WO2023140351A1 - Compound, method for forming metal-containing film, and method for producing compound - Google Patents

Compound, method for forming metal-containing film, and method for producing compound Download PDF

Info

Publication number
WO2023140351A1
WO2023140351A1 PCT/JP2023/001690 JP2023001690W WO2023140351A1 WO 2023140351 A1 WO2023140351 A1 WO 2023140351A1 JP 2023001690 W JP2023001690 W JP 2023001690W WO 2023140351 A1 WO2023140351 A1 WO 2023140351A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
represented
independently
Prior art date
Application number
PCT/JP2023/001690
Other languages
French (fr)
Japanese (ja)
Inventor
ウォンテ ノ
デヒョン キム
チョホ イ
Original Assignee
レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
日本エア・リキード合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード, 日本エア・リキード合同会社 filed Critical レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of WO2023140351A1 publication Critical patent/WO2023140351A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a compound, a method for forming a metal-containing film, and a method for producing a compound.
  • Metal oxides such as niobium oxide (Nb 2 O 5 ) and vanadium oxide (V 2 O 5 ) are widely used in various technical fields. Typically, these oxides have been applied as high-k materials for dielectric films.
  • metal nitride films such as niobium nitride and vanadium nitride (NbN x , VN x , both with a value of x of about 1), have recently been used as diffusion barrier layers and adhesion layers in microelectronic devices.
  • Mixed oxides containing Nb are of great interest for energy storage applications, for example, as thin, highly ionically conductive interfacial layers between cathode active materials and electrolytes in all-solid-state and Li-ion batteries.
  • Lithium niobate for example, is of particular interest as an interfacial layer because it exhibits remarkably high ionic conductivity.
  • Vapor deposition methods such as atomic layer deposition are being considered as a viable technique for depositing interfacial layers as described above on materials.
  • Various compounds have been proposed as niobium, vanadium and tantalum sources for the vapor phase deposition of metal nitrides (Chem. Mater. 1993, 5, 614-619; DE 102006037955).
  • the present disclosure aims to provide a precursor compound containing niobium, vanadium or tantalum that is suitable for controlling the thickness and composition in film formation by vapor phase deposition at high temperature and has high temperature stability and is liquid or has a low melting point (50°C or less at normal pressure).
  • certain precursor compounds have been found suitable for depositing Nb-, V- or Ta-containing thin films by vapor deposition processes, including atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the present disclosure provides, in one embodiment, The present invention relates to a compound for forming a metal-containing film by vapor phase deposition, represented by the following formula (1).
  • M is V or Nb;
  • R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
  • L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C5 or higher cycloalkadiene structure or a condensed aromatic ring structure; the value of e is 0 or 1; or, M is Ta;
  • R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
  • L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C6 or higher cycloalkadiene structure or a con
  • the present disclosure provides, in one embodiment, an introduction step of introducing the compound into a reactor having a substrate disposed therein; depositing at least a portion of said compound on said substrate.
  • the present disclosure provides, in one embodiment, A method for producing the compound,
  • the present invention relates to a method for producing a compound, comprising a step of reacting a precursor compound represented by formula (i) below with at least one alcohol represented by formula ( ⁇ -1) below and alcohol represented by formula ( ⁇ -2) below.
  • M, R 1 , L and e are synonymous with the above formula (1).
  • R a and R b are each independently a C1-C5 alkyl group.
  • R 2 and R 3 have the same definitions as in formula (1) above.
  • Nb niobium
  • V vanadium
  • Ta tantalum
  • N nitrogen
  • C carbon
  • H hydrogen
  • the abbreviation "Me” means a methyl group
  • the abbreviation “Et” means an ethyl group
  • the abbreviation “Pr” means a propyl group
  • the abbreviation “nPr” means a "normal” or linear propyl group
  • the abbreviation “iPr” means an isopropyl group
  • the abbreviation “tBu” means the tert-butyl group, also known as 1,1-dimethylethyl
  • the abbreviation “sBu” means the sec-butyl group, also known as 1-methylpropyl
  • the abbreviation “iBu” means the isobutyl group, also known as 2-methylpropyl
  • the term “amyl” means an amyl or pentyl group
  • the abbreviation “Cp” refers to the cyclopentadienyl group
  • the abbreviation “amd” refers to the amide group.
  • a combination of C and a number such as "C1" represents the number of carbon atoms that constitute the group or structure.
  • the C1 alkyl group represents an alkyl group having 1 carbon atom (i.e., methyl group)
  • the C2 alkyl group represents an alkyl group having 2 carbon atoms (i.e., ethyl group)
  • the C3 alkene structure represents an alkene structure having 3 carbon atoms (i.e., propene structure).
  • the compounds according to the present disclosure have gas phase compatibility, high temperature stability and low melting point (or liquid state), and are therefore suitable for forming metal films containing niobium, vanadium or tantalum by vapor deposition. Moreover, since the method for forming a metal-containing film according to the present disclosure uses a specific compound as a precursor for vapor deposition, it is possible to efficiently form a metal-containing film.
  • TGA thermogravimetric analysis
  • DSC Differential Scanning Calorimetry
  • DSC differential scanning calorimetry
  • Compound The compound according to this embodiment is represented by the following formula (1) and is used to form a metal-containing film by vapor deposition.
  • the compound is liquid at room temperature or has a melting point of 50°C or less.
  • the compounds are thermally stable and can be introduced directly into the reactor in the vapor phase or as a liquid during vapor phase deposition and can provide a wide ALD window with constant growth rate with increasing temperature.
  • M is V or Nb;
  • R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
  • L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C5 or higher cycloalkadiene structure or a condensed aromatic ring structure;
  • the value of e is 0 or 1.
  • M is Ta; R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group; L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C6 or higher cycloalkadiene structure or a condensed aromatic ring structure; The value of e is 0 or 1.
  • the central metal M of the compound represented by formula (1) is V (vanadium) or Nb (niobium).
  • M is Nb.
  • the C1-C10 alkyl groups represented by R 1 , R 2 and R 3 each independently include straight or branched C 1-10 alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group and t-butyl group.
  • R 1 is preferably a branched alkyl group having 3 to 5 carbon atoms, more preferably a tert-butyl group.
  • R 2 and R 3 are each independently preferably a linear or branched alkyl group having 2 to 5 carbon atoms, more preferably an ethyl group, a tert-butyl group or a sec-butyl group.
  • Examples of the C3 or higher alkene structure that provides the ligand represented by L include alkene structures having 3 to 10 carbon atoms such as a propene structure, a butene structure, a pentene structure, a hexene structure, etc., which are linear or branched and regardless of the position of the unsaturated bond.
  • alkene structures having 3 to 10 carbon atoms such as a propene structure, a butene structure, a pentene structure, a hexene structure, etc., which are linear or branched and regardless of the position of the unsaturated bond.
  • a linear C3-C6 alkene structure is preferred, and propene is more preferred.
  • Examples of the alkadiene structure of C4 or more include alkadiene structures having 4 to 10 carbon atoms such as a butadiene structure, a pentadiene structure, a hexadiene structure, and a heptadiene structure, which are linear or branched and regardless of the position of the unsaturated bond.
  • alkadiene structures having 4 to 10 carbon atoms such as a butadiene structure, a pentadiene structure, a hexadiene structure, and a heptadiene structure, which are linear or branched and regardless of the position of the unsaturated bond.
  • a linear alkadiene structure having 4 to 6 carbon atoms is preferable, and a linear butadiene structure and a pentadiene structure are more preferable.
  • Examples of the cycloalkadiene structure having C5 or more include cycloalkadiene structures having 5 to 10 carbon atoms, such as a cyclopentadiene structure, a cyclohexadiene structure, a cycloheptadiene structure, and a cyclooctadiene structure, regardless of the position of the unsaturated bond. Among them, a cycloalkadiene structure having 5 to 7 carbon atoms is preferred, and a cyclopentadiene structure is more preferred.
  • the condensed aromatic ring structure is not particularly limited as long as it includes a structure in which an aromatic ring and another ring are condensed. Fused refers to a polycyclic structure composed of two adjacent rings sharing an edge (a bond between two adjacent carbon atoms).
  • the other ring may be an aromatic ring that is the same as or different from the aromatic ring, or an alicyclic structure.
  • Aromatic rings include aromatic hydrocarbon rings or aromatic heterocyclic rings having 5 to 30 ring members, for example, aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring, coronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, pyridine ring, pyrazine ring, An aromatic heterocyclic ring such as a pyrimidine ring, a pyridazine ring, a triazine ring, or a combination thereof can be used.
  • aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, phenalene ring,
  • Alicyclic structures include aliphatic cyclic hydrocarbon structures with 5 to 20 ring members, such as cycloalkanes such as cyclopentane and cyclohexane; cycloalkenes such as cyclopropene, cyclopentene and cyclohexene; saturated ring bridged hydrocarbons such as norbornane, adamantane and tricyclodecane; and unsaturated ring bridged chains such as norbornene and tricyclodecene.
  • cycloalkanes such as cyclopentane and cyclohexane
  • cycloalkenes such as cyclopropene, cyclopentene and cyclohexene
  • saturated ring bridged hydrocarbons such as norbornane, adamantane and tricyclodecane
  • unsaturated ring bridged chains such as norbornene and tricyclodecene.
  • the condensed aromatic ring structure is preferably an aromatic hydrocarbon ring structure having 6 to 12 ring members, more preferably an indene structure.
  • substituents that replace some or all of the hydrogen atoms of L include halogen atoms such as fluorine, chlorine, bromine, and iodine atoms, alkyl groups, alkylsilyl groups, alkylgermyl groups, alkylamide groups, alkylsilylamide groups, hydroxy groups, carboxy groups, cyano groups, nitro groups, alkoxy groups, alkoxycarbonyl groups, alkoxycarbonyloxy groups, acyl groups, and acyloxy groups.
  • halogen atoms such as fluorine, chlorine, bromine, and iodine atoms
  • alkyl groups alkylsilyl groups, alkylgermyl groups, alkylamide groups, alkylsilylamide groups, hydroxy groups, carboxy groups, cyano groups, nitro groups, alkoxy groups, alkoxycarbonyl groups, alkoxycarbonyloxy groups, acyl groups, and acyloxy groups.
  • the value of e is preferably 1.
  • the central metal M of the compound represented by formula (1) is Ta (tantalum).
  • the cycloalkadiene structure giving the ligand represented by L has 5 or more carbon atoms (C5 or more), whereas in the second embodiment, the cycloalkadiene structure has 6 or more carbon atoms (C6 or more).
  • substituents, etc. corresponding structures, substituents, etc. in the first embodiment can be suitably adopted.
  • the compound is preferably represented by the following general formula (1-1).
  • M is V or Nb
  • R 4 , R 5 , R 6 , R 7 and R 8 are each independently H, a C1-C10 alkyl group, a halogen atom, an alkylsilyl group, an alkylgermyl group, an alkylaminocarbonyl group or an alkylsilylamide group
  • R 1 , R 2 and R 3 have the same meanings as in formula (1) above.
  • the C1-C10 alkyl groups represented by R 4 , R 5 , R 6 , R 7 and R 8 can be preferably employed.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom is preferred.
  • alkylsilyl group examples include a trimethylsilyl group and a triethylsilyl group.
  • alkylgermyl group examples include trimethylgermyl group and triethylgermyl group.
  • alkylaminocarbonyl group examples include a dimethylaminocarbonyl group and a diethylaminocarbonyl group.
  • alkylsilylamide group examples include a trimethylsilylamide group and a triethylsilylamide group.
  • R 4 , R 5 , R 6 , R 7 and R 8 are preferably H (hydrogen atoms).
  • the compound is preferably represented by the following general formula (1-2).
  • M is V, Nb or Ta;
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently H, a C1-C10 alkyl group or a halogen atom,
  • R 1 , R 2 and R 3 have the same meanings as in formula (1) above.
  • the C1-C10 alkyl groups represented by R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 can be preferably employed.
  • halogen atom the same halogen atom as in formula (1-1) above can be employed.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are preferably H (hydrogen atoms).
  • the compound is preferably represented by the following general formula (1-3).
  • M is V, Nb or Ta;
  • R 16 and R 17 are each independently H, a C1-C10 alkyl group or a halogen atom;
  • R 1 and R 2 have the same definitions as in formula (1) above.
  • the C1-C10 alkyl groups represented by R 16 and R 17 can be preferably employed.
  • halogen atom the same halogen atom as in formula (1-1) above can be employed.
  • R 16 and R 17 are preferably H (hydrogen atoms).
  • the compound is preferably represented by the following general formula (1-4).
  • M is V, Nb or Ta;
  • R 18 , R 19 and R 20 are each independently H, a C1-C10 alkyl group or a halogen atom;
  • R 1 , R 2 and R 3 have the same meanings as in formula (1) above.
  • the C1-C10 alkyl groups represented by R 18 , R 19 and R 20 can be preferably employed.
  • halogen atom the same halogen atom as in formula (1-1) above can be employed.
  • R 18 , R 19 and R 20 are preferably H (hydrogen atoms).
  • the compound is preferably liquid at 25°C, or the temperature at which the vapor pressure is 133.3 Pa is 130°C or lower. More preferably, the temperature at which the vapor pressure exhibits 133.3 Pa is 120° C. or less. This allows the compound to exist as a liquid at room temperature or as a solid with a low melting point, allowing efficient vapor phase deposition processes for the formation of metal-containing films.
  • thermogravimetric analysis of the compound there is preferably a region where the weight loss is 20% or less at 150°C or higher, more preferably a region where the weight loss is 20% or less at 180°C or higher, and more preferably a region where the weight loss is 20% or lower at 200°C or higher. This allows the compound to exhibit excellent thermal stability.
  • the compound can be suitably used for thin film vapor deposition.
  • suitable vapor deposition methods include, but are not limited to, thermal, plasma, or remote plasma processes in atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PE-ALD), chemical vapor deposition (CVD), pulsed chemical vapor deposition (P-CVD), low pressure chemical vapor deposition (LPCVD), or combinations thereof.
  • the method for producing the compound includes a step of reacting a precursor compound represented by the following formula (i) with at least one of an alcohol represented by the following formula ( ⁇ -1) and an alcohol represented by the following formula ( ⁇ -2).
  • a desired compound can be efficiently produced only by carrying out a ligand exchange reaction between a precursor compound and a predetermined alcohol.
  • M, R 1 , L and e are synonymous with the above formula (1).
  • R a and R b are each independently a C1-C5 alkyl group.
  • R 2 and R 3 have the same definitions as in formula (1) above.
  • Examples of the C1-C5 alkyl group represented by R a and R b include a methyl group and an ethyl group. Among them, a methyl group is preferred.
  • the precursor compound can be synthesized, for example, by the method described in US Pat. No. 8,460,989.
  • the precursor compound is dissolved in an appropriate solvent such as toluene to obtain a raw material solution.
  • the target compound can be produced by mixing and stirring the raw material solution and the alcohol to carry out a ligand exchange reaction. It is preferable to mix 1 to 3 mol of alcohol with 1 mol of the precursor compound.
  • the reaction temperature may be room temperature, or may be heated up to about 50°C.
  • the reaction time is preferably 1 to 24 hours, more preferably 2 to 16 hours.
  • reaction After the reaction, if necessary, it may be purified through distillation of the solvent by an evaporator, drying under reduced pressure by heating, distillation, sublimation, column chromatography, or the like.
  • the method for forming a metal-containing film according to this embodiment includes an introduction step of introducing the compound into a reactor having a substrate disposed therein, and a deposition step of depositing at least a portion of the compound on the substrate.
  • the compound is introduced into a reactor in which a substrate is arranged.
  • the type of substrate on which the metal-containing film is deposited is appropriately selected depending on the end use.
  • the substrate is selected from cathode active materials or cathodes in lithium-ion battery devices or all-solid-state battery devices.
  • Cathode active material is a major component in the composition of a cathode battery cell.
  • Cathode materials are, for example, cobalt, nickel, manganese, and crystalline structures such as layered structures form lithium-intercalated multi-metal oxide materials.
  • the cathode active material is "NMC" (lithium nickel manganese cobalt oxide), NCA (lithium nickel cobalt aluminum oxide), LNO (lithium nickel oxide), LMNO (lithium manganese nickel oxide), or LFP (lithium iron phosphate).
  • the cathode active material can be NMC622 or NMC811.
  • the thin interfacial layer may be deposited on the electrode active material powder, on the electrode active porous material, on different shaped electrode active materials, or in pre-formed electrodes in which the electrode active material may be bound with conductive carbon and/or a binder and may already be supported by a current collector foil.
  • the substrate can be selected from oxides (e.g., HfO2 - based materials, TiO2 - based materials, ZrO2 - based materials, rare earth oxide-based materials, ternary oxide-based materials, etc.) used as insulating materials in MIM, DRAM, or FeRam technologies, or nitride-based films (e.g., TaN) used as oxygen barriers between copper and low-k films.
  • oxides e.g., HfO2 - based materials, TiO2 - based materials, ZrO2 - based materials, rare earth oxide-based materials, ternary oxide-based materials, etc.
  • nitride-based films e.g., TaN
  • Other substrates can be used in the manufacture of semiconductor, photovoltaic, LCD-TFT, or flat panel devices.
  • substrates include, but are not limited to, solid substrates such as metal nitride-containing substrates (e.g., TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN ) ; insulators (e.g., SiO2 , Si3N4 , SiON, HfO2 , Ta2O5 , ZrO2 , TiO2 , Al2O3 , and barium titanate; trontium); or other substrates containing some of these material combinations.
  • the actual substrate utilized may also depend on the specific compound embodiment utilized.
  • a reactor may be any closed vessel or chamber of a device in which a vapor deposition method is carried out. Examples include, but are not limited to, parallel plate type reactors, cold wall type reactors, hot wall type reactors, single plate reactors, multi-wafer reactors, or other types of deposition systems.
  • a gas containing the vaporized compound is then introduced into the reactor.
  • the pure (single) compound or blended compound(s) may be supplied in liquid form to the vaporizer, where they are vaporized before being introduced into the reactor.
  • the compound can be vaporized by passing the carrier gas through a container containing the compound or by bubbling the carrier gas through the compound.
  • a carrier gas and a gas containing the vaporized compound are then introduced into the reactor. If necessary, the container may be heated to a temperature that allows the compound to have sufficient vapor pressure.
  • Carrier gases can include, but are not limited to, Ar, He, N2 , and mixtures thereof.
  • direct liquid injection may be used to vaporize the compound.
  • a co-reactant may also be introduced into the reactor in the introduction step.
  • the co-reactant is preferably selected from the group consisting of O2 , O3 , H2O , H2O2 , NO, N2O , NO2 , trimethylphosphate, their oxygen radicals, and mixtures thereof.
  • Other co-reactants such as alcohols, ammonia, polyamines, hydrazines, dimethylethylphosphoramidates, sulfates, and the like can also be used.
  • the container can be maintained at a temperature within the range of, for example, about 0°C to about 150°C. Those skilled in the art will appreciate that the temperature of the container can be adjusted in a known manner to control the amount of vaporized compound.
  • the compounds can be supplied in pure form (eg liquids or low melting point solids) or in blends with suitable solvents.
  • suitable solvents include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, heterocyclic hydrocarbons, ethers, glymes, glycols, amines, polyamines, cyclicamines, alkylated amines, alkylated polyamines and mixtures thereof.
  • Preferred solvents include ethylbenzene, diglyme, triglyme, tetraglyme, pyridine, xylene, mesitylene, decane, dodecane, and mixtures thereof.
  • the concentration of the compound is typically in the range of about 0.02 to about 2.0M, and preferably in the range of about 0.05 to about 0.2M.
  • the gas containing the vaporized compound may be mixed with the reactive species within the reactor.
  • exemplary reactive species include, but are not limited to, metal precursors such as strontium-containing precursors, barium-containing precursors, aluminum-containing precursors such as TMA, and any combination thereof.
  • the reactor can be maintained at a pressure within the range of about 0.5 mTorr to about 20 Torr. Additionally, the temperature within the reactor can be in the range of about 50°C to about 600°C, preferably in the range of about 80°C to about 550°C. A person skilled in the art can empirically optimize the temperature to achieve the desired result.
  • the substrate can be heated to a temperature sufficient to obtain the desired lithium-containing film with sufficient growth rate and desired physical state and composition.
  • a non-limiting exemplary temperature range to which the substrate can be heated includes 50°C to 500°C.
  • the temperature of the substrate is kept below 300°C.
  • Deposition process In this step, at least part of the compound is deposited on the substrate.
  • the gas phase of the compound is introduced into a reactor where it contacts a suitable substrate. Excess compound can then be removed from the reactor by purging and/or evacuating the reactor.
  • a co-reactant is introduced into the reactor where it reacts with the absorbed compound in a self-terminating manner. Excess co-reactant is removed from the reactor by purging and/or venting the reactor. If the desired film is a metal oxide film, this two-step process may provide the desired film thickness or may be repeated until a film having the required thickness is obtained.
  • the above two-step process can be followed by introduction of vapor of the metal precursor into the reactor.
  • the metal precursor is selected based on the properties of the metal oxide to be deposited.
  • the compound contacts the substrate.
  • Excess compound is removed from the reactor by purging and/or venting the reactor.
  • a co-reactant may be introduced into the reactor to react with the metal precursor.
  • Excess co-reactant is removed from the reactor by purging and/or venting the reactor.
  • the process may end when the desired film thickness is obtained. However, if thicker films are desired, the entire four-step process may be repeated. By alternating the supply of compound, metal precursor and co-reactant, a film of desired composition and thickness can be deposited.
  • the metal-containing films obtained from this actual manufacturing method can be ternary or quaternary oxide films of niobium, such as LiNbO, LiNbO, LiNb(M)O, NbMO.
  • M is selected from the group consisting of Zr, Ti, Co, W, Ta, V, Sr, Ba, La, Y, Sc, Mn, Ni, Mo.
  • a person skilled in the art can obtain the desired film composition by appropriate selection of appropriate compounds and reactive species.
  • composition of the deposited film depends on the application.
  • metal-containing membranes can be used in fuel cell and battery applications.
  • FIG. 1 is a thermogravimetric analysis (TGA) graph showing weight percentages at elevated temperatures.
  • DSC Differential scanning calorimetry of the product (DSC, METTLER TOLEDO, model number: DSC 1 STARe System (measured by ME-51140728)) gave a melting initiation temperature (-3.8°C) and a decomposition initiation temperature (317.3°C). The results are shown in FIG.
  • the conditions for forming the Nb 2 O 5 film were wafer temperature: 250, 300° C., process pressure: 1 torr, Ar flow rate: 100 sccm, source introduction time/source purge time/ozone introduction time/ozone purge time 2/60/1/60 (seconds).
  • FIG. 2 is a thermogravimetric analysis (TGA) graph showing weight percentages at elevated temperatures.
  • DSC Differential scanning calorimetry of the product (DSC, manufactured by Mettler Toledo, model number: DSC 1 STARe System (measured by ME-51140728)) gave a melting onset temperature (34.5°C) and a decomposition onset temperature (285.1°C). The results are shown in FIG.
  • FIG. 3 is a thermogravimetric analysis (TGA) graph showing weight percentages as the temperature rises.
  • a decomposition initiation temperature (318.6° C.) was obtained by differential scanning calorimetry (DSC, manufactured by Mettler Toledo, model number: DSC 1 STARe System (measured by ME-51140728)) of the product. The results are shown in FIG.
  • TGA thermogravimetric analysis
  • Table 1 shows a comparison of the vapor pressures of the disclosed compounds and some existing compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The purpose of the present invention is to provide a precursor compound which is suitable for the control of the thickness and the chemical composition in the formation of a film by vapor deposition at a high temperature, has high-temperature stability, has a liquid form or a low melting point (50°C or lower under ambient pressure) and contains niobium, vanadium or tantalum. Provided is a compound for use in the formation of a metal-containing film by deposition, the compound being represented by formula (1). (In formula (1), M represents V or Nb, R1, R2 and R3 each independently represent H or a C1-C10 alkyl group, L represents a ligand derived from a C3 or higher alkene structure, a C4 or higher alkadiene structure, a C5 or higher cycloalkadiene structure or a condensed aromatic ring structure each of which is substituted or unsubstituted, and e represents a value of 0 or 1; or M represents Ta, R1, R2 and R3 each independently represent H or a C1-C10 alkyl group, L represents a ligand derived from a C3 or higher alkene structure, a C4 or higher alkadiene structure, a C6 or higher cycloalkadiene structure or a condensed aromatic ring structure each of which is substituted or unsubstituted, and e represents a value of 0 or 1.)

Description

化合物、金属含有膜の形成方法および化合物の製造方法Compound, method for forming metal-containing film, and method for producing compound
 本開示は、化合物、金属含有膜の形成方法および化合物の製造方法に関する。 The present disclosure relates to a compound, a method for forming a metal-containing film, and a method for producing a compound.
 酸化ニオブ(Nb)や酸化バナジウム(V)のような金属酸化物は、様々な技術分野で広く利用されている。代表的に、これらの酸化物は、絶縁膜のhigh-k材料として適用されている。 Metal oxides such as niobium oxide (Nb 2 O 5 ) and vanadium oxide (V 2 O 5 ) are widely used in various technical fields. Typically, these oxides have been applied as high-k materials for dielectric films.
 他方、窒化ニオブや窒化バナジウム(NbN、VN(ともにxの値が約1である。))のような金属窒化物膜は、近年では、微小電子デバイスの拡散バリア層や接着層として用いられている。 On the other hand, metal nitride films, such as niobium nitride and vanadium nitride (NbN x , VN x , both with a value of x of about 1), have recently been used as diffusion barrier layers and adhesion layers in microelectronic devices.
 Nbを含む混合酸化物は、例えば、全固体電池およびLiイオン電池における正極活物質と電解質との間の、薄く、高イオン伝導性の界面層等のエネルギー貯蔵用途に高い関心を集めている。例えば、ニオブ酸リチウムは、著しく高いイオン伝導性を示すため、界面層として特に関心が持たれている。 Mixed oxides containing Nb are of great interest for energy storage applications, for example, as thin, highly ionically conductive interfacial layers between cathode active materials and electrolytes in all-solid-state and Li-ion batteries. Lithium niobate, for example, is of particular interest as an interfacial layer because it exhibits remarkably high ionic conductivity.
 上述のような界面層を材料上に蒸着する実行可能な技術として、原子層堆積のような気相堆積法が検討されている。金属窒化物の気相堆積のためのニオブ源やバナジウム源、タンタル源として種々の化合物が提案されている(Chem. Mater. 1993, 5, 614-619;独国特許出願公開第102006037955号明細書)。 Vapor deposition methods such as atomic layer deposition are being considered as a viable technique for depositing interfacial layers as described above on materials. Various compounds have been proposed as niobium, vanadium and tantalum sources for the vapor phase deposition of metal nitrides (Chem. Mater. 1993, 5, 614-619; DE 102006037955).
独国特許出願公開第102006037955号明細書DE 10 2006 037 955 A1
 本開示は、高温での気相堆積による膜形成において厚さおよび組成を制御するのに適しており、高温安定性を有する液状または低融点(常圧で50℃以下)のニオブ、バナジウムまたはタンタルを含む前駆体化合物を提供することを目的とする。 The present disclosure aims to provide a precursor compound containing niobium, vanadium or tantalum that is suitable for controlling the thickness and composition in film formation by vapor phase deposition at high temperature and has high temperature stability and is liquid or has a low melting point (50°C or less at normal pressure).
 本開示によれば、特定の前駆体化合物が原子層堆積(ALD)を含む気相堆積プロセスによるNb、VまたはTa含有薄膜の堆積に適していることが見出された。 According to the present disclosure, certain precursor compounds have been found suitable for depositing Nb-, V- or Ta-containing thin films by vapor deposition processes, including atomic layer deposition (ALD).
 本開示は、一実施形態において、
 下記式(1)で表される、気相堆積により金属含有膜を形成するための化合物に関する。
Figure JPOXMLDOC01-appb-C000008
(式中、
 MはVまたはNbであり、
 R、R及びRは、それぞれ独立して、HまたはC1~C10アルキル基であり、
 Lは、置換または非置換のC3以上のアルケン構造、C4以上のアルカジエン構造、C5以上のシクロアルカジエン構造又は縮合芳香環構造に由来する配位子であり、
 eの値は0または1である;
 または、
 MはTaであり、
 R、R及びRは、それぞれ独立して、HまたはC1~C10アルキル基であり、
 Lは、置換または非置換のC3以上のアルケン構造、C4以上のアルカジエン構造、C6以上のシクロアルカジエン構造又は縮合芳香環構造に由来する配位子であり、
 eの値は0または1である。)
The present disclosure provides, in one embodiment,
The present invention relates to a compound for forming a metal-containing film by vapor phase deposition, represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000008
(In the formula,
M is V or Nb;
R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C5 or higher cycloalkadiene structure or a condensed aromatic ring structure;
the value of e is 0 or 1;
or,
M is Ta;
R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C6 or higher cycloalkadiene structure or a condensed aromatic ring structure;
The value of e is 0 or 1. )
 本開示は、一実施形態において、
 基板を内部に配置した反応器に前記化合物を導入する導入工程と、
 前記化合物の少なくとも一部を前記基板上に堆積させる堆積工程と
 を含む金属含有膜の形成方法に関する。
The present disclosure provides, in one embodiment,
an introduction step of introducing the compound into a reactor having a substrate disposed therein;
depositing at least a portion of said compound on said substrate.
 本開示は、一実施形態において、
 前記化合物の製造方法であって、
 下記式(i)で表される前駆化合物と、下記式(α-1)で表されるアルコールおよび下記式(α-2)で表されるアルコールのうちの少なくとも1種とを反応させる工程を含む、化合物の製造方法に関する。
Figure JPOXMLDOC01-appb-C000009
(式(i)中、
 M、R、Lおよびeは前記式(1)と同義である。
 RおよびRは、それぞれ独立して、C1~C5アルキル基である。)
Figure JPOXMLDOC01-appb-C000010
(式(α-1)および(α-2)中、RおよびRは前記式(1)と同義である。)
The present disclosure provides, in one embodiment,
A method for producing the compound,
The present invention relates to a method for producing a compound, comprising a step of reacting a precursor compound represented by formula (i) below with at least one alcohol represented by formula (α-1) below and alcohol represented by formula (α-2) below.
Figure JPOXMLDOC01-appb-C000009
(In formula (i),
M, R 1 , L and e are synonymous with the above formula (1).
R a and R b are each independently a C1-C5 alkyl group. )
Figure JPOXMLDOC01-appb-C000010
(In formulas (α-1) and (α-2), R 2 and R 3 have the same definitions as in formula (1) above.)
 以下、用語の定義を説明する。 Definitions of terms are explained below.
 元素の周期表からの元素の標準的な略語が本明細書において用いられる。従って、元素は、これらの略語によって表され得る(例えば、Nbはニオブを意味し、Vはバナジウムを意味し、Taはタンタルを意味し、Nは窒素を意味し、Cは炭素を意味し、Hは水素を意味する。他の元素についても同様である。)。 Standard abbreviations for elements from the Periodic Table of the Elements are used herein. Elements can thus be represented by these abbreviations (e.g., Nb means niobium, V means vanadium, Ta means tantalum, N means nitrogen, C means carbon, H means hydrogen, and so on for other elements).
 本明細書において使用される場合、「Me」という略語は、メチル基を意味し;「Et」という略語は、エチル基を意味し;「Pr」という略語は、プロピルを意味し;「nPr」という略語は、「ノルマル」又は直鎖プロピル基を意味し;「iPr」という略語は、イソプロピル基を意味し;「Bu」という略語は、ブチル基を意味し;「nBu」という略語は、「ノルマル」又は直鎖ブチル基を意味し;「tBu」という略語は、1,1-ジメチルエチルとしても知られるtert-ブチル基を意味し;「sBu」という略語は、1-メチルプロピルとしても知られるsec-ブチル基を意味し;「iBu」という略語は、2-メチルプロピルとしても知られるイソブチル基を意味し;「アミル」という用語は、アミル基又はペンチル基を意味し;「tアミル」という用語は、1,1-ジメチルプロピルとしても知られるtert-アミル基を意味し;「Cp」という略語は、シクロペンタジエニル基を意味し;「amd」という略語は、アミド基を意味する。 As used herein, the abbreviation "Me" means a methyl group; the abbreviation "Et" means an ethyl group; the abbreviation "Pr" means a propyl group; the abbreviation "nPr" means a "normal" or linear propyl group; the abbreviation "iPr" means an isopropyl group; the abbreviation "tBu" means the tert-butyl group, also known as 1,1-dimethylethyl; the abbreviation "sBu" means the sec-butyl group, also known as 1-methylpropyl; the abbreviation "iBu" means the isobutyl group, also known as 2-methylpropyl; the term "amyl" means an amyl or pentyl group; The abbreviation "Cp" refers to the cyclopentadienyl group; the abbreviation "amd" refers to the amide group.
 本明細書において、「C1」などのCと数字との組み合わせは、その基または構造を構成する炭素原子の数を表す。例えば、C1アルキル基は、炭素数が1のアルキル基(すなわち、メチル基)を表し、C2アルキル基は、炭素数が2のアルキル基(すなわち、エチル基)を表し、C3アルケン構造は炭素数が3のアルケン構造(すなわち、プロペン構造)を表す。 In the present specification, a combination of C and a number such as "C1" represents the number of carbon atoms that constitute the group or structure. For example, the C1 alkyl group represents an alkyl group having 1 carbon atom (i.e., methyl group), the C2 alkyl group represents an alkyl group having 2 carbon atoms (i.e., ethyl group), and the C3 alkene structure represents an alkene structure having 3 carbon atoms (i.e., propene structure).
 本開示に係る化合物は、気相法適合性、高温安定性および低融点(または液状)を有するので、ニオブ、バナジウムまたはタンタルを含む金属膜の気相堆積による形成に適している。また、本開示に係る金属含有膜の形成方法は、気相堆積法の前駆体として特定の化合物を用いているので、効率良く金属含有膜を形成することができる。 The compounds according to the present disclosure have gas phase compatibility, high temperature stability and low melting point (or liquid state), and are therefore suitable for forming metal films containing niobium, vanadium or tantalum by vapor deposition. Moreover, since the method for forming a metal-containing film according to the present disclosure uses a specific compound as a precursor for vapor deposition, it is possible to efficiently form a metal-containing film.
ビス(エトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OEt)の温度上昇に伴う重量百分率を示す熱重量分析(TGA)グラフである。1 is a thermogravimetric analysis (TGA) graph showing weight percentage with increasing temperature of bis(ethoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OEt) 2 . ビス(tert-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OtBu)の温度上昇に伴う重量百分率を示す熱重量分析(TGA)グラフである。1 is a thermogravimetric analysis (TGA) graph showing weight percentage with increasing temperature of bis(tert-butoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OtBu) 2 . ビス(sec-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OsBu)の温度上昇に伴う重量百分率を示す熱重量分析(TGA)グラフである。1 is a thermogravimetric analysis (TGA) graph showing weight percentage with increasing temperature of bis(sec-butoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OsBu) 2 . ビス(エトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OEt)の示差走査熱量測定(DSC)である。Fig. 3 is Differential Scanning Calorimetry (DSC) of bis(ethoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OEt) 2 . ビス(tert-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OtBu)の示差走査熱量測定(DSC)である。Fig. 3 is differential scanning calorimetry (DSC) of bis(tert-butoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OtBu) 2 . ビス(sec-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OsBu)の示差走査熱量測定(DSC)である。Fig. 3 is differential scanning calorimetry (DSC) of bis(sec-butoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OsBu) 2 . ビス(ジメチルアミド)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(NMeの温度上昇に伴う質量百分率を示す熱重量分析(TGA)グラフである。1 is a thermogravimetric analysis (TGA) graph showing mass percentage with increasing temperature of bis(dimethylamido)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(NMe 2 ) 2 . ビス(エトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OEt)のオゾンによるALDウィンドウを示す。Figure 2 shows the ozone ALD window of bis(ethoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OEt) 2 . 250℃および300℃でNb(=NtBu)(Cp)(OEt)を堆積したNb膜のパターン化ウェハの膜被覆画像(SEM測定)である。Fig. 4 is a film coverage image (SEM measurement) of patterned wafers of Nb2O5 films deposited with Nb(= NtBu )(Cp)(OEt) 2 at 250°C and 300°C; ビス(tert-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OtBu)のオゾンによるALDウィンドウを示す。Figure 2 shows the ozone ALD window of bis(tert-butoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OtBu) 2 .
 本開示の実施形態を以下に説明する。本開示は、これらの実施形態に限定されない。好ましい形態の組み合わせもまた好ましい。 An embodiment of the present disclosure will be described below. The disclosure is not limited to these embodiments. Combinations of preferred forms are also preferred.
《化合物》
 本実施形態に係る化合物は、下記式(1)で表され、気相堆積により金属含有膜を形成するために用いられる。当該化合物は、室温で液体であるか、または50℃以下の融点を有する。また、当該化合物は熱的に安定であるので、気相堆積の際に気相または液体として反応器に直接導入可能であるとともに、温度上昇に対して一定の成長速度を示す幅広いALDウィンドウを提供可能である。
Figure JPOXMLDOC01-appb-C000011
"Compound"
The compound according to this embodiment is represented by the following formula (1) and is used to form a metal-containing film by vapor deposition. The compound is liquid at room temperature or has a melting point of 50°C or less. In addition, the compounds are thermally stable and can be introduced directly into the reactor in the vapor phase or as a liquid during vapor phase deposition and can provide a wide ALD window with constant growth rate with increasing temperature.
Figure JPOXMLDOC01-appb-C000011
 一実施形態(以下、「第1実施形態」ともいう。)において、前記式(1)中、
 MはVまたはNbであり、
 R、R及びRは、それぞれ独立して、HまたはC1~C10アルキル基であり、
 Lは、置換または非置換のC3以上のアルケン構造、C4以上のアルカジエン構造、C5以上のシクロアルカジエン構造又は縮合芳香環構造に由来する配位子であり、
 eの値は0または1である。
In one embodiment (hereinafter also referred to as "first embodiment"), in the formula (1),
M is V or Nb;
R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C5 or higher cycloalkadiene structure or a condensed aromatic ring structure;
The value of e is 0 or 1.
 別の実施形態(以下、「第2実施形態」ともいう。)において、前記式(1)中、
 MはTaであり、
 R、R及びRは、それぞれ独立して、HまたはC1~C10アルキル基であり、
 Lは、置換または非置換のC3以上のアルケン構造、C4以上のアルカジエン構造、C6以上のシクロアルカジエン構造又は縮合芳香環構造に由来する配位子であり、
 eの値は0または1である。
In another embodiment (hereinafter also referred to as "second embodiment"), in the formula (1),
M is Ta;
R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C6 or higher cycloalkadiene structure or a condensed aromatic ring structure;
The value of e is 0 or 1.
 (第1実施形態)
 第1実施形態において、前記式(1)で表される化合物の中心金属MはV(バナジウム)またはNb(ニオブ)である。MはNbであることが好ましい。
(First embodiment)
In the first embodiment, the central metal M of the compound represented by formula (1) is V (vanadium) or Nb (niobium). Preferably M is Nb.
 R、R及びRで表されるC1~C10アルキル基としては、それぞれ独立して、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基等の炭素数1~10の直鎖状または分岐状アルキル基が挙げられる。Rとしては炭素数3~5の分岐状アルキル基が好ましく、tert-ブチル基であることがさらに好ましい。RおよびRとしては、それぞれ独立して、炭素数2~5の直鎖状又は分岐状アルキル基が好ましく、エチル基、tert-ブチル基またはsec-ブチル基であることがさらに好ましい。 The C1-C10 alkyl groups represented by R 1 , R 2 and R 3 each independently include straight or branched C 1-10 alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group and t-butyl group. R 1 is preferably a branched alkyl group having 3 to 5 carbon atoms, more preferably a tert-butyl group. R 2 and R 3 are each independently preferably a linear or branched alkyl group having 2 to 5 carbon atoms, more preferably an ethyl group, a tert-butyl group or a sec-butyl group.
 Lで表される配位子を与える前記C3以上のアルケン構造としては、直鎖状または分岐状で不飽和結合の位置を問わないプロペン構造、ブテン構造、ペンテン構造、ヘキセン構造等の炭素数3~10のアルケン構造が挙げられる。C3以上のアルケン構造としては、直鎖状のC3~C6アルケン構造が好ましく、プロペンがさらに好ましい。 Examples of the C3 or higher alkene structure that provides the ligand represented by L include alkene structures having 3 to 10 carbon atoms such as a propene structure, a butene structure, a pentene structure, a hexene structure, etc., which are linear or branched and regardless of the position of the unsaturated bond. As the C3 or higher alkene structure, a linear C3-C6 alkene structure is preferred, and propene is more preferred.
 前記C4以上のアルカジエン構造としては、直鎖状または分岐状で不飽和結合の位置を問わないブタジエン構造、ペンタジエン構造、ヘキサジエン構造、ヘプタジエン構造等の炭素数4~10のアルカジエン構造が挙げられる。C4以上のアルカジエン構造としては、直鎖状の炭素数4~6のアルカジエン構造が好ましく、直鎖状のブタジエン構造、ペンタジエン構造がさらに好ましい。 Examples of the alkadiene structure of C4 or more include alkadiene structures having 4 to 10 carbon atoms such as a butadiene structure, a pentadiene structure, a hexadiene structure, and a heptadiene structure, which are linear or branched and regardless of the position of the unsaturated bond. As the C4 or more alkadiene structure, a linear alkadiene structure having 4 to 6 carbon atoms is preferable, and a linear butadiene structure and a pentadiene structure are more preferable.
 前記C5以上のシクロアルカジエン構造としては、不飽和結合の位置を問わないシクロペンタジエン構造、シクロヘキサジエン構造、シクロヘプタジエン構造、シクロオクタジエン構造等の炭素数5~10のシクロアルカジエン構造が挙げられる。中でも、炭素数5~7のシクロアルカジエン構造が好ましく、シクロペンタジエン構造がさらに好ましい。 Examples of the cycloalkadiene structure having C5 or more include cycloalkadiene structures having 5 to 10 carbon atoms, such as a cyclopentadiene structure, a cyclohexadiene structure, a cycloheptadiene structure, and a cyclooctadiene structure, regardless of the position of the unsaturated bond. Among them, a cycloalkadiene structure having 5 to 7 carbon atoms is preferred, and a cyclopentadiene structure is more preferred.
 前記縮合芳香環構造は、芳香環と他の環とが縮合している構造を含む限り特に限定されない。縮合とは、隣接する2つの環が辺(隣接する2つの炭素原子間の結合)を共有する形で構成された多環構造をいう。他の環としては、前記芳香環と同一又は異なる芳香環でもよく、脂環構造でもよい。 The condensed aromatic ring structure is not particularly limited as long as it includes a structure in which an aromatic ring and another ring are condensed. Fused refers to a polycyclic structure composed of two adjacent rings sharing an edge (a bond between two adjacent carbon atoms). The other ring may be an aromatic ring that is the same as or different from the aromatic ring, or an alicyclic structure.
 芳香環としては、環員数5~30の芳香族炭化水素環又は芳香族複素環が挙げられ、例えばベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環、コロネン環等の芳香族炭化水素環、フラン環、ピロール環、チオフェン環、ホスホール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環等の芳香族複素環、又はこれらの組み合わせ等が挙げられる。 Aromatic rings include aromatic hydrocarbon rings or aromatic heterocyclic rings having 5 to 30 ring members, for example, aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring, coronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, pyridine ring, pyrazine ring, An aromatic heterocyclic ring such as a pyrimidine ring, a pyridazine ring, a triazine ring, or a combination thereof can be used.
 脂環構造としては、環員数5~20の脂肪族環状炭化水素構造が挙げられ、例えばシクロペンタン、シクロヘキサン等のシクロアルカン;シクロプロペン、シクロペンテン、シクロヘキセン等のシクロアルケン;ノルボルナン、アダマンタン、トリシクロデカン等の橋かけ環飽和炭化水素;ノルボルネン、トリシクロデセン等の橋かけ環不飽和炭化水素などが挙げられる。 Alicyclic structures include aliphatic cyclic hydrocarbon structures with 5 to 20 ring members, such as cycloalkanes such as cyclopentane and cyclohexane; cycloalkenes such as cyclopropene, cyclopentene and cyclohexene; saturated ring bridged hydrocarbons such as norbornane, adamantane and tricyclodecane; and unsaturated ring bridged chains such as norbornene and tricyclodecene.
 前記縮合芳香環構造としては、環員数6~12の芳香族炭化水素環構造が好ましく、インデン構造がさらに好ましい。 The condensed aromatic ring structure is preferably an aromatic hydrocarbon ring structure having 6 to 12 ring members, more preferably an indene structure.
 Lが有する水素原子の一部又は全部を置換する置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、アルキル基、アルキルシリル基、アルキルゲルミル基、アルキルアミド基、アルキルシリルアミド基、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基などを挙げることができる。 Examples of substituents that replace some or all of the hydrogen atoms of L include halogen atoms such as fluorine, chlorine, bromine, and iodine atoms, alkyl groups, alkylsilyl groups, alkylgermyl groups, alkylamide groups, alkylsilylamide groups, hydroxy groups, carboxy groups, cyano groups, nitro groups, alkoxy groups, alkoxycarbonyl groups, alkoxycarbonyloxy groups, acyl groups, and acyloxy groups.
 eの値は1であることが好ましい。 The value of e is preferably 1.
 (第2実施形態)
 第2実施形態において、前記式(1)で表される化合物の中心金属MはTa(タンタル)である。第1実施形態では、Lで表される配位子を与えるシクロアルカジエン構造の炭素数は5以上(C5以上)であるのに対し、第2実施形態ではシクロアルカジエン構造の炭素数は6以上(C6以上)である。その他の構造や置換基等については第1実施形態において対応する構造や置換基等を好適に採用することができる。
(Second embodiment)
In the second embodiment, the central metal M of the compound represented by formula (1) is Ta (tantalum). In the first embodiment, the cycloalkadiene structure giving the ligand represented by L has 5 or more carbon atoms (C5 or more), whereas in the second embodiment, the cycloalkadiene structure has 6 or more carbon atoms (C6 or more). As for other structures, substituents, etc., corresponding structures, substituents, etc. in the first embodiment can be suitably adopted.
 (その他の実施形態)
 以下、化合物の好適な実施形態を列挙する。
(Other embodiments)
Preferred embodiments of the compounds are listed below.
 前記化合物は、下般式(1-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(1-1)中、
 MはVまたはNbであり、
 R、R、R、R及びRは、それぞれ独立して、H、C1~C10アルキル基、ハロゲン原子、アルキルシリル基、アルキルゲルミル基、アルキルアミノカルボニル基またはアルキルシリルアミド基であり、
 R、RおよびRは、前記式(1)と同義である。)
The compound is preferably represented by the following general formula (1-1).
Figure JPOXMLDOC01-appb-C000012
(In formula (1-1),
M is V or Nb;
R 4 , R 5 , R 6 , R 7 and R 8 are each independently H, a C1-C10 alkyl group, a halogen atom, an alkylsilyl group, an alkylgermyl group, an alkylaminocarbonyl group or an alkylsilylamide group;
R 1 , R 2 and R 3 have the same meanings as in formula (1) above. )
 R、R、R、R及びRで表されるC1~C10アルキル基としては、前記式(1)のR、R及びRで表されるC1~C10アルキル基を好適に採用することができる。 As the C1-C10 alkyl groups represented by R 4 , R 5 , R 6 , R 7 and R 8 , the C1-C10 alkyl groups represented by R 1 , R 2 and R 3 in the above formula (1) can be preferably employed.
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。中でも、フッ素原子が好ましい。 The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom is preferred.
 前記アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基等が挙げられる。 Examples of the alkylsilyl group include a trimethylsilyl group and a triethylsilyl group.
 前記アルキルゲルミル基としては、トリメチルゲルミル基、トリエチルゲルミル基等が挙げられる。 Examples of the alkylgermyl group include trimethylgermyl group and triethylgermyl group.
 前記アルキルアミノカルボニル基としては、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基等が挙げられる。 Examples of the alkylaminocarbonyl group include a dimethylaminocarbonyl group and a diethylaminocarbonyl group.
 前記アルキルシリルアミド基としては、トリメチルシリルアミド基、トリエチルシリルアミド基等が挙げられる。 Examples of the alkylsilylamide group include a trimethylsilylamide group and a triethylsilylamide group.
 R、R、R、R及びRはH(水素原子)であることが好ましい。 R 4 , R 5 , R 6 , R 7 and R 8 are preferably H (hydrogen atoms).
 前記化合物は、下般式(1-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、
 MはV、NbまたはTaであり、
 R、R10、R11、R12、R13、R14及びR15は、それぞれ独立して、H、C1~C10アルキル基またはハロゲン原子であり、
 R、RおよびRは、前記式(1)と同義である。)
The compound is preferably represented by the following general formula (1-2).
Figure JPOXMLDOC01-appb-C000013
(In the formula,
M is V, Nb or Ta;
R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently H, a C1-C10 alkyl group or a halogen atom,
R 1 , R 2 and R 3 have the same meanings as in formula (1) above. )
 R、R10、R11、R12、R13、R14及びR15で表されるC1~C10アルキル基としては、前記式(1)のR、R及びRで表されるC1~C10アルキル基を好適に採用することができる。 As the C1-C10 alkyl groups represented by R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 , the C1-C10 alkyl groups represented by R 1 , R 2 and R 3 in the above formula (1) can be preferably employed.
 前記ハロゲン原子としては、前記式(1-1)と同様のハロゲン原子を採用することができる。 As the halogen atom, the same halogen atom as in formula (1-1) above can be employed.
 R、R10、R11、R12、R13、R14及びR15はH(水素原子)であることが好ましい。 R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are preferably H (hydrogen atoms).
 前記化合物は、下般式(1-3)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式中、
 MはV、NbまたはTaであり、
 R16およびR17は、それぞれ独立して、H、C1~C10アルキル基またはハロゲン原子であり、
 RおよびRは、前記式(1)と同義である。)
The compound is preferably represented by the following general formula (1-3).
Figure JPOXMLDOC01-appb-C000014
(In the formula,
M is V, Nb or Ta;
R 16 and R 17 are each independently H, a C1-C10 alkyl group or a halogen atom;
R 1 and R 2 have the same definitions as in formula (1) above. )
 R16およびR17で表されるC1~C10アルキル基としては、前記式(1)のR、R及びRで表されるC1~C10アルキル基を好適に採用することができる。 As the C1-C10 alkyl groups represented by R 16 and R 17 , the C1-C10 alkyl groups represented by R 1 , R 2 and R 3 in the above formula (1) can be preferably employed.
 前記ハロゲン原子としては、前記式(1-1)と同様のハロゲン原子を採用することができる。 As the halogen atom, the same halogen atom as in formula (1-1) above can be employed.
 R16およびR17はH(水素原子)であることが好ましい。 R 16 and R 17 are preferably H (hydrogen atoms).
 前記化合物は、下般式(1-4)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(式中、
 MはV、NbまたはTaであり、
 R18、R19およびR20は、それぞれ独立して、H、C1~C10アルキル基またはハロゲン原子であり、
 R、RおよびRは、前記式(1)と同義である。)
The compound is preferably represented by the following general formula (1-4).
Figure JPOXMLDOC01-appb-C000015
(In the formula,
M is V, Nb or Ta;
R 18 , R 19 and R 20 are each independently H, a C1-C10 alkyl group or a halogen atom;
R 1 , R 2 and R 3 have the same meanings as in formula (1) above. )
 R18、R19およびR20で表されるC1~C10アルキル基としては、前記式(1)のR、R及びRで表されるC1~C10アルキル基を好適に採用することができる。 As the C1-C10 alkyl groups represented by R 18 , R 19 and R 20 , the C1-C10 alkyl groups represented by R 1 , R 2 and R 3 in the above formula (1) can be preferably employed.
 前記ハロゲン原子としては、前記式(1-1)と同様のハロゲン原子を採用することができる。 As the halogen atom, the same halogen atom as in formula (1-1) above can be employed.
 R18、R19およびR20はH(水素原子)であることが好ましい。 R 18 , R 19 and R 20 are preferably H (hydrogen atoms).
 前記化合物は、25℃で液状であるか、又は蒸気圧が133.3Paを示す温度が130℃以下であることが好ましい。蒸気圧が133.3Paを示す温度は120℃以下であることがより好ましい。これにより、化合物が室温で液状、又は低融点の固体として存在することができ、金属含有膜の形成のための気相堆積プロセスを効率的に行うことができる。 The compound is preferably liquid at 25°C, or the temperature at which the vapor pressure is 133.3 Pa is 130°C or lower. More preferably, the temperature at which the vapor pressure exhibits 133.3 Pa is 120° C. or less. This allows the compound to exist as a liquid at room temperature or as a solid with a low melting point, allowing efficient vapor phase deposition processes for the formation of metal-containing films.
 前記化合物の熱重量分析において、150℃以上で重量損失が20%以下となる領域が存在することが好ましく、180℃以上で重量損失が20%以下となる領域が存在することがより好ましく、200℃以上で重量損失が20%以下となる領域が存在することがさらに好ましい。これにより、当該化合物は優れた熱安定性を発揮することができる。 In the thermogravimetric analysis of the compound, there is preferably a region where the weight loss is 20% or less at 150°C or higher, more preferably a region where the weight loss is 20% or less at 180°C or higher, and more preferably a region where the weight loss is 20% or lower at 200°C or higher. This allows the compound to exhibit excellent thermal stability.
 前記化合物は、上記特性により薄膜気相堆積用として好適に用いることができる。好適な気相堆積方法の例としては、限定されないが、原子層堆積(ALD)、プラズマ強化原子層堆積(PE-ALD)、化学気相堆積(CVD)、パルス化学気相堆積(P-CVD)、低圧化学気相堆積(LPCVD)における熱、プラズマ、もしくはリモートプラズマプロセス、またはこれらの組み合わせが挙げられる。 Due to the above properties, the compound can be suitably used for thin film vapor deposition. Examples of suitable vapor deposition methods include, but are not limited to, thermal, plasma, or remote plasma processes in atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PE-ALD), chemical vapor deposition (CVD), pulsed chemical vapor deposition (P-CVD), low pressure chemical vapor deposition (LPCVD), or combinations thereof.
《化合物の製造方法》
 前記化合物の製造方法は、下記式(i)で表される前駆化合物と、下記式(α-1)で表されるアルコールおよび下記式(α-2)で表されるアルコールのうちの少なくとも1種とを反応させる工程を含む。本製造方法によれば、前駆化合物と所定のアルコールとによる配位子交換反応を行うだけで効率的に所望の化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000016
(式(i)中、
 M、R、Lおよびeは前記式(1)と同義である。
 RおよびRは、それぞれ独立して、C1~C5アルキル基である。)
Figure JPOXMLDOC01-appb-C000017
(式(α-1)および(α-2)中、RおよびRは前記式(1)と同義である。)
<<Method for producing compound>>
The method for producing the compound includes a step of reacting a precursor compound represented by the following formula (i) with at least one of an alcohol represented by the following formula (α-1) and an alcohol represented by the following formula (α-2). According to this production method, a desired compound can be efficiently produced only by carrying out a ligand exchange reaction between a precursor compound and a predetermined alcohol.
Figure JPOXMLDOC01-appb-C000016
(In formula (i),
M, R 1 , L and e are synonymous with the above formula (1).
R a and R b are each independently a C1-C5 alkyl group. )
Figure JPOXMLDOC01-appb-C000017
(In formulas (α-1) and (α-2), R 2 and R 3 have the same definitions as in formula (1) above.)
 RおよびRで表されるC1~C5アルキル基としては、メチル基、エチル基等が挙げられる。中でも、メチル基が好ましい。 Examples of the C1-C5 alkyl group represented by R a and R b include a methyl group and an ethyl group. Among them, a methyl group is preferred.
 前駆化合物は、例えば、米国特許第8460989号明細書に記載の方法で合成することができる。 The precursor compound can be synthesized, for example, by the method described in US Pat. No. 8,460,989.
 前駆化合物をトルエン等の適切な溶媒に溶解させて原料溶液とする。原料溶液とアルコールとを混合撹拌して配位子交換反応を行うことにより、目的の化合物を製造することができる。前駆化合物1モルに対してアルコールを1~3モル混合することが好ましい。反応温度は室温でもよく、50℃程度まで加熱してもよい。反応時間は、1~24時間が好ましく、2~16時間がさらに好ましい。 The precursor compound is dissolved in an appropriate solvent such as toluene to obtain a raw material solution. The target compound can be produced by mixing and stirring the raw material solution and the alcohol to carry out a ligand exchange reaction. It is preferable to mix 1 to 3 mol of alcohol with 1 mol of the precursor compound. The reaction temperature may be room temperature, or may be heated up to about 50°C. The reaction time is preferably 1 to 24 hours, more preferably 2 to 16 hours.
 反応後、必要に応じて、エバポレーターによる溶媒の留去、加熱減圧乾燥、蒸留、昇華、カラムクロマトグラフィー等を経て精製してもよい。 After the reaction, if necessary, it may be purified through distillation of the solvent by an evaporator, drying under reduced pressure by heating, distillation, sublimation, column chromatography, or the like.
《金属含有膜の形成方法》
 本実施形態に係る金属含有膜の形成方法は、基板を内部に配置した反応器に前記化合物を導入する導入工程と、前記化合物の少なくとも一部を前記基板上に堆積させる堆積工程とを含む。
<<Method for Forming Metal-Containing Film>>
The method for forming a metal-containing film according to this embodiment includes an introduction step of introducing the compound into a reactor having a substrate disposed therein, and a deposition step of depositing at least a portion of the compound on the substrate.
 (導入工程)
 本工程では、基板を内部に配置した反応器に前記化合物を導入する。金属含有膜を堆積させる基板の種類は、最終用途に応じて適宜選択される。
(Introduction process)
In this step, the compound is introduced into a reactor in which a substrate is arranged. The type of substrate on which the metal-containing film is deposited is appropriately selected depending on the end use.
 いくつかの実施形態では、基板は、リチウムイオン電池デバイスまたは全固体電池デバイスにおけるカソード活物質またはカソードから選択される。カソード活物質は、カソード電池セルの組成における主要な要素である。カソード材料は例えば、コバルト、ニッケル、マンガンであり、層構造のような結晶構造は、リチウムが挿入された多金属酸化物材料を形成する。カソード活物質は、「NMC」(リチウムニッケルマンガンコバルト酸化物)、NCA(リチウムニッケルコバルトアルミニウム酸化物)、LNO(リチウムニッケル酸化物)、LMNO(リチウムマンガンニッケル酸化物)、またはLFP(リン酸鉄リチウム)であることが好ましい。例えば、カソード活物質は、NMC622またはNMC811であり得る。薄い界面層は、電極活物質粉末上、電極活物質多孔質材料上、異なる形状の電極活物質上、または電極活物質が導電性炭素および/またはバインダと結合されていてもよく、電流コレクタ箔によって既に支持されていてもよい予め形成された電極において堆積されてもよい。 In some embodiments, the substrate is selected from cathode active materials or cathodes in lithium-ion battery devices or all-solid-state battery devices. Cathode active material is a major component in the composition of a cathode battery cell. Cathode materials are, for example, cobalt, nickel, manganese, and crystalline structures such as layered structures form lithium-intercalated multi-metal oxide materials. Preferably, the cathode active material is "NMC" (lithium nickel manganese cobalt oxide), NCA (lithium nickel cobalt aluminum oxide), LNO (lithium nickel oxide), LMNO (lithium manganese nickel oxide), or LFP (lithium iron phosphate). For example, the cathode active material can be NMC622 or NMC811. The thin interfacial layer may be deposited on the electrode active material powder, on the electrode active porous material, on different shaped electrode active materials, or in pre-formed electrodes in which the electrode active material may be bound with conductive carbon and/or a binder and may already be supported by a current collector foil.
 いくつかの実施形態では、基板は、MIM、DRAM、またはFeRam技術における絶縁材料として使用される酸化物(たとえば、HfOベース材料、TiOベース材料、ZrOベース材料、希土類酸化物ベース材料、三元酸化物ベースの材料など)から、または銅とlow-k膜との間の酸素バリアとして使用される窒化物ベース膜(たとえば、TaN)から選択することができる。半導体、光電池、LCD-TFT、またはフラットパネルデバイスの製造において、他の基板を使用することができる。このような基板の例としては、限定されないが、金属窒化物含有基板(たとえば、TaN、TiN、WN、TaCN、TiCN、TaSiN、およびTiSiN)などの中実基板;絶縁体(たとえば、SiO、Si、SiON、HfO、Ta、ZrO、TiO、Al、およびチタン酸バリウムストロンチウム);またはこれらの材料の組み合わせのうちのいくつかを含む他の基板が挙げられる。利用する実際の基板は、利用する具体的な化合物の実施形態にも依存し得る。 In some embodiments, the substrate can be selected from oxides (e.g., HfO2 - based materials, TiO2 - based materials, ZrO2 - based materials, rare earth oxide-based materials, ternary oxide-based materials, etc.) used as insulating materials in MIM, DRAM, or FeRam technologies, or nitride-based films (e.g., TaN) used as oxygen barriers between copper and low-k films. Other substrates can be used in the manufacture of semiconductor, photovoltaic, LCD-TFT, or flat panel devices. Examples of such substrates include, but are not limited to, solid substrates such as metal nitride-containing substrates (e.g., TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN ) ; insulators (e.g., SiO2 , Si3N4 , SiON, HfO2 , Ta2O5 , ZrO2 , TiO2 , Al2O3 , and barium titanate; trontium); or other substrates containing some of these material combinations. The actual substrate utilized may also depend on the specific compound embodiment utilized.
 反応器は、内部で気相堆積方法が実行されるデバイスの任意の閉鎖容器またはチャンバであればよい。具体例として、限定されないが、平行板タイプリアクタ、コールドウォールタイプリアクタ、ホットウォールタイプリアクタ、枚様式リアクタ、マルチウェハリアクタ、または他のタイプの堆積システム等が挙げられる。 A reactor may be any closed vessel or chamber of a device in which a vapor deposition method is carried out. Examples include, but are not limited to, parallel plate type reactors, cold wall type reactors, hot wall type reactors, single plate reactors, multi-wafer reactors, or other types of deposition systems.
 次いで、気化させた前記化合物を含むガスを前記反応器に導入する。純粋な(単一の)化合物またはブレンドされた(複数の)化合物は液体の状態で気化器に供給されてもよく、ここで反応器に導入される前に気化される。あるいは、化合物は、この化合物を容れた容器にキャリアガスを通すことによって、またはこの化合物にキャリアガスをバブリングすることによって気化できる。次に、キャリアガスおよび気化した化合物を含むガスを反応器に導入する。必要であれば、化合物が十分な蒸気圧を有することを可能にする温度まで容器を加熱してもよい。キャリアガスとしては、限定はされないが、Ar、He、N、およびこれらの混合物を挙げることができる。また、このようにキャリアガスをバブリングさせる方法(すなわち、バブリング方式)を用いる代わりに、ダイレクトリキッドインジェクション(DLI)を用いて化合物を気化させてもよい。 A gas containing the vaporized compound is then introduced into the reactor. The pure (single) compound or blended compound(s) may be supplied in liquid form to the vaporizer, where they are vaporized before being introduced into the reactor. Alternatively, the compound can be vaporized by passing the carrier gas through a container containing the compound or by bubbling the carrier gas through the compound. A carrier gas and a gas containing the vaporized compound are then introduced into the reactor. If necessary, the container may be heated to a temperature that allows the compound to have sufficient vapor pressure. Carrier gases can include, but are not limited to, Ar, He, N2 , and mixtures thereof. In addition, instead of using a method of bubbling a carrier gas (that is, a bubbling method), direct liquid injection (DLI) may be used to vaporize the compound.
 導入工程において、反応器に共反応物をさらに導入してもよい。共反応物としては、O、O、HO、H、NO、NO、NO、トリメチルホスフェート、それらの酸素ラジカル、およびそれらの混合物からなる群から選択されることが好ましい。他の共反応物として、アルコール、アンモニア、ポリアミン、ヒドラジン、ジメチルエチルホスホラミデート、硫酸塩等も用いることができる。 A co-reactant may also be introduced into the reactor in the introduction step. The co-reactant is preferably selected from the group consisting of O2 , O3 , H2O , H2O2 , NO, N2O , NO2 , trimethylphosphate, their oxygen radicals, and mixtures thereof. Other co-reactants such as alcohols, ammonia, polyamines, hydrazines, dimethylethylphosphoramidates, sulfates, and the like can also be used.
 容器はたとえば約0℃~約150℃の範囲内の温度に維持されうる。当業者であれば、容器の温度を周知の方法で調節して、気化させる化合物の量を制御できることが分かる。 The container can be maintained at a temperature within the range of, for example, about 0°C to about 150°C. Those skilled in the art will appreciate that the temperature of the container can be adjusted in a known manner to control the amount of vaporized compound.
 化合物は、純粋な形態(たとえば液体もしくは低融点固体)、または好適な溶媒とのブレンドの形態で供給され得る。例示的な溶媒としては、限定されないが、脂肪族炭化水素、芳香族炭化水素、複素環式炭化水素、エーテル、グリム、グリコール、アミン、ポリアミン、シクリカミン(cyclicamine)、アルキル化アミン、アルキル化ポリアミンおよびこれらの混合物が挙げられる。好ましい溶媒としては、エチルベンゼン、ジグリム、トリグリム、テトラグリム、ピリジン、キシレン、メシチレン、デカン、ドデカン、およびこれらの混合物が挙げられる。化合物の濃度は典型的に約0.02~約2.0Mの範囲内、および好ましくは約0.05~約0.2Mの範囲内にある。 The compounds can be supplied in pure form (eg liquids or low melting point solids) or in blends with suitable solvents. Exemplary solvents include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, heterocyclic hydrocarbons, ethers, glymes, glycols, amines, polyamines, cyclicamines, alkylated amines, alkylated polyamines and mixtures thereof. Preferred solvents include ethylbenzene, diglyme, triglyme, tetraglyme, pyridine, xylene, mesitylene, decane, dodecane, and mixtures thereof. The concentration of the compound is typically in the range of about 0.02 to about 2.0M, and preferably in the range of about 0.05 to about 0.2M.
 反応器への導入前の化合物と溶媒との任意の混合に加えて、反応器の内で、気化した化合物を含むガスを反応種と混合してもよい。例示的な反応種としては、限定はされないが、金属前駆体、たとえばストロンチウム含有前駆体、バリウム含有前駆体、アルミニウム含有前駆体たとえばTMAなど、およびこれらの任意の組み合わせが挙げられる。 In addition to any mixing of the compound and solvent prior to introduction into the reactor, the gas containing the vaporized compound may be mixed with the reactive species within the reactor. Exemplary reactive species include, but are not limited to, metal precursors such as strontium-containing precursors, barium-containing precursors, aluminum-containing precursors such as TMA, and any combination thereof.
 反応器は、約0.5mTorr~約20Torrの範囲内にある圧力に維持され得る。加えて、反応器内の温度は約50℃~約600℃の範囲内、好ましくは約80℃~約550℃の範囲内にあり得る。当業者であれば、経験によって温度を最適化して所望の結果を達成することができる。 The reactor can be maintained at a pressure within the range of about 0.5 mTorr to about 20 Torr. Additionally, the temperature within the reactor can be in the range of about 50°C to about 600°C, preferably in the range of about 80°C to about 550°C. A person skilled in the art can empirically optimize the temperature to achieve the desired result.
 十分な成長速度ならびに所望の物理的状態および組成で所望のリチウム含有膜を得るのに十分な温度まで、基板を加熱することができる。基板を加熱することができる非限定的例示温度範囲としては50℃~500℃が挙げられる。好ましくは、基板の温度は300℃以下を保つ。 The substrate can be heated to a temperature sufficient to obtain the desired lithium-containing film with sufficient growth rate and desired physical state and composition. A non-limiting exemplary temperature range to which the substrate can be heated includes 50°C to 500°C. Preferably, the temperature of the substrate is kept below 300°C.
 (堆積工程)
 本工程では、前記化合物の少なくとも一部を前記基板上に堆積させる。例示的な1つの原子層堆積タイプのプロセスでは、化合物の気相を反応器に導入し、ここで好適な基板と接触させる。その後、過剰な化合物はリアクタをパージするおよび/または排気することによって反応器から除去できる。共反応物を反応器に導入し、ここでそれは吸収された化合物と自己停止方式で反応する。過剰な共反応物は反応器をパージするおよび/または排気することによって反応器から除去される。所望の膜が金属酸化物膜である場合、この二段階プロセスは所望の膜厚を提供する場合もあるし、必要な厚さを有する膜が得られるまで繰り返される場合もある。
(Deposition process)
In this step, at least part of the compound is deposited on the substrate. In one exemplary atomic layer deposition type process, the gas phase of the compound is introduced into a reactor where it contacts a suitable substrate. Excess compound can then be removed from the reactor by purging and/or evacuating the reactor. A co-reactant is introduced into the reactor where it reacts with the absorbed compound in a self-terminating manner. Excess co-reactant is removed from the reactor by purging and/or venting the reactor. If the desired film is a metal oxide film, this two-step process may provide the desired film thickness or may be repeated until a film having the required thickness is obtained.
 あるいは、所望の膜が金属酸化物膜である場合、上記二段階プロセスの後に、反応器への金属前駆体の蒸気の導入を続けることができる。この金属前駆体は、堆積させる金属酸化物の性質に基づいて選択する。反応器への導入後、化合物が基板に接触する。過剰な化合物は反応器をパージするおよび/または排気することによって反応器から除去される。再度、共反応物を反応器に導入して、金属前駆体と反応させてもよい。過剰な共反応物は反応器をパージするおよび/または排気することによって反応器から除去される。所望の膜厚が得られたら、このプロセスを終わりにしてもよい。しかしながら、より厚い膜が所望されるのであれば、4段階プロセスの全てを繰り返してもよい。化合物、金属前駆体および共反応物の供給を交互に行うことにより、所望の組成および厚さの膜を堆積させることができる。 Alternatively, if the desired film is a metal oxide film, the above two-step process can be followed by introduction of vapor of the metal precursor into the reactor. The metal precursor is selected based on the properties of the metal oxide to be deposited. After introduction into the reactor, the compound contacts the substrate. Excess compound is removed from the reactor by purging and/or venting the reactor. Again, a co-reactant may be introduced into the reactor to react with the metal precursor. Excess co-reactant is removed from the reactor by purging and/or venting the reactor. The process may end when the desired film thickness is obtained. However, if thicker films are desired, the entire four-step process may be repeated. By alternating the supply of compound, metal precursor and co-reactant, a film of desired composition and thickness can be deposited.
 本実製造方法から得られる金属含有膜は、LiNbO、LiNbO、LiNb(M)O、NbMOなどの、ニオブの三元または四元酸化物膜であり得る。Mは、Zr、Ti、Co、W、Ta、V、Sr、Ba、La、Y、Sc、Mn、Ni、Moからなる群から選択される。当業者であれば、適切な化合物および反応種の適切な選択によって、所望の膜組成を得ることができる。 The metal-containing films obtained from this actual manufacturing method can be ternary or quaternary oxide films of niobium, such as LiNbO, LiNbO, LiNb(M)O, NbMO. M is selected from the group consisting of Zr, Ti, Co, W, Ta, V, Sr, Ba, La, Y, Sc, Mn, Ni, Mo. A person skilled in the art can obtain the desired film composition by appropriate selection of appropriate compounds and reactive species.
 堆積される膜の組成は用途に依存する。たとえば、金属含有膜を燃料電池や蓄電池の用途に使用できる。 The composition of the deposited film depends on the application. For example, metal-containing membranes can be used in fuel cell and battery applications.
 本明細書の開示の適用を例示するために、以下の実施例が記載されるが、本明細書に記載されるプロセスの利点のすべてが、本発明の特定の実施形態または実施形態のグループに包含され得るわけではないことを十分に理解されたい。特定の実施形態および実施例が以下に開示されるが、本発明は明白な修正を含む、本発明の具体的に開示された実施形態および/または使用を超えて拡張することが、当業者によって理解されるのであろう。したがって、開示される本発明の範囲は、以下に記載される特定の実施形態によって限定されるべきではないことが理解されるべきである。 The following examples are included to illustrate the application of the disclosure herein, but it should be appreciated that not all advantages of the processes described herein may be encompassed in any particular embodiment or group of embodiments of the invention. Although specific embodiments and examples are disclosed below, it will be appreciated by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments and/or uses of the invention, including obvious modifications. Accordingly, it should be understood that the scope of the disclosed invention should not be limited by the specific embodiments described below.
<実施例1>
 Nb(=NtBu)(Cp)(OEt)、ビス(エトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブの合成
Figure JPOXMLDOC01-appb-C000018
<Example 1>
Synthesis of Nb(=NtBu)(Cp)(OEt) 2 , bis(ethoxy)(tert-butylimido)cyclopentadienyl niobium
Figure JPOXMLDOC01-appb-C000018
 Nb(=NtBu)Cp(NMe(2g、6.3mmol)(Air Liquide Advanced Materials Inc.より購入)の-78℃でのトルエン30mLの溶液に、エチルアルコール(0.58g、12.6mmol)(シグマアルドリッチ社製)を加えた。混合物を室温(約25℃)で12時間撹拌した後、溶媒を真空下で除去して、黄色油状物を得た。次いで、この物質を25mTorrで100℃まで留去することによって精製して、1.34g(収率66.6%)の黄色油状物を得た。この生成物は、NMR H(π、ppm、C):6.18(s、5H)、4.54(q、4H)、1.28(t、6H)、1.16(s、9H)によって特徴付けられた。 To a solution of Nb(=NtBu)Cp(NMe 2 ) 2 (2 g, 6.3 mmol) (purchased from Air Liquide Advanced Materials Inc.) in 30 mL of toluene at −78° C. was added ethyl alcohol (0.58 g, 12.6 mmol) (Sigma-Aldrich). After the mixture was stirred at room temperature (approximately 25° C.) for 12 hours, the solvent was removed under vacuum to give a yellow oil. This material was then purified by distillation to 100° C. at 25 mTorr to give 1.34 g (66.6% yield) of a yellow oil. The product was characterized by NMR 1 H (π, ppm, C 6 D 6 ): 6.18 (s, 5H), 4.54 (q, 4H), 1.28 (t, 6H), 1.16 (s, 9H).
 精製生成物について、200mL/分間で窒素流を流す大気中、10℃/分の昇温速度でオープンカップTGA解析(Mettler Toledo社製、型番:TGA/ DSC 1 STARe Systemによる測定)を行った結果、2.1%の残留塊を残した。これらの結果を図1に示す。図1は、温度上昇時の重量百分率を示す熱重量分析(TGA)グラフである。生成物の示差走査熱量測定(DSC、METTLER TOLEDO社製、型番:DSC 1 STARe System(ME-51140728による測定))により、融解開始温度(-3.8℃)および分解開始温度(317.3℃)が得られた。この結果を図4に示す。 Open cup TGA analysis (manufactured by Mettler Toledo, model number: TGA/DSC 1 STARe System) was performed on the purified product in an atmosphere with a nitrogen flow of 200 mL/min at a heating rate of 10°C/min. These results are shown in FIG. FIG. 1 is a thermogravimetric analysis (TGA) graph showing weight percentages at elevated temperatures. Differential scanning calorimetry of the product (DSC, METTLER TOLEDO, model number: DSC 1 STARe System (measured by ME-51140728)) gave a melting initiation temperature (-3.8°C) and a decomposition initiation temperature (317.3°C). The results are shown in FIG.
 図8は、実施例1で生成された化合物であるビス(エトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OEt)のオゾンによるALDウィンドウを示す。さらに、図9は、250℃および300℃でNb(=NtBu)(Cp)(OEt)を堆積したNb膜のパターン化ウェハの膜被覆画像(SEM測定、日本電子株式会社製、型番:FE-SEM(JEOL-6701F))である。Nb膜の形成条件は、ウェハ温度:250、300℃、プロセス圧力:1torr、Ar流量:100sccm、ソース導入時間/ソースパージ時間/オゾン導入時間/オゾンパージ時間2/60/1/60(秒)であった。 FIG. 8 shows the ozone ALD window of bis(ethoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OEt) 2 , a compound produced in Example 1. Further, FIG. 9 is a film coverage image (SEM measurement, manufactured by JEOL Ltd., model number: FE-SEM (JEOL-6701F)) of a patterned wafer of Nb 2 O 5 film deposited with Nb(=NtBu)(Cp)(OEt) 2 at 250° C. and 300° C. The conditions for forming the Nb 2 O 5 film were wafer temperature: 250, 300° C., process pressure: 1 torr, Ar flow rate: 100 sccm, source introduction time/source purge time/ozone introduction time/ozone purge time 2/60/1/60 (seconds).
<実施例2>
 Nb(=NtBu)(Cp)(OtBu)、ビス(tert-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブの合成
Figure JPOXMLDOC01-appb-C000019
<Example 2>
Synthesis of Nb(=NtBu)(Cp)(OtBu) 2 , bis(tert-butoxy)(tert-butylimido)cyclopentadienyl niobium
Figure JPOXMLDOC01-appb-C000019
 Nb(=NtBu)Cp(NMe(2g、6.3mmol)(Air Liquide Advanced Materials Inc.より購入)の-78℃でのトルエン30mLの溶液に、tert-ブチルアルコール(0.93g、12.6mmol)(シグマアルドリッチ社製)加えた。混合物を室温(約25℃)で12時間撹拌した後、溶媒を真空下で除去して、黄色油状物を得た。次いで、この物質を25mTorrで100℃まで留去することによって精製して、2.0g(収率84.6%)の黄色油状物を得た。この生成物は、NMR H(π、ppm、C):6.17(s、5H)、1.32(s、18H)、1.21(s、9H)によって特徴付けられた。 To a solution of Nb(=NtBu)Cp(NMe 2 ) 2 (2 g, 6.3 mmol) (purchased from Air Liquide Advanced Materials Inc.) in 30 mL of toluene at −78° C. was added tert-butyl alcohol (0.93 g, 12.6 mmol) (Sigma-Aldrich). After the mixture was stirred at room temperature (approximately 25° C.) for 12 hours, the solvent was removed under vacuum to give a yellow oil. This material was then purified by distillation to 100° C. at 25 mTorr to give 2.0 g (84.6% yield) of a yellow oil. The product was characterized by NMR 1 H (π, ppm, C 6 D 6 ): 6.17 (s, 5H), 1.32 (s, 18H), 1.21 (s, 9H).
 精製生成物について、200mL/分間で窒素流を流す大気中、10℃/分の昇温速度でオープンカップTGA解析(Mettler Toledo社製、型番:TGA/ DSC 1 STARe Systemによる測定)を行った結果、0.6%の残留塊を残した。これらの結果を図2に示す。図2は、温度上昇時の重量百分率を示す熱重量分析(TGA)グラフである。生成物の示差走査熱量測定(DSC、Mettler Toledo社製、型番:DSC 1 STARe System(ME-51140728による測定))により、融解開始温度(34.5℃)および分解開始温度(285.1℃)が得られた。この結果を図5に示す。 Open-cup TGA analysis (manufactured by Mettler Toledo, model number: TGA/DSC 1 STARe System) was performed on the purified product in an atmosphere with a nitrogen flow of 200 mL/min at a heating rate of 10°C/min. These results are shown in FIG. FIG. 2 is a thermogravimetric analysis (TGA) graph showing weight percentages at elevated temperatures. Differential scanning calorimetry of the product (DSC, manufactured by Mettler Toledo, model number: DSC 1 STARe System (measured by ME-51140728)) gave a melting onset temperature (34.5°C) and a decomposition onset temperature (285.1°C). The results are shown in FIG.
 図10は、実施例2で生成された化合物であるビス(tert-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(OtBu)のオゾンによるALDウィンドウを示す。 FIG. 10 shows the ozone ALD window of bis(tert-butoxy)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(OtBu) 2 , a compound produced in Example 2.
<実施例3>
 Nb(=NtBu)(Cp)(OsBu)、ビス(sec-ブトキシ)(tert-ブチルイミド)シクロペンタジエニルニオブの合成
Figure JPOXMLDOC01-appb-C000020
<Example 3>
Synthesis of Nb(=NtBu)(Cp)(OsBu) 2 , bis(sec-butoxy)(tert-butylimido)cyclopentadienyl niobium
Figure JPOXMLDOC01-appb-C000020
 Nb(=NtBu)Cp(NMe(2g、6.3mmol)(Air Liquide Advanced Materials Inc.より購入)の-78℃でのトルエン30mLの溶液に、sec-ブチルアルコール(0.93g、12.6mmol)(シグマアルドリッチ社製)を加えた。混合物を室温(約25℃)で12時間撹拌した後、溶媒を真空下で除去して、黄色油状物を得た。次いで、この物質を25mTorrで125℃まで留去することによって精製して、1.75g(収率74%)の黄色油状物を得た。この生成物は、NMR H(π、ppm、C D):6.19(s、5H)、4.49(m、2H)、1.61(m、2H)、1.49(m、2H)、1.31(d、3H)、1.26(d、3H)、1.18(s、9H)、0.99(t、6H)によって特徴付けられた。 To a solution of Nb(=NtBu)Cp(NMe 2 ) 2 (2 g, 6.3 mmol) (purchased from Air Liquide Advanced Materials Inc.) in 30 mL of toluene at −78° C. was added sec-butyl alcohol (0.93 g, 12.6 mmol) (Sigma-Aldrich). After the mixture was stirred at room temperature (approximately 25° C.) for 12 hours, the solvent was removed under vacuum to give a yellow oil. This material was then purified by distillation to 125° C. at 25 mTorr to give 1.75 g (74% yield) of a yellow oil. The product was characterized by NMR 1 H (π, ppm, C 6 D 6 ): 6.19 (s, 5H), 4.49 (m, 2H), 1.61 (m, 2H), 1.49 (m, 2H), 1.31 (d, 3H), 1.26 (d, 3H), 1.18 (s, 9H), 0.99 (t, 6H).
 精製生成物について、200mL/分間で窒素流を流す大気中、10℃/分の昇温速度でオープンカップTGA解析(Mettler Toledo社製、型番:TGA/ DSC 1 STARe Systemによる測定)を行った結果、1.3%の残留塊を残した。これらの結果を図3に示す。図3は、温度上昇時の重量百分率を示す熱重量分析(TGA)グラフである。生成物の示差走査熱量測定(DSC、Mettler Toledo社製、型番:DSC 1 STARe System(ME-51140728による測定))により、分解開始温度(318.6℃)が得られた。この結果を図6に示す。 Open-cup TGA analysis (manufactured by Mettler Toledo, model number: TGA/DSC 1 STARe System) was performed on the purified product in an atmosphere with a nitrogen flow of 200 mL/min at a heating rate of 10°C/min. These results are shown in FIG. FIG. 3 is a thermogravimetric analysis (TGA) graph showing weight percentages as the temperature rises. A decomposition initiation temperature (318.6° C.) was obtained by differential scanning calorimetry (DSC, manufactured by Mettler Toledo, model number: DSC 1 STARe System (measured by ME-51140728)) of the product. The results are shown in FIG.
<合成例1>
 化合物V(=NtBu)(Cp)(OEt)は、以下の方法で合成できる。
Figure JPOXMLDOC01-appb-C000021
<Synthesis Example 1>
Compound V(=NtBu)(Cp)(OEt) 2 can be synthesized by the following method.
Figure JPOXMLDOC01-appb-C000021
 -78℃のトルエン中のV(=NtBu)(Cp)(NMeの溶液に、エタノールを滴下法で加える。混合物を室温で12時間撹拌した後、溶媒を真空下で除去する。次いで、この物質を蒸留または昇華によって精製して、最終生成物を得る。 Ethanol is added dropwise to a solution of V(=NtBu)(Cp)(NMe 2 ) 2 in toluene at -78°C. After the mixture is stirred at room temperature for 12 hours, the solvent is removed under vacuum. This material is then purified by distillation or sublimation to obtain the final product.
<合成例2>
 化合物Ta(=NtBu)(Cp)(OEt)は、以下の方法で合成できる。
Figure JPOXMLDOC01-appb-C000022
<Synthesis Example 2>
The compound Ta(=NtBu)(Cp)(OEt) 2 can be synthesized by the following method.
Figure JPOXMLDOC01-appb-C000022
 -78℃のトルエン中のTa(=NtBu)(Cp)(NMeの溶液に、エタノールを滴下法で加える。混合物を室温で12時間撹拌した後、溶媒を真空下で除去する。次いで、この物質を蒸留または昇華によって精製して、最終生成物を得る。 Ethanol is added dropwise to a solution of Ta(=NtBu)(Cp)(NMe 2 ) 2 in toluene at -78°C. After the mixture is stirred at room temperature for 12 hours, the solvent is removed under vacuum. This material is then purified by distillation or sublimation to obtain the final product.
 図7は、実施例1の化合物の製造のための出発原料であるビス(ジメチルアミド)(tert-ブチルイミド)シクロペンタジエニルニオブ、Nb(=NtBu)(Cp)(NMeの温度上昇に伴う質量百分率を示す熱重量分析(TGA、Mettler Toledo社製、型番:TGA/ DSC 1 STARe Systemによる測定)グラフである。 7 is a graph of thermogravimetric analysis (TGA, manufactured by Mettler Toledo, model number: measured by TGA/DSC 1 STARe System) showing the mass percentage with increasing temperature of bis(dimethylamido)(tert-butylimido)cyclopentadienyl niobium, Nb(=NtBu)(Cp)(NMe 2 ) 2 , which is the starting material for the production of the compound of Example 1. FIG.
 以下の表1は、開示された化合物といくつかの既存の化合物との蒸気圧の比較を示す。 Table 1 below shows a comparison of the vapor pressures of the disclosed compounds and some existing compounds.
Figure JPOXMLDOC01-appb-T000023
 
 
 
Figure JPOXMLDOC01-appb-T000023
 
 
 

Claims (17)

  1.  下記式(1)で表される、蒸着により金属含有膜を形成するための化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     MはVまたはNbであり、
     R、R及びRは、それぞれ独立して、HまたはC1~C10アルキル基であり、
     Lは、置換または非置換のC3以上のアルケン構造、C4以上のアルカジエン構造、C5以上のシクロアルカジエン構造又は縮合芳香環構造に由来する配位子であり、
     eの値は0または1である;
     または、
     MはTaであり、
     R、R及びRは、それぞれ独立して、HまたはC1~C10アルキル基であり、
     Lは、置換または非置換のC3以上のアルケン構造、C4以上のアルカジエン構造、C6以上のシクロアルカジエン構造又は縮合芳香環構造に由来する配位子であり、
     eの値は0または1である。)
    A compound for forming a metal-containing film by vapor deposition, represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1),
    M is V or Nb;
    R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
    L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C5 or higher cycloalkadiene structure or a condensed aromatic ring structure;
    the value of e is 0 or 1;
    or,
    M is Ta;
    R 1 , R 2 and R 3 are each independently H or a C1-C10 alkyl group;
    L is a ligand derived from a substituted or unsubstituted C3 or higher alkene structure, a C4 or higher alkadiene structure, a C6 or higher cycloalkadiene structure or a condensed aromatic ring structure;
    The value of e is 0 or 1. )
  2.  MがVまたはNbであり、Lが置換または非置換のシクロペンタジエンに由来する配位子である、請求項1に記載の化合物。 The compound according to claim 1, wherein M is V or Nb and L is a ligand derived from substituted or unsubstituted cyclopentadiene.
  3.  eの値が1である、請求項1に記載の化合物。 The compound of claim 1, wherein the value of e is 1.
  4.  MがNbである、請求項1に記載の化合物。 The compound according to claim 1, wherein M is Nb.
  5.  Rがtert-ブチル基である、請求項1に記載の化合物。 A compound according to claim 1, wherein R 1 is a tert-butyl group.
  6.  RおよびRが、それぞれ独立して、エチル基、tert-ブチル基またはsec-ブチル基である、請求項1に記載の化合物。 2. The compound of claim 1, wherein R 2 and R 3 are each independently an ethyl group, a tert-butyl group or a sec-butyl group.
  7.  下般式(1-1)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1-1)中、
     MはVまたはNbであり、
     R、R、R、R及びRは、それぞれ独立して、H、C1~C10アルキル基、ハロゲン原子、アルキルシリル基、アルキルゲルミル基、アルキルアミド基またはアルキルシリルアミド基であり、
     R、RおよびRは、前記式(1)と同義である。)
    2. The compound according to claim 1, represented by the following general formula (1-1).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (1-1),
    M is V or Nb;
    R 4 , R 5 , R 6 , R 7 and R 8 are each independently H, a C1-C10 alkyl group, a halogen atom, an alkylsilyl group, an alkylgermyl group, an alkylamide group or an alkylsilylamide group;
    R 1 , R 2 and R 3 have the same meanings as in formula (1) above. )
  8.  下般式(1-2)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1-2)中、
     MはV、NbまたはTaであり、
     R、R10、R11、R12、R13、R14及びR15は、それぞれ独立して、H、C1~C10アルキル基またはハロゲン原子であり、
     R、RおよびRは、前記式(1)と同義である。)
    The compound according to claim 1, represented by the following general formula (1-2).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (1-2),
    M is V, Nb or Ta;
    R 9 , R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently H, a C1-C10 alkyl group or a halogen atom,
    R 1 , R 2 and R 3 have the same meanings as in formula (1) above. )
  9.  下般式(1-3)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1-3)中、
     MはV、NbまたはTaであり、
     R16およびR17は、それぞれ独立して、H、C1~C10アルキル基またはハロゲン原子であり、
     RおよびRは、前記式(1)と同義である。)
    The compound according to claim 1, represented by the following general formula (1-3).
    Figure JPOXMLDOC01-appb-C000004
    (In formula (1-3),
    M is V, Nb or Ta;
    R 16 and R 17 are each independently H, a C1-C10 alkyl group or a halogen atom;
    R 1 and R 2 have the same definitions as in formula (1) above. )
  10.  下般式(1-4)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式(1-4)中、
     MはV、NbまたはTaであり、
     R18、R19およびR20は、それぞれ独立して、H、C1~C10アルキル基またはハロゲン原子であり、
     R、RおよびRは、前記式(1)と同義である。)
    The compound according to claim 1, represented by the following general formula (1-4).
    Figure JPOXMLDOC01-appb-C000005
    (In formula (1-4),
    M is V, Nb or Ta;
    R 18 , R 19 and R 20 are each independently H, a C1-C10 alkyl group or a halogen atom;
    R 1 , R 2 and R 3 have the same meanings as in formula (1) above. )
  11.  基板を内部に配置した反応器に請求項1に記載の化合物を導入する導入工程と、
     前記化合物の少なくとも一部を前記基板上に堆積させる堆積工程と
     を含む金属含有膜の形成方法。
    an introduction step of introducing the compound according to claim 1 into a reactor having a substrate disposed therein;
    depositing at least a portion of said compound on said substrate.
  12.  前記導入工程において、前記反応器に共反応物をさらに導入する、請求項11に記載の金属含有膜の形成方法。 12. The method for forming a metal-containing film according to claim 11, wherein in said introducing step, a co-reactant is further introduced into said reactor.
  13.  前記共反応物は、O、O、HO、H、NO、NO、NO、トリメチルホスフェート、それらの酸素ラジカル、およびそれらの混合物からなる群から選択される、請求項12に記載の金属含有膜の形成方法。 13. The method of forming a metal-containing film of claim 12, wherein the co-reactant is selected from the group consisting of O2 , O3 , H2O , H2O2 , NO, N2O , NO2 , trimethylphosphate, oxygen radicals thereof, and mixtures thereof.
  14.  前記堆積工程を原子層堆積法により行う、請求項11に記載の金属含有膜の形成方法。 The method of forming a metal-containing film according to claim 11, wherein the deposition step is performed by atomic layer deposition.
  15.  前記基板は、カソード活物質粉末を含む、請求項11に記載の金属含有膜の形成方法。 The method of forming a metal-containing film according to claim 11, wherein the substrate contains cathode active material powder.
  16.  前記基板は、カソード活物質粉末と導電性炭素とバインダ材料とを含む、請求項11に記載の金属含有膜の形成方法。 12. The method of forming a metal-containing film according to claim 11, wherein the substrate includes cathode active material powder, conductive carbon, and a binder material.
  17.  請求項1に記載の化合物の製造方法であって、
     下記式(i)で表される前駆化合物と、下記式(α-1)で表されるアルコールおよび下記式(α-2)で表されるアルコールのうちの少なくとも1種とを反応させる工程を含む、化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式(i)中、
     M、R、Lおよびeは前記式(1)と同義である。
     RおよびRは、それぞれ独立して、C1~C5アルキル基である。)
    Figure JPOXMLDOC01-appb-C000007
    (式(α-1)および(α-2)中、RおよびRは前記式(1)と同義である。)
     
     
    A method for producing the compound of claim 1,
    A method for producing a compound, comprising a step of reacting a precursor compound represented by the following formula (i) with at least one of an alcohol represented by the following formula (α-1) and an alcohol represented by the following formula (α-2).
    Figure JPOXMLDOC01-appb-C000006
    (In formula (i),
    M, R 1 , L and e are synonymous with the above formula (1).
    R a and R b are each independently a C1-C5 alkyl group. )
    Figure JPOXMLDOC01-appb-C000007
    (In formulas (α-1) and (α-2), R 2 and R 3 have the same definitions as in formula (1) above.)

PCT/JP2023/001690 2022-01-24 2023-01-20 Compound, method for forming metal-containing film, and method for producing compound WO2023140351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022008360A JP2023107274A (en) 2022-01-24 2022-01-24 Compound, method for forming metal-containing film, and method for producing compound
JP2022-008360 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023140351A1 true WO2023140351A1 (en) 2023-07-27

Family

ID=87348331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001690 WO2023140351A1 (en) 2022-01-24 2023-01-20 Compound, method for forming metal-containing film, and method for producing compound

Country Status (3)

Country Link
JP (1) JP2023107274A (en)
TW (1) TW202336028A (en)
WO (1) WO2023140351A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031431A (en) * 2005-07-15 2007-02-08 Hc Starck Gmbh Tantalum and niobium compound and their use for chemical vapor deposition (cvd) process
JP2010507729A (en) * 2006-10-26 2010-03-11 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Novel group V metal-containing precursors and their use for the deposition of metal-containing films
JP2012505177A (en) * 2008-10-07 2012-03-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Organometallic precursors of niobium and vanadium for thin film deposition
KR20130049020A (en) * 2011-11-03 2013-05-13 솔브레인씨그마알드리치 유한회사 Tantalum precursor compound and method for preparing the same
JP2017505983A (en) * 2013-11-13 2017-02-23 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Group 5 transition metal-containing compound for depositing a Group 5 transition metal-containing film
JP2022013826A (en) * 2020-06-30 2022-01-18 イージーティーエム カンパニー リミテッド Group 5 metal compound for thin film vapor deposition and method for forming group 5 metal-containing thin film by using the same
WO2022022813A1 (en) * 2020-07-28 2022-02-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031431A (en) * 2005-07-15 2007-02-08 Hc Starck Gmbh Tantalum and niobium compound and their use for chemical vapor deposition (cvd) process
JP2010507729A (en) * 2006-10-26 2010-03-11 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Novel group V metal-containing precursors and their use for the deposition of metal-containing films
JP2012505177A (en) * 2008-10-07 2012-03-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Organometallic precursors of niobium and vanadium for thin film deposition
KR20130049020A (en) * 2011-11-03 2013-05-13 솔브레인씨그마알드리치 유한회사 Tantalum precursor compound and method for preparing the same
JP2017505983A (en) * 2013-11-13 2017-02-23 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Group 5 transition metal-containing compound for depositing a Group 5 transition metal-containing film
JP2022013826A (en) * 2020-06-30 2022-01-18 イージーティーエム カンパニー リミテッド Group 5 metal compound for thin film vapor deposition and method for forming group 5 metal-containing thin film by using the same
WO2022022813A1 (en) * 2020-07-28 2022-02-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GIBSON VERNON C, GRAHAM ANDREW J, JOLLY MATTHEW, MITCHELL JONATHAN P: "Pairwise ligand exchange reactions in tetrahedral and pseudotetrahedral transition metal complexes ", DALTON TRANSACTIONS, vol. 23, 30 September 2003 (2003-09-30), pages 4457 - 4465, XP093079928, DOI: 10.1039/B308062E *
GUDAT DIETRICH, FISCHBECK UWE, TABELLION FRANK, BILLEN MARTIN, PREUSS FRITZ: "Multinuclear magnetic resonance study of some imidovanadium complexes", MAGNETIC RESONANCE IN CHEMISTRY, JOHN WILEY , CHICHESTER, GB, vol. 40, no. 2, 1 February 2002 (2002-02-01), GB , pages 139 - 146, XP093079925, ISSN: 0749-1581, DOI: 10.1002/mrc.978 *
MAYER JAMES M, CURTIS CALVIN J, BERCAW JOHN E: "Hydrogen-transfer reactions which generate new imine, imido, and trimethylenemethane complexes of tantalum", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 105, no. 9, 1 January 1983 (1983-01-01), pages 2651 - 2660, XP002423283, ISSN: 0002-7863, DOI: 10.1021/ja00347a023 *

Also Published As

Publication number Publication date
JP2023107274A (en) 2023-08-03
TW202336028A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
TWI463032B (en) Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
US10174423B2 (en) Niobium-containing film forming compositions and vapor deposition of Niobium-containing films
JP2016540038A (en) Metal complexes containing amidoimine ligands
US20120145953A1 (en) LITHIUM PRECURSORS FOR LixMyOz MATERIALS FOR BATTERIES
US10023462B2 (en) Niobium-Nitride film forming compositions and vapor deposition of Niobium-Nitride films
EP2116633B1 (en) Preparation of metal oxide thin film via cyclic CVD or ALD
KR20120093165A (en) Hafnium- and zirconium-containing precursors and methods of using the same
TWI714802B (en) Group 5 metal compound, preparing method thereof, precursor composition including the same for film deposition, and depositing method of film using the same
KR102235869B1 (en) Group 4 metal element-containing compound, preparing method thereof, precursor composition including the same for forming layer, and method for forming layer using the same
TWI756959B (en) Film or coating by an ald process on a substrate
US20240102161A1 (en) Lithium precursors for deposition of lithium-containing layers, islets or clusters
WO2023140351A1 (en) Compound, method for forming metal-containing film, and method for producing compound
TW202235423A (en) Group iv element containing precursors and deposition of group iv element containing films
JP2023535588A (en) Methods of forming dielectric films, novel precursors, and their use in semiconductor manufacturing
KR20140075024A (en) Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions
JP7153094B2 (en) Compound and method for producing lithium-containing membrane
WO2022009945A1 (en) Titanium complex, method for producing same, and method for producing titanium-containing thin film
JP2019056133A (en) Method for depositing atomic layer of metal thin film
TWI593820B (en) Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
KR20210014179A (en) Group 4 metal element-containing compound, preparing method thereof, precursor composition including the same for forming layer, and method for forming layer using the same
US20160115586A1 (en) Group 8-containing film forming compositions, their synthesis, and use in film deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743343

Country of ref document: EP

Kind code of ref document: A1