WO2023139645A1 - 光ビーム走査装置及び測距装置 - Google Patents

光ビーム走査装置及び測距装置 Download PDF

Info

Publication number
WO2023139645A1
WO2023139645A1 PCT/JP2022/001602 JP2022001602W WO2023139645A1 WO 2023139645 A1 WO2023139645 A1 WO 2023139645A1 JP 2022001602 W JP2022001602 W JP 2022001602W WO 2023139645 A1 WO2023139645 A1 WO 2023139645A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
scanning
light
axis direction
lens
Prior art date
Application number
PCT/JP2022/001602
Other languages
English (en)
French (fr)
Inventor
正幸 大牧
菜月 本田
彰太 中原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/001602 priority Critical patent/WO2023139645A1/ja
Publication of WO2023139645A1 publication Critical patent/WO2023139645A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the present disclosure relates to a light beam scanning device and a rangefinder.
  • Patent Document 1 discloses a scanning illumination device that includes a light emitting device and a projection optical system.
  • a light-emitting device includes a laser diode, a light deflection section, a wavelength conversion section, and a light collection section.
  • the condensing section includes a first optical system and a second optical system.
  • the first optical system includes an aspherical lens and a cylindrical lens.
  • the cylindrical lens of the first optical system has a curvature with respect to the fast axis of the laser beam emitted from the laser diode.
  • the second optical system includes a cylindrical lens.
  • the cylindrical lens of the second optical system has curvature with respect to the slow axis of the laser beam.
  • An object of the first aspect of the present disclosure is to provide a light beam scanning device having a plurality of scanning regions, which can reduce the distortion of the scanning region, etc., and can emit a light beam of improved quality.
  • An object of a second aspect of the present disclosure is to provide a rangefinder with improved measurement accuracy.
  • the optical beam scanning apparatus of the present disclosure includes multiple light sources, multiple beam shapers, scanning mirrors, and scanning area correction optics.
  • a plurality of light sources emits a plurality of light beams. Each of the plurality of light beams is emitted from a corresponding light source among the plurality of light sources, and has a larger luminous flux diameter in the fast axis direction than in the slow axis direction.
  • Each of the plurality of beam shapers is provided for a corresponding light source among the plurality of light sources, and shapes the light beam emitted from the corresponding light source.
  • a scanning mirror scans the multiple light beams shaped by the multiple beam shapers.
  • the scanning area correction optical member corrects at least one of the plurality of scanning areas formed by the plurality of light beams scanned by the scanning mirror.
  • Each of the plurality of beam shapers includes a first lens and a second lens. The first lens is arranged closer to the corresponding light source than the second lens.
  • Each of the plurality of beam shapers gives positive refractive power to the corresponding light beam among the plurality of light beams in the slow axis direction and the fast axis direction.
  • Each of the plurality of beam shapers has a focal length Ff in the fast axis direction and a focal length Fs greater than the focal length Fs in the slow axis direction.
  • the incident angle ⁇ 1 of the first light beam, which is one of the plurality of light beams, on the scanning mirror when the scanning mirror is at the center of the scanning mirror's rotation range is different from the incident angle ⁇ 2 of the second light beam, which is one of the plurality of light beams, on the scanning mirror when the scanning mirror is at the center of the scanning mirror's rotation range.
  • the distance D1 between the first lens and the second lens in the first beam shaper that is one of the plurality of beam shapers and shapes the first light beam is different from the distance D2 between the first lens and the second lens in the second beam shaper that is one of the plurality of beam shapers and shapes the second light beam.
  • the distance measuring device of the present disclosure includes the light beam scanning device of the present disclosure.
  • the light beam scanning device of the present disclosure includes a scanning area correction optical member. Therefore, the light beam scanning device of the present disclosure can correct distortion of the scanning area due to differences in the incident angles of the light beams on the scanning mirror.
  • the optical beam scanning device of the present disclosure also includes a beam shaper, the beam shaper including a first lens and a second lens. The distance between the first lens and the second lens is made different between the two beam shapers that shape two light beams with mutually different incident angles on the scanning mirror. Therefore, the quality of the light beam emitted from the scanning area correction optical member is improved, such as the parallelism of the light beam emitted from the scanning area correction optical member.
  • FIG. 1 is a schematic perspective view of a light beam scanning device according to Embodiment 1;
  • FIG. 1 is a schematic side view of a light beam scanning device according to Embodiment 1;
  • FIG. 1 is a schematic top view of a light beam scanning device according to a first embodiment;
  • FIG. 2 is a schematic perspective view of a light source included in the light beam scanning device of Embodiment 1;
  • FIG. 2 is a schematic perspective view of a beam shaper included in the optical beam scanning device of Embodiment 1;
  • FIG. 2 is a schematic plan view of the beam shaper included in the optical beam scanning device of Embodiment 1, taken along the fast axis;
  • FIG. 2 is a schematic plan view of the beam shaper included in the optical beam scanning device of Embodiment 1 along the slow axis;
  • FIG. FIG. 4 is a schematic diagram showing the relationship between the incident angle of the light beam with respect to the reflecting surface of the scanning mirror and the scanning trajectory of the light beam reflected by the reflecting surface;
  • 1 is a schematic perspective view of a light beam scanning device of a first comparative example;
  • FIG. It is a schematic side view of a light beam scanning device of a first comparative example.
  • FIG. 4 is a schematic top view of a light beam scanning device of a first comparative example;
  • FIG. 10 is a diagram showing a plurality of scanning areas generated by the optical beam scanning device of the first comparative example;
  • FIG. 11 is a schematic perspective view of a light beam scanning device of a second comparative example;
  • FIG. 11 is a schematic front view of a light beam scanning device of a second comparative example;
  • FIG. 11 is a schematic plan view of a light beam scanning device of a second comparative example;
  • 4 is a diagram showing a plurality of scanning areas generated by the optical beam scanning device of Embodiment 1;
  • FIG. FIG. 4 is a diagram showing the relationship between the width of an emitter (light emitting point), the focal length of a lens optical system, and the divergence angle of a light beam that has passed through the lens optical system;
  • 4 is a schematic perspective view showing another example of the light beam scanning device according to the first embodiment;
  • FIG. 11 is a schematic perspective view of a light beam scanning device of a second comparative example;
  • FIG. 11 is a schematic front view of a light beam scanning device of a second comparative example;
  • FIG. 11 is a schematic plan view of a light beam
  • FIG. 4 is a schematic front view showing another example of the light beam scanning device of Embodiment 1;
  • FIG. 4 is a schematic plan view showing another example of the light beam scanning device of Embodiment 1;
  • FIG. 11 is a schematic perspective view of a light beam scanning device of a third comparative example;
  • FIG. 11 is a schematic plan view of a light beam scanning device of a third comparative example;
  • FIG. 4 is a schematic diagram of a distance measuring device according to Embodiment 2;
  • FIG. 1 to 3 are diagrams schematically showing configuration examples of a light beam scanning device 1 according to Embodiment 1.
  • FIG. 1 is a schematic perspective view of the light beam scanning device 1
  • FIG. 2 is a schematic side view of the light beam scanning device 1
  • FIG. 3 is a schematic top view of the light beam scanning device 1.
  • the light beam scanning device 1 mainly includes a plurality of light sources (eg, light sources 11, 21, 31), a plurality of beam shapers (eg, beam shapers 13, 23, 33), a scanning mirror 40, and a scanning area correction optical member 45.
  • the light beam scanning device 1 may further include reflection mirrors 17 , 27 , and 37 .
  • each of the plurality of beam shapers is provided for a corresponding one of the plurality of light sources.
  • the combination of the light source and beam shaper may be referred to as a light source module.
  • the light beam scanning device 1 includes three light source modules (light source modules 10, 20, 30).
  • Light source module 10 includes light source 11 and beam shaper 13 .
  • Light source module 20 includes light source 21 and beam shaper 23 .
  • Light source module 30 includes light source 31 and beam shaper 33 .
  • a beam shaper 13 corresponds to the light source 11 .
  • a beam shaper 23 corresponds to the light source 21 .
  • a beam shaper 33 corresponds to the light source 31 .
  • the light beam scanning device 1 has three light sources, but the light beam scanning device 1 may have two light sources or four or more light sources.
  • the light beam scanning device 1 may have as many beam shapers as there are light sources.
  • multiple light sources eg, light sources 11, 21, 31
  • multiple light sources emit multiple light beams (eg, light beams 12, 22, 32).
  • Each of the multiple light beams is emitted from a corresponding one of the multiple light sources.
  • light source 11 emits light beam 12 .
  • a light source 21 emits a light beam 22 .
  • a light source 31 emits a light beam 32 .
  • each of the plurality of light beams has a beam diameter larger in the fast axis direction than in the slow axis direction.
  • the structures and functions of the plurality of light sources will be described below using the light source 11 as an example. It should be noted that other light sources (for example, light sources 21 and 31) are similar to light source 11 unless otherwise specified.
  • the light source 11 is, for example, a laser diode
  • the light beam 12 is, for example, a laser beam.
  • FIG. 4 is a schematic perspective view of a laser diode, which is an example of the light sources 11, 21, 31.
  • the laser diode includes substrate 51 , cladding layer 52 , active layer 53 , cladding layer 54 , electrode 56 , electrode 57 and insulating layer 59 .
  • a clad layer 52 is formed on the substrate 51 .
  • the active layer 53 is formed on the clad layer 52 .
  • a clad layer 54 is formed on the active layer 53 .
  • the active layer 53 is sandwiched between the clad layers 52 and 54 .
  • Electrodes 56 and 57 are electrodes for applying a forward voltage to the clad layers 52 and 54 .
  • Electrode 56 is formed on substrate 51 .
  • Electrode 56 may be formed on clad layer 52 instead of substrate 51 .
  • An electrode 57 is formed on the clad layer 54 .
  • a ridge portion 55 (also referred to as a contact layer) is formed in the cladding layer 54 to limit the region through which current flows and cause laser oscillation only in that portion, and the electrode 57 is formed on the ridge portion 55.
  • a light beam is emitted from the active layer 53 when a voltage is applied to the electrodes 56 and 57 .
  • the width W 1 (the length in the width direction of the active layer 53) of the emitter 60 which is the light emitting point of the light beam from the active layer 53, is larger than the width W 2 (the length in the thickness direction of the active layer 53).
  • the thickness direction of the active layer 53 corresponds to the fast axis (f-axis in FIGS. 5 to 7, etc.) direction of the light beam 12
  • the width direction of the active layer 53 corresponds to the slow-axis (s-axis in FIGS. 5 to 7, etc.) direction of the light beam 12.
  • the width W1 of the emitter (light emitting point) 60 in the slow axis direction is larger than the width W2 of the emitter 60 in the fast axis direction, the beam diameter of the emitted light beam is larger in the fast axis direction than in the slow axis direction, and the quality of the light beam in the fast axis direction is higher than the quality of the light beam in the slow axis direction.
  • the light source 11 is a multi-emitter laser diode including multiple emitters
  • the emitter width W1 is the total width of the multiple emitters.
  • the light source 11 may be, for example, a laser diode that emits a light beam 12 having a high power of 0.5 W or higher.
  • Light source 11 may be, for example, a multimode laser diode.
  • a multimode laser diode can emit a light beam 12 with a higher power than a single mode laser diode.
  • the light source 11 may be a laser diode having a multimode oscillation mode on the slow axis and a single mode oscillation mode on the fast axis.
  • Beam shapers 13, 23, 33> 5 to 7 are explanatory diagrams showing examples of a plurality of beam shapers (beam shapers 13, 23, 33).
  • 5 is a schematic perspective view of the beam shaper
  • FIG. 6 is a schematic plan view of the beam shaper in the fast axis
  • FIG. 7 is a schematic plan view of the beam shaper in the slow axis.
  • Each of the multiple beam shapers shapes the light beam emitted from the corresponding light source. Shaping the light beam includes changing the divergence angle of the light beam and the concomitant change of the beam width of the light beam.
  • each of the plurality of beam shapers is used in the light beam scanning device 1 mainly for the purpose of improving the parallelism of the light beam incident on the scanning area correction optical member 45 .
  • each of the plurality of beam shapers is used to collimate the light beams incident on scan area correction optics 45 .
  • each beam shaper does not have to strictly collimate the incident light beam. This is because it is important that each of the plurality of light beams emitted from the scanning area correction optical member 45 should be approximately parallel light. Therefore, in this embodiment, each of the plurality of beam shapers includes a plurality of lenses, and is configured such that the beam shaping action of each of the plurality of beam shapers can be easily adjusted by adjusting the distance between the plurality of lenses.
  • each of the plurality of beam shapers includes a front lens and a rear lens.
  • the front lens may be referred to as the first lens of the beam shaper
  • the rear lens may be referred to as the second lens of the beam shaper.
  • beam shaper 13 shapes light beam 12 .
  • Beam shaper 13 includes a front lens 14 and a rear lens 15 .
  • the front lens 14 and the rear lens 15 are separated from each other by a distance D1 .
  • a beam shaper 23 shapes the light beam 22 emitted from the light source 21 .
  • Beam shaper 23 includes a front lens 24 and a rear lens 25 .
  • the beam shaper 33 shapes the light beam 32 emitted from the light source 31 .
  • Beam shaper 33 includes a front lens 34 and a rear lens 35 .
  • the front lens 34 and the rear lens 35 are separated from each other by a distance D3 .
  • the structure and function of the beam shaper will be described below using the beam shaper 13 as an example. Note that other beam shapers (eg, beam shapers 23 and 33) are similar to beam shaper 13 unless otherwise specified.
  • the front lens 14 of the beam shaper 13 is arranged closer to the light source 11 than the rear lens 15 on the optical path of the light beam 12 .
  • the front lens 14 is arranged between the light source 11 and the rear lens 15 .
  • each of the front lens 14 and the rear lens 15 may not be a single lens.
  • the beam shaper 13 may include multiple lenses (first optical system) as the front lens 14 and multiple lenses (second optical system) as the rear lens.
  • the beam shaper 13 gives positive refractive power to the light beam 12 in both the slow axis direction and the fast axis direction of the light beam 12 incident on the beam shaper 13 .
  • the focal length of the beam shaper 13 in the slow axis direction (more specifically, the composite focal length of the combination of the front lens 14 and the rear lens 15) is greater than the focal length of the beam shaper 13 in the fast axis direction.
  • the refractive power of the beam shaper 13 in the fast axis direction of the light beam 12 is greater than the refractive power of the beam shaper 13 in the slow axis direction of the light beam 12 .
  • the beam shaper 13 may collimate the light beam 12 in the fast axis direction of the light beam 12 .
  • the focal length of a combined lens formed by combining two or more lenses refers to the distance from the center of the lens group to the focal point, with the point at which the light emitted from one point becomes parallel light by the combined lens (the group of lenses that make up the combined lens), or the point that the parallel light is condensed to one point by the combined lens (the group of lenses that make up the combined lens). That is, the “focal length” in the present disclosure is not the distance until the light beam is actually focused (broadly defined focal length), but the eigenvalue determined by the specifications of the lens (in the case of a synthetic lens, the lens group that constitutes the synthetic lens). The same applies to the focal length of a single lens. In other words, the distance from the center of the single lens to the focal point is the point where the light emitted from one point becomes parallel light by the single lens or the point where the parallel light is converged to one point by the single lens.
  • the front lens of each beam shaper has positive refractive power in the fast axis direction of the light beam.
  • the rear lens of each beam shaper has positive refractive power in the slow axis direction of the light beam.
  • the front lens may have a lens surface with positive curvature in the fast axis of the light beam (eg, the convex surface on the incident side of front lenses 14, 24, 34 of FIG. 6).
  • the rear lens may have a lens surface having a positive curvature in the slow axis of the light beam (eg, the exit-side convex surface of the rear lenses 15, 25, and 35 in FIG. 7).
  • the light beam is shaped primarily by the front lens in the fast axis direction and primarily by the rear lens in the slow axis direction.
  • the focal length F2s of the rear lens in the slow axis direction may be greater than the focal length F1f of the front lens in the fast axis direction (the distance from the center of the front lens to the focus of the front lens).
  • the refractive power of the front lens in the fast axis direction may be greater than the refractive power of the rear lens in the slow axis direction.
  • the rear lens also has zero refractive power in the fast axis direction.
  • the incident surface of the rear lens may be a plane perpendicular to the optical axis of the light beam.
  • the lens e.g., front lens
  • the lens that mainly shapes the light beam in the fast axis direction (mainly changes the divergence angle of the light beam to make the light beam substantially parallel)
  • the lens e.g., the rear lens
  • the influence of the inter-lens distance (specifically, the distance between the front lens and the rear lens) in the beam shaper on the light beam shaping action of the beam shaper can be greatly reduced.
  • the divergence angle of the light beam incident on the front lens in the slow axis direction is smaller than the divergence angle of the light beam incident on the front lens in the fast axis direction
  • the divergence angle of the light beam incident on the rear lens in the slow axis direction is greater than the divergence angle of the light beam incident on the rear lens in the fast axis direction.
  • the light beam is affected by the change in the distance between the front lens and the rear lens in the slow axis direction, but is not affected by the change in the distance between the front lens and the rear lens in the fast axis direction. Therefore, if the light beam is collimated with a small beam diameter by the front lens in the fast axis direction where the quality of the light beam is relatively good, the divergence angle of the light beam emitted from the beam shaper in the slow axis direction can be adjusted simply by changing the distance between the front lens and the rear lens while maintaining the shaping state of the light beam in the fast axis direction.
  • Such a function of the beam shaper is particularly effective when the scanning area correction optical member 45 gives different refractive power to the light beam in the slow axis direction depending on the incident position of the light beam on the scanning area correction optical member 45 .
  • the parallelism of the light beam emitted from the scanning area correction optical member 45 can be improved.
  • the distance between the front lens and the rear lens is made different between a plurality of beam shapers that emit a plurality of light beams having different angles of incidence on the scanning mirror 40 (and thus different incident positions on the scanning region correction optical member 45), based on the above action of the beam shaper and the action of the scanning area correction optical member 45, which will be described later.
  • the incident angle of the light beam on scanning mirror 40 is the magnitude of the angle formed between the normal to the reflecting surface of scanning mirror 40 and the optical axis of the light beam incident on scanning mirror 40 when scanning mirror 40 is at the center of the rotation range of scanning mirror 40 (hereinafter also referred to as the “rotational center”).
  • the normal line of the reflecting surface of scanning mirror 40 at the center of rotation of scanning mirror 40 may be referred to as the first normal line of scanning mirror 40 .
  • the angle of incidence of light beam 22 on scanning mirror 40 differs from the angle of incidence of light beam 12 on scanning mirror 40, at least in the x-axis direction (see FIGS. 1-3).
  • the angle of incidence of the light beam 32 on the scanning mirror 40 differs from the angle of incidence of the light beam 12 on the scanning mirror 40 at least in the x-axis direction. More specifically, the angle of incidence of light beam 22 is greater than the angle of incidence of light beam 12 .
  • the angle of incidence of light beam 32 is greater than the angle of incidence of light beam 12 .
  • the light source module 20 and the reflecting mirror 27 are arranged with respect to the light source module 30 and the reflecting mirror 37 so that the optical path of the light beam 22 and the optical path of the light beam 32 are symmetrical with respect to the vertical plane (yz plane) including the optical path of the light beam 12. Therefore, the angle of incidence of light beam 22 on scanning mirror 40 is the same as the angle of incidence of light beam 32 on scanning mirror 40 .
  • the distance D2 between the front lens 24 and the rear lens 25 in the beam shaper 23 that shapes the light beam 22 is different from the distance D1 between the front lens 14 and the rear lens 15 in the beam shaper 13 that shapes the light beam 12.
  • the distance D3 between the front lens 34 and the rear lens 35 in the beam shaper 33 that shapes the light beam 32 is different from the distance D1 .
  • Distance D3 is the same as distance D2 .
  • the x-axis direction may be a direction parallel to the slow axis direction of each light beam, a horizontal direction (here, not only a direction perpendicular to the vertical direction, but also a horizontal direction determined by a host device (automobile, etc.) on which the light beam scanning device 1 is mounted), or an arbitrary direction on a plane perpendicular to one of the rotation axes of the scanning mirror 40 (for example, one direction perpendicular to the rotation axis of the scanning mirror 40, or the angle of incidence on the scanning mirror 40 between a plurality of light beams).
  • a horizontal direction here, not only a direction perpendicular to the vertical direction, but also a horizontal direction determined by a host device (automobile, etc.) on which the light beam scanning device 1 is mounted
  • an arbitrary direction on a plane perpendicular to one of the rotation axes of the scanning mirror 40 for example, one direction perpendicular to the rotation axis of the scanning mirror 40, or the angle of incidence on the scanning mirror 40
  • the slow axis direction and the x-axis direction of each light beam do not necessarily have to match. That is, in the present embodiment, the slow axis of each light beam is in the horizontal direction, and the fast axis of each light beam is in the vertical direction (that is, the direction perpendicular to the horizontal direction), but it is not limited to this.
  • the angles of incidence of the light beams on the scanning mirror 40 are the same in the vertical direction (y direction) and different in the horizontal direction (eg, x direction). Therefore, the incident angle of the light beam on the scanning mirror 40 is two-dimensionally grasped. On the other hand, when the incident angles of the light beams on the scanning mirror 40 are different in both the horizontal direction and the vertical direction, the incident angles of the light beams on the scanning mirror 40 are grasped three-dimensionally.
  • the front lens has negative refractive power in the slow axis direction.
  • the exit-side surfaces of the front lenses 14, 24, and 34 are concave surfaces having a negative curvature along the slow axis direction.
  • the front lens increases the divergence angle of the light beam in the slow axis direction.
  • the focal length (composite focal length) Fs of the beam shaper in the slow axis direction can be effectively lengthened.
  • the shape of the front lens is not limited to this, and may be, for example, a shape with no curvature or a shape with a positive curvature in the slow axis direction.
  • each reflecting mirror (reflecting mirrors 17 , 27 , 37 ) is arranged so that the light beams 12 , 22 , 32 are incident on one scanning mirror 40 .
  • the reflecting mirrors 27 and 37 are arranged symmetrically with respect to a vertical plane including the optical path of the light beam 12 .
  • the scanning mirror 40 reflects the light beams 12 , 22 , 32 shaped by the beam shapers 13 , 23 , 33 while rotating around the rotation axis of the scanning mirror 40 .
  • the light beams 12 , 22 , 32 reflected by the scanning mirror 40 travel toward the outside of the light beam scanning device 1 .
  • the scanning mirror 40 reflects the plurality of light beams 12, 22, 32 while rotating, so that the light beams 12, 22, 32 are scanned.
  • the scanning mirror 40 is, for example, a micro-electro-mechanical system (MEMS) mirror in which the tilt angle of the reflecting surface of the scanning mirror 40 can be electrically controlled.
  • MEMS micro-electro-mechanical system
  • the scanning mirror 40 may be, for example, an electromagnetic MEMS mirror whose reflection surface tilt angle can be controlled by electromagnetic force generated by a coil, or a piezoelectric MEMS mirror whose reflection surface tilt angle can be controlled using a piezoelectric member.
  • the emission angle of each of the light beams 12, 22, 32 emitted from the light beam scanning device 1 (the direction in which each of the light beams 12, 22, 32 is emitted, more specifically, the angle between the first normal line of the scanning mirror 40 and the optical axis of each of the light beams 12, 22, 32 emitted from the scanning mirror 40) can be changed.
  • the scanning mirror 40 can rotate around two rotation axes that are parallel to the reflecting surface of the scanning mirror 40 and perpendicular to each other.
  • one rotation axis of scanning mirror 40 is parallel to the x-axis and the other rotation axis of scanning mirror 40 is parallel to the y-axis.
  • the scanning mirror 40 scans each of the light beams 12, 22, 32 in the x-axis direction and the y-axis direction.
  • the light beam 12 scanned by the scanning mirror 40 illuminates a scanning area 71 (see FIG. 16).
  • Light beam 22 scanned by scanning mirror 40 illuminates scanning area 72 (see FIG. 16).
  • Light beam 32 scanned by scanning mirror 40 illuminates scanning area 73 (see FIG. 16).
  • each of the plurality of light beams can generate a scanning area that is a two-dimensional area.
  • the scanning areas 71, 72, 73 are arranged in the x-axis direction. Scan area 71 is between scan area 72 and scan area 73 .
  • the light beam scanning device 1 can expand the scanning area in the x-axis direction.
  • a plurality of scanning regions 71 , 72 , 73 are extended from each of the plurality of scanning regions 71 , 72 , 73 .
  • the plurality of scanning regions 71, 72, and 73 may be arranged so that one end of a pair of mutually adjacent scanning regions overlaps only the other end of the pair of mutually adjacent scanning regions, or the other end of the pair of mutually adjacent scanning regions is in contact.
  • the multiple scanning areas 71, 72, 73 have multiple centers 71c, 72c, 73c.
  • Each of the plurality of centers 71c, 72c, 73c is the center of the corresponding scanning region among the plurality of scanning regions 71, 72, 73.
  • FIG. The positions of the plurality of centers 71c, 72c, 73c may differ from each other.
  • the end of the scanning region 72 overlaps only the end of the scanning region 71 or is in contact with the end of the scanning region 71 in the direction (x-axis direction) in which the scanning regions 71, 72, and 73 are arranged.
  • the edge of the scanning area 73 overlaps only the edge of the scanning area 71 or is in contact with the edge of the scanning area 71 .
  • the scanning area 71 has a center 71c.
  • Scan area 72 has a center 72c.
  • the scanning area 73 has a center 73c.
  • the center 72c is shifted from the centers 71c, 73c in the direction in which the scanning areas 71, 72, 73 are arranged.
  • the center 73c is shifted from the centers 71c, 72c in the direction in which the scanning areas 71, 72, 73 are arranged.
  • the scanning areas 71, 72, and 73 may not necessarily overlap and may be separated from each other.
  • FIG. 8 is a diagram showing an example of a scanning trajectory for each actual angle of incidence of the light beam on the scanning mirror 40 when the scanning mirror 40 is two-dimensionally scanned (rotated on two axes) such that a light beam incident at an incident angle of 0 degrees (that is, in the same direction as the first normal direction) with respect to the first normal line of the scanning mirror 40 has an output angle of 20 degrees in all directions (that is, draws a circular shape at a position of 20 degrees with respect to the first normal line).
  • FIG. 8 shows four examples of actual incident angles of 0 degrees, 20 degrees, 40 degrees, and 60 degrees with respect to the first normal. Note that the two-dimensional scanning of the scanning mirror 40 is the above-described circular scanning at any incident angle.
  • the trajectory indicated as 0 degree incidence represents the trajectory drawn by the above two-dimensional scanning of the light beam whose actual incident angle to the scanning mirror 40 is 0 degrees with respect to the first normal line.
  • the trajectory indicated as 20-degree incidence represents the trajectory drawn by the two-dimensional scanning described above by the light beam whose actual incident angle to the scanning mirror 40 is 20 degrees in the -x-axis direction with respect to the first normal line.
  • 40-degree incidence and 60-degree incidence similarly, the trajectory obtained by the two-dimensional scanning of the light beam with the actual incident angle of 40 degrees or 60 degrees in the ⁇ x-axis direction with respect to the first normal line is represented.
  • the light beam draws a circular scanning trajectory in all directions at a position where the emission angle is 20 degrees with respect to the first normal line, as premised for the two-dimensional scanning.
  • the trajectory drawn by each light beam is shown by the emission angle based on the first normal line in the orthogonal biaxial directions of the x-axis and the y-axis.
  • the actual incident angle of the light beam of 20-degree incidence (incidence angle of 20 degrees in the -x-axis direction with respect to the first normal line) to the reflection surface of the scanning mirror 40 is 30 degrees in the -x-axis direction.
  • the scanning mirror 40 functions to emit a light beam of 0-degree incidence at 20 degrees in the +x-axis direction so that a light beam of 20-degree incidence is emitted at an angle of 40 degrees in the +x-axis direction with respect to the first normal.
  • the actual incident angle of the light beam of 20-degree incidence on the reflection surface of the scanning mirror 40 is 10 degrees in the -x-axis direction.
  • the scanning mirror 40 functions to emit a 0-degree incident light beam at 20 degrees in the ⁇ x-axis direction so that the 20-degree incident light beam is emitted at an angle of 0 degrees in the x-axis direction with respect to the first normal.
  • FIG. 8 shows how the scanning locus of such a light beam incident at 20 degrees moves in the range of 0 degrees to 40 degrees in the x-axis direction.
  • the light beam incident at 20 degrees is emitted at an angle of about 40 degrees in the +x-axis direction, in other words, when the actual incident angle of the light beam on the reflecting surface of the scanning mirror 40 becomes as large as about 40 degrees, the distortion of the scanning trajectory of the light beam becomes large.
  • the scanning mirror 40 functions to emit a 0-degree incident light beam at 20 degrees in the +x-axis direction so that a 40-degree incident light beam is emitted at an angle of 60 degrees in the +x-axis direction with respect to the first normal.
  • the actual incident angle of the light beam of 40-degree incidence on the reflection surface of the scanning mirror 40 is 30 degrees in the -x-axis direction.
  • the scanning mirror 40 functions to emit a 0-degree incident light beam at 20 degrees in the -x-axis direction so that a 40-degree incident light beam is emitted at an angle of 20 degrees in the +x-axis direction with respect to the first normal. From FIG. 8, it can be seen that the distortion of the scanning trajectory of the light beam becomes large when the light beam incident at 40 degrees is emitted at an angle of about 60 degrees in the +x-axis direction, in other words, when the actual angle of incidence of the light beam on the reflecting surface of the scanning mirror 40 becomes as large as about 50 degrees.
  • the distortion of the scanning trajectory of the light beam increases as the incident angle of the light beam on the scanning mirror 40 in the x-axis direction increases. That is, when the light beam is scanned by the scanning mirror 40, the scanning trajectory of the light beam 12 with a relatively small incident angle on the scanning mirror 40 is not distorted so much, but the scanning trajectory of the light beams 22 and 32 with relatively large incident angles on the scanning mirror 40 is greatly distorted.
  • the light beam scanning device 1 has a scanning area correction optical member 45 .
  • the light beam scanning device 2 of the first comparative example has the same configuration as the light beam scanning device 1 of the present embodiment, but differs mainly in the following points.
  • the light beam scanning device 2 of the first comparative example does not have the scanning area correction optical member 45 .
  • the distance D1 , the distance D2 , and the distance D3 are equal to each other. As such, the beam shaping action imparted to the light beams 12, 22, 32 is equal. 9 to 11, illustration of the light beam 32 is omitted for the sake of simplicity.
  • FIG. 12 is an explanatory diagram showing a scanning area generated by the light beam scanning device 2 of the first comparative example. Since a rectangular shape is often required as the shape of the scanning area, the light beam scanning device 2 generates the rectangular scanning areas 71, 72, and 73 by swinging the reflecting surface of the scanning mirror 40 two-dimensionally around the x-axis direction and the y-axis direction. As the incident angle of the light beam on the scanning mirror 40 increases, the distortion of the shape of the scanning area formed by the light beam increases. Specifically, the angle of incidence of light beam 22 on scanning mirror 40 is greater than the angle of incidence of light beam 12 on scanning mirror 40 . Therefore, as shown in FIG.
  • the shape of the scanning area 72 formed by the light beam 22 is distorted more than the shape of the scanning area 71 formed by the light beam 12 .
  • the angle of incidence of light beam 32 on scanning mirror 40 is greater than the angle of incidence of light beam 12 on scanning mirror 40 . Therefore, as shown in FIG. 12, the shape of the scanning area 73 formed by the light beam 32 is distorted more than the shape of the scanning area 71 formed by the light beam 12 .
  • rx represents the rotation angle of scanning mirror 40 about the x-axis
  • ry represents the rotation angle of scanning mirror 40 about the y-axis.
  • the coordinate of the center angle of the scanning area 71 is set as the origin. Since the light beams 22 and 32 are symmetrical with respect to the vertical plane (yz plane) including the optical path of the light beam 12, the scanning areas 72 and 73 are also symmetrical with respect to the rx axis. As shown in FIG. 12, since the light beam 22 has a relatively small incident angle on the scanning mirror 40, the distortion of the scanning area 71 is also small. On the other hand, since the light beams 22 and 32 have relatively large angles of incidence on the scanning mirror 40, the scanning areas 72 and 73 are greatly distorted. Further, as in the example shown in FIG. 8, the greater the incident angle of the light beam on the scanning mirror 40 and the greater the rotation angle of the scanning mirror 40, the greater the distortion of the scanning area.
  • the scanning area correction optical member 45 corrects the shape distortion of at least one of the scanning areas 71 , 72 , 73 formed by the light beams 12 , 22 , 32 scanned by the scanning mirror 40 . Specifically, the scan area correction optical member 45 corrects the shape distortion of at least two of the scan areas 71, 72, 73 (eg, the scan areas 72, 73). More specifically, scan area correction optics 45 corrects all shape distortions of scan areas 71 , 72 , 73 .
  • the scanning area correction optical member 45 deflects the light beam (changes the traveling direction of the light beam) by using the refraction or reflection of the light beam.
  • the shape of the scanning area can be corrected by varying the refractive power acting on the light beam according to the incident position of the light beam on the scanning area correction optical member 45 .
  • the scanning area correction optical member 45 is an optical member that gives a different refractive power to the light beam incident on the scanning area correction optical member 45 according to the incident position of the light beam on the scanning area correction optical member 45 .
  • the refractive power of the scanning area correction optical member 45 that is given to the light beam may be positive or negative.
  • the scanning area correction optical member 45 may give a positive refractive power to the light beam at a certain position in the scanning area correction optical member 45 and give a negative refractive power to the light beam at another position in the scanning area correction optical member 45.
  • the scanning area correction optical member 45 may, for example, deflect the light beam incident on the scanning area correction optical member 45 so that the light beam is emitted in a direction determined according to the incident position of the light beam on the scanning area correction optical member 45.
  • the scanning area correction optical member 45 is, for example, a free curved lens (see FIGS. 1 to 3) or a free curved mirror.
  • the free-form surface of the scanning area correction optical member 45 provides an appropriate deflection action to the light beams to correct the plurality of scanning areas into appropriate shapes.
  • FIG. 16 shows a plurality of scanning areas 71, 72, 73 generated by the light beam scanning device 1 of this embodiment.
  • the scanning area correction optical member 45 may have negative refractive power in the slow axis direction of each of the light beams 12, 22, 32, for example. At this time, the negative refractive power of the scanning area correction optical member 45 with respect to the light beam 22 in the slow axis direction of the light beam 22 is stronger than the negative refractive power of the scanning area correction optical member 45 with respect to the light beam 12 in the slow axis direction of the light beam 12 . Also, the negative refractive power of the scanning area correction optical member 45 with respect to the light beam 32 in the slow axis direction of the light beam 32 is stronger than the negative refractive power of the scanning area correction optical member 45 with respect to the light beam 12 in the slow axis direction of the light beam 12 .
  • the scanning area correction optical member 45 can correct the shape of the scanning area 72 more than the shape of the scanning area 71 and correct the shape of the scanning area 73 more than the shape of the scanning area 71 .
  • the distortion of the shape of each of scan areas 71, 72, 73 is reduced and each of scan areas 71, 72, 73 is corrected to a desired shape, such as a generally rectangular shape.
  • the scanning area correction optical member 45 may have positive refractive power in the slow axis direction of each of the light beams 12, 22, 32, for example. At this time, the positive refractive power of the scanning area correction optical member 45 with respect to the light beam 22 in the slow axis direction of the light beam 22 is stronger than the positive refractive power of the scanning area correction optical member 45 with respect to the light beam 12 in the slow axis direction of the light beam 12 . Also, the positive refractive power of the scanning area correction optical member 45 with respect to the light beam 32 in the slow axis direction of the light beam 32 is stronger than the positive refractive power of the scanning area correction optical member 45 with respect to the light beam 12 in the slow axis direction of the light beam 12 .
  • the scanning area correction optical member 45 can correct the shape of the scanning area 72 more than the shape of the scanning area 71 and correct the shape of the scanning area 73 more than the shape of the scanning area 71 .
  • the distortion of the shape of each of scan areas 71, 72, 73 is reduced and each of scan areas 71, 72, 73 is corrected to a desired shape, such as a generally rectangular shape.
  • the scanning region correction optical member 45 may be designed, for example, so that it has little optical effect on a light beam with a relatively small angle of incidence on the scanning mirror 40 (for example, the light beam 12), and is designed to produce a large optical effect on light beams with a relatively large angle of incidence on the scanning mirror 40 (for example, the light beams 22 and 32).
  • This optical effect may be negative refractive power, positive refractive power, or a mixture of negative refractive power and positive refractive power (for example, a light beam incident on a certain position of the scanning area correction optical member 45 is given a negative refractive power, and a light beam incident on another position of the scanning area correction optical member 45 is given a positive refractive power).
  • the scanning area correction optical member 45 may change the divergence angle of the light beam and reduce the parallelism of the light beam.
  • the scanning area correction optical member 45 provides a deflection effect as a positive effect for correcting the distortion of the scanning area, and may also have a negative effect on the beam quality such as reduction in the parallelism of the light beam.
  • the scan area correction optics 45 convert the light beam to divergent or convergent light, reducing the parallelism of the light beam.
  • the light beam becomes divergent light for an object far away from the light beam scanning device 1.
  • FIG. Therefore, when the parallelism of the light beam emitted from the scanning area correction optical member 45 is lowered, an object far away from the light beam scanning device 1 is irradiated with a light beam of low brightness, and the measurement accuracy of the position of the object is lowered.
  • the refractive power given to the light beam by the scanning area correction optical member 45 differs depending on the incident position of the light beam on the scanning area correction optical member 45
  • the amount of change in the divergence angle of the light beam emitted from the scanning area correction optical member 45 by the scanning area correction optical member 45 differs depending on the incident position of the light beam on the scanning area correction optical member 45 and the beam diameter of the light beam on the scanning area correction optical member 45.
  • the parallelism of the light beam emitted from the scanning area correction optical member 45 is improved by adjusting the inter-lens distance in the beam shaper while maintaining the distortion correction effect of the scanning area correction by the scanning area correction optical member 45.
  • FIGS. 13 to 15 show an example of adjustment of the distance between the front lens and the rear lens between a plurality of beam shapers in the light beam scanning device 1 of the present embodiment while comparing with the light beam scanning device 2b of the second comparative example shown in FIGS. 13 to 15 also omit the illustration of the light beam 32 for the sake of simplicity.
  • the light beam scanning device 2b of the second comparative example further includes a scanning area correction optical member 45 compared to the light beam scanning device 2 of the first comparative example.
  • the distances D1 , D2, and D3 are equal to each other, like the light beam scanning device 2 of the first comparative example.
  • Other points are the same as those of the light beam scanning device 1 of the present embodiment.
  • Light sources with high power can be employed as light sources 11, 21, 31 to increase the light intensity of each of light beams 12, 22, 32.
  • FIG. the width W 1 (see FIG. 4) of the emitter 60 of each light source 11, 21, 31 in the slow axis direction of each of the light beams 12, 22, 32 is greater than the width W 2 (see FIG. 4) of the emitter 60 of each light source 11, 21, 31 in the fast axis direction of each light beam 12, 22, 32.
  • FIG. 17 is a diagram showing the relationship between the light emission point width W, the focal length f of the lens optical system, and the divergence angle ⁇ of the light beam passing through the lens optical system.
  • the divergence angle ⁇ of the light beam emitted from the light emitting point and passed through the lens optical system is given by the following equation (1).
  • the divergence angle ⁇ of the light beam after passing through the lens optical system increases.
  • the longer the focal length f of the lens optical system the smaller the divergence angle ⁇ of the light beam after passing through the lens optical system.
  • the light spot width W corresponds to the width of the emitter of the light source.
  • the lens optics corresponds to a composite lens that is a combination of the front and rear lenses provided by the beam shaper.
  • the divergence angle ⁇ of the light beam corresponds to the divergence angle of each of the light beams 12, 22, 32 emitted from the beam shaper.
  • the focal length of the beam shaper 13 (synthetic lens) in the slow axis direction of the light beam 12 is equal to the focal length of the beam shaper 13 (synthetic lens) in the fast axis direction of the light beam 12
  • the divergence angle of the light beam 12 in the slow axis direction after passing through the beam shaper 13 is larger than the divergence angle of the light beam 12 in the fast axis direction after passing through the beam shaper 13. Similar considerations apply to the light beams 22,32.
  • the width W 2 of the emitter 60 in the fast axis direction (hereinafter also referred to as “light-emitting spot width Wf”) is sufficiently small and the emitter 60 can be optically regarded as a point in the fast axis direction, the divergence angle of each light beam in the fast axis direction is sufficiently small even if the focal length of each beam shaper in the fast axis direction (the combined focal length of the front lens and the rear lens) is short.
  • the beam shaping of each beam shaper in the fast axis direction is mainly performed by the front lens, and the focal length of the front lens in the fast axis direction may be shortened in each beam shaper (that is, the positive refractive power of the front lens may be strengthened in each beam shaper).
  • the divergence angle of each light beam in the fast axis direction can be sufficiently reduced, and the luminous flux diameter of each light beam in the fast axis direction can be reduced.
  • the width W 1 of the emitter 60 in the slow axis direction (hereinafter also referred to as “light emission point width Ws”) is sufficiently large, and the emitter 60 cannot be optically regarded as a point in the slow axis direction. Therefore, in light of equation (1), the focal length of each beam shaper in the slow axis direction (combined focal length of the front lens and the rear lens) is lengthened, thereby reducing the divergence angle of each light beam in the slow axis direction.
  • the focal length of each beam shaper in the slow axis direction increases, the luminous flux diameter of each light beam emitted from each beam shaper increases. Therefore, in the slow axis direction, the negative effect of the scanning area correction optical member 45 (for example, the effect of the curvature of the scanning area correction optical member 45 that reduces the parallelism of the light beam) increases.
  • the beam shaper is designed as follows. Specifically, in the fast axis direction, only the front lens is given a positive refractive power to shorten the focal length F1f of the front lens. Therefore, in the fast axis direction, the parallelism of each light beam in the scanning area correction optical member 45 is high, and the beam diameter of each light beam in the scanning area correction optical member 45 is small. Not only the light beam 12 , but also the light beams 22 and 32 with large incident angles to the scanning mirror 40 can be made less susceptible to the effect of the curvature of the scanning area correction optical member 45 . Also, it is not necessary to adjust the distance between the light source and the front lens for each light source module.
  • the luminous flux diameter of each light beam in the scanning area correction optical member 45 is large. Further, each of the scanning areas 72 and 73 is corrected more than the scanning area 71 by the scanning area correction optical member 45 . Therefore, in the slow axis direction, the light beams 22 and 32, which have a large incident angle on the scanning mirror 40, are more affected by the negative effect of the scanning area correction optical member 45 (the effect of the curvature of the scanning area correction optical member 45) than the light beam 12 is.
  • the position of the rear lens relative to the front lens is adjusted according to the strength of the negative effect of the scanning area correction optical member 45 (the effect of the curvature of the scanning area correction optical member 45).
  • the focal length of the light beam emitted from the beam shaper in the slow axis direction changes according to the strength of the negative effect of the scanning area correction optical member 45, and the divergence angle of the light beam emitted from the beam shaper changes in the slow axis direction.
  • At least part of the negative effect of the scanning area correction optical member 45 is offset by the divergence angle in the slow axis direction of the light beam emitted from the beam shaper.
  • the parallelism of each light beam in the scanning area correction optical member 45 is improved.
  • Each beam shaper may have the effect of making the beam diameter in the fast axis direction of each of the plurality of light beams incident on the scanning area correction optical member 45 smaller than the beam diameter in the slow axis direction.
  • the scanning area correction optical member 45 gives negative refractive power in the slow axis direction to the light beams 22 and 32 having a larger incident angle on the scanning mirror 40 than the light beam 12.
  • the distance between the front and rear lenses in the beam shapers 23 and 33 is made larger than the distance between the front and rear lenses in the beam shaper 13 . That is, the rear lenses 15, 25, 35 are arranged with respect to the front lenses 14, 24, 34 such that the distance D1 ⁇ distance D2 and the distance D1 ⁇ distance D3 .
  • the effect may be corrected by intentionally shifting the rear lens from the focal position (the position where the beam shaper focuses on the light emitting point on the object side) to the exit side.
  • the beam shapers 23 and 33 emit light beams that converge in the slow axis direction.
  • the negative refractive power of the scanning area correction optical member 45 in the slow axis direction causes the scanning area correction optical member 45 to emit substantially parallel light beams.
  • the beam shapers 23 and 33 emit light beams 22 and 32 converging in the x-axis direction that coincides with the slow axis direction, and the beam shaper 13 emits a parallel light beam 12 in the x-axis direction. Approximately parallel light beams 12 , 22 , 32 are emitted from the scanning area correction optical member 45 .
  • the light beam scanning device 2b of the second comparative example shown in FIGS. 13 to 15 the light beams 12, 22 are emitted from the beam shapers 13, 23 substantially parallel in the x-axis direction which coincides with the slow axis direction.
  • a substantially parallel light beam 12 and a divergent light beam 22 are emitted from the scanning area correction optical member 45 .
  • the light beam 32 is not shown in FIGS. 13 to 15, the light beam 32, like the light beam 22, is emitted from the scanning area correction optical member 45 as divergent light.
  • the scanning area correction optical member 45 gives positive refractive power in the slow axis direction to the light beams 22 and 32 having a larger incident angle on the scanning mirror 40 than the light beam 12.
  • the distance between the front and rear lenses in the beam shapers 23 and 33 is made smaller than the distance between the front and rear lenses in the beam shaper 13 . That is, the rear lenses 15, 25, 35 are arranged with respect to the front lenses 14, 24, 34 such that distance D 1 >distance D 2 and distance D 1 >distance D 3 .
  • the effect may be corrected by deliberately offsetting the rear lens from the focal position toward the incident side.
  • the beam shapers 23 and 33 emit light beams that diverge in the slow axis direction.
  • the positive refractive power of the scanning area correction optical member 45 in the slow axis direction causes the scanning area correction optical member 45 to emit substantially parallel light beams.
  • beam shapers 23 and 33 emit light beams 22 and 32 that diverge in the x-axis direction that coincides with the slow axis direction, and beam shaper 13 emits a parallel light beam 12 in the x-axis direction. Approximately parallel light beams 12 , 22 , 32 are emitted from the scanning area correction optical member 45 .
  • the distances D 1 , D 2 and D 3 are equal to each other, and the light beams 12, 22 and 32 are emitted from the beam shapers 13, 23 and 33 substantially parallel in the x-axis direction which coincides with the slow axis direction.
  • a substantially parallel light beam 12 and a converging light beam 22 are emitted from the scanning area correction optical member 45 .
  • the light beam 32 is not shown in FIGS. 21 and 22, the light beam 32, like the light beam 22, is emitted from the scanning area correction optical member 45 as convergent light.
  • each light beam emitted from the scanning area correction optical member 45 need to be collimated.
  • the parallelism (spread angle) of each light beam emitted from the scanning area correction optical member 45 can be appropriately adjusted according to the distance from the light beam scanning device 1 or 1b to the object to be scanned and the desired quality of the light beam.
  • the parallelism (spread angle) of the light beams incident on the scanning area correction optical member 45 is the same.
  • the refractive power in the peripheral portion of the scanning area correction optical member 45 is stronger than the refractive power in the central portion of the scanning area correction optical member 45 .
  • each of the light beams 22 and 32 emitted from the scanning area correction optical member 45 diverges or converges in the slow axis direction.
  • the distance between the front lens and the rear lens of each beam shaper is set so that the light beams 22 and 32 emitted from the scanning area correction optical member 45 are approximately parallel rays, the light beam 12 emitted from the scanning area correction optical member 45 will diverge or converge.
  • the distances between the front and rear lenses (distances D 1 , D 2 and D 3 shown in FIG. 3) between the beam shapers are changed according to the optical action given to the light beam by the scanning area correction optical member 45. Therefore, it is possible to improve the parallelism of the light beams emitted from the light beam scanning devices 1 and 1b.
  • the light beam scanners 1 and 1b can emit high-quality light beams.
  • Light source module 30 and reflecting mirror 37 and light source module 20 and reflecting mirror 27 may be arranged asymmetrically with respect to a vertical plane containing the optical path of light beam 12 .
  • the angle of incidence of light beam 32 on scan mirror 40 may be different than the angle of incidence of light beam 22 on scan mirror 40
  • distance D3 may be different than distance D2 .
  • the distance D3 may be greater than the distance D2 .
  • the distance D3 may be smaller than the distance D2 .
  • the fast axis direction of the light beam 32 may be parallel to the fast axis direction of the light beam 22 or non-parallel to the fast axis direction of the light beam 12 .
  • the slow axis direction of the light beam 32 may be parallel to the slow axis direction of the light beam 22 or may be non-parallel to the slow axis direction of the light beam 22 .
  • the number of light source modules 10, 20, 30 and the number of reflecting mirrors 17, 27, 37 are not limited to three.
  • the optical beam scanning devices 1 and 1b of the present embodiment include a plurality of light sources (eg, light sources 11, 21, 31), a plurality of beam shapers (eg, beam shapers 13, 23, 33), a scanning mirror 40, and a scanning area correction optical member 45.
  • the multiple light sources emit multiple light beams (eg, light beams 12, 22, 32).
  • Each of the plurality of light beams is emitted from a corresponding light source among the plurality of light sources, and has a larger luminous flux diameter in the fast axis direction than in the slow axis direction.
  • Each of the plurality of beam shapers is provided for a corresponding light source among the plurality of light sources, and shapes the light beam emitted from the corresponding light source.
  • a scanning mirror 40 scans a plurality of light beams shaped by a plurality of beam shapers.
  • the scanning area correction optical member 45 corrects at least one of the plurality of scanning areas formed by the plurality of light beams scanned by the scanning mirror 40 .
  • Each of the plurality of beam shapers includes a first lens (eg, front lenses 14, 24, 34) and a second lens (eg, rear lenses 15, 25, 35). The first lens is arranged closer to the corresponding light source than the second lens.
  • Each of the plurality of beam shapers gives positive refractive power to the corresponding light beam among the plurality of light beams in the slow axis direction and the fast axis direction.
  • Each of the plurality of beam shapers has a focal length Ff in the fast axis direction and a focal length Fs greater than the focal length Fs in the slow axis direction.
  • an incident angle ⁇ 1 of a first light beam (e.g., light beam 12) of the plurality of light beams on scan mirror 40 when scan mirror 40 is at the center of the rotational range of scan mirror 40 is different from an incident angle ⁇ 2 of a second light beam (e.g., light beam 22) of the plurality of light beams on scan mirror 40 when scan mirror 40 is at the center of the rotational range of scan mirror 40.
  • the distance D1 between the first lens (e.g., front lens 14) and the second lens (e.g., rear lens 15) in the first beam shaper (e.g., beam shaper 13) that is one of the plurality of beam shapers and shapes the first light beam is the first lens (e.g., front lens 24) and the second lens (e.g., rear lens 25) in the second beam shaper (e.g., beam shaper 23) that is one of the plurality of beam shapers and shapes the second light beam. ) is different from the distance D2 .
  • the light beam scanning devices 1 and 1b of the present embodiment are equipped with a scanning area correction optical member 45.
  • FIG. Therefore, the light beam scanning devices 1 and 1b can correct distortion of the scanning areas (for example, the scanning areas 71, 72, and 73) due to the difference in the incident angle to the scanning mirror 40.
  • FIG. The optical beam scanning device 1, 1b also comprises a beam shaper (e.g. beam shaper 13, 23, 33), which includes a first lens (e.g. front lens 14, 24, 34) and a second lens (e.g. rear lens 15, 25, 35).
  • the distance between the first lens and the second lens is made different between the two beam shapers (e.g., beam shapers 13, 23) that shape two light beams (e.g., light beams 12, 22) with mutually different angles of incidence on the scanning mirror 40. Therefore, the quality of the light beam emitted from the scanning area correction optical member 45 is improved, for example, the parallelism of the light beam emitted from the scanning area correction optical member 45 is improved.
  • the two beam shapers e.g., beam shapers 13, 23
  • two light beams e.g., light beams 12, 22
  • the optical beam scanning device 1 or 1b having a plurality of scanning areas is provided with the scanning area correction optical member 45 for correcting the distortion of the scanning area
  • the inter-lens distance between the beam shapers provided for at least two light beams having different angles of incidence on the scanning mirror 40 is made different, so that the first action of the scanning area correction optical member 45, that is, the scanning area correction effect by the deflection of the light beam, can be obtained while the second action accompanying the first action of the scanning area correction optical member 45 is obtained. (here, the divergence or convergence of the emitted light) can be reduced.
  • the incident angle ⁇ 2 is larger than the incident angle ⁇ 1.
  • the scanning area correction optical member 45 gives negative refractive power to the second light beam in the slow axis direction.
  • Distance D2 is greater than distance D1 .
  • the light beam scanning device 1 can correct the distortion of the scanning areas (for example, the scanning areas 71 , 72 , 73 ) and improve the quality of the light beam emitted from the scanning area correction optical member 45 .
  • the incident angle ⁇ 2 is larger than the incident angle ⁇ 1.
  • the scanning area correction optical member 45 gives positive refractive power to the second light beam in the slow axis direction.
  • Distance D2 is less than distance D1 .
  • the light beam scanning device 1b can correct the distortion of the scanning areas (for example, the scanning areas 71, 72, and 73) and improve the quality of the light beam emitted from the scanning area correction optical member 45.
  • the first lens for example, the front lenses 14, 24, 34
  • the second lens eg, rear lenses 15, 25, 35
  • the focal length F2s of the second lens in the slow axis direction is longer than the focal length F1f of the first lens in the fast axis direction.
  • the parallelism of the light beam in the slow axis direction is improved and decreased.
  • the beam diameter of the light beam in the fast axis direction in the scanning area correction optical member 45 is smaller than the beam diameter of the light beam in the slow axis direction in the scanning area correction optical member 45 .
  • a decrease in parallelism of the light beam in the fast axis direction due to the scanning area correction optical member 45 is negligible.
  • the quality of the light beam emitted from the scanning area correction optical member 45 can be improved.
  • the second lens (for example, the rear lenses 15, 25, 35) has zero refractive power in the fast axis direction.
  • the distance between the first lens (e.g., front lens 14, 24, 34) and the second lens e.g., distances D1 , D2 , D3
  • the parallelism of the light beam due to the scanning area correction optical member 45 is improved.
  • the quality of the light beam emitted from the scanning area correction optical member 45 can be improved.
  • the first lens (for example, the front lenses 14, 24, 34) has negative refractive power in the slow axis direction.
  • beam shapers eg, beam shapers 13, 23, 33
  • the light beam scanning device 1, 1b can be miniaturized.
  • the divergence angle of the light beams incident on the first lens is smaller than the divergence angle of the light beams incident on the first lens in the fast axis direction.
  • the divergence angle of the light beams incident on the second lens eg, rear lenses 15, 25, 35 in the slow axis direction is greater than the divergence angle of the light beams incident on the second lens in the fast axis direction.
  • the effects of being able to correct the distortion of the scanning areas (for example, the scanning areas 71, 72, and 73) and improve the quality of the light beam emitted from the scanning area correction optical member 45 can be obtained more easily.
  • each of the plurality of light sources is a multimode laser diode.
  • the emitter width of the multimode laser diode in the slow axis direction is greater than the emitter width of the multimode laser diode in the fast axis direction.
  • the light beam scanners 1 and 1b can scan objects at greater distances.
  • each of the plurality of light beams incident on the scanning area correction optical member 45 has a beam diameter in the fast axis direction and a beam diameter in the slow axis direction, and the beam diameter in the fast axis direction is smaller than the beam diameter in the slow axis direction.
  • the reduction in the parallelism of the light beam caused by the scanning area correction optical member 45 can be ignored.
  • the quality of the light beam emitted from the scanning area correction optical member 45 can be improved.
  • the scanning area correction optical member 45 is a free-form surface-shaped lens or a free-form surface-shaped mirror.
  • the free-form surface of the scanning area correction optical member 45 can appropriately deflect the light beam and correct the plurality of scanning areas into appropriate shapes.
  • the amount of change in the divergence angle given to the first light beam by the scanning region correction optical member 45 differs from the amount of change in the divergence angle given to the second light beam by the scanning region correction optical member 45.
  • the parallelism of the light beam emitted from the scanning area correction optical member 45 is improved.
  • the quality of the light beam emitted from the scanning area correction optical member 45 can be improved.
  • the multiple light sources include a first light source (eg, light source 11), a second light source (eg, light source 21), and a third light source (eg, light source 31).
  • the incident angle of the light beam (e.g., light beam 12) emitted by the first light source on the scanning mirror 40 is different from at least one of the incident angle of the light beam (e.g., the light beam 22) on the scanning mirror 40 emitted by the second light source or the incident angle on the scanning mirror 40 of the light beam (e.g., the light beam 32) emitted by the third light source.
  • the parallelism of the light beam emitted from the scanning area correction optical member 45 due to the difference in the incident angle to the scanning mirror 40 is improved.
  • the quality of the light beam emitted from the scanning area correction optical member 45 can be improved.
  • At least one direction is one direction perpendicular to the rotation axis of the scanning mirror, the direction in which the difference in incident angle on the scanning mirror among the plurality of light beams is the largest, or the longitudinal direction of the plurality of scanning regions.
  • the distortion of the scanning area (for example, the scanning areas 71, 72, and 73) can be corrected, and the effect of improving the quality of the light beam emitted from the scanning area correction optical member 45 can be obtained more easily.
  • the plurality of scanning regions are expanded from each of the plurality of scanning regions.
  • the light beam scanning devices 1 and 1b can scan a wider area.
  • the multiple scanning regions have multiple centers.
  • Each of the plurality of centers is the center of a corresponding scanning region of the plurality of scanning regions.
  • the positions of the multiple centers are different from each other.
  • FIG. 23 is a schematic diagram showing an example of the distance measuring device 3 according to the third embodiment.
  • the distance measuring device 3 includes the light beam scanning device 1 of Embodiment 1, a light receiving optical system 81 , a light receiving device 82 , a computer 83 and a housing 87 .
  • the light receiving optical system 81 guides the return lights 12 r, 22 r, 32 r generated by the light beams 12 , 22 , 32 being reflected or scattered by the object 88 to the light receiving device 82 .
  • the light receiving optical system 81 includes, for example, a condenser lens.
  • the light receiving device 82 receives the returned lights 12r, 22r, and 32r.
  • the light receiving device 82 is, for example, a photodiode, such as an avalanche photodiode or a single-photon avalanche photodiode.
  • the computer 83 includes a controller 84, a calculator 85, and a storage device 86 such as a ROM or hard disk.
  • the controller 84 and computing unit 85 are processors such as a CPU (Central Processing Unit), GPU (Graphics Processing Unit), or FPGA (field-programmable gate array) included in the computer 83, for example.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA field-programmable gate array
  • the controller 84 is communicably connected to the light sources 11, 21, 31, the scanning mirror 40 and the light receiving device 82.
  • a controller 84 controls the distance measuring device 3 .
  • the controller 84 controls the light sources 11 , 21 , 31 to control the timings at which the pulsed light beams 12 , 22 , 32 are emitted from the light sources 11 , 21 , 31 .
  • the controller 84 receives from the light sources 11 , 21 , 31 first timings at which the light sources 11 , 21 , 31 emit the light beams 12 , 22 , 32 .
  • the first timing includes the timing when the light source 11 emits the light beam 12 , the timing when the light source 21 emits the light beam 22 , and the timing when the light source 31 emits the light beam 32 .
  • a controller 84 controls the scanning mirror 40 .
  • Controller 84 receives the tilt angle of scan mirror 40 (eg, the angle of the normal to the reflective surface of scan mirror 40).
  • the controller 84 receives from the light-receiving device 82 a signal corresponding to the amount of the return light 12r, 22r, 32r received by the light-receiving device 82 .
  • the controller 84 receives second timings at which the light receiving device 82 receives the return lights 12r, 22r, and 32r.
  • the second timing includes the timing when the light receiving device 82 receives the return light 12r, the timing when the light receiving device 82 receives the return light 22r, and the timing when the light receiving device 82 receives the return light 32r.
  • the calculator 85 calculates the direction and distance of the object 88 based on the emission directions of the light beams 12, 22, 32, the first timing when the light sources 11, 21, 31 emit the light beams 12, 22, 32, and the second timing when the light receiving device 82 receives the return lights 12r, 22r, 32r.
  • the calculator 85 calculates the emission directions of the light beams 12, 22, and 32 from the tilt angles of the scanning mirror 40 received by the controller 84 and the positions of the light sources 11, 21, and 31 with respect to the scanning mirror 40 stored in the storage device 86.
  • the calculator 85 receives the first timings at which the light sources 11 , 21 , 31 emit the light beams 12 , 22 , 32 from the controller 84 .
  • the calculator 85 receives from the controller 84 the second timing at which the light receiving device 82 receives the return lights 12r, 22r, and 32r.
  • the computing unit 85 calculates the distance from the distance measuring device 3 to the object 88 and the direction of the object 88 with respect to the distance measuring device 3 based on the emission directions of the light beams 12, 22, and 32 and the first timing and the second timing.
  • the computing unit 85 generates a range image of the object 88 including the distance from the rangefinder 3 to the object 88 and the direction of the object 88 with respect to the rangefinder 3 .
  • the calculator 85 outputs the distance image of the object 88 to a storage device 86 or a display device (not shown) communicatively connected to the computer 83 .
  • the display device displays a range image of the object 88 .
  • a housing 87 accommodates the light beam scanning device 1 , the light receiving optical system 81 , the light receiving device 82 and the computer 83 .
  • the housing 87 is provided with transparent windows (not shown) through which the light beams 12, 22, 32 and the return lights 12r, 22r, 32r are transmitted.
  • Computer 83 may be located outside housing 87 .
  • the distance measuring device 3 may include a light beam scanning device 1b instead of the light beam scanning device 1 of the first embodiment.
  • the distance measuring device 3 of the present embodiment has the following effects.
  • the distance measuring device 3 of the present embodiment includes the light beam scanning device 1 or the light beam scanning device 1b, a light receiving device 82, and a calculator 85.
  • the light receiving device 82 receives a first return light (e.g., return light 12r) generated by reflection or scattering of the first light beam (e.g., light beam 12) by the object 88 and a second return light (e.g., return light 22r) generated by reflection or scattering of the second light beam (e.g., light beam 22) by the object 88.
  • a first return light e.g., return light 12r
  • a second return light e.g., return light 22r
  • the calculator 85 calculates the object 88 based on the first emission direction of the first light beam, the second emission direction of the second light beam, the first emission timing when the first light source (for example, the light source 11) emits the first light beam, the second emission timing when the second light source (for example, the light source 21) emits the second light beam, the first light reception timing when the light receiving device 82 receives the first return light, and the second light reception timing when the light receiving device 82 receives the second return light.
  • the distance measuring device 3 includes the light beam scanning device 1 or the light beam scanning device 1b.
  • a first light beam eg, light beam 12
  • a second light beam eg, light beam 22

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

光ビーム走査装置(1)は、複数の光源(11,21)と、複数のビーム整形器(13,23)と、走査ミラー(40)と、走査領域補正光学部材(45)とを備える。複数の光源は、複数の光ビーム(12,22)を出射する。複数のビーム整形器の各々は、第1レンズ(14,24)と、第2レンズ(15,25)とを含む。光ビーム(12)を整形するビーム整形器(13)における第1レンズ(14)と第2レンズ(15)との間の距離(D1)は、光ビーム(22)を整形するビーム整形器(23)における第1レンズ(24)と第2レンズ(25)との間の距離(D2)と異なる。

Description

光ビーム走査装置及び測距装置
 本開示は、光ビーム走査装置及び測距装置に関する。
 国際公開第2018/021108号(特許文献1)は、発光装置と、投射光学系とを備える走査型照明装置を開示している。発光装置は、レーザダイオードと、光偏向部と、波長変換部と、集光部とを含む。集光部は、第一光学系と、第二光学系とを含む。第一光学系は、非球面レンズと、シリンドリカルレンズとを含む。第一光学系のシリンドリカルレンズは、レーザダイオードから出射されるレーザビームのファスト軸に対して曲率を有している。第二光学系は、シリンドリカルレンズを含む。第二光学系のシリンドリカルレンズは、当該レーザビームのスロー軸に対して曲率を有している。
国際公開第2018/021108号
 本開示の第一の局面の目的は、複数の走査領域を有する光ビーム走査装置において、走査領域の歪み等を減少させることができるとともに、改善された品質の光ビームを出射することができる光ビーム走査装置を提供することである。本開示の第二の局面の目的は、向上された測定精度を有する測距装置を提供することである。
 本開示の光ビーム走査装置は、複数の光源と、複数のビーム整形器と、走査ミラーと、走査領域補正光学部材とを備える。複数の光源は、複数の光ビームを出射する。複数の光ビームの各々は、複数の光源のうち対応する光源から出射され、かつ、スロー軸方向よりもファスト軸方向において大きな光束径を有している。複数のビーム整形器の各々は、複数の光源のうち対応する光源に対して設けられ、かつ、対応する光源から出射される光ビームを整形する。走査ミラーは、複数のビーム整形器によって整形された複数の光ビームを走査する。走査領域補正光学部材は、走査ミラーによって走査された複数の光ビームが形成する複数の走査領域の少なくともいずれかを補正する。複数のビーム整形器の各々は、第1レンズと、第2レンズとを含む。第1レンズは、第2レンズよりも、複数の光源のうち対応する光源の側に配置される。複数のビーム整形器の各々は、スロー軸方向およびファスト軸方向において複数の光ビームのうち対応する光ビームに対して正の屈折力を与える。複数のビーム整形器の各々は、ファスト軸方向において焦点距離Ffを有するとともに、スロー軸方向において焦点距離Fsより大きい焦点距離Fsを有する。少なくとも一つの方向において、走査ミラーが走査ミラーの回転範囲の中心にあるときの複数の光ビームのうちの一つである第1光ビームの走査ミラーへの入射角θ1は、走査ミラーが走査ミラーの回転範囲の中心にあるときの複数の光ビームのうちの一つである第2光ビームの走査ミラーへの入射角θ2と異なる。複数のビーム整形器の一つでありかつ第1光ビームを整形する第1ビーム整形器における第1レンズと第2レンズとの間の距離Dは、複数のビーム整形器の一つでありかつ第2光ビームを整形する第2ビーム整形器における第1レンズと第2レンズとの間の距離Dと異なる。
 本開示の測距装置は、本開示の光ビーム走査装置を備える。
 本開示の光ビーム走査装置は、走査領域補正光学部材を備えている。そのため、本開示の光ビーム走査装置は、走査ミラーへの光ビームの入射角の違いによる走査領域の歪み等を補正することができる。また、本開示の光ビーム走査装置はビーム整形器を備え、ビーム整形器は第1レンズと第2レンズとを含む。走査ミラーへの入射角が互いに異なる二つの光ビームを整形する二つのビーム整形器の間で、第1レンズと第2レンズ間の距離を異ならせている。そのため、走査領域補正光学部材から出射される光ビームの平行度が向上するなど、走査領域補正光学部材から出射される光ビームの品質が改善される。
実施の形態1の光ビーム走査装置の概略斜視図である。 実施の形態1の光ビーム走査装置の概略側面図である。 実施の形態1の光ビーム走査装置の概略上面図である。 実施の形態1の光ビーム走査装置に含まれる光源の概略斜視図である。 実施の形態1の光ビーム走査装置に含まれるビーム整形器の概略斜視図である。 実施の形態1の光ビーム走査装置に含まれるビーム整形器のファスト軸での概略平面図である。 実施の形態1の光ビーム走査装置に含まれるビーム整形器のスロー軸での概略平面図である。 走査ミラーの反射面に対する光ビームの入射角と反射面によって反射された光ビームの走査軌跡との関係を示す概略図である。 第1比較例の光ビーム走査装置の概略斜視図である。 第1比較例の光ビーム走査装置の概略側面図である。 第1比較例の光ビーム走査装置の概略上面図である。 第1比較例の光ビーム走査装置によって生成される複数の走査領域を示す図である。 第2比較例の光ビーム走査装置の概略斜視図である。 第2比較例の光ビーム走査装置の概略正面図である。 第2比較例の光ビーム走査装置の概略平面図である。 実施の形態1の光ビーム走査装置によって生成される複数の走査領域を示す図である。 エミッタ(発光点)の幅と、レンズ光学系の焦点距離と、レンズ光学系を通った光ビームの拡がり角との関係を示す図である。 実施の形態1の光ビーム走査装置の別の例を示す概略斜視図である。 実施の形態1の光ビーム走査装置の別の例を示す概略正面図である。 実施の形態1の光ビーム走査装置の別の例を示す概略平面図である。 第3比較例の光ビーム走査装置の概略斜視図である。 第3比較例の光ビーム走査装置の概略平面図である。 実施の形態2の測距装置の概略図である。
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 実施の形態1.
 図1から図8を参照して、実施の形態1の光ビーム走査装置1を説明する。図1から図3は、実施の形態1における光ビーム走査装置1の構成例を概略的に示す図である。なお、図1は光ビーム走査装置1の概略斜視図、図2は光ビーム走査装置1の概略側面図、図3は光ビーム走査装置1の概略上面図である。光ビーム走査装置1は、複数の光源(例えば、光源11,21,31)と、複数のビーム整形器(例えば、ビーム整形器13,23,33)と、走査ミラー40と、走査領域補正光学部材45とを主に備える。また、光ビーム走査装置1は、反射ミラー17,27,37をさらに備えてもよい。
 本実施の形態において、複数のビーム整形器の各々は、複数の光源のうち対応するものに対して設けられる。以下では、光源とビーム整形器の組を、光源モジュールという場合がある。例えば、光ビーム走査装置1は、三つの光源モジュール(光源モジュール10,20,30)を備えている。光源モジュール10は、光源11と、ビーム整形器13とを含む。光源モジュール20は、光源21と、ビーム整形器23とを含む。光源モジュール30は、光源31と、ビーム整形器33とを含む。ビーム整形器13は、光源11と対応する。ビーム整形器23は、光源21と対応する。ビーム整形器33は、光源31と対応する。光ビーム走査装置1は、三つの光源を備えているが、光ビーム走査装置1は、二つの光源を備えてもよいし、四つ以上の光源を備えてもよい。光ビーム走査装置1は、光源の数に応じた数のビーム整形器を備えていればよい。
 <光源11,21,31>
 図1に示されるように、複数の光源(例えば、光源11,21,31)は、複数の光ビーム(例えば、光ビーム12,22,32)を出射する。複数の光ビームの各々は、複数の光源のうち対応するものから出射される。具体的には、光源11は、光ビーム12を出射する。光源21は、光ビーム22を出射する。光源31は、光ビーム32を出射する。図4、図6及び図7に示されるように、複数の光ビームの各々は、スロー軸方向よりもファスト軸方向において大きな光束径を有している。以下、複数の光源の構造および機能について、光源11を例に説明する。なお、特に明記しない限り、他の光源(例えば、光源21,31)も、光源11と同様である。
 光源11は、例えば、レーザダイオードであり、光ビーム12は、例えば、レーザビームである。図4は、光源11,21,31の一例であるレーザダイオードの概略斜視図である。レーザダイオードは、基板51と、クラッド層52と、活性層53と、クラッド層54と、電極56と、電極57と、絶縁層59とを含む。クラッド層52は、基板51上に形成されている。活性層53は、クラッド層52上に形成されている。クラッド層54は、活性層53上に形成されている。活性層53は、クラッド層52とクラッド層54とに挟まれている。電極56、57は、このクラッド層52とクラッド層54に順方向電圧を印加するための電極である。電極56は、基板51上に形成されている。電極56は、基板51上ではなくクラッド層52上に形成されてもよい。電極57は、クラッド層54上に形成されている。クラッド層54には、電流を流す領域を限定して、その部分だけにレーザ発振を生じさせるためのリッジ部55(コンタクト層ともいう)が形成されており、電極57は、リッジ部55上に形成されている。
 電極56と電極57に電圧が印加されると、活性層53から光ビームが出射される。図4に示されるように、活性層53からの光ビームの発光点であるエミッタ60の幅W(活性層53の幅方向の長さ)は、エミッタ60の幅W(活性層53の厚さ方向の長さ)より大きい。出射される光ビームの光軸(図中のz軸に平行な方向)に垂直な断面において、活性層53の厚さ方向が光ビーム12のファスト軸(図5から図7などのf軸)方向に相当し、活性層53の幅方向が光ビーム12のスロー軸(図5から図7などのs軸)方向に相当する。
 図4に示されるように、スロー軸方向のエミッタ(発光点)60の幅Wがファスト軸方向のエミッタ60の幅Wより大きい場合、出射される光ビームの光束径はファスト軸の方がスロー軸方向よりも大きくなり、ファスト軸方向における光ビームの品質はスロー軸方向における光ビームの品質よりも高くなる。なお、光源11が複数のエミッタを含むマルチエミッタレーザダイオードである場合、エミッタの幅Wは複数のエミッタの全幅である。
 光源11は、例えば、0.5W以上の高い出力を有する光ビーム12を出射するレーザダイオードであってもよい。光源11は、例えば、マルチモードレーザダイオードであってもよい。マルチモードレーザダイオードは、シングルモードレーザダイオードに比べて、高い出力を有する光ビーム12を出射することができる。ここで、光源11は、スロー軸の発振モードがマルチモードであり、ファスト軸の発振モードがシングルモードであるようなレーザダイオードであってもよい。
 <ビーム整形器13,23,33>
 図5から図7は、複数のビーム整形器(ビーム整形器13,23,33)の例を示す説明図である。図5はビーム整形器の概略斜視図であり、図6はビーム整形器のファスト軸での概略平面図であり、図7はビーム整形器のスロー軸での概略平面図である。複数のビーム整形器の各々は、対応する光源から出射される光ビームを整形する。光ビームの整形には、光ビームの発散角の変更およびそれに伴う光ビームのビーム幅の変更が含まれる。複数のビーム整形器の各々は、光ビーム走査装置1において、主として走査領域補正光学部材45に入射する光ビームの平行度を向上させる目的で使用される。例えば、複数のビーム整形器の各々は、走査領域補正光学部材45に入射する光ビームをコリメートする目的で使用される。ここで、各ビーム整形器の各々は、入射される光ビームを厳密にコリメートしなくてもよい。これは、走査領域補正光学部材45から出射される複数の光ビームの各々が略平行光になることが重要だからである。そのため、本実施の形態では、複数のビーム整形器の各々は、複数のレンズを備え、かつ、複数のレンズの間の距離を調整することによって複数のビーム整形器の各々のビーム整形作用を容易に調整し得るように構成されている。
 図5から図7に示されるように、複数のビーム整形器の各々は、前側レンズと、後側レンズとを含む。なお、前側レンズをビーム整形器の第1レンズ、後側レンズをビーム整形器の第2レンズと呼ぶ場合がある。図1に示されるように、ビーム整形器13は、光ビーム12を整形する。ビーム整形器13は、前側レンズ14と、後側レンズ15とを含む。ビーム整形器13において、前側レンズ14と後側レンズ15とは、互いに距離Dだけ離れている。ビーム整形器23は、光源21から出射される光ビーム22を整形する。ビーム整形器23は、前側レンズ24と、後側レンズ25とを含む。ビーム整形器23において、前側レンズ24と後側レンズ25とは、互いに距離Dだけ離れている。ビーム整形器33は、光源31から出射される光ビーム32を整形する。ビーム整形器33は、前側レンズ34と、後側レンズ35とを含む。ビーム整形器33において、前側レンズ34と後側レンズ35とは、互いに距離Dだけ離れている。以下、ビーム整形器の構造および機能について、ビーム整形器13を例に説明する。なお、特に明記しない限り、他のビーム整形器(例えば、ビーム整形器23,33)もビーム整形器13と同様である。
 ビーム整形器13の前側レンズ14は、光ビーム12の光路上において、後側レンズ15よりも光源11の側に配置される。換言すると、前側レンズ14は、光源11と後側レンズ15の間に配置される。ここで、前側レンズ14および後側レンズ15は、各々、単レンズでなくてもよい。換言すると、ビーム整形器13は、前側レンズ14として複数のレンズ(第1光学系)を備えてもよく、後側レンズとして複数のレンズ(第2光学系)を備えてもよい。
 本実施の形態において、ビーム整形器13は、ビーム整形器13に入射される光ビーム12のスロー軸方向およびファスト軸方向の両方において、光ビーム12に対して、正の屈折力を与える。スロー軸方向におけるビーム整形器13の焦点距離(より具体的には、前側レンズ14と後側レンズ15の組み合わせによる合成焦点距離)は、ファスト軸方向におけるビーム整形器13の焦点距離よりも大きい。換言すると、光ビーム12のファスト軸方向におけるビーム整形器13の屈折力は、光ビーム12のスロー軸方向におけるビーム整形器13の屈折力より大きい。ビーム整形器13は、光ビーム12のファスト軸方向において、光ビーム12をコリメートしてもよい。
 ここで、ビーム整形器13の合成焦点距離のように、二以上のレンズの組み合わせによる合成レンズの焦点距離は、一点から発せられた光が合成レンズ(該合成レンズを構成するレンズ群)によって平行光となる点、もしくは、平行光が合成レンズ(該合成レンズを構成するレンズ群)によって一点に集光する点を焦点とし、当該レンズ群の中心から該焦点の位置までの距離をいう。すなわち、本開示における「焦点距離」とは、光ビームが実際に焦点を結ぶまでの距離(広義の焦点距離)ではなく、レンズ(合成レンズの場合は合成レンズを構成するレンズ群)の仕様によって定まる固有値を表す。なお、単レンズの焦点距離も同様である。すなわち、一点から発せられた光が単レンズによって平行光となる点、もしくは、平行光が単レンズによって一点に集光する点を焦点とし、単レンズの中心から該焦点の位置までの距離をいう。
 各ビーム整形器の前側レンズは、光ビームのファスト軸方向において正の屈折力を有している。各ビーム整形器の後側レンズは、光ビームのスロー軸方向において正の屈折力を有している。例えば、前側レンズは、光ビームのファスト軸において正の曲率を有するレンズ面(例えば、図6の前側レンズ14,24,34の入射側の凸面)を有していてもよい。また、例えば、後側レンズは、光ビームのスロー軸において正の曲率を有するレンズ面(例えば、図7の後側レンズ15,25,35の出射側の凸面)を有していてもよい。この場合、光ビームは、ファスト軸方向においては主として前側レンズによって整形され、スロー軸方向においては主として後側レンズによって整形される。
 スロー軸方向における後側レンズの焦点距離F2s(後側レンズの中心から後側レンズの焦点までの距離)は、ファスト軸方向における前側レンズの焦点距離F1f(前側レンズの中心から前側レンズの焦点までの距離)よりも大きくてよい。換言すると、ファスト軸方向における前側レンズの屈折力は、スロー軸方向における後側レンズの屈折力よりも大きくてよい。また、後側レンズは、ファスト軸方向においてゼロの屈折力を有することがより好ましい。例えば、後側レンズの入射面は、光ビームの光軸に垂直な平面であってもよい。
 このように、ファスト軸方向において光ビームの整形(主に光ビームを略平行化するための光ビームの拡がり角の変化)を主として行うレンズ(例えば、前側レンズ)は、スロー軸方向において光ビームの整形を主として行うレンズ(例えば、後側レンズ)と異なっている。そのため、ビーム整形器内におけるレンズ間距離(具体的には、前側レンズと後側レンズとの間の距離)がビーム整形器の光ビームの整形作用に与える影響を大幅に低減することができる。図5から図7に示されるように、複数のビーム整形器の各々において、スロー軸方向における前側レンズに入射する光ビームの発散角はファスト軸方向における前側レンズに入射する光ビームの発散角より小さく、かつ、スロー軸方向における後側レンズに入射する光ビームの発散角はファスト軸方向における後側レンズに入射する光ビームの発散角より大きくなっている。
 ビーム整形器において、光源と前側レンズとの距離を変化させずに、前側レンズと後側レンズとの距離を変化させた場合、光ビームは、スロー軸方向において前側レンズと後側レンズとの距離の変化の影響を受けるが、ファスト軸方向において前側レンズと後側レンズとの距離の変化の影響を受けない。したがって、光ビームの品質が相対的に良いファスト軸方向において前側レンズで光ビームを小さい光束径でコリメートすれば、前側レンズと後側レンズとの距離を変化させるだけで、ファスト軸方向において光ビームの整形状態を維持したまま、ビーム整形器から出射される光ビームのスロー軸方向における光ビームの拡がり角を調整できる。ビーム整形器のこのような機能は、走査領域補正光学部材45が走査領域補正光学部材45への光ビームの入射位置によってスロー軸方向において光ビームに与える屈折力が異なるといった場合に特に有効である。換言すると、上記構成によれば、ビーム整形器間で前側レンズと後側レンズとの距離(上述した距離D、D、D)を変えることで、走査領域補正光学部材45から出射される光ビームの平行度を向上させることができる。
 本実施の形態では、ビーム整形器の上記作用および走査領域補正光学部材45の後述する作用に基づき、走査ミラー40への入射角が異なる(したがって、走査領域補正光学部材45への入射位置が異なる)複数の光ビームを出射する複数のビーム整形器間で、前側レンズと後側レンズとの距離を異ならせている。ここで、走査ミラー40への光ビームの入射角は、走査ミラー40が走査ミラー40の回転範囲の中心(以下、「回転中心」ともいう。)にあるときに、走査ミラー40の反射面の法線と走査ミラー40に入射する光ビームの光軸とのなす角度の大きさである。以下、走査ミラー40の回転中心にあるときの走査ミラー40の反射面の法線を、走査ミラー40の第1法線という場合がある。
 少なくともx軸方向(図1から図3を参照)において、走査ミラー40への光ビーム22の入射角は、走査ミラー40への光ビーム12の入射角と異なっている。少なくともx軸方向において、走査ミラー40への光ビーム32の入射角は、走査ミラー40への光ビーム12の入射角と異なっている。より具体的には、光ビーム22の入射角は、光ビーム12の入射角よりも大きい。光ビーム32の入射角は、光ビーム12の入射角よりも大きい。なお、本実施の形態では、光ビーム12の光路を含む垂直面(yz平面)に関して光ビーム22の光路と光ビーム32の光路が互いに面対称になるように、光源モジュール20および反射ミラー27は、光源モジュール30および反射ミラー37に対して配置されている。したがって、走査ミラー40への光ビーム22の入射角は、走査ミラー40への光ビーム32の入射角と同じである。このような場合、光ビーム22を整形するビーム整形器23における前側レンズ24と後側レンズ25との距離Dは、光ビーム12を整形するビーム整形器13における前側レンズ14と後側レンズ15との距離Dと異なる。光ビーム32を整形するビーム整形器33における前側レンズ34と後側レンズ35との距離Dは、距離Dと異なる。距離Dは、距離Dと同じである。
 ここで、x軸方向は、各光ビームのスロー軸方向と平行な方向であってもよいし、水平方向(ここでは、鉛直方向に垂直な方向だけでなく、光ビーム走査装置1が載置される上位装置(自動車等)において定められた水平方向も含む)であってもよいし、走査ミラー40の回転軸の一つに垂直な平面上の任意の方向(例えば、走査ミラー40の回転軸に垂直な一つの方向、または、複数の光ビーム間で走査ミラー40への入射角の異なりが最も大きくなる方向など)であってもよいし、光ビーム走査装置1において走査領域を拡張する方向(例えば、光ビーム走査装置1全体の走査領域における長手方向)であってもよい。なお、各光ビームのスロー軸方向とx軸方向とは必ずしも一致していなくてもよい。すなわち、本実施の形態では、各光ビームのスロー軸が水平方向となり、各光ビームのファスト軸が垂直方向(すなわち、水平方向に対して垂直な方向)となるよう配置されているが、これに限定されるものではない。
 本実施の形態では、走査ミラー40への光ビームの入射角は、垂直方向(y方向)において互いに同じであり、かつ、水平方向(例えば、x方向)において互いに異なっている。そのため、走査ミラー40への光ビームの入射角は、二次元的に把握されている。これに対し、走査ミラー40への光ビームの入射角が水平方向及び垂直方向の両方において異なっている場合は、走査ミラー40への光ビームの入射角は、三次元的に把握される。
 図7に示されるように、本実施の形態では、前側レンズが、スロー軸方向において負の屈折力を有している。例えば、前側レンズ14,24,34の出射側の面が、スロー軸方向に沿って負の曲率を有する凹面となっている。前側レンズで、スロー軸方向における光ビームの拡がり角を増大させている。これにより、前側レンズと後側レンズとの間隔が短い場合でも、ビーム整形器のスロー軸方向における焦点距離(合成焦点距離)Fsを実効的に長くすることができる。なお、前側レンズの形状はこれに限定されず、例えば、スロー軸方向において曲率を持たない形状や正の曲率を持つ形状であってもよい。
 以下に、複数のビーム整形器間での前側レンズと後側レンズとの距離の調整例を示す。
 ビーム整形器13で整形された光ビーム12は、反射ミラー17で反射されて、走査ミラー40に入射する。ビーム整形器23で整形された光ビーム22は、反射ミラー27で反射されて、走査ミラー40に入射する。ビーム整形器33で整形された光ビーム32は、反射ミラー37で反射されて、走査ミラー40に入射する。すなわち、各反射ミラー(反射ミラー17,27,37)は、一つの走査ミラー40に光ビーム12,22,32が入射されるように配置されている。本実施の形態では、反射ミラー27と反射ミラー37とは、光ビーム12の光路を含む垂直面に関して面対称に配置されている。
 走査ミラー40は、走査ミラー40の回転軸のまわりに回転しながら、ビーム整形器13,23,33で整形された光ビーム12,22,32を反射する。走査ミラー40によって反射された光ビーム12,22,32は、光ビーム走査装置1の外側に向かって進む。このように走査ミラー40は回転しながら複数の光ビーム12,22,32を反射することで、光ビーム12,22,32は走査される。走査ミラー40は、例えば、走査ミラー40の反射面の傾き角が電気的に制御可能な微小電気機械システム(MEMS)ミラーである。走査ミラー40は、例えば、コイルによる電磁力で反射面の傾き角を制御可能とした電磁式MEMSミラーや、圧電部材を用いることで反射面の傾き角を制御可能とした圧電式MEMSミラー等であってもよい。走査ミラー40の反射面の傾き角を制御することで、光ビーム走査装置1から出射される光ビーム12,22,32の各々の出射角度(光ビーム12,22,32の各々が出射される方向であり、より具体的には、走査ミラー40の第1法線と走査ミラー40から出射される光ビーム12,22,32の各々の光軸とのなす角度)を変化させることができる。
 走査ミラー40は、走査ミラー40の反射面に平行でありかつ互いに垂直な二つの回転軸のまわりに回転し得る。本実施の形態では、走査ミラー40の一つの回転軸はx軸に平行であり、走査ミラー40の他の回転軸はy軸に平行である。走査ミラー40は、光ビーム12,22,32の各々を、x軸方向とy軸方向とに走査する。走査ミラー40によって走査された光ビーム12は、走査領域71(図16を参照)を照射する。走査ミラー40によって走査された光ビーム22は、走査領域72(図16を参照)を照射する。走査ミラー40によって走査された光ビーム32は、走査領域73(図16を参照)を照射する。走査ミラー40の反射面の傾き角の制御を互いに直交する二軸まわりに行うことで、光ビーム走査装置1から出射される光ビーム12,22,32の出射角度を二次元に変化させることができる。そのため、複数の光ビームの各々は、二次元領域である走査領域を生成することができる。
 走査領域71,72,73は、x軸方向に配列されている。走査領域71は、走査領域72と走査領域73との間にある。光ビーム走査装置1は、x軸方向に走査領域を拡げることができる。複数の走査領域71,72,73は、複数の走査領域71,72,73の各々より拡張されている。例えば、走査領域71,72,73が配列される方向(x軸方向)において、互いに隣り合う一対の走査領域の一方の端部は、互いに隣り合う一対の走査領域の他方の端部のみと重なる、または、互いに隣り合う一対の走査領域の他方の端部に接するように、複数の走査領域71,72,73は配列されてもよい。複数の走査領域71,72,73は、複数の中心71c,72c,73cを有している。複数の中心71c,72c,73cの各々は、複数の走査領域71,72,73のうち対応する走査領域の中心である。複数の中心71c,72c,73cの位置は、互いに異なってもよい。
 本実施の形態では、走査領域71,72,73が配列される方向(x軸方向)において、走査領域72の端部は、走査領域71の端部のみと重なっている、または、走査領域71の端部に接している。走査領域71,72,73が配列される方向において、走査領域73の端部は、走査領域71の端部のみと重なっている、または、走査領域71の端部に接している。走査領域71は、中心71cを有している。走査領域72は、中心72cを有している。走査領域73は、中心73cを有している。中心72cは、走査領域71,72,73が配列される方向において、中心71c,73cからずれている。中心73cは、走査領域71,72,73が配列される方向において、中心71c,72cからずれている。なお、走査領域71,72,73は必ずしも重なっていなくてもよく、互いに離れていてもよい。
 図8は、走査ミラー40の第1法線に対し入射角度が0度(すなわち第1法線方向と同じ方向)で入射する光ビームが全方位において出射角度が20度となるように(すなわち第1法線に対して20度の位置で円形状を描くように)走査ミラー40を2次元走査(2軸回転)する場合において、光ビームの走査ミラー40への実際の入射角度ごとの走査軌跡の例を示す図である。図8には、実際の入射角度が、第1法線基準で、0度、20度、40度、60度の四つの例が示されている。なお、いずれの入射角度の場合においても走査ミラー40の2次元走査は上述の円形走査である。
 ここで、0度入射として示されている軌跡は、走査ミラー40への実際の入射角度が第1法線基準で0度の光ビームが上記2次元走査によって描く軌跡を表す。また、20度入射として示されている軌跡は、走査ミラー40への実際の入射角度が第1法線基準で-x軸方向に20度の光ビームが上記2次元走査によって描く軌跡を表す。なお、40度入射または60度入射の場合も、同様に、実際の入射角度が第1法線基準でそれぞれ-x軸方向に40度または60度の光ビームの上記2次元走査による軌跡を表す。
 0度入射の場合、光ビームは、上記2次元走査の前提どおり、全方位において出射角度が第1法線基準で20度となる位置に円形状の走査軌跡を描く。なお、図8では、各光ビームが描く軌跡を、x軸とy軸の直交二軸方向での第1法線基準の出射角度で示している。
 これに対して、20度入射の場合、上記2次元走査の前提とした入射角度と実際の入射角度との間に-x軸方向に20度の差が存在することになる。このため、例えば0度入射の光ビームを+x軸方向に20度で出射するための走査ミラー40(反射面のxz平面での傾き角が+10度である走査ミラー40)では、20度入射(第1法線基準で-x軸方向に20度の入射角)の光ビームの、走査ミラー40の反射面への実際の入射角は-x軸方向で30度となる。その結果、20度入射の光ビームが第1法線基準で+x軸方向に40度の角度で出射するように、0度入射の光ビームを+x軸方向に20度で出射するための走査ミラー40は機能する。また、例えば0度入射の光ビームを-x軸方向に20度で出射するための走査ミラー40(反射面のxz平面での傾き角が-10度である走査ミラー40)では、20度入射の光ビームの、走査ミラー40の反射面への実際の入射角は-x軸方向で10度となる。その結果、20度入射の光ビームが第1法線基準でx軸方向に0度の角度で出射するように、0度入射の光ビームを-x軸方向に20度で出射するための走査ミラー40は機能する。図8には、このような20度入射の光ビームの走査軌跡がx軸方向に0度から40度の範囲を移動する様子が示されている。ここで、20度入射の光ビームでは、+x軸方向に約40度の角度で出射するときに、換言すると、走査ミラー40の反射面への光ビームの実際の入射角が約40度と大きくなるときに、光ビームの走査軌跡の歪みが大きくなることが分かる。
 40度入射、60度入射の場合も同様である。例えば、40度入射の場合、上記2次元走査の前提とした入射角度と実際の入射角度との間に-x軸方向に40度の差が存在することになる。このため、例えば0度入射の光ビームを+x軸方向に20度で出射するための走査ミラー40(反射面のxz平面での傾き角が+10度である走査ミラー40)では、40度入射(第1法線基準で-x軸方向に40度の入射角)の光ビームの、走査ミラー40の反射面への実際の入射角は-x軸方向で50度となる。その結果、40度入射の光ビームが第1法線基準で+x軸方向に60度の角度で出射するように、0度入射の光ビームを+x軸方向に20度で出射するための走査ミラー40は機能する。また、例えば0度入射の光ビームを-x軸方向に20度で出射するための走査ミラー40(反射面のxz平面での傾き角が-10度である走査ミラー40)では、40度入射の光ビームの、走査ミラー40の反射面への実際の入射角は-x軸方向で30度となる。その結果、40度入射の光ビームが第1法線基準で+x軸方向に20度の角度で出射するように、0度入射の光ビームを-x軸方向に20度で出射するための走査ミラー40は機能する。図8を見ると、40度入射の光ビームでは、+x軸方向に約60度の角度で出射するときに、換言すると、走査ミラー40の反射面への光ビームの実際の入射角が約50度と大きくなるときに、光ビームの走査軌跡の歪みが大きくなることが分かる。
 さらに、20度入射と40度入射とを比較すると、x軸方向における走査ミラー40への光ビームの入射角が増加するにつれて、光ビームの走査軌跡の歪みが大きくなることが分かる。すなわち、走査ミラー40で光ビームを走査した場合、走査ミラー40への入射角が比較的小さい光ビーム12の走査軌跡はあまり歪まないが、走査ミラー40への入射角が比較的大きい光ビーム22,32の走査軌跡は大きく歪む。このような走査領域の歪みを補正するため、光ビーム走査装置1は、走査領域補正光学部材45を備えている。
 図9から図11は、第1比較例の光ビーム走査装置2を示す。第1比較例の光ビーム走査装置2は、本実施の形態の光ビーム走査装置1と同様の構成を備えているが、主に以下の点で異なっている。第1比較例の光ビーム走査装置2は、走査領域補正光学部材45を備えていない。また、第1比較例の光ビーム走査装置2では、距離Dと距離Dと距離Dとは、互いに等しい。そのため、光ビーム12、22、32に対して与えられるビーム整形作用は等しい。なお、図9から図11では、簡単のために、光ビーム32の図示が省略されている。
 図12は、第1比較例の光ビーム走査装置2によって生成される走査領域を示す説明図である。走査領域の形状として矩形形状が要求されることが多いことから、光ビーム走査装置2は、走査ミラー40の反射面をx軸方向及びy軸方向まわりに二次元に振ることによって、矩形状の走査領域71,72,73を生成している。走査ミラー40への光ビームの入射角が大きくなるほど、光ビームが形成する走査領域の形状の歪みが大きくなる。具体的には、走査ミラー40への光ビーム22の入射角は、走査ミラー40への光ビーム12の入射角より大きい。そのため、図12に示されるように、光ビーム22が形成する走査領域72の形状は、光ビーム12が形成する走査領域71の形状より大きく歪む。走査ミラー40への光ビーム32の入射角は、走査ミラー40への光ビーム12の入射角より大きい。そのため、図12に示されるように、光ビーム32が形成する走査領域73の形状は、光ビーム12が形成する走査領域71の形状より大きく歪む。
 図12において、rはx軸まわりの走査ミラー40の回転角を表し、rはy軸まわりの走査ミラー40の回転角を表す。図12では、走査領域71の中心角度の座標を原点としている。光ビーム22と光ビーム32は光ビーム12の光路を含む垂直面(yz平面)に関して互いに面対称であるため、走査領域72,73もr軸に対して互いに対称でる。図12に示されるように、光ビーム22は走査ミラー40への入射角が比較的小さいため、走査領域71の歪みも小さい。これに対し、光ビーム22,32は走査ミラー40への入射角が比較的大きいため、走査領域72,73は大きく歪んでしまう。また、図8に示される例と同様、走査ミラー40への光ビームの入射角が大きくかつ走査ミラー40の回転角が大きいほど、走査領域の歪みが大きくなる。
 走査領域補正光学部材45は、走査ミラー40で走査された光ビーム12,22,32が形成する走査領域71,72,73の少なくとも一つの形状の歪みを補正する。特定的には、走査領域補正光学部材45は、走査領域71,72,73の少なくとも二つ(例えば、走査領域72,73)の形状の歪みを補正する。さらに特定的には、走査領域補正光学部材45は、走査領域71,72,73の全ての形状の歪みを補正する。
 走査領域補正光学部材45は、光ビームに対する屈折作用または反射作用を利用して、光ビームを偏向する(光ビームの進行方向を変化させる)。例えば、走査領域補正光学部材45への光ビームの入射位置に応じて光ビームに作用する屈折力を異ならせることによって、走査領域の形状は補正され得る。例えば、走査領域補正光学部材45は、走査領域補正光学部材45に入射される光ビームに対し、走査領域補正光学部材45への光ビームの入射位置に応じて異なる屈折力を与える光学部材である。光ビームに対して与える走査領域補正光学部材45の屈折力は、正の屈折力であってもよいし、負の屈折力であってもよい。また、走査領域補正光学部材45は、走査領域補正光学部材45のうちのある位置では光ビームに正の屈折力を与え、走査領域補正光学部材45のうちの別の位置では光ビームに負の屈折力を与えてもよい。走査領域補正光学部材45は、例えば、走査領域補正光学部材45に入射される光ビームが、走査領域補正光学部材45への光ビームの入射位置に応じて定められた方向へ出射されるように、光ビームを偏向してもよい。
 走査領域補正光学部材45は、例えば、自由曲面形状のレンズ(図1から図3を参照)または自由曲面形状のミラーである。走査領域補正光学部材45の自由曲面は、光ビームに適切な偏向作用をもたらして、複数の走査領域を適切な形状に補正する。図16は、本実施の形態の光ビーム走査装置1によって生成される複数の走査領域71,72,73を示す。
 走査領域補正光学部材45は、例えば、光ビーム12,22,32の各々のスロー軸方向に、負の屈折力を有してもよい。このとき、光ビーム22のスロー軸方向における光ビーム22に対する走査領域補正光学部材45の負の屈折力は、光ビーム12のスロー軸方向における光ビーム12に対する走査領域補正光学部材45の負の屈折力より強い。また、光ビーム32のスロー軸方向における光ビーム32に対する走査領域補正光学部材45の負の屈折力は、光ビーム12のスロー軸方向における光ビーム12に対する走査領域補正光学部材45の負の屈折力より強い。そのため、走査領域補正光学部材45は、走査領域72の形状を走査領域71の形状より大きく補正するとともに、走査領域73の形状を走査領域71の形状より大きく補正できる。図16に示されるように、走査領域71,72,73の各々の形状の歪みは低減されて、走査領域71,72,73の各々は、略矩形の形状のような望ましい形状に補正される。
 走査領域補正光学部材45は、例えば、光ビーム12,22,32の各々のスロー軸方向に、正の屈折力を有してもよい。このとき、光ビーム22のスロー軸方向における光ビーム22に対する走査領域補正光学部材45の正の屈折力は、光ビーム12のスロー軸方向における光ビーム12に対する走査領域補正光学部材45の正の屈折力より強い。また、光ビーム32のスロー軸方向における光ビーム32に対する走査領域補正光学部材45の正の屈折力は、光ビーム12のスロー軸方向における光ビーム12に対する走査領域補正光学部材45の正の屈折力より強い。そのため、走査領域補正光学部材45は、走査領域72の形状を走査領域71の形状より大きく補正するとともに、走査領域73の形状を走査領域71の形状より大きく補正できる。図16に示されるように、走査領域71,72,73の各々の形状の歪みは低減されて、走査領域71,72,73の各々は、略矩形の形状のような望ましい形状に補正される。
 走査領域補正光学部材45は、例えば、走査ミラー40への入射角が相対的に小さい光ビーム(例えば、光ビーム12)に対して光学的な効果がほとんど生じないように設計されるとともに、走査ミラー40への入射角が相対的に大きい光ビーム(例えば、光ビーム22,32)に対して大きな光学的な効果が生じるよう設計されてもよい。この光学的な効果は、負の屈折力でもよいし、正の屈折力でもよいし、負の屈折力と正の屈折力の混合(例えば、走査領域補正光学部材45のある位置に入射する光ビームに対しては負の屈折力が与えられ、走査領域補正光学部材45の別の位置に入射する光ビームに対しては正の屈折力が与えられる。)でもよい。
 走査領域補正光学部材45の上記偏向作用に伴って、走査領域補正光学部材45は、光ビームの拡がり角を変化させて、光ビームの平行度を低下させることがある。すなわち、走査領域補正光学部材45は、走査領域の歪み補正のためにプラスの作用として偏向作用を与えるとともに、光ビームの平行度の低下というビーム品質にとってマイナスの作用も与えることがある。一例として、ビーム整形器が光ビームをコリメートしても、走査領域補正光学部材45は、光ビームを発散光または収束光に変換して、光ビームの平行度を低下させる。走査領域補正光学部材45から出射された直後に光ビームが発散光であっても収束光であっても、光ビーム走査装置1から遠く離れた対象物では、光ビームは発散光になる。そのため、走査領域補正光学部材45から出射された光ビームの平行度が低下すると、光ビーム走査装置1から遠く離れた対象物は低い明るさの光ビームで照射されることになって、対象物の位置の測定精度が低下する。
 一方、走査領域補正光学部材45への光ビームの入射位置によって走査領域補正光学部材45が光ビームに与える屈折力が異なる場合、走査領域補正光学部材45への光ビームの入射位置および走査領域補正光学部材45における光ビームの光束径に応じて、走査領域補正光学部材45による、走査領域補正光学部材45から出射する光ビームの拡がり角の変更量が異なる。本実施の形態では、走査領域補正光学部材45による走査領域の歪み補正効果を維持しつつ、ビーム整形器におけるレンズ間距離を調整することによって、走査領域補正光学部材45から出射される光ビームの平行度を向上させている。図13から図15の第2比較例の光ビーム走査装置2bと比べながら、本実施の形態の光ビーム走査装置1における複数のビーム整形器間での前側レンズと後側レンズとの距離の調整例を示す。なお、図13から図15でも、簡単のために、光ビーム32の図示が省略されている。
 図13から図15に示されるように、第2比較例の光ビーム走査装置2bは、第1比較例の光ビーム走査装置2と比べて、走査領域補正光学部材45をさらに備えている。しかし、第2比較例の光ビーム走査装置2bは、第1比較例の光ビーム走査装置2と同様に、距離Dと距離Dと距離Dとは、互いに等しい。なお、他の点は、本実施の形態の光ビーム走査装置1と同様である。
 光ビーム12,22,32の各々の光強度を増加させるために、光源11,21,31として、マルチモードダイオードレーザのような、高い出力を有する光源が採用され得る。このような光源では、光ビーム12,22,32の各々のスロー軸方向における光源11,21,31の各々のエミッタ60の幅W(図4を参照)は、光ビーム12,22,32の各々のファスト軸方向における光源11,21,31の各々のエミッタ60の幅W(図4を参照)よりも大きい。
 図17は、発光点幅Wと、レンズ光学系の焦点距離fと、レンズ光学系を通った光ビームの拡がり角θとの関係を示す図である。一般的に、発光点から出射されてレンズ光学系を通った光ビームの拡がり角θは、以下の式(1)によって与えられる。発光点幅Wが大きくなるほど、レンズ光学系を通った後の光ビームの拡がり角θは大きくなる。レンズ光学系の焦点距離fが長くなるほど、レンズ光学系を通った後の光ビームの拡がり角θは小さくなる。
  θ≒W/f …(1)
 本開示では、発光点幅Wは、光源のエミッタの幅に対応する。レンズ光学系は、ビーム整形器が備える前側レンズと後側レンズの組み合わせによる合成レンズに対応する。光ビームの拡がり角θは、ビーム整形器から出射される光ビーム12,22,32の各々の拡がり角に対応する。したがって、光ビーム12のスロー軸方向におけるビーム整形器13(合成レンズ)の焦点距離が、光ビーム12のファスト軸方向におけるビーム整形器13(合成レンズ)の焦点距離に等しい場合、ビーム整形器13を通った光ビーム12のスロー軸方向における拡がり角は、ビーム整形器13を通った光ビーム12のファスト軸方向における拡がり角より大きくなる。同様のことは、光ビーム22,32にも当てはまる。
 式(1)に照らすと、ファスト軸方向におけるエミッタ60の幅W(以下、「発光点幅Wf」ともいう。)が十分に小さく、ファスト軸方向においてエミッタ60を光学的に点とみなせる場合、各ビーム整形器のファスト軸方向の焦点距離(前側レンズ及び後側レンズの合成焦点距離)が短くても、ファスト軸方向における各光ビームの拡がり角は十分小さい。したがって、ファスト軸方向における各ビーム整形器のビーム整形を主として前側レンズが担うとともに、各ビーム整形器において前側レンズのファスト軸方向の焦点距離を短くしてもよい(すなわち、各ビーム整形器において前側レンズの正の屈折力を強くしてもよい。)。こうして、ファスト軸方向における各光ビームの拡がり角を十分小さくするとともに、ファスト軸方向における各光ビームの光束径を小さくすることができる。
 これに対し、スロー軸方向におけるエミッタ60の幅W(以下、「発光点幅Ws」ともいう」)は十分に大きく、スロー軸方向においてエミッタ60を光学的にも点としてみなすことができない。そこで、式(1)に照らして、各ビーム整形器のスロー軸方向の焦点距離(前側レンズ及び後側レンズの合成焦点距離)を長くすることによって、スロー軸方向における各光ビームの拡がり角を小さくする。しかし、各ビーム整形器のスロー軸方向の焦点距離が長くなるにつれて、各ビーム整形器から出射される各光ビームの光束径は大きくなる。そのため、スロー軸方向では、走査領域補正光学部材45のマイナスの作用(例えば、光ビームの平行度の低下をもたらす走査領域補正光学部材45の曲率の効果)が大きくなる。
 光ビームの平行度と光ビームの光束径と間の上記関係に基づいて、ビーム整形器は、以下のように設計されている。具体的には、ファスト軸方向では、前側レンズにのみ正の屈折力を与え、前側レンズの焦点距離F1fを短くする。そのため、ファスト軸方向では、走査領域補正光学部材45における各光ビームの平行度は高く、かつ、走査領域補正光学部材45における各光ビームの光束径は小さい。光ビーム12だけでなく、走査ミラー40への入射角が大きくなる光ビーム22,32も、走査領域補正光学部材45の曲率の効果を受けにくくすることができる。また、光源モジュール毎に光源と前側レンズとの距離を調整する必要がなくなる。
 これに対し、スロー軸方向では、走査領域補正光学部材45における各光ビームの光束径は大きい。また、走査領域補正光学部材45によって、走査領域72,73の各々は、走査領域71よりも大きく補正される。そのため、スロー軸方向では、走査ミラー40への入射角が大きくなる光ビーム22,32が、光ビーム12よりも、走査領域補正光学部材45のマイナスの作用(走査領域補正光学部材45の曲率の効果)を大きく受ける。
 そこで、本実施の形態では、走査領域補正光学部材45のマイナスの作用(走査領域補正光学部材45の曲率の効果)の強さに応じて、前側レンズに対する後側レンズの位置を調整している。走査領域補正光学部材45のマイナスの作用の強さに応じて、ビーム整形器から出射される光ビームのスロー軸方向における焦点距離が変化して、ビーム整形器から出射される光ビームのスロー軸方向における拡がり角が変化する。走査領域補正光学部材45のマイナスの作用の少なくとも一部は、ビーム整形器から出射される光ビームのスロー軸方向における拡がり角によって相殺される。こうして、走査領域補正光学部材45における各光ビームの平行度が向上する。走査領域補正光学部材45から出射される光ビームの品質を向上させることができる。なお、各ビーム整形器は、走査領域補正光学部材45に入射される複数の光ビームの各々のファスト軸方向の光束径を、スロー軸方向の光束径よりも小さくする作用を有してもよい。
 図1から図3に示される本実施の形態の例では、走査領域補正光学部材45は、走査ミラー40への入射角が光ビーム12よりも大きい光ビーム22,32に対してスロー軸方向において負の屈折力を与える。この場合、ビーム整形器23,33における前側レンズと後側レンズの距離を、ビーム整形器13における前側レンズと後側レンズの距離よりも大きくする。すなわち、距離D<距離Dかつ距離D<距離Dとなるように、後側レンズ15,25,35は、前側レンズ14,24,34に対して配置される。例えば、走査領域補正光学部材45による曲率(負の屈折力)の効果の量に従って、後側レンズを焦点位置(ビーム整形器が発光点に物側焦点を結ぶ位置)から故意に出射側にずらすことで、当該効果を補正してもよい。これにより、ビーム整形器23,33は、スロー軸方向において収束する光ビームを出射する。スロー軸方向において収束する光ビームがビーム整形器23,33から出射されても、スロー軸方向における走査領域補正光学部材45の負の屈折力により、走査領域補正光学部材45から略平行光の光ビームが出射される。
 図1から図3に示される本実施の形態の例では、スロー軸方向と一致するx軸方向において収束する光ビーム22,32がビーム整形器23,33から出射され、かつ、x軸方向において平行な光ビーム12がビーム整形器13から出射されている。そして、略平行光の光ビーム12,22,32が走査領域補正光学部材45から出射されている。これに対して、図13から図15に示される第2比較例の光ビーム走査装置2bでは、スロー軸方向と一致するx軸方向において略平行な光ビーム12,22がビーム整形器13,23から出射されている。そして、略平行な光ビーム12と発散光である光ビーム22とが、走査領域補正光学部材45から出射されている。なお、図13から図15では、光ビーム32が示されていないが、光ビーム32は、光ビーム22と同様に、発散光として、走査領域補正光学部材45から出射される。
 図18から図20に示される本実施の形態の別の例である光ビーム走査装置1bでは、走査領域補正光学部材45は、走査ミラー40への入射角が光ビーム12よりも大きい光ビーム22,32に対してスロー軸方向において正の屈折力を与える。この場合、ビーム整形器23,33における前側レンズと後側レンズの距離を、ビーム整形器13における前側レンズと後側レンズの距離よりも小さくする。すなわち、距離D>距離Dかつ距離D>距離Dとなるように、後側レンズ15,25,35は、前側レンズ14,24,34に対して配置される。例えば、走査領域補正光学部材45による曲率(正の屈折力)の効果の量に従って、後側レンズを焦点位置から故意に入射側にずらすことで、当該効果を補正してもよい。これにより、ビーム整形器23,33は、スロー軸方向において発散する光ビームを出射する。スロー軸方向において発散する光ビームがビーム整形器23,33から出射されても、スロー軸方向における走査領域補正光学部材45の正の屈折力により、走査領域補正光学部材45から略平行光の光ビームが出射される。
 図18から図20に示される本実施の形態の別の例では、スロー軸方向と一致するx軸方向において発散する光ビーム22,32がビーム整形器23,33から出射され、かつ、x軸方向において平行な光ビーム12がビーム整形器13から出射されている。そして、略平行光の光ビーム12,22,32が走査領域補正光学部材45から出射されている。これに対して、図21および図22に示される第3比較例の光ビーム走査装置2cでは、距離D、距離D及び距離Dは互いに等しく、スロー軸方向と一致するx軸方向において略平行な光ビーム12,22,32がビーム整形器13,23,33から出射されている。そして、略平行な光ビーム12と収束光である光ビーム22とが、走査領域補正光学部材45から出射されている。なお、図21および図22では、光ビーム32が示されていないが、光ビーム32は、光ビーム22と同様に、収束光として、走査領域補正光学部材45から出射されている。
 本実施の形態では、ファスト軸方向における光ビームの光束径が小さいため、ファスト軸方向における光ビームへの走査領域補正光学部材45の作用は無視し得る。
 走査領域補正光学部材45から出射される光ビームのすべてが平行化される必要はない。光ビーム走査装置1,1bから走査される対象物までの距離、及び、求められる光ビームの品質等に応じて、走査領域補正光学部材45から出射される各光ビームの平行度(拡がり角)は適宜調整され得る。
 第2比較例の光ビーム走査装置2b(図13から図15を参照)及び第3比較例の光ビーム走査装置2c(図20及び図21を参照)では、各ビーム整形器間で前側レンズと後側レンズの距離が等しいため、走査領域補正光学部材45に入射する光ビームの平行度(拡がり角)は互いに等しい。そして、走査領域補正光学部材45の周辺部における屈折力は、走査領域補正光学部材45の中央部における屈折力よりも強い。そのため、走査領域補正光学部材45から出射する光ビーム12が略平行光となるように各ビーム整形器の前側レンズと後側レンズの距離を設定すると、走査領域補正光学部材45から出射された光ビーム22,32の各々は、スロー軸方向において発散または収束してしまう。一方、走査領域補正光学部材45から出射する光ビーム22,32が略平行光となるように各ビーム整形器の前側レンズと後側レンズの距離を設定すると、走査領域補正光学部材45から出射された光ビーム12は、発散または収束してしまう。
 これに対して、本実施の形態の光ビーム走査装置1,1bでは、走査領域補正光学部材45によって光ビームに与えられる光学的な作用に応じて、ビーム整形器間で前側レンズと後側レンズとの距離(図3に示される距離D,D,D)を変えている。そのため、光ビーム走査装置1,1bから出射される各光ビームの平行度を向上させることができる。光ビーム走査装置1,1bは、高品質の光ビームを出射することができる。
 <変形例>
 光源モジュール30及び反射ミラー37と、光源モジュール20及び反射ミラー27とは、光ビーム12の光路を含む垂直面に関して、非対称に配置されてもよい。例えば、走査ミラー40に対する光ビーム32の入射角は走査ミラー40に対する光ビーム22の入射角と異なっており、かつ、距離Dは距離Dと異なっていてもよい。例えば、走査ミラー40に対する光ビーム32の入射角が走査ミラー40に対する光ビーム22の入射角より大きく、かつ、走査領域補正光学部材45が走査ミラー40への入射角がより大きい光ビーム32に対してより強い負の屈折力を与えるものである場合、距離Dは距離Dより大きくてもよい。また、例えば、走査ミラー40に対する光ビーム32の入射角が走査ミラー40に対する光ビーム22の入射角より大きく、かつ、走査領域補正光学部材45が走査ミラー40への入射角がより大きい光ビーム32に対してより強い正の屈折力を与えるものである場合、距離Dは距離Dより小さくてもよい。
 光ビーム32のファスト軸方向は、光ビーム22のファスト軸方向に平行であってもよいし、光ビーム12のファスト軸方向に非平行であってもよい。光ビーム32のスロー軸方向は、光ビーム22のスロー軸方向に平行であってもよいし、光ビーム22のスロー軸方向に非平行であってもよい。
 光源モジュール10,20,30の数、反射ミラー17,27,37の数は、いずれも三つに限られない。
 本実施の形態の光ビーム走査装置1,1bの効果を説明する。
 本実施の形態の光ビーム走査装置1,1bは、複数の光源(例えば、光源11,21,31)と、複数のビーム整形器(例えば、ビーム整形器13,23,33)と、走査ミラー40と、走査領域補正光学部材45とを備える。複数の光源は、複数の光ビーム(例えば、光ビーム12,22,32)を出射する。複数の光ビームの各々は、複数の光源のうち対応する光源から出射され、かつ、スロー軸方向よりもファスト軸方向において大きな光束径を有している。複数のビーム整形器の各々は、複数の光源のうち対応する光源に対して設けられ、かつ、対応する光源から出射される光ビームを整形する。走査ミラー40は、複数のビーム整形器によって整形された複数の光ビームを走査する。走査領域補正光学部材45は、走査ミラー40によって走査された複数の光ビームが形成する複数の走査領域の少なくともいずれかを補正する。複数のビーム整形器の各々は、第1レンズ(例えば、前側レンズ14,24,34)と、第2レンズ(例えば、後側レンズ15,25,35)とを含む。第1レンズは、第2レンズよりも、複数の光源のうち対応する光源の側に配置される。複数のビーム整形器の各々は、スロー軸方向およびファスト軸方向において複数の光ビームのうち対応する光ビームに対して正の屈折力を与える。複数のビーム整形器の各々は、ファスト軸方向において焦点距離Ffを有するとともに、スロー軸方向において焦点距離Fsより大きい焦点距離Fsを有する。少なくとも一つの方向において、走査ミラー40が走査ミラー40の回転範囲の中心にあるときの複数の光ビームのうちの一つである第1光ビーム(例えば、光ビーム12)の走査ミラー40への入射角θ1は、走査ミラー40が走査ミラー40の回転範囲の中心にあるときの複数の光ビームのうちの一つである第2光ビーム(例えば、光ビーム22)の走査ミラー40への入射角θ2と異なる。複数のビーム整形器の一つでありかつ第1光ビームを整形する第1ビーム整形器(例えば、ビーム整形器13)における第1レンズ(例えば、前側レンズ14)と第2レンズ(例えば、後側レンズ15)との間の距離Dは、複数のビーム整形器の一つでありかつ第2光ビームを整形する第2ビーム整形器(例えば、ビーム整形器23)における第1レンズ(例えば、前側レンズ24)と第2レンズ(例えば、後側レンズ25)との間の距離Dと異なる。
 本実施の形態の光ビーム走査装置1,1bは、走査領域補正光学部材45を備えている。そのため、光ビーム走査装置1,1bは、走査ミラー40への入射角の違いによる走査領域(例えば、走査領域71,72,73)の歪み等を補正することができる。また、光ビーム走査装置1,1bはビーム整形器(例えば、ビーム整形器13,23,33)を備え、ビーム整形器は、第1レンズ(例えば、前側レンズ14,24,34)と第2レンズ(例えば、後側レンズ15,25,35)とを含む。走査ミラー40への入射角が互いに異なる二つの光ビーム(例えば、光ビーム12,22)を整形する二つのビーム整形器(例えば、ビーム整形器13,23)の間で、第1レンズと第2レンズ間の距離を異ならせている。そのため、走査領域補正光学部材45から出射される光ビームの平行度が向上するなど、走査領域補正光学部材45から出射される光ビームの品質が改善される。
 換言すると、複数の走査領域を有する光ビーム走査装置1,1bにおいて、走査領域の歪み等を補正する走査領域補正光学部材45を備える場合に、走査ミラー40への入射角が異なる少なくとも二つの光ビームに対し設けられるビーム整形器の間でレンズ間距離を異ならせることで、走査領域補正光学部材45の第1の作用である光ビームの偏向による走査領域の補正効果を得つつ、走査領域補正光学部材45の上記第1の作用に付随する第2の作用である出射光における発散角の変動による影響(ここでは、出射光の発散または収束)を低減することができる。
 本実施の形態の光ビーム走査装置1では、入射角θ2は、入射角θ1より大きい。走査領域補正光学部材45は、スロー軸方向において第2光ビームに対して負の屈折力を与える。距離Dは、距離Dより大きい。
 そのため、光ビーム走査装置1は、走査領域(例えば、走査領域71,72,73)の歪み等を補正することができるとともに、走査領域補正光学部材45から出射される光ビームの品質を改善することができる。
 本実施の形態の光ビーム走査装置1bでは、入射角θ2は、入射角θ1より大きい。走査領域補正光学部材45は、スロー軸方向において第2光ビームに対して正の屈折力を与える。距離Dは、距離Dより小さい。
 そのため、光ビーム走査装置1bは、走査領域(例えば、走査領域71,72,73)の歪み等を補正することができるとともに、走査領域補正光学部材45から出射される光ビームの品質を改善することができる。
 本実施の形態の光ビーム走査装置1,1bでは、第1レンズ(例えば、前側レンズ14,24,34)は、ファスト軸方向において正の屈折力を有している。第2レンズ(例えば、後側レンズ15,25,35)は、スロー軸方向において正の屈折力を有している。スロー軸方向における第2レンズの焦点距離F2sは、ファスト軸方向における第1レンズの焦点距離F1fよりも大きい。
 そのため、スロー軸方向における光ビームの平行度は、向上減少する。また、走査領域補正光学部材45におけるファスト軸方向の光ビームの光束径は、走査領域補正光学部材45におけるスロー軸方向の光ビームの光束径より小さくなる。走査領域補正光学部材45に起因するファスト軸方向における光ビームの平行度の低下は、無視し得る。走査領域補正光学部材45から出射される光ビームの品質を改善することができる。
 本実施の形態の光ビーム走査装置1,1bでは、第2レンズ(例えば、後側レンズ15,25,35)は、ファスト軸方向においてゼロの屈折力を有する。
 そのため、第2レンズ(例えば、後側レンズ15,25,35)を移動させることによって、ファスト軸方向における光ビームの平行度に影響を与えることなく、第1レンズ(例えば、前側レンズ14,24,34)と第2レンズとの間の距離(例えば、距離D,D,D)は調整され得る。走査領域補正光学部材45に起因する光ビームの平行度が向上する。走査領域補正光学部材45から出射される光ビームの品質を改善することができる。
 本実施の形態の光ビーム走査装置1,1bでは、第1レンズ(例えば、前側レンズ14,24,34)は、スロー軸方向において負の屈折力を有する。
 そのため、ビーム整形器(例えば、ビーム整形器13,23,33)は、小型化され得る。光ビーム走査装置1,1bは、小型化され得る。
 本実施の形態の光ビーム走査装置1,1bでは、スロー軸方向における第1レンズ(例えば、前側レンズ14,24,34)に入射する光ビームの発散角は、ファスト軸方向における第1レンズに入射する光ビームの発散角より小さい。スロー軸方向における第2レンズ(例えば、後側レンズ15,25,35)に入射する光ビームの発散角は、ファスト軸方向における第2レンズに入射する光ビームの発散角より大きい。
 そのため、走査領域(例えば、走査領域71,72,73)の歪み等を補正することができるとともに、走査領域補正光学部材45から出射される光ビームの品質を改善することができるという効果が、より得やすくなる。
 本実施の形態の光ビーム走査装置1,1bでは、複数の光源(例えば、光源11,21,31)の各々は、マルチモードレーザダイオードである。スロー軸方向におけるマルチモードレーザダイオードのエミッタ幅は、ファスト軸方向におけるマルチモードレーザダイオードのエミッタ幅より大きい。
 そのため、光ビーム(例えば、光ビーム12,22,32)のパワーを増加させることができる。光ビーム走査装置1,1bは、より遠方にある対象物を走査することができる。
 本実施の形態の光ビーム走査装置1,1bでは、走査領域補正光学部材45に入射される複数の光ビームの各々は、ファスト軸方向における光束径と、スロー軸方向における光束径とを有し、ファスト軸方向における光束径はスロー軸方向における光束径よりも小さい。
 そのため、ファスト軸方向において、走査領域補正光学部材45に起因する光ビームの平行度の低下は、無視し得る。走査領域補正光学部材45から出射される光ビームの品質を改善することができる。
 本実施の形態の光ビーム走査装置1,1bでは、走査領域補正光学部材45は、自由曲面形状のレンズまたは自由曲面形状のミラーである。
 走査領域補正光学部材45の自由曲面は、光ビームに適切な偏向作用をもたらして、複数の走査領域を適切な形状に補正することができる。
 本実施の形態の光ビーム走査装置1,1bでは、走査領域補正光学部材45が第1光ビームに与える拡がり角の変更量は、走査領域補正光学部材45が第2光ビームに与える拡がり角の変更量と異なる。
 そのため、走査領域補正光学部材45から出射される光ビームの平行度が向上する。走査領域補正光学部材45から出射される光ビームの品質を改善することができる。
 本実施の形態の光ビーム走査装置1,1bでは、複数の光源は、第1光源(例えば、光源11)と、第2光源(例えば、光源21)と、第3光源(例えば、光源31)とを含む。第1光源が出射する光ビーム(例えば、光ビーム12)の走査ミラー40への入射角は、第2光源が出射する光ビーム(例えば、光ビーム22)の走査ミラー40への入射角または第3光源が出射する光ビーム(例えば、光ビーム32)の走査ミラー40への入射角の少なくとも一つと異なる。
 そのため、走査ミラー40への入射角の違いによる走査領域補正光学部材45から出射される光ビームの平行度が向上する。走査領域補正光学部材45から出射される光ビームの品質を改善することができる。
 本実施の形態の光ビーム走査装置1,1bでは、少なくとも一つの方向は、走査ミラーの回転軸に垂直な一つの方向、複数の光ビーム間で走査ミラーへの入射角の異なりが最も大きくなる方向、または、複数の走査領域の長手方向である。
 走査領域の歪みが大きくなりやすい方向を選択することによって、走査領域(例えば、走査領域71,72,73)の歪み等を補正することができるとともに、走査領域補正光学部材45から出射される光ビームの品質を改善することができるという効果が、より得やすくなる。
 本実施の形態の光ビーム走査装置1,1bでは、複数の走査領域は、複数の走査領域の各々より拡張されている。
 そのため、光ビーム走査装置1,1bは、より広い領域を走査することができる。
 本実施の形態の光ビーム走査装置1,1bでは、複数の走査領域は、複数の中心を有している。複数の中心の各々は、複数の走査領域のうち対応する走査領域の中心である。複数の中心の位置は、互いに異なる。
 そのため、光ビーム走査装置1,1bは、より広い領域を走査することができる。
 実施の形態2.
 図23を参照して、実施の形態2の測距装置3を説明する。図23は、実施の形態3の測距装置3の例を示す概略図である。図23に示されるように、測距装置3は、実施の形態1の光ビーム走査装置1と、受光光学系81と、受光装置82と、コンピュータ83と、筐体87とを備える。
 受光光学系81は、光ビーム12,22,32がそれぞれ対象物88で反射または散乱されることによって生成される戻り光12r,22r,32rを、受光装置82に導く。受光光学系81は、例えば、集光レンズを含む。受光装置82は、戻り光12r,22r,32rを受光する。受光装置82は、例えば、アバランシェフォトダイオードまたは単一光子アバランシェフォトダイオードのようなフォトダイオードである。
 コンピュータ83は、コントローラ84と、演算器85と、ROMまたはハードディスクのような記憶装置86とを含む。コントローラ84と演算器85とは、例えば、コンピュータ83に含まれる、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、または、FPGA(field-programmable gate array)のようなプロセッサである。
 コントローラ84は、光源11,21,31、走査ミラー40及び受光装置82に通信可能に接続されている。コントローラ84は、測距装置3を制御する。
 具体的には、コントローラ84は、光源11,21,31を制御して、光源11,21,31からパルス状の光ビーム12,22,32が出射するタイミングを制御する。コントローラ84は、光源11,21,31から、光源11,21,31が光ビーム12,22,32を出射した第1タイミングを受信する。第1タイミングは、光源11が光ビーム12を出射したタイミングと、光源21が光ビーム22を出射したタイミングと、光源31が光ビーム32を出射したタイミングとを含む。
 コントローラ84は、走査ミラー40を制御する。コントローラ84は、走査ミラー40の傾き角(例えば、走査ミラー40の反射面の法線の角度)を受信する。コントローラ84は、受光装置82が受光した戻り光12r,22r,32rの光量に応じた信号を、受光装置82から受信する。コントローラ84は、受光装置82が戻り光12r,22r,32rを受光した第2タイミングを受信する。第2タイミングは、受光装置82が戻り光12rを受光したタイミングと、受光装置82が戻り光22rを受光したタイミングと、受光装置82が戻り光32rを受光したタイミングとを含む。
 演算器85は、光ビーム12,22,32の出射方向、光源11,21,31が光ビーム12,22,32を出射した第1タイミング、及び、受光装置82が戻り光12r,22r,32rを受光した第2タイミングに基づいて、対象物88の方向と距離とを算出する。
 具体的には、演算器85は、コントローラ84が受信した走査ミラー40の傾き角と記憶装置86に格納されている走査ミラー40に対する光源11,21,31の位置とから、光ビーム12,22,32の出射方向を算出する。演算器85は、コントローラ84から、光源11,21,31が光ビーム12,22,32を出射した第1タイミングを受信する。演算器85は、コントローラ84から、戻り光12r,22r,32rを受光装置82が受光した第2タイミングを受信する。
 演算器85は、光ビーム12,22,32の出射方向と第1タイミングと第2タイミングとに基づいて、測距装置3から対象物88まで距離と、測距装置3に対する対象物88の方向とを算出する。演算器85は、測距装置3から対象物88まで距離と測距装置3に対する対象物88の方向とを含む対象物88の距離画像を生成する。演算器85は、対象物88の距離画像を、記憶装置86またはコンピュータ83に通信可能に接続されている表示装置(図示せず)に出力する。表示装置は、対象物88の距離画像を表示する。
 筐体87は、光ビーム走査装置1と、受光光学系81と、受光装置82と、コンピュータ83とを収容する。筐体87には、光ビーム12,22,32及び戻り光12r,22r,32rを透過させる透明窓(図示せず)が設けられている。コンピュータ83は、筐体87の外部に配置されてもよい。
 測距装置3は、実施の形態1の光ビーム走査装置1に代えて、光ビーム走査装置1bを備えてもよい。
 本実施の形態の測距装置3の効果は、実施の形態1の光ビーム走査装置1,1bの効果に加えて、以下の効果を奏する。
 本実施の形態の測距装置3は、光ビーム走査装置1または光ビーム走査装置1bと、受光装置82と、演算器85とを備える。受光装置82は、第1光ビーム(例えば、光ビーム12)が対象物88で反射または散乱されることによって生成される第1戻り光(例えば、戻り光12r)と、第2光ビーム(例えば、光ビーム22)が対象物88で反射または散乱されることによって生成される第2戻り光(例えば、戻り光22r)とを受光する。演算器85は、第1光ビームの第1出射方向、第2光ビームの第2出射方向、第1光源(例えば、光源11)が第1光ビームを出射した第1出射タイミング、第2光源(例えば、光源21)が第2光ビームを出射した第2出射タイミング、受光装置82が第1戻り光を受光した第1受光タイミング、及び、受光装置82が第2戻り光を受光した第2受光タイミングに基づいて、対象物88の方向と距離とを算出する。
 測距装置3は、光ビーム走査装置1または光ビーム走査装置1bを備えている。そのため、第1光ビーム(例えば、光ビーム12)と第2光ビーム(例えば、光ビーム22)とを用いて、向上された精度で、対象物88の位置を測定することができる。
 今回開示された実施の形態1及び実施の形態2はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1,1b,2,2b,2c 光ビーム走査装置、3 測距装置、10,20,30 光源モジュール、11,21,31 光源、12,22,32 光ビーム、12r,22r,32r 戻り光、13,23,33 ビーム整形器、14,24,34 前側レンズ、15,25,35 後側レンズ、17,27,37 反射ミラー、40 走査ミラー、45 走査領域補正光学部材、51 基板、52,54 クラッド層、53 活性層、55 リッジ部、56,57 電極、59 絶縁層、60 エミッタ(発光点)、71,72,73 走査領域、71c,72c,73c 中心、81 受光光学系、82 受光装置、83 コンピュータ、84 コントローラ、85 演算器、86 記憶装置、87 筐体、88 対象物。

Claims (16)

  1.  複数の光ビームを出射する複数の光源を備え、前記複数の光ビームの各々は、前記複数の光源のうち対応する光源から出射され、かつ、スロー軸方向よりもファスト軸方向において大きな光束径を有しており、
     複数のビーム整形器をさらに備え、前記複数のビーム整形器の各々は、前記複数の光源のうち対応する光源に対して設けられ、かつ、前記対応する光源から出射される光ビームを整形し、
     前記複数のビーム整形器によって整形された前記複数の光ビームを走査する走査ミラーと、
     前記走査ミラーによって走査された前記複数の光ビームが形成する複数の走査領域の少なくともいずれかを補正する走査領域補正光学部材とをさらに備え、
     前記複数のビーム整形器の各々は、第1レンズと、第2レンズとを含み、前記第1レンズは、前記第2レンズよりも、前記複数の光源のうち対応する光源の側に配置され、
     前記複数のビーム整形器の各々は、前記スロー軸方向および前記ファスト軸方向において前記複数の光ビームのうち対応する光ビームに対して正の屈折力を与え、前記複数のビーム整形器の各々は、前記ファスト軸方向において焦点距離Ffを有するとともに、前記スロー軸方向において前記焦点距離Fsより大きい焦点距離Fsを有し、
     少なくとも一つの方向において、前記走査ミラーが前記走査ミラーの回転範囲の中心にあるときの前記複数の光ビームのうちの一つである第1光ビームの前記走査ミラーへの入射角θ1は、前記走査ミラーが前記回転範囲の前記中心にあるときの前記複数の光ビームのうちの一つである第2光ビームの前記走査ミラーへの入射角θ2と異なり、
     前記複数のビーム整形器の一つでありかつ前記第1光ビームを整形する第1ビーム整形器における前記第1レンズと前記第2レンズとの間の距離Dは、前記複数のビーム整形器の一つでありかつ前記第2光ビームを整形する第2ビーム整形器における前記第1レンズと前記第2レンズとの間の距離Dと異なる、光ビーム走査装置。
  2.  前記入射角θ2は、前記入射角θ1より大きく、
     前記走査領域補正光学部材は、前記スロー軸方向において前記第2光ビームに対して負の屈折力を与え、
     前記距離Dは、前記距離Dより大きい、請求項1に記載の光ビーム走査装置。
  3.  前記入射角θ2は、前記入射角θ1より大きく、
     前記走査領域補正光学部材は、前記スロー軸方向において前記第2光ビームに対して正の屈折力を与え、
     前記距離Dは、前記距離Dより小さい、請求項1に記載の光ビーム走査装置。
  4.  前記第1レンズは、前記ファスト軸方向において正の屈折力を有し、
     前記第2レンズは、前記スロー軸方向において正の屈折力を有し、
     前記スロー軸方向における前記第2レンズの焦点距離F2sは、前記ファスト軸方向における前記第1レンズの焦点距離F1fよりも大きい、請求項1から請求項3のいずれか一項に記載の光ビーム走査装置。
  5.  前記第2レンズは、前記ファスト軸方向においてゼロの屈折力を有する、請求項4に記載の光ビーム走査装置。
  6.  前記第1レンズは、前記スロー軸方向において負の屈折力を有する、請求項4または請求項5に記載の光ビーム走査装置。
  7.  前記スロー軸方向における前記第1レンズに入射する前記光ビームの発散角は、前記ファスト軸方向における前記第1レンズに入射する前記光ビームの発散角より小さく、
     前記スロー軸方向における前記第2レンズに入射する前記光ビームの発散角は、前記ファスト軸方向における前記第2レンズに入射する前記光ビームの発散角より大きい、請求項4から請求項6のいずれか一項に記載の光ビーム走査装置。
  8.  前記複数の光源の各々は、マルチモードレーザダイオードであり、
     前記スロー軸方向における前記マルチモードレーザダイオードのエミッタ幅は、前記ファスト軸方向における前記マルチモードレーザダイオードのエミッタ幅より大きい、請求項1から請求項7のいずれか一項に記載の光ビーム走査装置。
  9.  前記走査領域補正光学部材に入射される前記複数の光ビームの各々は、前記ファスト軸方向における光束径と前記スロー軸方向における光束径とを有し、前記ファスト軸方向における光束径は前記スロー軸方向における光束径よりも小さい、請求項1から請求項8のいずれか一項に記載の光ビーム走査装置。
  10.  前記走査領域補正光学部材は、自由曲面形状のレンズまたは自由曲面形状のミラーである、請求項1から請求項9のいずれか一項に記載の光ビーム走査装置。
  11.  前記走査領域補正光学部材が前記第1光ビームに与える拡がり角の変更量は、前記走査領域補正光学部材が前記第2光ビームに与える拡がり角の変更量と異なる、請求項1から請求項10のいずれか一項に記載の光ビーム走査装置。
  12.  前記複数の光源は、第1光源と、第2光源と、第3光源とを含み、
     前記第1光源が出射する前記光ビームの前記走査ミラーへの入射角は、前記第2光源が出射する前記光ビームの前記走査ミラーへの入射角または前記第3光源が出射する前記光ビームの前記走査ミラーへの入射角の少なくとも一つと異なる、請求項1から請求項10のいずれか一項に記載の光ビーム走査装置。
  13.  前記少なくとも一つの方向は、前記走査ミラーの回転軸に垂直な一つの方向、前記複数の光ビーム間で前記走査ミラーへの入射角の異なりが最も大きくなる方向、または、前記複数の走査領域の長手方向である、請求項1から請求項12のいずれか一項に記載の光ビーム走査装置。
  14.  前記複数の走査領域は、前記複数の走査領域の各々より拡張されている、請求項1から請求項13のいずれか一項に記載の光ビーム走査装置。
  15.  前記複数の走査領域は、複数の中心を有しており、
     前記複数の中心の各々は、前記複数の走査領域のうち対応する走査領域の中心であり、
     前記複数の中心の位置は、互いに異なる、請求項1から請求項14のいずれか一項に記載の光ビーム走査装置。
  16.  請求項1から請求項15のいずれか一項に記載の前記光ビーム走査装置と、
     前記光ビーム走査装置から出射された光ビームが対象物に照射されることによって生成される戻り光を受光する受光装置と、
     受光された前記戻り光に基づき、前記対象物までの距離を算出する演算器とを備える、測距装置。
PCT/JP2022/001602 2022-01-18 2022-01-18 光ビーム走査装置及び測距装置 WO2023139645A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001602 WO2023139645A1 (ja) 2022-01-18 2022-01-18 光ビーム走査装置及び測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001602 WO2023139645A1 (ja) 2022-01-18 2022-01-18 光ビーム走査装置及び測距装置

Publications (1)

Publication Number Publication Date
WO2023139645A1 true WO2023139645A1 (ja) 2023-07-27

Family

ID=87347979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001602 WO2023139645A1 (ja) 2022-01-18 2022-01-18 光ビーム走査装置及び測距装置

Country Status (1)

Country Link
WO (1) WO2023139645A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294888A (ja) * 1989-05-10 1990-12-05 Fujitsu Ltd 読取装置
US20110128524A1 (en) * 2009-11-30 2011-06-02 General Electric Company Light detection and ranging system
WO2016056545A1 (ja) * 2014-10-09 2016-04-14 コニカミノルタ株式会社 走査光学系及び投受光装置
WO2018147454A1 (ja) * 2017-02-09 2018-08-16 コニカミノルタ株式会社 走査型の光学系及びレーザーレーダー装置
JP2019160624A (ja) * 2018-03-14 2019-09-19 パナソニックIpマネジメント株式会社 光源装置および投光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294888A (ja) * 1989-05-10 1990-12-05 Fujitsu Ltd 読取装置
US20110128524A1 (en) * 2009-11-30 2011-06-02 General Electric Company Light detection and ranging system
WO2016056545A1 (ja) * 2014-10-09 2016-04-14 コニカミノルタ株式会社 走査光学系及び投受光装置
WO2018147454A1 (ja) * 2017-02-09 2018-08-16 コニカミノルタ株式会社 走査型の光学系及びレーザーレーダー装置
JP2019160624A (ja) * 2018-03-14 2019-09-19 パナソニックIpマネジメント株式会社 光源装置および投光装置

Similar Documents

Publication Publication Date Title
JP7501864B2 (ja) コリメートを行うカバー要素によって覆われたスキャンミラーを備えた送信器
EP2940489B1 (en) Object detection device and sensing apparatus
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
US8919002B2 (en) Laser system for creating a linear laser marking
JP7422313B2 (ja) ラインビーム走査光学系およびレーザレーダ
JP2021535996A (ja) 光検出および測距、すなわち、lidar測定のための同軸設定
WO2023139645A1 (ja) 光ビーム走査装置及び測距装置
CN117063085A (zh) 光学***及光扫描装置
KR101821983B1 (ko) 근원거리 겸용 라이다
US6744720B2 (en) Optical element and optical pick-up
WO2021147562A1 (zh) 漫射装置
JP3451467B2 (ja) 2ビーム走査用光源装置
JP2021067895A (ja) レーザスキャニング装置
KR101057458B1 (ko) 드릴링 장치 및 드릴링 방법
JP2009251381A (ja) レーザ照射装置
WO2024075599A1 (ja) 光照射装置、光測距装置および車両
JP7483016B2 (ja) 測距装置
TWI696032B (zh) 具有可調整視場角或有效區域範圍的3d感測相機
WO2022018819A1 (ja) 光源装置
JP7196769B2 (ja) レーザ走査式映像装置
WO2022244571A1 (ja) 光走査装置
WO2024048242A1 (ja) 測距装置
WO2021192601A1 (ja) ラインビーム走査光学系およびレーザレーダ
US20230004016A1 (en) Multi-axial collimation optics for light detection and ranging
WO2022185367A1 (ja) 光源装置及びセンサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921808

Country of ref document: EP

Kind code of ref document: A1