WO2023138018A1 - Plaque d'électrode négative composite et son procédé de préparation et batterie secondaire au lithium-métal - Google Patents

Plaque d'électrode négative composite et son procédé de préparation et batterie secondaire au lithium-métal Download PDF

Info

Publication number
WO2023138018A1
WO2023138018A1 PCT/CN2022/108258 CN2022108258W WO2023138018A1 WO 2023138018 A1 WO2023138018 A1 WO 2023138018A1 CN 2022108258 W CN2022108258 W CN 2022108258W WO 2023138018 A1 WO2023138018 A1 WO 2023138018A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
current collector
electrode current
electrode sheet
Prior art date
Application number
PCT/CN2022/108258
Other languages
English (en)
Chinese (zh)
Inventor
李玉冰
徐雄文
Original Assignee
湖南立方新能源科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南立方新能源科技有限责任公司 filed Critical 湖南立方新能源科技有限责任公司
Publication of WO2023138018A1 publication Critical patent/WO2023138018A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium metal secondary batteries, and in particular relates to a composite negative electrode sheet, a preparation method thereof, and a lithium metal secondary battery.
  • metal lithium is considered to be the ideal negative electrode material for the next generation of high energy density lithium batteries due to its ultra-high theoretical specific capacity (3860mAh/g) and extremely low potential (-3.04V, compared to standard hydrogen electrodes), known as the "holy grail" in electrodes.
  • the high-nickel ternary system material matching the metal lithium negative electrode is considered to be the battery system that can break through the energy density of 500Wh/Kg the fastest.
  • Lithium-sulfur batteries, lithium-oxygen batteries and other secondary batteries with metal lithium as the negative electrode are considered to be a new generation of high specific energy batteries with great potential.
  • lithium dendrites can also greatly accelerate the consumption rate of the electrolyte and reversible lithium sources, and can also be converted into "dead lithium” that loses electrochemical activity and covers the surface of the negative electrode, hindering the transfer of lithium ions and shortening the battery cycle life.
  • the SEI film also known as the solid-liquid phase interface film, is a film on the surface of lithium metal that isolates the continuous reaction between the electrolyte and lithium, and has the properties of a good ion conductor and an electronic insulator. Since the lithium metal anode is not constrained by the main structure, its volume expansion is almost infinite during the cycle. This large volume expansion often leads to the rupture of the SEI film during the battery cycle. Therefore, although the artificial SEI film can prolong the battery life to a certain extent, it still has the problem of repeated rupture and repair of the SEI film as the cycle progresses, and the growth of lithium dendrites in the later stage of the cycle is uncontrollable.
  • One of the objectives of the present invention is to provide a composite negative electrode sheet for the deficiencies of the prior art, which can reduce the consumption of electrolyte and reversible active lithium, and improve the battery cycle life and battery safety performance.
  • a composite negative electrode sheet comprising a negative electrode current collector and a coating layer coated on at least one surface of the negative electrode current collector, a plurality of graphite sheets are arranged in the coating layer, at least a part of the graphite sheets are arranged vertically to the negative electrode current collector, and the graphite sheets are separated from each other.
  • SEI films grown in situ during battery cycling usually have poor mechanical properties and flexibility, and are prone to rupture due to factors such as volume expansion during long cycles, resulting in uncontrolled dendrite growth, short cycle life, and poor safety performance.
  • a coating layer is provided on the surface of the negative electrode current collector, and there are graphite sheets arranged vertically and separated from each other in the coating layer.
  • the graphite sheets arranged vertically to the current collector and parallel to each other can partially accommodate the 'dead lithium' and lithium dendrites generated by them during the subsequent cycle of the battery, and to a certain extent avoid safety accidents caused by internal short circuits caused by dendrites piercing through the separator.
  • the negative electrode current collector is any one of copper foil (including perforated copper foil and non-perforated copper foil), nickel foil, stainless steel sheet, metallic lithium foil, and metallic lithium-based alloy foil.
  • the negative electrode current collector can be a lithium metal current collector, or a non-lithium metal alloy based current collector.
  • the negative electrode When a non-lithium-based current collector or a non-lithium metal alloy-based current collector is selected, the negative electrode initially does not contain lithium. At this time, the ratio of the acceptable theoretical capacity of the magnetic vertical graphite sheet coated on it to the theoretical capacity that can be exerted by the positive electrode material in the voltage range must be much smaller than 1, that is, the N/P ratio should be much smaller than 1. At this time, when the battery is charged, part of the lithium ions released from the positive electrode are embedded in the graphite negative electrode and exist in the form of LiC 6 and so on.
  • the theoretical amount of lithium ions that the negative electrode can accept is far less than the theoretical amount that can be released by the positive electrode
  • another part of the excess lithium ions that are not inlaid by the graphite material on the negative electrode side is partially deposited between the graphite sheets of the parallel vertical current collectors at the negative electrode until it is filled and overflows. After the overflow, the excess lithium continues to deposit on the top surface of the graphite sheet to form a lithium metal layer of a certain thickness. Due to the partial irreversibility of lithium ions after extraction, some of the lithium extracted from the positive electrode side cannot return to the positive electrode during discharge, and remain on the top of the graphite layer or in the gap between the graphite sheets.
  • the lithium deposited on the top of the graphite is preferentially stripped, and then the lithium deposited in the gap between the graphite sheets is stripped.
  • the 'dead lithium' and lithium dendrites will fall into the graphite gap and be buried by subsequent reversible active lithium, thereby reducing the effect of hindering lithium ion transmission, reducing electrolyte consumption, and improving battery cycle life and safety performance.
  • the current collector used is a lithium-based current collector
  • the negative electrode itself can provide a lithium source
  • the theoretical capacity ratio between the negative electrode and the positive electrode should be greater than 1, that is, the N/P ratio mentioned in the patent should be greater than 1.
  • the coated graphite sheet described in the patent can be understood as a cage structure, whose function is to trap the lithium coming out of the anode side to form lithium dendrites and 'dead lithium' in the subsequent cycle process, so as to reduce electrolyte consumption, improve cycle life and safety performance.
  • the coating layer further includes a thickener and a binder, and the weight-to-number ratio of the graphite sheet, the thickener, and the binder is 94-98:1-3:1-3.
  • a certain amount of graphite flakes, thickeners and binders are arranged so that the prepared coating slurry has a certain viscosity, which is convenient for coating and fixing of the coating slurry.
  • the binder includes one or more of polytetrafluoroethylene, styrene-butadiene rubber, polyacrylate, polyimide, sodium polyacrylate, chitosan, polyvinylidene fluoride, and polyvinylidene fluoride.
  • all graphite sheets are arranged vertically to the negative electrode current collector. All the graphite sheets are vertically arranged with the negative electrode current collector, which can increase the electrochemical performance of the composite negative electrode sheet.
  • the thickener is sodium carboxymethylcellulose.
  • the second object of the present invention is to provide a method for preparing a composite negative plate, which is easy to operate and can be mass-produced in view of the deficiencies in the prior art.
  • a method for preparing a composite negative plate comprising the following steps:
  • Step S1 mixing the graphite sheet modified by the magnetic substance with a binder and a thickener, adding a solvent, and stirring to prepare a coating slurry;
  • Step S2 selecting the negative electrode current collector, installing a magnetic field emission device, coating the coating slurry on at least one surface of the negative electrode current collector, drying the coating slurry under the magnetic field emission device to form a coating layer, and obtaining a composite negative electrode sheet, wherein the magnetic field emission device is used to vertically arrange the graphite sheet modified by the magnetic substance in the coating slurry and the negative electrode current collector.
  • micron-sized flakes suspended in a fluid and decorated with magnetic nanoparticles have two different orientation states. It is highly dependent on the magnetic field rotation frequency and the rheological properties of the fluid.
  • the magnetic field rotation frequency is low enough, the magnetic substance-modified particles are controlled by the magnetic torque, and they rotate synchronously on the surface of the current collector along the direction of the rotating field.
  • the rotation frequency is high enough, the determining step of the motion state of the magnetic substance is changed to the fluid viscosity, and at this time, the magnetic substance will be arranged parallel to the plane of the rotating magnetic field.
  • the coating layer further includes a solvent
  • the solvent is a water-based solvent or an oil-based solvent.
  • the negative electrode slurry can be a water-based solvent.
  • the water-based solvent includes and is not limited to water, methanol, and ethanol.
  • the solvent used in the above-mentioned negative electrode slurry is an oil-based solvent.
  • the oil-based solvent includes but is not limited to N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) etc.
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • the third object of the present invention is to provide a lithium metal secondary battery with good electrochemical performance and safety performance in view of the deficiencies of the prior art.
  • a lithium metal secondary battery comprising a positive electrode sheet, a separator, a negative electrode sheet, an electrolyte and a casing, the separator separates the positive electrode sheet and the negative electrode sheet, the casing is used to install the positive electrode sheet, the separator, the negative electrode sheet and the electrolyte, and the negative electrode sheet is the above-mentioned composite negative electrode sheet.
  • the battery structure of the above-mentioned lithium metal secondary battery may be a laminated type, a wound type, or a hybrid type of both.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector.
  • the positive electrode active material layer includes one or more mixtures of lithium cobalt oxide, lithium nickel manganese oxide, lithium nickel manganese cobalt oxide, lithium nickel cobalt aluminate, lithium iron phosphate, lithium manganate, lithium-rich manganese base, or lithium manganese iron phosphate.
  • the isolation film is any one of polyethylene film, polypropylene film, polyethylene-polypropylene composite film, polyimide film and ceramic film.
  • the beneficial effect of the present invention is: the negative electrode sheet of the present invention is provided with a coating layer on the surface of the negative electrode current collector, and there are graphite sheets arranged vertically and separated from each other in the coating layer.
  • the graphite sheets arranged in parallel with each other in this vertical current collector can partially accommodate the 'dead lithium' and lithium dendrites produced by them during the subsequent cycle of the battery, and to a certain extent avoid safety accidents caused by internal short circuits caused by dendrites piercing through the diaphragm.
  • FIG. 1 is a schematic structural view of a negative electrode sheet in the prior art.
  • Fig. 2 is a schematic structural view of the negative electrode sheet of the present invention.
  • FIG. 3 is a graph comparing the capacity retention curves of Example 1 and Comparative Example 1 of the present invention.
  • Negative electrode current collector 1.
  • Graphite sheet 3.
  • Lithium ion 1.
  • a method for preparing a composite negative plate comprising the following steps:
  • Step S1 mixing the graphite sheet 2 modified by the magnetic substance with a binder and a thickener, adding a solvent, and stirring to prepare a coating slurry;
  • Step S2 select the negative electrode current collector 1, install a magnetic field emission device, coat the coating slurry on at least one surface of the negative electrode current collector 1, dry the coating slurry under the magnetic field emission device to form a coating layer, and obtain a composite negative electrode sheet, wherein the magnetic field emission device is used to vertically arrange the graphite sheet 2 modified by the magnetic substance in the coating slurry with the negative electrode current collector 1.
  • the prepared composite negative electrode sheet is shown in Figure 2.
  • the negative electrode collector 1 placed horizontally is the negative electrode collector 1, and the graphite sheet 2 is arranged vertically and spaced apart from the negative electrode collector 1.
  • the multiple graphite sheets 2 are separated from each other and form an upward-opening accommodation space with the negative electrode current collector 1, which can accommodate lithium ions 3.
  • the formed accommodation space can be installed.
  • the contact between the electrolyte and lithium dendrites can be reduced to a certain extent, and the consumption of the electrolyte can be reduced, thereby improving the safety performance and prolonging the cycle life of the battery.
  • the ratio of graphite sheet 2, thickener, and binder in the coating layer is 95:2.5:2.5.
  • the binder is polytetrafluoroethylene
  • the thickener is sodium carboxymethyl cellulose
  • the negative electrode current collector 1 is metal lithium foil
  • the solvent is an oil-based solvent
  • the oil-based solvent is N-methylpyrrolidone
  • the isolation film is a polyethylene film.
  • Example 2 The difference from Example 1 is that the ratio of graphite sheet 2, thickener, and binder in the coating layer is 98:2:2.
  • Example 2 The difference from Example 1 is that the ratio of graphite sheet 2, thickener, and binder in the coating layer is 94:2:2.
  • Example 1 The difference from Example 1 is that the ratio of graphite sheet 2, thickener, and binder in the coating layer is 95:1:1 by weight.
  • Example 1 The difference from Example 1 is that the ratio of graphite sheet 2, thickener, and binder in the coating layer is 95:1:3 by weight.
  • Example 1 The difference from Example 1 is that: the negative electrode current collector 1 is copper foil, the solvent is an aqueous solvent, and the solvent is water.
  • the preparation square step of negative electrode sheet comprises the following steps:
  • Step S1 mixing the graphite sheet 2 modified by the magnetic substance with a binder and a thickener, adding a solvent, and stirring to prepare a coating slurry;
  • Step S2 selecting the negative electrode collector 1, coating the coating slurry on at least one surface of the negative electrode collector 1, drying to form a coating layer, and preparing the negative electrode sheet, as shown in FIG. 1 .
  • Example 2 86
  • Example 3 85
  • Example 4 85
  • Example 5 85
  • Example 6 Comparative example 1 80 / /

Abstract

La présente invention concerne le domaine technique des batteries secondaires au lithium-métal, en particulier une plaque d'électrode négative composite et son procédé de préparation, et une batterie secondaire au lithium-métal. La plaque d'électrode négative composite comprend un collecteur de courant d'électrode négative et une couche de revêtement appliquée sur au moins une surface du collecteur de courant d'électrode négative ; une pluralité de feuilles de graphite sont disposées dans la couche de revêtement, au moins certaines des feuilles de graphite sont perpendiculaires au collecteur de courant d'électrode négative, et lesdites certaines des feuilles de graphite sont séparées les unes des autres. Selon la plaque d'électrode négative composite de la présente invention, la couche de revêtement est disposée sur la surface du collecteur de courant d'électrode négative, et des couches de feuille de graphite qui sont perpendiculaires au collecteur de courant et sont disposées en parallèle les unes par rapport aux autres sont disposées dans la couche de revêtement, de sorte que le « lithium mort » et les dendrites de lithium ainsi générées puissent être partiellement logées, et des accidents de sécurité provoqués par un court-circuit interne en raison du fait que les dendrites percent un séparateur puissent être évités. De plus, certaines des dendrites de lithium peuvent être déposées au fond de la couche de revêtement de graphite et sont enfouies sous du « lithium mort » ou du lithium actif et analogues générés par la suite, de sorte à réduire un contact entre les dendrites et un électrolyte, à réduire la consommation de l'électrolyte et à prolonger la durée de vie de la batterie.
PCT/CN2022/108258 2022-01-21 2022-07-27 Plaque d'électrode négative composite et son procédé de préparation et batterie secondaire au lithium-métal WO2023138018A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210069391.7A CN114430023A (zh) 2022-01-21 2022-01-21 一种复合负极片及其制备方法、锂金属二次电池
CN202210069391.7 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023138018A1 true WO2023138018A1 (fr) 2023-07-27

Family

ID=81313518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108258 WO2023138018A1 (fr) 2022-01-21 2022-07-27 Plaque d'électrode négative composite et son procédé de préparation et batterie secondaire au lithium-métal

Country Status (2)

Country Link
CN (1) CN114430023A (fr)
WO (1) WO2023138018A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430023A (zh) * 2022-01-21 2022-05-03 湖南立方新能源科技有限责任公司 一种复合负极片及其制备方法、锂金属二次电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434526A (zh) * 2001-12-21 2003-08-06 三星Sdi株式会社 含石墨的组合物,用于锂二次电池的负极,以及锂二次电池
CN101295781A (zh) * 2007-04-24 2008-10-29 三星Sdi株式会社 可再充电锂电池用负极及包括该负极的可再充电锂电池
CN101662014A (zh) * 2001-12-21 2010-03-03 三星Sdi株式会社 含石墨的组合物,用于锂二次电池的负极,以及锂二次电池
CN102306750A (zh) * 2011-08-19 2012-01-04 东莞新能源科技有限公司 锂离子电池负极片的制备方法及涂膜干燥装置
CN102484244A (zh) * 2010-06-30 2012-05-30 松下电器产业株式会社 非水电解质二次电池用负极及其制造方法、以及非水电解质二次电池
CN102709524A (zh) * 2012-06-29 2012-10-03 东莞新能源科技有限公司 一种锂离子电池负极极片制作方法
JP2013105666A (ja) * 2011-11-15 2013-05-30 Toyota Motor Corp 非水電解質二次電池用負極および非水電解質二次電池
CN108630945A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 一种电池电极及其制备方法和电池
CN114430023A (zh) * 2022-01-21 2022-05-03 湖南立方新能源科技有限责任公司 一种复合负极片及其制备方法、锂金属二次电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434526A (zh) * 2001-12-21 2003-08-06 三星Sdi株式会社 含石墨的组合物,用于锂二次电池的负极,以及锂二次电池
CN101662014A (zh) * 2001-12-21 2010-03-03 三星Sdi株式会社 含石墨的组合物,用于锂二次电池的负极,以及锂二次电池
CN101295781A (zh) * 2007-04-24 2008-10-29 三星Sdi株式会社 可再充电锂电池用负极及包括该负极的可再充电锂电池
CN102484244A (zh) * 2010-06-30 2012-05-30 松下电器产业株式会社 非水电解质二次电池用负极及其制造方法、以及非水电解质二次电池
CN102306750A (zh) * 2011-08-19 2012-01-04 东莞新能源科技有限公司 锂离子电池负极片的制备方法及涂膜干燥装置
JP2013105666A (ja) * 2011-11-15 2013-05-30 Toyota Motor Corp 非水電解質二次電池用負極および非水電解質二次電池
CN102709524A (zh) * 2012-06-29 2012-10-03 东莞新能源科技有限公司 一种锂离子电池负极极片制作方法
CN108630945A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 一种电池电极及其制备方法和电池
CN114430023A (zh) * 2022-01-21 2022-05-03 湖南立方新能源科技有限责任公司 一种复合负极片及其制备方法、锂金属二次电池

Also Published As

Publication number Publication date
CN114430023A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
Qiu et al. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance
Zhao et al. Redirected Zn electrodeposition by an anti‐corrosion elastic constraint for highly reversible Zn anodes
WO2021213132A1 (fr) Électrolyte de batterie au lithium-métal contenant un additif composite et son procédé de préparation
CN110137485B (zh) 一种含有表面修饰膜的硅负极材料的制备方法
Kim et al. Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries
CN113258031B (zh) 电池
CN104868097B (zh) 一种锂硫电池负极材料及其制备方法
JP7193449B2 (ja) 多孔質ケイ素材料および導電性ポリマーバインダー電極
CN113066954B (zh) 一种负极片及其应用
CN112736245B (zh) 一种锂离子电池负极材料及其制备方法和应用
WO2023138018A1 (fr) Plaque d'électrode négative composite et son procédé de préparation et batterie secondaire au lithium-métal
Zhang et al. Diffusion couples Cu-X (X= Sn, Zn, Al) derived 3D porous current collector for dendrite-free lithium metal battery
CN110931725B (zh) 一种硅碳复合材料及其制备方法和应用
WO2023273265A1 (fr) Graphène pré-lithié, procédé de préparation et application associés
Hao et al. Interfacial regulation of dendrite-free zinc anodes through a dynamic hydrophobic molecular membrane
CN114203976A (zh) 一种可提高金属锂负极稳定性的混合溶液及制备方法和应用
CN110165179B (zh) 一种锂电池负极材料及其制备方法与包含该负极材料的锂电池
CN111668492A (zh) 一种锂金属负极集流体及其制备方法、复合负极和锂金属二次电池
WO2023240891A1 (fr) Mof zr-fe modifié par un groupe cyano, son procédé de préparation et matériau d'électrode négative de zinc de batterie à flux à base de zinc
CN115548344A (zh) 无负极活性物质电池负极片及其制备方法和电池
CN113422001B (zh) 负极预锂化添加剂及其制备方法和应用
CN114388731A (zh) 一种锂电池电极及其制备方法和应用
CN113206213A (zh) 一种硅基复合电极及其制备方法和应用
CN109273670A (zh) 一种具有高比表面介孔保护膜的金属锂负极及其制备方法
CN114142032A (zh) 锌离子电池和改善锌离子电池锌负极循环性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921447

Country of ref document: EP

Kind code of ref document: A1