10, every TOT of a TB is cancelled if any are overlapped. Specifically in this example,  TOTs  1104, 1106, 1108, and 1110 are cancelled even though only TOT 1106 is overlapped. Note that in this instance the second repetition of TB2 may be allocated earlier than in the other examples as the cancellation of TB1 frees those slots for allocation.
FIG. 12 illustrates an exemplary resource allocation diagram 1200 according to some aspects of the present disclosure. Diagram 1200 illustrates a number of slots in a radio frame structure. For simplicity, only available slots are illustrated. Each row of resources in diagram 1200 illustrates the same allocation method, but with different configuration parameters. The first slot of each row contains a DCI which schedules the PUSCH signals illustrated in that row. The configuration parameters illustrated are exemplary, and many other combinations of parameters may be selected and allocated according to the methods described herein.
Specifically, FIG. 12 is illustrating options for cancelling resource allocations when those allocations exceed a predetermined upper limit in terms of distance from a scheduling DCI. In some aspects, either by a predefined rule, or as configured, an upper limit from a scheduling DCI to a TOT allocation may be set. The distance may be in terms of physical slots, or alternatively in terms of available slots. Each row of diagram 1200 illustrates the same parameters and the same allocation method, here sequential TBoMS with TBoMS priority mapping, where N=2 and M=2. These parameters as indicated by DCI 1202 results in an allocation where the first two available slots after DCI 1202 are allocated to the first repetition of TB1,  TOTs  1204 and 1206, followed by the second repetition of TB1,  TOTs  1208 and 1210. Next, the first and second repetitions of TB2 are allocated,  TOTs  1212, 1214, 1216, and 1218. In each row as illustrated, an upper limit is defined as 8 slots (either in terms of physical or available slots) . This results in the final TOT 1218 to be allocated past the upper limit. How a UE 115 determines to resolve a resource allocation past the upper limit in this context may be either a predefined rule, or configured, for example via RRC.
In the first option illustrated in the first row, only the TOTs beyond the upper limit are cancelled, in this example TOT 1218. In the second option illustrated in the next row, the entire repetition is cancelled where any TOT of the repetition is past the upper limit. In this example, that is  TOTs  1216 and 1218. In the final example, the entire TB is cancelled where any part of that TB is past the upper limit. In this example, that is  TOTs  1212, 1214, 1216, and 1218.
FIG. 13 illustrates the same cancellation options for resources allocated beyond a threshold, only in the context of a different resource allocation method. Specifically, the allocation method illustrated in FIG. 13 is cyclic TBoMS mapping with TBoMS priority mapping, as is also illustrated in FIGS. 8-9. The first repetition of TB1,  TOTs  1304 and 1306, are allocated in the first two available slots after scheduling DCI 1302. Next, the first repetition of TB2,  TOTs  1308 and 1310 are allocated. Next, the second repetitions of TB1 and TB2 are allocated,  TOTs  1312, 1314, 1316, and 1318. As in FIG. 12, the upper limit as illustrated is 8 slots, which results in TOT 1318 being allocated past the upper limit. How a UE 115 determines to resolve a resource allocation past the upper limit in this context may be either a predefined rule, or configured, for example via RRC.
In the first option illustrated in the first row, only the TOTs beyond the upper limit are cancelled, in this example TOT 1318. In the second option illustrated in the  next row, the entire repetition is cancelled where any TOT of the repetition is past the upper limit. In this example, that is  TOTs  1316 and 1318. In the final example, the entire TB is cancelled where any part of that TB is past the upper limit. In this example, that is  TOTs  1308, 1310, 1316, and 1318. Note that in this scenario, TOTs are cancelled in slots before other uncancelled TOT allocations. In some aspects, TOTs may be reallocated earlier in place of cancelled TOT allocations. In this example,  TOTs  1312 and 1314 of the second repetition of TB1 may be allocated in the slots after the first repetition of TB1.
FIG. 14 is a flowchart of a method 1400 according to some aspects of the present disclosure. The method 1400 may be performed by a UE, such as a UE 115 or 400. In this regard the UE 115 may utilize one or more components, such as the processor 402, the memory 404, the resource allocation module 408, the transceiver 410, the modem 412, and the one or more antennas 416 shown in FIG. 4. As illustrated, the method 1400 includes a number of enumerated actions, but aspects of the method 1400 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
At block 1405, UE 115 receives an RRC configuration message configuring multi-PUSCH, TBoMS, and PUSCH repetitions. The RRC configuration may be used to configure a TDRA table. While illustrated as a single RRC message, configuration parameters may be sent over multiple RRC messages at different times. While all three types of configurations may be used together as described below, in some aspects the UE 115 may receive an RRC configuration that only utilized one or two, for example multi-PUSCH and TBoMS but with no repetitions. The parameters used for configuration may be pusch-TimeDomainAllocationListForMultiPUSCH for mult-PUSCH, and numberOfSlotsTBoMS for TBoMS. In some aspects, a separate parameters is used to enable multi-PUSCH and TBoMS together.
The TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations. Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length. In some aspects, certain configuration parameters exist in a single column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated in a single column and apply to every PUSCH  transmission defined in the row (i.e., joint configuration) . Similarly, the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions. In some aspects, parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table. In order to activate a row of the TDRA table, a DCI message may indicate the row, and thereby schedule the resources defined therein.
At block 1410, the UE 115 determines PUSCH resource (slot) availability. UE 115 may determine a slot’s availability based on RRC configured parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated and ssb-PositionsInBurst. A slot may not be available for PUSCH transmission, for example, when the slot is configured for downlink. A slot may be available for two different PUSCH transmissions if their respective SLIV configurations cause them to not overlap when scheduled within the same slot, for example as discussed with reference to FIG. 6.
At block 1415, the UE 115 determines PUSCH resource allocations. Based on the configurations in the TDRA table, the row indicated via DCI, and the slot availability, the UE 115 may allocate specific PUSCH transmissions to the available slots. In some aspects, the method by which transmissions are allocated to slots is based on a predefined rule. In other aspects, the method by which transmissions are allocated to slots is based on a configurable parameter which may be configured via RRC. Methods of allocation are discussed above with reference to FIGS. 5-13.
For example, a TDRA row may include two PUSCH transmissions, each with a two-slot TBoMS, and each configured to have two repetitions. TBoMS slot length may be indicated by value N, where in this example N=2, and the number of repetitions may be indicated by value M, where in this example M=2. UE 115 may determine to allocate the first repetition of the first TBoMS to the first available slots. UE 115 may allocate the second repetition of the first TBoMS in the subsequent available slots. UE 115 may allocate the first repetition of the second TBoMS in the subsequent available slots. Finally, UE 115 may allocate the second repetition of the second TBoMS in the subsequent available slots. The slot that each PUSCH starts at may be defined by a parameter K2 which is configured via RRC. K2 may be configured either jointly, or individually for each configured PUSCH. K2 may be defined as the offset between the  DL slot where the DCI for UL scheduling is received and the slot where the PUSCH begins. This is one example of an order in which UE 115 may allocate slots.
At block 1420, the UE 115 determines overlapped resource allocations and resource allocations beyond a threshold. When the mapping is based on available slots, the first allocation of the next TB (e.g., the second TB) may start before the current TB (e.g., the first TB) is completely mapped to the M*N slots. This may occur, for example, when M*N > K2. It may also happen when M*N < K2, based on the number of available slots. Additionally, a threshold may be configured or otherwise predefined by a rule, beyond which resources may not be allocated. For example, a certain number of slots beyond the scheduling DCI (either in terms of physical slots or available slots) .
At block 1425, the UE 115 cancels overlapped resource allocations, and resource allocations beyond the threshold. If UE 115 determines that a PUSCH with its repetitions cannot be completely mapped as another PUSCH is also mapped to at least one of the same slots, UE 115 may cancel the overlapped slot (s) . UE 115 may cancel more than the overlapped slot (s) , either based on a predefined rule or a configuration. For example, UE 115 may cancel all slots of a TB repetition where any slot of that TB repetition is overlapped. In another example, UE 115 may cancel all slots of all repetitions of a TB if any slot of that TB is overlapped. Similar to overlapped slots, UE 115 may cancel either only the slots beyond the threshold, or the repetition which has a portion beyond the threshold, or the entire TB which has a portion beyond the threshold. Cancellation of resource allocations are further described with reference to FIGS. 10-13.
At block 1430, the UE 115 transmits the PUSCH transmissions to the BS 105. The transmissions occur according to the configuration, the mapping as determined by the UE, and any cancellations that occurred.
FIG. 15 is a flowchart of a method 1500 according to some aspects of the present disclosure. The method 1500 may be performed by a UE, such as a UE 115 or 400. In this regard the UE 115 may utilize one or more components, such as the processor 402, the memory 404, the resource allocation module 408, the transceiver 410, the modem 412, and the one or more antennas 416 shown in FIG. 4. As illustrated, the method 1500 includes a number of enumerated actions, but aspects of the method 1500 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
At block 1505, UE 115 receives an RRC configuration message configuring multi-PUSCH, TBoMS, and PUSCH repetitions. This may occur as described with reference to block 1405 of FIG. 14.
At block 1510, UE 115 determines PUSCH resource availability. This may be performed similarly to block 1410 of FIG. 14.
At decision block 1515, UE 115 determines whether TBoMS-priority mapping is selected. This mapping style may either be a predefined, standardized rule, or may be configurable, for example via RRC. If the mapping type is standardized, then decision block 1515 may not actually be an action performed by the UE 115, but rather it would always map in the predefined way. If TBoMS-priority mapping is used, then the method continues to decision block 1520.
At decision block 1520, the UE determines whether Sequential TBoMS mapping is selected. Similar to decision block 1515, this may be a determination that UE 115 makes based on a configuration, or it may be based on a predefined rule, such that UE 115 does not have to make an actual determination at block 1520. If sequential TBoMS mapping is selected, then the method continues to block 1530, otherwise it continues to block 1535. In the case that at decision block 1515, TBoMS-priority mapping was not selected, then the method would continue to decision block 1525 which is making the same determination as decision block 1520. In the case where TBoMS-priority mapping is not selected and sequential TBoMS mapping is also not selected, the method continues to block 1540. In the case where TBoMS-priority mapping is not selected but sequential TBoMS mapping is selected, then the method continues to block 1545.
At block 1530, UE 115 allocates the first TB and its repetitions before the second TB and its repetitions, and so on. Examples of this allocation method are discussed above with reference to FIG. 7.
At block 1535, UE 115 allocates the first TB, then the second TB, then repetitions of the first and second TB, and so on. Examples of this allocation method are discussed above with reference to FIG. 8.
At block 1540, UE 115 allocates the first slot of each TB, then the second slot of each TB, then repetitions of each TB. This allocation method is similar to that of block 1535, except that slots of a specific TB are not allocated sequentially, but rather cyclically where the first slots of each TB are allocated, then the second slots and so on.
At block 1545, UE 115 allocates the first slot of each TB, then repetitions of the first slots, then the second slot of each TB, then repetitions of the second slots, and so  on. This allocation method is similar to that of block 1530, except that slots of a specific TB are not allocated sequentially, but rather cyclically where the first slots of each TB are allocated, then the second slots and so on.
After  blocks  1530, 1535, 1540, or 1545, the method continues to block 1550. At block 1550, UE 115 determines overlapped resource allocations and resource allocations beyond a threshold. This is done similarly to block 1420 of FIG. 14.
At block 1555, the UE 115 cancels overlapped resource allocations, and resource allocations beyond the threshold. This is done similarly to block 1425 of FIG. 14.
At block 1560, the UE 115 transmits the PUSCH transmissions to the BS 105. The transmissions occur according to the configuration, the mapping as determined by the UE, and any cancellations that occurred. This is done similarly to block 1430 of FIG. 14.
FIG. 16 is a flowchart of a method 1600 according to some aspects of the present disclosure. The method 1600 may be performed by a BS, such as a  BS  105 or 300. In this regard the BS 105 may utilize one or more components, such as the processor 302, the memory 304, the scheduling module 308, the transceiver 310, the modem 312, and the one or more antennas 316 shown in FIG. 3. As illustrated, the method 1600 includes a number of enumerated actions, but aspects of the method 1600 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
At block 1605, a BS 105 transmits an RRC message configuring multi-PUSCH, TBoMS, and PUSCH repetitions. The RRC configuration may be used to configure a TDRA table. While illustrated as a single RRC message, configuration parameters may be sent over multiple RRC messages at different times. While all three types of configurations may be used together as described below, in some aspects the UE 115 may receive an RRC configuration that only utilized one or two, for example multi-PUSCH and TBoMS but with no repetitions.
The TDRA table may be configured with a number of rows, where each row defines a different set of multi-PUSCH, TBoMS, and repetition configurations. Each PUSCH defined in a row may have a start and length indicator value (SLIV) which defines when it starts in time within its allocated slot, and the number of consecutive symbols in length. In some aspects, certain configuration parameters exist in a single  column of the TDRA table and apply to the whole row. For example, the number of slots per TBoMS may be indicated in a single column and apply to every PUSCH transmission defined in the row (i.e., joint configuration) . Similarly, the number of repetitions may be a single column that applies to each PUSCH transmission defined in a row such that they all have the same number of repetitions. In some aspects, parameters such as number of slots in a TBoMS and the number of repetitions are configured individually for each PUSCH transmission defined in the TDRA table, and as such there may be different PUSCH transmissions with different slot lengths and repetitions defined in the same row of the TDRA table.
At block 1610, BS 105 transmits a DCI message indicating a row of the TDRA table. This effectively activate the configuration, and thereby schedule the resources defined therein.
At block 1615, BS 105 receives the multiple PUSCHs with TBoMS and PUSCH repetitions as defined by the RRC and DCI configurations. Depending on the configuration, different combinations of PUSCHs, TBoMS and repetitions may be received. In one example, multiple PUSCHs may be received, with different TBoMS lengths (e.g., 2, 4, 8) but without repetitions. In another example, multiple PUSCHs may be received, each with different amounts of repetitions (e.g., 2, 4, 8) but without TBoMS. In yet another example, a single PUSCH may be received with TBoMS and multiple repetitions. These examples are to show that the ability to configure communications as described herein is flexible, and the resource allocation methods account for different parameters.
FIG. 17 illustrates an example of a disaggregated RAN architecture 1700 that supports remote unit (RU) sharing techniques in wireless communications in accordance with aspects of the present disclosure. In some examples, the disaggregated RAN architecture 1700 may implement aspects of wireless communications system 100. One or more of the elements discussed with respect to RAN architecture 1700 may be a network entity which performs one or more functions described with reference to FIGS. 2-16.
In the example of FIG. 17, a central unit (CU) 1705 may be interconnected with multiple distributed units (DUs) 1710. For example, control plane (CP) functions of CU 1705 may be handled at a CU-CP component that communicates with DUs 1710 via a F1-C interface, and user plane (UP) functions of CU 1705 may be handled at a CU-UP component that communicates with DUs 1710 via a F1-U interface. Such a  disaggregated RAN architecture, along with standardized interfaces among main RAN components (e.g., the F1-C and F1-U interfaces, Xn interfaces, NG interfaces, and the like) may provide an open RAN (O-RAN) environment that provides mobile network operators an opportunity to diversify their network suppliers. Further, such an architecture may provide enhanced network redundancy, where multiple DUs 1710 may be connected to CU 1705 (or multiple CUs) , and multiple RUs 1715 may be connected to one or multiple DUs 1710.
Each RU 1715 may be a separate cell or a number of RUs 1715 can belong to the same cell. In accordance with various aspects as discussed herein, one or more RUs 1715 may be shared RUs 1715 that may be interconnected with DUs 1710 of multiple different mobile network operators.
FIG. 18 shows a diagram of a system 1800 including a device 1805 that supports RU sharing techniques in wireless communications in accordance with aspects of the present disclosure. The device 1805 may communicate with one or more RUs 1855. The device 1805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1820, a network communications manager 1810, a memory 1830, code 1835, a processor 1840, and a RU communications manager 1845. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1850) . One or more of the components of system 1800 may perform functions as described herein with reference to FIGS. 2-16, for example functions described as performed by a base station or network entity.
The network communications manager 1810 may manage communications with a core network 1860 (e.g., via one or more wired backhaul links) . For example, the network communications manager 1810 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The memory 1830 may include RAM and ROM. The memory 1830 may store computer-readable, computer-executable code 1835 including instructions that, when executed by the processor 1840, cause the device 1805 to perform various functions described herein. The code 1835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1835 may not be directly executable by the processor 1840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some  cases, the memory 1830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1840 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1840. The processor 1840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1830) to cause the device 1805 to perform various functions (e.g., functions or tasks supporting RU sharing techniques in wireless communications) . For example, the device 1805 or a component of the device 1805 may include a processor 1840 and memory 1830 coupled to the processor 1840, the processor 1840 and memory 1830 configured to perform various functions described herein.
The RU communications manager 1845 may manage communications with Rus 1855, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with RUs 1855. For example, the RU communications manager 1845 may coordinate scheduling for transmissions to UEs 115. In some examples, the RU communications manager 1845 may provide an F1 interface within a wireless communications network technology to provide communication with RUs 1855.
The communications manager 1820 may support wireless communications at a network node in accordance with examples as disclosed herein. For example, the communications manager 1820 may be configured as or otherwise support a means for transmitting, to a first RU, a request for a wireless resource configuration for a first time period. The communications manager 1820 may be configured as or otherwise support a means for transmitting, to a second RU, an interference inquiry associated with the wireless resource configuration for the first time period. The communications manager 1820 may be configured as or otherwise support a means for receiving, from the second RU, a response to the interference inquiry. The communications manager 1820 may be configured as or otherwise support a means for transmitting, based on the response to the interference inquiry, a payload to the first RU for transmission during the first time period.
By including or configuring the communications manager 1820 in accordance with examples as described herein, the device 1805 may support techniques for RU sharing in which DUs of different MNOs may access wireless resources of other MNOs, which may increase efficiency of resource usage while provide for competition and innovation among different MNOs, may increase the reliability of wireless communications, decrease latency, and enhance user experience.
In some examples, the communications manager 1820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with other components. Although the communications manager 1820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1820 may be supported by or performed by the processor 1840, the memory 1830, the code 1835, or any combination thereof. For example, the code 1835 may include instructions executable by the processor 1840 to cause the device 1805 to perform various aspects of RU sharing techniques in wireless communications as described herein, or the processor 1840 and the memory 1830 may be otherwise configured to perform or support such operations.
Further aspects of the present disclosure include the following clauses:
Clause 1. A method of wireless communication comprising:
receiving, by a user equipment (UE) from a network entity, a communication indicating:
a multiple physical uplink shared channel (multi-PUSCH) configuration; and
a transport block over multiple slots (TBoMS) configuration; and transmitting, by the UE to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
Clause 2. The method of clause 1, wherein the TBoMS configuration indicates a single number of TBoMS slots for the plurality of PUSCHs or a separate number of TBoMS slots for each of the plurality of PUSCHs.
Clause 3. The method of any of clauses 1-2, wherein the transmitting further comprises:
transmitting all slots of a first PUSCH TBoMS before transmitting a second PUSCH TBoMS.
Clause 4. The method of any of clauses 1-2, wherein the transmitting further comprises:
transmitting a first portion of a first PUSCH TBoMS in a first available slot;
transmitting a first portion of a second PUSCH TBoMS in a second available slot;
transmitting a second portion of the first PUSCH TBoMS in a third available slot subsequent to the second available slot; and
transmitting a second portion of the second PUSCH TBoMS in a fourth available slot subsequent to the third available slot.
Clause 5. The method of clause 4, wherein the second available slot is determined based on an indicated K2 value for the second PUSCH TBoMS, or is subsequent to the first available slot after the indicated K2 value for the second PUSCH TBoMS.
Clause 6. The method of any of clauses 1-2, wherein component slots of each respective TBoMS are transmitted in an order that is determined based at least in part on a configuration received by the UE from the network entity.
Clause 7. The method of clause 1, wherein the communication further indicates:
a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
wherein the transmitting further comprises:
first transmitting all repetitions of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots; and
then transmitting all repetitions of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots.
Clause 8. The method of clause 7, wherein the second set of available slots starts from:
a slot which is determined based on an indicated K2 for the second PUSCH; or
a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
Clause 9. The method of clause 1, wherein the communication further indicates:
a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
wherein the transmitting further comprises:
transmitting a first TBoMS repetition of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots; and
transmitting a first TBoMS repetition of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots subsequent to the first set of available slots;
transmitting a second TBoMS repetition of the first PUSCH of the plurality of PUSCH transmissions in a third set of available slots subsequent to the second set of available slots; and
transmitting a second TBoMS repetition of the second PUSCH of the plurality of PUSCH transmissions in a fourth set of available slots subsequent to the third set of available slots.
Clause 10. The method of clause 9, wherein the second set of available slots starts from:
a slot which is determined based on an indicated K2 for the second PUSCH; or
a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
Clause 11. The method of any of clauses 1-10, further comprising:
cancelling at least one transmission occasion, one repetition, or one whole transport block (TB) of a first PUSCH of the plurality of PUSCH transmissions based on at least a pair of TBs from respective different PUSCH transmissions of the plurality of PUSCH transmissions overlapping in time.
Clause 12. The method of any of clauses 1-11, wherein the communication further indicates a maximum time between a downlink control information (DCI) and a slot scheduled by the DCI for a transport block (TB) transmission, further comprising:
cancelling at least one transmission occasion, one repetition, or one whole transport block (TB) transmission of a PUSCH of the plurality of PUSCH transmissions based on the at least one transmission occasion of the PUSCH being allocated to a slot further in time from the DCI than the maximum time,
wherein the maximum time is indicated in terms of physical slots or available slots.
Clause 13. The method of any of clauses 1-12, wherein the communication comprises a downlink control information (DCI) message which indicates a row index of a time domain resource assignment (TDRA) table.
Clause 14. The method of any of clauses 1-13, wherein the communication comprises a radio resource control (RRC) message which indicates parameters for a time domain resource assignment (TDRA) table.
Clause 15. A user equipment (UE) comprising:
a transceiver configured to:
receive, from a network entity, a communication indicating:
a multiple physical uplink shared channel (multi-PUSCH) configuration; and
a transport block over multiple slots (TBoMS) configuration; and transmit, to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
Clause 16. The UE of clause 15, wherein the TBoMS configuration indicates a single number of TBoMS slots for the plurality of PUSCHs or a separate number of TBoMS slots for each of the plurality of PUSCHs.
Clause 17. The UE of any of clauses 15-16, wherein the transceiver is further configured to:
transmit all slots of a first PUSCH TBoMS before transmitting a second PUSCH TBoMS.
Clause 18. The UE of any of clauses 15-16, wherein the transceiver is further configured to:
transmit a first portion of a first PUSCH TBoMS in a first available slot; and
transmit a first portion of a second PUSCH TBoMS in a second available slot;
transmit a second portion of the first PUSCH TBoMS in a third available slot subsequent to the second available slot; and
transmit a second portion of the second PUSCH TBoMS in a fourth available slot subsequent to the third available slot.
Clause 19. The UE of clause 18, wherein the second available slot is determined based on an indicated K2 value for the second PUSCH TBoMS, or is subsequent to the first available slot after the indicated K2 value for the second PUSCH TBoMS.
Clause 20. The UE of any of clauses 15-16, wherein component slots of each respective TBoMS are transmitted in an order that is determined based at least in part on a configuration received by the UE from the network entity.
Clause 21. The UE of clause 15, wherein the communication further indicates:
a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
wherein the transceiver is further configured to:
first transmit all repetitions of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots; and
then transmit all repetitions of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots.
Clause 22. The UE of clause 21, wherein the second set of available slots starts from:
a slot which is determined based on an indicated K2 for the second PUSCH; or
a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
Clause 23. The UE of clause 15, wherein the communication further indicates:
a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
wherein the transceiver is further configured to:
transmit a first TBoMS repetition of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots;
transmit a first TBoMS repetition of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots subsequent to the first set of available slots;
transmit a second TBoMS repetition of the first PUSCH of the plurality of PUSCH transmissions in a third set of available slots subsequent to the second set of available slots; and
transmit a second TBoMS repetition of the second PUSCH of the plurality of PUSCH transmissions in a fourth set of available slots subsequent to the third set of available slots.
Clause 24. The UE of clause 23, wherein the second set of available slots starts from:
a slot which is determined based on an indicated K2 for the second PUSCH; or
a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
Clause 25. The UE of any of clauses 15-24, wherein the transceiver is further configured to:
cancel at least one transmission occasion, one repetition, or one whole transport block (TB) of a first PUSCH of the plurality of PUSCH transmissions based on at least a pair of TBs from respective different PUSCH transmissions of the plurality of PUSCH transmissions overlapping in time.
Clause 26. The UE of any of clauses 15-25, wherein the communication further indicates a maximum time between a downlink control information (DCI) and a slot scheduled by the DCI for a transport block (TB) transmission, wherein the transceiver is further configured to:
cancel at least one transmission occasion, one repetition, or one whole transport block (TB) transmission of a PUSCH of the plurality of PUSCH transmissions based on the at least one transmission occasion of the PUSCH being allocated to a slot further in time from the DCI than the maximum time,
wherein the maximum time is indicated in terms of physical slots or available slots.
Clause 27. The UE of any of clauses 15-26, wherein the communication comprises a downlink control information (DCI) message which indicates a row index of a time domain resource assignment (TDRA) table.
Clause 28. The UE of any of clauses 15-27, wherein the communication comprises a radio resource control (RRC) message which indicates parameters for a time domain resource assignment (TDRA) table.
Clause 29. A method of wireless communication comprising:
transmitting, by a network entity to a user equipment (UE) , a communication indicating:
a multiple physical uplink shared channel (multi-PUSCH) configuration; and
a transport block over multiple slots (TBoMS) configuration; and receiving, by the network entity from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS. Clause 30. A network entity comprising:
a transceiver configured to:
transmit, to a user equipment (UE) , a communication indicating:
a multiple physical uplink shared channel (multi-PUSCH) configuration; and
a transport block over multiple slots (TBoMS) configuration; and receive, from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the  particular aspects illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (30)

  1. A method of wireless communication comprising:
    receiving, by a user equipment (UE) from a network entity, a communication indicating:
    a multiple physical uplink shared channel (multi-PUSCH) configuration; and
    a transport block over multiple slots (TBoMS) configuration; and
    transmitting, by the UE to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
  2. The method of claim 1, wherein the TBoMS configuration indicates a single number of TBoMS slots for the plurality of PUSCHs or a separate number of TBoMS slots for each of the plurality of PUSCHs.
  3. The method of claim 1, wherein the transmitting further comprises:
    transmitting all slots of a first PUSCH TBoMS before transmitting a second PUSCH TBoMS.
  4. The method of claim 1, wherein the transmitting further comprises:
    transmitting a first portion of a first PUSCH TBoMS in a first available slot;
    transmitting a first portion of a second PUSCH TBoMS in a second available slot;
    transmitting a second portion of the first PUSCH TBoMS in a third available slot subsequent to the second available slot; and
    transmitting a second portion of the second PUSCH TBoMS in a fourth available slot subsequent to the third available slot.
  5. The method of claim 4, wherein the second available slot is determined based on an indicated K2 value for the second PUSCH TBoMS, or is subsequent to the first available slot after the indicated K2 value for the second PUSCH TBoMS.
  6. The method of claim 1, wherein component slots of each respective TBoMS are transmitted in an order that is determined based at least in part on a configuration received by the UE from the network entity.
  7. The method of claim 1, wherein the communication further indicates:
    a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
    wherein the transmitting further comprises:
    first transmitting all repetitions of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots; and
    then transmitting all repetitions of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots.
  8. The method of claim 7, wherein the second set of available slots starts from:
    a slot which is determined based on an indicated K2 for the second PUSCH; or
    a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
  9. The method of claim 1, wherein the communication further indicates:
    a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
    wherein the transmitting further comprises:
    transmitting a first TBoMS repetition of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots; and
    transmitting a first TBoMS repetition of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots subsequent to the first set of available slots;
    transmitting a second TBoMS repetition of the first PUSCH of the plurality of PUSCH transmissions in a third set of available slots subsequent to the second set of available slots; and
    transmitting a second TBoMS repetition of the second PUSCH of the plurality of PUSCH transmissions in a fourth set of available slots subsequent to the third set of available slots.
  10. The method of claim 9, wherein the second set of available slots starts from:
    a slot which is determined based on an indicated K2 for the second PUSCH; or
    a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
  11. The method of claim 1, further comprising:
    cancelling at least one transmission occasion, one repetition, or one whole transport block (TB) of a first PUSCH of the plurality of PUSCH transmissions based on at least a pair of TBs from respective different PUSCH transmissions of the plurality of PUSCH transmissions overlapping in time.
  12. The method of claim 1, wherein the communication further indicates a maximum time between a downlink control information (DCI) and a slot scheduled by the DCI for a transport block (TB) transmission, further comprising:
    cancelling at least one transmission occasion, one repetition, or one whole transport block (TB) transmission of a PUSCH of the plurality of PUSCH transmissions based on the at least one transmission occasion of the PUSCH being allocated to a slot further in time from the DCI than the maximum time,
    wherein the maximum time is indicated in terms of physical slots or available slots.
  13. The method of claim 1, wherein the communication comprises a downlink control information (DCI) message which indicates a row index of a time domain resource assignment (TDRA) table.
  14. The method of claim 1, wherein the communication comprises a radio resource control (RRC) message which indicates parameters for a time domain resource assignment (TDRA) table.
  15. A user equipment (UE) comprising:
    a transceiver configured to:
    receive, from a network entity, a communication indicating:
    a multiple physical uplink shared channel (multi-PUSCH) configuration; and
    a transport block over multiple slots (TBoMS) configuration; and
    transmit, to the network entity based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
  16. The UE of claim 15, wherein the TBoMS configuration indicates a single number of TBoMS slots for the plurality of PUSCHs or a separate number of TBoMS slots for each of the plurality of PUSCHs.
  17. The UE of claim 15, wherein the transceiver is further configured to:
    transmit all slots of a first PUSCH TBoMS before transmitting a second PUSCH TBoMS.
  18. The UE of claim 15, wherein the transceiver is further configured to:
    transmit a first portion of a first PUSCH TBoMS in a first available slot; and
    transmit a first portion of a second PUSCH TBoMS in a second available slot;
    transmit a second portion of the first PUSCH TBoMS in a third available slot subsequent to the second available slot; and
    transmit a second portion of the second PUSCH TBoMS in a fourth available slot subsequent to the third available slot.
  19. The UE of claim 18, wherein the second available slot is determined based on an indicated K2 value for the second PUSCH TBoMS, or is subsequent to the first available slot after the indicated K2 value for the second PUSCH TBoMS.
  20. The UE of claim 15, wherein component slots of each respective TBoMS are transmitted in an order that is determined based at least in part on a configuration received by the UE from the network entity.
  21. The UE of claim 15, wherein the communication further indicates:
    a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
    wherein the transceiver is further configured to:
    first transmit all repetitions of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots; and
    then transmit all repetitions of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots.
  22. The UE of claim 21, wherein the second set of available slots starts from:
    a slot which is determined based on an indicated K2 for the second PUSCH; or
    a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
  23. The UE of claim 15, wherein the communication further indicates:
    a PUSCH repetition configuration indicating a single number of repetitions for the plurality of PUSCH TBoMSs or a separate number of repetitions for each of the plurality of PUSCH TBoMSs, and
    wherein the transceiver is further configured to:
    transmit a first TBoMS repetition of a first PUSCH of the plurality of PUSCH transmissions in a first set of available slots;
    transmit a first TBoMS repetition of a second PUSCH of the plurality of PUSCH transmissions in a second set of available slots subsequent to the first set of available slots;
    transmit a second TBoMS repetition of the first PUSCH of the plurality of PUSCH transmissions in a third set of available slots subsequent to the second set of available slots; and
    transmit a second TBoMS repetition of the second PUSCH of the plurality of PUSCH transmissions in a fourth set of available slots subsequent to the third set of available slots.
  24. The UE of claim 23, wherein the second set of available slots starts from:
    a slot which is determined based on an indicated K2 for the second PUSCH; or
    a slot which is after the first set of available slots and after the indicated K2 for the second PUSCH.
  25. The UE of claim 15, wherein the transceiver is further configured to:
    cancel at least one transmission occasion, one repetition, or one whole transport block (TB) of a first PUSCH of the plurality of PUSCH transmissions based on at least a pair of TBs from respective different PUSCH transmissions of the plurality of PUSCH transmissions overlapping in time.
  26. The UE of claim 15, wherein the communication further indicates a maximum time between a downlink control information (DCI) and a slot scheduled by the DCI for a transport block (TB) transmission, wherein the transceiver is further configured to:
    cancel at least one transmission occasion, one repetition, or one whole transport block (TB) transmission of a PUSCH of the plurality of PUSCH transmissions based on the at least one transmission occasion of the PUSCH being allocated to a slot further in time from the DCI than the maximum time,
    wherein the maximum time is indicated in terms of physical slots or available slots.
  27. The UE of claim 15, wherein the communication comprises a downlink control information (DCI) message which indicates a row index of a time domain resource assignment (TDRA) table.
  28. The UE of claim 15, wherein the communication comprises a radio resource control (RRC) message which indicates parameters for a time domain resource assignment (TDRA) table.
  29. A method of wireless communication comprising:
    transmitting, by a network entity to a user equipment (UE) , a communication indicating:
    a multiple physical uplink shared channel (multi-PUSCH) configuration; and
    a transport block over multiple slots (TBoMS) configuration; and
    receiving, by the network entity from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
  30. A network entity comprising:
    a transceiver configured to:
    transmit, to a user equipment (UE) , a communication indicating:
    a multiple physical uplink shared channel (multi-PUSCH) configuration; and
    a transport block over multiple slots (TBoMS) configuration; and
    receive, from the UE based on the multi-PUSCH configuration and the TBoMS configuration, a plurality of PUSCH transmissions, wherein each of the plurality of PUSCH transmissions comprises a respective TBoMS.
PCT/CN2022/074541 2022-01-28 2022-01-28 Multi-pusch scheduling with tboms WO2023141926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074541 WO2023141926A1 (en) 2022-01-28 2022-01-28 Multi-pusch scheduling with tboms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074541 WO2023141926A1 (en) 2022-01-28 2022-01-28 Multi-pusch scheduling with tboms

Publications (1)

Publication Number Publication Date
WO2023141926A1 true WO2023141926A1 (en) 2023-08-03

Family

ID=87469922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074541 WO2023141926A1 (en) 2022-01-28 2022-01-28 Multi-pusch scheduling with tboms

Country Status (1)

Country Link
WO (1) WO2023141926A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632572A (en) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 Frequency hopping method, device, user equipment, base station and storage medium
WO2021225508A2 (en) * 2020-05-08 2021-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Single tb transmission over multiple slots
US20210377937A1 (en) * 2018-04-05 2021-12-02 Ntt Docomo, Inc. Transmission apparatus and reception apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377937A1 (en) * 2018-04-05 2021-12-02 Ntt Docomo, Inc. Transmission apparatus and reception apparatus
WO2021225508A2 (en) * 2020-05-08 2021-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Single tb transmission over multiple slots
CN113632572A (en) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 Frequency hopping method, device, user equipment, base station and storage medium

Similar Documents

Publication Publication Date Title
US10912012B2 (en) Initial network access for downlink unlicensed deployment
US10952103B2 (en) Transmission opportunity (TXOP) structure for new radio-unlicensed (NR-U) and new radio-synchronized sharing (NR-SS)
EP4018762A1 (en) Channel access priority for nr-u data bearers
US11991722B2 (en) Application of an uplink (UL) cancellation indication in a wireless communications network
US20210409993A1 (en) Interference management for sidelink on resources shared with direct link
US11528742B2 (en) Systems and methods for autonomous transmission of deprioritized protocol data units
US20210337495A1 (en) Synchronization signal block (ssb) in full-duplex
US11895634B2 (en) Control resource set (CORESET) configuration for narrowband new radio (NR)
US20230232393A1 (en) Uplink transmit switch scheduling of carrier aggregation
US20230397136A1 (en) Secondary cell activation using temporary reference signals
EP4302550A1 (en) Subchannel selection and channel state information (csi) indication via buffer status report (bsr) for sidelink
US11546917B2 (en) Interference mitigation scheme for asynchronous time division duplex
WO2021212311A1 (en) Enhanced cg-ul transmission over pusch
WO2022006740A1 (en) Interlaced waveform for control resource set (coreset)
WO2021226758A1 (en) Dithering jittered periodic traffic for single uplink configured grant
WO2021248311A1 (en) Availability of resource block (rb) sets and listen-before-talk (lbt) status associated with the rb sets
WO2023141926A1 (en) Multi-pusch scheduling with tboms
WO2022178739A1 (en) Scheduling request (sr) handling for relay-based communications
WO2024031321A1 (en) Nested discontinuous reception (drx) cycles
WO2023019458A1 (en) Beam management for multiple transport block transmission with repetitions
WO2024011495A1 (en) Uplink collision handling for multiple transmission-reception communications
WO2022178829A1 (en) Indication of a beam direction associated with a beam application time
US20230308917A1 (en) Indication of preferred and restricted beams
WO2021248317A1 (en) Dynamic switching between power mode configurations
WO2022077449A1 (en) Long physical uplink control channel (pucch) format for multi-slot transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922771

Country of ref document: EP

Kind code of ref document: A1