WO2023140208A1 - Active filter device and electric compressor provided with same - Google Patents

Active filter device and electric compressor provided with same Download PDF

Info

Publication number
WO2023140208A1
WO2023140208A1 PCT/JP2023/000935 JP2023000935W WO2023140208A1 WO 2023140208 A1 WO2023140208 A1 WO 2023140208A1 JP 2023000935 W JP2023000935 W JP 2023000935W WO 2023140208 A1 WO2023140208 A1 WO 2023140208A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
capacitors
inverting amplifier
circuit
active filter
Prior art date
Application number
PCT/JP2023/000935
Other languages
French (fr)
Japanese (ja)
Inventor
浩 吉田
孝次 小林
辰樹 柏原
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023140208A1 publication Critical patent/WO2023140208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks

Definitions

  • the present invention relates to an active filter device for suppressing common mode noise and an electric compressor equipped with the active filter device.
  • a passive common mode noise filter (passive filter) aimed at reducing common mode noise consisted of a Y capacitor connected between a pair of power supply lines and ground potential, and a common mode choke coil inserted into the pair of power supply lines (see, for example, Patent Document 1).
  • JP 2008-78844 A Japanese Patent No. 3044650 Japanese Patent No. 2863833 Japanese Patent No. 5528543
  • a common mode transformer is required to detect and compensate for common mode noise, which entails an increase in the size of the active filter device, so improvements have been desired.
  • it is possible to reduce the common mode noise impedance by increasing the capacitance value of the Y capacitor there is also the problem that the resonance frequency with the parasitic inductance decreases as the capacitance value of the Y capacitor increases, resulting in a decrease in noise reduction performance in the high frequency region.
  • the present invention has been made to solve such conventional technical problems, and aims to provide an active filter device that can improve the attenuation characteristics of a common mode noise filter in a high frequency range without using a common mode transformer and without increasing the volume or weight of a passive common mode noise filter, and an electric compressor equipped with the same.
  • the active filter device of the present invention comprises a plurality of sets of Y capacitors each having one end connected to a pair of power supply lines, a common mode choke coil inserted in the pair of power supply lines, a detection unit for detecting a common mode voltage, and a plurality of inversion amplifier circuits provided corresponding to each set of the Y capacitors for inverting and amplifying the common mode voltage detected by the detection unit.
  • the output voltage of the inverting amplifier circuit is applied to each pair of Y capacitors as a compensation voltage.
  • the active filter device of the invention of claim 2 is characterized in that the common mode voltage detected by a single detection unit composed of a pair of common mode voltage detection capacitors in the above invention is input to each inverting amplifier circuit.
  • the active filter device of the invention of claim 3 is characterized in that a detection unit is provided for each inverting amplifier circuit.
  • the active filter device of the invention of claim 4 is characterized in that the ground path of the detection section and the ground path of the inverting amplifier circuit are separately connected to the circuit ground.
  • the electric compressor of the invention of claim 5 is characterized in that the active filter device and the inverter device of each of the above inventions are provided integrally with a housing.
  • the electric compressor of the invention of claim 6 is characterized in that, in the above invention, the housing is set to ground potential, the circuit ground is connected to the housing, the ground path of the detection unit is connected to the housing, and the ground path of the inverting amplifier circuit is connected to the circuit ground.
  • a plurality of sets of Y capacitors each having one end connected to a pair of power supply lines, a common mode choke coil inserted into the pair of power supply lines, a detection unit for detecting a common mode voltage, and a plurality of inverting amplifier circuits provided corresponding to each set of the Y capacitors for inverting and amplifying the common mode voltage detected by the detection unit.
  • the output voltage of each inverting amplifier circuit is applied to each set of Y capacitors as a compensation voltage, the apparent capacitance value of each set of Y capacitors increases according to the gain of each inverting amplifier circuit.
  • a plurality of sets of Y capacitors and a plurality of inverting amplifier circuits corresponding thereto are provided, the capacitance value of each Y capacitor is set to a different value for each set, the output of each inverting amplifier circuit is connected to the other end of each set of Y capacitors, and the output voltage of each inverting amplifier circuit is applied to each set of Y capacitors as a compensation voltage. Further, by individually selecting the gain value of each inverting amplifier circuit according to the purpose of use, the frequency characteristics of common mode impedance can be adjusted in accordance with the characteristics of EMI noise.
  • the common mode voltage detected by a single detection section composed of a pair of common mode voltage detection capacitors is configured to be input to each inverting amplifier circuit, thereby simplifying the circuit configuration of the detection section.
  • the active filter device of each of the above inventions is extremely suitable when it is integrally provided with the housing of the electric compressor together with the inverter device as in the fifth aspect of the invention.
  • FIG. 1 is an electric circuit diagram of an electric compressor of one embodiment to which an active filter device of the present invention is applied and a feed path to the electric compressor;
  • FIG. FIG. 2 is an electric circuit diagram of the electric compressor of FIG. 1 (Example 1).
  • 3 is an equivalent circuit diagram of the active filter device of FIG. 2;
  • FIG. FIG. 5 is a diagram showing impedance characteristics of a Y capacitor for explaining the common mode noise reduction effect of the active filter device of the present invention;
  • FIG. 10 is a diagram showing another embodiment of the electric circuit of the electric compressor of FIG. 1 and a power supply path to the electric compressor (Embodiment 2);
  • 3 is a diagram showing another example of the electric circuit of the electric compressor of FIG. 2 (Example 3);
  • FIG. 1 shows an electric circuit diagram of an electric compressor 2 and a power feeding path to the electric compressor 2 of one embodiment to which the active filter device 1 of the present invention is applied
  • FIG. 2 shows an electric circuit diagram of the electric compressor 2.
  • the electric compressor 2 of the embodiment constitutes a part of the refrigerant circuit of a vehicle air conditioner that is mounted in a vehicle such as an electric vehicle or a hybrid vehicle and air-conditions the interior of the vehicle. That is, the electric compressor 2 of the embodiment is an inverter-integrated electric compressor.
  • the inverter device 3 converts a DC voltage from a high-voltage battery 7 (HV, for example, 350 V DC) mounted on the vehicle as a DC power source into an AC voltage of an arbitrary frequency and supplies it to the motor 8 of the electric compressor 2 for operation.
  • the active filter device 1 of the embodiment of the present invention is provided to reduce common mode noise generated in the inverter device 3.
  • the inverter device 3 is composed of a plurality of switching elements (IGBT) 15 connected to a positive power supply line 11 of the high voltage battery 7 and a negative power supply line 12.
  • IGBT switching elements
  • Reference numeral 20 in FIG. 1 denotes a control circuit, and each switching element 15 of the inverter device 3 is switching-controlled (PWM-controlled) by this control circuit 20 .
  • a smoothing capacitor 13 is connected between the pair of power supply lines 11 and 12 .
  • 14 is an ECU of the vehicle
  • 16 is a low voltage battery (DC 12V)
  • the control circuit 20 controls the switching of each switching element 15 of the inverter device 3 using the low voltage battery 16 as a power source based on a command from the ECU 14.
  • Reference numeral 18 denotes a housing (made of aluminum die-casting) of the electric compressor 2 .
  • the electric compressor 2 is connected to the high voltage battery 7 by a shielded HV harness 25 (constituting a pair of power supply lines 11 and 12), and the housing 18 of the electric compressor 2 is directly fixed to the vehicle body. As a result, the housing 18 becomes the ground potential.
  • the active filter device 1 of the embodiment includes a first set of Y capacitors (C Y1 ) 21, 22 (first Y capacitors) and a second set of Y capacitors (C Y2 ) 41, 42 (second Y capacitors), an active filter compensation circuit 23 connected between the two sets of Y capacitors 21, 22, 41, 42 and the housing 18 (ground potential), and a pair of common mode voltage detection capacitors 26, 27 (C sense : constituting the detection unit 29 in the present invention), the Y capacitors 21, 22, 41, 42, the active filter compensation circuit 23, and the common mode choke coil (CMCC) 28 inserted in the pair of power supply lines 11, 12 on the high voltage battery 7 side when viewed from the common mode voltage detection capacitors 26, 27.
  • C sense constituting the detection unit 29 in the present invention
  • FIG. 2 extracts and shows only the electric circuit of the electric compressor 2 .
  • the same reference numerals as in FIG. 1 denote the same components. Insulating paper, coolant, and oil are interposed between the windings 8C of the motor 8 and the housing 18, and the stray capacitance between the windings 8C of the motor 8 and the housing 18 is indicated by 31 in FIG. A noise current flows through this stray capacitance 31 to generate common mode noise.
  • FIG. 2 shows details of the active filter compensating circuit 23 of the active filter device 1. As shown in FIG. ⁇ 23 ⁇ 32 ⁇ 52 ⁇ 32 ⁇ 52 ⁇ (-) ⁇ (R f _ com1 )33 ⁇ (R f _ com2 )53 ⁇ 32 ⁇ 52 ⁇ (V CC ⁇ V EE )34 ⁇ 26 ⁇ 27 ⁇ 26 ⁇ 27 ⁇ 29 ⁇ (R sense1 )36 ⁇ (R sense2 )56 ⁇
  • the amplifier 32, the negative feedback resistor 33, and the common mode voltage detection resistor 36 constitute a first inverting amplifier circuit 37 (first inverting amplifier circuit: gain G 1 ) in the present invention.
  • the amplifier 52, the negative feedback resistor 53, and the common mode voltage detection resistor 56 constitute a second inverting amplifier circuit 57 (second inverting amplifier circuit: gain G 2 ) of the present invention.
  • One ends of the common mode voltage detection capacitors 26 and 27 are connected to the pair of power supply lines 11 and 12, respectively, and the common other ends of the common mode voltage detection capacitors 26 and 27 are connected to one ends of common mode voltage detection resistors 36 and 56, respectively.
  • the other end of the common mode voltage detection resistor 36 is connected to the inverting input terminal (-) of the amplifier 32, and the other end of the common mode voltage detection resistor 56 is connected to the inverting input terminal (-) of the amplifier 52.
  • the non-inverting input terminals (+) of amplifiers 32 and 52 are also connected to circuit ground 30 in this embodiment by ground paths 38 and 58, respectively.
  • the ground paths 38 and 58 serve as ground paths for the detection section 29 .
  • the circuit ground 30 is connected to the housing 18, which is at ground potential.
  • one ends of the Y capacitors 21 and 22 described above are connected to the pair of power supply lines 11 and 12, respectively, and one ends of the Y capacitors 41 and 42 are also connected to the pair of power supply lines 11 and 12, respectively.
  • the other ends of the Y capacitors 21 and 22 are both connected to the output terminal of the amplifier 32 (the first output of the active filter compensation circuit 23), and the other ends of the Y capacitors 41 and 42 are both connected to the output terminal of the amplifier 52 (the second output of the active filter compensation circuit 23).
  • the ground path 39 of the power supply circuit 34 of the amplifiers 32, 52 is connected to the circuit ground 30 separately from the ground paths 38, 58 in this embodiment.
  • This ground path 39 is the ground path of the inverting amplifier circuits 37 and 57 .
  • the Y capacitors 21, 22 are connected between the pair of power supply lines 11, 12 and the housing 18 (ground potential) through the amplifier 32 of the active filter compensation circuit 23
  • the Y capacitors 41, 42 are connected between the pair of power supply lines 11, 12 and the housing 18 (ground potential) through the amplifier 52 of the active filter compensation circuit 23
  • the output voltage of the inverting amplifier circuit 37 is applied to the Y capacitors 21, 22 as a compensation voltage.
  • the output voltage of the inverting amplifier circuit 57 (amplifier 52) is applied to the Y capacitors 41 and 42 as a compensation voltage.
  • FIG. 3 shows an equivalent circuit of the active filter device 1.
  • elements related to the inverting amplifier circuit 37 are denoted by reference numerals, but the same applies to the other inverting amplifier circuit 57 as well.
  • the Y capacitors 21 and 22 are replaced with the Y capacitors 41 and 42
  • the amplifier 37 is replaced with the amplifier 57
  • the negative feedback resistor 33 is replaced with the negative feedback resistor 53
  • the common mode voltage detection resistor 36 is replaced with the common mode resistance detection resistor 56.
  • the parasitic inductance 51 As for the parasitic inductance 51 described below, it is assumed that the parasitic inductances of different inductance values are placed in the same positions in FIG. That is, in an actual circuit, the Y capacitors 21 and 22 have a parasitic inductance 51 (L stray — Cy ) (the Y capacitors 21 and 22 actually have an inductance value L stray — Cy1 which will be described later).
  • the common mode voltage (HV common mode voltage) appearing on the power supply lines 11 and 12 is represented by v HV_com
  • the compensation voltage of the inverting amplifier circuit 37 is represented by v comp _ com .
  • R sense is the resistance value of the common mode voltage detection resistor, and in the case of the common mode voltage detection resistor 36, R sense1 is substituted (same below).
  • C sense is the capacitance value of the common mode voltage detection capacitors 26 and 27, and C sense ( ⁇ 2) means their combined capacitance value.
  • This R f — com is the resistance value of the negative feedback resistor, and in the case of the negative feedback resistor 33, R f — com1 is substituted.
  • L stray — Cy is the inductance value of the parasitic inductance 51
  • L stray — Cy ( ⁇ 1/2) means their combined inductance value
  • C Y means the capacitance value of the Y capacitor
  • C Y ( ⁇ 2) means the combined capacitance value thereof.
  • I CY is the current flowing through the Y capacitor
  • the current flowing through Y capacitors 21 and 22 is I CY1 .
  • the impedance Z Cy is given by the following formula (III).
  • the impedance Z Cy is represented by the combined capacitance value C sense ( ⁇ 2) of the common mode voltage detection capacitors 26 and 27, the resistance value R sense of the common mode voltage detection resistor, the combined capacitance value C Y ( ⁇ 2) of the Y capacitor, and the inductance value L stray — Cy of the parasitic inductance 51, resulting in the following formula (IV).
  • the capacitance value C sense of the common mode voltage detection capacitors 26 and 27 and the resistance value R sense of the common mode voltage detection resistor are selected such that the impedance of the common mode voltage detection capacitors 26 and 27 can be ignored with respect to the impedance of the common mode voltage detection resistor.
  • the capacitance value C Y1 of the Y capacitors 21 and 22 is set to a value different from the capacitance value C Y2 of the Y capacitors 41 and 42 .
  • the capacitance value C Y2 of the Y capacitors 41 and 42 is selected to be 1/10 of the capacitance value C Y1 of the Y capacitors 21 and 22 .
  • the impedance Z Cy1 of the Y capacitors 21 and 22 is given by the following formula (VI) from the formula (V), and the impedance Z Cy2 of the Y capacitors 41 and 42 is given by the following formula (VII).
  • the inductance value of the parasitic inductance of the Y capacitors 21 and 22 is indicated by L stray_Cy1
  • the gain of the inverting amplifier circuit 37 is indicated by G1
  • the inductance value of the parasitic inductance of the Y capacitors 41 and 42 is indicated by L stray_Cy2
  • the gain of the inverting amplifier circuit 57 is indicated by G2 .
  • the above formula (VI) means that it is equivalent to (1+G 1 ) times the Y capacitor being connected, and the above formula (VII) means that it is equivalent to (1+G 2 ) times the Y capacitor being connected. That is, the compensation by the active filter compensation circuit 23 apparently increases the capacitance values of the Y capacitors 21 and 22 by (1+G 1 ) times, and apparently increases the capacitance values of the Y capacitors 41 and 42 by (1+G 2 ) times.
  • the inductance value of the parasitic inductance 51 is equivalently reduced (1/(1+G 1 ), 1/(1+G 2 )).
  • the inverting amplifier circuits 37 and 57 for inverting and amplifying the common mode voltage v HV_com detected by the detection unit 29 are provided, and the output voltages of the inverting amplifier circuits 37 and 57 are applied as compensation voltages v comp _ com1 and v comp _ com2 to the Y capacitors 21 and 22 and the Y capacitors 41 and 42 , respectively. (1+G 1 ) times), and the apparent capacitance values of the Y capacitors 41 and 42 increase ((1+G 2 ) times ) according to the gain G 2 of the inverting amplifier circuit 57 .
  • the coarse dashed line in FIG. 4 indicates the impedance characteristic of the Y capacitor (capacitance value C Y1 ) of the ordinary passive noise filter, the finest broken line indicates the impedance characteristic of only the Y capacitors 21 and 22 (capacitance value C Y1 ) of the active filter device 1, and the middle broken line indicates the impedance characteristic of only the Y capacitors 41 and 42 (capacitance value C Y2 ) of the active filter device 1.
  • a solid line indicates impedance characteristics of parallel connection of the Y capacitors 21 and 22 (capacitance value C Y1 ) and the Y capacitors 41 and 42 (capacitance value C Y2 ) in the active filter device 1 of the present invention.
  • Z Cy is the impedance of the Y capacitor.
  • the capacitance values of the Y capacitors 21 and 22 apparently increase, and the impedance Z Cy decreases in accordance with the value of the gain G 1 as compared to a normal passive noise filter (the finest broken line in FIG. 4).
  • the inductance component becomes dominant at frequencies higher than the resonance frequency due to resonance with the parasitic inductance of the Y capacitors 21 and 22, so the impedance Z Cy rises in the high frequency region as indicated by the finest broken line in the figure.
  • the present invention it is possible to suppress an increase in common mode noise impedance in a high frequency region caused by the resonance frequency of the Y capacitor, and to more effectively improve the attenuation characteristics of common mode noise.
  • the gain values (G 1 , G 2 ) of the inverting amplifier circuits 37, 57 are individually selected according to the purpose of use. As a result, according to the present invention, the frequency characteristics of common mode impedance can be adjusted in accordance with the characteristics of EMI noise.
  • the active filter compensation circuit 23 can be added to a normal passive type noise filter consisting of a common mode choke coil and a Y capacitor to improve the attenuation characteristics of common mode noise, so it is highly versatile.
  • the common mode voltage v HV_com detected by the single detection section 29 composed of the pair of common mode voltage detection capacitors 26 and 27 is input to the inverting amplifier circuits 37 and 57, so that the circuit configuration of the detection section 29 can be simplified.
  • the active filter device 1 of the present invention is extremely suitable when it is provided integrally with the housing 18 of the electric compressor 2 together with the inverter device 3 as in the embodiment.
  • the ground paths 38 and 58 of the detection section 29 and the ground path 39 of the inverting amplifier circuits 37 and 57 are separately connected to the circuit ground 30, so that it is possible to reduce the adverse effect of the voltage fluctuation on the circuit ground 30 caused by the operating currents of the inverting amplifier circuits 37 and 57 on the detection of the common mode voltage by the detection section 29.
  • FIG. 5 shows an electric circuit diagram of an electric compressor 2 and a feed path to the electric compressor 2 of another embodiment of the present invention.
  • the same reference numerals as in FIG. 1 have the same or similar functions.
  • the inverting amplifier circuit 37 and the inverting amplifier circuit 57 of the active filter compensating circuit 23 are provided with detectors (denoted by reference numerals 29A and 29B), respectively.
  • the detection section 29A for the inverting amplifier circuit 37 is composed of the first common mode voltage detection capacitors 26A and 27A (C sense1 ) whose one ends are connected to the power supply lines 11 and 12, respectively, and the common mode voltage detection resistor 36 (FIG. 2) connected to the other ends thereof. (C sense2 ) and the common mode voltage sensing resistors 56 (FIG. 2) respectively connected to their other ends.
  • the detection units 29A and 29B are provided for the inverting amplifier circuit 37 and the inverting amplifier circuit 57, respectively, there is an advantage that common mode noise voltage detection characteristics corresponding to the frequency characteristics of the respective inverting amplifier circuits 37 and 57 can be obtained.
  • FIG. 6 shows an electric circuit of another embodiment of the electric compressor 2 of the present invention. 1 and 2 are denoted by the same reference numerals as in FIG. 1 and FIG.
  • the ground paths 38, 58 of the detector 29 are directly connected to the housing 18 (ground potential), and the ground paths 39 of the power supply circuits 34 of the amplifiers 32, 52 (ground paths of the inverting amplifier circuits 37, 57) are connected to the circuit ground 30 in the same manner as described above.
  • two sets of Y capacitors (21, 22, 41, 42) are connected, and an inverting amplifier circuit (37, 57) is provided for each set of Y capacitors.
  • an inverting amplifier circuit (37, 57) is provided for each set of Y capacitors.
  • more sets of Y capacitors may be connected, the capacitance value of the Y capacitors may be different for each set, and more inverting amplifier circuits may be provided for each set of Y capacitors.
  • the active filter device 1 of the present invention is applied to the electric compressor 2 that constitutes the refrigerant circuit of the vehicle air conditioner, but the invention of claims 1 to 4 is not limited to this, and the present invention is effective for various household/commercial equipment that requires reduction of common mode noise.
  • Active Filter Device 2 Electric Compressor 3 Inverter Device 4 Inverter Housing 7 High Voltage Battery (DC Power Supply) 8 motor 11, 12 power supply line 15 switching element 18 housing 20 control circuit 21, 22, 41, 42 Y capacitor 23 active filter compensation circuit 26, 27, 26A, 27A, 26B, 27B common mode voltage detection capacitor 28 common mode choke coil 29, 29A, 29B detector 30 circuit ground 32, 52 amplifier (operational amplifier unit, Or an operational amplifier with a current amplifier at the output) 36, 56 common mode voltage detection resistor 37, 57 inverting amplifier circuit 38, 39, 58 ground path

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Networks Using Active Elements (AREA)
  • Inverter Devices (AREA)

Abstract

[Problem] To provide an active filter device capable of improving attenuation characteristics of a common mode noise filter in a high frequency region without using a common mode transformer and without largely increasing volume and weight of a passive-type common mode noise filter. [Solution] An active filer device 1 includes: a common mode choke coil 28 inserted into a pair of power source lines 11 and 12; a detection unit 29 that detects a common mode voltage; inverting amplifiers 37 and 57 that invert and amplify the common mode voltage detected by the detection unit 29; and two pairs of Y capacitors 21, 22, 41, and 42 having different capacitance values and respectively connected between outputs of the inverting amplifiers and the pair of power source lines 11 and 12, and output voltages of the inverting amplifiers 37 and 57 are respectively applied to the Y capacitors 21, 22, 41, and 42 as compensation voltages.

Description

アクティブフィルタ装置及びそれを備えた電動圧縮機ACTIVE FILTER DEVICE AND ELECTRIC COMPRESSOR HAVING THE SAME
 本発明は、コモンモードノイズを抑制するためのアクティブフィルタ装置、及び、当該アクティブフィルタ装置を備えた電動圧縮機に関するものである。 The present invention relates to an active filter device for suppressing common mode noise and an electric compressor equipped with the active filter device.
 コモンモードノイズの低減を目的としたパッシブ方式のコモンモードノイズフィルタ(パッシブフィルタ)は、一対の電源ラインとグランド電位間にそれぞれ接続されたYコンデンサと、一対の電源ラインに挿入されたコモンモードチョークコイルから構成されていた(例えば、特許文献1参照)。 A passive common mode noise filter (passive filter) aimed at reducing common mode noise consisted of a Y capacitor connected between a pair of power supply lines and ground potential, and a common mode choke coil inserted into the pair of power supply lines (see, for example, Patent Document 1).
 しかしながら、例えば電動圧縮機のモータを駆動するインバータ装置の場合、パッシブ方式でコモンモードノイズフィルタの減衰特性を向上させるために、構成要素であるYコンデンサで対応しようとすると、漏れ電流増加による安全面からの容量値の制約や、現実的でない容量値のものを採用する必要が生じる。また、コモンモードチョークコイルで対応しようとしても、実装可能なコイルに寸法的な制約が生じる課題があった。 However, in the case of an inverter device that drives the motor of an electric compressor, for example, in order to improve the attenuation characteristics of a common mode noise filter in a passive manner, if the Y capacitor, which is a component, is used, it will be necessary to restrict the capacitance value from a safety standpoint due to an increase in leakage current, or to adopt an unrealistic capacitance value. In addition, even if an attempt was made to use a common mode choke coil, there was a problem of dimensional restrictions on mountable coils.
 そこで、コモンモードノイズフィルタにアクティブ方式を採用したものも種々開発されている(例えば、特許文献2~特許文献4参照)。 Therefore, various types of common mode noise filters that employ an active method have been developed (see Patent Documents 2 to 4, for example).
特開2008-78844号公報JP 2008-78844 A 特許第3044650号公報Japanese Patent No. 3044650 特許第2863833号公報Japanese Patent No. 2863833 特許第5528543号公報Japanese Patent No. 5528543
 しかしながら、上記何れの文献においてもコモンモードノイズの検出や補償にコモンモードトランスを必要とし、アクティブフィルタ装置の大型化を伴うため、改善が望まれていた。また、Yコンデンサの容量値を大きくすることで、コモンモードノイズインピーダンスを低減することが可能だが、Yコンデンサの容量値の増加に伴い、寄生インダクタンスとの共振周波数が低下することで、高周波領域のノイズ低減性能が低下してしまうという課題もあった。 However, in any of the above documents, a common mode transformer is required to detect and compensate for common mode noise, which entails an increase in the size of the active filter device, so improvements have been desired. In addition, although it is possible to reduce the common mode noise impedance by increasing the capacitance value of the Y capacitor, there is also the problem that the resonance frequency with the parasitic inductance decreases as the capacitance value of the Y capacitor increases, resulting in a decrease in noise reduction performance in the high frequency region.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、コモンモードトランスを用いること無く、また、パッシブ方式のコモンモードノイズフィルタに対して、大きな体積や重量の増加を伴わずに、高周波領域でのコモンモードノイズフィルタの減衰特性を向上させることができるアクティブフィルタ装置、及び、それを備えた電動圧縮機を提供することを目的とする。 The present invention has been made to solve such conventional technical problems, and aims to provide an active filter device that can improve the attenuation characteristics of a common mode noise filter in a high frequency range without using a common mode transformer and without increasing the volume or weight of a passive common mode noise filter, and an electric compressor equipped with the same.
 本発明のアクティブフィルタ装置は、一対の電源ラインに一端がそれぞれ接続された複数組のYコンデンサと、一対の電源ラインに挿入されたコモンモードチョークコイルと、コモンモード電圧を検出する検出部と、Yコンデンサの各組に対応して設けられ、検出部で検出されたコモンモード電圧を反転増幅する複数の反転増幅回路を備え、Yコンデンサの容量値を、各組毎に異なる値とすると共に、各反転増幅回路の出力を、各組のYコンデンサの他端にそれぞれ接続し、各反転増幅回路の出力電圧を、補償電圧として各組のYコンデンサにそれぞれ印加することを特徴とする。 The active filter device of the present invention comprises a plurality of sets of Y capacitors each having one end connected to a pair of power supply lines, a common mode choke coil inserted in the pair of power supply lines, a detection unit for detecting a common mode voltage, and a plurality of inversion amplifier circuits provided corresponding to each set of the Y capacitors for inverting and amplifying the common mode voltage detected by the detection unit. The output voltage of the inverting amplifier circuit is applied to each pair of Y capacitors as a compensation voltage.
 請求項2の発明のアクティブフィルタ装置は、上記発明において一対のコモンモード電圧検出コンデンサから構成された単一の検出部が検出したコモンモード電圧が、各反転増幅回路に入力される構成としたことを特徴とする。 The active filter device of the invention of claim 2 is characterized in that the common mode voltage detected by a single detection unit composed of a pair of common mode voltage detection capacitors in the above invention is input to each inverting amplifier circuit.
 請求項3の発明のアクティブフィルタ装置は、検出部が各反転増幅回路に対してそれぞれ設けられていることを特徴とする。 The active filter device of the invention of claim 3 is characterized in that a detection unit is provided for each inverting amplifier circuit.
 請求項4の発明のアクティブフィルタ装置は、検出部のグランド経路と、反転増幅回路のグランド経路を、別々に回路グランドに接続したことを特徴とする。 The active filter device of the invention of claim 4 is characterized in that the ground path of the detection section and the ground path of the inverting amplifier circuit are separately connected to the circuit ground.
 請求項5の発明の電動圧縮機は、上記各発明のアクティブフィルタ装置と、インバータ装置が、筐体と一体に設けられていることを特徴とする。 The electric compressor of the invention of claim 5 is characterized in that the active filter device and the inverter device of each of the above inventions are provided integrally with a housing.
 請求項6の発明の電動圧縮機は、上記発明において筐体をグランド電位とし、回路グランドを筐体に接続すると共に、検出部のグランド経路を筐体に接続し、反転増幅回路のグランド経路を回路グランドに接続したことを特徴とする。 The electric compressor of the invention of claim 6 is characterized in that, in the above invention, the housing is set to ground potential, the circuit ground is connected to the housing, the ground path of the detection unit is connected to the housing, and the ground path of the inverting amplifier circuit is connected to the circuit ground.
 本発明のアクティブフィルタ装置によれば、一対の電源ラインに一端がそれぞれ接続された複数組のYコンデンサと、一対の電源ラインに挿入されたコモンモードチョークコイルと、コモンモード電圧を検出する検出部と、Yコンデンサの各組に対応して設けられ、検出部で検出されたコモンモード電圧を反転増幅する複数の反転増幅回路を備えており、Yコンデンサの容量値を、各組毎に異なる値とすると共に、各反転増幅回路の出力を、各組のYコンデンサの他端にそれぞれ接続し、各反転増幅回路の出力電圧を、補償電圧として各組のYコンデンサにそれぞれ印加するようにしたので、各反転増幅回路のゲインに応じて各組のYコンデンサの見かけ上の容量値が増加することになる。 According to the active filter device of the present invention, there are provided a plurality of sets of Y capacitors each having one end connected to a pair of power supply lines, a common mode choke coil inserted into the pair of power supply lines, a detection unit for detecting a common mode voltage, and a plurality of inverting amplifier circuits provided corresponding to each set of the Y capacitors for inverting and amplifying the common mode voltage detected by the detection unit. However, since the output voltage of each inverting amplifier circuit is applied to each set of Y capacitors as a compensation voltage, the apparent capacitance value of each set of Y capacitors increases according to the gain of each inverting amplifier circuit.
 このようなYコンデンサの見かけ上の容量値の増加により、大容量のYコンデンサや大型のコモンモードチョークコイルを用いること無く、ノイズ電流の還流を増やし、電源側へ漏れ出るコモンモード電流を低減させることができるようになる。また、コモンモードチョークコイルとYコンデンサから成る通常のパッシブ方式のノイズフィルタに適用して、コモンモードノイズの減衰特性を改善することができるので、汎用性に富んだものとなる。 With this increase in the apparent capacitance value of the Y capacitor, it is possible to increase the return of noise current and reduce the common mode current leaking to the power supply side without using a large-capacity Y capacitor or a large common mode choke coil. In addition, since it can be applied to a normal passive noise filter comprising a common mode choke coil and a Y capacitor to improve the attenuation characteristics of common mode noise, it is highly versatile.
 特に本発明では、複数組のYコンデンサとそれらにそれぞれ対応する複数の反転増幅回路を設け、Yコンデンサの容量値を、各組毎に異なる値とし、各反転増幅回路の出力を、各組のYコンデンサの他端にそれぞれ接続して各反転増幅回路の出力電圧を、補償電圧として各組のYコンデンサにそれぞれ印加するので、Yコンデンサの共振周波数に起因する高周波領域でのコモンモードノイズインピーダンスの上昇を抑制し、コモンモードノイズの減衰特性をより効果的に改善することが可能となる。また、各反転増幅回路のゲイン値も、使用目的に応じて個々に選定することで、EMIノイズの特性に合わせて、コモンモードインピーダンスの周波数特性を調整することができる。 In particular, in the present invention, a plurality of sets of Y capacitors and a plurality of inverting amplifier circuits corresponding thereto are provided, the capacitance value of each Y capacitor is set to a different value for each set, the output of each inverting amplifier circuit is connected to the other end of each set of Y capacitors, and the output voltage of each inverting amplifier circuit is applied to each set of Y capacitors as a compensation voltage. Further, by individually selecting the gain value of each inverting amplifier circuit according to the purpose of use, the frequency characteristics of common mode impedance can be adjusted in accordance with the characteristics of EMI noise.
 この場合、請求項2の発明の如く、一対のコモンモード電圧検出コンデンサから構成された単一の検出部が検出したコモンモード電圧を、各反転増幅回路に入力する構成とすることで、検出部の回路構成を簡略化することができるようになる。 In this case, as in the invention of claim 2, the common mode voltage detected by a single detection section composed of a pair of common mode voltage detection capacitors is configured to be input to each inverting amplifier circuit, thereby simplifying the circuit configuration of the detection section.
 一方、請求項3の発明の如く、検出部を各反転増幅回路に対してそれぞれ設けるようにすれば、各反転増幅回路の周波数特性に応じたコモンモードノイズ電圧の検出特性を得ることができる利点がある。 On the other hand, if a detection unit is provided for each inverting amplifier circuit as in the invention of claim 3, there is an advantage that common mode noise voltage detection characteristics corresponding to the frequency characteristics of each inverting amplifier circuit can be obtained.
 また、請求項4の発明の如く、検出部のグランド経路と、反転増幅回路のグランド経路を、別々に回路グランドに接続するようにすれば、反転増幅回路の動作電流に起因する回路グランドに対する電圧変動が、検出部によるコモンモード電圧の検出に及ぼす悪影響を低減することができるようになる。 In addition, if the ground path of the detection section and the ground path of the inverting amplifier circuit are separately connected to the circuit ground as in the invention of claim 4, it is possible to reduce the adverse effect of voltage fluctuations on the circuit ground due to the operating current of the inverting amplifier circuit on the detection of the common mode voltage by the detection section.
 そして、上記各発明のアクティブフィルタ装置は、請求項5の発明の如くインバータ装置と共に電動圧縮機の筐体に一体に設けられる場合に極めて好適なものとなる。 Then, the active filter device of each of the above inventions is extremely suitable when it is integrally provided with the housing of the electric compressor together with the inverter device as in the fifth aspect of the invention.
 また、請求項6の発明の如く筐体をグランド電位とし、回路グランドを筐体に接続すると共に、検出部のグランド経路を筐体に接続し、反転増幅回路のグランド経路を回路グランドに接続することで、反転増幅回路の動作電流に起因する回路グランドの電位変動による検出部の検出誤差を低減することが可能となる。 In addition, by setting the housing to the ground potential and connecting the circuit ground to the housing as in the invention of claim 6, connecting the ground path of the detection unit to the housing, and connecting the ground path of the inverting amplifier circuit to the circuit ground, it is possible to reduce the detection error of the detection unit due to the potential fluctuation of the circuit ground caused by the operating current of the inverting amplifier circuit.
本発明のアクティブフィルタ装置を適用した一実施例の電動圧縮機及び当該電動圧縮機への給電経路の電気回路図である。1 is an electric circuit diagram of an electric compressor of one embodiment to which an active filter device of the present invention is applied and a feed path to the electric compressor; FIG. 図1の電動圧縮機の電気回路図である(実施例1)。FIG. 2 is an electric circuit diagram of the electric compressor of FIG. 1 (Example 1). 図2のアクティブフィルタ装置の等価回路図である。3 is an equivalent circuit diagram of the active filter device of FIG. 2; FIG. 本発明のアクティブフィルタ装置によるコモンモードノイズ低減作用を説明するためのYコンデンサのインピーダンス特性を示す図である。FIG. 5 is a diagram showing impedance characteristics of a Y capacitor for explaining the common mode noise reduction effect of the active filter device of the present invention; 図1の電動圧縮機及び当該電動圧縮機への給電経路の電気回路の他の実施例を示す図である(実施例2)。FIG. 10 is a diagram showing another embodiment of the electric circuit of the electric compressor of FIG. 1 and a power supply path to the electric compressor (Embodiment 2); 図2の電動圧縮機の電気回路の他の実施例を示す図である(実施例3)。3 is a diagram showing another example of the electric circuit of the electric compressor of FIG. 2 (Example 3); FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 図1は本発明のアクティブフィルタ装置1を適用した一実施例の電動圧縮機2及び当該電動圧縮機2への給電経路の電気回路図、図2は電動圧縮機2の電気回路図をそれぞれ示している。 FIG. 1 shows an electric circuit diagram of an electric compressor 2 and a power feeding path to the electric compressor 2 of one embodiment to which the active filter device 1 of the present invention is applied, and FIG. 2 shows an electric circuit diagram of the electric compressor 2.
 実施例の電動圧縮機2は、例えば電気自動車やハイブリッド自動車等の車両に搭載されて車室内を空調する車両用空気調和装置の冷媒回路の一部を構成するものであり、インバータ装置(PWMインバータ)3及び本発明のアクティブフィルタ装置1は、この電動圧縮機2の後述する筐体18に一体に設けられる。即ち、実施例の電動圧縮機2はインバータ一体型電動圧縮機である。 The electric compressor 2 of the embodiment constitutes a part of the refrigerant circuit of a vehicle air conditioner that is mounted in a vehicle such as an electric vehicle or a hybrid vehicle and air-conditions the interior of the vehicle. That is, the electric compressor 2 of the embodiment is an inverter-integrated electric compressor.
 インバータ装置3は、直流電源として車両に搭載された高電圧バッテリ7(HV。例えばDC350V)からの直流電圧を任意の周波数の交流電圧に変換して電動圧縮機2のモータ8に供給し、運転するものであり、本発明の実施例のアクティブフィルタ装置1は、係るインバータ装置3にて発生するコモンモードノイズを低減するために設けられるものである。 The inverter device 3 converts a DC voltage from a high-voltage battery 7 (HV, for example, 350 V DC) mounted on the vehicle as a DC power source into an AC voltage of an arbitrary frequency and supplies it to the motor 8 of the electric compressor 2 for operation. The active filter device 1 of the embodiment of the present invention is provided to reduce common mode noise generated in the inverter device 3.
 (1)電動圧縮機2の給電経路
 図1において、インバータ装置3は、高電圧バッテリ7の正側の電源ライン11と、負側の電源ライン12に接続された複数のスイッチング素子(IGBT)15から構成されている。図1中の20は制御回路であり、インバータ装置3の各スイッチング素子15は、この制御回路20によりスイッチング制御(PWM制御)される。また、13は一対の前記電源ライン11、12間に接続された平滑コンデンサである。
(1) Power Supply Path of Electric Compressor 2 In FIG. 1, the inverter device 3 is composed of a plurality of switching elements (IGBT) 15 connected to a positive power supply line 11 of the high voltage battery 7 and a negative power supply line 12. Reference numeral 20 in FIG. 1 denotes a control circuit, and each switching element 15 of the inverter device 3 is switching-controlled (PWM-controlled) by this control circuit 20 . A smoothing capacitor 13 is connected between the pair of power supply lines 11 and 12 .
 尚、14は車両のECU、16は低電圧バッテリ(DC12V)であり、制御回路20はECU14からの指令に基づき、低電圧バッテリ16を電源としてインバータ装置3の各スイッチング素子15をスイッチング制御する。また、18は電動圧縮機2の筐体(アルミダイカスト製)である。更に、電動圧縮機2は、シールドされたHVハーネス25(一対の電源ライン11、12を構成する)で高電圧バッテリ7に接続され、電動圧縮機2の筐体18は、車両の車体に直接固定される。これにより、筐体18がグランド電位となる。  In addition, 14 is an ECU of the vehicle, 16 is a low voltage battery (DC 12V), and the control circuit 20 controls the switching of each switching element 15 of the inverter device 3 using the low voltage battery 16 as a power source based on a command from the ECU 14. Reference numeral 18 denotes a housing (made of aluminum die-casting) of the electric compressor 2 . Furthermore, the electric compressor 2 is connected to the high voltage battery 7 by a shielded HV harness 25 (constituting a pair of power supply lines 11 and 12), and the housing 18 of the electric compressor 2 is directly fixed to the vehicle body. As a result, the housing 18 becomes the ground potential.
 実施例のアクティブフィルタ装置1は、一対の電源ライン11、12と下記アクティブフィルタ補償回路23の第1の出力間にそれぞれ接続された一組目のYコンデンサ(CY1)21、22(第1のYコンデンサ)と、同じく一対の電源ライン11、12と下記アクティブフィルタ補償回路23の第2の出力間にそれぞれ接続された二組目のYコンデンサ(CY2)41、42(第2のYコンデンサ)と、これら二組のYコンデンサ21、22、41、42と筐体18(グランド電位)間に接続されたかたちとなるアクティブフィルタ補償回路23と、一対の電源ライン11、12とアクティブフィルタ補償回路23間にそれぞれ接続された一対のコモンモード電圧検出コンデンサ26、27(Csense:本発明における検出部29を構成する)と、これらYコンデンサ21、22、41、42やアクティブフィルタ補償回路23、コモンモード電圧検出コンデンサ26、27から見て高電圧バッテリ7側における一対の電源ライン11、12に挿入されたコモンモードチョークコイル(CMCC)28から構成されている。 The active filter device 1 of the embodiment includes a first set of Y capacitors (CY1) 21, 22 (first Y capacitors) and a second set of Y capacitors (CY2) 41, 42 (second Y capacitors), an active filter compensation circuit 23 connected between the two sets of Y capacitors 21, 22, 41, 42 and the housing 18 (ground potential), and a pair of common mode voltage detection capacitors 26, 27 (Csense: constituting the detection unit 29 in the present invention), the Y capacitors 21, 22, 41, 42, the active filter compensation circuit 23, and the common mode choke coil (CMCC) 28 inserted in the pair of power supply lines 11, 12 on the high voltage battery 7 side when viewed from the common mode voltage detection capacitors 26, 27.
 (2)電動圧縮機2の電気回路
 次に、図2は電動圧縮機2の電気回路のみを抽出して示している。この図において、図1と同一符号で示すものは同一のものである。モータ8の巻線8Cと筐体18間には、絶縁紙や冷媒、オイルが介在するが、このモータ8の巻線8Cと筐体18間の浮遊容量を図2中に31で示す。この浮遊容量31を介してノイズ電流が流れ、コモンモードノイズが発生することになる。
(2) Electric Circuit of Electric Compressor 2 Next, FIG. 2 extracts and shows only the electric circuit of the electric compressor 2 . In this figure, the same reference numerals as in FIG. 1 denote the same components. Insulating paper, coolant, and oil are interposed between the windings 8C of the motor 8 and the housing 18, and the stray capacitance between the windings 8C of the motor 8 and the housing 18 is indicated by 31 in FIG. A noise current flows through this stray capacitance 31 to generate common mode noise.
 また、図2中にはアクティブフィルタ装置1のアクティブフィルタ補償回路23の詳細を示している。実施例のアクティブフィルタ補償回路23は、増幅器32、52と、これら増幅器32、52の反転入力端子(-)と出力端子間にそれぞれ接続された負帰還抵抗(Rf_com1)33、負帰還抵抗(Rf_com2)53と、増幅器32、52の正電源端子と負電源端子に接続された電源回路(VCC、VEE)34と、前述したコモンモード電圧検出コンデンサ26、27と、これらコモンモード電圧検出コンデンサ26、27と共に検出部29を構成するコモンモード電圧検出抵抗(Rsense1)36及びコモンモード電圧検出抵抗(Rsense2)56とから構成されている。 2 shows details of the active filter compensating circuit 23 of the active filter device 1. As shown in FIG.実施例のアクティブフィルタ補償回路23は、増幅器32、52と、これら増幅器32、52の反転入力端子(-)と出力端子間にそれぞれ接続された負帰還抵抗(R f _ com1 )33、負帰還抵抗(R f _ com2 )53と、増幅器32、52の正電源端子と負電源端子に接続された電源回路(V CC 、V EE )34と、前述したコモンモード電圧検出コンデンサ26、27と、これらコモンモード電圧検出コンデンサ26、27と共に検出部29を構成するコモンモード電圧検出抵抗(R sense1 )36及びコモンモード電圧検出抵抗(R sense2 )56とから構成されている。
 増幅器32と負帰還抵抗33、及び、コモンモード電圧検出抵抗36により本発明における一つ目の反転増幅回路37(第1の反転増幅回路:ゲインG1)が構成される。また、増幅器52と負帰還抵抗53、及び、コモンモード電圧検出抵抗56により本発明における二つ目の反転増幅回路57(第2の反転増幅回路:ゲインG2)が構成される。また、コモンモード電圧検出コンデンサ26、27の一端は、一対の電源ライン11、12にそれぞれ接続され、コモンモード電圧検出コンデンサ26、27の共通とされた他端には、コモンモード電圧検出抵抗36、56の一端がそれぞれ接続されている。 The amplifier 32, the negative feedback resistor 33, and the common mode voltage detection resistor 36 constitute a first inverting amplifier circuit 37 (first inverting amplifier circuit: gain G 1 ) in the present invention. The amplifier 52, the negative feedback resistor 53, and the common mode voltage detection resistor 56 constitute a second inverting amplifier circuit 57 (second inverting amplifier circuit: gain G 2 ) of the present invention. One ends of the common mode voltage detection capacitors 26 and 27 are connected to the pair of power supply lines 11 and 12, respectively, and the common other ends of the common mode voltage detection capacitors 26 and 27 are connected to one ends of common mode voltage detection resistors 36 and 56, respectively.
 そして、このコモンモード電圧検出抵抗36の他端は増幅器32の反転入力端子(-)に接続され、コモンモード電圧検出抵抗56の他端は増幅器52の反転入力端子(-)に接続されている。また、増幅器32、52の非反転入力端子(+)は、それぞれグランド経路38、58にてこの実施例では回路グランド30に接続されている。このグランド経路38、58が検出部29のグランド経路となる。尚、回路グランド30はグランド電位である筐体18に接続されている。 The other end of the common mode voltage detection resistor 36 is connected to the inverting input terminal (-) of the amplifier 32, and the other end of the common mode voltage detection resistor 56 is connected to the inverting input terminal (-) of the amplifier 52. The non-inverting input terminals (+) of amplifiers 32 and 52 are also connected to circuit ground 30 in this embodiment by ground paths 38 and 58, respectively. The ground paths 38 and 58 serve as ground paths for the detection section 29 . The circuit ground 30 is connected to the housing 18, which is at ground potential.
 一方、前述したYコンデンサ21、22の一端は、一対の電源ライン11、12にそれぞれ接続され、Yコンデンサ41、42の一端も、一対の電源ライン11、12にそれぞれ接続されている。そして、Yコンデンサ21、22の他端は、共に増幅器32の出力端子(アクティブフィルタ補償回路23の第1の出力)に接続され、Yコンデンサ41、42の他端は、共に増幅器52の出力端子(アクティブフィルタ補償回路23の第2の出力)に接続されている。 On the other hand, one ends of the Y capacitors 21 and 22 described above are connected to the pair of power supply lines 11 and 12, respectively, and one ends of the Y capacitors 41 and 42 are also connected to the pair of power supply lines 11 and 12, respectively. The other ends of the Y capacitors 21 and 22 are both connected to the output terminal of the amplifier 32 (the first output of the active filter compensation circuit 23), and the other ends of the Y capacitors 41 and 42 are both connected to the output terminal of the amplifier 52 (the second output of the active filter compensation circuit 23).
 増幅器32、52の電源回路34のグランド経路39は、この実施例ではグランド経路38、58とは別に回路グランド30に接続されている。このグランド経路39が反転増幅回路37、57のグランド経路である。 The ground path 39 of the power supply circuit 34 of the amplifiers 32, 52 is connected to the circuit ground 30 separately from the ground paths 38, 58 in this embodiment. This ground path 39 is the ground path of the inverting amplifier circuits 37 and 57 .
 これにより、Yコンデンサ21、22は、アクティブフィルタ補償回路23の増幅器32を介して、一対の電源ライン11、12と筐体18(グランド電位)間に接続され、Yコンデンサ41、42は、アクティブフィルタ補償回路23の増幅器52を介して、一対の電源ライン11、12と筐体18(グランド電位)間に接続されたかたちとなり、反転増幅回路37(増幅器32)の出力電圧が補償電圧としてYコンデンサ21、22に印加され、反転増幅回路57(増幅器52)の出力電圧が補償電圧としてYコンデンサ41、42に印加されることになる。 As a result, the Y capacitors 21, 22 are connected between the pair of power supply lines 11, 12 and the housing 18 (ground potential) through the amplifier 32 of the active filter compensation circuit 23, the Y capacitors 41, 42 are connected between the pair of power supply lines 11, 12 and the housing 18 (ground potential) through the amplifier 52 of the active filter compensation circuit 23, and the output voltage of the inverting amplifier circuit 37 (amplifier 32) is applied to the Y capacitors 21, 22 as a compensation voltage. , and the output voltage of the inverting amplifier circuit 57 (amplifier 52) is applied to the Y capacitors 41 and 42 as a compensation voltage.
 (3)アクティブフィルタ装置1の作用(動作)
 以上の構成で、次に図2~図4を参照しながら、この実施例のアクティブフィルタ装置1の作用(動作)について説明する。尚、図3、図4において図1、図2と同一符号で示すものは同一のものとする。図3はアクティブフィルタ装置1の等価回路を示している。尚、図3では反転増幅回路37に関する素子の符号を付しているが、もう一つの反転増幅回路57に関しても同様である。即ち、反転増幅回路57の場合の図3は、Yコンデンサ21、22がYコンデンサ41、42に置き換わり、増幅器37が増幅器57、負帰還抵抗33が負帰還抵抗53、コモンモード電圧検出抵抗36がコモンモード抵抗検出抵抗56に置き換わるものとする。
(3) Action (operation) of the active filter device 1
Next, with the above configuration, the action (operation) of the active filter device 1 of this embodiment will be described with reference to FIGS. 2 to 4. FIG. In FIGS. 3 and 4, the same reference numerals as in FIGS. 1 and 2 denote the same components. FIG. 3 shows an equivalent circuit of the active filter device 1. As shown in FIG. In FIG. 3, elements related to the inverting amplifier circuit 37 are denoted by reference numerals, but the same applies to the other inverting amplifier circuit 57 as well. 3 for the inverting amplifier circuit 57, the Y capacitors 21 and 22 are replaced with the Y capacitors 41 and 42, the amplifier 37 is replaced with the amplifier 57, the negative feedback resistor 33 is replaced with the negative feedback resistor 53, and the common mode voltage detection resistor 36 is replaced with the common mode resistance detection resistor 56.
 また、下記寄生インダクタンス51については、Yコンデンサ41、42の場合も異なるインダクタンス値の寄生インダクタンスが図3の同様の位置に入るものとする。即ち、実際の回路においては、Yコンデンサ21、22は寄生インダクタンス51(Lstray_Cy)を有する(Yコンデンサ21、22については、実際は後述するインダクタンス値Lstray_Cy1)。図3において、電源ライン11、12にあらわれるコモンモード電圧(HVコモンモード電圧)をvHV_com、反転増幅回路37の補償電圧をvcomp_comで表すと、コモンモード電圧検出抵抗36が接続される反転増幅回路37の入力端子は仮想接地となるため、コモンモード電圧(HVコモンモード電圧)vHV_comは、下記数式(I)で表すことができる。 As for the parasitic inductance 51 described below, it is assumed that the parasitic inductances of different inductance values are placed in the same positions in FIG. That is, in an actual circuit, the Y capacitors 21 and 22 have a parasitic inductance 51 (L strayCy ) (the Y capacitors 21 and 22 actually have an inductance value L strayCy1 which will be described later). In FIG. 3, the common mode voltage (HV common mode voltage) appearing on the power supply lines 11 and 12 is represented by v HV_com , and the compensation voltage of the inverting amplifier circuit 37 is represented by v comp _ com .
 尚、Rsenseはコモンモード電圧検出抵抗の抵抗値であり、コモンモード電圧検出抵抗36の場合はRsense1が代入される(以下、同じ)。また、Csenseはコモンモード電圧検出コンデンサ26、27の容量値であり、Csense(×2)はそれらの合成容量値を意味している。更に、G1は反転増幅回路37のゲインであり、G1=Rf_com/Rsenseとなる。このRf_comは負帰還抵抗の抵抗値であり、負帰還抵抗33の場合には、Rf_com1が代入される。 Incidentally, R sense is the resistance value of the common mode voltage detection resistor, and in the case of the common mode voltage detection resistor 36, R sense1 is substituted (same below). Also, C sense is the capacitance value of the common mode voltage detection capacitors 26 and 27, and C sense (×2) means their combined capacitance value. Furthermore, G 1 is the gain of the inverting amplifier circuit 37, and G 1 =R fcom /R sense . This R fcom is the resistance value of the negative feedback resistor, and in the case of the negative feedback resistor 33, R fcom1 is substituted.
 また、Lstray_Cyは寄生インダクタンス51のインダクタンス値であり、Lstray_Cy(×1/2)はそれらの合成インダクタンス値を意味している。CYはYコンデンサの容量値、CY(×2)はそれらの合成容量値を意味しており、Yコンデンサ21、22の場合には、CY1、CY1(×2)がそれぞれ代入される(以下、同じ)。更に、ICYはYコンデンサを流れる電流であり、Yコンデンサ21、22を流れる電流は、ICY1となる。 Also, L strayCy is the inductance value of the parasitic inductance 51, and L strayCy (×1/2) means their combined inductance value. C Y means the capacitance value of the Y capacitor, and C Y ( × 2) means the combined capacitance value thereof. Furthermore, I CY is the current flowing through the Y capacitor, and the current flowing through Y capacitors 21 and 22 is I CY1 .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(I)より、下記数式(II)が成り立つ。 The following formula (II) holds from formula (I).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 アクティブフィルタ補償回路23の補償によるYコンデンサのインピーダンスをZCyとすると、インピーダンスZCyは下記数式(III)となる。 Assuming that the impedance of the Y capacitor resulting from compensation by the active filter compensation circuit 23 is Z Cy , the impedance Z Cy is given by the following formula (III).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 数式(I)~数式(III)を用いてインピーダンスZCyをコモンモード電圧検出コンデンサ26、27の合成容量値Csense(×2)、コモンモード電圧検出抵抗の抵抗値Rsense、Yコンデンサの合成容量値CY(×2)、寄生インダクタンス51のインダクタンス値Lstray_Cyで表すと、下記数式(IV)となる。 Using the formulas (I) to (III), the impedance Z Cy is represented by the combined capacitance value C sense (×2) of the common mode voltage detection capacitors 26 and 27, the resistance value R sense of the common mode voltage detection resistor, the combined capacitance value C Y (×2) of the Y capacitor, and the inductance value L strayCy of the parasitic inductance 51, resulting in the following formula (IV).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、高周波領域においては、コモンモード電圧検出コンデンサ26、27のインピーダンスがコモンモード電圧検出抵抗のインピーダンスに対して無視できるようにコモンモード電圧検出コンデンサ26、27の容量値Csenseとコモンモード電圧検出抵抗の抵抗値Rsenseを選定することで、数式(IV)は下記数式(V)と見なすことができる。 Here, in the high-frequency region, the capacitance value C sense of the common mode voltage detection capacitors 26 and 27 and the resistance value R sense of the common mode voltage detection resistor are selected such that the impedance of the common mode voltage detection capacitors 26 and 27 can be ignored with respect to the impedance of the common mode voltage detection resistor.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、本発明ではYコンデンサ21、22の容量値CY1を、Yコンデンサ41、42の容量値CY2とは異なる値とする。実施例ではYコンデンサ41、42の容量値CY2が、Yコンデンサ21、22の容量値CY1に対して1/10の値となるものを選定している。 Here, in the present invention, the capacitance value C Y1 of the Y capacitors 21 and 22 is set to a value different from the capacitance value C Y2 of the Y capacitors 41 and 42 . In the embodiment, the capacitance value C Y2 of the Y capacitors 41 and 42 is selected to be 1/10 of the capacitance value C Y1 of the Y capacitors 21 and 22 .
 そして、Yコンデンサ21、22のインピーダンスZCy1は、数式(V)より下記数式(VI)となり、Yコンデンサ41、42のインピーダンスZCy2は、下記数式(VII)となる。尚、数式(VI)、(VII)においては、Yコンデンサ21、22の寄生インダクタンスのインダクタンス値をLstray_Cy1、反転増幅回路37のゲインをG1で示し、Yコンデンサ41、42の前述した寄生インダクタンスのインダクタンス値をLstray_Cy2、反転増幅回路57のゲインをG2で示している。 Then, the impedance Z Cy1 of the Y capacitors 21 and 22 is given by the following formula (VI) from the formula (V), and the impedance Z Cy2 of the Y capacitors 41 and 42 is given by the following formula (VII). In the formulas (VI) and (VII), the inductance value of the parasitic inductance of the Y capacitors 21 and 22 is indicated by L stray_Cy1, the gain of the inverting amplifier circuit 37 is indicated by G1, the inductance value of the parasitic inductance of the Y capacitors 41 and 42 is indicated by L stray_Cy2 , and the gain of the inverting amplifier circuit 57 is indicated by G2 .
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記数式(VI)は、(1+G1)倍のYコンデンサが接続されているのと等価であることを意味しており、上記数式(VII)は、(1+G2)倍のYコンデンサが接続されているのと等価であることを意味している。即ち、アクティブフィルタ補償回路23の補償により、Yコンデンサ21、22の容量値が見かけ上、(1+G1)倍に増加し、Yコンデンサ41、42の容量値が見かけ上、(1+G2)倍に増加したことになる。尚、寄生インダクタンス51のインダクタンス値は等価的に低減(1/(1+G1)、1/(1+G2))される。 The above formula (VI) means that it is equivalent to (1+G 1 ) times the Y capacitor being connected, and the above formula (VII) means that it is equivalent to (1+G 2 ) times the Y capacitor being connected. That is, the compensation by the active filter compensation circuit 23 apparently increases the capacitance values of the Y capacitors 21 and 22 by (1+G 1 ) times, and apparently increases the capacitance values of the Y capacitors 41 and 42 by (1+G 2 ) times. The inductance value of the parasitic inductance 51 is equivalently reduced (1/(1+G 1 ), 1/(1+G 2 )).
 以上のように検出部29で検出されたコモンモード電圧vHV_comを反転増幅する反転増幅回路37及び57を設け、この反転増幅回路37、57の出力電圧を補償電圧vcomp_com1、vcomp_com2としてYコンデンサ21、22、及び、Yコンデンサ41、42にそれぞれ印加するようにしたので、反転増幅回路37のゲインG1に応じてYコンデンサ21、22の見かけ上の容量値が増加((1+G1)倍)し、反転増幅回路57のゲインG2に応じてYコンデンサ41、42の見かけ上の容量値が増加((1+G2)倍)することになる。 As described above, the inverting amplifier circuits 37 and 57 for inverting and amplifying the common mode voltage v HV_com detected by the detection unit 29 are provided, and the output voltages of the inverting amplifier circuits 37 and 57 are applied as compensation voltages v comp _ com1 and v comp _ com2 to the Y capacitors 21 and 22 and the Y capacitors 41 and 42 , respectively. (1+G 1 ) times), and the apparent capacitance values of the Y capacitors 41 and 42 increase ((1+G 2 ) times ) according to the gain G 2 of the inverting amplifier circuit 57 .
 図4の粗い破線は通常のパッシブ方式のノイズフィルタのYコンデンサ(容量値CY1)のインピーダンス特性を示し、最も細かい破線はアクティブフィルタ装置1のYコンデンサ21、22(容量値CY1)のみのインピーダンス特性を示し、中間の破線はアクティブフィルタ装置1のYコンデンサ41、42(容量値CY2)のみのインピーダンス特性をそれぞれ示している。また、実線は本発明のアクティブフィルタ装置1によるYコンデンサ21、22(容量値CY1)、及び、Yコンデンサ41、42(容量値CY2)の並列接続のインピーダンス特性を示している。 The coarse dashed line in FIG. 4 indicates the impedance characteristic of the Y capacitor (capacitance value C Y1 ) of the ordinary passive noise filter, the finest broken line indicates the impedance characteristic of only the Y capacitors 21 and 22 (capacitance value C Y1 ) of the active filter device 1, and the middle broken line indicates the impedance characteristic of only the Y capacitors 41 and 42 (capacitance value C Y2 ) of the active filter device 1. A solid line indicates impedance characteristics of parallel connection of the Y capacitors 21 and 22 (capacitance value C Y1 ) and the Y capacitors 41 and 42 (capacitance value C Y2 ) in the active filter device 1 of the present invention.
 尚、ZCyはYコンデンサのインピーダンスである。この図からも明らかな如く本発明のアクティブフィルタ装置1によれば、各Yコンデンサ21、22の容量値が見かけ上増加して、インピーダンスZCyが通常のパッシブ方式のノイズフィルタよりもゲインG1の値に応じて減少している(図4の最も細かい破線)。 Note that Z Cy is the impedance of the Y capacitor. As is clear from this figure, according to the active filter device 1 of the present invention, the capacitance values of the Y capacitors 21 and 22 apparently increase, and the impedance Z Cy decreases in accordance with the value of the gain G 1 as compared to a normal passive noise filter (the finest broken line in FIG. 4).
 係るYコンデンサ21、22の見かけ上の容量値の増加により、大容量のYコンデンサや大型のコモンモードチョークコイルを用いること無く、図2中に破線矢印で示すノイズ電流の還流を増やし、電源側へ漏れ出るコモンモード電流を低減し、コモンモードノイズを低下させることができるようになる。 Due to the increase in the apparent capacitance value of the Y capacitors 21 and 22, it is possible to increase the return of the noise current indicated by the broken line arrow in FIG.
 一方、Yコンデンサ21、22と反転増幅回路37のみの場合、Yコンデンサ21、22の寄生インダクタンスとの共振により、共振周波数より高い周波数においてはインダクタンス成分が支配的となるため、図の最も細かい破線で示すように、高周波領域においてインピーダンスZCyが上昇している。他方本発明の如く、Yコンデンサ21、22の1/10(実施例)の容量値のYコンデンサ41、42を接続し、更に、ゲインG2の反転増幅回路57(ゲインG1とゲインG2は個々に設定できる)を用いることで、図4に実線で示すように、共振周波数より高い周波数領域におけるインピーダンスZCyの上昇が抑えられる。 On the other hand, in the case of only the Y capacitors 21 and 22 and the inverting amplifier circuit 37, the inductance component becomes dominant at frequencies higher than the resonance frequency due to resonance with the parasitic inductance of the Y capacitors 21 and 22, so the impedance Z Cy rises in the high frequency region as indicated by the finest broken line in the figure. On the other hand, as in the present invention, by connecting the Y capacitors 41 and 42 having a capacitance value 1/10 (embodiment) of the Y capacitors 21 and 22 and using the inverting amplifier circuit 57 with a gain of G2 (gain G1 and gain G2 can be set individually), as shown by the solid line in FIG.
 即ち、本は発明ではYコンデンサの共振周波数に起因する高周波領域でのコモンモードノイズインピーダンスの上昇を抑制し、コモンモードノイズの減衰特性をより効果的に改善することが可能となる。また、各反転増幅回路37、57のゲイン値(G1、G2)も、使用目的に応じて個々に選定する。それにより、本発明によればEMIノイズの特性に合わせて、コモンモードインピーダンスの周波数特性を調整することができるようになる。 That is, according to the present invention, it is possible to suppress an increase in common mode noise impedance in a high frequency region caused by the resonance frequency of the Y capacitor, and to more effectively improve the attenuation characteristics of common mode noise. Also, the gain values (G 1 , G 2 ) of the inverting amplifier circuits 37, 57 are individually selected according to the purpose of use. As a result, according to the present invention, the frequency characteristics of common mode impedance can be adjusted in accordance with the characteristics of EMI noise.
 また、本発明によれば、コモンモードチョークコイルとYコンデンサから成る通常のパッシブ方式のノイズフィルタにアクティブフィルタ補償回路23を追加して、コモンモードノイズの減衰特性を改善することができるので、汎用性に富んだものとなる。 In addition, according to the present invention, the active filter compensation circuit 23 can be added to a normal passive type noise filter consisting of a common mode choke coil and a Y capacitor to improve the attenuation characteristics of common mode noise, so it is highly versatile.
 また、実施例では一対のコモンモード電圧検出コンデンサ26、27から構成された単一の検出部29が検出したコモンモード電圧vHV_comを、各反転増幅回路37、57に入力する構成としているので、検出部29の回路構成を簡略化することができるようになる。 Further, in the embodiment, the common mode voltage v HV_com detected by the single detection section 29 composed of the pair of common mode voltage detection capacitors 26 and 27 is input to the inverting amplifier circuits 37 and 57, so that the circuit configuration of the detection section 29 can be simplified.
 そして、本発明のアクティブフィルタ装置1は、実施例の如くインバータ装置3と共に電動圧縮機2の筐体18に一体に設けられる場合に極めて好適なものとなる。 The active filter device 1 of the present invention is extremely suitable when it is provided integrally with the housing 18 of the electric compressor 2 together with the inverter device 3 as in the embodiment.
 また、実施例では検出部29のグランド経路38、58と、反転増幅回路37、57のグランド経路39を、別々に回路グランド30に接続しているので、反転増幅回路37、57の動作電流に起因する回路グランド30に対する電圧変動が、検出部29によるコモンモード電圧の検出に及ぼす悪影響を低減することができるようになる。 In addition, in the embodiment, the ground paths 38 and 58 of the detection section 29 and the ground path 39 of the inverting amplifier circuits 37 and 57 are separately connected to the circuit ground 30, so that it is possible to reduce the adverse effect of the voltage fluctuation on the circuit ground 30 caused by the operating currents of the inverting amplifier circuits 37 and 57 on the detection of the common mode voltage by the detection section 29.
 次に、図5は本発明の他の実施例の電動圧縮機2及び当該電動圧縮機2への給電経路の電気回路図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。この実施例の場合、アクティブフィルタ補償回路23の反転増幅回路37と反転増幅回路57に対して、検出部(符号29A、29Bで示す)をそれぞれ設けている。 Next, FIG. 5 shows an electric circuit diagram of an electric compressor 2 and a feed path to the electric compressor 2 of another embodiment of the present invention. In this figure, the same reference numerals as in FIG. 1 have the same or similar functions. In this embodiment, the inverting amplifier circuit 37 and the inverting amplifier circuit 57 of the active filter compensating circuit 23 are provided with detectors (denoted by reference numerals 29A and 29B), respectively.
 この場合、反転増幅回路37用の検出部29Aは、電源ライン11、12に一端がそれぞれ接続された第1のコモンモード電圧検出コンデンサ26A、27A(Csense1)と、それらの他端に接続された前記コモンモード電圧検出抵抗36(図2)で構成され、反転増幅回路57用の検出部29Bは、電源ライン11、12に一端がそれぞれ接続された第2のコモンモード電圧検出コンデンサ26B、27B(Csense2)と、それらの他端にそれぞれ接続された前記コモンモード電圧検出抵抗56(図2)で構成されることになる。 In this case, the detection section 29A for the inverting amplifier circuit 37 is composed of the first common mode voltage detection capacitors 26A and 27A (C sense1 ) whose one ends are connected to the power supply lines 11 and 12, respectively, and the common mode voltage detection resistor 36 (FIG. 2) connected to the other ends thereof. (C sense2 ) and the common mode voltage sensing resistors 56 (FIG. 2) respectively connected to their other ends.
 このように、検出部29A、29Bを、反転増幅回路37と反転増幅回路57に対してそれぞれ設けるようにすれば、各反転増幅回路37、57の周波数特性に応じたコモンモードノイズ電圧の検出特性を得ることができる利点がある。 In this way, if the detection units 29A and 29B are provided for the inverting amplifier circuit 37 and the inverting amplifier circuit 57, respectively, there is an advantage that common mode noise voltage detection characteristics corresponding to the frequency characteristics of the respective inverting amplifier circuits 37 and 57 can be obtained.
 次に、図6は本発明の電動圧縮機2の他の実施例の電気回路を示している。尚、この図において図1や図2と同一符号で示すものは同一のものとする。この実施例の場合、検出部29のグランド経路38、58は、直接筐体18(グランド電位)に接続され、増幅器32、52の電源回路34のグランド経路39(反転増幅回路37、57のグランド経路)は前述同様に回路グランド30に接続されている。 Next, FIG. 6 shows an electric circuit of another embodiment of the electric compressor 2 of the present invention. 1 and 2 are denoted by the same reference numerals as in FIG. 1 and FIG. In this embodiment, the ground paths 38, 58 of the detector 29 are directly connected to the housing 18 (ground potential), and the ground paths 39 of the power supply circuits 34 of the amplifiers 32, 52 (ground paths of the inverting amplifier circuits 37, 57) are connected to the circuit ground 30 in the same manner as described above.
 この実施例のように、筐体18をグランド電位とし、回路グランド30を筐体18に接続すると共に、検出部29のグランド経路38、58を筐体18に接続し、反転増幅回路37、57のグランド経路39を回路グランド30に接続するようにすれば、反転増幅回路37、57の動作電流に起因する回路グランド30の電位変動による検出部29の検出誤差を低減することが可能となる。 As in this embodiment, by setting the housing 18 to the ground potential, connecting the circuit ground 30 to the housing 18, connecting the ground paths 38 and 58 of the detecting section 29 to the housing 18, and connecting the ground path 39 of the inverting amplifier circuits 37 and 57 to the circuit ground 30, it is possible to reduce the detection error of the detecting section 29 due to the potential fluctuation of the circuit ground 30 caused by the operating current of the inverting amplifier circuits 37 and 57.
 尚、実施例ではYコンデンサ(21、22、41、42)を二組接続し、各組のYコンデンサに対して反転増幅回路(37、57)をそれぞれ設けるようにしたが、更に多くの組のYコンデンサを接続して、各組毎にYコンデンサの容量値を異なる値とし、各組のYコンデンサに対して更に多くの反転増幅回路をそれぞれ設けるようにしてもよい。 In the embodiment, two sets of Y capacitors (21, 22, 41, 42) are connected, and an inverting amplifier circuit (37, 57) is provided for each set of Y capacitors. However, more sets of Y capacitors may be connected, the capacitance value of the Y capacitors may be different for each set, and more inverting amplifier circuits may be provided for each set of Y capacitors.
 また、実施例では車両用空気調和装置の冷媒回路を構成する電動圧縮機2に本発明のアクティブフィルタ装置1を適用したが、請求項1乃至請求項4の発明ではそれに限らず、コモンモードノイズの低減要求のある各種家庭用/業務用機器に本発明は有効である。 In addition, in the embodiment, the active filter device 1 of the present invention is applied to the electric compressor 2 that constitutes the refrigerant circuit of the vehicle air conditioner, but the invention of claims 1 to 4 is not limited to this, and the present invention is effective for various household/commercial equipment that requires reduction of common mode noise.
 1 アクティブフィルタ装置
 2 電動圧縮機
 3 インバータ装置
 4 インバータ収容部
 7 高電圧バッテリ(直流電源)
 8 モータ
 11、12 電源ライン
 15 スイッチング素子
 18 筐体
 20 制御回路
 21、22、41、42 Yコンデンサ
 23 アクティブフィルタ補償回路
 26、27、26A、27A、26B、27B コモンモード電圧検出コンデンサ
 28 コモンモードチョークコイル
 29、29A、29B 検出部
 30 回路グランド
 32、52 増幅器(オペアンプ単体、若しくは、出力に電流増幅器を備えたオペアンプ)
 36、56 コモンモード電圧検出抵抗
 37、57 反転増幅回路
 38、39、58 グランド経路
1 Active Filter Device 2 Electric Compressor 3 Inverter Device 4 Inverter Housing 7 High Voltage Battery (DC Power Supply)
8 motor 11, 12 power supply line 15 switching element 18 housing 20 control circuit 21, 22, 41, 42 Y capacitor 23 active filter compensation circuit 26, 27, 26A, 27A, 26B, 27B common mode voltage detection capacitor 28 common mode choke coil 29, 29A, 29B detector 30 circuit ground 32, 52 amplifier (operational amplifier unit, Or an operational amplifier with a current amplifier at the output)
36, 56 common mode voltage detection resistor 37, 57 inverting amplifier circuit 38, 39, 58 ground path

Claims (6)

  1.  一対の電源ラインに一端がそれぞれ接続された複数組のYコンデンサと、
     前記一対の電源ラインに挿入されたコモンモードチョークコイルと、
     コモンモード電圧を検出する検出部と、
     前記Yコンデンサの各組に対応して設けられ、前記検出部で検出されたコモンモード電圧を反転増幅する複数の反転増幅回路を備え、
     前記Yコンデンサの容量値を、各組毎に異なる値とすると共に、
     前記各反転増幅回路の出力を、前記各組のYコンデンサの他端にそれぞれ接続し、前記各反転増幅回路の出力電圧を、補償電圧として前記各組のYコンデンサにそれぞれ印加することを特徴とするアクティブフィルタ装置。
    a plurality of sets of Y capacitors each having one end connected to a pair of power supply lines;
    a common mode choke coil inserted in the pair of power supply lines;
    a detection unit that detects a common mode voltage;
    a plurality of inverting amplifier circuits provided corresponding to each set of the Y capacitors for inverting and amplifying the common mode voltage detected by the detecting unit;
    The capacitance value of the Y capacitor is set to a different value for each set,
    An active filter device, wherein the output of each inverting amplifier circuit is connected to the other end of each Y capacitor of each set, and the output voltage of each inverting amplifier circuit is applied to each set of Y capacitors as a compensation voltage.
  2.  一対のコモンモード電圧検出コンデンサから構成された単一の前記検出部が検出したコモンモード電圧が、前記各反転増幅回路に入力される構成としたことを特徴とする請求項1に記載のアクティブフィルタ装置。 2. The active filter device according to claim 1, wherein the common mode voltage detected by the single detection section composed of a pair of common mode voltage detection capacitors is input to each of the inverting amplifier circuits.
  3.  前記検出部は、前記各反転増幅回路に対してそれぞれ設けられていることを特徴とする請求項1に記載のアクティブフィルタ装置。 2. The active filter device according to claim 1, wherein the detector is provided for each of the inverting amplifier circuits.
  4.  前記検出部のグランド経路と、前記反転増幅回路のグランド経路を、別々に回路グランドに接続したことを特徴とする請求項1乃至請求項3のうちの何れかに記載のアクティブフィルタ装置。 4. The active filter device according to any one of claims 1 to 3, wherein a ground path of said detection section and a ground path of said inverting amplifier circuit are separately connected to a circuit ground.
  5.  請求項1乃至請求項4のうちの何れかに記載のアクティブフィルタ装置と、インバータ装置を、筐体と一体に設けたことを特徴とする電動圧縮機。 An electric compressor, wherein the active filter device according to any one of claims 1 to 4 and an inverter device are provided integrally with a housing.
  6.  前記筐体をグランド電位とし、回路グランドを前記筐体に接続すると共に、
     前記検出部のグランド経路を前記筐体に接続し、前記反転増幅回路のグランド経路を前記回路グランドに接続したことを特徴とする請求項5に記載の電動圧縮機。
    setting the housing to a ground potential and connecting a circuit ground to the housing;
    6. The electric compressor according to claim 5, wherein a ground path of said detector is connected to said housing, and a ground path of said inverting amplifier circuit is connected to said circuit ground.
PCT/JP2023/000935 2022-01-19 2023-01-16 Active filter device and electric compressor provided with same WO2023140208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-006091 2022-01-19
JP2022006091A JP2023105341A (en) 2022-01-19 2022-01-19 Active filter device and electric compressor provided with the same

Publications (1)

Publication Number Publication Date
WO2023140208A1 true WO2023140208A1 (en) 2023-07-27

Family

ID=87348792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000935 WO2023140208A1 (en) 2022-01-19 2023-01-16 Active filter device and electric compressor provided with same

Country Status (2)

Country Link
JP (1) JP2023105341A (en)
WO (1) WO2023140208A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150078051A1 (en) * 2013-09-16 2015-03-19 Valeo Systemes De Controle Moteur Method for reducing the common mode current
JP2017038500A (en) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. Conductive noise suppression circuit and inverter device
JP2021108514A (en) * 2019-12-27 2021-07-29 オムロン株式会社 Noise filter device and power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150078051A1 (en) * 2013-09-16 2015-03-19 Valeo Systemes De Controle Moteur Method for reducing the common mode current
JP2017038500A (en) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. Conductive noise suppression circuit and inverter device
JP2021108514A (en) * 2019-12-27 2021-07-29 オムロン株式会社 Noise filter device and power system

Also Published As

Publication number Publication date
JP2023105341A (en) 2023-07-31

Similar Documents

Publication Publication Date Title
JP5168349B2 (en) Output filter and power converter using the same
JP5993886B2 (en) Noise filter
EP2787618B1 (en) Voltage fed feed forward active EMI filter
EP2696486B1 (en) EMI filter using active damping with frequency dependant impedance
US20160182001A1 (en) Common mode noise filter
KR20030002685A (en) Active Common Mode EMI Filter for Eliminating Conducted Electromagnetic Interference
JP2009038961A (en) Power conversion apparatus
US20190165666A1 (en) Switching circuit apparatus and electronic power converter capable of reducing common mode noise in asymmetric circuit
KR20190009495A (en) Electronic device and vehicle having the same
WO2023140208A1 (en) Active filter device and electric compressor provided with same
US20110234337A1 (en) Filter circuit for differential communication
WO2022016395A1 (en) Electromagnetic interference suppression circuit and related sensing circuit
WO2023140209A1 (en) Active filter device and electric compressor comprising same
WO2023140200A1 (en) Active filter device and electric compressor provided with same
CN112234824A (en) DC/DC converter and communication power supply
JP2006020389A (en) Noise filter and motor drive mounted with it
JP2006020389A5 (en)
US6920053B2 (en) Active EMI filter having no inductive current sensing device
JP2008079386A (en) Power supply for automobiles
JP5070929B2 (en) Active filter device and power conversion device
US20220239219A1 (en) Electrical component and method for manufacturing an electronic component
CN111614094B (en) Electromagnetic interference filter circuit
WO2022033748A1 (en) Notch filter, and filter and electrical system comprising such notch filter
WO2019102937A1 (en) Noise filter circuit and power supply circuit
JP2021153356A (en) Power factor enhancement device and power conversion apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743202

Country of ref document: EP

Kind code of ref document: A1