WO2023138495A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2023138495A1
WO2023138495A1 PCT/CN2023/072047 CN2023072047W WO2023138495A1 WO 2023138495 A1 WO2023138495 A1 WO 2023138495A1 CN 2023072047 W CN2023072047 W CN 2023072047W WO 2023138495 A1 WO2023138495 A1 WO 2023138495A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
communication
beams
electronic device
interference
Prior art date
Application number
PCT/CN2023/072047
Other languages
English (en)
French (fr)
Inventor
卓寅潇
王昭诚
曹建飞
Original Assignee
索尼集团公司
卓寅潇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 卓寅潇 filed Critical 索尼集团公司
Publication of WO2023138495A1 publication Critical patent/WO2023138495A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to the integrated communication and perception technology. More particularly, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • Future mobile communication application scenarios such as autonomous driving technology, require the system to have both communication and detection functions.
  • the communication module and the detection module also known as the perception module or radar module
  • the two may save hardware resources and spectrum resource overhead and improve communication and detection performance by sharing hardware, sharing waveform signals, and functional coordination. Therefore, the joint design of communication-aware systems has become a hot research topic and has been listed as one of the key technologies of 6G.
  • JCR system Joint Communication and Radar System
  • the Joint Communication and Radar System has high application value in scenarios such as the Internet of Vehicles.
  • the integrated design of communication perception uses a set of transmitter hardware equipment, so appropriate signal design is required to ensure that both the communication module and the detection module work normally.
  • the communication module is required to establish a communication link with the remote receiver, such as other vehicles or base stations in the distance, for data transmission;
  • the detection module is required to detect the distance, orientation, speed, etc. of the target in the middle and short distance (usually within tens of meters to a hundred meters), such as vehicles or pedestrians, which requires the short/medium range radar (SRR/MRR) function.
  • SRR/MRR short/medium range radar
  • an electronic device for wireless communication including: a processing circuit configured to: determine a sensing beam group, wherein each sensing beam and a communication beam in the sensing beam group are selected from the same beam codebook and each sensing beam is different from a communication beam; One or more sensing beams.
  • a method for wireless communication including: determining a sensing beam group, wherein each sensing beam and communication beam in the sensing beam group are selected from the same beam codebook and each sensing beam is different from the communication beam; and sending a combined beam, and repeatedly performing sending to traverse all the sensing beams in the sensing beam group, wherein the combined beam includes a communication beam and a sensing beam sub-group, and each sensing beam sub-group includes one or more sensing beams in the sensing beam group.
  • an electronic device for wireless communication including: a processing circuit configured to: receive a combined beam from a communication sending end, the combined beam includes a communication beam and a sensing beam subgroup, wherein each sensing beam subgroup includes one or more sensing beams in the sensing beam group, each sensing beam in the sensing beam group and the communication beam are selected from the same beam codebook and each sensing beam is different from the communication beam; and repeatedly perform receiving until all sensing beams in the sensing beam group are traversed bundle.
  • a method for wireless communication including: receiving a combined beam from a communication originating end, the combined beam includes a communication beam and a sensing beam subgroup, wherein each sensing beam subgroup includes one or more sensing beams in the sensing beam group, each sensing beam in the sensing beam group is selected from the same beam codebook as the communication beam and each sensing beam is different from the communication beam; and repeatedly performing receiving until all the sensing beams in the sensing beam group are traversed.
  • the electronic device and method according to the embodiments of the present application use a narrow beam different from the communication beam sent together with the communication beam as the sensing beam to perform sensing, which reduces the interference of the sensing beam to the communication beam while achieving coverage of the sensing range, and improves communication performance.
  • FIG. 1 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figure 2 shows an example of a multipath channel
  • Figure 3 shows an example of the transmission of combined beams
  • Figure 4 shows another example of transmission of combined beams
  • FIG. 5 shows an example of transmitting a combined beam using a spreading sequence
  • Figure 6 shows a graph of a comparison of communication performance
  • Figure 7 shows a normalized radar phase diagram
  • FIG. 8 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 9 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 10 shows a diagram of a method for wireless communication according to another embodiment of the present application flow chart
  • FIG. 11 is a block diagram illustrating a first example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure can be applied;
  • FIG. 12 is a block diagram illustrating a second example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure can be applied;
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 15 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present disclosure can be implemented.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 includes: a determining unit 101 configured to determine a sensing beam group, wherein each sensing beam in the sensing beam group is selected from the same beam as the communication beam Beam codebook and each sensing beam is different from the communication beam; and the transceiver unit 102 is configured to transmit the combined beam, and repeatedly perform sending to traverse all the sensing beams in the sensing beam group, wherein the combined beam includes the communication beam and a sensing beam subgroup, and each sensing beam subgroup includes one or more sensing beams in the sensing beam group.
  • the determining unit 101 and the transceiving unit 102 may be implemented by one or more processing circuits, and the processing circuits may be implemented as a chip or a processor, for example.
  • the processing circuits may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 1 is only a logic module divided according to a specific function realized by it, and is not used to limit a specific implementation manner.
  • the electronic device 100 may be set on the UE side or be communicatively connected to the UE, for example, it may be set on the vehicle side in a vehicle network communication scenario.
  • the electronic device 100 can also be installed on the base station side or a roadside unit (RSU), and the application scenarios of this application are not limited to the vehicle network, but can be applied to any scenario that requires communication-aware integration technology.
  • RSU roadside unit
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a UE or a base station itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that need to be executed by the UE or the base station to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, other base stations, other UEs, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the communication module and the detection module share the sending hardware device (referred to as the communication sending end), and the transmitting signal is used for communication and radar detection at the same time.
  • the communication receiving end receives the communication signal, and the radar receiving end receives the echo for detection; the communication receiving end is at the remote end (such as other vehicles or base stations), and the radar receiving end is set near the communication sending end.
  • the electronic device 100 in this embodiment is, for example, located at the communication source or communicably connected to the communication source.
  • Figure 2 shows an example of a multipath channel, where Tx is a transmitter and Rx is a receiver.
  • the transmitter is a half-wavelength uniform linear array (uniform linear array, ULA)
  • the number of antennas is N T
  • the receiver is a single antenna
  • the attenuation factor of the path h k is ⁇ k
  • k 0,1,...,P
  • ⁇ k is a complex number
  • the departure angle (Angle of departure, AoD) of the kth path is Then the kth path can be expressed as:
  • the base station transmits symbol s (s is a complex number)
  • the transmission steering vector used is f (f is a vector of NT ⁇ 1)
  • the transmission power is ⁇
  • the additive noise at the receiving end is n (n is a complex number)
  • the received signal y (y is a complex number) at the receiving end can be written as the following formula (3).
  • the larger the beamforming gain the higher the signal-to-noise ratio at the receiving end and the better the communication quality.
  • an OFDM radar compatible with communication can be considered, that is, OFDM signals are used to detect the distance and speed of the target.
  • the coherent processing interval contains N sym OFDM symbols
  • one OFDM symbol has a duration of T OFDM
  • the subcarrier spacing is ⁇ f
  • the transmit steering used The vector is f (f is a vector of N T ⁇ 1), and the receiver uses an omnidirectional single antenna for reception. It is assumed that there are K targets in the environment, and the round-trip delay of each target signal is within the cyclic prefix.
  • the channel between the transmitter and the kth target is h k (h k is a vector of NT ⁇ 1), the attenuation and reflection coefficient is A k (A k is a complex number), the distance of the target is R k , and the Doppler frequency shift is f D,k .
  • the OFDM signal echo y k [ ⁇ ,n] received by the radar receiver can be expressed as the following formula (4).
  • the Doppler shift v rel is the radial relative moving speed between the radar (that is, the communication sending end and the communication receiving end) and the target
  • f c is the carrier frequency
  • c 0 is the speed of light.
  • the range-Doppler phase diagram of radar detection can be obtained. It can be seen that, is the detection gain brought by the transmitting beam. The larger the detection gain, the easier it is for the target to be distinguished on the phase diagram.
  • the phase diagram expression can be written as Where conj(s[ ⁇ ,n]) represents the conjugation of s[ ⁇ ,n].
  • the echo of the communication signal can be directly used for radar detection, but because the communication beam is highly directional, for targets not in the direction of the communication beam, the beam detection gain is too small to be detected.
  • the target in the direction of the communication beam can only be detected through the echo of the communication signal, but cannot cover the entire detection angle range.
  • the transmitter will additionally send signals capable of covering other directions (called sensing signals) to assist in detection, and the beams carrying the sensing signals are referred to herein as sensing beams.
  • sensing signals signals capable of covering other directions
  • the beams carrying the sensing signals are referred to herein as sensing beams.
  • the beam gain for the communication channel is very low, so the communication receiving end cannot receive the sent sensing signal.
  • the multipath effect is serious, there may be a perception signal entering the receiving end through a stronger path, causing strong interference and seriously degrading the communication quality.
  • this problem is solved by avoiding the additionally sent sensing beams from the communication beams.
  • the determining unit 101 determines beams in the beam codebook that are different from communication beams as sensing beams, and all sensing beams are called a sensing beam group.
  • the communication beam and the sensing beam in the sensing beam group can cover substantially the entire detection angle range.
  • the sensing beam group may include beams other than communication beams in the beam codebook.
  • the determining unit 101 determines beams other than the communication beams in the beam codebook as the sensing beams in the sensing beam group.
  • the transceiver unit 102 will transmit the communication beam and one or more sensing beams in the sensing beam group at the same time.
  • one or more sensing beams sent at the same time are called a sensing beam subgroup, and the communication beam and the sensing beam subgroup sent at the same time are called combined beams.
  • Figure 3 shows an example of transmission of combined beams.
  • the combined beam includes a communication beam and two sensing beams, and the sensing beam and the communication beam have different directions.
  • the number of beams that can be simultaneously formed by the communication originating end is limited, it may be necessary to divide the sensing beams in the sensing beam group into multiple sensing beam subgroups to perform multiple transmissions.
  • the number of the sensing beam subgroups depends on the ratio of the number of sensing beams in the sensing beam group to the number of beams that can be simultaneously formed by the communication originating end.
  • the beam codebook uses an NT -order discrete Fourier transform (DFT) codebook
  • the communication sender has A total of N T candidate beams, where Denote the beam used by the communication link as f c
  • the remaining ( NT -1) beams are perception beams, which are sequentially denoted as N(N ⁇ 2) can be formed at the same time at the communication sender
  • the ( NT -1) beams can be divided into sensing beam subgroups, where, Represents rounding up.
  • each sensing beam subgroup does not overlap with each other, and a collection thereof constitutes a sensing beam group.
  • the sequence numbers of the beams it contains can be expressed as ⁇ g, G+g, 2G+g,...K g G+g ⁇ , where K g is the largest non-negative integer such that K g G+g ⁇ NT . It should be understood that the number and division rules of the sensing beam subgroups are not limited thereto, but can be flexibly divided according to actual requirements.
  • FIG. 4 shows another example of transmission of combined beams, where the sensing beams in the combined beams are different from the combined beams shown in FIG. 3 .
  • FIG. 3 and FIG. 4 respectively represent combined beam transmission at different time-frequency resource elements (Resource Element, RE), and both together show a schematic example of combined beam scanning. That is, the transceiving unit 102 sequentially transmits combined beams corresponding to each sensing beam subgroup in multiple REs.
  • the order in which the transceiver unit 102 transmits the combined beams may be set according to a predetermined rule. For example, it may be set according to the order of the serial numbers of the sensing beams in the sensing beam subgroup corresponding to the combined beam, and so on.
  • the transceiver unit 102 may traverse all the sensing beams in the sensing beam group after repeatedly sending the combined beams corresponding to each sensing beam subgroup, so as to achieve coverage of the entire detection angle range.
  • the transceiver unit 102 may be configured to make different sensing beams carry different spreading sequence signals.
  • angularly adjacent sensing beams can carry spreading sequence signals with low cross-correlation.
  • the length of the spreading sequence signal is L
  • the transmission of each sensing beam subgroup requires L REs.
  • the spreading sequence signal can be sent on REs with sequence numbers ⁇ g, G+g, 2G+g,...(L-1)G+g ⁇ .
  • the transceiver unit 102 is configured to traverse all the sensing beams in the sensing beam group on LG REs.
  • the communication beam is f c on a certain RE
  • the communication signal carried by it is sc,j
  • N sensing beams f s,1 ,f s,2 ...,f s,N are sent at the same time
  • the length of the spreading sequence is L
  • the sensing signal carried on this RE is s i,j
  • the superimposed signal sent on this RE is:
  • is the power allocation factor, which represents the power allocated to the communication beam, and the remaining power is evenly distributed to the N sensing beams that are transmitted simultaneously.
  • Figure 5 shows an example of transmission of combined beams using spreading sequences.
  • the transceiving unit 102 may provide the corresponding relationship between each beam and the spreading sequence signal to the communication receiving end in advance through predetermined signaling.
  • the use of the ZC sequence can be agreed in advance, and the transceiver unit 102 can inform the communication receiving end of the length L of the spreading sequence, and send the root index u_i of the ZC sequence corresponding to each codebook beam in the beam codebook in order.
  • the use of the ZC sequence can be agreed in advance, and the root indices of different beams can be offset at equal intervals.
  • the transceiver unit 102 informs the communication receiving end of the spread spectrum sequence length L, the root index interval d, and the initial root index u, and the communication receiving end can determine that the ZC sequence root indices corresponding to each codebook beam in the beam codebook are ⁇ u, u+d, u+2d,... ⁇ in turn. In this way, the communication receiving end can identify different sensing beams through the spreading sequence.
  • the signal received by the communication receiving end is
  • the first item represents the communication signal received by the communication receiving end
  • the second item represents the sensing signal received by the communication receiving end (which belongs to the interference part for communication)
  • q c h H f c is the communication beam gain
  • q s,i h H f s,i is the sensing beam gain.
  • the communication receiving end may notify the communication sending end of the sensing beam that causes strong interference to the communication, and the communication sending end adjusts the communication beam and the sensing beam group according to the information, so as to reduce or eliminate the interference caused by the sensing beam, thereby realizing communication enhancement.
  • the interference-aware beam is determined by the communication receiving end based on the reception of the combined beam.
  • the transceiver unit 102 is configured to acquire information about the interference sensing beam from the communication receiving end, and the determining unit 101 adjusts the communication beam and the sensing beam group based on the information of the interference sensing beam.
  • the interference sensing beam may be a sensing beam with a beam gain above a predetermined threshold determined by the communication receiving end.
  • the communication receiving end can perform beam gain estimation after measuring M ( M ⁇ NT ) received signals.
  • M M ⁇ NT
  • the signal received by the communication terminal is expressed in matrix form as follows.
  • q [q s,1 , q s,2 ,...,q s,N ] T
  • n represents the additive noise of the communication receiving end.
  • the communication receiving end can use least square estimation or minimum mean square error estimation (MMSE) to estimate the beam gain of the communication beam and the beam gain of the perception beam, as shown in the following formula.
  • MMSE minimum mean square error estimation
  • the communication receiving end may select a sensing beam with a larger beam gain as an interference sensing beam.
  • the gain based on which the communication receiving end determines the interference sensing beam may be a relative beam gain relative to a communication beam gain.
  • the relative beam gain of a sensing beam is defined as the ratio of its beam gain to the communication beam gain.
  • its relative beam gain is
  • the communication receiving end may determine a sensing beam whose relative beam gain is higher than a predetermined threshold as an interference sensing beam. For example, when When , the sensing beam f s,i is determined as the interference sensing beam.
  • the information of the interference sensing beam acquired by the transceiver unit 102 from the communication receiving end may include beam indexes of one or more interference sensing beams.
  • the information of the interference sensing beams may further include one or more of the following: the number of the interference sensing beams, and information of the beam gain of each interference sensing beam.
  • the beam gain here can be the absolute beam gain or relative beam gain
  • the number of interference sensing beams reported by the communication receiving end may also be predetermined.
  • the communication receiving end may give feedback to the communication sending end in the order of beam gain from high to low.
  • the communication receiving end does not detect the interference sensing beam, it does not need to feed back to the communication sending end.
  • the determining unit 101 may be configured to perform the adjustment as follows: remove at least a part of the interference sensing beam from the sensing beam group, and add the part of the sensing beam to the communication beam, and the transceiver unit 102 uses the adjusted communication beam and the sensing beam group to send the combined beam.
  • the communication originator changes part or all of the interference sensing beams into communication beams, so as to increase the gain of the communication beams. Therefore, the new communication beam will include the original communication beam and one or more interference sensing beams, and the one or more interference sensing beams are used to enhance the original communication beam.
  • the set of interference-aware beams used for enhancement is (Note that not all interference-aware beams may be used, that is, K may be less than the number of interference-aware beams fed back by the communication receiving end), and the corresponding beam relative gain is Then under the constant power constraint, the enhanced new communication beam with the highest gain is
  • the adjusted communication beam covers some beam directions, and the sensing beam covers other directions, so the sensing range can still cover the entire angular domain, and the sensing performance is basically not affected.
  • the following provides a comparison of the performance of the JCR system using the communication beam enhancement of this embodiment and the performance of a common JCR system not using the communication beam enhancement of this embodiment.
  • FIG. 6 shows a graph of a comparison of communication performance.
  • the horizontal axis is the attenuation power ratio between the LoS path and the NLoS path.
  • the vertical axis is the mean value of the normalized beamforming gain, that is, the optimal precoding gain is normalized to 1, and the communication beam gain obtained by the scheme of this embodiment and the common scheme is compared with the optimal coding gain. The closer the ratio is to 1, the better the beamforming performance is.
  • the original beam represents the communication beam gain before communication beam enhancement
  • the enhanced beam represents the communication beam gain after communication beam enhancement
  • the optimal precoding represents the optimal coding gain, which is normalized to 1. It can be seen from Figure 6 that the enhanced beam gain is significantly higher than that before the enhancement, and the enhanced communication beam can reach an optimal beam gain of about 90% under different multipath conditions, which proves that the solution of this embodiment can significantly improve communication performance and has strong robustness in multipath scenarios.
  • FIG. 7 shows a normalized radar phase diagram, where the horizontal axis is distance and the vertical axis is speed.
  • 3 targets are set, and their distances and speeds are (30m, 5m/s), (40m, 5m/s), (40m, 15m/s) respectively. These three targets can be clearly seen from the radar phase diagram in FIG. 7 , thus verifying the effectiveness of the perception module in the JCR system adopting the solution of this embodiment.
  • the electronic device 100 realizes sensing by using a narrow beam different from the communication beam sent together with the communication beam as the sensing beam. In the case of knowing the coverage of the range, the interference of the sensing beam to the communication beam is reduced. In addition, through communication beam enhancement processing, the perception beam that causes great interference to communication is removed and made to work as a communication beam, further improving communication performance. At the same time, when applied to the JCR system, the performance of the perception module is guaranteed.
  • FIG. 8 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a transceiver unit 201 configured to receive a combined beam from a communication sending end, the combined beam includes a communication beam and a subgroup of sensing beams, wherein each subgroup of sensing beams includes one or more sensing beams in the sensing beam group, each sensing beam and communication beam in the sensing beam group are selected from the same beam codebook, and each sensing beam is different from the communication beam; And the control unit 202 repeats the receiving until all the sensing beams in the sensing beam group are traversed.
  • the transceiver unit 201 and the control unit 202 may be implemented by one or more processing circuits, and the processing circuits may be implemented as a chip or a processor, for example.
  • the processing circuits may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 8 is only a logical module divided according to the specific function it implements, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be disposed on the base station side or communicably connected to the base station.
  • the base station described in this application may also be a transceiver point (Transmit Receive Point, TRP), an access point (Access Point, AP) or an RSU.
  • TRP Transmit Receive Point
  • AP Access Point
  • RSU Remote System
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a base station itself, and may also include external devices such as memory, transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, UE, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the electronic device 200 may also be disposed on the UE side, for example, in a vehicle network communication scenario, the electronic device 200 may also be disposed on the vehicle side.
  • the sensing beam group may include beams other than communication beams in the beam codebook, so as to achieve coverage of the entire angle domain.
  • the beam codebook for example, a DFT codebook can be used.
  • the electronic device 200 is, for example, located at a communication receiving end or communicably connected Receive the communication receiver.
  • different sensing beams may bear different spreading sequence signals.
  • angularly adjacent sensing beams may carry spreading sequence signals with low cross-correlation.
  • the transceiving unit 201 may also be configured to obtain the corresponding relationship between each beam and the spreading sequence signal from the communication originating end in advance through predetermined signaling.
  • control unit 202 may also be configured to determine an interference-aware beam based on receiving the combined beam, and the transceiver unit 201 provides information about the determined interference-aware beam to the communication originating end.
  • control unit 202 may be configured to estimate the beam gain of the communication beam and the beam gain of the perception beam based on the received signal, as described with reference to equations (8) to (11) in the first embodiment.
  • the control unit 202 can estimate the beam gain of the communication beam and the beam gain of the perception beam by using the least square estimation or the least mean square error estimation.
  • the control unit 202 may determine a sensing beam having a beam gain above a predetermined threshold as an interference sensing beam.
  • the beam gain of the sensing beam may be a relative beam gain with respect to the beam gain of the communication beam.
  • a sensing beam whose relative beam gain is higher than a predetermined threshold may be determined as an interference sensing beam. For example, when When , the sensing beam f s,i is determined as the interference sensing beam.
  • the information of the interference sensing beam provided by the transceiver unit 201 may include beam indexes of one or more interference sensing beams.
  • the information of the interference sensing beams may further include one or more of the following: the number of the interference sensing beams, and information of the beam gain of each interference sensing beam.
  • the beam gain may be an absolute beam gain or a relative beam gain.
  • the number of interference sensing beams to be provided by the transceiver unit 201 may also be predetermined, in this case, the transceiver unit 201 may only provide relevant information of a part of the determined interference sensing beams. In a case where the control unit 202 determines that there is no interference sensing beam, the transceiver unit 201 may not feed back any information to the communication sender.
  • the electronic device 200 can determine the sensing beam that causes greater interference to the communication by receiving the sensing beam that is sent together with the communication beam and is different from the communication beam, and realizes communication beam enhancement processing by feeding back to the communication sending end to improve communication performance.
  • Fig. 9 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: determine the perceived beam group (S11). Among them, the perception beams in the beam group are selected from the same beam code and each perceived wave beam is different from the communication waves; the sending combination beam is repeatedly executed to all perceive the beam (S12) in the perceptual beam group.
  • the communication wave beam and a perceive wave bouquet group, each perceived wave bouquet group includes one or more perceived wave bundles in the perceived beam group.
  • the method can be executed on the UE side, such as the vehicle side in the vehicle network scenario, or executed on the base station side or the RSU.
  • the sensing beam group may include beams other than communication beams in the beam codebook.
  • the number of sensing beam subgroups depends, for example, on the ratio of the number of sensing beams in the sensing beam group to the number of beams that can be simultaneously formed by the communication originating end.
  • step S12 combined beams corresponding to each sensing beam subgroup may be sequentially transmitted in multiple REs.
  • different sensing beams may carry different spreading sequence signals.
  • Angularly adjacent sensing beams can carry spreading sequence signals with low cross-correlation.
  • the corresponding relationship between each beam and the spreading sequence signal may also be provided to the communication receiving end in advance through predetermined signaling. For example, when the length of the spreading sequence signal is L and there are G sensing beam subgroups, all the sensing beams in the sensing beam group may be traversed on LG resource units. Communication beams can be assigned higher transmit power compared to sensing beams.
  • the method may further include: acquiring information about interference-aware beams from the communication receiving end (S13), wherein the interference-aware beams are combined by the communication receiving end based on pairs and the communication beam and the sensing beam group are adjusted based on the information of the interference sensing beam (S14).
  • the interference sensing beam is a sensing beam with a beam gain above a predetermined threshold determined by the communication receiving end.
  • the beam gain may be a relative beam gain with respect to the communication beam gain.
  • the information of the interference-aware beams may include beam indices of one or more interference-aware beams.
  • the information of the interference sensing beams may further include one or more of the following: the number of the interference sensing beams, and information of the beam gain of each interference sensing beam.
  • step S14 adjustments may be made as follows: at least a part of the interference sensing beam is removed from the sensing beam group, and the at least part of the interference sensing beam is added to the communication beam, and the adjusted communication beam and the sensing beam group are used to send the combined beam.
  • Fig. 10 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: receiving a combined beam from a communication sending end (S21), the combined beam includes a communication beam and a subgroup of sensing beams, wherein each subgroup of sensing beams includes one or more sensing beams in the sensing beam group, each sensing beam in the sensing beam group and the communication beam are selected from the same beam codebook and each sensing beam is different from the communication beam; and repeatedly performing receiving until all sensing beams in the sensing beam group are traversed (S22).
  • the method can be executed, for example, on the base station side or the RSU, and can also be executed on the UE side such as the vehicle side in a vehicle network scenario.
  • the sensing beam group includes beams other than communication beams in the beam codebook.
  • the sensing beams may carry different spreading sequence signals.
  • Angularly adjacent sensing beams may carry spreading sequence signals with low cross-correlation.
  • the above method may further include: obtaining the corresponding relationship between each beam and the spreading sequence signal from the communication originating end in advance through predetermined signaling.
  • the above method may further include: determining an interference-aware beam based on receiving the combined beam (S23); and providing information about the determined interference-aware beam to the communication originating end (S24).
  • the beam gain of the communication beam and the beam gain of the perception beam are estimated based on the received signal.
  • the beam gain of the communication beam and the beam gain of the perception beam may be estimated using least squares estimation or least mean square error estimation.
  • a sensing beam having a beam gain above a predetermined threshold may be determined as an interference sensing beam.
  • the beam gain of the sensing beam may be a relative beam gain with respect to the beam gain of the communication beam.
  • the information of the interference sensing beams provided in step S24 may include beam indexes of one or more interference sensing beams.
  • the information of the interference sensing beams may further include one or more of the following: the number of the interference sensing beams, and information of the beam gain of each interference sensing beam.
  • the electronic devices 100 and 200 may be implemented as various base stations.
  • a base station may be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, micro eNB, and home (femto) eNB.
  • a similar situation may also exist for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • a base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at places different from the main body.
  • a main body also referred to as a base station device
  • RRHs remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-permanently performing the base station function.
  • the electronic devices 100 and 200 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera, or a vehicle terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and base station equipment 820 .
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 11 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821 , a memory 822 , a network interface 823 and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in signals processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have a logical function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with a core network node or another eNB via a network interface 823 .
  • eNB 800 and core network nodes or other eNBs can be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • the wireless communication interface 825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of the eNB 800 via the antenna 810 .
  • Wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing of layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP).
  • the BB processor 826 may have part or all of the logic functions described above.
  • the BB processor 826 may be a memory storing a communication control program, or may be a A module of a processor and associated circuitry configured to execute a program.
  • the update program may cause the function of the BB processor 826 to change.
  • the module may be a card or a blade inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827 , the wireless communication interface 825 may include a single BB processor 826 or a single RF circuit 827 .
  • the controller 821 may implement the communication beam enhancement based on the perception beam by executing the functions of the determining unit 101 and the transceiver unit 102, and implement the communication beam enhancement based on the perception beam by executing the functions of the transceiver unit 201 and the control unit 202.
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850 and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 and a connection interface 857 .
  • Controller 851, memory 852 and network interface 853 The same as the controller 821, memory 822, and network interface 823 described with reference to FIG. 11 .
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 11 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856 , the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line used to connect the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may generally include RF circuitry 864, for example.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864 , the wireless communication interface 863 may also include a single RF circuit 864 .
  • the transceiver unit 102 and the transceiver of the electronic device 100 or the transceiver unit 201 and the transceiver of the electronic device 200 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863 .
  • At least part of the functions can also be realized by the controller 851 .
  • the controller 851 may implement the communication beam enhancement based on the perception beam by executing the functions of the determining unit 101 and the transceiver unit 102, and implement the communication beam enhancement based on the perception beam by executing the functions of the transceiver unit 201 and the control unit 202.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of application layers and other layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900 .
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 910 , a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 910 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts an audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which a BB processor 913 and an RF circuit 914 are integrated. As shown in Figure 13, the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914 . Although FIG. 13 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914 , the wireless communication interface 912 may include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 13 shows an example in which the smartphone 900 includes multiple antennas 916
  • the smartphone 900 may include a single antenna 916 as well.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 13 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 919 operates minimum necessary functions of the smartphone 900, for example, in a sleep mode.
  • the transceiver unit 102 and the transceiver of the electronic device 100 or the transceiver unit 201 and the transceiver of the electronic device 200 can be realized by the wireless communication interface 912 .
  • At least a portion of the functionality may also be implemented by the processor 901 or the auxiliary controller 919 .
  • the processor 901 or the auxiliary controller 919 may implement the communication beam enhancement based on the perception beam by executing the functions of the determination unit 101 and the transceiver unit 102, and implement the communication beam enhancement based on the perception beam by executing the functions of the transceiver unit 201 and the control unit 202.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless communication interface 933, one or more antenna switches 936, one or more antennas 937 and a battery 938.
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the location (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930 , and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935 .
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 14 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935
  • the wireless communication interface 933 may include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 , such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 14 shows an example in which the car navigation device 920 includes a plurality of antennas 937
  • the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920 .
  • the battery 938 supplies power to the various blocks of the car navigation device 920 shown in FIG. 14 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the transceiver unit 102 and the transceiver of the electronic device 100 or the transceiver unit 201 and the transceiver of the electronic device 200 can be realized by the wireless communication interface 933 .
  • At least part of the functions can also be implemented by the processor 921 .
  • the processor 921 may implement the communication beam enhancement based on the perception beam by executing the functions of the determination unit 101 and the transceiver unit 102, and implement the communication beam enhancement based on the perception beam by executing the functions of the transceiver unit 201 and the control unit 202.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 941 .
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiments of the present disclosure can be executed.
  • a storage medium for carrying the program product storing the above-mentioned machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a computer having a dedicated hardware configuration for example, a general-purpose computer 1500 shown in FIG. 15
  • a computer such as a general-purpose computer 1500 shown in FIG. 15
  • the computer can execute various functions and the like when various programs are installed.
  • a central processing unit (CPU) 1501 executes various processes according to programs stored in a read only memory (ROM) 1502 or loaded from a storage section 1508 to a random access memory (RAM) 1503 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1501 executes various processing and the like is also stored as necessary.
  • the CPU 1501, ROM 1502, and RAM 1503 are connected to each other via a bus 1504.
  • the input/output interface 1505 is also connected to the bus 1504 .
  • the following components are connected to the input/output interface 1505: an input section 1506 (including a keyboard, a mouse, etc.), an output section 1507 (including a display, such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), a storage section 1508 (including a hard disk, etc.), a communication section 1509 (including a network interface card such as a LAN card, a modem, etc.). The communication section 1509 performs communication processing via a network such as the Internet.
  • a driver 1510 may also be connected to the input/output interface 1505 as needed.
  • a removable medium 1511 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is mounted on the drive 1510 as necessary, so that a computer program read therefrom is installed into the storage section 1508 as necessary.
  • the programs constituting the software are installed from a network such as the Internet or a storage medium such as the removable medium 1511 .
  • a storage medium is not limited to the removable medium 1511 shown in FIG. 15 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1511 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disk (DVD)), magneto-optical disks (including Contains Mini Disk (MD) (registered trademark)) and semiconductor memory.
  • the storage medium may be the ROM 1502, a hard disk contained in the storage section 1508, or the like, in which programs are stored and distributed to users together with devices containing them.
  • each component or each step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present disclosure. Also, the steps for executing the series of processes described above may naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:确定感知波束组,其中,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及发送组合波束,并重复执行发送以遍历感知波束组中的所有感知波束,其中,组合波束包括通信波束和一个感知波束子组,每个感知波束子组分别包括所述感知波束组中的一个或多个感知波束。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2022年1月20日提交中国专利局、申请号为202210066296.1、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及通信感知一体技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
未来移动通信应用场景比如自动驾驶技术等,要求***兼具通信与检测两方面的功能。由于通信模块与检测模块(也可称为感知模块或雷达模块)具有诸多相似之处,二者可能通过共用硬件、共用波形信号、功能协同等方式节省硬件资源及频谱资源开销,提高通信及检测性能。因此,通信感知***的联合设计已成为一大热点研究话题,并被列入6G关键技术之一。
通信感知一体化***(Joint Communication and Radar System,JCR***)例如在车联网等场景下有着较高的应用价值。为了节约成本,通信感知一体化设计使用一套发射机硬件设备,因此要求合适的信号设计以保证通信模块和检测模块均正常工作。
在车联网应用场景中,通信模块要求与远端接收机、比如远处其他车辆或基站等,建立通信链路,进行数据传输;检测模块要求对中近距离(通常为数十米至百米范围内)目标,如车辆或行人等进行距离、方位、速度等的检测,即要求近/中距离雷达(SRR/MRR)功能。
在现有设计中,检测模块难以与通信模块形成协同,雷达检测信号会对通信形成干扰,造成通信性能恶化,因此需要新的通信雷达一体化***设计,减小干扰,提高通信性能。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:确定感知波束组,其中,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及发送组合波束,并重复执行发送以遍历感知波束组中的所有感知波束,其中,组合波束包括通信波束和一个感知波束子组,每个感知波束子组分别包括所述感知波束组中的一个或多个感知波束。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:确定感知波束组,其中,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及发送组合波束,并重复执行发送以遍历感知波束组中的所有感知波束,其中,组合波束包括通信波束和一个感知波束子组,每个感知波束子组分别包括所述感知波束组中的一个或多个感知波束。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从通信发端接收组合波束,组合波束包括通信波束和一个感知波束子组,其中,每个感知波束子组分别包括感知波束组中的一个或多个感知波束,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及重复执行接收,直到遍历感知波束组中的所有感知波束。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:从通信发端接收组合波束,组合波束包括通信波束和一个感知波束子组,其中,每个感知波束子组分别包括感知波束组中的一个或多个感知波束,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及重复执行接收,直到遍历感知波束组中的所有感知波束。
根据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法通过使用与通信波束一起发送的不同于通信波束的窄波束作为感知波束进行感知,在实现了对感知范围的覆盖的情况下减小了感知波束对通信波束的干扰,改善了通信性能。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了多径信道的一个示例;
图3示出了组合波束的发送的一个示例;
图4示出了组合波束的发送的另一个示例;
图5示出了利用扩频序列进行组合波束的发送的示例;
图6示出了通信性能的对比的曲线图;
图7示出了归一化雷达相图;
图8是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图9示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图10示出了根据本申请的另一个实施例的用于无线通信的方法的 流程图;
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图13是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图14是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图15是其中可以实现根据本公开的实施例的方法和/或装置和/或***的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与***及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的电子设备100的功能模块框图,如图1所示,电子设备100包括:确定单元101,被配置为确定感知波束组,其中,感知波束组中的各个感知波束与通信波束选择相同的波 束码本并且各个感知波束均不同于通信波束;以及收发单元102,被配置为发送组合波束,并重复执行发送以遍历感知波束组中的所有感知波束,其中,组合波束包括通信波束和一个感知波束子组,每个感知波束子组分别包括感知波束组中的一个或多个感知波束。
其中,确定单元101和收发单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图1中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在UE侧或者可通信地连接到UE,例如在车辆网通信场景下可以设置在车辆侧。此外,电子设备100也可以设置在基站侧或路侧单元(RSU),并且本申请的应用场景也不限于车辆网,而是可以应用在任何需要通信感知一体化技术的场景。
这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为UE或基站本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储UE或基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,其他基站、其他UE等等)间的通信,这里不具体限制收发器的实现形式。
如前所述,在JCR***中,需要联合设计通信模块和检测模块,以使其兼具通信功能和检测功能。在以下的描述中,为了便于理解,将以车辆网应用场景作为示例,但是,应该理解,这并不是限制性的。
为了节省硬件资源,在此假设通信模块和检测模块共享发端硬件设备(称为通信发端),发射信号同时用于通信和雷达检测,通信收端接收通信信号,雷达收端接收回波进行检测;通信收端在远端(比如其他车辆或基站),雷达收端设置在通信发端邻近处,可以近似认为发端发射机与雷达接收机天线位置相同;假设发端发射机和雷达接收机有足够的隔离度消除自干扰;此外,假设信道为毫米波多径信道。本实施例的电子设备100例如位于通信发端处或者可通信地连接到通信发端。
下面分别对通信接收信号和雷达接收信号的模型进行描述。
图2示出了多径信道的一个示例,其中,Tx为发射机,Rx为接收机。假设发射机为半波长均匀线性天线阵(uniform linear array,ULA), 天线数为NT,接收机为单天线,发射机到接收机的信道记为h(h是一个NT×1维的向量),包含一条视距径(Line of Sight,LoS)h0(h0是一个NT×1维的向量)和P条非视距径(Non Line of Sight,NLoS)hk(hk是一个NT×1维的向量),k=1,…,P。假设路径hk的衰减因子为γk,k=0,1,…,P,(γk是一个复数),则多径信道h可表示为下式(1)。
假设第k条径的出发角(Angle of departure,AoD)为则第k条径可以表示为:
其中为N天线θ角方向的导向向量。
以单流传输为例,设基站发送符号为s(s是一个复数),使用的发送导向向量为f(f是一个NT×1的向量),发送功率为β,接收端的加性噪声为n(n是一个复数),则接收端接收信号y(y是一个复数)可写为下式(3)。
其中,上标H代表共轭转置运算,如果记q=hHf,则|q|2为波束赋形增益。一般而言,波束赋形增益越大,接收端信噪比越高,通信质量越好。
对于JCR***中的检测模块,例如可以考虑采用与通信相容的OFDM雷达,即,使用OFDM信号进行目标的距离和速度的检测。假定相干处理区间包含Nsym个OFDM符号,一个OFDM符号持续长度为TOFDM,包含Nc个子载波信号,子载波间隔为Δf,在发送的第μ个OFDM符号中,第n个子载波上发送的信号为s[μ,n],其中,μ=0,1,…,Nsym-1,n=0,1,…,Nc-1。类似地,假定发射机天线数为NT,使用的发送导向 向量为f(f是一个NT×1的向量),接收机使用全向单天线进行接收。假定环境中有K个目标物,各目标物信号往返延时均在循环前缀之内。发射机与第k个目标物之间的信道为hk(hk是一个NT×1的向量),衰减及反射系数为Ak(Ak是一个复数),目标物距离为Rk,多普勒频移为fD,k,则经该目标反射后,雷达接收机接收到的OFDM信号回波yk[μ,n]可以表示为下式(4)。
其中,多普勒频移vrel为雷达(即通信发端和通信收端)与目标物的径向相对移动速度,fc为载波频率,c0为光速。环境中所有目标物反射的回波信号叠加形成雷达接收机的最终接收信号:
通过对距离-多普勒频移参数进行网格划分,进行相关处理,即可得出雷达检测的距离-多普勒相图,可以看到,是发端波束带来的检测增益,检测增益越大,目标在相图上越容易被分辨出。相图表达式可写为

式中conj(s[μ,n])表示s[μ,n]的共轭。
对于通感一体模型,通信信号的回波可以直接用于雷达检测,但由于通信波束具有高度指向性,对于不在通信波束方向上的目标,波束检测增益太小,难以被检出。通过通信信号回波仅能检测到通信波束方向上的目标,而无法覆盖整个检测角度范围。
为此,在本申请的实施例中,发射机将额外发送能够覆盖其他方向的信号(称为感知信号)协助完成检测,搭载感知信号的波束在本文中称为感知波束。考虑到通信距离远、检测距离近,以及防止感知信号淹没通信信号,可以为通信波束分配较高功率,为感知波束分配较低功率。
对于大多数感知波束,其对于通信信道的波束增益很低,因而通信收端无法接收到发送的感知信号。但在多径效应严重时,可能会有感知信号通过较强径进入收端,造成强干扰,使得通信质量严重下降。在本实施例中,通过使额外发送的感知波束避让通信波束来解决这一问题。
具体地,确定单元101将波束码本中不同于通信波束的波束确定为感知波束,所有感知波束被称为感知波束组。例如,通信波束和感知波束组中的感知波束能够基本上覆盖整个检测角度范围。感知波束组可以包括波束码本中除通信波束以外的波束。例如,在通信发端与通信收端比如通过波束管理过程确定了要使用的通信波束的情况下,确定单元101将波束码本中除通信波束以外的波束确定为感知波束组中的感知波束。
收发单元102将同时发送通信波束和感知波束组中的一个或多个感知波束,在本实施例中将同时发送的一个或多个感知波束称为一个感知波束子组,并且将同时发送的通信波束和感知波束子组称为组合波束。图3示出了组合波束的发送的一个示例。在图3的示例中,组合波束包括通信波束和2个感知波束,且感知波束与通信波束的指向不同。
由于通信发端能够同时形成的波束的数量是有限的,因此,可能需要将感知波束组中的感知波束划分为多个感知波束子组,来进行多次发送。感知波束子组的数目取决于感知波束组中感知波束的数量与通信发端能够同时形成的波束的数量的比值。例如,假设波束码本使用NT阶离散傅里叶(Discrete Fourier Transform,DFT)码本,即通信发端有共NT个备选波束,其中 将通信链路使用的波束记为fc,其余(NT-1)个波束为感知波束,依序记为在通信发端可以同时形成N(N≥2)个 波束的情况下,可以将这(NT-1)个波束分为个感知波束子组,其中,代表上取整。
其中,各个感知波束子组互不交叠,并且其合集构成感知波束组。例如,在上述示例中,对于第g(1≤g≤G)个感知波束子组,其包含的波束的序号可以表示为{g,G+g,2G+g,…KgG+g},其中Kg为使得KgG+g<NT的最大非负整数。应该理解,感知波束子组的数目和划分规则并不限于此,而是可以根据实际需求灵活地进行划分。
图4示出了组合波束的发送的另一个示例,其中,组合波束中的感知波束不同于图3中所示的组合波束。图3和图4分别代表不同的时频资源单元(Resource Element,RE)处的组合波束发送,二者一起示出了组合波束扫描的示意性示例。即,收发单元102在多个RE中顺次发送与各个感知波束子组对应的组合波束。其中,收发单元102发送组合波束的顺序可以按照预定规则来设置。例如,可以按照组合波束对应的感知波束子组中的感知波束的序号的顺序来进行设置,等等。
因此,收发单元102在重复发送与各个感知波束子组对应的组合波束后,可以遍历感知波束组中的所有感知波束,从而实现对整个检测角度范围的覆盖。
为了使得通信收端和雷达接收端能够区分不同的感知波束,收发单元102可以被配置为使不同的感知波束承载不同的扩频序列信号。此外,为了提高区分度,角度上相邻的感知波束可以承载互相关性低的扩频序列信号。例如,在扩频序列信号的长度为L的情况下,每个感知波束子组的发送需要L个RE,在前述示例中,对于第g(1≤g≤G)个感知波束子组,可以在序号为{g,G+g,2G+g,…(L-1)G+g}的RE上完成扩频序列信号的发送。相应地,收发单元102被配置为在LG个RE上遍历感知波束组中的所有感知波束。
假设在某个RE上通信波束为fc,承载的通信信号为sc,j,同时发送N个感知波束fs,1,fs,2…,fs,N,扩频序列长度为L,感知波束fs,i (i=1,…,N)上承载的扩频序列为si=[si,1,si,2,…,si,L],在该RE上承载的感知信号为si,j,则该RE上发送的叠加信号为:
这里δ是功率分配因子,表示分配给通信波束的功率,并且其余功率均分到同时发送的N个感知波束,图5示出了利用扩频序列进行组合波束的发送的示例。其中,收发单元102可以通过预定信令提前向通信收端提供各个波束与扩频序列信号的对应关系。例如,可以事先约定好使用ZC序列,收发单元102可以向通信收端告知扩频序列长度L,并且按顺序发送波束码本中每个码本波束对应的ZC序列的根指数u_i。或者,可以事先约定好使用ZC序列,且约定不同波束根指数等间隔偏移,收发单元102向通信收端告知扩频序列长度L,根指数间隔d,初始根指数u,则通信收端可以确定波束码本中每个码本波束对应的ZC序列根指数依次为{u,u+d,u+2d,...}。这样,通信收端可以通过扩频序列来识别不同的感知波束。
经过信道h,通信收端接收到的信号为
这里,第一项代表通信收端接收到的通信信号,第二项代表通信收端接收到的感知信号(其对于通信而言属于干扰部分),其中,qc=hHfc为通信波束增益,qs,i=hHfs,i为感知波束增益。
可以理解,如果通信收端所接收到的感知信号较强,则对通信会造成较大干扰,产生不利影响。在本实施例中,通信收端可以将对通信造成较强干扰的感知波束通知给通信发端,通信发端根据该信息对通信波束和感知波束组进行调整,以减轻或消除感知波束带来的干扰,从而实现通信增强。
在本文中,将对通信造成较强干扰的感知波束称为干扰感知波束。干扰感知波束由通信收端基于对组合波束的接收来确定。收发单元102被配置为从通信收端获取关于干扰感知波束的信息,确定单元101基于该干扰感知波束的信息对通信波束和感知波束组进行调整。
例如,干扰感知波束可以为通信收端所确定的具有预定阈值以上的波束增益的感知波束。
仍然沿用前述示例中的参数,在使用NT阶DFT码本的情况下,通信收端在测量了M(M≥NT)个接收信号后,可以进行波束增益估计。此时,基于式(8),如下用矩阵形式表示通信终端接收到的信号。
其中,r=[r1,r2…,rM]T,代表测量到的M个信号;S=(si,j)N×M,代表N个感知波束上承载的感知信号;sc=[sc,1,sc,2,…,sc,M]T,代表通信波束上承载的通信信号;q=[qs,1,qs,2,…,qs,N]T代表N个感知波束的感知波束增益;n代表通信收端的加性噪声。
例如,通信收端可以利用最小二乘估计或最小均方误差估计(MMSE)来估计通信波束的波束增益和感知波束的波束增益,如下式所示。
其中,表示矩阵的伪逆运算,在对所有的感知波束进行波束增益估计后,通信收端可以挑选出波束增益较大的感知波束作为干扰感知波束。
示例性地,通信收端在确定干扰感知波束时所依据的增益可以为相对于通信波束增益的相对波束增益。
例如,将感知波束的相对波束增益定义为其波束增益与通信波束增益的比值。在上例中,对于感知波束fs,i,其相对波束增益为
例如,通信收端可以将相对波束增益高于预定阈值的感知波束确定为干扰感知波束。例如,当时,将感知波束fs,i确定为干扰感知波束。
收发单元102从通信收端获取的干扰感知波束的信息可以包括一个或多个干扰感知波束的波束索引。此外,干扰感知波束的信息还可以包括如下中的一个或多个:干扰感知波束的数量,各个干扰感知波束的波束增益的信息。这里的波束增益可以是绝对波束增益或相对波束增益此外,通信收端上报的干扰感知波束的数量也可以是预先确定的。
例如,当通信收端检测出多个干扰感知波束时,通信收端可以按照其波束增益由高到低的顺序向通信发端进行反馈。当然,如果通信收端未检测出干扰感知波束,则不需向通信发端反馈。
当干扰感知波束包括波束fs,i时,意味着当使用波束fs,i发送感知信号时,该信号会对通信造成较大干扰,因此通信发端需要进行一些调整。例如,确定单元101可以被配置为执行如下调整:将干扰感知波束的至少一部分从感知波束组中移除,并且将该部分感知波束加到通信波束中,收发单元102使用调整后的通信波束和感知波束组来发送组合波束。换言之,通信发端将部分或全部干扰感知波束改变为通信波束,以提高通信波束增益。因此,新的通信波束将包括原通信波束和一个或多个干扰感知波束,这一个或多个干扰感知波束用于对原通信波束进行了增强。
假设用于增强的干扰感知波束集合为(注意,可以不使用所有的干扰感知波束,即,K可以小于通信收端反馈的干扰感知波束的数目),相应的波束相对增益为则在功率恒定约束下,增强后的增益最高的新通信波束为
其中,为归一化因子,的共轭。该新通信波束的增益为
注意,调整后的通信波束覆盖某些波束方向,感知波束覆盖其他方向,因此感知范围仍能覆盖整个角度域,感知性能基本不受影响。
为了便于理解,下面给出采用本实施例的通信波束增强的JCR***的性能与不采用本实施例的通信波束增强的普通JCR***的性能的仿真结果对比。
图6示出了通信性能的对比的曲线图。其中,横轴 为LoS径与NLoS径的衰减功率比,ρ越小,说明NLoS径影响越大,多径效应越明显;纵轴为归一化波束赋形增益的均值,即,将最优预编码增益归一化为1,将本实施例的方案和普通方案得到的通信波束增益均与最优编码增益相比,该比值越接近1,说明波束赋形性能越好。
在仿真中,通信发端天线设置为NT=16,信噪比设置为5dB,NLoS径数量为3。感知信号扩频序列长度L=64,同时发送的感知波束数量N=2。在图6中,原波束代表通信波束增强前的通信波束增益,增强波束代表为通信波束增强后的通信波束增益,最优预编码代表最优编码增益,归一化为1。从图6中可以看出,增强后的波束增益明显高于增强前,且在不同多径条件下增强后的通信波束均能达到约90%的最优波束增益,证明了本实施例的方案能够著提高通信性能,且在多径场景下鲁棒性强。
图7示出了归一化雷达相图,其中,横轴为距离,纵轴为速度。在仿真中,参数设置为:64OFDM符号,256子载波,载波频率fc=24GHz,子载波间隔Δf=90.9kHz,OFDM符号长度为TOFDM=12.375μs,雷达收端信噪比设置为0dB。在检测范围内,设置了3个目标物,其距离、速度分别为(30m,5m/s),(40m,5m/s),(40m,15m/s)。可以从图7的雷达相图中清晰地看到这三个目标,从而验证了在采用本实施例的方案的JCR***中的感知模块的有效性。
应该理解,以上仿真示例仅是说明性的,而非限制性的。
综上所述,根据本实施例的电子设备100通过使用与通信波束一起发送的不同于通信波束的窄波束作为感知波束进行感知,在实现了对感 知范围的覆盖的情况下减小了感知波束对通信波束的干扰。此外,还通过通信波束增强处理去除了对通信造成较大干扰的感知波束并使其作为通信波束工作,进一步改善了通信性能。同时,在应用于JCR***中时,保证了感知模块的性能。
<第二实施例>
图8示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图8所示,电子设备200包括:收发单元201,被配置为从通信发端接收组合波束,组合波束包括通信波束和一个感知波束子组,其中,每个感知波束子组分别包括感知波束组中的一个或多个感知波束,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及控制单元202,重复执行所述接收,直到遍历感知波束组中的所有感知波束。
其中,收发单元201和控制单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图8中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在基站侧或者可通信地连接到基站。本申请中所述的基站也可以是收发点(Transmit Receive Point,TRP)、接入点(Access Point,AP)或者RSU。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,UE、其他基站等等)间的通信,这里不具体限制收发器的实现形式。此外,电子设备200也可以设置在UE侧,例如,在车辆网通信场景下,电子设备200也可以设置在车辆侧。
与第一实施例中类似,感知波束组可以包括波束码本中除通信波束以外的波束,从而实现对整个角度域的覆盖。波束码本例如可以采用DFT码本。
在本实施例中,电子设备200例如位于通信收端处或者可通信地连 接到通信收端。为了能够区分不同的感知波束,不同的感知波束可以承载有不同的扩频序列信号。例如,角度上相邻的感知波束可以承载互相关性低的扩频序列信号。收发单元201还可以被配置为通过预定信令提前从通信发端获取各个波束与扩频序列信号的对应关系。
有关感知波束和通信波束的设置在第一实施例中已经给出了详细描述,其同样适用于本实施例,在此不再重复。
此外,控制单元202还可以被配置为基于对组合波束的接收来确定干扰感知波束,并且收发单元201向通信发端提供关于所确定的干扰感知波束的信息。
例如,控制单元202可以被配置为基于接收到的信号估计通信波束的波束增益和感知波束的波束增益,如在第一实施例中参考式(8)至(11)所述。控制单元202可以利用最小二乘估计或最小均方误差估计来估计通信波束的波束增益和感知波束的波束增益。
示例性地,控制单元202可以将具有预定阈值以上的波束增益的感知波束确定为干扰感知波束。这里,感知波束的波束增益可以为相对于通信波束的波束增益的相对波束增益。如第一实施例中所述,可以将相对波束增益高于预定阈值的感知波束确定为干扰感知波束。例如,当时,将感知波束fs,i确定为干扰感知波束。
收发单元201提供的干扰感知波束的信息可以包括一个或多个干扰感知波束的波束索引。此外,干扰感知波束的信息还可以包括如下中的一个或多个:干扰感知波束的数量,各个干扰感知波束的波束增益的信息。其中,波束增益可以为绝对波束增益,也可以为相对波束增益。收发单元201要提供的干扰感知波束的数量也可以是预定的,在这种情况下,收发单元201可能仅提供所确定的干扰感知波束的一部分的相关信息。在控制单元202确定没有干扰感知波束的情况下,收发单元201可以不向通信发端反馈任何信息。
有关干扰感知波束的确定和相关信息的提供在第一实施例中已经给出了详细描述,在此不再重复。
综上所述,根据本实施例的电子设备200通过对与通信波束一起发送的不同于通信波束的感知波束进行接收,能够确定对通信造成较大干扰的感知波束,并且通过向通信发端反馈实现通信波束增强处理,改善 了通信性能。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图9示出了根据本申请的一个实施例的用于无线通信的方法的流程图。如图9所示,该方法包括:确定感知波束组(S11),其中,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及发送组合波束,并重复执行所述发送以遍历所述感知波束组中的所有感知波束(S12),其中,组合波束包括通信波束和一个感知波束子组,每个感知波束子组分别包括感知波束组中的一个或多个感知波束。该方法例如可以在UE侧比如车辆网场景下的车辆侧执行,或者在基站侧或RSU上执行。
例如,感知波束组可以包括波束码本中除通信波束以外的波束。感知波束子组的数量例如取决于感知波束组中感知波束的数量和通信发端能够同时形成的波束的数量的比值。
在步骤S12中,可以在多个RE中顺次发送与各个感知波束子组对应的组合波束。为了区分不同的感知波束,可以使不同的感知波束承载不同的扩频序列信号。角度上相邻的感知波束可以承载互相关性低的扩频序列信号。还可以通过预定信令提前向通信收端提供各个波束与扩频序列信号的对应关系。例如,在扩频序列信号的长度为L且存在G个感知波束子组的情况下,可以在LG个资源单元上遍历感知波束组中的所有感知波束。与感知波束相比,可以为通信波束分配较高的发射功率。
如图中的虚线框所示,该方法还可以包括:从通信收端获取关于干扰感知波束的信息(S13),其中,干扰感知波束由通信收端基于对组合 波束的接收来确定;以及基于干扰感知波束的信息对通信波束和感知波束组进行调整(S14)。
例如,干扰感知波束为通信收端所确定的具有预定阈值以上的波束增益的感知波束。该波束增益可以为相对于通信波束增益的相对波束增益。干扰感知波束的信息可以包括一个或多个干扰感知波束的波束索引。此外,干扰感知波束的信息还可以包括如下中的一个或多个:干扰感知波束的数量,各个干扰感知波束的波束增益的信息。
在步骤S14中可以进行如下调整:将干扰感知波束的至少一部分从感知波束组中移除,并将干扰感知波束的该至少一部分加到通信波束中,并且使用调整后的通信波束和感知波束组来发送组合波束。
图10示出了根据本申请的另一个实施例的用于无线通信的方法的流程图。如图10所示,该方法包括:从通信发端接收组合波束(S21),组合波束包括通信波束和一个感知波束子组,其中,每个感知波束子组分别包括感知波束组中的一个或多个感知波束,感知波束组中的各个感知波束与通信波束选自相同的波束码本且各个感知波束均不同于通信波束;以及重复执行接收,直到遍历感知波束组中的所有感知波束(S22)。该方法例如可以在基站侧或RSU上执行,也可以在UE侧比如车辆网场景下的车辆侧执行。
例如,感知波束组包括波束码本中除通信波束以外的波束。为了彼此区分,感知波束可以承载有不同的扩频序列信号。角度上相邻的感知波束可以承载有互相关性低的扩频序列信号。虽然图中未示出,上述方法还可以包括:通过预定信令提前从通信发端获取各个波束与扩频序列信号的对应关系。
此外,如图中的虚线框所示,上述方法还可以包括:基于对组合波束的接收来确定干扰感知波束(S23);以及向通信发端提供关于所确定的干扰感知波束的信息(S24)。
例如,在步骤S23中,基于接收到的信号估计通信波束的波束增益和感知波束的波束增益。可以利用最小二乘估计或最小均方误差估计来估计通信波束的波束增益和感知波束的波束增益。例如,可以将具有预定阈值以上的波束增益的感知波束确定为干扰感知波束。感知波束的波束增益可以为相对于通信波束的波束增益的相对波束增益。
在步骤S24中提供的干扰感知波束的信息可以包括一个或多个干扰感知波束的波束索引。干扰感知波束的信息还可以包括如下中的一个或多个:干扰感知波束的数量,各个干扰感知波束的波束增益的信息。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备100和200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备100和200可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图11所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图11示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被 配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为***到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图11所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图11所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图11示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图11所示的eNB 800中,电子设备100的收发单元102、收发器或者电子设备200的收发单元201、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行确定单元101和收发单元102的功能来实现基于感知波束的通信波束增强,以及通过执行收发单元201和控制单元202的功能来实现基于感知波束的通信波束增强。
(第二应用示例)
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图12所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图12示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853 与参照图11描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图11描述的BB处理器826相同。如图12所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图12示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图12所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图12示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图12所示的eNB 830中,电子设备100的收发单元102、收发器或者电子设备200的收发单元201、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行确定单元101和收发单元102的功能来实现基于感知波束的通信波束增强,以及通过执行收发单元201和控制单元202的功能来实现基于感知波束的通信波束增强。
[关于用户设备的应用示例]
(第一应用示例)
图13是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上***(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图13所示,无线通信接口 912可以包括多个BB处理器913和多个RF电路914。虽然图13示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图13所示,智能电话900可以包括多个天线916。虽然图13示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图13所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图13所示的智能电话900中,电子设备100的收发单元102、收发器或者电子设备200的收发单元201、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元101和收发单元102的功能来实现基于感知波束的通信波束增强,以及通过执行收发单元201和控制单元202的功能来实现基于感知波束的通信波束增强。
(第二应用示例)
图14是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位***(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被***到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图14所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图14示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图14所示,汽车导航设备920可以包括多个天线937。虽然图14示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图14所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图14示出的汽车导航设备920中,电子设备100的收发单元102、收发器或者电子设备200的收发单元201、收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行确定单元101和收发单元102的功能来实现基于感知波束的通信波束增强,以及通过执行收发单元201和控制单元202的功能来实现基于感知波束的通信波束增强。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载***(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等) 或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图15所示的通用计算机1500)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图15中,中央处理单元(CPU)1501根据只读存储器(ROM)1502中存储的程序或从存储部分1508加载到随机存取存储器(RAM)1503的程序执行各种处理。在RAM 1503中,也根据需要存储当CPU 1501执行各种处理等等时所需的数据。CPU 1501、ROM 1502和RAM 1503经由总线1504彼此连接。输入/输出接口1505也连接到总线1504。
下述部件连接到输入/输出接口1505:输入部分1506(包括键盘、鼠标等等)、输出部分1507(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1508(包括硬盘等)、通信部分1509(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1509经由网络比如因特网执行通信处理。根据需要,驱动器1510也可连接到输入/输出接口1505。可移除介质1511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1510上,使得从中读出的计算机程序根据需要被安装到存储部分1508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图15所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1511。可移除介质1511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包 含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1502、存储部分1508中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和***中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (32)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    确定感知波束组,其中,所述感知波束组中的各个感知波束与通信波束选自相同的波束码本且所述各个感知波束均不同于所述通信波束;以及
    发送组合波束,并重复执行所述发送以遍历所述感知波束组中的所有感知波束,其中,所述组合波束包括所述通信波束和一个感知波束子组,每个感知波束子组分别包括所述感知波束组中的一个或多个感知波束。
  2. 根据权利要求1所述的电子设备,其中,所述感知波束组包括所述波束码本中除所述通信波束以外的波束。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在多个资源单元中顺次发送与各个感知波束子组对应的组合波束。
  4. 根据权利要求1所述的电子设备,其中,所述感知波束子组的数量取决于所述感知波束组中感知波束的数量和通信发端能够同时形成的波束的数量的比值。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为使不同的感知波束承载不同的扩频序列信号。
  6. 根据权利要求5所述的电子设备,其中,角度上相邻的感知波束承载互相关性低的扩频序列信号。
  7. 根据权利要求5所述的电子设备,其中,在所述扩频序列信号的长度为L且存在G个感知波束子组的情况下,所述处理电路被配置为在LG个资源单元上遍历所述感知波束组中的所有感知波束。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为与所述感知波束相比,为所述通信波束分配较高的发射功率。
  9. 根据权利要求5所述的电子设备,其中,所述处理电路被配置为通过预定信令提前向通信收端提供各个波束与扩频序列信号的对应关系。
  10. 根据权利要求1所述的电子设备,所述处理电路还被配置为:
    从通信收端获取关于干扰感知波束的信息,其中,所述干扰感知波束由所述通信收端基于对所述组合波束的接收来确定;以及
    基于所述干扰感知波束的信息对所述通信波束和所述感知波束组进行调整。
  11. 根据权利要求10所述的电子设备,其中,所述干扰感知波束为所述通信收端所确定的具有预定阈值以上的波束增益的感知波束。
  12. 根据权利要求11所述的电子设备,其中,所述波束增益为相对于通信波束增益的相对波束增益。
  13. 根据权利要求10所述的电子设备,其中,所述干扰感知波束的信息包括一个或多个干扰感知波束的波束索引。
  14. 根据权利要求13所述的电子设备,其中,所述干扰感知波束的信息还包括如下中的一个或多个:干扰感知波束的数量,各个干扰感知波束的波束增益的信息。
  15. 根据权利要求10所述的电子设备,其中,所述处理电路被配置为执行如下调整:将所述干扰感知波束的至少一部分从所述感知波束组中移除,并将所述干扰感知波束的所述至少一部分加到通信波束中,
    其中,所述处理电路被配置为使用调整后的通信波束和感知波束组来发送组合波束。
  16. 根据权利要求1所述的电子设备,其中,所述电子设备位于进行车联网通信的车辆侧。
  17. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从通信发端接收组合波束,所述组合波束包括通信波束和一个感知波束子组,其中,每个感知波束子组分别包括感知波束组中的一个或多个感知波束,所述感知波束组中的各个感知波束与所述通信波束选自相同的波束码本且所述各个感知波束均不同于所述通信波束;以及
    重复执行所述接收,直到遍历所述感知波束组中的所有感知波束。
  18. 根据权利要求17所述的电子设备,其中,所述感知波束组包括 所述波束码本中除所述通信波束以外的波束。
  19. 根据权利要求17所述的电子设备,其中,所述感知波束承载有不同的扩频序列信号。
  20. 根据权利要求19所述的电子设备,其中,角度上相邻的感知波束承载有互相关性低的扩频序列信号。
  21. 根据权利要求19所述的电子设备,其中,所述处理电路被配置为通过预定信令提前从通信发端获取各个波束与扩频序列信号的对应关系。
  22. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    基于对所述组合波束的接收来确定干扰感知波束;以及
    向所述通信发端提供关于所确定的干扰感知波束的信息。
  23. 根据权利要求22所述的电子设备,其中,所述处理电路被配置为基于接收到的信号估计通信波束的波束增益和感知波束的波束增益。
  24. 根据权利要求23所述的电子设备,其中,所述处理电路被配置为利用最小二乘估计或最小均方误差估计来估计所述通信波束的波束增益和所述感知波束的波束增益。
  25. 根据权利要求23所述的电子设备,其中,所述处理电路被配置为将具有预定阈值以上的波束增益的感知波束确定为所述干扰感知波束。
  26. 根据权利要求25所述的电子设备,其中,所述感知波束的波束增益为相对于所述通信波束的波束增益的相对波束增益。
  27. 根据权利要求22所述的电子设备,其中,所述干扰感知波束的信息包括一个或多个干扰感知波束的波束索引。
  28. 根据权利要求27所述的电子设备,其中,所述干扰感知波束的信息还包括如下中的一个或多个:干扰感知波束的数量,各个干扰感知波束的波束增益的信息。
  29. 根据权利要求17所述的电子设备,其中,所述电子设备位于基站侧或进行车辆网通信的车辆侧。
  30. 一种用于无线通信的方法,包括:
    确定感知波束组,其中,所述感知波束组中的各个感知波束与通信波束选自相同的波束码本且所述各个感知波束均不同于所述通信波束;以及
    发送组合波束,并重复执行所述发送以遍历所述感知波束组中的所有感知波束,其中,所述组合波束包括所述通信波束和一个感知波束子组,每个感知波束子组分别包括所述感知波束组中的一个或多个感知波束。
  31. 一种用于无线通信的方法,包括:
    从通信发端接收组合波束,所述组合波束包括通信波束和一个感知波束子组,其中,每个感知波束子组分别包括感知波束组中的一个或多个感知波束,所述感知波束组中的各个感知波束与所述通信波束选自相同的波束码本且所述各个感知波束均不同于所述通信波束;以及
    重复执行所述接收,直到遍历所述感知波束组中的所有感知波束。
  32. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求30或31所述的用于无线通信的方法。
PCT/CN2023/072047 2022-01-20 2023-01-13 用于无线通信的电子设备和方法、计算机可读存储介质 WO2023138495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210066296.1 2022-01-20
CN202210066296.1A CN116528188A (zh) 2022-01-20 2022-01-20 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023138495A1 true WO2023138495A1 (zh) 2023-07-27

Family

ID=87347841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072047 WO2023138495A1 (zh) 2022-01-20 2023-01-13 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116528188A (zh)
WO (1) WO2023138495A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196229A (zh) * 2018-02-11 2018-06-22 哈尔滨工业大学 一种基于时间调制阵列的通信雷达一体化设计方法
CN112763985A (zh) * 2020-12-25 2021-05-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 脉冲多普勒雷达探通一体化波形设计方法
WO2022001148A1 (zh) * 2020-06-28 2022-01-06 南京航空航天大学 基于非合作博弈的雷达通信一体化组网***功率控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196229A (zh) * 2018-02-11 2018-06-22 哈尔滨工业大学 一种基于时间调制阵列的通信雷达一体化设计方法
WO2022001148A1 (zh) * 2020-06-28 2022-01-06 南京航空航天大学 基于非合作博弈的雷达通信一体化组网***功率控制方法
CN112763985A (zh) * 2020-12-25 2021-05-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 脉冲多普勒雷达探通一体化波形设计方法

Also Published As

Publication number Publication date
CN116528188A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US10284279B2 (en) Apparatus and method in wireless communications system
US10247808B2 (en) Location reporting for extremely high frequency (EHF) devices
CN110771081A (zh) 用于无线通信***的电子设备、方法和存储介质
US11496910B2 (en) Electronic equipment, user equipment, wireless communication method, and storage medium
WO2020238829A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20210159959A1 (en) Wireless communication device and method
US10721023B2 (en) Electronic device, radio communication apparatus, and radio communication method
US10897296B2 (en) Terminal apparatus, base station, method and recording medium
US20240188128A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
CN114616765A (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
WO2023040580A1 (zh) 用于无线通信的装置和方法
JP2018019343A (ja) 端末装置、基地局、方法及び記録媒体
CN113853806A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11991121B2 (en) Electronic device and method used for wireless communication, and computer-readable storage medium
WO2023138495A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230164608A1 (en) Electronic device and method for wireless communication and computer-readable storage medium
WO2022213856A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022253127A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022253128A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023202493A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023083108A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021227932A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN111917671A (zh) 用于无线通信的装置和方法
CN116489803A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN116746193A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742810

Country of ref document: EP

Kind code of ref document: A1