WO2023141911A1 - Method and system for performing diffractometry - Google Patents

Method and system for performing diffractometry Download PDF

Info

Publication number
WO2023141911A1
WO2023141911A1 PCT/CN2022/074467 CN2022074467W WO2023141911A1 WO 2023141911 A1 WO2023141911 A1 WO 2023141911A1 CN 2022074467 W CN2022074467 W CN 2022074467W WO 2023141911 A1 WO2023141911 A1 WO 2023141911A1
Authority
WO
WIPO (PCT)
Prior art keywords
portions
active areas
diffraction pattern
radiation
image
Prior art date
Application number
PCT/CN2022/074467
Other languages
French (fr)
Inventor
Peiyan CAO
Yurun LIU
Xian FU
Yuanjie Cao
Original Assignee
Shenzhen Xpectvision Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xpectvision Technology Co., Ltd. filed Critical Shenzhen Xpectvision Technology Co., Ltd.
Priority to PCT/CN2022/074467 priority Critical patent/WO2023141911A1/en
Priority to TW111150590A priority patent/TW202331301A/en
Publication of WO2023141911A1 publication Critical patent/WO2023141911A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/20Identification of molecular entities, parts thereof or of chemical compositions

Definitions

  • a radiation detector is a device that measures a property of a radiation. Examples of the property may include a spatial distribution of the intensity, phase, and polarization of the radiation.
  • the radiation measured by the radiation detector may be a radiation that has transmitted through an object.
  • the radiation measured by the radiation detector may be electromagnetic radiation such as infrared light, visible light, ultraviolet light, X-ray, or ⁇ -ray.
  • the radiation may be of other types such as ⁇ -rays and ⁇ -rays.
  • An imaging system may include one or more image sensors each of which may have one or more radiation detectors.
  • a method comprising: sending a first radiation beam toward an object; capturing, with M first portions respectively of M active areas of an image sensor of a system, N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, wherein M and N are positive integers; sending a second radiation beam toward P calibration patterns, P being a positive integer; capturing, with M second portions respectively of the M active areas of the image sensor, an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P calibration patterns; and determining a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns, wherein no sensing element of all sensing elements of the M active areas is in both (A) a portion of the M first portions, and (B) a portion of the M second portions.
  • the first radiation beam and the second radiation beam comprise X-ray photons.
  • the first radiation beam comprises monochromatic X-ray photons.
  • the object comprises (A) a single crystal material or (B) a powder of crystal materials.
  • the system comprises a collimator configured to prevent the first radiation beam and radiation particles resulting from the first radiation beam being diffracted by the object from reaching the M second portions of the M active areas.
  • the first radiation beam is a pencil beam.
  • At least a radiation particle of the first radiation beam and at least a radiation particle of the second radiation beam are sent simultaneously.
  • said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; stitching the N corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern; and determining the crystal structure of the object based on the stitched image of the diffraction pattern.
  • said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; and determining the crystal structure of the object based on the N corrected images of the diffraction pattern.
  • N 2 and the N images of the diffraction pattern are captured when the image sensor is respectively at N positions such that gaps among the M active areas are scanned by the M active areas.
  • the M active areas are arranged in a first row of active areas and a second row of active areas, and no gap between any 2 adjacent active areas of the first row is aligned with any gap between any 2 adjacent active areas of the second row.
  • the M first portions are positioned between (A) portions of the M second portions of the first row and (B) portions of the M second portions of the second row.
  • the M active areas form a row of active areas, and for each active area of the M active areas, the second portion of said each active area comprises 2 regions sandwiching the first portion of said each active area.
  • each region of the 2 regions of the second portion of said each active area captures an image of at least a calibration pattern of the P calibration patterns.
  • a system comprising: an image sensor comprising M active areas which comprise respectively M first portions and M second portions, M being a positive integer; a radiation source; and P calibration patterns, P being a positive integer, wherein the radiation source is configured to send a first radiation beam toward an object, wherein the M first portions are configured to capture N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, N being a positive integer, wherein the radiation source is configured to send a second radiation beam toward the P calibration patterns, wherein the M second portions are configured to capture an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P calibration patterns, wherein the system is configured to determine a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns, and wherein no sensing element of all sensing elements of the M active areas
  • the system further comprises a collimator configured to prevent the first radiation beam and radiation particles resulting from the first radiation beam being diffracted by the object from reaching the M second portions of the M active areas.
  • At least a radiation particle of the first radiation beam and at least a radiation particle of the second radiation beam are sent simultaneously.
  • said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in N corrected images of the diffraction pattern; stitching the N corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern; and determining the crystal structure of the object based on the stitched image of the diffraction pattern.
  • said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; and determining the crystal structure of the object based on the N corrected images of the diffraction pattern.
  • N 2 and the N images of the diffraction pattern are captured when the image sensor is respectively at N positions such that gaps among the M active areas are scanned by the M active areas.
  • the M active areas are arranged in a first row of active areas and a second row of active areas, and no gap between any 2 adjacent active areas of the first row is aligned with any gap between any 2 adjacent active areas of the second row.
  • the M first portions are positioned between (A) portions of the M second portions of the first row and (B) portions of the M second portions of the second row.
  • the M active areas form a row of active areas, and for each active area of the M active areas, the second portion of said each active area comprises 2 regions sandwiching the first portion of said each active area.
  • Fig. 1 schematically shows a radiation detector, according to an embodiment.
  • Fig. 2 schematically shows a simplified cross-sectional view of the radiation detector, according to an embodiment.
  • Fig. 3 schematically shows a detailed cross-sectional view of the radiation detector, according to an embodiment.
  • Fig. 4 schematically shows a detailed cross-sectional view of the radiation detector, according to an alternative embodiment.
  • Fig. 5 schematically shows a top view of a radiation detector package including the radiation detector and a printed circuit board (PCB) , according to an embodiment.
  • PCB printed circuit board
  • Fig. 6 schematically shows a cross-sectional view of an image sensor including the packages of Fig. 5 mounted to a system PCB (printed circuit board) , according to an embodiment.
  • PCB printed circuit board
  • Fig. 7 schematically shows a perspective view of a diffractometer including an image sensor, according to an embodiment.
  • Fig. 8 shows an image captured by the image sensor of the diffractometer, according to an embodiment.
  • Fig. 9 shows a flowchart generalizing the operation of the diffractometer, according to an embodiment.
  • Fig. 10 shows a top view of the image sensor of the diffractometer, according to an alternative embodiment.
  • Fig. 11 shows a top view of the image sensor of the diffractometer, according to yet another alternative embodiment.
  • Fig. 1 schematically shows a radiation detector 100, as an example.
  • the radiation detector 100 may include an array of pixels 150 (also referred to as sensing elements 150) .
  • the array may be a rectangular array (as shown in Fig. 1) , a honeycomb array, a hexagonal array, or any other suitable array.
  • the array of pixels 150 in the example of Fig. 1 has 4 rows and 7 columns; however, in general, the array of pixels 150 may have any number of rows and any number of columns.
  • Each pixel 150 may be configured to detect radiation from a radiation source (not shown) incident thereon and may be configured to measure a characteristic (e.g., the energy of the particles, the wavelength, and the frequency) of the radiation.
  • the radiation may include radiation particles such as photons (X-rays, gamma rays, etc. ) and subatomic particles (alpha particles, beta particles, etc. )
  • Each pixel 150 may be configured to count numbers of particles of radiation incident thereon whose energy falls in a plurality of bins of energy, within a period of time. All the pixels 150 may be configured to count the numbers of particles of radiation incident thereon within a plurality of bins of energy within the same period of time. When the incident particles of radiation have similar energy, the pixels 150 may be simply configured to count numbers of particles of radiation incident thereon within a period of time, without measuring the energy of the individual particles of radiation.
  • Each pixel 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident particle of radiation into a digital signal, or to digitize an analog signal representing the total energy of a plurality of incident particles of radiation into a digital signal.
  • ADC analog-to-digital converter
  • the pixels 150 may be configured to operate in parallel. For example, when one pixel 150 measures an incident particle of radiation, another pixel 150 may be waiting for a particle of radiation to arrive. The pixels 150 may not have to be individually addressable.
  • the radiation detector 100 described here may have applications such as in an X-ray telescope, X-ray mammography, industrial X-ray defect detection, X-ray microscopy or microradiography, X-ray casting inspection, X-ray non-destructive testing, X-ray weld inspection, X-ray digital subtraction angiography, etc. It may be suitable to use this radiation detector 100 in place of a photographic plate, a photographic film, a PSP plate, an X-ray image intensifier, a scintillator, or another semiconductor X-ray detector.
  • Fig. 2 schematically shows a simplified cross-sectional view of the radiation detector 100 of Fig. 1 along a line 2-2, according to an embodiment.
  • the radiation detector 100 may include a radiation absorption layer 110 and an electronics layer 120 (which may include one or more ASICs or application-specific integrated circuits) for processing or analyzing electrical signals which incident radiation generates in the radiation absorption layer 110.
  • the radiation detector 100 may or may not include a scintillator (not shown) .
  • the radiation absorption layer 110 may include a semiconductor material such as silicon, germanium, GaAs, CdTe, CdZnTe, or a combination thereof.
  • the semiconductor material may have a high mass attenuation coefficient for the radiation of interest.
  • the radiation absorption layer 110 may include one or more diodes (e.g., p-i-n or p-n) formed by a first doped region 111, one or more discrete regions 114 of a second doped region 113.
  • the second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112.
  • the discrete regions 114 may be separated from one another by the first doped region 111 or the intrinsic region 112.
  • the first doped region 111 and the second doped region 113 may have opposite types of doping (e.g., region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type) .
  • each of the discrete regions 114 of the second doped region 113 forms a diode with the first doped region 111 and the optional intrinsic region 112.
  • the radiation absorption layer 110 has a plurality of diodes (more specifically, 7 diodes corresponding to 7 pixels 150 of one row in the array of Fig. 1, of which only 2 pixels 150 are labeled in Fig. 3 for simplicity) .
  • the plurality of diodes may have an electrical contact 119A as a shared (common) electrode.
  • the first doped region 111 may also have discrete portions.
  • the electronics layer 120 may include an electronic system 121 suitable for processing or interpreting signals generated by the radiation incident on the radiation absorption layer 110.
  • the electronic system 121 may include an analog circuitry such as a filter network, amplifiers, integrators, and comparators, or a digital circuitry such as a microprocessor, and memory.
  • the electronic system 121 may include one or more ADCs (analog to digital converters) .
  • the electronic system 121 may include components shared by the pixels 150 or components dedicated to a single pixel 150.
  • the electronic system 121 may include an amplifier dedicated to each pixel 150 and a microprocessor shared among all the pixels 150.
  • the electronic system 121 may be electrically connected to the pixels 150 by vias 131. Space among the vias may be filled with a filler material 130, which may increase the mechanical stability of the connection of the electronics layer 120 to the radiation absorption layer 110. Other bonding techniques are possible to connect the electronic system 121 to the pixels 150 without using the vias 131.
  • the radiation absorption layer 110 including diodes
  • particles of the radiation may be absorbed and generate one or more charge carriers (e.g., electrons, holes) by a number of mechanisms.
  • the charge carriers may drift to the electrodes of one of the diodes under an electric field.
  • the electric field may be an external electric field.
  • the electrical contact 119B may include discrete portions each of which is in electrical contact with the discrete regions 114.
  • the term “electrical contact” may be used interchangeably with the word “electrode.
  • the charge carriers may drift in directions such that the charge carriers generated by a single particle of the radiation are not substantially shared by two different discrete regions 114 ( “not substantially shared” here means less than 2%, less than 0.5%, less than 0.1%, or less than 0.01%of these charge carriers flow to a different one of the discrete regions 114 than the rest of the charge carriers) .
  • Charge carriers generated by a particle of the radiation incident around the footprint of one of these discrete regions 114 are not substantially shared with another of these discrete regions 114.
  • a pixel 150 associated with a discrete region 114 may be an area around the discrete region 114 in which substantially all (more than 98%, more than 99.5%, more than 99.9%, or more than 99.99%of) charge carriers generated by a particle of the radiation incident therein flow to the discrete region 114. Namely, less than 2%, less than 1%, less than 0.1%, or less than 0.01%of these charge carriers flow beyond the pixel 150.
  • Fig. 4 schematically shows a detailed cross-sectional view of the radiation detector 100 of Fig. 1 along the line 2-2, according to an alternative embodiment.
  • the radiation absorption layer 110 may include a resistor of a semiconductor material such as silicon, germanium, GaAs, CdTe, CdZnTe, or a combination thereof, but does not include a diode.
  • the semiconductor material may have a high mass attenuation coefficient for the radiation of interest.
  • the electronics layer 120 of Fig. 4 is similar to the electronics layer 120 of Fig. 3 in terms of structure and function.
  • the radiation When the radiation hits the radiation absorption layer 110 including the resistor but not diodes, it may be absorbed and generate one or more charge carriers by a number of mechanisms.
  • a particle of the radiation may generate 10 to 100,000 charge carriers.
  • the charge carriers may drift to the electrical contacts 119A and 119B under an electric field.
  • the electric field may be an external electric field.
  • the electrical contact 119B may include discrete portions.
  • the charge carriers may drift in directions such that the charge carriers generated by a single particle of the radiation are not substantially shared by two different discrete portions of the electrical contact 119B ( “not substantially shared” here means less than 2%, less than 0.5%, less than 0.1%, or less than 0.01%of these charge carriers flow to a different one of the discrete portions than the rest of the charge carriers) .
  • a pixel 150 associated with a discrete portion of the electrical contact 119B may be an area around the discrete portion in which substantially all (more than 98%, more than 99.5%, more than 99.9%or more than 99.99%of) charge carriers generated by a particle of the radiation incident therein flow to the discrete portion of the electrical contact 119B. Namely, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01%of these charge carriers flow beyond the pixel associated with the one discrete portion of the electrical contact 119B.
  • Fig. 5 schematically shows a top view of a radiation detector package 500 including the radiation detector 100 and a printed circuit board (PCB) 510.
  • PCB printed circuit board
  • the term “PCB” as used herein is not limited to a particular material.
  • a PCB may include a semiconductor.
  • the radiation detector 100 may be mounted to the PCB 510.
  • the wiring between the radiation detector 100 and the PCB 510 is not shown for the sake of clarity.
  • the package 500 may have one or more radiation detectors 100.
  • the PCB 510 may include an input/output (I/O) area 512 not covered by the radiation detector 100 (e.g., for accommodating bonding wires 514) .
  • the radiation detector 100 may have an active area 190 which is where the pixels 150 (Fig. 1) are located.
  • the radiation detector 100 may have a perimeter zone 195 near the edges of the radiation detector 100.
  • the perimeter zone 195 has no pixels 150, and the radiation detector 100 does not detect particles of radiation incident on the perimeter zone
  • Fig. 6 schematically shows a cross-sectional view of an image sensor 600, according to an embodiment.
  • the image sensor 600 may include one or more radiation detector packages 500 of Fig. 5 mounted to a system PCB 650.
  • the electrical connection between the PCBs 510 and the system PCB 650 may be made by bonding wires 514.
  • the PCB 510 may have the I/O area 512 not covered by the radiation detectors 100.
  • the packages 500 may have gaps in between. The gaps may be approximately 1 mm or more.
  • a dead zone of a radiation detector (e.g., the radiation detector 100) is the area of the radiation-receiving surface of the radiation detector, on which incident particles of radiation cannot be detected by the radiation detector.
  • a dead zone of a package (e.g., package 500) is the area of the radiation-receiving surface of the package, on which incident particles of radiation cannot be detected by the radiation detector or detectors in the package.
  • the dead zone of the package 500 includes the perimeter zones 195 and the I/O area 512.
  • a dead zone (e.g., 688) of an image sensor (e.g., image sensor 600) with a group of packages (e.g., packages 500 mounted on the same PCB and arranged in the same layer or in different layers) includes the combination of the dead zones of the packages in the group and the gaps between the packages.
  • the radiation detector 100 (Fig. 1) operating by itself may be considered an image sensor.
  • the package 500 (Fig. 5) operating by itself may be considered an image sensor.
  • the image sensor 600 including the radiation detectors 100 may have the dead zone 688 among the active areas 190 of the radiation detectors 100. However, the image sensor 600 may capture multiple partial images of an object or scene (not shown) one by one, and then these captured partial images may be stitched to form a stitched image of the entire object or scene.
  • image in the present patent application (including the claims) is not limited to spatial distribution of a property of a radiation (such as intensity) .
  • image may also include the spatial distribution of density of a substance or element.
  • Fig. 7 schematically shows a perspective view of a diffractometer 700, according to an embodiment.
  • the diffractometer 700 may include a radiation source 710, one or more calibration patterns 732, and an image sensor 602.
  • an object 720 may be positioned between the radiation source 710 and the image sensor 602 as shown.
  • the object 720 may include a single crystal material.
  • the object 720 may include a powder of crystal materials. There is no limit on the crystallinity of the object 720.
  • the radiation source 710 may send a first radiation beam 711 toward the object 720.
  • the radiation source 710 may also send a second radiation beam 712 toward the calibration patterns 732.
  • the first radiation beam 711 may include X-ray photons. Specifically, the first radiation beam 711 may include monochromatic X-ray photons. In an embodiment, the first radiation beam 711 may be a pencil beam. In an embodiment, the second radiation beam 712 may include X-ray photons.
  • the calibration patterns 732 may be opaque to the second radiation beam 712. Alternatively, the calibration patterns 732 may interact with the second radiation beam 712 in some other way. In an embodiment, the calibration patterns 732 may be on a support plate 730. In an embodiment, the support plate 730 may be transparent (or not opaque) to the radiation beams 711 and 712.
  • the image sensor 602 of the diffractometer 700 may be similar to the image sensor 600 of Fig. 6 in terms of structure and function.
  • the image sensor 602 may include one or more active areas 190 (e.g., 3 active areas 190 as shown) .
  • each of the 3 active areas 190 of the image sensor 602 may include a first portion 190a and a second portion 190b.
  • the 3 active areas 190 include respectively 3 first portions 190a and 3 second portions 190b.
  • the 3 first portions 190a may be completely separate from (i.e., not part of) the 3 second portions 190b.
  • no sensing element 150 of all sensing elements 150 of the 3 active areas 190 is in both a first portion 190a and a second portion 190b.
  • the operation of the diffractometer 700 may be as follows. While the first radiation beam 711 is being sent from the radiation source 710 toward the object 720, the 3 first portions 190a may collectively capture a first image of the diffraction pattern resulting from the first radiation beam 711 being diffracted by the object 720.
  • the image sensor 602 may be moved to another position, and then while the first radiation beam 711 is still being sent from the radiation source 710 toward the object 720, the 3 first portions 190a may collectively capture a second image of the diffraction pattern.
  • this another position of the image sensor 602 may be chosen such that each gap 192 among the 3 active areas 190 when the first image is captured is on an active area 190 when the second image is captured. In other words, this another position of the image sensor 602 is chosen such that the gaps 192 among the 3 active areas 190 are scanned by the 3 active areas 190.
  • the 3 second portions 190b may collectively capture an image of the calibration patterns 732 based on the interaction between the second radiation beam 712 and the calibration patterns 732.
  • the interaction between the second radiation beam 712 and the calibration patterns 732 may include scenarios such as: (A) some of the radiation particles of the second radiation beam 712 that are incident on the calibration patterns 732 are blocked by the calibration patterns 732, (B) some of the radiation particles of the second radiation beam 712 that are incident on the calibration patterns 732 travel through the calibration patterns 732 without changing their directions, and (C) some of the radiation particles of the second radiation beam 712 that are incident on the calibration patterns 732 collide with atoms of the calibration patterns 732 and thereby change their directions.
  • each of the 3 second portions 190b may capture an image of at least one of the calibration patterns 732.
  • each of the 3 second portions 190b captures an image of 2 calibration patterns 732.
  • the diffractometer 700 may determine the crystal structure of the object 720 based on (A) the first and second images of the diffraction pattern and (B) the image of the calibration patterns 732.
  • the image of the calibration patterns 732 may be used to determine the positions of the image sensor 602 or the positions of the active areas 190.
  • the positions of the calibration patterns 732 relative to the first radiation beam 711 are known and may be fixed.
  • the calibration patterns 732 may be monolithic with the radiation source 710.
  • the image sensor 602 may capture both the first image of the diffraction pattern and the image of the calibration patterns 732 at the same time (i.e., in the same exposure) .
  • the image sensor 602 may capture both the second image of the diffraction pattern and the image of the calibration patterns 732 at the same time (i.e., in the same exposure) . Either way, as a result, at least a radiation particle of the first radiation beam 711 and at least a radiation particle of the second radiation beam 712 are sent simultaneously from the radiation source 710.
  • Fig. 8 shows the resulting image captured by the image sensor 602 of the diffractometer 700 for the case in which (A) the object 720 includes a powder of crystal materials, (B) the first image of the diffraction pattern and the image of the calibration patterns 732 are captured in the same exposure, and (C) the first radiation beam 711 and the radiation particles resulting from the first radiation beam 711 being diffracted by the object 720 are prevented from reaching the 3 second portions 190b of the 3 active areas 190.
  • This resulting image of Fig. 8 includes both the first image of the diffraction pattern (the upper part) and the image of the 6 calibration patterns 732 (the lower part) .
  • Fig. 9 shows a flowchart 900 generalizing the operation of the diffractometer 700 described above, according to an embodiment.
  • the operation includes sending a first radiation beam toward an object.
  • the first radiation beam 711 is sent toward the object 720.
  • the operation includes capturing, with M first portions respectively of M active areas of an image sensor of a system, N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, wherein M and N are positive integers.
  • M the number of the active areas 190 of the image sensor 602 of the diffractometer 700
  • M the number of the active areas 190 of the image sensor 602 of the diffractometer 700
  • M the number of the 3 active areas 190 of the image sensor 602 of the diffractometer 700
  • the operation includes sending a second radiation beam toward P calibration patterns, P being a positive integer.
  • P being a positive integer.
  • the operation includes capturing, with M second portions respectively of the M active areas of the image sensor, an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P calibration patterns.
  • the 3 second portions 190b respectively of the 3 active areas 190 of the image sensor 602 collectively capture the image of the 6 calibration patterns 732 based on the interaction between the second radiation beam 712 and the 6 calibration patterns 732, wherein each second portion 190b captures an image of at least a calibration pattern 732.
  • the operation includes determining a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns, wherein no sensing element of all sensing elements of the M active areas is in both (A) a portion of the M first portions, and (B) a portion of the M second portions.
  • the diffractometer 700 determines the crystal structure of the object 720 based on (A) the 2 images (i.e., the first and second images) of the diffraction pattern and (B) the image of the 6 calibration patterns, wherein no sensing element 150 of all sensing elements 150 of the 3 active areas 190 is in both (A) a first portion 190a and (B) a second portion 190b.
  • a collimator (not shown) may be used to prevent the first radiation beam 711 and the radiation particles resulting from the first radiation beam 711 being diffracted by the object 720 from reaching the 3 second portions 190b of the 3 active areas 190.
  • the collimator may include a material that blocks and absorbs X-rays (e.g., tungsten) .
  • said determining the crystal structure of the object 720 may include: (A) correcting the 2 images (i.e., the first and second images) of the diffraction pattern based on the image of the 6 calibration patterns, resulting in respectively 2 corrected images of the diffraction pattern, (B) stitching the 2 corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern, and (C) determining the crystal structure of the object 720 based on the stitched image of the diffraction pattern.
  • said determining the crystal structure of the object 720 may include 2 steps. Specifically, said determining the crystal structure of the object 720 may include: (A) correcting the 2 images (i.e., the first and second images) of the diffraction pattern based on the image of the 6 calibration patterns, resulting in respectively 2 corrected images of the diffraction pattern; and (B) determining the crystal structure of the object 720 based on the 2 corrected images of the diffraction pattern.
  • the image sensor 602 has 1 row of active areas 190.
  • the image sensor 602 (shown top view) may have 2 rows of active areas 190 (each row has 3 active areas 190) .
  • the 2 rows of active areas 190 of the image sensor 602 may be staggered as shown. In other words, no gap 192 between any 2 adjacent active areas 190 of one row is aligned with any gap 192 between any 2 adjacent active areas 190 of the other row.
  • the 6 first portions 190a of the 6 active areas 190 of the image sensor 602 may be positioned between (A) the 3 second portions 190b of the top row and (B) the 3 second portions 190b of the bottom row as shown.
  • each second portion 190b of each active area 190 of the image sensor 602 has one region.
  • each second portion 190b of each active area 190 of the image sensor 602 may have 2 separate regions 190b1 and 190b2 that sandwich the first portion 190a of said each active area 190 as shown.
  • the arrangement of the calibration patterns 732 may be such that, when the image sensor 602 captures the image of the 12 calibration patterns 732, each of the 2 regions 190b1 and 190b2 of the second portion 190b of each active area 190 captures an image of at least a calibration pattern 732.
  • each of the regions 190b1 and 190b2 captures an image of 2 calibration patterns 732.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Disclosed herein is a method for performing diffractometry. The method includes: sending a first radiation beam toward an object; capturing, with first portions respectively of active areas of an image sensor, images of a diffraction pattern resulting from the first radiation beam being diffracted by the object; sending a second radiation beam toward calibration patterns; capturing, with second portions respectively of the active areas of the image sensor, an image of the calibration patterns based on an interaction between the second radiation beam and the calibration patterns, wherein each portion of the second portions captures an image of at least a calibration pattern of the calibration patterns; and determining a crystal structure of the object based on the images of the diffraction pattern and the image of the calibration patterns. The first portions and the second portions do not overlap.

Description

METHOD AND SYSTEM FOR PERFORMING DIFFRACTOMETRY Background
A radiation detector is a device that measures a property of a radiation. Examples of the property may include a spatial distribution of the intensity, phase, and polarization of the radiation. The radiation measured by the radiation detector may be a radiation that has transmitted through an object. The radiation measured by the radiation detector may be electromagnetic radiation such as infrared light, visible light, ultraviolet light, X-ray, or γ-ray. The radiation may be of other types such as α-rays and β-rays. An imaging system may include one or more image sensors each of which may have one or more radiation detectors.
Summary
Disclosed herein is a method comprising: sending a first radiation beam toward an object; capturing, with M first portions respectively of M active areas of an image sensor of a system, N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, wherein M and N are positive integers; sending a second radiation beam toward P calibration patterns, P being a positive integer; capturing, with M second portions respectively of the M active areas of the image sensor, an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P calibration patterns; and determining a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns, wherein no sensing element of all sensing elements of the M active areas is in both (A) a portion of the M first portions, and (B) a portion of the M second portions.
In an aspect, the first radiation beam and the second radiation beam comprise X-ray photons.
In an aspect, the first radiation beam comprises monochromatic X-ray photons.
In an aspect, the object comprises (A) a single crystal material or (B) a powder of crystal materials.
In an aspect, the system comprises a collimator configured to prevent the first radiation beam and radiation particles resulting from the first radiation beam being diffracted by the object from reaching the M second portions of the M active areas.
In an aspect, the first radiation beam is a pencil beam.
In an aspect, at least a radiation particle of the first radiation beam and at least a radiation particle of the second radiation beam are sent simultaneously.
In an aspect, said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; stitching the N corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern; and determining the crystal structure of the object based on the stitched image of the diffraction pattern.
In an aspect, said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; and determining the crystal structure of the object based on the N corrected images of the diffraction pattern.
In an aspect, N=2 and the N images of the diffraction pattern are captured when the image sensor is respectively at N positions such that gaps among the M active areas are scanned by the M active areas.
In an aspect, the M active areas are arranged in a first row of active areas and a second row of active areas, and no gap between any 2 adjacent active areas of the first row is aligned with any gap between any 2 adjacent active areas of the second row.
In an aspect, the M first portions are positioned between (A) portions of the M second portions of the first row and (B) portions of the M second portions of the second row.
In an aspect, the M active areas form a row of active areas, and for each active area of the M active areas, the second portion of said each active area comprises 2 regions sandwiching the first portion of said each active area.
In an aspect, in said capturing the image of the P calibration patterns, each region of the 2 regions of the second portion of said each active area captures an image of at least a calibration pattern of the P calibration patterns.
Disclosed herein is a system, comprising: an image sensor comprising M active areas which comprise respectively M first portions and M second portions, M being a positive integer; a radiation source; and P calibration patterns, P being a positive integer, wherein the radiation source is configured to send a first radiation beam toward an object, wherein the M first portions are configured to capture N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, N being a positive integer, wherein the radiation  source is configured to send a second radiation beam toward the P calibration patterns, wherein the M second portions are configured to capture an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P calibration patterns, wherein the system is configured to determine a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns, and wherein no sensing element of all sensing elements of the M active areas is in both (A) a portion of the M first portions, and (B) a portion of the M second portions.
In an aspect, the system further comprises a collimator configured to prevent the first radiation beam and radiation particles resulting from the first radiation beam being diffracted by the object from reaching the M second portions of the M active areas.
In an aspect, at least a radiation particle of the first radiation beam and at least a radiation particle of the second radiation beam are sent simultaneously.
In an aspect, said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in N corrected images of the diffraction pattern; stitching the N corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern; and determining the crystal structure of the object based on the stitched image of the diffraction pattern.
In an aspect, said determining the crystal structure of the object comprises: correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; and determining the crystal structure of the object based on the N corrected images of the diffraction pattern.
In an aspect, N=2 and the N images of the diffraction pattern are captured when the image sensor is respectively at N positions such that gaps among the M active areas are scanned by the M active areas.
In an aspect, the M active areas are arranged in a first row of active areas and a second row of active areas, and no gap between any 2 adjacent active areas of the first row is aligned with any gap between any 2 adjacent active areas of the second row.
In an aspect, the M first portions are positioned between (A) portions of the M second portions of the first row and (B) portions of the M second portions of the second row.
In an aspect, the M active areas form a row of active areas, and for each active area of the M active areas, the second portion of said each active area comprises 2 regions sandwiching the first portion of said each active area.
Brief Description of Figures
Fig. 1 schematically shows a radiation detector, according to an embodiment.
Fig. 2 schematically shows a simplified cross-sectional view of the radiation detector, according to an embodiment.
Fig. 3 schematically shows a detailed cross-sectional view of the radiation detector, according to an embodiment.
Fig. 4 schematically shows a detailed cross-sectional view of the radiation detector, according to an alternative embodiment.
Fig. 5 schematically shows a top view of a radiation detector package including the radiation detector and a printed circuit board (PCB) , according to an embodiment.
Fig. 6 schematically shows a cross-sectional view of an image sensor including the packages of Fig. 5 mounted to a system PCB (printed circuit board) , according to an embodiment.
Fig. 7 schematically shows a perspective view of a diffractometer including an image sensor, according to an embodiment.
Fig. 8 shows an image captured by the image sensor of the diffractometer, according to an embodiment.
Fig. 9 shows a flowchart generalizing the operation of the diffractometer, according to an embodiment.
Fig. 10 shows a top view of the image sensor of the diffractometer, according to an alternative embodiment.
Fig. 11 shows a top view of the image sensor of the diffractometer, according to yet another alternative embodiment.
Detailed Description
RADIATION DETECTOR
Fig. 1 schematically shows a radiation detector 100, as an example. The radiation detector 100 may include an array of pixels 150 (also referred to as sensing elements 150) . The array may be a rectangular array (as shown in Fig. 1) , a honeycomb array, a hexagonal array, or any other suitable array. The array of pixels 150 in the example of Fig. 1 has 4 rows and 7  columns; however, in general, the array of pixels 150 may have any number of rows and any number of columns.
Each pixel 150 may be configured to detect radiation from a radiation source (not shown) incident thereon and may be configured to measure a characteristic (e.g., the energy of the particles, the wavelength, and the frequency) of the radiation. The radiation may include radiation particles such as photons (X-rays, gamma rays, etc. ) and subatomic particles (alpha particles, beta particles, etc. ) Each pixel 150 may be configured to count numbers of particles of radiation incident thereon whose energy falls in a plurality of bins of energy, within a period of time. All the pixels 150 may be configured to count the numbers of particles of radiation incident thereon within a plurality of bins of energy within the same period of time. When the incident particles of radiation have similar energy, the pixels 150 may be simply configured to count numbers of particles of radiation incident thereon within a period of time, without measuring the energy of the individual particles of radiation.
Each pixel 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident particle of radiation into a digital signal, or to digitize an analog signal representing the total energy of a plurality of incident particles of radiation into a digital signal. The pixels 150 may be configured to operate in parallel. For example, when one pixel 150 measures an incident particle of radiation, another pixel 150 may be waiting for a particle of radiation to arrive. The pixels 150 may not have to be individually addressable.
The radiation detector 100 described here may have applications such as in an X-ray telescope, X-ray mammography, industrial X-ray defect detection, X-ray microscopy or microradiography, X-ray casting inspection, X-ray non-destructive testing, X-ray weld inspection, X-ray digital subtraction angiography, etc. It may be suitable to use this radiation detector 100 in place of a photographic plate, a photographic film, a PSP plate, an X-ray image intensifier, a scintillator, or another semiconductor X-ray detector.
Fig. 2 schematically shows a simplified cross-sectional view of the radiation detector 100 of Fig. 1 along a line 2-2, according to an embodiment. Specifically, the radiation detector 100 may include a radiation absorption layer 110 and an electronics layer 120 (which may include one or more ASICs or application-specific integrated circuits) for processing or analyzing electrical signals which incident radiation generates in the radiation absorption layer 110. The radiation detector 100 may or may not include a scintillator (not shown) . The radiation  absorption layer 110 may include a semiconductor material such as silicon, germanium, GaAs, CdTe, CdZnTe, or a combination thereof. The semiconductor material may have a high mass attenuation coefficient for the radiation of interest.
Fig. 3 schematically shows a detailed cross-sectional view of the radiation detector 100 of Fig. 1 along the line 2-2, as an example. Specifically, the radiation absorption layer 110 may include one or more diodes (e.g., p-i-n or p-n) formed by a first doped region 111, one or more discrete regions 114 of a second doped region 113. The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112. The discrete regions 114 may be separated from one another by the first doped region 111 or the intrinsic region 112. The first doped region 111 and the second doped region 113 may have opposite types of doping (e.g., region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type) . In the example of Fig. 3, each of the discrete regions 114 of the second doped region 113 forms a diode with the first doped region 111 and the optional intrinsic region 112. Namely, in the example in Fig. 3, the radiation absorption layer 110 has a plurality of diodes (more specifically, 7 diodes corresponding to 7 pixels 150 of one row in the array of Fig. 1, of which only 2 pixels 150 are labeled in Fig. 3 for simplicity) . The plurality of diodes may have an electrical contact 119A as a shared (common) electrode. The first doped region 111 may also have discrete portions.
The electronics layer 120 may include an electronic system 121 suitable for processing or interpreting signals generated by the radiation incident on the radiation absorption layer 110. The electronic system 121 may include an analog circuitry such as a filter network, amplifiers, integrators, and comparators, or a digital circuitry such as a microprocessor, and memory. The electronic system 121 may include one or more ADCs (analog to digital converters) . The electronic system 121 may include components shared by the pixels 150 or components dedicated to a single pixel 150. For example, the electronic system 121 may include an amplifier dedicated to each pixel 150 and a microprocessor shared among all the pixels 150. The electronic system 121 may be electrically connected to the pixels 150 by vias 131. Space among the vias may be filled with a filler material 130, which may increase the mechanical stability of the connection of the electronics layer 120 to the radiation absorption layer 110. Other bonding techniques are possible to connect the electronic system 121 to the pixels 150 without using the vias 131.
When radiation from the radiation source (not shown) hits the radiation absorption layer 110 including diodes, particles of the radiation may be absorbed and generate one or more charge carriers (e.g., electrons, holes) by a number of mechanisms. The charge carriers may drift to the electrodes of one of the diodes under an electric field. The electric field may be an external electric field. The electrical contact 119B may include discrete portions each of which is in electrical contact with the discrete regions 114. The term “electrical contact” may be used interchangeably with the word “electrode. ” In an embodiment, the charge carriers may drift in directions such that the charge carriers generated by a single particle of the radiation are not substantially shared by two different discrete regions 114 ( “not substantially shared” here means less than 2%, less than 0.5%, less than 0.1%, or less than 0.01%of these charge carriers flow to a different one of the discrete regions 114 than the rest of the charge carriers) . Charge carriers generated by a particle of the radiation incident around the footprint of one of these discrete regions 114 are not substantially shared with another of these discrete regions 114. A pixel 150 associated with a discrete region 114 may be an area around the discrete region 114 in which substantially all (more than 98%, more than 99.5%, more than 99.9%, or more than 99.99%of) charge carriers generated by a particle of the radiation incident therein flow to the discrete region 114. Namely, less than 2%, less than 1%, less than 0.1%, or less than 0.01%of these charge carriers flow beyond the pixel 150.
Fig. 4 schematically shows a detailed cross-sectional view of the radiation detector 100 of Fig. 1 along the line 2-2, according to an alternative embodiment. More specifically, the radiation absorption layer 110 may include a resistor of a semiconductor material such as silicon, germanium, GaAs, CdTe, CdZnTe, or a combination thereof, but does not include a diode. The semiconductor material may have a high mass attenuation coefficient for the radiation of interest. In an embodiment, the electronics layer 120 of Fig. 4 is similar to the electronics layer 120 of Fig. 3 in terms of structure and function.
When the radiation hits the radiation absorption layer 110 including the resistor but not diodes, it may be absorbed and generate one or more charge carriers by a number of mechanisms. A particle of the radiation may generate 10 to 100,000 charge carriers. The charge carriers may drift to the  electrical contacts  119A and 119B under an electric field. The electric field may be an external electric field. The electrical contact 119B may include discrete portions. In an embodiment, the charge carriers may drift in directions such that the charge carriers generated by a single particle of the radiation are not substantially shared by two  different discrete portions of the electrical contact 119B ( “not substantially shared” here means less than 2%, less than 0.5%, less than 0.1%, or less than 0.01%of these charge carriers flow to a different one of the discrete portions than the rest of the charge carriers) . Charge carriers generated by a particle of the radiation incident around the footprint of one of these discrete portions of the electrical contact 119B are not substantially shared with another of these discrete portions of the electrical contact 119B. A pixel 150 associated with a discrete portion of the electrical contact 119B may be an area around the discrete portion in which substantially all (more than 98%, more than 99.5%, more than 99.9%or more than 99.99%of) charge carriers generated by a particle of the radiation incident therein flow to the discrete portion of the electrical contact 119B. Namely, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01%of these charge carriers flow beyond the pixel associated with the one discrete portion of the electrical contact 119B.
RADIATION DETECTOR PACKAGE
Fig. 5 schematically shows a top view of a radiation detector package 500 including the radiation detector 100 and a printed circuit board (PCB) 510. The term “PCB” as used herein is not limited to a particular material. For example, a PCB may include a semiconductor. The radiation detector 100 may be mounted to the PCB 510. The wiring between the radiation detector 100 and the PCB 510 is not shown for the sake of clarity. The package 500 may have one or more radiation detectors 100. The PCB 510 may include an input/output (I/O) area 512 not covered by the radiation detector 100 (e.g., for accommodating bonding wires 514) . The radiation detector 100 may have an active area 190 which is where the pixels 150 (Fig. 1) are located. The radiation detector 100 may have a perimeter zone 195 near the edges of the radiation detector 100. The perimeter zone 195 has no pixels 150, and the radiation detector 100 does not detect particles of radiation incident on the perimeter zone 195.
IMAGE SENSOR
Fig. 6 schematically shows a cross-sectional view of an image sensor 600, according to an embodiment. The image sensor 600 may include one or more radiation detector packages 500 of Fig. 5 mounted to a system PCB 650. The electrical connection between the PCBs 510 and the system PCB 650 may be made by bonding wires 514. In order to accommodate the bonding wires 514 on the PCB 510, the PCB 510 may have the I/O area 512 not covered by the radiation detectors 100. In order to accommodate the bonding wires 514 on the system PCB 650, the packages 500 may have gaps in between. The gaps may be approximately 1 mm or  more. Particles of radiation incident on the perimeter zones 195, on the I/O area 512, or on the gaps cannot be detected by the packages 500 on the system PCB 650. A dead zone of a radiation detector (e.g., the radiation detector 100) is the area of the radiation-receiving surface of the radiation detector, on which incident particles of radiation cannot be detected by the radiation detector. A dead zone of a package (e.g., package 500) is the area of the radiation-receiving surface of the package, on which incident particles of radiation cannot be detected by the radiation detector or detectors in the package. In this example shown in Fig. 5 and Fig. 6, the dead zone of the package 500 includes the perimeter zones 195 and the I/O area 512. A dead zone (e.g., 688) of an image sensor (e.g., image sensor 600) with a group of packages (e.g., packages 500 mounted on the same PCB and arranged in the same layer or in different layers) includes the combination of the dead zones of the packages in the group and the gaps between the packages.
In an embodiment, the radiation detector 100 (Fig. 1) operating by itself may be considered an image sensor. In an embodiment, the package 500 (Fig. 5) operating by itself may be considered an image sensor.
The image sensor 600 including the radiation detectors 100 may have the dead zone 688 among the active areas 190 of the radiation detectors 100. However, the image sensor 600 may capture multiple partial images of an object or scene (not shown) one by one, and then these captured partial images may be stitched to form a stitched image of the entire object or scene.
The term “image” in the present patent application (including the claims) is not limited to spatial distribution of a property of a radiation (such as intensity) . For example, the term “image” may also include the spatial distribution of density of a substance or element.
DIFFRACTOMETER
Fig. 7 schematically shows a perspective view of a diffractometer 700, according to an embodiment. In an embodiment, the diffractometer 700 may include a radiation source 710, one or more calibration patterns 732, and an image sensor 602.
OBJECT
In an embodiment, an object 720 may be positioned between the radiation source 710 and the image sensor 602 as shown. The object 720 may include a single crystal material. Alternatively, the object 720 may include a powder of crystal materials. There is no limit on the crystallinity of the object 720.
RADIATION SOURCE
In an embodiment, the radiation source 710 may send a first radiation beam 711 toward the object 720. The radiation source 710 may also send a second radiation beam 712 toward the calibration patterns 732.
In an embodiment, the first radiation beam 711 may include X-ray photons. Specifically, the first radiation beam 711 may include monochromatic X-ray photons. In an embodiment, the first radiation beam 711 may be a pencil beam. In an embodiment, the second radiation beam 712 may include X-ray photons.
CALIBRATION PATTERNS
For illustration, there are 6 calibration patterns 732 as shown in Fig 7. In an embodiment, the calibration patterns 732 may be opaque to the second radiation beam 712. Alternatively, the calibration patterns 732 may interact with the second radiation beam 712 in some other way. In an embodiment, the calibration patterns 732 may be on a support plate 730. In an embodiment, the support plate 730 may be transparent (or not opaque) to the radiation beams 711 and 712.
IMAGE SENSOR OF THE DIFFRACTOMETER
In an embodiment, the image sensor 602 of the diffractometer 700 may be similar to the image sensor 600 of Fig. 6 in terms of structure and function. In an embodiment, the image sensor 602 may include one or more active areas 190 (e.g., 3 active areas 190 as shown) .
In an embodiment, each of the 3 active areas 190 of the image sensor 602 may include a first portion 190a and a second portion 190b. In other words, the 3 active areas 190 include respectively 3 first portions 190a and 3 second portions 190b. In an embodiment, the 3 first portions 190a may be completely separate from (i.e., not part of) the 3 second portions 190b. In other words, no sensing element 150 of all sensing elements 150 of the 3 active areas 190 is in both a first portion 190a and a second portion 190b.
OPERATION OF THE DIFFRACTOMETER
In an embodiment, the operation of the diffractometer 700 may be as follows. While the first radiation beam 711 is being sent from the radiation source 710 toward the object 720, the 3 first portions 190a may collectively capture a first image of the diffraction pattern resulting from the first radiation beam 711 being diffracted by the object 720.
In an embodiment, after the first image of the diffraction pattern is captured, the image sensor 602 may be moved to another position, and then while the first radiation beam 711 is  still being sent from the radiation source 710 toward the object 720, the 3 first portions 190a may collectively capture a second image of the diffraction pattern. In an embodiment, this another position of the image sensor 602 may be chosen such that each gap 192 among the 3 active areas 190 when the first image is captured is on an active area 190 when the second image is captured. In other words, this another position of the image sensor 602 is chosen such that the gaps 192 among the 3 active areas 190 are scanned by the 3 active areas 190.
In an embodiment, while the second radiation beam 712 is being sent from the radiation source 710 toward the calibration patterns 732, the 3 second portions 190b may collectively capture an image of the calibration patterns 732 based on the interaction between the second radiation beam 712 and the calibration patterns 732. The interaction between the second radiation beam 712 and the calibration patterns 732 may include scenarios such as: (A) some of the radiation particles of the second radiation beam 712 that are incident on the calibration patterns 732 are blocked by the calibration patterns 732, (B) some of the radiation particles of the second radiation beam 712 that are incident on the calibration patterns 732 travel through the calibration patterns 732 without changing their directions, and (C) some of the radiation particles of the second radiation beam 712 that are incident on the calibration patterns 732 collide with atoms of the calibration patterns 732 and thereby change their directions.
In an embodiment, when the 3 second portions 190b collectively capture the image of the calibration patterns 732, each of the 3 second portions 190b may capture an image of at least one of the calibration patterns 732. For example, as shown Fig. 7 and Fig. 8, each of the 3 second portions 190b captures an image of 2 calibration patterns 732.
In an embodiment, the diffractometer 700 may determine the crystal structure of the object 720 based on (A) the first and second images of the diffraction pattern and (B) the image of the calibration patterns 732. The image of the calibration patterns 732 may be used to determine the positions of the image sensor 602 or the positions of the active areas 190. The positions of the calibration patterns 732 relative to the first radiation beam 711 are known and may be fixed. The calibration patterns 732 may be monolithic with the radiation source 710.
In an embodiment, the image sensor 602 may capture both the first image of the diffraction pattern and the image of the calibration patterns 732 at the same time (i.e., in the same exposure) . Alternatively, the image sensor 602 may capture both the second image of the diffraction pattern and the image of the calibration patterns 732 at the same time (i.e., in  the same exposure) . Either way, as a result, at least a radiation particle of the first radiation beam 711 and at least a radiation particle of the second radiation beam 712 are sent simultaneously from the radiation source 710.
Fig. 8 shows the resulting image captured by the image sensor 602 of the diffractometer 700 for the case in which (A) the object 720 includes a powder of crystal materials, (B) the first image of the diffraction pattern and the image of the calibration patterns 732 are captured in the same exposure, and (C) the first radiation beam 711 and the radiation particles resulting from the first radiation beam 711 being diffracted by the object 720 are prevented from reaching the 3 second portions 190b of the 3 active areas 190. This resulting image of Fig. 8 includes both the first image of the diffraction pattern (the upper part) and the image of the 6 calibration patterns 732 (the lower part) .
FLOWCHART GENERALIZING THE OPERATION OF DIFFRACTOMETER
Fig. 9 shows a flowchart 900 generalizing the operation of the diffractometer 700 described above, according to an embodiment. In step 910, the operation includes sending a first radiation beam toward an object. For example, in the embodiments described above, with reference to Fig. 7, the first radiation beam 711 is sent toward the object 720.
In step 920, the operation includes capturing, with M first portions respectively of M active areas of an image sensor of a system, N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, wherein M and N are positive integers. For example, in the embodiments described above, with reference to Fig. 7, the 3 first portions 190a of the 3 active areas 190 of the image sensor 602 of the diffractometer 700 collectively capture the first image of the diffraction pattern resulting from the first radiation beam 711 being diffracted by the object 720; and then later, the 3 first portions 190a of the 3 active areas 190 collectively capture the second image of the diffraction pattern. Here, M=3, and N=2.
In step 930, the operation includes sending a second radiation beam toward P calibration patterns, P being a positive integer. For example, in the embodiments described above, with reference to Fig. 7, the second radiation beam 712 is sent toward the 6 calibration patterns 732 (here, P=6) .
In step 940, the operation includes capturing, with M second portions respectively of the M active areas of the image sensor, an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P  calibration patterns. For example, in the embodiments described above, with reference to Fig. 7, the 3 second portions 190b respectively of the 3 active areas 190 of the image sensor 602 collectively capture the image of the 6 calibration patterns 732 based on the interaction between the second radiation beam 712 and the 6 calibration patterns 732, wherein each second portion 190b captures an image of at least a calibration pattern 732.
In step 950, the operation includes determining a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns, wherein no sensing element of all sensing elements of the M active areas is in both (A) a portion of the M first portions, and (B) a portion of the M second portions. For example, in the embodiments described above, with reference to Fig. 7, the diffractometer 700 determines the crystal structure of the object 720 based on (A) the 2 images (i.e., the first and second images) of the diffraction pattern and (B) the image of the 6 calibration patterns, wherein no sensing element 150 of all sensing elements 150 of the 3 active areas 190 is in both (A) a first portion 190a and (B) a second portion 190b.
OTHER EMBODIMENTS
COLLIMATOR
In an embodiment, with reference to Fig. 7, a collimator (not shown) may be used to prevent the first radiation beam 711 and the radiation particles resulting from the first radiation beam 711 being diffracted by the object 720 from reaching the 3 second portions 190b of the 3 active areas 190. In an embodiment, the collimator may include a material that blocks and absorbs X-rays (e.g., tungsten) .
DETERMINATION OF CRYSTAL STRUCTURE IN DETAILS
In an embodiment, with reference to Fig. 7 and step 950 of Fig. 9, said determining the crystal structure of the object 720 may include: (A) correcting the 2 images (i.e., the first and second images) of the diffraction pattern based on the image of the 6 calibration patterns, resulting in respectively 2 corrected images of the diffraction pattern, (B) stitching the 2 corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern, and (C) determining the crystal structure of the object 720 based on the stitched image of the diffraction pattern.
Alternatively, instead of 3 steps (A) , (B) , and (C) as described above, said determining the crystal structure of the object 720 may include 2 steps. Specifically, said determining the crystal structure of the object 720 may include: (A) correcting the 2 images (i.e., the first and  second images) of the diffraction pattern based on the image of the 6 calibration patterns, resulting in respectively 2 corrected images of the diffraction pattern; and (B) determining the crystal structure of the object 720 based on the 2 corrected images of the diffraction pattern.
ALTERNATIVE EMBODIMENTS
IMAGE SENSOR HAS 2 STAGGERED ROWS OF ACTIVE AREAS
In the embodiments described above, with reference to Fig. 7, the image sensor 602 has 1 row of active areas 190. In an alternative embodiment, with reference to Fig. 10, the image sensor 602 (shown top view) may have 2 rows of active areas 190 (each row has 3 active areas 190) . In an embodiment, the 2 rows of active areas 190 of the image sensor 602 may be staggered as shown. In other words, no gap 192 between any 2 adjacent active areas 190 of one row is aligned with any gap 192 between any 2 adjacent active areas 190 of the other row.
In an embodiment, with reference to Fig. 10, the 6 first portions 190a of the 6 active areas 190 of the image sensor 602 may be positioned between (A) the 3 second portions 190b of the top row and (B) the 3 second portions 190b of the bottom row as shown.
EACH SECOND PORTION 190b HAS 2 SEPARATE REGIONS
In the embodiments described above, with reference to Fig. 7, each second portion 190b of each active area 190 of the image sensor 602 has one region. In an alternative embodiment, with reference to Fig. 11, each second portion 190b of each active area 190 of the image sensor 602 may have 2 separate regions 190b1 and 190b2 that sandwich the first portion 190a of said each active area 190 as shown.
In an embodiment, with reference to Fig. 11, the arrangement of the calibration patterns 732 (there are 12 of them in Fig. 11) may be such that, when the image sensor 602 captures the image of the 12 calibration patterns 732, each of the 2 regions 190b1 and 190b2 of the second portion 190b of each active area 190 captures an image of at least a calibration pattern 732. For example, as shown Fig. 11, each of the regions 190b1 and 190b2 captures an image of 2 calibration patterns 732.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (23)

  1. A method, comprising:
    sending a first radiation beam toward an object;
    capturing, with M first portions respectively of M active areas of an image sensor of a system, N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, wherein M and N are positive integers;
    sending a second radiation beam toward P calibration patterns, P being a positive integer;
    capturing, with M second portions respectively of the M active areas of the image sensor, an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P calibration patterns; and
    determining a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns,
    wherein no sensing element of all sensing elements of the M active areas is in both (A) a portion of the M first portions, and (B) a portion of the M second portions.
  2. The method of claim 1, wherein the first radiation beam and the second radiation beam comprise X-ray photons.
  3. The method of claim 1, wherein the first radiation beam comprises monochromatic X-ray photons.
  4. The method of claim 1, wherein the object comprises (A) a single crystal material or (B) a powder of crystal materials.
  5. The method of claim 1, wherein the system comprises a collimator configured to prevent the first radiation beam and radiation particles resulting from the first radiation beam being diffracted by the object from reaching the M second portions of the M active areas.
  6. The method of claim 1, wherein the first radiation beam is a pencil beam.
  7. The method of claim 1, wherein at least a radiation particle of the first radiation beam and at least a radiation particle of the second radiation beam are sent simultaneously.
  8. The method of claim 1, wherein said determining the crystal structure of the object comprises:
    correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern;
    stitching the N corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern; and
    determining the crystal structure of the object based on the stitched image of the diffraction pattern.
  9. The method of claim 1, wherein said determining the crystal structure of the object comprises:
    correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; and
    determining the crystal structure of the object based on the N corrected images of the diffraction pattern.
  10. The method of claim 1,
    wherein N=2, and
    wherein the N images of the diffraction pattern are captured when the image sensor is respectively at N positions such that gaps among the M active areas are scanned by the M active areas.
  11. The method of claim 1,
    wherein the M active areas are arranged in a first row of active areas and a second row of active areas, and
    wherein no gap between any 2 adjacent active areas of the first row is aligned with any gap between any 2 adjacent active areas of the second row.
  12. The method of claim 11, wherein the M first portions are positioned between (A) portions of the M second portions of the first row and (B) portions of the M second portions of the second row.
  13. The method of claim 1,
    wherein the M active areas form a row of active areas, and
    wherein for each active area of the M active areas, the second portion of said each active area comprises 2 regions sandwiching the first portion of said each active area.
  14. The method of claim 13, wherein in said capturing the image of the P calibration patterns, each region of the 2 regions of the second portion of said each active area captures an image of at least a calibration pattern of the P calibration patterns.
  15. A system, comprising:
    an image sensor comprising M active areas which comprise respectively M first portions and M second portions, M being a positive integer;
    a radiation source; and
    P calibration patterns, P being a positive integer,
    wherein the radiation source is configured to send a first radiation beam toward an object,
    wherein the M first portions are configured to capture N images of a diffraction pattern resulting from the first radiation beam being diffracted by the object, N being a positive integer,
    wherein the radiation source is configured to send a second radiation beam toward the P calibration patterns,
    wherein the M second portions are configured to capture an image of the P calibration patterns based on an interaction between the second radiation beam and the P calibration patterns, wherein each portion of the M second portions captures an image of at least a calibration pattern of the P calibration patterns,
    wherein the system is configured to determine a crystal structure of the object based on (A) the N images of the diffraction pattern and (B) the image of the P calibration patterns, and
    wherein no sensing element of all sensing elements of the M active areas is in both (A) a portion of the M first portions, and (B) a portion of the M second portions.
  16. The system of claim 15, further comprising a collimator configured to prevent the first radiation beam and radiation particles resulting from the first radiation beam being diffracted by the object from reaching the M second portions of the M active areas.
  17. The system of claim 15, wherein at least a radiation particle of the first radiation beam and at least a radiation particle of the second radiation beam are sent simultaneously.
  18. The system of claim 15, wherein said determining the crystal structure of the object comprises:
    correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in N corrected images of the diffraction pattern;
    stitching the N corrected images of the diffraction pattern, resulting in a stitched image of the diffraction pattern; and
    determining the crystal structure of the object based on the stitched image of the diffraction pattern.
  19. The system of claim 15, wherein said determining the crystal structure of the object comprises:
    correcting the N images of the diffraction pattern based on the image of the P calibration patterns, resulting in respectively N corrected images of the diffraction pattern; and
    determining the crystal structure of the object based on the N corrected images of the diffraction pattern.
  20. The system of claim 15,
    wherein N=2, and
    wherein the N images of the diffraction pattern are captured when the image sensor is respectively at N positions such that gaps among the M active areas are scanned by the M active areas.
  21. The system of claim 15,
    wherein the M active areas are arranged in a first row of active areas and a second row of active areas, and
    wherein no gap between any 2 adjacent active areas of the first row is aligned with any gap between any 2 adjacent active areas of the second row.
  22. The system of claim 21, wherein the M first portions are positioned between (A) portions of the M second portions of the first row and (B) portions of the M second portions of the second row.
  23. The system of claim 15,
    wherein the M active areas form a row of active areas, and
    wherein for each active area of the M active areas, the second portion of said each active area comprises 2 regions sandwiching the first portion of said each active area.
PCT/CN2022/074467 2022-01-28 2022-01-28 Method and system for performing diffractometry WO2023141911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/074467 WO2023141911A1 (en) 2022-01-28 2022-01-28 Method and system for performing diffractometry
TW111150590A TW202331301A (en) 2022-01-28 2022-12-29 Method and system for performing diffractometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074467 WO2023141911A1 (en) 2022-01-28 2022-01-28 Method and system for performing diffractometry

Publications (1)

Publication Number Publication Date
WO2023141911A1 true WO2023141911A1 (en) 2023-08-03

Family

ID=87469933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074467 WO2023141911A1 (en) 2022-01-28 2022-01-28 Method and system for performing diffractometry

Country Status (2)

Country Link
TW (1) TW202331301A (en)
WO (1) WO2023141911A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035959A1 (en) * 2006-09-18 2008-03-27 Avantium International B.V. Method to derive a composition of a sample
US20170315055A1 (en) * 2016-04-29 2017-11-02 Asml Netherlands B.V. Method and Apparatus for Determining the Property of a Structure, Device Manufacturing Method
CN113223631A (en) * 2021-05-06 2021-08-06 吉林大学 Crystal structure analysis method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035959A1 (en) * 2006-09-18 2008-03-27 Avantium International B.V. Method to derive a composition of a sample
US20170315055A1 (en) * 2016-04-29 2017-11-02 Asml Netherlands B.V. Method and Apparatus for Determining the Property of a Structure, Device Manufacturing Method
CN113223631A (en) * 2021-05-06 2021-08-06 吉林大学 Crystal structure analysis method and system

Also Published As

Publication number Publication date
TW202331301A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US20230280482A1 (en) Imaging systems
US11904187B2 (en) Imaging methods using multiple radiation beams
US20210327949A1 (en) Imaging systems and methods of operating the same
WO2023141911A1 (en) Method and system for performing diffractometry
WO2024031301A1 (en) Imaging systems and corresponding operation methods
WO2023123302A1 (en) Imaging methods using bi-directional counters
WO2023130199A1 (en) Image sensors and methods of operation
WO2023123301A1 (en) Imaging systems with rotating image sensors
US20230411433A1 (en) Imaging systems with image sensors having multiple radiation detectors
WO2023115516A1 (en) Imaging systems and methods of operation
WO2023173387A1 (en) Radiation detectors including perovskite
WO2024044925A1 (en) Side incidence image sensors with protruding integrated circuit chips
WO2022109870A1 (en) Imaging methods using an image sensor with multiple radiation detectors
WO2023123161A1 (en) Imaging systems with image sensors for side radiation incidence during imaging
US20230346332A1 (en) Imaging methods using multiple radiation beams
US11948285B2 (en) Imaging systems with multiple radiation sources
WO2023122921A1 (en) Image sensors with small and thin integrated circuit chips
WO2023283848A1 (en) Battery roll testing with imaging systems
WO2021168690A1 (en) Image sensors and methods of operating the same
US11882378B2 (en) Imaging methods using multiple radiation beams
WO2023039701A1 (en) 3d (3-dimensional) printing with void filling
WO2023077367A1 (en) Imaging methods with reduction of effects of features in an imaging system
US20230410250A1 (en) Imaging methods using radiation detectors
WO2023130197A1 (en) Flow speed measurements using imaging systems
US20210263171A1 (en) Radiation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922756

Country of ref document: EP

Kind code of ref document: A1