WO2023136178A1 - 組立システム、及び風洞試験装置 - Google Patents

組立システム、及び風洞試験装置 Download PDF

Info

Publication number
WO2023136178A1
WO2023136178A1 PCT/JP2022/048636 JP2022048636W WO2023136178A1 WO 2023136178 A1 WO2023136178 A1 WO 2023136178A1 JP 2022048636 W JP2022048636 W JP 2022048636W WO 2023136178 A1 WO2023136178 A1 WO 2023136178A1
Authority
WO
WIPO (PCT)
Prior art keywords
modules
measurement
assembly system
measuring device
vehicle
Prior art date
Application number
PCT/JP2022/048636
Other languages
English (en)
French (fr)
Inventor
ジョシュア ローン
典道 上村
秀明 中洞
晋一 宮崎
翔太 服部
雅司 福島
Original Assignee
株式会社日本風洞製作所
株式会社ニシヤマ
大和製衡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本風洞製作所, 株式会社ニシヤマ, 大和製衡株式会社 filed Critical 株式会社日本風洞製作所
Priority to CN202280079818.XA priority Critical patent/CN118355255A/zh
Priority to JP2023573993A priority patent/JPWO2023136178A1/ja
Publication of WO2023136178A1 publication Critical patent/WO2023136178A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing

Definitions

  • the present invention relates to an assembly system for a measuring device that supports a vehicle having multiple wheels for wind tunnel testing, and a wind tunnel testing device.
  • the wind tunnel test apparatus described in Patent Document 1 is an installation type, and is installed in a predetermined facility.
  • the present invention has been made to solve the above-mentioned problems, and provides an assembly system for a measuring device for wind tunnel testing and a wind tunnel testing device, which are portable and can be adapted to vehicles of various sizes and types. for the purpose.
  • the assembly system according to the invention is an assembly system for a measuring device supporting a multi-wheeled vehicle for wind tunnel testing, comprising a plurality of measuring modules containing at least one load cell and at least one coupling. module, and using at least one of a first connection mode in which the plurality of measurement modules are connected to each other and a second connection mode in which the plurality of measurement modules are connected to each other via the connection module, It is possible to construct the measuring device with the measuring modules respectively arranged at positions corresponding to respective wheels of the vehicle.
  • the measurement module and the connection module can be formed in a rectangular shape in a plan view, and can be connected side to side.
  • the assembly system may further include a splitter for thinning a boundary layer formed by the wind from the blower, and the splitter may be configured to be attachable to an end of the measuring device on the blower side. can be done.
  • each measurement module includes a flat lid supporting the wheels of the vehicle, and a moving mechanism capable of changing the position of the load cell under the lid, the lid comprising: A disk-shaped wheel support member that supports the wheel and is fixed to the load cell, a disk-shaped first positioning member having a first through hole in which the wheel support member is fitted, and the first positioning member a disk-shaped second positioning member having a second through hole into which the second positioning member is rotatably fitted; and a supporting body portion having a third through hole into which the second positioning member is rotatably fitted,
  • the wheel support member can be arranged directly under the wheel, and the load cell can be configured to measure the force acting on the wheel support member. can.
  • the measurement device when the vehicle is a four-wheeled vehicle, the measurement device can be configured using four measurement modules.
  • the measuring device when the vehicle is a two-wheeled vehicle, the measuring device can be configured using two measuring modules.
  • a wind tunnel test apparatus includes any assembly system described above and a movable blower.
  • the present invention is portable and can be used for vehicles of various sizes and types.
  • FIG. 1 is a schematic side view of a wind tunnel test apparatus according to one embodiment of the present invention
  • FIG. FIG. 2 is a perspective view of a measuring device included in the wind tunnel test apparatus of FIG. 1
  • FIG. 3 is a perspective view showing a state in which a cover is removed in the measuring device of FIG. 2
  • Fig. 3 is a perspective view of a splitter of the measuring device
  • FIG. 5 is a cross-sectional view of FIG. 4
  • It is the perspective view (a) and partial cross-sectional view (b) of the 1st measurement part of a measuring device. It is a perspective view which shows the state which removed the cover in the 1st measurement part.
  • FIG. 8 is a plan view of FIG. 7; Fig.
  • FIG. 3 is a perspective view of the middle part of the measuring device;
  • FIG. 10 is a perspective view of the connecting portion with the cover of the intermediate portion removed;
  • Fig. 2 is a perspective view of the rear part of the measuring device;
  • FIG. 4 is a perspective view of the rear portion with the lid of the rear portion removed; It is a top view which shows arrangement
  • FIG. 1 is a schematic side view of a wind tunnel test apparatus.
  • this wind tunnel test apparatus includes a blower 1 and a measuring device 2, and the blower 1 blows air to a four-wheeled vehicle 100 placed on the measuring device 2.
  • a measuring device measures the drag acting on the vehicle that receives the blown air.
  • the blower is a known portable wind tunnel blower. The measuring device will be described in detail below.
  • FIG. 2 is a perspective view of the measuring device
  • FIG. 3 is a perspective view showing the measuring device of FIG. 2 with the cover removed.
  • the directions shown in FIG. 2 will be followed.
  • the measuring device 2 has a splitter 3, a first measuring section 4, an intermediate section 5, a second measuring section 6, and a rear section 7 arranged in this order from the front end to the rear end. Concatenated. These configurations will be described in detail below.
  • splitter> 4 is a perspective view of the splitter
  • FIG. 5 is a sectional view of FIG.
  • the splitter 3 has the function of thinning the boundary layer formed on the upper surface of the measuring device 2 when the air flowing from the blower 1 flows over the measuring device 2. It is composed of four splitter pieces 301 to 304 arranged in the horizontal direction. Since the configurations of the splitter pieces 301 to 304 are the same, the first splitter piece 301, which is one of them, will be described here.
  • the first splitter piece 301 includes a body portion 31 and a tip member 32 extending from the tip of the body portion 31 .
  • the body portion 31 has a plate-like upper wall portion 311 and a lower wall portion 312 , and the upper surface of the upper wall portion 311 is formed flat so as to be continuous with the upper surface of the first measuring portion 4 . .
  • the lower wall portion 312 has an inclined surface extending downward toward the rear. Therefore, the upper wall portion 311 and the lower wall portion 312 are connected so as to form an acute angle in side view.
  • the tip member 32 is formed in a plate shape, and the upper surface 321 thereof and the upper surface of the main body portion 31 are formed so as to be continuous.
  • the edge on the front side of the lower surface 322 of the tip member 32 is located behind the edge on the front side of the upper surface.
  • a tip surface 323 connecting the edge of the upper surface 321 and the edge of the lower surface 322 is formed to have an arcuate cross section.
  • a plurality of through holes 324 are formed in the distal end member 32 at predetermined intervals in the front-rear direction.
  • a pipe member 325 communicating with the through hole 324 is attached to the lower surface 322 of the tip member 32 .
  • This pipe member 325 is connected to a pressure measuring section (not shown) built in the measuring device 2 so that the pressure of the air flowing on the upper surface of the tip member can be measured.
  • a boundary layer is formed on the upper surface of the measuring device 2 by the frictional force generated between part of the air flow from the blower 1 and the measuring device 2 .
  • the component of the air flow excluding the boundary layer is called the main stream. That is, the airflow includes a boundary layer and a main stream in a direction away from the top surface.
  • the main stream has a uniform flow velocity distribution in the height direction with the upper surface as a reference.
  • the flow velocity in the boundary layer is smaller than the flow velocity in the mainstream, and the flow velocity becomes lower as it approaches the upper surface, which may affect the reproducibility when simulating the running conditions of a vehicle in a wind tunnel test. Therefore, in this embodiment, by providing the splitter 3 at the tip of the measuring device 2, the boundary layer can be made thinner. As a result, the influence of the boundary layer on wind tunnel testing can be reduced.
  • the thickness t of the tip member 32, the length L of the tip member 32 protruding forward from the main body portion 31, and the curvature radius R of the tip surface 323 have an effect. has been confirmed by the inventors.
  • the thickness t of the tip member 32 is preferably 1-8 mm, more preferably 3-5 mm.
  • the protruding length L of the distal end member 32 from the body portion 31 is preferably 75 to 150 mm, more preferably 100 to 125 mm.
  • the tip radius R of the tip surface 323 is preferably 2/5 to 3/5 of the thickness of the tip member 32, and more preferably 1/2, for example.
  • the four splitter pieces 301 to 304 are connected so as to line up in the horizontal direction as described above.
  • the first and fourth splitter pieces 301 and 304 arranged on the right and left sides have side openings formed by the upper wall portion 311 and the lower wall portion 312. It is closed with a plate-shaped side wall portion 315 .
  • the first measurement unit 4 and the second measurement unit 6 are each configured by connecting two measurement modules having the same configuration in the left-right direction (first connection mode).
  • the measurement modules on the right and left sides of the first measurement unit 4 are referred to as first and second measurement modules 401 and 402, respectively.
  • the measurement modules on the right and left sides of the second measurement unit 6 are called third and fourth measurement modules 601 and 602, respectively. Since the first to fourth measurement modules 401, 402, 601, 602 have the same configuration, the first measurement section 4 and the first measurement module 401 will be mainly described below.
  • FIG. 6 is a perspective view and a partial cross-sectional view of the first measuring section
  • FIG. 7 is a perspective view showing a state in which the cover is removed from the first measuring section
  • FIG. 8 is a plan view of FIG.
  • the first measurement module 401 includes a plate-like bottom wall portion 41 that is square in plan view, and frame-shaped side frames arranged along the periphery of the bottom wall portion 41. 42 and a lid body 43 having a square shape in a plan view that closes the upper opening of the side frame 42, and is formed in the shape of a rectangular parallelepiped with a low height as a whole.
  • the first and second measurement modules 401 and 402 are fixed by connecting the side frames 42 with bolts or the like.
  • a load cell 44 and its moving mechanism 45 are arranged in a space surrounded by the bottom wall portion 41 , the side frame 42 and the lid 43 .
  • the movement mechanism 45 is configured as follows. As shown in FIG. 8, the bottom wall portion 41 is provided with a pair of first rails 451 extending in parallel in the front-rear direction. A plate-like first moving member 452 is provided on the first rail 451 and is movable in the front-rear direction along the first rail 451 . A pair of second rails 453 extending in parallel in the left-right direction is arranged on the first moving member 452 . A plate-shaped second moving member 454 is provided on the second rail 453 and is movable in the left-right direction along the second rail 453 . A load cell 44 is arranged on the second moving member 454 .
  • a known load cell can be used for the load cell 44 .
  • the load cell 44 is fixed to a wheel support member 431 of the lid 43, which will be described below, and is used to generate drag, lift, lateral force, and each force generated by the vehicle through the vehicle's wheels 101 supported by the wheel support member 431. At least one of the moments is detected.
  • Each load cell 44 is connected to measuring instruments (not shown) accommodated in first and sixth rear modules 701 and 706 of the rear section 7, which will be described later.
  • the instrument houses a strain amplifier and a load cell indicator.
  • the lid 43 has wheel support members 431 that support the wheels 101 of the vehicle 100, and the wheel support members 431 are fixed to the upper surface of the load cell 44 with bolts or the like.
  • a first positioning member 432 , a second positioning member 433 , and a support body member 434 are arranged around the wheel support member 431 . More specifically, the first positioning member 432 is formed with a disc-shaped first through hole 4320 into which a wheel support member is rotatably fitted. The first through hole 4320 is formed at a position shifted from the center of the first positioning member 432 .
  • the second positioning member 433 is disc-shaped and has a second through hole 4330 into which the first positioning member 432 is rotatably fitted.
  • a step 4330 is formed on the inner peripheral surface of the second through hole 4330, and the first positioning member 432 is rotatably arranged on the step 4330.
  • the second through hole 4330 is formed at a position shifted from the center of the second positioning member 433 .
  • the support body member 434 has a square outer shape so as to be placed on the side frame 42, and a circular third through hole 4340 is formed so as to coincide with the center thereof.
  • a step 4340 is formed on the inner peripheral surface of the third through hole 4340, and the second positioning member 433 is rotatably arranged on the step 4340. As shown in FIG.
  • the wheel support member 431 can be arranged at a desired position on the lid 43 .
  • positioning can be performed as follows.
  • the load cell 44 and the wheel support member 431 are moved to predetermined positions by the moving mechanism 45 .
  • the second positioning member 433 interferes with the wheel support member 431, the second positioning member 433 is also removed.
  • the second positioning member 433 is rotated so that one of the inner circumferences of the second positioning member 433 is brought into contact with this jig. Thereby, the distance of the portion where the outer peripheral surface of the wheel support member 431 and the inner peripheral surface of the second positioning member 433 are closest to each other is defined by the jig.
  • This distance matches the closest distance between the outer peripheral surface of the first positioning member 432 and the inner peripheral surface of the first through hole 4320 .
  • the space formed between the wheel support member 431 and the second through hole 4330 matches the shape of the first positioning member 432, so if the first positioning member 432 is fitted into the second through hole 4330, , the positioning of the wheel support member 431 is completed.
  • each positioning member 432 and 433 can be moved by inserting a lever into the hole and moving the lever. be able to.
  • the intermediate section 5 comprises first to sixth intermediate modules 501 to 506 arranged from left to right.
  • the first, third, fourth, and sixth intermediate modules 501, 503, 504, and 506 are formed of modules of the same rectangular shape in plan view. These modules are hereinafter referred to as A-type connection modules 51 .
  • the second and fifth connecting modules 502 and 505 are formed of modules of the same square shape in plan view. These modules are hereinafter referred to as B-type connection modules 52 .
  • the A-type connection module 51 and the B-type connection module 52 have the same length and height in the front-rear direction, but the B-type connection module 52 is longer than the A-type connection module 51 in the left-right direction. is getting longer.
  • the A-type connection module 51 is formed in a rectangular parallelepiped shape that is long in the front-rear direction, and includes a plate-like bottom wall portion 511 that is rectangular in plan view and a frame-shaped side that is arranged along the periphery of the bottom wall portion 511 . It is provided with a frame 512 and a cover 513 that is square in plan view and closes the upper opening of the side frame 512, and is formed in the shape of a rectangular parallelepiped with a low height as a whole. Rectangular closing plates 514 are attached to the right side and left side of the side frame 512 in the first and sixth intermediate modules 501 and 506 arranged on both sides of the intermediate portion 5 among the A-type connection modules 51 . It is
  • the B-type connection module 52 includes a plate-like bottom wall portion 521 that is rectangular in plan view, a frame-shaped side frame 522 arranged along the periphery of the bottom wall portion 521, and an upper opening of the side frame 522. and a lid body 523 having a square shape in a plan view, and is formed in a rectangular parallelepiped shape with a low height as a whole. Rectangular closing plates 524 are attached to the right side and left side of the side frame 522 in the first and sixth intermediate modules 501 and 506 arranged on both sides of the intermediate portion 5 among the B-shaped connection modules 52, respectively. It is
  • the total lateral width of the two A-type connection modules 51 and one B-type connection module 52 is equal to the width of the measurement modules 401, 402, 601, 602 in the horizontal direction. is the same as
  • the intermediate portion 5 is configured by using four A-type connection modules and two B-type connection modules and connecting them in the left-right direction as described above. Adjacent modules are connected to each other by contacting the side frames 512 and 522 and fixing them with bolts or the like.
  • the connection with the first and second measurement units 4 and 6 is also performed by fixing the side frames with bolts or the like after the side frames are brought into contact with each other (second connection mode).
  • the rear section 7 includes first to sixth rear modules 701 to 706 arranged from left to right.
  • the first and sixth rear modules 701 and 706 are formed of modules having the same rectangular shape in plan view. These modules are hereinafter referred to as C-type connection modules 71 .
  • the third and fourth rear modules 703 and 704 are formed of modules having the same rectangular shape in a plan view and longer in the front-rear direction than the first and sixth rear modules 701 and 706 .
  • These modules are hereinafter referred to as D-type connection modules 72 .
  • the second and fifth rear modules 702 and 705 are rectangular modules having a longer lateral width than the third and fourth rear modules 703 and 704 in a plan view. These modules are hereinafter referred to as E-type connecting modules 73 .
  • the C-shaped connection module 71 is formed in a rectangular parallelepiped shape that is elongated in the front-rear direction, and includes a plate-like bottom wall portion 711 that is rectangular in plan view and a frame-shaped side that is arranged along the periphery of the bottom wall portion 711 . It is provided with a side frame 712 and a rectangular lid 713 that closes the upper opening of the side frame 712, and is formed in a rectangular parallelepiped shape with a low height as a whole.
  • the lid body 713 extends rearward from the side frame 712 and has the same length in the front-rear direction as the D-shaped connection module 72 .
  • Rectangular closing plates 714 are attached to the right side and left side of the side frame 712 of the C-shaped connection module 71 .
  • the D-shaped connection module 72 includes a plate-like bottom wall portion 721 that is rectangular in plan view, a frame-shaped side frame 722 arranged along the periphery of the bottom wall portion 721 , and an upper opening of the side frame 722 . and a lid body 723 having a rectangular shape in a plan view, and is formed in a rectangular parallelepiped shape with a low height as a whole.
  • the E-shaped connection module 73 includes a plate-like bottom wall portion 731 that is rectangular in plan view, a frame-shaped side frame 732 arranged along the periphery of the bottom wall portion 731, and an upper opening of the side frame 732. and a lid body 733 having a rectangular shape in plan view to close the opening, and is formed in a rectangular parallelepiped shape with a low height as a whole.
  • the total lateral width of one C-shaped connection module 71, D-type connection module 72, and E-type connection module 73 is equal to that of one measurement module 401, 402, 601, 602. It is the same as the width in the horizontal direction.
  • the rear portion 7 is constructed by using two each of C-type, D-type, and E-type connection modules and connecting them in the left-right direction as described above. Adjacent modules are connected to each other by contacting the side frames 712, 722, 732 and fixing them with bolts or the like. The connection with the second measuring section 6 is also performed by fixing the side frames with bolts or the like after the side frames are brought into contact with each other. Also, the C-shaped connection modules that constitute the first and sixth rear modules 701 and 706 house the measuring instruments described above. The measuring instrument is connected to an external computer via a cable to display and analyze data. Since the cable is attached to the measuring instrument in this way, the C-type connection module 71 is shorter than the adjacent E-type connection module 73 for routing.
  • the bent portion of the cable can be arranged in the area covered by the lid 713 of the C-shaped connection module 71 . Therefore, it is possible to prevent the bent portion of the cable from being exposed.
  • Wind tunnel test Next, a wind tunnel test using the measuring device configured as described above will be described. First, the measuring device 2 is assembled as described above. Next, the load cells 44 and wheel support members 431 are placed at locations corresponding to the four wheels of the vehicle 100 . First, after the load cell 44 is positioned by the moving mechanism 45 , the first and second positioning members 432 and 433 are manually rotated so that the wheel support member 431 is arranged directly above the load cell 44 . At this time, the position of each load cell 44 is input to a computer connected to the measuring instrument.
  • the vehicle is placed on the measuring device 2 as shown in FIG.
  • the vehicle is positioned so that the four wheels 101 are positioned on the four wheel support members 431 respectively.
  • the blower 1 blows air, and the load cell 44 measures the various data described above.
  • the measurement device 2 is configured by combining one type of measurement module 401 and five types of connection modules 51, 52, 71-73. Therefore, by appropriately combining these modules, it can be applied to wind tunnel tests of vehicles having different numbers and positions of wheels 101 .
  • a wind tunnel test of a four-wheeled vehicle is described.
  • two-wheeled vehicles such as bicycles and motorcycles can be wind tunnel tested.
  • FIG. 15 by connecting four measurement modules 401, an A-type connection module 51, and a B-type connection module 52, a wind tunnel test of a small four-wheeled vehicle can be performed.
  • each module can be connected in a separable manner, it is possible to repeatedly form a measuring device for a plurality of types of vehicles.
  • a plurality of load cells 44 are used in accordance with the positions of the wheels 101, compared to the case of measuring various vehicles with one measuring device such as a conventional wind tunnel balance. Therefore, the measuring device 2 can be miniaturized. Moreover, since the load cell 44 is arranged for each wheel, it is possible to improve the responsiveness of the measurement. Further, the position of the load cell 44 can be accurately positioned by the moving mechanism 45 of each measuring module 401, 402, 601, 602, and the upper surface of each lid 43 can be kept flat even if the position of the wheel support member 431 is changed. Therefore, the force received from the wheel 101 can be accurately measured by these combinations.
  • the wheel pitch e.g., wheelbase, treadbase dimensions
  • the load cell 44 must be accurately positioned at the position of the wheel 101.
  • the measuring device 2 is suitable. Furthermore, by providing a load cell 44 for each wheel 101, the thickness of the measurement modules 401, 402, 601, 602 can be reduced. Therefore, the measuring device 2 with excellent portability can be realized.
  • the measurement device is configured using one type of measurement module and five types of connection modules, but this is just an example and is not limited. That is, it is sufficient that the measuring device can be configured by using at least one of a first connection mode in which a plurality of measurement modules are connected to each other and a second connection mode in which a plurality of measurement modules are connected to each other via a connection module. Therefore, it is also possible to prepare measurement modules and connection modules of different shapes, which can be applied to wind tunnel tests of various vehicles with different numbers and positions of wheels.
  • the assembly system of the present invention is configured by including a plurality of measurement modules and at least one connection module, and the measurement modules are connected so as to form a desired form of measurement apparatus. A module is selected.
  • the configuration of the measurement module is not particularly limited as long as at least one load cell 44 is arranged.
  • the positions of the load cell 44 and the wheel support member 431 are not changeable, and the measurement module can be such that these positions are fixed. Even if such measurement modules are used, the position between the measurement modules can be adjusted by using the connection module, so the load cell can be arranged at the position of the wheel 101 .
  • a plurality of load cells can be arranged in one measurement module.
  • the shape of the measurement module is not particularly limited, and various shapes such as a rectangular shape in plan view as described above and a polygonal shape can be used.
  • the load cell 44 is moved in two orthogonal directions on the horizontal plane by the first rail 451 and the second rail 453, but the configuration of the movement mechanism 45 of the load cell 44 is not limited to this. That is, it is sufficient that the load cell 44 is configured to be movable within the measurement module 401 .
  • the load cells can be fixed by inserting bolts or the like into the holes.
  • the wheel support member 431 is moved by the two positioning members 432 and 433, but the configuration for disposing the wheel support member 431 at any position on the lid 43 is not limited to this. . That is, as long as the wheel support member 41 can move within the lid 43 while the upper surface of the lid 43 remains flat, other configurations may be used.
  • the wheel support member 431 is moved by the two positioning members 432 and 433, but three or more disc-shaped positioning members may be used. Alternatively, one disk-shaped positioning member may be used.
  • the first positioning member 432 and the second positioning member 433 can be configured to rotate in conjunction with this. At this time, the rotation of the first positioning member 432 and the second positioning member 433 can be assisted by a motor or the like. Moreover, after positioning the wheel support member 431, you may have the structure which fixes so that the 1st positioning member 432 and the 2nd positioning member 433 may not move.
  • the wheel support member 431 is formed in a rectangular shape, and a plurality of subdivided plug-in rectangular blocks are inserted around it to form the lid body 43 .
  • the wheel support member 41 can be moved within the lid 43 while the top surface of the lid 43 remains flat.
  • the periphery of the wheel support member 431 may be filled with shutters that can move forward, backward, leftward, and rightward instead of blocks.
  • the first and second positioning members 432 and 433 are manually rotated, but each positioning member 432 and 433 can also be rotated by a driving device such as a motor. Thereby, the positioning of the wheel support member can be automatically performed. This point also applies to the moving mechanism 45 that moves the load cell 44 .
  • the operator measures the position of the load cell 44 and inputs it into the computer, but the work can be done automatically. That is, a detector for detecting the position of the load cell 44 can be provided. As a detector, for example, encoders are provided in the moving mechanism 45, and the position of each load cell 44 can be detected by these encoders. It is also possible to measure the relative positional relationship between the load cells 44 and detect the positions of the load cells 44 based on this. In addition to encoders, various detectors such as potentiometers, resolvers, and lasers can be used.
  • connection module is not particularly limited, and it is sufficient that the connection module can be connected to the measurement module such that the upper surface is continuous with the measurement module.
  • shape of the connecting module is not particularly limited, and may be a rectangular shape in plan view as described above, or various other shapes such as a polygonal shape.
  • the shape of the splitter 3 is not particularly limited, and the shape of the lower wall portion 312 of the main body portion 31 is not particularly limited. Also, the measuring device 2 can be configured without the splitter 3 .
  • the configuration of the blower 1 is not particularly limited, and a known blower can be used. Considering portability, it is preferable to use a blower that can be combined with a plurality of blowers according to the air volume.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本発明に係る組立システムは、風洞試験用に、複数の車輪を有する乗物を支持する測定装置の組立システムであって、少なくとも1つのロードセルが収容された、複数の測定モジュールと、少なくとも1つの連結モジュールと、を備え、前記複数の測定モジュール同士を連結した第1連結態様、及び前記複数の測定モジュール同士を前記連結モジュールを介して連結した第2連結態様の少なくとも1つを用いることで、前記乗物の各車輪と対応する位置に前記測定モジュールがそれぞれ配置された前記測定装置を構成可能となっている。

Description

組立システム、及び風洞試験装置
 本発明は、風洞試験用に、複数の車輪を有する乗物を支持する測定装置の組立システム、及び風洞試験装置に関する。
 従来より、乗物の風洞試験を行うための種々の風洞試験装置が提案されている。例えば、特許文献1の記載の風洞試験装置は設置型であり、所定の施設の中に設けられる。
特開2021-47086号公報
 しかしながら、上記の風洞試験装置は所定の施設に設けられるため、その施設外に移動できるものではない。また、試験対象となる乗物の種類や大きさはある程度決まっており、それ以外の種類や大きさの乗物については、試験ができないという問題がある。
 本発明は、上記問題を解決するためになされたものであり、可搬性があり、種々の大きさや種類の乗物に対応可能な、風洞試験要の測定装置の組立システム及び風洞試験装置を提供することを目的とする。
 本発明に係る組立システムは、風洞試験用に、複数の車輪を有する乗物を支持する測定装置の組立システムであって、少なくとも1つのロードセルが収容された、複数の測定モジュールと、少なくとも1つの連結モジュールと、を備え、前記複数の測定モジュール同士を連結した第1連結態様、及び前記複数の測定モジュール同士を前記連結モジュールを介して連結した第2連結態様の少なくとも1つを用いることで、前記乗物の各車輪と対応する位置に前記測定モジュールがそれぞれ配置された前記測定装置を構成可能となっている。
 上記組立システムにおいて、前記測定モジュール及び連結モジュールは、平面視矩形状に形成され、側面同士を連結可能とすることができる。
 上記組立システムにおいては、送風機からの風により形成される境界層を薄くするためのスプリッタをさらに備えることができ、前記スプリッタは、前記測定装置における前記送風機側の端部に取り付け可能に構成することができる。
 上記組立システムにおいて、前記各測定モジュールは、前記乗物の車輪を支持する平坦な蓋体と、前記蓋体の下方において前記ロードセルの位置を変更可能な移動機構と、を備え、前記蓋体は、前記車輪を支持し、前記ロードセルに固定される円板状の車輪支持部材と、前記車輪支持部材が嵌め込まれる第1貫通孔を有する、円板状の第1位置決め部材と、前記第1位置決め部材が回転自在に嵌め込まれる第2貫通孔を有する、円板状の第2位置決め部材と、前記第2位置決め部材が回転自在に嵌め込まれる第3貫通孔を有する、支持本体部と、を備え、前記第1及び第2位置決め部材を回転させることで、前記車輪の直下に前記車輪支持部材を配置可能となっており、前記ロードセルが前記車輪支持部材に作用する力を測定するように構成することができる。
 上記組立システムにおいて、前記乗物が四輪車であるとき、4つの前記測定モジュールを用いて前記測定装置を構成することができる。
 上記組立システムにおいて、前記乗物が二輪車であるとき、2つの前記測定モジュールを用いて前記測定装置を構成することができる。
 本発明に係る風洞試験装置は、上述したいずれかの組立システムと、移動可能な送風機と、を備えている。
 本発明によれば、可搬性があり、種々の大きさや種類の乗物に対応することができる。
本発明の一実施形態に係る風洞試験装置の概略側面図である。 図1の風洞試験装置に含まれる測定装置の斜視図である。 図2の測定装置において蓋体を取り外した状態を示す斜視図である。 測定装置のスプリッタの斜視図である。 図4の断面図である。 測定装置の第1測定部の斜視図(a)及び一部断面図(b)である。 第1測定部において蓋体を取り外した状態を示す斜視図である。 図7の平面図である。 測定装置の中間部の斜視図である。 中間部の蓋体を取り外した状態の連結部の斜視図である。 測定装置のリア部の斜視図である。 リア部の蓋体を取り外した状態のリア部の斜視図である。 車輪の配置を示す平面図である。 測定装置の他のレイアウトを示す平面図である。 測定装置の他のレイアウトを示す平面図である。
 以下、本発明に係る風洞試験用の測定装置の一実施形態について、図面を参照しつつ説明する。図1は、風洞試験装置の概略側面図である。
 図1に示すように、この風洞試験装置は、送風機1と測定装置2とを備えており、測定装置2上に配置された4輪の乗物100に対し、送風機1から送風するようになっている。そして、送風された空気を受ける乗物に作用する抗力等を測定装置によって測定するようになっている。送風機は、可搬性のある公知の風洞試験用の送風機である。以下、測定装置について詳細に説明する。
 図2は測定装置の斜視図、図3は図2の測定装置において蓋体を取り外した状態を示す斜視図である。以下では、説明の便宜のため、図2に記載の方向にしたがって説明を行うこととする。
 図2及び図3に示すように、この測定装置2は、スプリッタ3、第1測定部4、中間部5、第2測定部6、及びリア部7が先端から後端に向かってこの順で連結されている。以下、これらの構成について、詳細に説明する。
 <1.スプリッタ>
 図4はスプリッタの斜視図、図5は図4の断面図である。図4及び図5に示すように、スプリッタ3は、送風機1から流れる風が測定装置2上に流れる際に、測定装置2の上面に形成される境界層を薄くするための機能を有しており、左右方向に並ぶ4つのスプリッタ片301~304によって構成されている。各スプリッタ片301~304の構成は同じであるため、ここでは、その1つである第1スプリッタ片301について説明する。第1スプリッタ片301は、本体部31と、本体部31の先端から延びる先端部材32と、を備えている。本体部31は、板状の上壁部311と下壁部312とを有しており、上壁部311の上面は、第1測定部4の上面と連続するように平坦に形成されている。下壁部312は後方に行くにしたがって下方に延びる傾斜面を有している。したがって、上壁部311と下壁部312とは、側面視において鋭角をなすように連結されている。
 先端部材32は板状に形成され、その上面321と本体部31の上面とが連続するように形成されている。先端部材32の下面322の前方側の端縁は、上面の前方側の端縁よりも、後方に位置している。そして、上面321の端縁と下面322の端縁とを結ぶ先端面323は、断面円弧状に形成されている。
 先端部材32には、前後方向に所定間隔を開けて複数の貫通孔324が形成されている。そして、先端部材32の下面322には、この貫通孔324と連通する管部材325が取り付けられている。この管部材325は測定装置2に内蔵された圧力測定部(図示省略)に接続されており、先端部材の上面を流れる空気の圧力を測定できるようになっている。
 測定装置2の上面では、送風機1から流れる空気流の一部が測定装置2との間で生じる摩擦力によって引きずられることで境界層が形成される。ここでは、空気流のうち、境界層を除く成分を主流と呼ぶ。すなわち、空気流は、上面から離間する方向に向かって境界層と、主流と、を含んでいる。主流は上面を基準とする高さ方向において均一な流速分布を有する。一方、境界層の流速は、主流の流速よりも小さく、かつ上面に近付くほど低流速となるため、風洞試験で乗物の走行状態を模擬する際の再現性に影響を与える場合がある。そこで、本実施形態では、測定装置2の先端にスプリッタ3を設けることで、境界層を薄くすることができる。その結果、風洞試験への境界層の影響を低減することができる。
 上述した境界層を薄くして影響を低減するためには、先端部材32の厚みt、先端部材32の本体部31から前方へ突出する長さL、先端面323の曲率半径Rが影響することが本発明者によって確認されている。例えば、先端部材32の厚みtは、1~8mmであることが好ましく、3~5mmであることがさらに好ましい。先端部材32の本体部31から突出する長さLは、75~150mmであることが好ましく、100~125mmであることがさらに好ましい。また、先端面323の先端半径Rは、先端部材32の厚みの2/5~3/5であることが好ましく、例えば、1/2であることがさらに好ましい。
 4つのスプリッタ片301~304は、上記のように左右方向に並ぶように連結されている。また、4つのスプリッタ片301~304のうち、右側及び左側に配置される第1及び第4スプリッタ片301、304においては、上壁部311と下壁部312とで形成される側部開口が板状の側壁部315で塞がれている。
 <2.第1測定部及び第2測定部>
 図2及び図3に示すように、第1測定部4及び第2測定部6は、それぞれ、左右方向に同一構成の2つの測定モジュールを連結することで構成されている(第1連結態様)。ここでは、説明の便宜のため、第1測定部4の右側及び左側の測定モジュールをそれぞれ第1,第2測定モジュール401,402と称することとする。また、第2測定部6の右側及び左側の測定モジュールをそれぞれ第3,第4測定モジュール601,602と称することとする。第1~第4測定モジュール401,402,601,602は、同一構成であるため、以下では、主として第1測定部4及び第1測定モジュール401について、説明を行うこととする。
 図6は第1測定部の斜視図及び一部断面図、図7は第1測定部において蓋体を取り外した状態を示す斜視図、図8は図7の平面図である。図6~図8に示すように、第1測定モジュール401は、平面視正方形状の板状の底壁部41と、この底壁部41の周縁に沿って配置される枠形の側部フレーム42と、側部フレーム42の上部開口を塞ぐ平面視正方形状の蓋体43と、を備えており、全体として高さの低い直方体状に形成されている。図7に示すように、第1及び第2測定モジュール401,402は、側部フレーム42同士をボルトなどで連結することで、固定されている。そして、これら底壁部41、側部フレーム42、及び蓋体43によって囲まれる空間に、ロードセル44及びその移動機構45が配置されている。
 移動機構45は、次のように構成されている。図8に示すように、底壁部41には、前後方向に平行に延びる一対の第1レール451が配置されている。この第1レール451上には板状の第1移動部材452が設けられており、第1レール451に沿って前後方向に移動可能となっている。また、第1移動部材452上には、左右方向に平行に延びる一対の第2レール453が配置されている。この第2レール453上には板状の第2移動部材454が設けられており、第2レール453に沿って左右方向に移動可能となっている。そして、この第2移動部材454上にロードセル44が配置されている。
 ロードセル44は、公知のロードセルを用いることができる。このロードセル44は、次に説明する蓋体43の車輪支持部材431に固定され、車輪支持部材431で支持される乗物の車輪101を介して当該乗物によって生じる、抗力、揚力、横力、及び各モーメントの少なくとも1つを検出する。各ロードセル44は、後述するリア部7の第1及び第6リアモジュール701,706に収容された計測器(図示省略)に接続されている。計測器には、ひずみ増幅器や、ロードセル指示計が収容されている。
 次に、蓋体43について説明する。図6に示すように、蓋体43は、乗物100の車輪101を支持する車輪支持部材431を有しており、車輪支持部材431はロードセル44の上面にボルトなどで固定されている。そして、この車輪支持部材431の周囲に、第1位置決め部材432、第2位置決め部材433、及び支持本体部材434が配置されている。より詳細に説明すると、第1位置決め部材432には円板状に形成され、車輪支持部材が回転自在に嵌め込まれる第1貫通孔4320が形成されている。第1貫通孔4320は、第1位置決め部材432の中心からずれた位置に形成されている。第2位置決め部材433は円板状に形成され、第1位置決め部材432が回転自在に嵌め込まれる第2貫通孔4330が形成されている。第2貫通孔4330の内周面には段4330が形成され、この段4330の上に第1位置決め部材432が回転可能に配置されている。また、第2貫通孔4330は、第2位置決め部材433の中心からずれた位置に形成されている。支持本体部材434は、側部フレーム42上に配置されるように外形が正方形状に形成されており、その中心と一致するように、円形状に第3貫通孔4340が形成されている。そして、この第3貫通孔4340の内周面には段4340が形成され、この段4340の上に第2位置決め部材433が回転自在に配置されている。
 この構成により、第1位置決め部材432及び第2位置決め部材433をそれぞれ回転させることで、車輪支持部材431を、蓋体43の所望の位置に配置することができる。具体的には、例えば、次のように位置決めすることができる。
 まず、第1位置決め部材432を取り外した状態で、上記移動機構45によりロードセル44及び車輪支持部材431を所定の位置に移動させる。このとき、車輪支持部材431に第2位置決め部材433が干渉する場合には、第2位置決め部材433も取り外しておく。次に、車輪支持部材431の周囲に環状の治具を取り付けた上で、第2位置決め部材433を回転させ、この治具に第2位置決め部材433の内周のいずれかを接触させる。これにより、車輪支持部材431の外周面と第2位置決め部材433の内周面とが最も近接する部分の距離が、治具によって規定される。この距離は、第1位置決め部材432の外周面と第1貫通孔4320の内周面との最も近接する距離と一致している。これにより、車輪支持部材431と第2貫通孔4330との間に形成される空間が、第1位置決め部材432の形状と一致するため、第1位置決め部材432を第2貫通孔4330に嵌め込めば、車輪支持部材431の位置決めが完了する。
 なお、第1及び第2位置決め部材432、433の表面に複数の穴を形成しておけば、この穴にレバーを差し込んだ上で、レバーを移動させることで各位置決め部材432、433を移動させることができる。
 <3.中間部>
 図9は中間部の斜視図、図10は蓋体を取り外した状態の中間部の斜視図である。図9及び図10に示すように、中間部5は、左から右に向かって並ぶ第1~第6中間モジュール501~506を備えている。このうち、第1、第3,第4,第6中間モジュール501,503,504,506は、平面視長方形状の同じ形状のモジュールで形成されている。以下、これらのモジュールをA型連結モジュール51と称することとする。また、第2及び第5連結モジュール502,505は、平面視正方形状の同じ形状のモジュールで形成されている。以下、これらのモジュールをB型連結モジュール52と称することとする。これらA型連結モジュール51及びB型連結モジュール52は、前後方向の長さ及び高さが同じになっているが、B型連結モジュール52の方が、A型連結モジュール51よりも左右方向の長さが長くなっている。
 A型連結モジュール51は、前後方向に長い直方体状に形成されており、平面視長方形状の板状の底壁部511と、この底壁部511の周縁に沿って配置される枠形の側部フレーム512と、側部フレーム512の上部開口を塞ぐ平面視正方形状の蓋体513と、を備えており、全体として高さの低い直方体状に形成されている。A型連結モジュール51のうち、中間部5の両側に配置される第1及び第6中間モジュール501,506には、それぞれ側部フレーム512の右側面及び左側面に長方形状の閉鎖板514が取り付けられている。
 B型連結モジュール52は、平面視長方形状の板状の底壁部521と、この底壁部521の周縁に沿って配置される枠形の側部フレーム522と、側部フレーム522の上部開口を塞ぐ平面視正方形状の蓋体523と、を備えており、全体として高さの低い直方体状に形成されている。B型連結モジュール52のうち、中間部5の両側に配置される第1及び第6中間モジュール501,506には、それぞれ側部フレーム522の右側面及び左側面に長方形状の閉鎖板524が取り付けられている。
 図2に示すように、2個のA型連結モジュール51と1個のB型連結モジュール52の合計の左右方向の幅が、1個の測定モジュール401,402,601,602の左右方向の幅と同じになっている。
 中間部5は、A型連結モジュールを4個、B型連結モジュールを2個用い、これらを上記のように左右方向に連結することで構成されている。隣接するモジュール同士の連結は、側部フレーム512,522を接した上で、ボルトなどで固定することで行われる。また、第1及び第2測定部4,6との連結も、側部フレーム同士を接した上で、ボルトなどで固定することで行われる(第2連結態様)。
 <4.リア部>
 図11はリア部の斜視図、図12は蓋体を取り外した状態のリア部の斜視図である。図11及び図12に示すように、リア部7は、左から右に向かって並ぶ第1~第6リアモジュール701~706を備えている。このうち、第1及び第6リアモジュール701,706は、平面視長方形状の同じ形状のモジュールで形成されている。以下、これらのモジュールをC型連結モジュール71と称することとする。第3及び第4リアモジュール703,704は、第1及び第6リアモジュール701,706よりも前後方向の長さが長い平面視長方形状の同じ形状のモジュールで形成されている。以下、これらのモジュールをD型連結モジュール72と称することとする。また、第2及び第5リアモジュール702,705は、左右方向の幅が第3及び第4リアモジュール703,704よりも長い平面視長方形状のモジュールで形成されている。以下、これらのモジュールをE型連結モジュール73と称することとする。
 C型連結モジュール71は、前後方向に長い直方体状に形成されており、平面視長方形状の板状の底壁部711と、この底壁部711の周縁に沿って配置される枠形の側部フレーム712と、側部フレーム712の上部開口を塞ぐ平面視長方形状の蓋体713と、を備えており、全体として高さの低い直方体状に形成されている。蓋体713は、側部フレーム712よりも後方に延び、D型連結モジュール72と前後方向の長さが同じになっている。また、C型連結モジュール71の側部フレーム712の右側面及び左側面には長方形状の閉鎖板714が取り付けられている。
 D型連結モジュール72は、平面視長方形状の板状の底壁部721と、この底壁部721の周縁に沿って配置される枠形の側部フレーム722と、側部フレーム722の上部開口を塞ぐ平面視長方形状の蓋体723と、を備えており、全体として高さの低い直方体状に形成されている。
 E型連結モジュール73は、平面視長方形状の板状の底壁部731と、この底壁部731の周縁に沿って配置される枠形の側部フレーム732と、側部フレーム732の上部開口を塞ぐ平面視長方形状の蓋体733と、を備えており、全体として高さの低い直方体状に形成されている。
 図2に示すように、1個のC型連結モジュール71、D型連結モジュール72、及びE型連結モジュール73の合計の左右方向の幅が、1個の測定モジュール401,402,601,602の左右方向の幅と同じになっている。
 リア部7は、C型、D型、及びE型連結モジュールを2個ずつ用い、これらを上記のように左右方向に連結することで構成されている。隣接するモジュール同士の連結は、側部フレーム712,722,732を接した上で、ボルトなどで固定することで行われる。第2測定部6との連結も、側部フレーム同士を接した上で、ボルトなどで固定することで行われる。また、第1及び第6リアモジュール701,706を構成するC型連結モジュールには、上述した計測器が収容されている。計測器は、ケーブルを介して外部のコンピュータに接続され、データの表示、分析などを行う。このように計測器にはケーブルが取り付けられるため、その取り回しのため、C型連結モジュール71は、隣接するE型連結モジュール73よりも短くなっている。例えば、ケーブルを左右方向に延ばしたい場合には、ケーブルの屈曲部分をC型連結モジュール71の蓋体713で覆われた領域に配置することができる。したがって、ケーブルの屈曲部分が露出しないようにすることができる。
 <5.風洞試験>
 次に、上記のように構成された測定装置を用いた風洞試験について説明する。まず、上記のように測定装置2を組み立てる。次に、乗物100の4つの車輪と対応する位置にロードセル44及び車輪支持部材431を配置する。まず、ロードセル44を移動機構45によって位置決めした後、車輪支持部材431がロードセル44の直上に配置されるように、第1及び第2位置決め部材432,433を手動で回転させる。このとき、各ロードセル44の位置を計測器に接続されたコンピュータに入力する。
 続いて、図13に示すように、測定装置2上に乗物を配置する。4つの車輪101がそれぞれ4つの車輪支持部材431上に位置するように、乗物の位置を調整する。こうして、乗物が配置されると、送風機1によって送風を行い、ロードセル44によって、上述した各種のデータを計測する。
 <6.特徴>
 上記のように構成された測定装置2では、次のような効果を得ることができる。
(1)上記送風機1及び測定装置2が分離されてそれぞれ移動可能に構成されており、しかも測定装置2は組み立て可能であるため、従来の移動できない設置型の風洞試験装置に比べ、所望の場所で風洞試験を行うことができる。
(2)測定装置2は、1種類の測定モジュール401、及び5種類の連結モジュール51,52,71~73を組み合わせることで構成されている。そのため、これらのモジュールを適宜組み合わせることで、車輪101の数、位置が異なる乗物の風洞試験に適用することができる。例えば、上記の説明では、4輪の乗物の風洞試験について説明したが、例えば、図14に示すように、2個のスプリッタ片301,302で構成されたスプリッタ3と2個の測定モジュール401を連結すると、自転車やバイクのような2輪の乗物の風洞試験を行うことができる。また、図15に示すように、4つの測定モジュール401、A型連結モジュール51、及びB型連結モジュール52を連結することで、小型の4輪の乗物の風洞試験を行うこともできる。すなわち、全ての種類の連結モジュールを用いる必要はなく、そのうちのいずれかを用いて測定装置を構成することができる。その他、トライク等の三輪車の風洞試験を行うこともできる。また、各モジュールは、分離可能に連結できるため、複数種の乗物に対応した測定装置を何度でも形成することができる。
(3)本実施形態に係る測定装置2では、従来の風洞天秤のような1つの計測装置で種々の乗物の計測を行う場合に比べ、車輪101の位置に合わせて複数のロードセル44を用いているため測定装置2を小型化することができる。また、各車輪毎に、ロードセル44が配置されているため、計測の応答性を高くすることができる。また、各測定モジュール401,402,601,602の移動機構45によりロードセル44の位置を正確に位置決めすることができるとともに、車輪支持部材431の位置を変更しても各蓋体43の上面は平坦であるため、これらの組み合わせによって、車輪101から受ける力を正確に計測することができる。特に、車体に加わるモーメントを計算する際には、車輪のピッチ(例えば、ホイールベース、トレッドベースの寸法)を使って計算をしなければならないため、ロードセル44を車輪101の位置に正確に位置決めする必要がある。したがって、本実施形態に係る測定装置2は好適である。さらに、車輪101毎にロードセル44を設けることで、測定モジュール401,402,601,602の厚みを薄くすることができる。したがって、可搬性に優れた測定装置2を実現することができる。
(4)従来の設置型の風洞試験装置では、境界層を吸い込むような吸引装置が設けられ、装置が複雑で大型化していたが、本実施形態の測定装置2では、先端にスプリッタ3を設けることで、境界層を薄くすることができるため、可搬性のある測定装置に適しており、装置を簡素化することができる。
 <7.変形例>
 以上、本発明の第1実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。なお、以下の各変形例は適宜組み合わせることができる。
(1)上記実施形態では、1種類の測定モジュールと、5種類の連結モジュールを用いて測定装置を構成しているが、これら一例であり、限定されるものではない。すなわち、複数の測定モジュール同士を連結した第1連結態様、及び複数の測定モジュール同士を連結モジュールを介して連結した第2連結態様の少なくとも1つを用いることで、測定装置が構成できればよい。そのため、さらに異なる形状の測定モジュールや連結モジュールを準備することができ、これによって車輪の数や位置が異なる種々の乗物の風洞試験に適用することができる。このように、複数の計測モジュールと、少なくとも1つの連結モジュールと、を含むことで、本発明の組立システムが構成され、この中から所望の形態の測定装置を構成するように、計測モジュールと連結モジュールが選択される。
(2)測定モジュールの構成は特には限定されず、少なくとも1つのロードセル44が配置されていればよい。また、上記実施形態のようにロードセル44や車輪支持部材431の位置を変更できるものではなく、これらの位置が固定された測定モジュールにすることもできる。このような測定モジュールを用いたとしても、連結モジュールを用いることで、計測モジュール間の位置を調整できるため、車輪101の位置にロードセルを配置することができる。また、1つの測定モジュールに複数のロードセルを配置することもできる。さらに、測定モジュールの形状は、特には限定されず、上記のような平面視矩形状のほか、多角形状など種々の形状にすることができる。
 上記実施形態では、第1レール451及び第2レール453によってロードセル44を水平面上で直交する2方向に移動させているが、ロードセル44の移動機構45の構成はこれに限定されない。すなわち、ロードセル44が測定モジュール401内で移動可能に構成されていればよい。例えば、底壁部41に所定の間隔で複数の穴を形成し、ロードセル44を底壁部41の任意に位置に配置した後、穴にボルト等差し込んでロードセルを固定することができる。
(3)上記実施形態では、2つの位置決め部材432,433によって車輪支持部材431を移動させているが、車輪支持部材431を蓋体43の任意の位置に配置するための構成もこれに限定されない。すなわち、蓋体43の上面が平坦なままで、蓋体43内で車輪支持部材41が移動できるように構成されていれば、他の構成でもよい。例えば、上記実施形態では、2つの位置決め部材432,433によって車輪支持部材431を移動させているが、3以上の円板状の位置決め部材を用いてもよい。あるいは、円板状の位置決め部材を1つ用いてもよい。
 また、車輪支持部材431をロードセル44とともに移動させたときに、これに連動して第1位置決め部材432及び第2位置決め部材433が回転するように構成することもできる。このとき、第1位置決め部材432及び第2位置決め部材433の回転をモータなどで補助することができる。また、車輪支持部材431の位置決め後に、第1位置決め部材432及び第2位置決め部材433が動かないように固定する構造を有していてもよい。
 また、車輪支持部材431を矩形状に形成し、その周囲に、細分化された差し込み式の平面視矩形状の複数のブロックを差し込んで蓋体43を形成する。これにより、蓋体43の上面が平坦なままで、蓋体43内で車輪支持部材41を移動させることができる。また、ブロックではなく、前後左右に移動可能なシャッターにより車輪支持部材431の周囲を埋めるようにすることもできる。
(4)測定モジュールでは、第1及び第2位置決め部材432,433を手動で回転させているが、各位置決め部材432,433をモータなどの駆動装置で回転させることもできる。これにより、車輪支持部材の位置決めを自動で行うことができる。この点は、ロードセル44を移動させる移動機構45についても同様である。
(5)上記実施形態では、ロードセル44の位置を作業者が測定し、これをコンピュータに入力しているが、その作業を自動で行うこともできる。すなわち、ロードセル44の位置を検出する検出器を設けることができる。検出器としては、例えば、移動機構45にエンコーダを設け、これらエンコーダによって各ロードセル44の位置を検出することができる。また、ロードセル44間の相対的な位置関係を測定し、これに基づいて、ロードセル44の位置を検出することもできる。また、エンコーダ以外でも、ポテンショメータ、レゾルバ、レーザー等、各種の検出器を用いることができる。
(6)連結モジュールの構成は特には限定されず、上面が測定モジュールと上面と連続するように、測定モジュールと連結できるように構成されていればよい。また、連結モジュールの形状は、特には限定されず、上記のような平面視矩形状のほか、多角形状など種々の形状にすることができる。
(7)スプリッタ3の形状は特には限定されず、特に本体部31の下壁部312の形状は特には限定されない。また、スプリッタ3を設けずに測定装置2を構成することもできる。
(8)送風機1の構成は特には限定されず、公知の送風機を用いることができる。可搬性を考慮すれば、風量に応じて複数を組み合わせることができる送風機を用いることが好ましい。
1 送風機
2 測定装置
3 スプリッタ
4 計測モジュール
44 ロードセル
45 移動機構
51,52 連結モジュール
71~73 連結モジュール

Claims (7)

  1.  風洞試験用に、複数の車輪を有する乗物を支持する測定装置の組立システムであって、
     少なくとも1つのロードセルが収容された、複数の測定モジュールと、
     少なくとも1つの連結モジュールと、
    を備え、
     前記複数の測定モジュール同士を連結した第1連結態様、及び前記複数の測定モジュール同士を前記連結モジュールを介して連結した第2連結態様の少なくとも1つを用いることで、前記乗物の各車輪と対応する位置に前記測定モジュールがそれぞれ配置された前記測定装置を構成可能な、組立システム。
  2.  前記測定モジュール及び連結モジュールは、平面視矩形状に形成され、側面同士が連結可能となっている、請求項1に記載の組立システム。
  3.  送風機からの風により形成される境界層を薄くするためのスプリッタをさらに備え、
     前記スプリッタは、前記測定装置における前記送風機側の端部に取り付け可能に構成されている、請求項1または2に記載の組立システム。
  4.  前記各測定モジュールは、
     前記乗物の車輪を支持する平坦な蓋体と、
     前記蓋体の下方において前記ロードセルの位置を変更可能な移動機構と、
    を備え、
     前記蓋体は、
     前記車輪を支持し、前記ロードセルに固定される円板状の車輪支持部材と、
     前記車輪支持部材が嵌め込まれる第1貫通孔を有する、円板状の第1位置決め部材と、
     前記第1位置決め部材が回転自在に嵌め込まれる第2貫通孔を有する、円板状の第2位置決め部材と、
     前記第2位置決め部材が回転自在に嵌め込まれる第3貫通孔を有する、支持本体部と、
    を備え、
     前記第1及び第2位置決め部材を回転させることで、前記車輪の直下に前記車輪支持部材を配置可能となっており、
     前記ロードセルが前記車輪支持部材に作用する力を測定するようになっている、請求項1から3のいずれかに記載の組立システム。
  5.  前記乗物が四輪車であるとき、少なくとも4個の前記測定モジュールを用いて前記測定装置が構成される、請求項1から4のいずれかに記載の組立システム。
  6.  前記乗物が二輪車であるとき、少なくとも2個の前記測定モジュールを用いて前記測定装置が構成される、請求項1から4のいずれかに記載の組立システム。
  7.  請求項1から6のいずれかに記載の組立システムと、
     移動可能な送風機と、
    を備えている、風洞試験装置。
PCT/JP2022/048636 2022-01-13 2022-12-28 組立システム、及び風洞試験装置 WO2023136178A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280079818.XA CN118355255A (zh) 2022-01-13 2022-12-28 组装***和风洞试验装置
JP2023573993A JPWO2023136178A1 (ja) 2022-01-13 2022-12-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003421 2022-01-13
JP2022003421 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023136178A1 true WO2023136178A1 (ja) 2023-07-20

Family

ID=87278987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048636 WO2023136178A1 (ja) 2022-01-13 2022-12-28 組立システム、及び風洞試験装置

Country Status (3)

Country Link
JP (1) JPWO2023136178A1 (ja)
CN (1) CN118355255A (ja)
WO (1) WO2023136178A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835435A (ja) * 1981-08-27 1983-03-02 Yamato Scale Co Ltd 風洞天秤における被測定物支持装置
JPS6076639A (ja) * 1983-10-03 1985-05-01 Yamato Scale Co Ltd 車輪受台装置
JPH08313390A (ja) * 1995-05-24 1996-11-29 Mitsubishi Heavy Ind Ltd 移動式風洞
JPH11509926A (ja) * 1995-07-28 1999-08-31 アウディ アクチェンゲゼルシャフト 自動車における空気力学的測定のための方法と風洞計量器
JP2009506305A (ja) * 2005-08-26 2009-02-12 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 物体の空力測定用のテストスタンドおよび方法
JP2010014431A (ja) * 2008-07-01 2010-01-21 Nissho Denki Kk 乗物に生ずる流体力を計測する方法および風洞天秤装置
JP2014501914A (ja) * 2010-11-17 2014-01-23 エムアーハーアー アーイーペー ゲーエムベーハー ウント ツェーオー. カーゲー 風洞における自動車に作用する力とモーメントを測定する装置
JP2014535053A (ja) * 2011-11-02 2014-12-25 エムアーハーアー アーイーペー ゲーエムベーハー ウント ツェーオー. カーゲー 風洞天秤
US20170292896A1 (en) * 2016-04-07 2017-10-12 Ford Motor Company Portable aeroacoustic wind tunnel and method of testing a vehicle for wind noise
US20180038766A1 (en) * 2015-03-05 2018-02-08 Maha-Aip Gmbh & Co. Kg Multiple configuration wind tunnel balance and method for converting the wind tunnel balance
JP2019506624A (ja) * 2016-01-25 2019-03-07 ジェイコブス テクノロジー インコーポレイテッド 可搬式風洞
JP2021047086A (ja) 2019-09-18 2021-03-25 株式会社Subaru 風洞試験装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835435A (ja) * 1981-08-27 1983-03-02 Yamato Scale Co Ltd 風洞天秤における被測定物支持装置
JPS6076639A (ja) * 1983-10-03 1985-05-01 Yamato Scale Co Ltd 車輪受台装置
JPH08313390A (ja) * 1995-05-24 1996-11-29 Mitsubishi Heavy Ind Ltd 移動式風洞
JPH11509926A (ja) * 1995-07-28 1999-08-31 アウディ アクチェンゲゼルシャフト 自動車における空気力学的測定のための方法と風洞計量器
JP2009506305A (ja) * 2005-08-26 2009-02-12 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 物体の空力測定用のテストスタンドおよび方法
JP2010014431A (ja) * 2008-07-01 2010-01-21 Nissho Denki Kk 乗物に生ずる流体力を計測する方法および風洞天秤装置
JP2014501914A (ja) * 2010-11-17 2014-01-23 エムアーハーアー アーイーペー ゲーエムベーハー ウント ツェーオー. カーゲー 風洞における自動車に作用する力とモーメントを測定する装置
JP2014535053A (ja) * 2011-11-02 2014-12-25 エムアーハーアー アーイーペー ゲーエムベーハー ウント ツェーオー. カーゲー 風洞天秤
US20180038766A1 (en) * 2015-03-05 2018-02-08 Maha-Aip Gmbh & Co. Kg Multiple configuration wind tunnel balance and method for converting the wind tunnel balance
JP2019506624A (ja) * 2016-01-25 2019-03-07 ジェイコブス テクノロジー インコーポレイテッド 可搬式風洞
US20170292896A1 (en) * 2016-04-07 2017-10-12 Ford Motor Company Portable aeroacoustic wind tunnel and method of testing a vehicle for wind noise
JP2021047086A (ja) 2019-09-18 2021-03-25 株式会社Subaru 風洞試験装置

Also Published As

Publication number Publication date
JPWO2023136178A1 (ja) 2023-07-20
CN118355255A (zh) 2024-07-16

Similar Documents

Publication Publication Date Title
EP2541225B1 (en) VEHICLE TESTING DEVICE with SIMULATED WHEEL DEVICEs
WO2023136179A1 (ja) 測定装置、及びこれを用いた風洞試験装置
US5760938A (en) Apparatus and method for wheel alignment, suspension diagnosis and chassis measurement of vehicles
JP2007534960A (ja) 座標測定機械
JP2010502968A (ja) 自動車の車台測定のための方法、車台測定装置及び自動車検査通路
JP2019203869A (ja) シャシダイナモメータ
DK151917B (da) Indretning til maaling af koeretoejshjuls stillinger
WO2023136178A1 (ja) 組立システム、及び風洞試験装置
JP2024057101A (ja) 変換テーブル作成方法
CN112577668B (zh) 一种非规则结构体质心测量装置及方法
WO2023136180A1 (ja) 測定装置、及びこれを用いた風洞試験装置
US20070221418A1 (en) Counterbalance for a platform balance
CN100485349C (zh) 校验汽车转向盘操纵力-转角检测仪的便携式检定装置
JP4985290B2 (ja) サスペンションのアライメント測定・調整装置
JP3808016B2 (ja) 移動体模型の空気力学的試験方法、及び空気力学的試験用移動体模型
US4625419A (en) Wheel alignment measuring apparatus
CN216116759U (zh) 对接装置及发动机测试设备
JP4512148B2 (ja) 検査システム
CN114441147A (zh) 平行光管组件、车载摄像头解析力测量装置及测量方法
JP4451993B2 (ja) 風洞設備
JP4722685B2 (ja) 歯車対の試験装置
CN218098238U (zh) 风洞实验装置及风洞实验设备
CN218064024U (zh) 检测设备和生产检测设备
CN218179821U (zh) 一种模拟器平台检具
CN213812019U (zh) 一种新型校准机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573993

Country of ref document: JP