WO2023138884A1 - Pile à combustible - Google Patents

Pile à combustible Download PDF

Info

Publication number
WO2023138884A1
WO2023138884A1 PCT/EP2022/087804 EP2022087804W WO2023138884A1 WO 2023138884 A1 WO2023138884 A1 WO 2023138884A1 EP 2022087804 W EP2022087804 W EP 2022087804W WO 2023138884 A1 WO2023138884 A1 WO 2023138884A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
fuel cell
bipolar plates
stack
pocket
Prior art date
Application number
PCT/EP2022/087804
Other languages
English (en)
Inventor
Jacky CHAUSSEE
Vianney BONIFACE
Dominique Auclair
Bilal NAIM
Paul BILLEMAZ
Original Assignee
Symbio France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2200562A external-priority patent/FR3132173B1/fr
Priority claimed from FR2200565A external-priority patent/FR3132175B1/fr
Application filed by Symbio France filed Critical Symbio France
Publication of WO2023138884A1 publication Critical patent/WO2023138884A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present invention relates to a fuel cell.
  • Fuel cells are used as a source of energy in various applications, especially in electric vehicles.
  • PEFC polymer membrane electrolyte
  • hydrogen is supplied to the anode of the fuel cell and oxygen is supplied as an oxidant to the cathode.
  • PEFC polymer membrane fuel cells
  • MEA membrane-electrode assembly
  • a membrane-electrode assembly (MEA) is sandwiched between a pair of electrically conductive elements, called bipolar plates, by means of gas diffusion layers, made for example of carbon fabric.
  • Bipolar plates are generally rigid and thermally conductive. They serve primarily as current collectors for the anode and cathode and contain channels with suitable openings to distribute the gaseous fuel cell reactants over the surfaces of the respective anode and cathode catalysts and to remove water produced at the electrode.
  • a fuel cell is powered by a fuel which is hydrogen which is supplied to the anode and by an oxidizer which is oxygen or air which is supplied to the cathode.
  • US Pat. No. 9,997,792 discloses a fuel cell comprising a stack of cells, connected to a computer by means of a sheet of cables connected to each of the cells by connection tabs, the cables being held by a harness in order to press the cables against the connection tabs.
  • the subject of the present invention is a fuel cell comprising a stack of bipolar plates in a stacking direction, two consecutive bipolar plates forming between them a cell, the stack further comprising two terminal plates on either side of the stack, a plurality of measurement modules connected to the bipolar plates, each module comprising at least one printed circuit comprising a computer capable of determining the electrical characteristics of the stack of bipolar plates, and a mechanical frame for holding the measurement modules, in which the measurement modules are fixed to the mechanical frame, connected to each other and connected to the stack of bipolar plates, without the intermediary of cables.
  • the fuel cell may include one or more of the following characteristics, taken individually or in any technically possible combination:
  • the mechanical frame comprises two pivot supports, each pivot support being fixed to an end plate, a pivot axis extending from one pivot support to the other pivot support substantially parallel to the stacking direction, and an attachment rail extending from one pivot support to the other pivot support substantially parallel to the stacking direction and to the pivot axis, the mechanical frame being configured so that the set of measurement modules is framed by said frame.
  • the fixing rail is provided with holes for passing means for fixing each pivot support to the fixing rail, the holes for passing means for fixing the fixing rail being oblong.
  • Each module is covered with a shell, the shells of each module comprising keying devices and being assembled together by keying.
  • the foolproofing members include a male fixing member complementary to a female fixing member, while each shell is provided on a first transverse side with the male fastening member, while the female fastening member is formed in a second transverse side of the shell opposite the first side.
  • the male fastener is a lug and the female fastener is an arcuate groove allowing the lug to pivot in the groove.
  • Each shell has a cylindrical groove complementary to the pivot axis.
  • Each hull has a fixing lug to the fixing rail.
  • Each module is connected to an inter-module connection bar having leaf springs placed on either side of the bar in a transverse direction perpendicular to the stacking direction, so that the contact of the shell of a first module with the shell of a second neighboring module generates a compression of the leaf springs of each of the bars.
  • Each module is connected to the stack of bipolar plates by means of pins capable of being inserted into pockets formed in the bipolar plates.
  • One of the pivot supports carries a connector for connecting the stack of bipolar plates to a motherboard.
  • One of the pivot supports carries an additional component for contact with the bipolar plate closest to said pivot support, capable of connecting said bipolar plate to the neighboring module.
  • the present invention also relates to a vehicle comprising at least one fuel cell as described above.
  • the present invention also relates to a method for installing measurement modules on a fuel cell according to the invention, comprising fixing each module to the mechanical frame, and connecting the modules to each other and to the stack of bipolar plates without the intermediary of cables.
  • Another aspect of the invention relates to a fuel cell formed by a stack of several bipolar plates in a stacking direction, each bipolar plate being itself formed by two superposed monopolar plates comprising an anode plate and a cathode plate, two consecutive bipolar plates forming between them a cell, the cell further comprising two end plates on either side of the stack, a plurality of modules for measuring the electrical characteristics of the cells, each module comprising a printed circuit comprising a computer capable of being determined electrical characteristics of the stack of bipolar plates, in which two successive monopolar plates together form at least one pocket each receiving one pin of said module, each pocket being shaped to cooperate with said pin and having a circumferential wall, and in which each pin of the module has a shape such that the pin exerts two opposing forces on the circumferential wall of the pocket once the pin has been inserted into the pocket.
  • the fuel cell may include one or more of the following characteristics, taken individually or in any technically possible combination:
  • Two successive monopolar plates are arranged back to back to form the at least one pocket.
  • Each pin extends mainly along a first direction, and has on a portion an incision along said first direction separating said portion into two sub-portions on either side of the incision, each sub-portion having a bulge in a second direction, the second direction being perpendicular to the first direction, the bulges of the two sub-portions extend in opposite directions along the second direction.
  • the second direction is perpendicular to a third direction which is perpendicular to the first direction, the two sub-portions being separated from each other on either side of the incision along the third direction.
  • the incision extends in said first direction between a proximal end and a distal end, and the two sub-portions are bonded to each other at the distal and proximal ends of the incision.
  • Each pocket has an open end where the circumferential wall has a conical shape.
  • each pocket has a stamping so as to form a passage of reduced section for a pin.
  • Two successive bipolar plates are stacked head to tail so that only at least one pocket of one out of two bipolar plates is flush with the vicinity of the modules.
  • Each bipolar plate forms exactly two receiving pockets of one pin each.
  • Each module has ten aligned pins configured to connect ten pockets of ten separate bipolar plates to said module, and an additional pin to connect the second pocket of one of the ten bipolar plates to said module.
  • the present invention also relates to a vehicle comprising at least one fuel cell as described above.
  • Figure 1 shows a schematic front and side perspective view of a fuel cell according to one embodiment of the invention
  • Figure 2 shows a schematic rear perspective view of the fuel cell of Figure 1;
  • Figure 3 shows a schematic view of the stack of bipolar plates of the fuel cell of Figure 1;
  • Figure 4 shows a schematic view of a first transverse side of a measurement module shell of the fuel cell of Figure 1;
  • Figure 5 shows a schematic view of a second transverse side of a measurement module shell of the fuel cell of Figure 1;
  • Figure 6 shows a schematic top view of the fuel cell of Figure 1 in which the shells of the modules have been removed
  • Figure 7 shows a schematic top view of the fuel cell of Figure 1 in which the shells of the modules have been removed, according to a variant of Figure 6;
  • Figure 8 shows a schematic view of the connection between the modules and the cells of the stack of bipolar plates of the fuel cell of Figure 1;
  • Figure 9 shows a schematic view of a pin of a measurement module of the fuel cell of Figure 1;
  • Figure 10 shows a schematic view of a first transverse side of a pivot support of the fuel cell of Figure 1.
  • Figures 1 and 2 show a fuel cell 10 formed by a stack 11 of bipolar plates 12.
  • Each bipolar plate 12 is here formed by two monopolar plates 12′, 12′′ superimposed comprising an anode plate 12′ and a cathode plate 12′′, visible in FIG. 3.
  • a cooling circuit is advantageously arranged between the two monopolar plates, which are assembled together in a sealed manner.
  • the two monopolar plates 12' and 12" associated with the same bipolar plate 12 are made of metal and are welded to each other.
  • the monopolar plates are assembled in another way, for example by means of an added joint, for example a silicone joint.
  • the bipolar plates are made in one piece, for example made of graphite.
  • the stack 10 comprises a plurality of cells 14 made in the form of a stack 11 of bipolar plates 12, a cell 14 being formed between two consecutive bipolar plates 12.
  • a stack 11 thus consists of several individual cells 14 connected in series.
  • the fuel cell 10 also comprises a membrane-electrode assembly, which is interposed between the two bipolar plates 12 associated with this cell 14. The membrane-electrode assemblies are not shown.
  • the fuel cell 10 is for example intended to be used in a motor vehicle.
  • the bipolar plates 12 are stacked in a stacking direction.
  • the stacking direction is defined as being the longitudinal direction L.
  • the fuel cell 10 also comprises two end plates 16, which are arranged on either side of the stack 11.
  • the bipolar plates 12 are sandwiched between the two end plates 16.
  • the end plates 16 are for example made of aluminum.
  • External fluid circuits (not shown) are connected to cell 10 at end plates 16 and reactant gases are delivered to membrane electrode assemblies on the surface of bipolar plates 12 via channels etched thereon.
  • measurement modules 20 are connected to the stack 11 of bipolar plates 12.
  • Each module 20 makes it possible to monitor the state of the stack 11 in order to adapt the command and control of the fuel cell system 10.
  • Each module 20 comprises at least one printed circuit 22, in particular three printed circuits 22, comprising a computer capable of determining diagnostic and prognostic characteristics of the stack 11 of bipolar plates 12, visible in FIGS. 6 and 7 detailed below.
  • the characteristics include a state of health of the stack 11 of bipolar plates 12, the location of a cell 14 in the stack of bipolar plates 12, the voltage, the impedance, the supply of the cells 14 of the fuel cell 10.
  • the modules 20 are each covered with a shell 26 intended to cover the printed circuits 22 and to protect them.
  • the hulls 26 have multiple functionalities, which will be detailed below.
  • the shells 26 of the modules 20 are in particular keyed.
  • the modules 20 are thus configured to be assembled together without possible error.
  • without possible error we mean that two neighboring modules 20 are configured to be assembled to each other according to a single relative orientation of the two modules 20 once assembled, unless of course the modules 20 are assembled by force, by deforming the material of the shells 26.
  • the assembly of a measurement module 20 to another module 20 is only possible according to a single configuration.
  • Such an assembly without possible orientation error is also called keying assembly.
  • each shell 26 is provided on a first transverse side 28 with a male fastener 30 complementary to a female fastener 32 formed in a second transverse side 34 of the shell 26 opposite the first side 28, visible in Figure 5.
  • the male fastener 30 is a lug
  • the female fastener 32 is an arcuate groove allowing the lug to pivot in the groove.
  • the male 30 and female 32 fixing members together form an example of keying members, which cooperate with each other by complementarity of shapes and which can only be assembled together in a single configuration.
  • each module 20 is configured to be assembled to the bipolar plates 12 without possible error.
  • each module 20 is preferably assembled to the bipolar plates 12 by foolproofing.
  • the shells 26 protect the printed circuits 22 of the modules 20.
  • the shells 26 of all the modules 20 are identical.
  • the modules 20 are assembled together and to the stack 11 of bipolar plates 12 in particular by means of a mechanical frame 40.
  • the mechanical frame 40 advantageously comprises a fixing rail 42, a pivot axis 44 and two pivot supports 46, 48.
  • Each pivot bracket 46, 48 is arranged to contact end plate 16 and module 20 when installed.
  • the pivot supports 46, 48 extend mainly in a transverse direction T perpendicular to the longitudinal direction L.
  • An elevation direction Z is also defined, which is orthogonal to the longitudinal direction L and to the transverse direction T, so that the longitudinal, transverse and elevation directions form a direct reference.
  • Each pivot support 46, 48 has a large dimension D, defined along the transverse direction T, less than a maximum width W of the respective end plate 16 defined along the transverse direction T.
  • each pivot support 46, 48 has a major dimension D of between 70% and 80% of a maximum width W of the respective end plate 16.
  • Each pivot support 46, 48 has a small dimension d, defined along the longitudinal direction L, substantially equal to a thickness E of the respective end plate 16 defined along the longitudinal direction L.
  • each of the two end plates 16 is provided with at least one orifice for receiving means 52 for fixing a pivot support 46, 48 to the respective end plate 16.
  • the fixing means 52 are screws.
  • each pivot support 46, 48 has at least one through hole 54 for passage of means 52 for fixing to the respective end plate 16.
  • the at least one through hole 54 for passage of fixing means 52 is configured to be placed opposite the at least one receiving hole 50 formed in the respective end plate 16.
  • each pivot support 46, 48 is fixed to one of the two end plates 16 by means of two screws 52.
  • Each screw 52 is, for example, a domed screw with six internal lobes with a diameter of 6 mm and a length of 16 mm, having a resistance class of 8.8 and being made of steel and zinc.
  • the fixing rail 42 extends from one pivot support 46, 48 to the other in the longitudinal direction L.
  • the fixing rail 42 is provided with orifices 55 for passage of means 56 for fixing each pivot support 46, 48 to the fixing rail 42.
  • Each pivot support 46, 48 has at least one through hole 54' for passage of the means 56 for fixing to the fixing rail 42.
  • the fixing means 56 are screws.
  • each pivot support 46, 48 is fixed to the fixing rail 42 by means of a screw 56.
  • the screw 56 is for example a domed screw with six internal lobes with a diameter of 6 mm and a length of 16 mm, having a resistance class 8.8 and being made of steel and zinc.
  • the orifices 55 for passage of means 56 for fixing the fixing rail 42 are oblong.
  • the oblong orifices 55 generate a slight play of the fixing rail 42 on the pivot supports 46, 48 in the longitudinal direction L and thus improve the resistance of the modules to vibrations and expansions caused during the life of the fuel cell 10.
  • each pivot support 46, 48 is provided on a transverse side 57 intended to be in contact with a module 20 with a male fastener 59, respectively female, complementary to the female fastener 32, respectively male 30, formed in a transverse side 28, 34 of the shell 26 of each module 20.
  • the shells 26 can be assembled to the pivot supports 46, 48 without risk of error.
  • the male fastener 59 is a lug and the female fastener 61 is an arcuate groove allowing the lug to pivot in the groove.
  • the pivot axis 44 extends between two longitudinal ends 60, 62.
  • the pivot axis 44 extends parallel to the fixing rail 42. Each longitudinal end 60, 62 of the pivot pin 44 is held by a respective pivot support 46, 48.
  • the pivot support 46, 48 has for example two aligned cylindrical through holes 64 for receiving the pivot axis 44.
  • the pivot pin 44 preferably has a groove configured to be located between the two through holes 64 for receiving the pivot pin 44 when the pivot pin 44 is engaged in the respective pivot support 46, 48.
  • Each pivot support 46, 48 advantageously also has a tab 66 placed between the two through holes 64 for receiving the pivot pin 44.
  • the pivot axis 44 is locked in position at the level of the tongue 66.
  • the pivot support 46 moves in translation along the pivot axis 44.
  • the pivot supports 46, 48 mechanically maintain the entire system formed by the pivot axis 44 and the fixing rail 42.
  • the shells 26 of the modules 20 are fixed to the fixing rail 42 for example by means of a lug 70 comprising a locking tooth 71 .
  • the tab 70 advantageously extends in an elevation direction Z perpendicular to the longitudinal direction L and to the transverse direction T.
  • the shells 26 of the modules 20 are fixed to the pivot axis 44 for example by means of a cylindrical groove 72 complementary to the pivot axis 44.
  • the groove 72 has for example a striated contour.
  • the groove 72 has for example a solid contour.
  • the shell 26 of a module 20 When the shell 26 of a module 20 is fixed to the pivot axis 44 but not to the fixing rail 42, the shell 26 is rotatable around an axis A formed by the pivot axis 44.
  • each module 20 comprises three printed circuits 22.
  • a printed circuit 22 extends mainly in the transverse direction T and two printed circuits 22 extend mainly in the elevation direction Z.
  • the three printed circuits 22 are electrically connected together by layers 75 of cables, for example two layers 75 between the printed circuit 22 extending mainly in the transverse direction T and one of the two printed circuits 22 extending mainly in the elevation direction Z, and a sheet 75 between the two printed circuits 22 extending mainly in the elevation direction Z.
  • each module 20 is connected to a strip 76 of inter-module 20 connection.
  • the bar 76 is in the form of two half-bars arranged on either side of a median transverse plane P of the module 20.
  • the bar 76 extends mainly in the transverse direction T.
  • the bar 76 is arranged in the vicinity of the lug 70 for fixing the shell 26 to the fixing rail 42.
  • Bar 76 comprises a plurality of pins 78 for connecting bar 76 to at least one printed circuit 22 of module 20.
  • Pins 78 are oriented in elevation direction Z.
  • Pins 78 are used to mechanically and electrically connect strip 76 and module 20.
  • the bar 76 further comprises leaf springs 80 placed on either side of the bar 76 in the transverse direction T.
  • the bar 76 has for example seven pairs of leaf springs 80.
  • Leaf springs 80 are domed.
  • Bar 76 is assembled to module 20 so that pins 78 of bar 76 are located between bar 76 and printed circuits 22.
  • the leaf springs 80 of the shells 26 of two neighboring modules 20 compensate for the compression and expansion that may occur during the life of the battery 10, and therefore ensure mechanical and electrical contact between the bars 76 of the two shells 26, and therefore between two neighboring modules 20 at all times.
  • Leaf springs 80 are a preferred embodiment of contactors between two neighboring modules 20 .
  • the bar 76 makes it possible to ensure continuity in the measurement of the electrical characteristics of the cells and to create a connection line to link all the modules 20 by a power supply line and a communication bus, and this without the use of cables between the modules 20.
  • Each module 20 is thus supplied with energy for its own operation, in particular for the operation of the printed circuit 22, for carrying out the measurements of the electrical characteristics, for the transmission of the results measurements, etc.
  • this does not prevent the operation of the other modules 20 of the cell 10.
  • the three printed circuits 22 are electrically interconnected by contacts 75', for example a plurality of contacts 75' between the printed circuit 22 extending mainly in the transverse direction T and one of the two printed circuits 22 extending mainly in the elevation direction Z, and a plurality of contacts 75' between the printed circuit 22 extending mainly in the transverse direction T and the other of the two printed circuits 22 extending mainly along the elevation direction Z.
  • the bar 76 is in the same form as in the variant of Figure 6.
  • the cells 14 are arranged in packets of twenty cells 14.
  • bipolar plates 12 are stacked and two consecutive bipolar plates 12 delimit between them a cell 14.
  • Two successive monopolar plates 12′, 12′′ are advantageously arranged back to back and form between them at least one pocket 84 at one end 85 of the bipolar plate 12 in the elevation direction Z.
  • Each pocket 84 is configured to receive a pin 90 of a module 20 for measuring the electrical characteristics of the cells 14.
  • two successive bipolar plates 12 are stacked head to tail, as shown in Figure 3, so that only at least one pocket 84 of one out of two bipolar plates 12 is flush in the vicinity of the modules 20.
  • each bipolar plate 12 forms exactly two pockets 84 for receiving a pin 90 each.
  • the second pocket 84 makes it possible to measure four wires per group of twenty cells 14. It is used for impedance measurement.
  • each pocket 84 is shaped to cooperate with said pin 90.
  • the two successive bipolar plates 12 delimit a circumferential wall 92 of the pocket 84 when they are in contact with one another.
  • each pocket 84 has an open end 94 where the circumferential wall 92 has a conical shape.
  • Such a shape has the advantage of guiding the pin 90 of a module 20 inside said pocket 84.
  • the circumferential wall 92 of each pocket 84 has a stamping 93 so as to form a passage of reduced section for a pin 90.
  • the stamping 93 plays a role in the stiffening of the pocket 84, and makes it possible to ensure the electrical contact inside the pocket 84 between the pin 90 and the pocket 84.
  • the stamping 93 also has a function of locking the pin 90 in depth when it is inserted into the pocket 84, and makes it possible to avoid drilling of said pocket 84.
  • Each module 20 advantageously comprises ten aligned pins 90 configured to connect ten pockets 84 of ten bipolar plates 12 to said module 20, and an additional pin 95 configured to connect the second pocket 84 of one of the ten bipolar plates 12, as shown in Figure 8.
  • the ten aligned pins 90 make it possible to measure between two consecutive pins 90 the voltage of two consecutive cells 14.
  • the additional pin 95 is arranged substantially parallel to the alignment of pins 90 and preferably at one longitudinal end of the module 20.
  • the additional pin 95 is configured to inject current into the pocket 84 in which it is received, and thus makes it possible to perform an impedance measurement on twenty cells 14. Thus, each module 20 is able to measure an impedance every twenty cells 14.
  • Each pin 90, 95 of the module is advantageously designed to promote effective and durable electrical contact over time between the module 20 and each bipolar plate 12, as shown in Figure 9.
  • each pin 90, 95 of the module 20 has a shape such that the pin 90, 95 exerts two opposing forces on the circumferential wall 92 of the pocket 84 once the pin 90 is inserted into the pocket 84.
  • the pins 90, 95 of a module 20 are preferably identical.
  • Each pin 90, 95 extends mainly along a first direction, in particular the elevation direction Z, and has on a portion 96 an incision 97 along said first direction separating said portion 96 into two sub-portions 98 on either side of the incision 97.
  • the incision 97 extends along the first direction, here the elevation direction Z, between a proximal end and a distal end, opposite the proximal end e, the two sub-portions 98 being tied together at the distal and proximal ends of the incision 97.
  • Each sub-portion 98 has a bulge 100 in a second direction, in particular the longitudinal direction L, the second direction being perpendicular to the first direction.
  • the transverse direction T therefore here forms a third direction, which is orthogonal to the second direction and to the first direction.
  • the bulges 100 of the two sub-portions 98 extend in opposite directions along the second direction, here the longitudinal direction L, the two sub-portions 98 being separated from each other on either side of the incision 97 along the third direction, here the transverse direction T.
  • the pin 90 95 is bulged at the sub-portions 98, making it both rigid and slightly elastic. Connecting a pin 90 in a pocket 84 requires pushing it in. This guarantees a solid and durable electrical contact between the pin 90 and the respective pocket 84, and consequently with the two monopolar plates 12’, 12” forming the pocket 84.
  • the electrical contact is notably ensured independently of the expansion or vibrations which may occur during the life of the fuel cell 10, thanks to the spring effect induced by the specific shapes of the pockets 84 and the pins 90.
  • the pins 90, 95 of each module 20 have a different shape, in particular any technically possible shape for connecting each module 20 to the cells 14.
  • one of the pivot supports 46 has a location 106 for fixing an additional component 108 for contact with the last bipolar plate 12.
  • the additional component 108 has at least one pin 110 intended to be received in a pocket 84 formed by the bipolar plate 12.
  • the additional component 108 has two pins 110.
  • each pin 110 of the additional component 108 has a shape such that the pin 110 exerts two opposing forces on the circumferential wall of the pocket 84 once the pin 110 is inserted into the pocket 84.
  • the two pins 110 of the additional component 108 are preferably identical.
  • Each pin 110 extends mainly in a first direction, in particular the direction of elevation Z, and has on a portion 112 an incision 114 along said first direction separating said portion into two sub-portions 116 on either side of the incision 114.
  • Each sub-portion 112 has a bulge 118 in a second direction, the second direction being substantially perpendicular to the first direction.
  • the bulges 118 of the two sub-portions 116 extend in an opposite direction.
  • the pin 110 is curved at the level of the sub-portions 116, making it both rigid and slightly elastic. Connecting a pin 1 10 in a pocket 84 requires pushing it in. This guarantees a solid and durable electrical contact between the pin 1 10 and the respective pocket 84, and consequently with the two monopolar plates 12', 12” forming the pocket 84.
  • the additional component 108 has at least one metal contact 120, in particular two metal contacts 120, allowing connection with the neighboring module 20.
  • the pivot support 46 carrying the additional component 108 has at least one metal contact 121, in particular five metal contacts 120, allowing connection with the neighboring module 20.
  • the metal contacts 120, 121 are intended to come into contact with the leaf springs 80 of the bar 76 associated with said neighboring module 20.
  • the pivot support 46 carrying the additional component 108 further comprises a connector 122 for connecting the stack 11 of bipolar plates 12 to a motherboard.
  • the 122 connector does not require cables.
  • the mechanical frame 40 maintains the entire system formed by the modules 20, the pivot axis 44, the fixing rail 42 and the pivot supports 46, 48 and allows the expansion of the modules 20.
  • the shell 26 of each module 20 makes it possible to place the printed circuit 22 very close to the stack 11 while protecting the latter from external attacks.
  • the quality of the measurements performed by the modules 20 is improved, allowing modular multifrequency impedance measurements, as will be detailed below.
  • each module 20 the electrical characteristics measured by each module 20 are available, through the contactors 80, for all the other elements connected to these modules 20.
  • the additional component 108 has access to the measurements of the electrical characteristics of each cell 14.
  • the motherboard connected to the connector 122 also has access to the measurements of the electrical characteristics of each cell, or, in the example, of each set of two consecutive cells, set at the terminals of which a voltage measurement is ensured by the modules 20.
  • the contactors 80 and the metal contacts 120 are also configured to transmit, between neighboring modules 20 or between the additional component 108 and the module 20 adjoining the additional component 108, electrical energy, which is thus made available for the operation of the modules 20, in particular for the operation of the printed circuit 22 of each module 20, for carrying out voltage measurements, impedance measurements, for injecting current, etc.
  • the printed circuits 22 of the modules 20 integrate the computers which determine the diagnostic and prognostic characteristics of the stack 11 of bipolar plates 12.
  • the determination of the diagnostic and prognostic characteristics is carried out elsewhere, for example by the motherboard connected to the connector 122, while each module 20 determines the electrical characteristics of the stack 11, in particular measurement of electrical voltages, impedances, etc. . It is thus possible to construct modules 20 with a relatively simple and robust structure, so as to perform reliable measurements of the electrical quantities relating to the cells 14.
  • a first module 20 is assembled to the mechanical frame 40 near one of the pivot supports 46.
  • the shell 26 of the first module 20 is fixed to the pivot axis 44 for example by means of the cylindrical groove 72 of the shell 26 complementary to the pivot axis 44.
  • the shell 26 of the first module 20 is rotatable around an axis A formed by the pivot axis 44.
  • the shell 26 of the first module is advantageously fixed to the fixing rail 42 by means of the tab 70, by wedging the fixing rail 42 in the tab 70.
  • the first module 20 is assembled to one of the pivot supports 46.
  • the male fastening member 59 of the pivot support 46 is connected to the female fastening member 32 of the first module 20, or the male fastening member 30 of the first module 20 is connected to the female fastening member of the pivot support 46 according to the arrangement of the male and female members on each module 20 and the pivot support 46.
  • the male fixing member 30 is a lug and the female fixing member 32 is an arcuate groove, and the lug 30 pivots in the groove 32.
  • At least one of the leaf springs 80 of the bar 76 located on the transverse side 28 oriented towards the pivot support 46 advantageously comes into contact with the at least one metal contact 120 of the additional component 108 of contact with the last bipolar plate 12 and the at least one metal contact 121 of the pivot support 46.
  • the contact of the shell 26 of the first module 20 with the at least one metal contact 120, 121 generates a compression of the leaf springs 80 of the bar 76.
  • each pin 90 of the first module 20 is received in a pocket 84 formed by two consecutive monopolar plates 12′, 12′′ of the stack 11 of the fuel cell 10.
  • the ten aligned pins 90 of the first module 20 are received in ten pockets 84 of ten bipolar plates 12, and the additional pin 95 is received in the second pocket 84 of one of the bipolar plates 12.
  • the ten aligned pins 90 of the first module 20 make it possible to measure between two consecutive pins 90 the voltage of two consecutive cells 14.
  • the prior fixing of the first module 20 to the pivot support 46 and to the mechanical frame 40 ensures that the pins 90 of the first module 20 are received in the corresponding pockets 84.
  • each pin 90 of the first module 20 is preferably forced into the respective pocket 84.
  • each pocket 84 advantageously guides each pin 90 of the first module 20 inside said pocket 84.
  • each pin 90 of the first module 20 promotes effective and durable electrical contact over time between the first module 20 and each bipolar plate 12.
  • the electrical contact is notably ensured independently of the expansion or vibrations which may occur during the life of the fuel cell 10, thanks to the spring effect induced by the specific shapes of the pockets 84 and the pins 90.
  • the at least one pocket 84 formed by the two monopolar plates 12', 12" closest to the pivot support 46 adjacent to the first module 20 does not receive a pin 90 from the first module 20.
  • the at least one pin 110 of the additional component 108 for contact with the last bipolar plate 12 is received in said pocket 84. It is thus possible to measure the voltage of the two consecutive cells 14 closest to the pivot support 46 adjacent to the first module 20.
  • the two pins 110 of the additional component 108 for contact with the last bipolar plate 12 are received in the two pockets 84 formed by the bipolar plate 12 closest to the pivot support 46 adjacent to the first module 20.
  • each pin 110 of the additional component 108 for contact with the last bipolar plate 12 is preferably forced into the respective pocket 84.
  • each pocket 84 advantageously guides each pin 110 of the additional component 108 into contact with the last bipolar plate 12 inside said pocket 84.
  • each pin 110 of the additional component 108 for contact with the last bipolar plate 12 promotes effective and durable electrical contact over time between the additional component 108 and the bipolar plate 12.
  • the electrical contact is notably ensured independently of the expansion or vibrations which may occur during the life of the fuel cell 10, thanks to the spring effect induced by the specific shapes of the pockets 108 and the pins 110.
  • the method of installing measurement modules 20 includes assembling a second module 20 to the first module 20 and to pockets 84 formed by bipolar plates 12 of the fuel cell 10.
  • the second module 20 is fixed to the pivot axis 44 and to the fixing rail 42 of the mechanical frame 40 in the same way as the first module 20.
  • the male fastening member 30 of the first module 20 is connected to the female fastening member 32 of the second module 20, or the male fastening member 30 of the second module 20 is connected to the female fastening member 32 of the first module 20 according to the arrangement of the male and female members on each module 20.
  • the male fixing member 30 is a lug and the female fixing member 32 is an arcuate groove, and the lug 30 pivots in the groove 32.
  • the assembly of the shells 26 of the modules 20 between them allows the automation of the process as well as a saving of time for the insertion of the modules 20 on the stack of bipolar plates 12.
  • the first module 20 and the second module 20 are electrically connected to each other.
  • bar 76 of second module 20 is assembled to bar 76 of first module 20.
  • At least one of the leaf springs 80 of the bar 76 of the second module 20 located on the transverse side 34 facing the first module 20 advantageously comes into contact with at least one of the leaf springs 80 of the bar 76 of the first module 20.
  • the contact of the shell 26 of the first module 20 with the shell 26 of the second module 20 generates a compression of the leaf springs 80 of each of the bars 76.
  • each pin 90 of the second module 20 is received in a pocket formed by two monopolar plates 12′, 12′′ of the fuel cell 10.
  • the ten aligned pins 90 of the second module 20 are received in ten pockets 84 of ten bipolar plates 12, and the additional pin 95 is received in the second pocket 84 of one of the bipolar plates 12.
  • the prior fixing of the second module 20 to the first module 20 and to the mechanical frame 40 ensures that the pins 90 of the second module 20 are received in the corresponding pockets 84.
  • each pin 90 of the second module 20 is preferably forced into the respective pocket 84.
  • each pocket 84 advantageously guides each pin 90 of the second module 20 inside said pocket 84.
  • each pin 90 of the second module 20 promotes effective and durable electrical contact over time between the second module 20 and each bipolar plate 12.
  • the electrical contact is in particular ensured independently of the expansion or vibrations which may occur during the life of the fuel cell 10, thanks to the spring effect induced by the specific shapes of the pockets 84 and the pins 90.
  • the computers included in the modules 20 are connected directly to the cells 14, without the need for cables.
  • the example shown includes two modules 20, however the fuel cell 10 is not limited to two modules but can include more, for example ten modules 20 to connect two hundred cells 14.
  • each module 20 comprises ten aligned pins 90 configured to connect ten pockets 84 of ten bipolar plates 12 to said module 20.
  • the number of pins 90 provided on each module 90 is not limiting, the principles of the invention, in particular the acquisition of the electric potentials of the bipolar plates 12 connected to the modules 20 and possibly the measurement of four-wire impedance that can be transposed for measurement modules 20 comprising more or less than ten pins 90.
  • the assembly is simple, no cable is used to connect the modules 20 to the cells 14 and the modules 20 between them. It also advantageously makes it possible not to use cables to connect the modules 20 with a motherboard. Thanks to polarizing devices, each module 20 is assembled with neighboring modules without risk of error. Mounting the measurement modules 20 on the stack 11, or even replacing the faulty modules 20, is particularly easy and quick to perform.
  • the modules 20 are suitable for determining the electrical characteristics of the stack 11 of bipolar plates 12.
  • the modules 20 are suitable for determining diagnostic and prognostic characteristics of the stack 11 of bipolar plates 12 thanks to the computer that they include.
  • the characteristics include a state of health of the stack 11 of bipolar plates 12, the location of a cell 14 in the stack of bipolar plates 12, the voltage, the impedance, the supply of the cells 14 of the fuel cell 10.
  • the additional pin 95 of each module 20, as well as, where applicable, the additional contact component 108, is configured to inject a sinusoidal current into the pocket 84 in which it is received, and thus makes it possible to perform an impedance measurement on the number of cells 14 that each module 20 covers, in particular twenty cells 14 in the example shown, when the battery 10 is in operation.
  • stack 10 has an output current of up to 500 A - Amperes -, depending on the stack technology.
  • the injected sinusoidal current has a frequency between 100 Hz - Hertz - and 5 kHz - kilohertz -, in particular between 500 Hz and 2 kHz.
  • This sinusoidal current injected into the stack 11 induces a voltage response of the order of a few mV - millivolt -.
  • This voltage can be measured by an analog/digital converter equipped with an amplification stage.
  • the measurement module 20 isolates the voltage component having the same frequency as the injected sinusoidal current.
  • the impedance is then calculated in a measurement module 20 as the ratio of the amplitude of this voltage component to the amplitude of the sinusoidal current injected.
  • An impedance value is typically calculated every second.
  • Each module 20 injects a current independently of the other modules 20, thus the frequency of the injected currents can vary from one module 20 to another.
  • Each module 20 injects a current independently of the other modules 20, thus the frequency of the injected currents can vary from one module 20 to another. It is thus possible to carry out four-wire impedance measurements simultaneously, on several measurement modules 20.
  • the impedance measured is between 5 mQ - millohm - and 20 mQ for twenty 14 cells, preferably around 10 mQ for twenty 14 cells.
  • Such a value is advantageously low, and such a configuration allows modular multifrequency impedance measurements, instead of performing a single impedance measurement on the entire stack 11 of bipolar plates. Reliability is therefore improved.
  • the assembly is simple, no cable is used to connect the modules 20 to the cells 14 and the modules 20 between them. It also advantageously makes it possible not to use cables to connect the modules 20 with a motherboard. Thus, the quality of the measurements is improved, allowing further analysis later.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La pile à combustible (10) comprend un empilement (11) de plaques bipolaires (12) dans une direction d'empilement (L), chaque deux plaques bipolaires (12) consécutives formant au moins entre elles une cellule (14), la pile (10) comprenant en outre deux plaques terminales (16) de part et d'autre de l'empilement (11), une pluralité de modules de mesure (20), chaque module (20) comprenant au moins un circuit imprimé comportant un calculateur propre à déterminer des caractéristiques de diagnostic et de pronostic de l'empilement (11) de plaques bipolaires (12), et un cadre mécanique (40) de maintien des modules de mesure (20), dans laquelle les modules (20) de mesure sont fixés au cadre mécanique (40), connectés entre eux et connectés à l'empilement (11) de plaques bipolaires (12), sans l'intermédiaire de câbles.

Description

TITRE : Pile à combustible
La présente invention concerne une pile à combustible.
Les piles à combustible sont utilisées comme source d’énergie dans diverses applications, notamment dans les véhicules électriques. Dans les piles à combustible du type à électrolyte à membrane polymère (PEFC), de l'hydrogène est fourni à l'anode de la pile à combustible et de l'oxygène est fourni comme oxydant à la cathode. Les piles à combustible à membrane polymère (PEFC) comprennent un assemblage membrane- électrode (dit aussi MEA, acronyme de l’anglais membrane electrode assembly) comprenant une membrane électrolytique en polymère solide échangeuse de protons et non conductrice de l'électricité, ayant le catalyseur anodique sur l'une de ses faces et le catalyseur cathodique sur sa face opposée. Un assemblage membrane-électrode (MEA) est pris en sandwich entre une paire d'éléments électriquement conducteurs, appelés plaques bipolaires, moyennant des couches de diffusion de gaz, réalisées par exemple en tissu de carbone. Les plaques bipolaires sont généralement rigides et thermiquement conductrices. Elles servent principalement de collecteurs de courant pour l'anode et la cathode et contiennent des canaux pourvus d’ouvertures appropriées pour répartir les réactifs gazeux de la pile à combustible sur les surfaces des catalyseurs d'anode et de cathode respectifs et pour éliminer l'eau produite à l'électrode.
Une pile à combustible est alimentée par un carburant qui est de l'hydrogène qui est fourni à l'anode et par un comburant qui est de l'oxygène ou de l’air qui est fourni à la cathode.
On connaît par exemple de US 9 997 792 une pile à combustible comprenant un empilement de cellules, reliées à un calculateur au moyen d’une nappe de câbles connectée à chacune des cellules par des languettes de connexion, les câbles étant maintenus par un harnais afin de presser les câbles contre les languettes de connexion.
Cependant, les mesures réalisées avec ce type d’agencement sont peu fiables et la pile présente un encombrement important, de plus les câbles ont tendance à s’endommager du fait des contraintes mécaniques telles que les vibrations ou la dilatation engendrées lors du fonctionnement de la pile, et en réduisent par conséquent la durée de vie.
Il existe donc un besoin pour améliorer la fiabilité des mesures, réduire l’encombrement de la pile à combustible et améliorer sa durée de vie.
À cet effet, la présente invention a pour objet une pile à combustible comprenant un empilement de plaques bipolaires dans une direction d’empilement, deux plaques bipolaires consécutives formant entre elles une cellule, la pile comprenant en outre deux plaques terminales de part et d’autre de l’empilement, une pluralité de modules de mesure reliés aux plaques bipolaires, chaque module comprenant au moins un circuit imprimé comportant un calculateur propre à déterminer des caractéristiques électriques de l’empilement de plaques bipolaires, et un cadre mécanique de maintien des modules de mesure, dans laquelle les modules de mesure sont fixés au cadre mécanique, connectés entre eux et connectés à l’empilement de plaques bipolaires, sans l’intermédiaire de câbles.
La pile à combustible peut comprendre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toute combinaison techniquement possible :
Le cadre mécanique comprend deux supports pivot, chaque support pivot étant fixé à une plaque terminale, un axe pivot s’étendant d’un support pivot à l’autre support pivot sensiblement parallèlement à la direction d’empilement, et un rail de fixation s’étendant d’un support pivot à l’autre support pivot sensiblement parallèlement à la direction d’empilement et à l’axe pivot, le cadre mécanique étant configuré pour que l’ensemble des modules de mesure soit encadré par ledit cadre.
Le rail de fixation est pourvu d’orifices de passage de moyens de fixation de chaque support pivot au rail de fixation, les orifices de passage de moyens de fixation du rail de fixation étant oblongs.
Chaque module est recouvert d’une coque, les coques de chaque module comprenant des organes de détrompage et s’assemblant les unes aux autres par détrompage.
Les organes de détrompage incluent un organe de fixation mâle complémentaire d’un organe de fixation femelle, tandis que chaque coque est pourvue sur un premier côté transversal de l’organe de fixation mâle, tandis que l’organe de fixation femelle est formé dans un deuxième côté transversal de la coque opposé au premier côté. L’organe de fixation mâle est un ergot et l’organe de fixation femelle est une rainure en arc de cercle permettant à l’ergot de pivoter dans la rainure.
Chaque coque présente une rainure cylindrique complémentaire de l’axe pivot.
- Chaque coque présente une patte de fixation au rail de fixation.
- Chaque module est connecté à une barrette de connexion inter modules présentant des ressorts à lame placés de part et d’autre de la barrette suivant une direction transversale perpendiculaire à la direction d’empilement, de sorte que le contact de la coque d’un premier module avec la coque d’un deuxième module voisin engendre une compression des ressorts à lame de chacune des barrettes.
Chaque module est branché à l’empilement de plaques bipolaires au moyen de broches aptes à être insérées dans des poches formées dans les plaques bipolaires. L’un des supports pivot porte un connecteur de liaison de l’empilement de plaques bipolaires à une carte mère.
L’un des supports pivot porte un composant supplémentaire de contact avec la plaque bipolaire la plus proche dudit support pivot, propre à connecter ladite plaque bipolaire au module voisin.
La présente invention a également pour objet un véhicule comprenant au moins une pile à combustible telle que décrite ci-dessus.
La présente invention a également pour objet un procédé d’installation de modules de mesure sur une pile à combustible selon l’invention, comprenant la fixation de chaque module au cadre mécanique, et la connexion des modules entre eux et à l’empilement de plaques bipolaires sans l’intermédiaire de câbles.
Un autre aspect de l’invention concerne une pile à combustible formée par un empilement de plusieurs plaques bipolaires dans une direction d’empilement, chaque plaque bipolaire étant elle-même formée par deux plaques monopolaires superposées comprenant une plaque anode et une plaque cathode, deux plaques bipolaires consécutives formant entre elles une cellule, la pile comprenant en outre deux plaques terminales de part et d’autre de l’empilement, une pluralité de modules de mesure des caractéristiques électriques des cellules, chaque module comprenant un circuit imprimé comportant un calculateur propre à déterminer des caractéristiques électriques de l’empilement de plaques bipolaires, dans laquelle deux plaques monopolaires successives forment ensemble au moins une poche de réception chacune d’une broche dudit module, chaque poche étant conformée pour coopérer avec ladite broche et présentant une paroi circonférentielle, et dans laquelle chaque broche du module présente une forme telle que la broche exerce deux forces opposées sur la paroi circonférentielle de la poche une fois la broche insérée dans la poche.
La pile à combustible peut comprendre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toute combinaison techniquement possible :
Deux plaques monopolaires successives sont disposées dos à dos pour former l’au moins une poche.
Chaque broche s’étend principalement suivant une première direction, et présente sur une portion une incision suivant ladite première direction séparant ladite portion en deux sous-portions de part et d’autre de l’incision, chaque sous-portion présentant un renflement dans une deuxième direction, la deuxième direction étant perpendiculaire à la première direction, les renflements des deux sous-portions s’étendent dans des sens opposés selon la deuxième direction. La deuxième direction est perpendiculaire à une troisième direction qui est perpendiculaire à la première direction, les deux sous-portions étant séparées l’une de l’autre de part et d’autre de l’incision selon la troisième direction.
L’incision s’étend suivant ladite première direction entre une extrémité proximale et une extrémité distale, et ce que les deux sous-portions sont liées l’une à l’autre aux extrémités distales et proximales de l’incision.
- Chaque poche présente une extrémité ouverte où la paroi circonférentielle a une forme conique.
La paroi circonférentielle de chaque poche présente un estampage de sorte à former un passage de section réduite pour une broche.
Deux plaques bipolaires successives sont empilées tête bêche de sorte que seule l’au moins une poche d’une plaque bipolaire sur deux affleure au voisinage des modules.
Chaque plaque bipolaire forme exactement deux poches de réception d’une broche chacune.
- Chaque module comporte dix broches alignées configurées pour connecter dix poches de dix plaques bipolaires distinctes audit module, et une broche supplémentaire pour connecter la deuxième poche de l’une des dix plaques bipolaires audit module.
La présente invention a également pour objet un véhicule comprenant au moins une pile à combustible telle que décrite ci-dessus.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins sur lesquels :
- [Fig.1 ] la figure 1 représente une vue schématique en perspective de face et de côté d’une pile à combustible selon un mode de réalisation de l’invention ;
- [Fig.2] la figure 2 représente une vue schématique en perspective d’arrière de la pile à combustible de la figure 1 ;
- [Fig.3] la figure 3 représente une vue schématique de l’empilement de plaques bipolaires de la pile à combustible de la figure 1 ;
- [Fig.4] la figure 4 représente une vue schématique d’un premier côté transversal d’une coque de module de mesure de la pile à combustible de la figure 1 ;
- [Fig.5] la figure 5 représente une vue schématique d’un deuxième côté transversal d’une coque de module de mesure de la pile à combustible de la figure 1 ;
- [Fig.6] la figure 6 représente une vue schématique de dessus de la pile à combustible de la figure 1 dans laquelle les coques des modules ont été retirées ; - [Fig.7] la figure 7 représente une vue schématique de dessus de la pile à combustible de la Figure 1 dans laquelle les coques des modules ont été retirées, selon une variante de la figure 6 ;
- [Fig.8] la figure 8 représente une vue schématique de la connexion entre les modules et les cellules de l’empilement de plaques bipolaires de la pile à combustible de la figure 1 ;
- [Fig.9] la figure 9 représente une vue schématique d’une broche d’un module de mesure de la pile à combustible de la figure 1 ; et
- [Fig.10] la figure 10 représente une vue schématique d’un premier côté transversal d’un support pivot de la pile à combustible de la figure 1 .
Sur les figures 1 et 2, on a représenté une pile à combustible 10 formée par un empilement 11 de plaques bipolaires 12.
Chaque plaque bipolaire 12 est ici formée par deux plaques monopolaires 12’, 12” superposées comprenant une plaque anode 12’ et une plaque cathode 12”, visibles sur la figure 3. Un circuit de refroidissement est avantageusement aménagé entre les deux plaques monopolaires, qui sont assemblées l’une à l’autre de manière étanche.
Dans l’exemple illustré, les deux plaques monopolaires 12’ et 12” associées à une même plaque bipolaire 12 sont réalisées en métal et sont soudées l’une à l’autre.
En variante non représentée, les plaques monopolaires sont assemblées d’une autre manière, par exemple au moyen d’un joint rapporté, par exemple un joint en silicone. Selon une autre variance non représentée, les plaques bipolaires sont monobloc, par exemple réalisées en graphite.
En particulier, la pile 10 comporte une pluralité de cellules 14 réalisées sous forme d’un empilement 11 de plaques bipolaires 12, une cellule 14 étant formée entre deux plaques bipolaires 12 consécutives. Un empilement 1 1 est ainsi constitué de plusieurs cellules 14 individuelles reliées en série. Pour chaque cellule individuelle 14, la pile à combustible 10 comprend aussi un assemblage membrane électrode, qui est intercalé entre les deux plaques bipolaires 12 associées à cette cellule 14. Les assemblages membrane- électrode ne sont pas représentés.
La pile à combustible 10 est par exemple destinée à être utilisée dans un véhicule à moteur.
Les plaques bipolaires 12 sont empilées dans une direction d’empilement.
Dans la suite de la description, la direction d’empilement est définie comme étant la direction longitudinale L. La pile à combustible 10 comprend aussi deux plaques terminales 16, qui sont agencées de part et d’autre de l’empilement 11. Les plaques bipolaires 12 sont prises en sandwich entre les deux plaques terminales 16.
Les plaques terminales 16 sont par exemple réalisées en aluminium.
Des circuits fluidiques externes (non représentés) sont reliés à la pile 10 au niveau des plaques terminales 16 et les gaz réactifs sont distribués aux assemblages membrane électrode à la surface des plaques bipolaires 12 via des canaux gravés sur celles-ci.
Afin de mesurer les caractéristiques électriques des cellules 14, des modules 20 de mesure sont connectés à l’empilement 11 de plaques bipolaires 12.
Chaque module 20 permet de monitorer l’état de l’empilement 11 afin d’adapter le contrôle commande du système de pile à combustible 10.
Chaque module 20 comprend au moins un circuit imprimé 22, en particulier trois circuits imprimés 22, comportant un calculateur propre à déterminer des caractéristiques de diagnostic et de pronostic de l’empilement 11 de plaques bipolaires 12, visible sur les figures 6 et 7 détaillées plus loin.
Par exemple, les caractéristiques comprennent un état de santé de l’empilement 11 de plaques bipolaires 12, la localisation d’une cellule 14 dans l’empilement de plaques bipolaires 12, la tension, l’impédance, l’alimentation des cellules 14 de la pile à combustible 10.
Les modules 20 sont recouverts chacun d’une coque 26 destinées à recouvrir les circuits imprimés 22 et à les protéger.
Les coques 26 présentent de multiples fonctionnalités, qui vont être détaillées ci-après.
Les coques 26 des modules 20 sont notamment des détrompeurs.
Les modules 20 sont ainsi configurés pour être assemblés les uns aux autres sans erreur possible. Par « sans erreur possible », on entend que deux modules 20 voisins sont configurés pour être assemblés l’un à l’autre selon une unique orientation relative des deux modules 20 une fois assemblés, à moins bien entendu d’assembler les modules 20 en force, en déformant le matériau des coques 26. Ainsi, l’assemblage d’un module 20 de mesure à un autre module 20 n’est possible que selon une seule configuration. Un tel assemblage sans erreur d’orientation possible est aussi dit assemblage par détrompage.
Par exemple, comme représenté sur la figure 4, chaque coque 26 est pourvue sur un premier côté transversal 28 d’un organe de fixation mâle 30 complémentaire d’un organe de fixation femelle 32 formé dans un deuxième côté transversal 34 de la coque 26 opposé au premier côté 28, visible sur la figure 5. Ainsi, les coques 26 peuvent être assemblées les unes aux autres sans risque d’erreur. Par exemple, l’organe de fixation mâle 30 est un ergot et l’organe de fixation femelle 32 est une rainure en arc de cercle permettant à l’ergot de pivoter dans la rainure.
Plus généralement, les organes de fixation mâle 30 et femelle 32 forment ensemble un exemple d’organes de détrompage, qui coopèrent entre eux par complémentarité de formes et qui ne peuvent être assemblée l’un à l’autre que dans une seule configuration.
En outre, les modules 20 sont configurés pour être assemblés aux plaques bipolaires 12 sans erreur possible. De préférence, chaque module 20 est de préférence assemblé aux plaques bipolaires 12 par détrompage.
Les coques 26 protègent les circuits imprimés 22 des modules 20.
De préférence, les coques 26 de l’ensemble des modules 20 sont identiques.
Les modules 20 sont assemblés entre eux et à l’empilement 11 de plaques bipolaires 12 notamment au moyen d’un cadre mécanique 40.
De retour aux figures 1 et 2, le cadre mécanique 40 comprend avantageusement un rail de fixation 42, un axe pivot 44 et deux supports pivot 46, 48.
Chaque support pivot 46, 48 est disposé de sorte à être en contact avec une plaque terminale 16 et un module 20 lorsqu’il est installé.
Les supports pivot 46, 48 s’étendent principalement suivant une direction transversale T perpendiculaire à la direction longitudinale L. On définit aussi une direction d’élévation Z, qui est orthogonale à la direction longitudinale L et à la direction transversale T, de sorte que les directions longitudinale, transversale et d’élévation forment un repère direct.
Chaque support pivot 46, 48 présente une grande dimension D, définie suivant la direction transversale T, inférieure à une largeur maximale W de la plaque terminale 16 respective définie suivant la direction transversale T.
De préférence, chaque support pivot 46, 48 présente une grande dimension D comprise entre 70 % et 80 % d’une largeur maximale W de la plaque terminale 16 respective.
Chaque support pivot 46, 48 présente une petite dimension d, définie suivant la direction longitudinale L, sensiblement égale à une épaisseur E de la plaque terminale 16 respective définie suivant la direction longitudinale L.
Avantageusement, chacune des deux plaques terminales 16 est pourvue d’au moins un orifice de réception de moyens 52 de fixation d’un support pivot 46, 48 à la plaque terminale 16 respective.
Par exemple, les moyens 52 de fixation sont des vis.
Selon cet exemple, l’au moins un orifice 50 de réception est taraudé. Chaque support pivot 46, 48 présente au moins un orifice 54 traversant de passage des moyens 52 de fixation à la plaque terminale 16 respective. L’au moins un orifice 54 traversant de passage de moyens 52 de fixation est configuré pour être placé en regard de l’au moins un orifice 50 de réception ménagé dans la plaque terminale 16 respective.
En particulier, chaque support pivot 46, 48 est fixé à l’une des deux plaques terminales 16 au moyen de deux vis 52. Chaque vis 52 est par exemple une vis bombée six lobes internes de diamètre 6 mm et de longueur 16 mm, ayant une résistance classe 8.8 et étant réalisée en acier et en zinc.
Le rail de fixation 42 s’étend d’un support pivot 46, 48 à l’autre dans la direction longitudinale L.
Avantageusement, le rail de fixation 42 est pourvue d’orifices 55 de passage de moyens 56 de fixation de chaque support pivot 46, 48 au rail de fixation 42.
Chaque support pivot 46, 48 présente au moins un orifice 54’ traversant de passage des moyens 56 de fixation au rail de fixation 42.
Par exemple, les moyens 56 de fixation sont des vis.
En particulier, chaque support pivot 46, 48 est fixé au rail de fixation 42 au moyen d’une vis 56. La vis 56 est par exemple une vis bombée six lobes internes de diamètre 6 mm et de longueur 16 mm, ayant une résistance classe 8.8 et étant réalisée en acier et en zinc.
Avantageusement, les orifices 55 de passage de moyens 56 de fixation du rail de fixation 42 sont oblongs.
Les orifices 55 oblongs engendrent un léger jeu du rail de fixation 42 sur les supports pivot 46, 48 dans la direction longitudinale L et améliorent ainsi la résistance des modules aux vibrations et aux dilatations occasionnées pendant la durée de vie de la pile à combustible 10.
Avantageusement, comme visible sur la figure 10, chaque support pivot 46, 48 est pourvu sur un côté transversal 57 destiné à être en contact avec un module 20 d’un organe de fixation mâle 59, respectivement femelle, complémentaire de l’organe de fixation femelle 32, respectivement mâle 30, formé dans un côté transversal 28, 34 de la coque 26 de chaque module 20. Ainsi, les coques 26 peuvent être assemblées aux supports pivot 46, 48 sans risque d’erreur.
Par exemple, l’organe de fixation mâle 59 est un ergot et l’organe de fixation femelle 61 est une rainure en arc de cercle permettant à l’ergot de pivoter dans la rainure.
L’axe pivot 44 s’étend entre deux extrémités longitudinales 60, 62.
L’axe pivot 44 s’étend parallèlement au rail de fixation 42. Chaque extrémité longitudinale 60, 62 de l’axe pivot 44 est maintenue par un support pivot 46, 48 respectif.
À cet effet, le support pivot 46, 48 présente par exemple deux orifices 64 traversants cylindriques alignés de réception de l’axe pivot 44.
L’axe pivot 44 présente de préférence une gorge configurée pour être située entre les deux orifices 64 traversants de réception de l’axe pivot 44 lorsque l’axe pivot 44 est engagé dans le support pivot 46, 48 respectif.
Chaque support pivot 46, 48 présente avantageusement en outre une languette 66 placée entre les deux orifices 64 traversants de réception de l’axe pivot 44.
L’axe pivot 44 est verrouillé en position au niveau de la languette 66. Lorsque l’empilement 11 se compresse ou se dilate, le support pivot 46 se déplace en translation le long de l’axe pivot 44.
Les supports pivot 46, 48 maintiennent mécaniquement l’ensemble du système formé par l’axe pivot 44 et le rail de fixation 42.
Les coques 26 des modules 20 sont fixées au rail de fixation 42 par exemple au moyen d’une patte 70 comprenant une dent de verrouillage 71 .
La patte 70 s’étend avantageusement suivant une direction d’élévation Z perpendiculaire à la direction longitudinale L et à la direction transversale T.
Les coques 26 des modules 20 sont fixées à l’axe pivot 44 par exemple au moyen d’une rainure 72 cylindrique complémentaire de l’axe pivot 44. La rainure 72 présente par exemple un contour strié. En variante, la rainure 72 présente par exemple un contour plein.
Lorsque la coque 26 d’un module 20 est fixée à l’axe pivot 44 mais non au rail de fixation 42, la coque 26 est mobile en rotation autour d’un axe A formé par l’axe pivot 44.
Les coques 26 de modules 20 lorsqu’elles sont assemblées entre elles au moyen de l’organe de fixation mâle 30 et de l’organe de fixation femelle 32, au rail de fixation 42 et à l’axe pivot 44, sont ainsi verrouillées en translation dans les directions transversale T et d’élévation Z, et en rotation.
Un léger jeu est autorisé dans la direction longitudinale L pour limiter l’usure due aux vibrations et à la dilatation.
Selon l’exemple représenté sur la figure 6, chaque module 20 comprend trois circuits imprimés 22. Un circuit imprimé 22 s’étend principalement suivant la direction transversale T et deux circuits imprimés 22 s’étendent principalement suivant la direction d’élévation Z.
Les trois circuits imprimés 22 sont reliés électriquement entre eux par des nappes 75 de câbles, par exemple deux nappes 75 entre le circuit imprimé 22 s’étendant principalement suivant la direction transversale T et l’un des deux circuits imprimés 22 s’étendant principalement suivant la direction d’élévation Z, et une nappe 75 entre les deux circuits imprimés 22 s’étendant principalement suivant la direction d’élévation Z.
Afin de connecter électriquement les modules 20 entre eux, et d’assurer la continuité des mesures des caractéristiques électriques des cellules 14, chaque module 20 est connecté à une barrette 76 de connexion inter modules 20.
Selon l’exemple de la figure 6, la barrette 76 se présente sous forme de deux demi- barrettes disposées de part et d’autre d’un plan P transversal médian du module 20. La barrette 76 s’étend principalement suivant la direction transversale T.
De préférence, la barrette 76 est disposée au voisinage de la patte 70 de fixation de la coque 26 au rail de fixation 42.
La barrette 76 comporte une pluralité de broches 78 de connexion de la barrette 76 à l’au moins un circuit imprimé 22 du module 20.
Les broches 78 sont orientées suivant la direction d’élévation Z.
Les broches 78 permettent de connecter mécaniquement et électriquement la barrette 76 et le module 20.
La barrette 76 comporte en outre des ressorts à lame 80 placés de part et d’autre de la barrette 76 suivant la direction transversale T.
La barrette 76 compte par exemple sept paires de ressorts à lame 80.
Les ressorts à lame 80 sont bombés.
La barrette 76 est assemblée au module 20 de sorte que les broches 78 de la barrette 76 soient situées entre la barrette 76 et les circuits imprimés 22.
De cette façon, lorsque la barrette 76 est assemblée à un module 20, les ressorts à lame 80 font saillie de chaque côté transversal 28, 34 de la coque 26 du module 20.
Les ressorts à lame 80 des coques 26 de deux modules 20 voisins compensent la compression et la dilatation pouvant se produire pendant la durée de vie de la pile 10, et par conséquent assurent un contact mécanique et électrique entre les barrettes 76 des deux coques 26, et par conséquent entre deux modules 20 voisins à tout moment.
Les ressorts à lames 80 sont un exemple de réalisation préféré de contacteurs entre deux modules 20 voisins.
La barrette 76 permet d’assurer une continuité dans la mesure des caractéristiques électriques des cellules et de créer une ligne de connexion pour lier tous les modules 20 par une ligne d’alimentation et un bus de communication, et ce sans l’utilisation de câbles entre les modules 20. Chaque module 20 est ainsi alimenté en énergie pour son propre fonctionnement, notamment pour le fonctionnement du circuit imprimé 22, pour la réalisation des mesures des caractéristiques électriques, pour la transmission des résultats de mesures, etc. Avantageusement, lorsqu’un des modules 20 de la pile à combustible 10 est défaillant, cela n’empêche pas le fonctionnement des autres modules 20 de la pile 10.
En variante, comme cela est visible sur la figure 7, les trois circuits imprimés 22 sont reliés électriquement entre eux par des contacts 75’, par exemple une pluralité de contacts 75’ entre le circuit imprimé 22 s’étendant principalement suivant la direction transversale T et l’un des deux circuits imprimés 22 s’étendant principalement suivant la direction d’élévation Z, et une pluralité de contacts 75’ entre le circuit imprimé 22 s’étendant principalement suivant la direction transversale T et l’autre des deux circuits imprimés 22 s’étendant principalement suivant la direction d’élévation Z. Selon cette variante, la barrette 76 se présente sous la même forme que dans la variante de la figure 6.
Avantageusement, les cellules 14 sont agencées par paquets de vingt cellules 14.
Vingt cellules 14 nécessitent vingt-et-une plaques bipolaires 12.
Pour ce faire, vingt-et-une plaques bipolaires 12 sont empilées et deux plaques bipolaires 12 consécutives délimitent entre elles une cellule 14.
Deux plaques monopolaires 12’, 12” successives sont avantageusement disposées dos à dos et forment entre elles au moins une poche 84 à une extrémité 85 de la plaque bipolaire 12 selon la direction d’élévation Z.
Chaque poche 84 est configurée pour recevoir une broche 90 d’un module 20 de mesure des caractéristiques électriques des cellules 14.
De préférence, deux plaques bipolaires 12 successives sont empilées tête bêche, comme visible sur la figure 3, de sorte que seule l’au moins une poche 84 d’une plaque bipolaire 12 sur deux affleure au voisinage des modules 20.
Selon l’exemple représenté, chaque plaque bipolaire 12 forme exactement deux poches 84 de réception d’une broche 90 chacune.
La deuxième poche 84 permet de faire de la mesure quatre fils par groupe de vingt cellules 14. Elle est utilisée pour la mesure d’impédance.
En particulier, chaque poche 84 est conformée pour coopérer avec ladite broche 90.
Pour chaque poche 84, les deux plaques bipolaires 12 successives délimitent une paroi 92 circonférentielle de la poche 84 lorsqu’elles sont au contact l’une de l’autre.
De préférence, chaque poche 84 présente une extrémité ouverte 94 où la paroi 92 circonférentielle a une forme conique.
Une telle forme a l’avantage de guider la broche 90 d’un module 20 à l’intérieur de ladite poche 84.
Avantageusement, la paroi 92 circonférentielle de chaque poche 84 présente un estampage 93 de sorte à former un passage de section réduite pour une broche 90. L’estampage 93 joue un rôle dans la rigidification de la poche 84, et permet d’assurer le contact électrique à l’intérieur de la poche 84 entre la broche 90 et la poche 84.
L’estampage 93 a également une fonction de blocage en profondeur de la broche 90 lorsqu’elle est insérée dans la poche 84, et permet d’éviter un perçage de ladite poche 84.
Chaque module 20 comporte avantageusement dix broches 90 alignées configurées pour connecter dix poches 84 de dix plaques bipolaires 12 audit module 20, et une broche supplémentaire 95 configurée pour connecter la deuxième poche 84 de l’une des dix plaques bipolaires 12, comme visible sur la figure 8.
Les dix broches 90 alignées permettent de mesurer entre deux broches 90 consécutives la tension de deux cellules 14 consécutives.
La broche supplémentaire 95 est disposée sensiblement parallèlement à l’alignement de broches 90 et de préférence à une extrémité longitudinale du module 20.
La broche supplémentaire 95 est configurée pour injecter du courant dans la poche 84 dans laquelle elle est reçue, et permet ainsi de réaliser une mesure d’impédance sur vingt cellules 14. Ainsi, chaque module 20 est apte à mesurer une impédance toutes les vingt cellules 14.
Chaque broche 90, 95 du module est avantageusement étudiée pour favoriser un contact électrique efficace et durable dans le temps entre le module 20 et chaque plaque bipolaire 12, comme visible sur la Figure 9.
À cet effet, chaque broche 90, 95 du module 20 présente une forme telle que la broche 90, 95 exerce deux forces opposées sur la paroi 92 circonférentielle de la poche 84 une fois la broche 90 insérée dans la poche 84.
Les broches 90, 95 d’un module 20 sont de préférence identiques.
Cela facilite la conception du module.
Chaque broche 90, 95 s’étend principalement suivant une première direction, en particulier la direction d’élévation Z, et présente sur une portion 96 une incision 97 suivant ladite première direction séparant ladite portion 96 en deux sous-portions 98 de part et d’autre de l’incision 97. En particulier, l’incision 97 s’étend suivant première direction, ici la direction d’élévation Z, entre une extrémité proximale et une extrémité distale, opposée de l’extrémité proximale, les deux sous-portions 98 étant liées l’une à l’autre aux extrémités distales et proximales de l’incision 97.
Chaque sous-portion 98 présente un renflement 100 dans une deuxième direction, en particulier la direction longitudinale L, la deuxième direction étant perpendiculaire à la première direction. La direction transversale T forme donc ici une troisième direction, qui est orthogonale à la deuxième direction et à la première direction. Les renflements 100 des deux sous-portions 98 s’étendent dans des sens opposés selon la deuxième direction, ici la direction longitudinale L, les deux sous-portions 98 étant séparées l’une de l’autre de part et d’autre de l’incision 97 selon la troisième direction, ici la direction transversale T.
Ainsi, la broche 90 95 est bombée au niveau des sous-portions 98, la rendant à la fois rigide et légèrement élastique. La connexion d’une broche 90 dans une poche 84 nécessite de la rentrer en force. Cela garantit un contact électrique solide et durable entre la broche 90 et la poche 84 respective, et par conséquent avec les deux plaques monopolaires 12’, 12” formant la poche 84.
Le contact électrique est notamment assuré indépendamment de la dilatation ou des vibrations qui peuvent se produire pendant la durée de vie de la pile à combustible 10, grâce à l’effet de ressort induit par les formes spécifiques des poches 84 et des broches 90.
Selon des variantes, les broches 90, 95 de chaque module 20 présentent une forme différente, en particulier toute forme techniquement envisageable pour connecter chaque module 20 aux cellules 14.
Lorsque les modules 20 sont connectés aux cellules 14, il reste au moins une poche 84, formée par une plaque bipolaire 12 à une extrémité longitudinale 104 de l’empilement 1 1 de cellules 14, non connectée à un module 20. Cette plaque bipolaire 12 est dite dernière plaque bipolaire 12.
À cet effet, de retour à la figure 10, l’un des supports pivot 46 présente un emplacement 106 de fixation d’un composant supplémentaire 108 de contact avec la dernière plaque bipolaire 12.
Le composant supplémentaire 108 présente au moins une broche 110 destinée à être reçue dans une poche 84 formée par la plaque bipolaire 12.
En particulier, le composant supplémentaire 108 présente deux broches 110.
De la même façon que pour les modules 20, chaque broche 110 du composant supplémentaire 108 présente une forme telle que la broche 1 10 exerce deux forces opposées sur la paroi circonférentielle de la poche 84 une fois la broche 110 insérée dans la poche 84.
Les deux broches 110 du composant supplémentaire 108 sont de préférence identiques.
Chaque broche 1 10 s’étend principalement suivant une première direction, en particulier la direction d’élévation Z, et présente sur une portion 112 une incision 114 suivant ladite première direction séparant ladite portion en deux sous-portions 116 de part et d’autre de l’incision 1 14. Chaque sous-portion 112 présente un renflement 118 dans une deuxième direction, la deuxième direction étant sensiblement perpendiculaire à la première direction.
Les renflements 118 des deux sous-portions 1 16 s’étendent dans un sens opposé.
Ainsi, la broche 110 est bombée au niveau des sous-portions 116, la rendant à la fois rigide et légèrement élastique. La connexion d’une broche 1 10 dans une poche 84 nécessite de la rentrer en force. Cela garantit un contact électrique solide et durable entre la broche 1 10 et la poche 84 respective, et par conséquent avec les deux plaques monopolaires 12’, 12” formant la poche 84.
En outre, le composant supplémentaire 108 présente au moins un contact métallique 120, en particulier deux contacts métalliques 120, permettant la connexion avec le module 20 voisin.
En outre, le support pivot 46 portant le composant supplémentaire 108 présente au moins un contact métallique 121 , en particulier cinq contacts métalliques 120, permettant la connexion avec le module 20 voisin.
En particulier, les contacts métalliques 120, 121 sont destinés à entrer en contact avec les ressorts à lame 80 de la barrette 76 associée audit module 20 voisin.
Cela permet de transmettre le potentiel électrique de la dernière plaque bipolaire 12 au calculateur du module 20 voisin. Ainsi, toutes les cellules 14 de la pile à combustible 10 sont connectées à un module 20 afin de pouvoir mesurer leurs caractéristiques électriques.
Avantageusement, le support pivot 46 portant le composant supplémentaire 108 comprend en outre un connecteur 122 de liaison de l’empilement 11 de plaques bipolaires 12 à une carte mère. Le connecteur 122 ne nécessite pas de câbles.
Le cadre mécanique 40 maintient l’ensemble du système formé par les modules 20, l’axe pivot 44, le rail de fixation 42 et les supports pivot 46, 48 et permet la dilatation des modules 20.
La coque 26 de chaque module 20 permet de placer le circuit imprimé 22 très proche de l’empilement 11 tout en protégeant celui-ci des agressions extérieures.
La qualité des mesures effectuées par les modules 20 est améliorée, permettant des mesures modulaires d'impédance multifréquence, comme cela sera détaillé plus loin.
Plus généralement, on comprend que les caractéristiques électriques mesurées par chaque module 20 sont disponibles, au travers des contacteurs 80, pour tous les autres éléments connectés à ces modules 20. En particulier, au besoin, le composant supplémentaire 108 a accès aux mesures des caractéristiques électriques de chaque cellule 14. De même, la carte mère connectée au connecteur 122 a aussi accès aux mesures des caractéristiques électriques de chaque cellule, ou, dans l’exemple, de chaque ensemble de deux cellules consécutives, ensemble aux bornes duquel on assure une mesure de tension par les modules 20.
Les contacteurs 80 et les contacts métalliques 120 sont aussi configurés pour transmettre, entre des modules 20 voisins ou entre le composant supplémentaire 108 et le module 20 jouxtant le composant supplémentaire 108, de l’énergie électrique, qui est ainsi mise à disposition pour le fonctionnement des modules 20, notamment pour le fonctionnement du circuit imprimé 22 de chaque module 20, pour la réalisation des mesures de tension, des mesures d’impédance, pour l’injection du courant, etc.
Dans l’exemple illustré, les circuits imprimés 22 des modules 20 intègrent les calculateurs qui déterminent les caractéristiques de diagnostic et de pronostic de l’empilement 11 de plaques bipolaires 12. Alternativement, la détermination des caractéristiques de diagnostic et de pronostic est réalisée ailleurs, par exemple par la carte mère connectée au connecteur 122, tandis que chaque module 20 détermine les caractéristiques électriques de l’empilement 1 1 , notamment mesure des tensions électriques, des impédances, etc. Il est ainsi possible de construire des modules 20 à la structure relativement simple et robuste, de manière à effectuer des mesures fiables des grandeurs électriques relatives aux cellules 14.
Un procédé d’installation de modules 20 de mesure sur une pile à combustible 10 selon l’invention va maintenant être décrit.
Un premier module 20 est assemblé au cadre mécanique 40 au voisinage de l’un des supports pivot 46.
En particulier, la coque 26 du premier module 20 est fixée à l’axe pivot 44 par exemple au moyen de la rainure 72 cylindrique de la coque 26 complémentaire de l’axe pivot 44.
La coque 26 du premier module 20 est mobile en rotation autour d’un axe A formé par l’axe pivot 44.
La coque 26 du premier module est avantageusement fixée au rail de fixation 42 au moyen de la patte 70, en coinçant le rail de fixation 42 dans la patte 70.
Le premier module 20 est assemblé à l’un des supports pivot 46.
En particulier, l’organe de fixation mâle 59 du support pivot 46 est connecté à l’organe de fixation femelle 32 du premier module 20, ou l’organe de fixation mâle 30 du premier module 20 est connecté à l’organe de fixation femelle du support pivot 46 selon la disposition des organes mâles et femelles sur chaque module 20 et le support pivot 46.
Selon l’exemple représenté, l’organe de fixation mâle 30 est un ergot et l’organe de fixation femelle 32 est une rainure en arc de cercle, et l’ergot 30 pivote dans la rainure 32. Au moins l’un des ressorts à lame 80 de la barrette 76 situé du côté transversal 28 orienté vers le support pivot 46 entre avantageusement en contact avec l’au moins un contact métallique 120 du composant supplémentaire 108 de contact avec la dernière plaque bipolaire 12 et l’au moins un contact métallique 121 du support pivot 46.
Le contact de la coque 26 du premier module 20 avec l’au moins un contact métallique 120, 121 engendre une compression des ressorts à lame 80 de la barrette 76.
En outre, chaque broche 90 du premier module 20 est reçue dans une poche 84 formée par deux plaques monopolaires 12’, 12” consécutives de l’empilement 11 de la pile à combustible 10.
En particulier, les dix broches 90 alignées du premier module 20 sont reçues dans dix poches 84 de dix plaques bipolaires 12, et la broche supplémentaire 95 est reçue dans la deuxième poche 84 de l’une des plaques bipolaires 12.
Les dix broches 90 alignées du premier module 20 permettent de mesurer entre deux broches 90 consécutives la tension de deux cellules 14 consécutives.
La fixation préalable du premier module 20 au support pivot 46 et au cadre mécanique 40 assure que les broches 90 du premier module 20 sont reçues dans les poches 84 correspondantes.
À cet effet, chaque broche 90 du premier module 20 est de préférence rentrée en force dans la poche 84 respective.
La forme de chaque poche 84 guide avantageusement chaque broche 90 du premier module 20 à l’intérieur de ladite poche 84.
La forme de chaque broche 90 du premier module 20 favorise un contact électrique efficace et durable dans le temps entre le premier module 20 et chaque plaque bipolaire 12.
Un tel agencement garantit un contact électrique solide et durable entre la broche 90 et la poche 84 respective, et par conséquent avec les deux plaques monopolaires 12’, 12” formant la poche 84.
Le contact électrique est notamment assuré indépendamment de la dilatation ou des vibrations qui peuvent se produire pendant la durée de vie de la pile à combustible 10, grâce à l’effet de ressort induit par les formes spécifiques des poches 84 et des broches 90.
Lorsque le premier module 20 est connecté aux cellules 14 respectives, l’au moins une poche 84 formée par les deux plaques monopolaires 12’, 12” les plus proches du support pivot 46 voisin du premier module 20 ne reçoit pas de broche 90 du premier module 20.
À cet effet, l’au moins une broche 1 10 du composant supplémentaire 108 de contact avec la dernière plaque bipolaire 12 est reçue dans ladite poche 84. Il est ainsi possible de mesurer la tension des deux cellules 14 consécutives les plus proches du support pivot 46 voisin du premier module 20.
En particulier, les deux broches 1 10 du composant supplémentaire 108 de contact avec la dernière plaque bipolaire 12 sont reçues dans les deux poches 84 formées par la plaque bipolaire 12 la plus proche du support pivot 46 voisin du premier module 20.
De la même façon que pour le premier module 20, chaque broche 110 du composant supplémentaire 108 de contact avec la dernière plaque bipolaire 12 est de préférence rentrée en force dans la poche 84 respective.
La forme de chaque poche 84 guide avantageusement chaque broche 1 10 du composant supplémentaire 108 de contact avec la dernière plaque bipolaire 12 à l’intérieur de ladite poche 84.
La forme de chaque broche 110 du composant supplémentaire 108 de contact avec la dernière plaque bipolaire 12 favorise un contact électrique efficace et durable dans le temps entre le composant supplémentaire 108 et la plaque bipolaire 12.
Un tel agencement garantit un contact électrique solide et durable entre la broche 1 10 et la poche 84 respective, et par conséquent avec les deux plaques monopolaires 12’, 12” formant la poche 84.
Le contact électrique est notamment assuré indépendamment de la dilatation ou des vibrations qui peuvent se produire pendant la durée de vie de la pile à combustible 10, grâce à l’effet de ressort induit par les formes spécifiques des poches 108 et des broches 1 10.
Le procédé d’installation de modules de mesure 20 comprend l’assemblage d’un deuxième module 20 au premier module 20 et à des poches 84 formées par des plaques bipolaires 12 de la pile à combustible 10.
En particulier, le deuxième module 20 est fixé à l’axe pivot 44 et au rail de fixation 42 du cadre mécanique 40 de la même manière que le premier module 20.
En outre, l’organe de fixation mâle 30 du premier module 20 est connecté à l’organe de fixation femelle 32 du deuxième module 20, ou l’organe de fixation mâle 30 du deuxième module 20 est connecté à l’organe de fixation femelle 32 du premier module 20 selon la disposition des organes mâles et femelles sur chaque module 20.
Selon l’exemple représenté, l’organe de fixation mâle 30 est un ergot et l’organe de fixation femelle 32 est une rainure en arc de cercle, et l’ergot 30 pivote dans la rainure 32.
Les coques 26 de modules 20 lorsqu’elles sont assemblées entre elles au moyen de l’organe de fixation mâle 30 et de l’organe de fixation femelle 32, au rail de fixation 42 et à l’axe pivot 44, sont ainsi verrouillées en translation dans les directions transversale T et d’élévation Z, et en rotation. L’assemblage des coques 26 des modules 20 entre elles permet l’automatisation du procédé ainsi qu’une économie de temps pour l’insertion des modules 20 sur l’empilement de plaques bipolaires 12.
Le premier module 20 et le deuxième module 20 sont connectés électriquement entre eux.
En particulier, la barrette 76 du deuxième module 20 est assemblée à la barrette 76 du premier module 20.
Pour ce faire, au moins l’un des ressorts à lame 80 de la barrette 76 du deuxième module 20 situé du côté transversal 34 orienté vers le premier module 20 entre avantageusement en contact avec l’au moins un des ressorts à lame 80 de la barrette 76 du premier module 20.
Le contact de la coque 26 du premier module 20 avec la coque 26 du deuxième module 20 engendre une compression des ressorts à lame 80 de chacune des barrettes 76.
En outre, chaque broche 90 du deuxième module 20 est reçue dans une poche formée par deux plaques monopolaires 12’, 12” de la pile à combustible 10.
En particulier, les dix broches 90 alignées du deuxième module 20 sont reçues dans dix poches 84 de dix plaques bipolaires 12, et la broche supplémentaire 95 est reçue dans la deuxième poche 84 de l’une des plaques bipolaires 12.
Il est ainsi possible de mesurer la tension des deux cellules 14 consécutives délimitées entre le premier module 20 et le deuxième module 20.
La fixation préalable du deuxième module 20 au premier module 20 et au cadre mécanique 40 assure que les broches 90 du deuxième module 20 sont reçues dans les poches 84 correspondantes.
À cet effet, chaque broche 90 du deuxième module 20 est de préférence rentrée en force dans la poche 84 respective.
La forme de chaque poche 84 guide avantageusement chaque broche 90 du deuxième module 20 à l’intérieur de ladite poche 84.
La forme de chaque broche 90 du deuxième module 20 favorise un contact électrique efficace et durable dans le temps entre le deuxième module 20 et chaque plaque bipolaire 12.
Un tel agencement garantit un contact électrique solide et durable entre la broche 90 et la poche 84 respective, et par conséquent avec les plaques monopolaires 12’, 12”formant la poche 84.
Le contact électrique est notamment assuré indépendamment de la dilatation ou des vibrations qui peuvent se produire pendant la durée de vie de la pile à combustible 10, grâce à l’effet de ressort induit par les formes spécifiques des poches 84 et des broches 90. Ainsi les calculateurs compris dans les modules 20 sont branchés directement aux cellules 14, sans besoin de câbles.
L’exemple représenté comprend deux modules 20, cependant la pile à combustible 10 n’est pas limitée à deux modules mais peut en comprendre davantage, par exemple dix modules 20 pour connecter deux-cent cellules 14.
De manière analogue, dans l’exemple illustré chaque module 20 comporte dix broches 90 alignées configurées pour connecter dix poches 84 de dix plaques bipolaires 12 audit module 20. Le nombre de broches 90 ménagées sur chaque module 90 n’est pas limitatif, les principes de l’invention, notamment l’acquisition des potentiels électriques des plaques bipolaires 12 connectées aux modules 20 et éventuellement la mesure d’impédance quatre fils pouvant être transposés pour des modules 20 de mesure comprenant plus ou moins que dix broches 90.
Pour installer les modules suivants le cas échéant, le procédé détaillé ci-dessus d’installation du deuxième module 20 est répété le nombre de fois nécessaire.
Grâce au procédé selon l’invention, le montage est simple, aucun câble n’est utilisé pour connecter les modules 20 aux cellules 14 et les modules 20 entre eux. Il permet également avantageusement de ne pas utiliser de câbles pour connecter les modules 20 avec une carte mère. Grâce aux organes de détrompage, chaque module 20 est assemblé aux modules voisins sans risque d’erreur. Le montage des modules 20 de mesure sur l’empilement 11 , voire le remplacement des modules 20 défaillants, est particulièrement aisé et rapide à réaliser.
Ainsi, la qualité des mesures est améliorée, permettant une analyse plus poussée par la suite.
Une fois installés, les modules 20 sont propres à déterminer des caractéristiques électriques de l’empilement 11 de plaques bipolaires 12. Optionnellement, une fois installés, les modules 20 sont propres à déterminer des caractéristiques de diagnostic et de pronostic de l’empilement 11 de plaques bipolaires 12 grâce au calculateur qu’ils comprennent.
Par exemple, les caractéristiques comprennent un état de santé de l’empilement 11 de plaques bipolaires 12, la localisation d’une cellule 14 dans l’empilement de plaques bipolaires 12, la tension, l’impédance, l’alimentation des cellules 14 de la pile à combustible 10.
Les dix broches 90 alignées de chaque module 20, ainsi que le cas échéant la broche 110 du composant supplémentaire 108 de contact alignée avec les broches 90 des modules 20, permettent de mesurer entre deux broches 90, 1 10 consécutives la tension de deux cellules 14 consécutives. La broche supplémentaire 95 de chaque module 20, ainsi que le cas échéant du composant supplémentaire 108 de contact, est configurée pour injecter un courant sinusoïdal dans la poche 84 dans laquelle elle est reçue, et permet ainsi de réaliser une mesure d’impédance sur le nombre de cellules 14 que chaque module 20 recouvre, en particulier vingt cellules 14 dans l’exemple représenté, quand la pile 10 est en fonctionnement.
En fonctionnement, la pile 10 présente un courant de sortie d’une valeur pouvant aller jusqu’à 500 A - Ampères -, selon la technologie de l’empilement.
Le courant sinusoïdal injecté présente une fréquence comprise entre 100 Hz - Hertz - et 5 kHz - kilohertz -, en particulier entre 500 Hz et 2 kHz.
Ce courant sinusoïdal injecté sur l’empilement 11 induit une réponse en tension de l’ordre de quelques mV - millivolt -. Cette tension est mesurable par un convertisseur analogique/numérique équipé d’un étage d’amplification.
Au sein du signal de tension mesuré, le module de mesure 20 isole la composante de tension ayant la même fréquence que le courant sinusoïdal injecté. L’impédance est alors calculée dans un module de mesure 20 comme le rapport de l’amplitude de cette composante de tension sur l’amplitude du courant sinusoïdal injecté.
Une valeur d’impédance est typiquement calculée toutes les secondes.
Chaque module 20 injecte un courant indépendamment des autres modules 20, ainsi la fréquence des courants injectés peut varier d’un module 20 à l’autre. Chaque module 20 injecte un courant indépendamment des autres modules 20, ainsi la fréquence des courants injectés peut varier d’un module 20 à l’autre. Il est ainsi possible de réaliser des mesures d’impédance quatre fils simultanément, sur plusieurs modules de mesures 20.
L’impédance mesurée est comprise entre 5 mQ - millohm - et 20 mQ pour vingt cellules 14, de préférence environ 10 mQ pour vingt cellules 14.
Une telle valeur est avantageusement faible, et une telle configuration permet des mesures modulaires d'impédance multifréquence, au lieu de réaliser une unique mesure d’impédance sur l’ensemble de l’empilement 11 de plaques bipolaires. La fiabilité est donc améliorée.
Grâce au procédé selon l’invention, le montage est simple, aucun câble n’est utilisé pour connecter les modules 20 aux cellules 14 et les modules 20 entre eux. Il permet également avantageusement de ne pas utiliser de câbles pour connecter les modules 20 avec une carte mère. Ainsi, la qualité des mesures est améliorée, permettant une analyse plus poussée par la suite.
Les modes de réalisation et les variantes mentionnées ci-dessus peuvent être combinés entre eux pour générer des modes de réalisation additionnels de l’invention.

Claims

REVENDICATIONS
1. Pile à combustible (10) comprenant un empilement (11 ) de plaques bipolaires (12) dans une direction d’empilement (L), deux plaques bipolaires (12) consécutives formant entre elles une cellule (14), la pile (10) comprenant en outre deux plaques terminales (16) de part et d’autre de l’empilement (11), une pluralité de modules de mesure (20) reliés aux plaques bipolaires (12), chaque module (20) comprenant au moins un circuit imprimé (22) comportant un calculateur propre à déterminer des caractéristiques électriques de l’empilement (11) de plaques bipolaires (12), et un cadre mécanique (40) de maintien des modules de mesure (20), dans laquelle les modules (20) de mesure sont fixés au cadre mécanique (40), connectés entre eux et connectés à l’empilement (1 1 ) de plaques bipolaires (12), sans l’intermédiaire de câbles.
2. Pile à combustible (10) selon la revendication 1 , dans laquelle le cadre mécanique (40) comprend deux supports pivot (46, 48), chaque support pivot (46, 48) étant fixé à une plaque terminale (16), un axe pivot (44) s’étendant d’un support pivot (46) à l’autre support pivot (48) sensiblement parallèlement à la direction d’empilement (L), et un rail de fixation (42) s’étendant d’un support pivot (46) à l’autre support pivot (48) sensiblement parallèlement à la direction d’empilement (L) et à l’axe pivot (44), le cadre mécanique (40) étant configuré pour que l’ensemble des modules de mesure (20) soit encadré par ledit cadre (40).
3. Pile à combustible (10) selon la revendication 2, dans laquelle le rail de fixation (42) est pourvu d’orifices (54) de passage de moyens (56) de fixation de chaque support pivot (46, 48) au rail de fixation (42), les orifices (54) de passage de moyens (56) de fixation du rail de fixation (42) étant oblongs.
4. Pile à combustible (10) selon l’une quelconque des revendications 1 à 3, dans laquelle chaque module (20) est recouvert d’une coque (92), les coques (92) de chaque module (20) comprenant des organes de détrompage et s’assemblant les unes aux autres par détrompage.
5. Pile à combustible (10) selon la revendication 4, dans laquelle : les organes de détrompage incluent un organe de fixation mâle (93) complémentaire d’un organe de fixation femelle (32), chaque coque (92) est pourvue sur un premier côté transversal (94) de l’organe de fixation mâle (93), tandis que l’organe de fixation femelle (32) est formé dans un deuxième côté transversal (34) de la coque (92) opposé au premier côté (94).
6. Pile à combustible (10) selon la revendication 5, dans laquelle l’organe de fixation mâle (93) est un ergot et l’organe de fixation femelle (32) est une rainure en arc de cercle permettant à l’ergot de pivoter dans la rainure.
7. Pile à combustible (10) selon l’une quelconque des revendications 4 à 6, dans laquelle chaque coque (92) présente une rainure (72) cylindrique complémentaire de l’axe pivot (44).
8. Pile à combustible (10) selon l’une quelconque des revendications 4 à 7, dans laquelle chaque coque (92) présente une patte (70) de fixation au rail de fixation (42).
9. Pile à combustible (10) selon l’une quelconque des revendications 4 à 8, dans laquelle chaque module (20) est connecté à une barrette (76) de connexion inter modules (20) présentant des ressorts à lame (80) placés de part et d’autre de la barrette (76) suivant une direction transversale (T) perpendiculaire à la direction d’empilement (L), de sorte que le contact de la coque (92) d’un premier module (20) avec la coque (92) d’un deuxième module (20) voisin engendre une compression des ressorts à lame (80) de chacune des barrettes (76).
10. Pile à combustible (10) selon l’une quelconque des revendications 1 à 9, dans laquelle chaque module (20) est branché à l’empilement (11) de plaques bipolaires (12) au moyen de broches (90) aptes à être insérées dans des poches (84) formées dans les plaques bipolaires (12).
11. Pile à combustible (10) selon l’une quelconque des revendications 2 à 10, dans laquelle l’un des supports pivot (46) porte un connecteur (122) de liaison de l’empilement (1 1 ) de plaques bipolaires (12) à une carte mère.
12. Pile à combustible (10) selon l’une quelconque des revendications 2 à 11 , dans laquelle l’un des supports pivot (46) porte un composant supplémentaire (108) de contact avec la plaque bipolaire (12) la plus proche dudit support pivot (46), propre à connecter ladite plaque bipolaire (12) au module (20) voisin.
13. Véhicule comprenant au moins une pile à combustible (10) selon l’une quelconque des revendications 1 à 12.
14. Procédé d’installation de modules (20) de mesure sur une pile à combustible (10) selon l’une quelconque des revendications 1 à 12, comprenant la fixation de chaque module (20) au cadre mécanique (40), et la connexion des modules (20) entre eux et à l’empilement (11) de plaques bipolaires (12) sans l’intermédiaire de câbles.
15. Pile à combustible (10) formée par un empilement de plusieurs plaques bipolaires (12) dans une direction d’empilement (L), chaque plaque bipolaire (12) étant elle- même formée par deux plaques monopolaires (12’, 12”) superposées comprenant une plaque anode (12’) et une plaque cathode (12”), deux plaques bipolaires (12) consécutives formant entre elles une cellule (14), la pile (10) comprenant en outre deux plaques terminales (16) de part et d’autre de l’empilement (11), une pluralité de modules de mesure (20) des caractéristiques électriques des cellules (14), chaque module (20) comprenant un circuit imprimé (22) comportant un calculateur propre à déterminer des caractéristiques électriques de l’empilement (11) de plaques bipolaires (12), caractérisée en ce que deux plaques monopolaires (12’, 12”) successives forment ensemble au moins une poche (84) de réception chacune d’une broche (90, 95) dudit module (20), chaque poche (84) étant conformée pour coopérer avec ladite broche (90, 95) et présentant une paroi (92) circonférentielle, et dans laquelle chaque broche (90, 95) du module (20) présente une forme telle que la broche (90, 95) exerce deux forces opposées sur la paroi (92) circonférentielle de la poche (84) une fois la broche (90, 95) insérée dans la poche (84).
16. Pile à combustible (10) selon la revendication 15, dans laquelle deux plaques monopolaires (12) successives sont disposées dos à dos pour former l’au moins une poche (84).
17. Pile à combustible (10) selon l’une quelconque des revendications 15 ou 16, dans laquelle chaque broche (90, 95) s’étend principalement suivant une première direction (Z), et présente sur une portion (96) une incision (97) suivant ladite première direction (Z) séparant ladite portion (96) en deux sous-portions (98) de part et d’autre de l’incision (97), chaque sous-portion (98) présentant un renflement dans une deuxième direction (L), la deuxième direction (L) étant perpendiculaire à la première direction (Z), les renflements (40) des deux sous-portions (98) s’étendent dans des sens opposés selon la deuxième direction (L).
18. Pile à combustible (10) selon la revendication 17, dans laquelle la deuxième direction (L) est perpendiculaire à une troisième direction (T) qui est perpendiculaire à la première direction (Z), les deux sous-portions (98) étant séparées l’une de l’autre de part et d’autre de l’incision (97) selon la troisième direction.
19. Pile à combustible (10) selon l’une quelconque des revendications 17 ou 18, dans laquelle l’incision (97) s’étend suivant ladite première direction (Z) entre une extrémité proximale et une extrémité distale, et ce que les deux sous-portions (98) sont liées l’une à l’autre aux extrémités distales et proximales de l’incision.
20. Pile à combustible (10) selon l’une quelconque des revendications 15 à 19, dans laquelle chaque poche (84) présente une extrémité ouverte (94) où la paroi (92) circonférentielle a une forme conique.
21. Pile à combustible (10) selon l’une quelconque des revendications 15 à 20, dans laquelle la paroi (92) circonférentielle de chaque poche (84) présente un estampage (93) de sorte à former un passage de section réduite pour une broche (90, 95).
22. Pile à combustible (10) selon l’une quelconque des revendications 15 à 21 , dans laquelle deux plaques bipolaires (12) successives sont empilées tête bêche de sorte que seule l’au moins une poche (84) d’une plaque bipolaire (12) sur deux affleure au voisinage des modules (20).
23. Pile à combustible (10) selon l’une quelconque des revendications 15 à 22, dans laquelle chaque plaque bipolaire (12) forme exactement deux poches (84) de réception d’une broche (90, 95) chacune.
24. Pile à combustible (10) selon la revendication 23, dans laquelle chaque module (20) comporte dix broches (90, 95) alignées configurées pour connecter dix poches (84) de dix plaques bipolaires (12) distinctes audit module (20), et une broche supplémentaire (95) pour connecter la deuxième poche (84) de l’une des dix plaques bipolaires (12) audit module (20).
25. Véhicule comprenant au moins une pile à combustible (10) selon l’une quelconque des revendications 15 à 24.
PCT/EP2022/087804 2022-01-24 2022-12-23 Pile à combustible WO2023138884A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR2200562A FR3132173B1 (fr) 2022-01-24 2022-01-24 Pile à combustible
FRFR2200562 2022-01-24
FRFR2200565 2022-01-24
FR2200565A FR3132175B1 (fr) 2022-01-24 2022-01-24 Pile à combustible présentant une connexion simplifiée entre plaques bipolaires et modules de mesure

Publications (1)

Publication Number Publication Date
WO2023138884A1 true WO2023138884A1 (fr) 2023-07-27

Family

ID=84981571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/087804 WO2023138884A1 (fr) 2022-01-24 2022-12-23 Pile à combustible

Country Status (1)

Country Link
WO (1) WO2023138884A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227518A1 (en) * 2003-02-14 2004-11-18 Hydrogenics Corporation Fuel cell voltage measuring assembly
US20070108960A1 (en) * 2005-11-14 2007-05-17 Industrial Technology Research Institute Fuel cell voltage measurement device
US20080102332A1 (en) * 2006-11-01 2008-05-01 Samsung Sdi Co., Ltd Device for measuring electrical output and fuel cell stack including the same
US20150180077A1 (en) * 2013-12-24 2015-06-25 Hyundai Motor Company Voltage monitoring device of stack
US20160231391A1 (en) * 2013-10-30 2016-08-11 Toyota Jidosha Kabushiki Kaisha Cell monitor connector (as amended)
US9997792B2 (en) 2011-09-21 2018-06-12 Intelligent Energy Limited Cell voltage monitoring connector system for a fuel cell stack
EP3373373A1 (fr) * 2017-02-22 2018-09-12 Toyota Jidosha Kabushiki Kaisha Unité de connexion de cellules

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227518A1 (en) * 2003-02-14 2004-11-18 Hydrogenics Corporation Fuel cell voltage measuring assembly
US20070108960A1 (en) * 2005-11-14 2007-05-17 Industrial Technology Research Institute Fuel cell voltage measurement device
US20080102332A1 (en) * 2006-11-01 2008-05-01 Samsung Sdi Co., Ltd Device for measuring electrical output and fuel cell stack including the same
US9997792B2 (en) 2011-09-21 2018-06-12 Intelligent Energy Limited Cell voltage monitoring connector system for a fuel cell stack
US20160231391A1 (en) * 2013-10-30 2016-08-11 Toyota Jidosha Kabushiki Kaisha Cell monitor connector (as amended)
US20150180077A1 (en) * 2013-12-24 2015-06-25 Hyundai Motor Company Voltage monitoring device of stack
EP3373373A1 (fr) * 2017-02-22 2018-09-12 Toyota Jidosha Kabushiki Kaisha Unité de connexion de cellules

Similar Documents

Publication Publication Date Title
EP2034539B1 (fr) Batterie constituée d'une pluralité de cellules positionnées et reliées entre elles, sans soudure
EP2721911B1 (fr) Circuit imprime pour l'interconnexion et la mesure d'accumulateurs d'une batterie
FR2648627A1 (fr)
FR3087584A1 (fr) Dispositif de connexion pour vehicule equipe d'un capteur de temperature
WO2023138884A1 (fr) Pile à combustible
WO2023138885A1 (fr) Pile à combustible avec mesure d'impédance embarquée
FR3132173A1 (fr) Pile à combustible
FR2959609A1 (fr) Ensemble accumulateur pour batterie de vehicule electrique ou hybride
EP2564452B1 (fr) Ensemble accumulateur pour batterie de vehicule electrique ou hybride muni d'une entretoise de connexion
EP3174151B1 (fr) Connecteur electrique et reacteur electrochimique muni d'un tel connecteur electrique
EP3809488A1 (fr) Batterie d'accumulateurs factice
EP3152791B1 (fr) Dispositif de connexion pour batterie
FR2897986A1 (fr) Reacteur electrochimique.
FR2498380A1 (fr) Connecteur pour equipement electrique en tiroir
EP3176852B1 (fr) Dispositif de connexion pour batterie
FR3132175A1 (fr) Pile à combustible présentant une connexion simplifiée entre plaques bipolaires et modules de mesure
FR3000615A1 (fr) Connecteur pour cellules de pile a combustible et procede de mise en oeuvre
WO2023139265A1 (fr) Empilement de pile à combustible, pile à combustible et véhicule associé
EP3813168B1 (fr) Pile a combustible adaptee a caracteriser au moins un polluant present dans un gaz reactif
EP4095959A1 (fr) Dispositif de mesure de tension pour la mesure de la tension d'une pluralité de cellules électrochimiques d'un réacteur électrochimique
WO2023126386A1 (fr) Batterie électrique de véhicule
FR3132166A1 (fr) Dispositif de connexion pour la connexion électrique de deux terminaux de deux cellules élémentaire d’un bloc batterie
EP4391129A1 (fr) Ensemble pour batterie comprenant une ou plusieurs cellule(s) électrochimique(s) et procédé de montage d'un tel ensemble
FR2954998A1 (fr) Systeme de connexion pour un accumulateur electrique
FR3128063A1 (fr) Dispositif d’isolation configuré pour être monté dans une cheminée de circulation de fluide d’une pile à combustible et procédé d’isolation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844161

Country of ref document: EP

Kind code of ref document: A1